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ABSTRACT

Developing a Fundamental Understanding of Biomass Structural Features Responsible
for Enzymatic Digestibility. (August 2005)
Jonathan Patrick O’Dwyer, B.S., University of Louisiana-Lafayette
Chair of Advisory Committee: Dr. Mark Holtzapple

Lignocellulosic biomass is one of the most valuable alternative energy sources
because it is renewable, widely available, and environmentally friendly. Unfortunately,
enzymatic hydrolysis of biomass has been shown to be a limiting factor in the
conversion of biomass to chemicals and fuels. This limitation is due to inherent
structural features (i.e., acetyl content, lignin content, crystallinity, surface area, particle
size, and pore volume) of biomass. These structural features are barriers that prevent
complete hydrolysis; therefore, pretreatment techniques are necessary to render biomass
highly digestible.

The ability to predict the biomass reactivity based solely on its structural features
would be of monumental importance. Unfortunately, no study to date can predict with
certainty the digestibility of pretreated biomass. A concerted effort with Auburn
University and Michigan State University has been undertaken to study hydrolysis
mechanisms on a fundamental level. Predicting enzymatic hydrolysis based solely on
structural features (lignin content, acetyl content, and crystallinity index) would be a
major breakthrough in understanding enzymatic digestibility.

It was proposed to develop a fundamental understanding of the structural features
that affect the enzymatic reactivity of biomass. The effects of acetyl content,
crystallinity index (Crl), and lignin content on the digestibility of biomass (i.e., poplar
wood, bagasse, corn stover, and rice straw) were explored.

In this fundamental study, 147 poplar wood model samples with a broad
spectrum of acetyl content, Crl, and lignin were subjected to enzymatic hydrolysis to

determine digestibility.  Correlations between acetyl, lignin, and Crl and linear



hydrolysis profiles were developed with a neural network model in Matlab®. The
average difference between experimentally measured and network-predicted data were
+12%, +18%, and +27% for 1-, 6-, and 72-h total sugar conversions, respectively. The
neural network models that included cellulose crystallinity as an independent variable
performed better compared to networks with biomass crystallinity, thereby indicating
that cellulose crystallinity is more effective at predicting enzymatic hydrolysis than
biomass crystallinity. Additionally, including glucan slope in the 6-h and 72-h xylan
slope networks and glucan intercept in the 6-h and 72-h xylan intercept networks
improved their predictive ability, thereby suggesting glucan removal affects later-stage

xylan digestibility.
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INTRODUCTION

Improving energy efficiency is a possible means to reduce dependence on
imported oil; however, even with better energy efficiency, consumption is likely to grow
with increasing population. The world currently consumes 30 billion barrels per year;
Colin (2003) estimates that oil reserves will become scarce by the 2050s. Because
petroleum is a nonrenewable resource, there is an urgent need to seek alternative energy

sources that are inexhaustible.

BIOMASS CONVERSION PROCESSES

Lignocellulosic biomass is one of the most valuable alternative energy sources
because it is renewable, widely available, and environmentally friendly. Available
biomass reserves in the U.S. are approximately 200 million dry tons per year (U.S.
Department of Energy, 1998). Biomass can be converted to liquid fuels such as ethanol
(Szczodrak and Fiedurek, 1996) and chemicals such as carboxylic acids (Blasig et al.,
1992). Demand for ethanol is expected to rise because of concerns related to national
security, economic stability, environmental impact, and global warming (Bothast et al.,
1999). Figure 1 shows two biological processes that convert biomass into economically
viable products.

The more conventional approach to biomass conversion uses two individual
steps: (1) saccharification, whereby the biomass is converted to sugars using enzymes
and (2) fermentation, whereby the sugars are converted to alcohol using yeast. An
alternative to the aforementioned approach combines the saccharification and
fermentation steps and is called simultaneous saccharification and fermentation (SSF).
The advantage of SSF is that it minimizes product inhibition by maintaining low sugar
concentrations. This discovery is important because it improves overall efficiency and

reduces operating expenses of biomass conversion processes (Sun and Cheng, 2002).

This dissertation follows the style and format of Biotechnology and Bioengineering.



a) Biomass

Pretreatment
Saccharification |<——— Enzyme
Fermentation |<—— Yeast
SSF
Distillation
Ethanol

b) Biomass

Pretreatment

Fermentation

Mixed Carboxylate Salts

Thermal Conversion

Ketones

Hydrogenation

Mixed Alcohols

Figure 1. Overview of current process schemes used to convert lignocellulose into fuels

and chemicals: (a) Traditional biomass conversion process (b) MixAlco Process.



An alternative to the aforementioned enzyme-based processes is the MixAlco process
developed by Holtzapple et al. (1997). The MixAlco Process uses a mixed culture of
marine microorganisms to convert lignocellulosic biomass into carboxylate salts (e.g.,
calcium acetate, propionate, and butyrate), which are thermally converted to ketones and
subsequently hydrogenated to alcohols. The MixAlco Process has advantages over
traditional biomass conversion processes due to its robustness, ability to handle a variety

of feedstocks, and lower operating costs.

STRUCTURE OF LIGNOCELLULOSIC BIOMASS

On a dry weight basis, lignocelluloses contain 35-50% cellulose, 20-35%
hemicellulose, and 10-15% lignin (Wyman, 1994). Together, these components
represent approximately 90% of the dry weight of most plant material (Ingram, 1999).
Plant cell walls can be described as a macromolecule, which is composed of cellulose
fibers embedded in a covalently joined matrix of lignin and hemicellulose (Brett and
Waldron, 1996). The interactions between cell wall components render cellulose and
hemicellulose unavailable for enzymatic hydrolysis.

Cellulose is a linear, unbranched polymer of anhydroglucose connected by 3-1,4
linkages with high molecular weights of 600,000—1,500,000 (Holtzapple, 1993a).
Native cellulose occurs as densely packed, hydrogen-bonded elementary fibrils of pure
cellulose embedded in a matrix of hemicellulose. Native cellulose is water insoluble and
contains both crystalline and amorphous regions. This complexity makes cellulose resist
enzymatic hydrolysis without prior pretreatment.

Hemicellulose consists of short, branched chains of many sugars and modified
sugars. It consists of three hexoses (D-glucose, D-galactose, and D-mannose) and two
pentoses (D-xylose and L-arabinose). Native xylan is highly modified with acetyl
groups at the C2 and C3 positions and is amorphous because of its highly branched
nature (Holtzapple, 1993b). Because of their amorphous morphology, hemicelluloses

are partially soluble or swellable in water. Highly acetylated xylans resist enzymatic



degradation; therefore, deacetylation of xylan increases enzymatic hydrolysis (Kong et
al., 1992).

Lignin is an important component of plants serving as a glue that holds plant cell
walls together. Lignin is a highly cross-linked phenylpropylene polymer that resists
enzymatic degradation from invading insects and microbes (Holtzapple, 1993c). Pure
lignin does not exist in nature; instead, lignin always occurs in complex with
polysaccharides as a composite material called lignocellulose as shown in Figure 2. The
primary building blocks of lignin are guaiacyl, syringyl, and coumaryl. The guaiacyl
and syringyl units are dominant in softwoods and hardwoods respectively, whereas the
coumaryl unit is primarily found in grasses (Holtzapple, 1993c).

CELLULASE ENZYME COMPLEX

All cellulolytic enzymes share the same chemical specificity for B-1,4-glycosidic
bonds (Teeri, 1997). The major enzyme components of the cellulase enzyme complex
are cellobiohydrolase (E.C. 3.2.1.91), endoglucanase (E.C. 3.2.1.4), and B-glucosidase
(E.C. 3.2.1.21). The filamentous fungus Trichoderma reesei, which is known to have
one of the most efficient cellulase systems, produces two cellobiohydrolases (CBHSs) and
four endoglucanases (EGs); however, sufficient amounts of B-glucosidase (cellobiase)
are not produced in wild-type Trichoderma reesei to convert all cellobiose to glucose
(Medve et al., 1998). The cooperative action of the three enzymes is required to achieve
efficient enzymatic hydrolysis of lignocellulosic biomass. The cellobiohydrolase and
endoglucanase act synergistically (Figure 3) to achieve sugar yields that are greater than
the sum of the action of the individual enzymes (Srishdsuk et al., 1998).

As shown in Figure 4, most cellulolytic enzymes have two functionally distinct
domains, the cellulose-binding domain and the catalytic domain. Adsorption of the
cellulose-binding domain consists largely of entropically driven interactions between
aromatic amino acids (tryptophan and tyrosine) and cellulose (Creagh et al., 1996).

There are two fundamental mechanisms in which glycosidases cleave (3 1-4 glycosidic
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Figure 2. General overview of the structure of a plant cell wall. The brown-colored
material encasing the cellulose in the microfibril is a matrix of hemicellulose and lignin
(Moore and Dennis, 1999).

—— + :I
e ¢ —]

Figure 3. Schematic representation of the mode of action of cellobiohydrolases (CBH)
and endoglucanases (EG) acting in a synergistic manner. The filled circles (R) represent
the reducing ends and the open circles (NR) represent the nonreducing ends, and C

defines the highly ordered crystalline regions (Teeri, 1997).



Figure 4. Enzyme-carbohydrate interaction inside CBHI

tunnel: (a) binding domain and (b) catalytic domain
(Divne et al., 1998).



bonds. The stereochemical outcome of the reaction characterizes the reaction
mechanisms. If the stereochemistry at the anomeric carbon is retained in the product (-
glucose), then the enzyme is termed retaining; however, if the enzyme inverts the
stereochemistry of the product (a-glucose), then it is classified as an inverting enzyme
(Withers et al., 1986). The inverting enzyme uses a single-displacement mechanism
whereby water attacks the anomeric carbon, displacing the leaving group in a general
acid/base-catalyzed process (Withers et al., 1986; Liu et al., 1991). In contrast, retaining
enzymes use a double-displacement mechanism involving a covalent glycosyl-enzyme
intermediate. The first step involves attack of an enzymatic nucleophile at the anomeric
center with general acid-catalyzed displacement of the leaving group followed by a
molecule of water attacking the anomeric center of this intermediate in a general base-
catalyzed process to yield the product (Liu et al., 1991; Sinnott, 1990; Withers et al.,
1993).

Cellobiohydrolases (1,4-B-D-glucan cellobiohydrolase, exoglucanase) act as
exoglucanases (Medve et al., 1998), which must adsorb onto the insoluble substrate
before releasing cellobiose as the main product by attacking both reducing and
nonreducing ends of the cellulose chain. In addition to the catalytic site, which is
located in the core of the enzyme, these enzymes have a short extra binding domain
connected to the core via a flexible arm (Ong et al., 1989). This organization improves
binding to and therefore hydrolysis of crystalline cellulose (Stahlberg et al., 1988).
CBHs have been shown to efficiently degrade crystalline cellulose but are almost
inactive on soluble cellulose derivatives (Vrsanska and Biely, 1992). In Trichoderma
reesei, CBHs account for roughly 80% of the total cellulolytic protein, accounting for
most of its cellulolytic activity (Teeri, 1997).

Endoglucanases (endo-1,4-B-D-glucan 4-glucanohydrolase) cleave glycosidic
bonds randomly along the cellulose chains leading to a rapid decrease in the degree of
polymerization of the substrate. This action produces new binding sites for
cellobiohydrolases giving rise to endo-exo synergism (Goyal et al., 1991). The
individual isocomponents (enzymes that catalyze the same reaction but are encoded by



different genes) of the CBH and EG enzymes have been shown to elicit exo-exo
(Nidetzky et al., 1993) and endo-endo (Mansfield et al., 1998a; Mansfield et al., 1998b)
synergism among cellulases. EGs are known to bind very poorly to crystalline regions
of cellulose; therefore, they exhibit higher activity towards the more disordered regions
of cellulose. In many practical applications, endoglucanase activity has been found to be
detrimental to the strength of cellulose fibers (Pere et al., 1995).

Cellobiase hydrolyzes cellobiose to glucose and removes glucosyl residues from
the nonreducing end of the soluble cellooligosaccharides (Mansfield et al., 1999). Hoh
et al. (1992) discovered that cellobiase plays a vital role in cellulose hydrolysis because
it removes the inhibitory effect that cellobiose has on other cellulase enzymes (Hoh et
al., 1992). Holtzapple et al. (1990) have shown that converting cellobiose to glucose
reduces the effective inhibitor binding constant by a factor of six. Reducing end-product
inhibition is an important step in developing an economically viable process for
converting lignocellulose to alcohols and fuels.

OBJECTIVES

The main objective of this research was to determine if crystallinity, acetyl
content, and lignin content can fully explain the inherent reactivity of biomass, or are
there other structural features that play a vital role in the enzymatic hydrolysis of
biomass. If the empirical model developed can accurately predict biomass digestibility
for numerous biomasses that have been subjected to different pretreatment techniques,
then we can say that we have identified the fundamental factors responsible for
enzymatic hydrolysis. This work has the potential to lead to the design of selective
pretreatment techniques that can alter one or more of the structural features to render the
biomass digestible, which will lead to more efficient and economical pretreatments.
Because pretreatment is expensive, this work could help develop a more economically
viable biomass conversion technology, thereby improving its potential as an alternative

to fossil fuels. The following is a list of the steps performed to meet the main objective:



Determine the effect of experimental conditions (substrate concentration, enzyme
loading) on substrate and/or product inhibition. This is important because
measured reactivity should reflect biomass chemical and physical features and
not be influenced by inhibition.

Perform enzymatic hydrolysis of 147 poplar wood model samples at various
times (1, 6, 72 h) and strategically selected enzyme loadings.

Determine if crystallinity, lignin content, and acetyl content are the major
influencers of biomass digestibility by approximating a function of the three
structural features utilizing the neural network toolbox in MATLAB®.

Test the predictive ability of mathematical models with different substrates
(bagasse, corn stover, rice straw) that were pretreated with various techniques
(dilute acid, aqueous ammonia, ammonia fiber explosion, oxidative and

nonoxidative lime).
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OPTIMIZATION OF REACTION CONDITIONS

INTRODUCTION

Lignocellulosic biomass can be converted to ethanol, which is a renewable liquid
fuel that offers simultaneous environmental benefits. One major step in the conversion
of biomass to ethanol is sugar production. Converting biomass with either free enzymes
or microorganisms facilitates sugar production. The sugars are then fermented into
alcohol or a mixture of organic acids. Cellulose enzymatic hydrolysis offers major
advantages over other chemical routes (i.e., acid hydrolysis) such as higher yields,
minimal byproduct formation, low energy requirements, mild operating conditions, and
low chemical disposal costs (Van Wyk, 2001; Kadam et al., 1999; Ghose and Ghosh,
1978). Even though current costs of the enzymatic route are higher than other routes,
what drives research is its long-term potential for cost reduction through genetic and/or
metabolic engineering and economic viability over more established routes (Lynd et al.,
1991).

A major hindrance of current processing schemes is the high cost associated with
enzymes and pretreatments. Despite the high costs, pretreatment is an essential
prerequisite to alter biomass structural features, thereby improving the susceptibility of
biomass to enzymatic hydrolysis (Chang, 1999; Chang and Holtzapple, 2000). Most
pretreatments can be classified as either chemical (e.g., acid and alkaline) or physical
(e.g., milling and irradiation). Economic evaluations of processes that convert biomass
to bioethanol indicate that pretreatment is the single most expensive process step,
accounting for roughly one-third of the overall processing cost (Lynd et al., 1996). The
pretreated biomass is subsequently hydrolyzed through the synergistic action of a
complex mixture of enzymes to produce soluble monosaccharides (glucose, xylose,
arabinose, and mannose). The sugars are an intermediate in the chemical route before
being fermented. Enzyme production alone can account for as much as 30% of the total

process cost (Lynd et al., 1996). A thorough understanding of what structural features
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hinder enzymatic hydrolysis has the potential to aid in the design of more effective and
economically feasible conditions of the two major contributors to the high cost of current
biomass technologies: pretreatment techniques and enzyme loading.

Various theoretical, empirical, and hybrid models have been developed by
researchers to predict the enzymatic hydrolysis of biomass (Holtzapple et al., 1984;
Medve et al., 1998; Movagarnejad et al., 2000; Tarantili et al., 1996). Because cellulose
is a highly complex substrate, its hydrolysis involves two distinct stages: enzyme-
substrate complex formation and cellulose hydrolysis. Enzyme-substrate complex
formation consists of two major steps including mass transfer of enzyme from the bulk
aqueous phase to the cellulose surface and formation of the enzyme-substrate complex
following enzyme adsorption. Cellulose hydrolysis consists of three major steps
including transfer of reactant molecules to the active site of the enzyme-substrate
complex, reaction promoted by the enzyme, and transfer of soluble products to the bulk
aqueous phase. The complex-heterogeneous reaction mechanism involved in cellulose
hydrolysis and the intricate morphology of biomass make it difficult to model enzymatic
hydrolysis (Movagarnejad et al., 2000; Zhang et al., 1999).

The classic Michaelis-Menton parametric model is inadequate to explain the
action of cellulases on insoluble cellulose. In contrast, the kinetic behavior of cellulases,
in particular B-glucosidase, fits the Michaelis-Menton model on well-defined soluble
oligosaccharides (Schou et al., 1993). This is due to the homogeneous nature of the
reaction mechanism involved in cellobiose hydrolysis to glucose. The nonlinearity
observed when plotting sugar conversion versus hydrolysis time at a given enzyme
loading indicates that the rate of cellulose hydrolysis decreases and often stops before all
of the substrate is consumed (Zhang et al., 1999). There are several factors that lead to a
decrease in hydrolysis rates as the reaction progresses including end-product inhibition,
lower substrate reactivity (higher crystallinity, higher lignin content, substrate
accessibility, etc.), enzyme inactivation, and enzyme loss due to irreversible lignin
adsorption. Without the complication of product inhibition or cellulase inactivation,

Desai and Converse (1997) concluded that the loss of substrate reactivity is not the
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principal cause for the long residence time required for complete biomass conversion.
Likewise, Eriksson et al. (2002) concluded that thermal instability of the enzymes and
product inhibition were not the main cause of reduced hydrolysis rates, instead enzymes
become inactivated while adsorbed to the substrate and that unproductive binding is the
main cause of hydrolysis rate reduction.

In studies with pure celluloses, amorphous regions were shown to degrade 5-10
times faster than highly crystalline celluloses by fungal enzymes (Klyosov, 1990; Gama
et al., 1994; Lynd et al., 2002). This suggests that the high initial rates are due to
preferential hydrolysis of the more easily degraded amorphous regions and the rate
decreases as the enzymes encounter the more recalcitrant crystalline regions. Therefore,
models have been developed that account for the bicomposition (amorphous and
crystalline) of cellulose (Huang, 1975). However, validation of such models is
extremely difficult if not impossible. Accurately determining the quantity of cellulose
that is crystalline and amorphous as the reaction progresses is extremely tricky. In
contrast, several researchers have observed no substantial change in crystallinity as
enzymatic hydrolysis progresses beyond the initial stage (Puls and Wood, 1991; Lenz et
al., 1990; Ohmine et al., 1983). The inconsistencies in the rate of hydrolysis of
crystalline cellulose may be due to the crude/impure nature of the cellulase enzyme
complex. The quantities of EGs relative to CBHs can be inconsistent from batch to
batch. Because CBHs have been shown to degrade crystalline cellulose whereas EGs
are very ineffective, the differences in enzyme batches may lead to conflicting results
when investigating the increase or decrease of crystallinity as the reaction progresses.

Product inhibition of cellulases is a central limitation to the practical use of
cellulases in biomass conversion processes. This explains the interest in SSF technology
as an alternative to the two-step technique that allows for the accumulation of low-
molecular-weight sugars. Even though product inhibition is accepted as a limitation to
thoroughly hydrolyzing biomass, the type of inhibition is a subject of much debate. The
discrepancies result from the difficulty in conducting experiments that show the type of

inhibition because of the high inhibitor concentrations required to elicit an inhibitory
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effect. Researchers have reported conflicting results; while some measure competitive
inhibition (Dwivedi and Ghose, 1979; Beltrame et al., 1984; Gonzalez et al., 1989) and
noncompetitive inhibition (Holtzapple et al., 1984; Wald et al., 1984; Scheiding et al.,
1984) others measure uncompetitive inhibition (Beltrame et al., 1984). This discrepancy
could be a result of the substrate to enzyme ratio employed, source of cellulase enzyme
complex, and/or the hydrolysis time over which the experiments were conducted.

It is possible to predict the enzymatic digestibility of lignocellulose if the
function of chemical and physical features that determine digestibility can be modeled
(Chang and Holtzapple, 2000). Previously, Holtzapple et al. (1984) developed a
generalized theoretical model of cellulose hydrolysis, termed the HCH-1 Model. It was
shown that the HCH-1 Model could be simplified in such a way that a plot of conversion
versus the logarithm of enzyme loading is linear (Holtzapple et al., 1994). The linearity
of this plot has been observed over a tenfold range in enzyme loading and a threefold
range in initial cellulose concentration (Mandels et al., 1981).

MATHEMATICAL BACKGROUND

It was shown previously that the HCH-1 Model, which uses noncompetitive
inhibition and does not predict linear reaction rates in enzyme concentration as does the
classic Michaelis-Menton model, could consistently correlate cellulose hydrolysis
(Holtzapple et al., 1984); therefore, it was chosen to aid in the development of an
empirical model that predicts carbohydrate conversion based on biomass structural
features. The HCH-1 Model may be written as

v__0G, _  #GEi
dt  a+4G, +¢E

1)

where Gy is the cellulose concentration, E is the enzyme concentration, ¢ is the fraction
of the cellulose surface that is free to be hydrolyzed, and «, «, and s are parameters that
describe the degree of substrate reactivity and hence are related to biomass structural

features. To determine the inhibition pattern exhibited by the reaction system at constant
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substrate concentration, Equation 1 may be linearized into a double-reciprocal form by
inverting both sides to give

e BT @
Both the intercept and slope will be increased by the factor 1/i. This is indicative of the
classic noncompetitive inhibition pattern where both free enzyme and enzyme-substrate
complex bind the inhibitor. A noncompetitive inhibitor binds to enzyme sites that
participate in both substrate binding and catalysis and is illustrated with reaction network
in Figure 5. For multiple inhibitors, the inhibition parameter i, which is the fraction of
total enzyme not inhibited by product, is given as

] 1
| =
1+ B,G, + B,G,

(3)

where [, and B, are glucose and cellobiose binding constants, respectively. When
cellobiase is added in excess, all cellobiose is converted to glucose and Equation 3 can
simplified to give
i 1
1+ BG,

(4)

where G is the glucose concentration and 3, the glucose binding constant (Holtzapple et
al., 1990). If one assumes that fraction of binding sites that are free (¢) is close unity
and the conversion (x) is greater than 0.1 and less than 0.9, Equation 1 can be integrated
and simplified to become

x=BIn(E,)+ A (5)
where x and E, are sugar conversion/yield and enzyme loading, respectively (Holtzapple
et al., 1994). The linearity of Equation 5 has been observed over a tenfold range in
enzyme loading, E,, and a threefold range in initial cellulose concentration, Gx (Mandels
et al., 1981). Holtzapple et al. (1994) determined that parameters A and B are affected
by the inhibition parameter i. Therefore, it is important to eliminate product inhibition to
ensure parameter estimation reproducibility when using the linear form of the HCH-1
Model to predict enzymatic hydrolysis of biomass.
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Figure 5. A reaction network illustrating noncompetitive inhibition where the inhibitor
binds to free enzyme as well as the enzyme-substrate complex.
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OBJECTIVES

The purpose of this research was to discover the type of inhibition pattern
demonstrated by the enzyme-substrate system employed. Additionally, the degree of
inhibition was investigated to determine the reaction conditions that would result in
minimal product inhibition, thereby reflecting the inherent reactivity of the biomass.
Lastly, the range of substrate concentrations and enzyme loadings over which the
simplified HCH-1 Model (Equation 5) is valid was investigated. Corn stover was
employed as the substrate throughout all experiments. It was prepared by lime
pretreatment as described in Appendix C. The specific objectives were:

1. Determine the inhibition pattern exhibited by enzymatically hydrolyzed lime
pretreated corn stover with a Trichoderma reesei cellulase complex. This is
important because the kinetic model used to describe digestibility, the HCH-1
Model, was developed with a noncompetitive inhibition term.

2. Calculate inhibition parameters (i) to determine optimal reaction conditions (i.e.,
minimal inhibition).

3. Explore the range of conditions (i.e., enzyme loading and substrate
concentration) over which the simplified HCH-1 Model is valid.

INHIBITION STUDY
Purpose

The HCH-1 Model was proposed as a means of predicting enzymatic hydrolysis
of biomass. The model assumes that the inhibition pattern is noncompetitive
(Holtzapple et al., 1990). The purpose of this study is to determine if the assumption of
noncompetitive inhibition of cellulase in the HCH-1 Model is valid with the reaction
system employed. Additionally, the degree of inhibition was measured to determine the

combination of enzyme loading and substrate concentration that leads to minimal
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product inhibition. The hydrolysis experiments described in subsequent sections will be
conducted to predict enzymatic hydrolysis based solely on biomass structural features;
therefore, measured reactivity should reflect biomass chemical and physical features and

not be influenced by product inhibition.

Materials and Methods
Substrate Preparation

Corn stover was prepared by grinding 100 g in a coffee grinder and sieved with a
40-mesh screen. The ground and sieved biomass was pretreated with 0.1 g lime
(Ca(OH),)/g dry biomass and 10 g water/g dry biomass for 2 hours while the
temperature was maintained at 100°C. After pretreating, the pH was 11.5, which is
incompatible with cellulase; therefore, an appropriate amount of acetic acid (CH3COOH)
was added to neutralize (pH = 5.5) any residual lime. After pH adjustment, the corn
stover was repeatedly washed with distilled water and centrifuged to separate the wash
water from the biomass until the supernatant was clear. The pretreated and washed corn
stover was air dried at 45°C for 3 days. The dried corn stover was again ground in a
coffee grinder and sieved with a 40-mesh screen. The moisture content of the air-dried

corn stover was determined as described in NREL standard procedure No. 001.

Enzyme Measurements

To verify the activity of the Trichoderma reesei cellulase preparation received
from NREL, a filter paper assay was performed according to NREL standard procedure
No. 006. The filter paper activity of the cellulase was 65 FPU/mL enzyme. A
comparison of the standard filter paper assay and an improved standard filter paper assay
developed by Coward-Kelly et al. (2003) is described in Appendix D. Cellobiase
activity (Novozym 188, Novo Nordisk Biochem) determined by Novo Nordisk was
321 CBU/mL based on the company’s assay.
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Enzymatic Hydrolysis

The experiments were conducted in screw-cap glass vials with 0.2 g dry weight
of lime treated corn stover in a solution of citrate buffer (0.05 M, pH 4.8) and sodium
azide (0.01 g/L) to maintain constant pH and inhibit microbial contamination,
respectively. The reaction vessels were agitated in a 100-rpm air-bath shaker. When the
solution reached 50°C, the hydrolysis was initiated by adding 0.2 mL of appropriately
diluted cellulase (Table 1) and an excess cellobiase loading of 30 uL. The excess
cellobiase ensures all cellobiose, which has significant inhibitory effects, is converted to
glucose. A series of experiments was conducted with varying enzyme loadings (0.25-50
FPU/g biomass) at four substrate concentrations (10, 20, 50, and 100 g biomass/L).
After 1 or 72 h, depending on the experiment being conducted, the vials were removed
from the air-bath shaker, boiled for 15 minutes to denature the enzymes, cooled,
centrifuged, and the filtrate was frozen until sugar analysis was performed. (Note: Upon
thawing, the samples were well mixed to ensure uniform sugar concentration).
Reducing sugars were measured using the DNS assay (Miller, 1959) against a glucose
standard and reported as “mg equivalent glucose/g dry biomass.” Cellulase and
cellobiase were incubated independently in the absence of biomass for 3 days at 50°C as
explained in Appendix A “Enzymatic Hydrolysis.” The experiments were performed in
triplicate. Background sugar contributed by cellulase and cellobiase were measured by
the DNS assay. No sugars were detected for the cellulase enzyme mixture. The
cellobiase enzyme had a mean sugar contribution of 0.56 mg glucose/mL solution and
standard error of +0.017. This background sugar contribution was subtracted from

experimental sugar yields.



Table 1. Cellulase enzyme dilution calculations used for all experiments.

Desired Total Stock Dilution
Loading Volume Enzyme Water
(FPU/g biomass) (mL) (mL) (mL)
0.1 16.250 0.025 16.225
0.25 13.00 0.05 12.95
0.5 13.0 0.1 12.9
0.75 8.67 0.1 8.57
1 6.5 0.1 6.4
1.5 4.33 0.1 4.23
2 3.25 0.1 3.15
3 3.25 0.15 3.10
5 3.25 0.25 3.00
10 3.25 0.50 2.75
20 3.25 1.00 2.25
30 2.17 1.00 1.17

50 1.95 0.45 1.50
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Results and Discussion

A total of 136 experiments were conducted at four different substrate
concentrations and ten different enzyme loadings. The experiments exhibited the classic
nonlinear kinetic profile of a heterogeneous reaction system as shown by Figure 6. This
type of profile was expected due to the heterogeneous nature of lignocellulose
hydrolysis, which requires an adsorption step prior to cleavage of the glycosidic bond.

To determine the inhibition pattern exhibited by the reaction system, a total of 28
experiments were conducted at various substrate concentrations and enzyme loadings.
The experiments were terminated after 1 h by boiling for 15 minutes to denature the
enzymes. The experiments were conducted in duplicate. The average velocity was

measured over a period of one hour as

_ GS|2_GS|1

Vae = 6
wo =g ©)

where Gs is the soluble product concentration and t is time. To verify that the soluble
products act as noncompetitive inhibitors, Equation 2 was used to construct a
Lineweaver-Burke plot of 1/Vayc versus 1/[E]. Because the lines intersect after the
ordinate, Figure 7 provides evidence that the inhibition pattern is indeed noncompetitive
for soluble substrates. Because excess cellobiase was added to the reaction mixture, the
predominant soluble product was glucose. Thus, glucose binds to enzyme sites that
participate in both substrate binding and catalysis. The lines intersect on the 1/[E] axis
indicating that glucose has an equal binding affinity for the free enzyme and the enzyme-
substrate complex (i.e., the binding constants in Figure 5 K; and K’, are equivalent).
Another explanation for the noncompetitive inhibition pattern may be due to inactivation
of the enzyme due to non-preferential and irreversible binding to lignin, hence reducing
the effective level of [E] at all values of [S]. Therefore, double reciprocal plots for
irreversible enzyme inactivation resembles those for noncompetitive inhibition.

Contrary to expectations, Figure 8 demonstrates that sugar yields for the 100-g/L
substrate concentration were lower than for the 50-g/L substrate concentration. This
phenomenon may be due to increased product inhibition as shown in Table I1 at higher
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Figure 6. Nonlinear hydrolysis profile of a heterogeneous reaction system with lime-
pretreated corn stover. Hydrolysis conditions: 20 g/L and 48 CBU/g biomass.
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Figure 7. Lineweaver-Burke plot illustrating the noncompetitive inhibition pattern.

Hydrolysis conditions: 1 h, 48 CBU/g dry biomass, 1-30 FPU/g dry biomass.
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Figure 8. Hydrolysis profile of 3-d reducing sugar yields of lime-pretreated corn stover

for the substrate concentration study. Hydrolysis conditions: 48 CBU/g biomass, 72 h,

2-50 FPU/g dry biomass.
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Table I1. Inhibition parameters (i) calculated using Equation 4 with a glucose-binding

constant (/1) of 0.00313 L/g for the Trichoderma reesei cellulase complex.

Enzyme Substrate Concentration
Loading
(FPU/g biomass) 10 g/L 20 g/L 50 g/L 100 g/L
0.992
0.25 - - -
(+0.00030)
0.991
0.5 - - -
(+0.00037)
0.989
0.75 - - -
(+0.00006)
. 0.988
(+0.00010)
) 0.986 0.970 0.925 0.867
(+0.00007)  (+0.00034) (+0.00034)  (+0.00115)
3 0.986 0.970 0.919 0.858
(+0.00055)  (+0.00050) (+0.00032)  (+0.00058)
. 0.985 0.965 0.914 0.853
(+0.00096)  (+0.00058) (+0.00077)  (+0.00048)
10 0.983 0.964 0.906 0.839
(+0.00057)  (+:0.00000) (+0.00097)  (+0.00181)
20 0.981 0.959 0.901 0.828
(+0.00206)  (+0.00223) (+0.00342)  (+0.00028)
50 0.979 0.956 0.898 0.824
(+0.00244)  (+0.00342) (+0.00460)  (+0.00033)

Note: Numbers in parentheses are standard errors.
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substrate concentrations resulting in reduced total enzyme activity; hence a decreased
rate of reaction and ultimately lower sugar yields. It was proposed that substrate
inhibition might explain this phenomenon. Huang and Penner (1991) found that
substrate inhibition occurred above 5 g cellulose/FPU of enzyme. The highest substrate
to enzyme ratio employed throughout the experiments was 2 g cellulose/FPU of enzyme
leading one to believe that substrate inhibition had no effect on the reaction rate. The
hydrodynamics of the hydrolysis system may help explain the observed decrease in
sugar yield at higher substrate concentrations. It was observed that the reaction mixtures
of the 100-g/L experiments were a thick slurry (i.e., less free water). Cellulose is known
to contain numerous microscopic and macroscopic capillary pores that tend to retain a
large volume of water (i.e., measure of biomass swellability) (Mansfield et al., 1999).
This can entrap a large portion of the water from the cellulose suspension, making it
thicker and less mobile. Enhanced biomass swellability has been shown to enhance
biomass digestibility with the caveat of sufficient aqueous mobile phase remaining in the
reaction system to ensure adequate enzyme mobility. The lack of a mobile aqueous
phase in the higher substrate concentration experiments may have led to diffusion
limitations for the enzyme leading to reduced reaction rates at all enzyme loadings.
More than likely, it was a combination of increased product inhibition and a reduced
aqueous phase that led to lower sugar yields at the higher substrate concentration (100
g/L versus 50 g/L).

As stated previously, excess cellobiase (48 CBU/g dry biomass) was added to the
reaction mixture to minimize cellobiose accumulation allowing the exclusive use of
Equation 4. When cellobiase activity is high, inhibitory cellobiose is converted to
glucose, which allows i to be close to unity. This is important because Holtzapple et al.
(1990) have shown that cellobiose is 6 times more inhibitory than glucose for
Trichoderma reesei cellulase. Table Il shows inhibition parameters calculated using
Equation 4 with a 0.00313 L/g glucose binding constant (/) for a Trichoderma reesei

cellulase enzyme system (Holtzapple et al., 1990). As shown in Table 11, the inhibition
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parameter values decreased with increasing substrate concentration. This was expected
because the higher substrate concentrations resulted in higher quantities of glucose, the
only soluble product in a significant amount to elicit an inhibitory effect. Because the
inhibition parameter is a measure of the fraction of enzyme that is active, it is desirable
to have values that are closest to unity to ensure that the enzymes are being effectively
utilized. Inhibition parameters calculated at a substrate concentration of 10 g/L were
closest to unity, suggesting the measured reactivity reflects biomass chemical and
physical features and is not influenced by product inhibition. Therefore, all experiments
in “Enzymatic Hydrolysis of Model Samples” and “Predictive Ability of Neural
Networks Study” will be conducted with a substrate concentration of 10 g/L as shown in
Table I11.

It has been shown that the slope (B) and intercept (A) are affected by the
inhibition parameter i. When i increases, the intercept decreases and the slope increases.
This causes an upward shift in the linear plot. Therefore, it is important to eliminate
product inhibition to ensure slope and intercept parameter estimation reproducibility
when using the linear form of the HCH-1 Model to predict enzymatic hydrolysis of

biomass.
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Table I11. Recommended enzymatic hydrolysis conditions to ensure minimal product

inhibition for subsequent experiments of model samples.

Variables Recommended Values
Enzyme Loading < 30 FPU/g dry biomass
Substrate Concentration 10 g/L
Cellobiase Loading > 48 CBU/g dry biomass

Hydrolysis Time 1,6,and 72 h
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REACTION CONDITIONS STUDY
Purpose

The purpose of this study was to determine the range of substrate concentrations
and enzyme loadings in which Equation 5 is valid. This will determine the reaction
conditions employed for experiments conducted in “Enzymatic Hydrolysis of Model
Samples” and “Predictive Ability of Neural Networks Study.”

Materials and Methods
Substrate preparation, enzyme activity measurements, and enzymatic hydrolysis
procedures were followed as described in “Inhibition Study.”

Results and Discussion

The range of enzyme loadings and substrate concentrations over which Equation
5 could predict enzymatic hydrolysis was investigated by conducting experiments at 34
different combinations of enzyme loading and substrate concentration. The experiments
were performed in triplicate. A plot of glucose yield versus the natural logarithm of
enzyme loading is linear, as predicted by Equation 5. The ability to interpolate reducing
sugar yield is illustrated in Figure 8 for cellulase loadings between 2 and 50 FPU/g dry
biomass at substrate concentrations of 10, 20, 50, and 100 g/L and Figure 9 for cellulase
loadings between 0.25 and 50 FPU/g dry biomass at a substrate concentration of 10 g/L.
The linearity of Equation 5 has been observed over a 10-fold range in enzyme loading
and a 3-fold range in substrate concentration (Mandels et al., 1981). Figures 8 and 9
demonstrate this linearity holds over a 10-fold range in substrate concentration and a
200-fold range in enzyme loading at a 10-g/L substrate concentration, respectively. This
is significant because the ability to linearly interpolate sugar yields will substantially
reduce the complexity of developing a nonparametric empirical model to predict
enzymatic digestibility as described in “Neural Network Modeling of Structural Features

Responsible for Enzymatic Digestibility.”
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It was discovered that the range over which Equation 5 could accurately predict
enzymatic hydrolysis highly depends on the biomass inherent reactivity, which is
defined by its chemical and physical features. This is best illustrated in Figures 10a and
10b in which the hydrolysis profiles are clearly a function of the inherent reactivity of
the biomass (i.e., biomass structural features). Figure 10a shows that there are three
distinct regions in a complete hydrolysis profile. The two nonlinear regions occur at
extreme high (>90%) and low (<10%) conversions, which is expected due to the
assumptions made in simplifying the HCH-1 Model into a linear form represented by
Equation 5. At high and low conversions, the assumptions made to simplify the HCH-1
Model are no longer valid.

Figure 10b illustrates that the same biomass subjected to different degrees of
pretreatment (i.e., not ball milled versus ball milled for 3 days) alters the slope (B) and
intercept (A) of the linear region. Assuming that the change in slope and intercept is
based solely on different structural features, this will be exploited to develop a model to
predict B and A based solely on a sample’s biomass structural features. It should be
noted that once B and A are known, one can predict sugar conversion/yield by
reconstructing a plot of sugar conversion/yield versus the natural logarithm of enzyme
loading. The ability to predict conversion based exclusively on biomass structural
features is a major step in improving the efficiency and economic viability of current

biomass conversion technologies.

CONCLUSIONS

The studies indicate the inhibition pattern was noncompetitive, which agrees with
the inhibition pattern used to develop the HCH-1 Model. Also, the degree of inhibition
was lowest at a substrate concentration of 10 g/L. Reduced inhibition was experienced
at lower substrate concentrations because of the reduced quantity of glucose in the
reaction vessel. The range of enzyme loadings and substrate concentrations over which
the simplified HCH-1 Model was valid for lime pretreated corn stover are 0.25-50

FPU/g dry biomass and 10—100 g/L, respectively.
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Figure 9. Hydrolysis profile of 3-d reducing sugar yields of lime-pretreated corn stover
for the enzyme loading study. Hydrolysis conditions: 48 CBU/g biomass, 72 h, 0.25-50
FPU/g dry biomass.
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Figure 10. Complete hydrolysis profile illustrating (a) three distinct regions of
hydrolysis and (b) two samples subjected to different degrees of pretreatment.
Hydrolysis conditions: 10 g poplar wood/L, 0.25-100 FPU/g dry biomass, 48 CBU/g
dry biomass, 72 h.
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ENZYMATIC HYDROLYSIS OF MODEL SAMPLES

INTRODUCTION

Economically converting biomass to ethanol and/or organic acids would fulfill
many goals such as providing a clean-burning fuel substitute to gasoline that does not
add net carbon dioxide to the atmosphere, providing additional employment
opportunities, and reducing the United States’ dependence on unstable oil supplies
(Holtzapple et al., 1994). To be economical, biomass conversion processes require
either low pretreatment costs and/or low saccharification costs. Extensive pretreatment,
which is costly, renders biomass highly digestible thereby lowering saccharification
costs. Likewise, an abundance of enzymes, which are expensive, will thoroughly digest
biomass thereby lowering the costs associated with necessary pretreatments. An
optimum between the two costs exists, as shown in Figure 11. Finding the optimum
point would allow for the design of more effective and less expensive pretreatment
techniques, which currently accounts for roughly one-third of total production costs
(Lynd et al., 1996).

Factors that affect the enzymatic hydrolysis of cellulose and hemicellulose
include substrate characteristics, enzyme activity, and reaction conditions. Overcoming
limitations to thoroughly hydrolyze biomass by enzymes has been the main focus of a
massive amount of research since the early 1970s (Kadam et al., 2004; Mosier et al.,
2004; Chang, 1999; Claeyssens et al., 1990; Lee and Fan, 1982; Holtzapple et al., 1990;
Pere et al., 1995; Medve et al., 1998; Davies and Henrissat, 1995; Chang and
Holtzapple, 2000; Ghose and Ghosh, 1978). Due to the heterogeneous nature of the
biomass reaction system, direct physical contact between enzyme and substrate (i.e.,
cellulose and hemicellulose) is required. This means enzyme adsorption is a prerequisite
to hydrolysis. The efficiency of enzyme adsorption has been shown to be a function of
biomass structural features such as lignin (Sewalt et al., 1997a). Consequently, the

efficiency of enzymes to hydrolyze complex lignocellulosic biomass is closely linked to
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Figure 11. Diagram representing the balance between
the two major costs associated with current biomass

conversion processes.
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the inherent structural characteristics of the substrate (Lee and Fan, 1982). Lee and Fan
(1982) found that the various mass-transfer steps do not control the overall hydrolysis
rate. Instead, it is mainly controlled by the surface reaction step promoted by the
adsorbed enzyme. According to Cowling (1975), any structural feature that limits the
accessibility of enzyme to substrate will diminish its susceptibility to hydrolysis.
Several features deemed important in affecting enzymatic digestibility include lignin
content, the presence of acetyl groups, cellulose crystallinity, degree of polymerization,
surface area/pore volume of cellulose fiber, and particle size (Converse et al., 1990;
Sewalt et al., 1997b; Wong et al., 1988; Chang, 1999). However, elucidating the relative
importance of these structural features is complicated because of the complex nature of
lignocellulosic biomass and the difficulty of studying the effect of individual structural

features while holding all others constant.

Literature Review

The effect of structural features on enzymatic digestibility has been investigated
since the 1950s (Walseth, 1952; Sullivan, 1959; Mansfield et al., 1999; Chang and
Holtzapple, 2000; Kong et al., 1992; Lee and Fan, 1982). Conventionally, structural
features have been divided into two groups and classified as physical or chemical. The
chemical structural features consist of hemicellulose, lignin, cellulose, and acetyl groups
bound to hemicellulose. The physical structural features consist of crystallinity, pore
size, surface area, degree of polymerization, and the biomass particle size. Much work
has been conducted to elucidate the effect of structural features on biomass digestibility
as is summarized in Table IV. It appears that the most attention has been devoted to
lignin and cellulose crystallinity with a lesser degree towards acetyl groups, particle size,
degree of polymerization, and surface area.

Researchers have reported conflicting results regarding the relationship between
biomass digestibility and crystallinity. Crystallinity has been shown to both improve and
impede the enzymatic hydrolysis of biomass. Native biomass contains cellulose with

crystalline regions interspersed with amorphous regions. Some groups have found that
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crystallinity has a major inverse affect on enzymatic hydrolysis (Chang and Holtzapple
2000; Fan et al., 1980; Mansfield el al., 1999; Bertran and Dale, 1985; Sinitsyn et al.,
1991; Koullas et al., 1992; Thompson et al., 1992; Gharpuray et al., 1983; Weimer and
Weston, 1985; Rivers and Emert, 1988). However, others have reported that additional
structural features may play a more prominent role in affecting biomass digestibility,
such as surface area (Puri, 1984; Caulfield and Moore, 1974; Grethlein, 1985; Lee and
Fan, 1982; Nazhad et al., 1995), degree of polymerization (Puri, 1984; Nazhad et al.,
1995), and particle size (Caulfield and Moore, 1974; Puri, 1984; Rivers and Emert,
1988; Sangseethong et al., 1998).

Numerous researchers have reported improved digestibility with increasing
lignin removal. The extent to which increasing a substrate’s surface area increases its
digestibility appears to be influenced by its lignin content (Wong et al., 1988). The
lignin studies have all demonstrated the inhibitory effect lignin has on enzyme
adsorption and subsequent enzymatic hydrolysis (Saddler et al., 1998; Gharpuray et al.,
1983; Kong et al., 1992; Koullas et al., 1992; Vinzant et al., 1997; Thompson et al.,
1992; Sewalt et al., 1997a; Sewalt et al., 1997b; Fan et al., 1981b). However, others
have concluded that lignin removal is not necessary to achieve effective biomass
hydrolysis (Grohmann et al., 1989). One thing to note is that most lignin removal
techniques alter other biomass structural features making it difficult to isolate the role of
lignin removal in cellulose hydrolysis.

The enzymatic hydrolysis of wood holocelluloses (delignified biomass) has been
shown to depend on acetyl removal (Sinner et al., 1979). Native hemicellulose is
extensively acetylated (CH3;COO-), with about 70% of xylan residues containing acetyl
groups (Browning, 1967). The removal of acetyl groups from hemicellulose has been
shown to improve enzymatic digestibility of biomass through increased swellability
(Kong et al., 1992; Grohmann et al., 1989; Weimer and Weston, 1985). The hypothesis
is that acetyl groups sterically hinder enzyme activity. Specifically, removal of acetyl
groups with minimal alteration of lignin resulted in a 5-7 fold and 2-3 fold increase in

xylan digestion and cellulose digestion, respectively (Grohmann et al., 1989).
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Table IV. Overview of correlation between structural features and digestibility.

Structural Features®
Study .
] wl = Correlation
(Biomass) ol gl @B & g I| ©
=| © > > 5 (@) ()]
>S5
Fan et al., 1981a
x x X5=0.38(SSA)*%(100-Cr1)**
(solka floc)
Lee and Fan, 1982 ] ]
X X Crl=inverse; SSA=linear
(solka floc)
Gharpuray et al., 1983
puray x x | x D=2.04SSA%*(100-Crl)®#L 0%
(wheat straw)
Puri, 1984 ) )
PS, DP=inverse; SSA=linear
(bagasse, wheat straw, X | x| x x
Crl=n/c
wood, cotton)
Bertran and Dale, 1985 )
X Crl=inverse
(celluloses)
Sinitsyn et al., 1991 SSA=linear; Crl=linear (cellulose)
X X X X
(cellulose, bagasse) PS, DP=n/c
Kong et al., 1992 .
x | x| x L, OAc=inverse; HC=n/c
(aspen wood)
Nazhad et al., 1995 . i
x| x| x DP,Crl=inverse; SSA=linear
(pulped spruce)
Gregg and Saddler, 1996 )
X L=inverse
(woods)
Tarantili et al., 1996 )
X X Crl, L=inverse
(celluloses)
Sewalt et al., 1997a )
X L=inverse
(grasses)
Saddler et al., 1998 .
. X L=inverse
(douglass fir)
Chang, 1999 .
X X X Crl, L, OAc=inverse
(poplar wood)

% Crl=crystallinity, DP=degree of polymerization, SSA=specific surface area,
OAc=acetyl, HC=hemicellulose, PS=particle size.
b D=digestibility, X=conversion, n/c=no correlation.
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Previous studies had limitations that bring into question the validity of the effect
the structural features were reported to have on biomass enzymatic hydrolysis. Most
studies were not extensive enough in the number of samples employed. Additionally,
the narrow range of structural features, biomass types, and pretreatment types that were
used in the studies may have led to reduced model predictions. Another major limitation
is that types of biomass other than those from which the models were derived were not
used to test the model’s predictive ability. Therefore, the versatility and range of
predictive ability of previous models are unknown. Maybe the most significant
limitation to prior studies is they do not address cross effects between structural features
that may have occurred during pretreatment. This may lead to a masking of the true
underlying feature that may affect biomass digestibility. It was observed that lime (Kim,
2004) and aqueous ammonia (Kim et al., 2003) pretreatments alter both lignin content as
well as acetyl content. Wong et al. (1988) reported increased fiber swelling due to lignin
removal resulting in a larger surface area upon wetting. Therefore, when investigating a
particular structural feature, pretreatments that alter only one feature while leaving all
others unchanged should be employed. Studies that have not considered the possible
change of other structural features while altering the target feature may result in
misleading information. This may be one of the reasons why researchers have arrived at
conflicting conclusions regarding the affect of crystallinity, lignin, particle size, and
surface area on biomass digestibility. Kong et al. (1992), Chang (1999), and
Sangseethong et al. (1998) are a few of the researchers that have attempted to account
for the interaction of structural features when pretreating biomass. As a result, a
comprehensive study of the structural features that elicit a major effect on enzymatic
hydrolysis of biomass is needed to conclusively determine a dependable relationship
between the structural features and digestibility. Theoretically, it is possible to predict
the enzymatic digestibility of lignocellulosic biomass if the function of chemical and
physical features that determine digestibility can be modeled (Chang and Holtzapple,
2000). This would allow for the design of more effective and less expensive

pretreatment techniques.
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OBJECTIVES

The objective of this study was to perform enzymatic hydrolysis of the 147
poplar wood model samples to determine their degree of digestibility. The resulting
sugars were analyzed via HPLC and slopes (B) and intercepts (A) were determined
according to Equation 5. It should be noted that the slopes and intercepts were

determined by plotting conversion versus the natural logarithm of enzyme loading.

ENZYMATIC HYDROLYSIS STUDY

Purpose
The purpose of this study was to investigate the effects biomass structural
features (lignin content, acetyl content, and crystallinity) have on digestibility (i.e.,

slopes and intercepts).

Materials and Methods
Substrate Preparation

Chang (1999) prepared 147 poplar wood model samples with a variety of lignin
contents (0.7-26.3%), acetyl contents (0.1-3.1%), and crystallinities (5.4-68.8%) as
illustrated in Figure 12 and Table V. The structural features of the samples were directly
manipulated via selective delignification with peracetic acid, selective deacetylation with
KOH, and selective decrystallization with ball milling. The pretreatment techniques
were selected to minimize cross effects. The effect of lignin removal on acetyl content
and the effect of acetyl removal on lignin content are summarized in Figure 13. Ball-
milling was an extremely effective method for reducing biomass crystallinity due to the
crushing and shearing action of the zirconia grinding medium (Fan et al., 1981b).
Although crystallinity has been reported to be less important than the removal of lignin
on sugar yield (Fan et al., 1981a; Millet and Baker, 1975), ball milling decreases particle

size and increases the surface area of cellulose fiber (Gharpuray et al., 1983).
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39

Table V. Summary of structural features and carbohydrate contents of the 147 poplar

wood model samples.

Structural Features (%)

Carbohydrate Content®” (%)

Sample Sample
L. o Biomass Cellulose
No. Description Lignin®®  Acetyl*® Glucan  Xylan  Total®
CriI¢ Crl
1 DL00-DA000-DCO  26.3 2.9 55.4 62.4 44.4 13.9 58.3
2 DLO00-DA000-DC3 26.3 2.9 29.4 33.9 44.4 13.9 58.3
3 DL00-DA000-DC6 26.3 2.9 14.9 18.0 44.4 13.9 58.3
4 DL00-DA007-DCO 255 2.8 57.3 65.1 46.6 145 61.1
5 DL00-DA007-DC3 255 2.8 32.1 374 46.6 145 61.1
6 DL00-DA007-DC6 255 2.8 20.3 24.5 46.6 145 61.1
7 DL00-DA015-DCO 25.6 25 57.8 65.3 46.0 142 60.2
8 DL00-DA015-DC3 25.6 25 27.5 32.1 46.0 142 60.2
9 DL00-DA015-DC6  25.6 25 18.9 22.6 46.0 14.2 60.2
10 DL00-DA035-DCO 25.5 1.9 56.3 64.1 47.0 147 61.7
11 DL00-DA035-DC3 255 19 25.2 30.0 47.0 147 61.7
12 DL00-DA035-DC6 255 19 204 24.8 47.0 147 61.7
13 DL00-DA055-DCO 26.0 13 56.0 63.5 46.4 144 60.8
14 DL00-DA055-DC3 26.0 1.3 32.8 38.1 46.4 144 60.8
15 DL00-DA055-DC6 26.0 13 125 15.8 46.4 14.4 60.8
16 DL00-DA075-DCO 26.0 0.9 60.0 68.3 47.5 14.8 62.3
17 DLO00-DA075-DC3 26.0 0.9 21.6 26.2 475 14.8 62.3
18 DL00-DA075-DC6 26.0 0.9 9.9 13.3 47.5 14.8 62.3
19 DL00-DA150-DCO 245 04 66.2 74.3 49.2 13.9 63.1
20 DL00-DA150-DC3 245 0.4 31.2 35.9 49.2 13.9 63.1
21 DL00-DA150-DC6 245 0.4 27.3 31.6 49.2 13.9 63.1
22 DL01-DA000-DCO 23.9 2.8 60.2 68.5 47.3 14.8 62.1
23 DL01-DA000-DC3 23.9 2.8 25.9 30.9 47.3 14.8 62.1
24 DLO01-DA000-DC6 239 2.8 8.2 115 47.3 14.8 62.1
25 DL01-DA007-DCO  23.1 2.9 60.4 68.6 46.4 14.6 61.0
26 DL01-DA007-DC3 23.1 2.9 16.4 20.3 46.4 14.6 61.0
27 DL01-DA007-DC6 23.1 2.9 13.9 175 46.4 14.6 61.0
28 DL01-DA015-DCO 22.8 2.8 59.8 68.3 47.3 15.0 62.3
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Structural Features (%)

Carbohydrate Content*® (%)

Sample Sample i
No. Description Lignin*®  Acetyl*® Blomass — Cellulose Glucan  Xylan  Total®
Crl° Crl
29 DL01-DA015-DC3 22.8 2.8 22.7 27.6 47.3 15.0 62.3
30 DL01-DA015-DC6 22.8 2.8 14.0 18.0 47.3 15.0 62.3
31 DL01-DA035-DCO 22.4 2.9 60.0 68.3 47.8 14.8 62.6
32 DL01-DA035-DC3 22.4 2.9 27.0 32.1 47.8 14.8 62.6
33 DL01-DA035-DC6 22.4 2.9 22.0 26.6 47.8 14.8 62.6
34 DLO01-DA055-DCO 21.8 2.2 55.7 64.0 48.6 15.2 63.8
35 DL01-DA055-DC3 21.8 2.2 24.8 30.1 48.6 15.2 63.8
36 DL01-DA055-DC6 21.8 2.2 14.8 19.1 48.6 15.2 63.8
37 DL01-DA075-DCO 21.3 1.7 60.8 69.4 48.9 15.0 63.9
38 DL01-DA075-DC3 21.3 1.7 21.1 25.8 48.9 15.0 63.9
39 DLO01-DA075-DC6 21.3 1.7 17.3 21.6 48.9 15.0 63.9
40 DL01-DA150-DCO 17.8 0.4 68.8 78.4 54.9 15.3 70.2
41 DL01-DA150-DC3 17.8 0.4 28.3 34.0 54.9 15.3 70.2
42 DL01-DA150-DC6 17.8 0.4 18.8 23.6 54.9 15.3 70.2
43 DL02-DA000-DCO 215 2.9 59.3 67.5 47.5 14.8 62.3
44 DL02-DA000-DC3 215 2.9 19.0 23.3 47.5 14.8 62.3
45 DL02-DA000-DC6 21.5 2.9 16.0 20.0 47.5 14.8 62.3
46 DL02-DA007-DCO 21.1 3.1 58.9 67.5 48.4 15.2 63.6
47 DL02-DA007-DC3 21.1 3.1 23.3 28.4 48.4 15.2 63.6
48 DL02-DA007-DC6 21.1 3.1 12.8 16.9 48.4 15.2 63.6
49 DL02-DA015-DCO 20.9 3.0 59.0 67.6 47.9 15.2 63.1
50 DL02-DA015-DC3 20.9 3.0 27.4 32.9 47.9 15.2 63.1
51 DL02-DA015-DC6 20.9 3.0 27.4 32.9 47.9 15.2 63.1
52 DL02-DA035-DCO 19.5 2.9 59.4 68.1 48.7 15.3 64.0
53 DL02-DA035-DC3 195 2.9 26.5 32.0 48.7 15.3 64.0
54 DL02-DA035-DC6 19.5 2.9 22.0 27.1 48.7 15.3 64.0
55 DL02-DA055-DCO 19.5 25 61.8 70.8 49.2 15.4 64.6
56 DL02-DA055-DC3 19.5 25 25.2 30.7 49.2 154 64.6
57 DL02-DA055-DC6 19.5 25 23.0 28.3 49.2 154 64.6
58 DL02-DA075-DCO 18.4 1.7 61.4 70.6 50.0 15.6 65.6
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Structural Features (%)

Carbohydrate Content*® (%)

Sample Sample i
No. Description Lignin*®  Acetyl*® Blomass — Cellulose Glucan  Xylan  Total®
Crl° Crl
59 DL02-DA075-DC3 18.4 1.7 28.5 34.5 50.0 15.6 65.6
60 DL02-DA075-DC6 18.4 1.7 9.2 13.3 50.0 15.6 65.6
61 DL02-DA150-DCO 14.8 0.3 66.4 76.0 55.8 155 71.3
62 DL02-DA150-DC3 14.8 0.3 30.1 36.1 55.8 15.5 71.3
63 DL02-DA150-DC6 14.8 0.3 9.6 13.7 55.8 155 71.3
64 DL03-DA000-DCO 18.7 2.9 61.2 70.3 49.3 155 64.8
65 DL03-DA000-DC3 18.7 2.9 235 28.9 49.3 155 64.8
66 DL03-DA000-DC6 18.7 2.9 9.8 13.9 49.3 155 64.8
67 DL03-DA007-DCO 17.8 2.9 62.5 72.0 50.1 15.8 65.9
68 DL03-DA007-DC3 17.8 2.9 30.8 37.2 50.1 15.8 65.9
69 DL03-DA007-DC6 17.8 2.9 10.5 14.9 50.1 15.8 65.9
70 DL03-DA015-DCO 17.1 25 61.9 714 50.0 15.9 65.9
71 DL03-DA015-DC3 17.1 25 23.5 29.3 50.0 15.9 65.9
72 DL03-DA015-DC6 17.1 25 104 14.9 50.0 15.9 65.9
73 DL03-DA035-DCO 16.3 2.8 61.9 715 50.5 16.0 66.5
74 DL03-DA035-DC3 16.3 2.8 24.6 30.6 50.5 16.0 66.5
75 DL03-DA035-DC6 16.3 2.8 14.2 19.2 50.5 16.0 66.5
76 DL03-DA055-DCO 16.2 2.6 62.9 72.6 51.2 16.0 67.2
77 DL03-DA055-DC3 16.2 2.6 22.6 28.4 51.2 16.0 67.2
78 DL03-DA055-DC6 16.2 2.6 12.0 16.8 51.2 16.0 67.2
79 DL03-DA075-DCO 14.7 2.3 63.0 73.2 53.1 16.5 69.6
80 DL03-DA075-DC3 14.7 2.3 23.7 30.1 53.1 16.5 69.6
81 DL03-DA075-DC6 14.7 2.3 20.4 26.4 53.1 16.5 69.6
82 DL03-DA150-DCO 10.6 0.4 67.2 77.3 59.6 16.0 75.6
83 DL03-DA150-DC3 10.6 0.4 34.2 411 59.6 16.0 75.6
84 DL03-DA150-DC6 10.6 04 26.0 32.1 59.6 16.0 75.6
85 DL05-DA000-DCO 13.9 2.9 57.4 66.9 51.9 16.4 68.3
86 DL05-DA000-DC3 13.9 2.9 19.0 24.8 51.9 16.4 68.3
87 DL05-DA000-DC6 13.9 2.9 9.5 14.4 51.9 16.4 68.3
88 DL05-DA007-DCO 134 2.8 60.5 70.5 53.5 16.6 70.1
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Structural Features (%)

Carbohydrate Content*® (%)

Sample Sample i
No. Description Lignin*®  Acetyl*® Blomass — Cellulose Glucan  Xylan  Total®
Crl° Crl
89 DL05-DA007-DC3 134 2.8 25.3 31.9 53.5 16.6 70.1
90 DL05-DA007-DC6 134 2.8 24.0 30.5 53.5 16.6 70.1
91 DL05-DA015-DCO 13.3 2.7 62.1 72.2 52.7 16.5 69.2
92 DL05-DA015-DC3 13.3 2.7 24.1 30.5 52.7 16.5 69.2
93 DL05-DA015-DC6 13.3 2.7 11.9 17.1 52.7 16.5 69.2
94 DL05-DA035-DCO 12.5 2.6 61.7 72.0 53.7 16.8 70.5
95 DL05-DA035-DC3 125 2.6 25.9 32.8 53.7 16.8 70.5
96 DL05-DA035-DC6 125 2.6 12.7 18.3 53.7 16.8 70.5
97 DL05-DA055-DCO 11.8 2.3 65.6 76.2 54.2 16.7 70.9
98 DL05-DA055-DC3 11.8 2.3 25.6 32.3 54.2 16.7 70.9
99 DL05-DA055-DC6 11.8 2.3 25.6 32.3 54.2 16.7 70.9
100 DLO05-DA075-DCO 10.9 24 65.9 76.7 56.0 16.9 72.9
101 DL05-DA075-DC3 10.9 24 23.9 30.7 56.0 16.9 72.9
102 DL05-DA075-DC6 10.9 24 21.0 27.5 56.0 16.9 72.9
103 DL05-DA150-DCO 6.8 0.6 67.7 78.2 63.6 16.3 79.9
104 DL05-DA150-DC3 6.8 0.6 39.0 46.7 63.6 16.3 79.9
105 DL05-DA150-DC6 6.8 0.6 24.6 30.9 63.6 16.3 79.9
106 DL10-DA000-DCO 6.1 2.7 66.1 77.5 57.0 17.5 74.5
107 DL10-DA000-DC3 6.1 2.7 21.1 28.1 57.0 17.5 74.5
108 DL10-DA000-DC6 6.1 2.7 17.5 24.2 57.0 17.5 74.5
109 DL10-DA007-DCO 6.0 3.0 65.3 76.5 58.7 17.3 76.0
110 DL10-DA007-DC3 6.0 3.0 28.9 36.5 58.7 17.3 76.0
111 DL10-DA007-DC6 6.0 3.0 14.7 20.9 58.7 17.3 76.0
112 DL10-DA015-DCO 5.9 2.7 66.0 77.1 59.1 17.2 76.3
113 DL10-DA015-DC3 5.9 2.7 32.0 39.8 59.1 17.2 76.3
114 DL10-DA015-DC6 5.9 2.7 17.0 23.4 59.1 17.2 76.3
115 DL10-DA035-DCO 5.6 2.7 66.3 76.9 58.7 16.6 75.3
116 DL10-DA035-DC3 5.6 2.7 32.1 39.4 58.7 16.6 75.3
117 DL10-DA035-DC6 5.6 2.7 15.1 20.7 58.7 16.6 75.3
118 DL10-DA055-DCO 45 25 68.3 79.2 60.9 16.7 77.6
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Structural Features (%)

Carbohydrate Content*® (%)

Sample Sample i
No. Description Lignin®*®  Acetyl*® Blomass ~ Cellulose Glucan  Xylan  Total®
Crl° Crl
119 DL10-DA055-DC3 45 25 32.1 39.5 60.9 16.7 77.6
120 DL10-DA055-DC6 45 25 27.9 34.9 60.9 16.7 77.6
121 DL10-DA075-DCO 4.1 2.1 67.5 78.2 61.0 16.6 77.6
122 DL10-DA075-DC3 4.1 2.1 26.0 32.7 61.0 16.6 77.6
123 DL10-DA075-DC6 4.1 2.1 21.2 274 61.0 16.6 77.6
124 DL10-DA150-DCO 25 0.4 62.7 72.5 70.4 16.1 86.5
125 DL10-DA150-DC3 25 04 22.4 28.3 70.4 16.1 86.5
126 DL10-DA150-DC6 25 04 195 25.1 70.4 16.1 86.5
127 DL50-DA000-DCO 1.8 2.7 68.8 79.8 67.0 16.8 83.8
128 DL50-DA000-DC3 18 2.7 37.0 44.9 67.0 16.8 83.8
129 DL50-DA000-DC6 1.8 2.7 5.4 10.3 67.0 16.8 83.8
130 DL50-DA007-DCO 1.6 2.6 68.2 77.9 70.2 15.4 85.6
131 DL50-DA007-DC3 1.6 2.6 46.9 54.5 70.2 154 85.6
132 DL50-DA007-DC6 1.6 2.6 21.5 26.6 70.2 154 85.6
133 DL50-DA015-DCO 16 2.3 65.7 4.7 70.9 15.0 85.9
134 DL50-DA015-DC3 16 2.3 50.6 58.2 70.9 15.0 85.9
135 DL50-DA015-DC6 1.6 2.3 19.2 23.7 70.9 15.0 85.9
136 DL50-DA035-DCO 15 2.2 64.6 72.9 71.7 14.3 86.0
137 DL50-DA035-DC3 15 2.2 48.0 54.7 717 14.3 86.0
138 DL50-DA035-DC6 15 2.2 14.9 18.3 71.7 14.3 86.0
139 DL50-DA055-DCO 13 1.8 65.4 73.6 72.7 14.1 86.8
140 DL50-DA055-DC3 1.3 18 47.1 535 72.7 14.1 86.8
141 DL50-DA055-DC6 1.3 18 11.7 14.6 72.7 14.1 86.8
142 DL50-DA075-DCO 11 16 62.3 70.4 73.1 14.4 87.5
143 DL50-DA075-DC3 11 16 44.8 51.2 73.1 14.4 87.5
144 DL50-DA075-DC6 11 16 10.8 13.9 73.1 14.4 87.5
145 DL50-DA150-DCO 0.7 0.1 66.0 75.2 76.5 15.1 91.6
146 DL50-DA150-DC3 0.7 0.1 50.9 58.6 76.5 15.1 91.6
147 DL50-DA150-DC6 0.7 0.1 33.0 39.0 76.5 15.1 91.6
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Table V. Continued

a

The chemical composition of the ball-milled samples was assumed to be the same as
the delignified and deacetylated samples.

Based on dry weight at 105°C.

Biomass crystallinity measured by X-ray powder diffraction at the XRD Laboratory,
Department of Chemistry, Texas A&M University.

As explained in “Predicting Cellulose Crystallinity,” cellulose crystallinity was
predicted based on a empirical relationship developed in SAS as given by the
following expression:

Crlc = 1.09734 (Crlb) + 0.93874 (Xylan content) — 11.43285

Total carbohydrate is equal to the summation of the glucan and xylan components.
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It was discovered that 58 of the 147 model samples that were subjected to ball
milling had been exhausted in a prior study. Therefore, 58 non-milled samples were
subjected to either 3- or 6-d ball milling. The rotary ball mill was built with two 1/6-hp
156-rpm AC gearmotors (Dayton Electric Mfg. Co., Niles, IL). The ball mill consists of
four 1-in diameter x 25-in long steel blower shafts enclosed with 1.5-in O.D. Buna-N
rubber tubing (McMaster-Carr, Atlanta, GA). A 300-mL porcelain jar was charged with
0.375-in zirconia grinding medium (U.S. Stoneware, East Palestine, OH) to ~50% of the
jar volume (~258 g of zirconia). Biomass was placed in the jar to fill the void volume
between the balls. The ratio of grinding medium to biomass was 43 g zirconia/g dry
biomass. Then, the jars were placed between the rollers and rotated at 68 rpm for either 3
or 6 d.

Crystallinity Measurements
Biomass crystallinity was measured by the X-ray Diffraction Laboratory,
Department of Chemistry, Texas A&M University using a Bruker-AXS Powder High
Resolution X-Ray Diffractometer. The biomass was packed in the depression of an
aluminum sample holder flush to the top. The sample was scanned at 2°/min from 26 =
10° to 26° with a step size of 0.05°. The biomass crystallinity index (Crlb) was
determined as the percentage of crystalline material in the biomass (Segal et al., 1959).
Crib =tz =len 109 )
I002
In this equation, Crlb expresses the relative degree of crystallinity, log, is the
maximum intensity of the 002 peak at 206 = 22.5°and lay, is the intensity at 26 = 18.7°.

Figure 14 illustrates a typical diffraction pattern of poplar wood that was not ball milled.

Enzyme Preparation
To verify the activity of the Trichoderma reesei cellulase preparation received from
NREL, a filter paper assay was performed according to NREL standard procedure No.

006. The filter paper activity of the cellulase was 65 FPU/mL enzyme. Cellobiase
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activity (Novozym 188, Novo Nordisk Biochem) determined by Novo Nordisk was
321 CBU/mL based on the company’s assay.

Enzymatic Hydrolysis

The experiments were performed in 50-mL Erlenmeyer flasks with 0.2 g dry
weight of pretreated poplar wood, 18 mL of distilled water, 1.0 mL of 1 M citrate buffer
and 0.6 mL of 0.01 g/L sodium azide (NaN3) solution, and placed inside a 100-rpm air-
bath shaker at 50°C. Citrate buffer and sodium azide were added to keep the pH
constant (pH = 4.8) and prevent the growth of microorganisms, respectively. When the
reaction slurry temperature reached 50°C (~ 1 h), the hydrolysis was initiated by adding
0.2 mL of appropriately diluted cellulase (activity = 65 FPU/mL) and 0.05 mL of
cellobiase (activity = 321 CBU/g). It was discovered that the same range of enzyme
loadings could not be used for all samples. The inherent reactivity of the biomass
samples affected the range over which Equation 5 was valid. Therefore, the 147 samples
were divided into three classes (low, medium, and high) based on their inherent
reactivity. Table VI summarizes the range of enzyme loadings in which the three classes
of biomass exhibit a linear profile as predicted by Equation 5. The detailed procedure
for enzymatic hydrolysis is given in Appendix A.

Samples were removed after the desired incubation time of 1, 6, or 72 h. These
times were chosen because 1-h samples are indicative of the initial rates of digestion, 72-
h samples indicate the extent of reaction, and it was discovered that 6 h is when
approximately 50% of the carbohydrates had been digested. The incubation times were
selected to determine the role the structural features play in digestibility with changes in
hydrolysis time. After removal, the Erlenmeyer flasks were boiled for 15 minutes to
denature the enzymes thereby quenching the reaction. The reaction slurry was
transferred to 15-mL conical centrifuge tubes, centrifuged, and the supernatant was
frozen until sugar analysis was performed. (Note: When thawed, the samples were well

mixed to ensure uniform concentration).
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Figure 14. Typical X-ray diffraction pattern of chemically treated, but not ball
milled, poplar wood. Crlb = 58.8%.

Table VI. Enzyme loadings employed for the 147 poplar wood model
samples in “Enzymatic Hydrolysis of Model Samples” and the 22
prediction samples in “Predictive Ability of Neural Network Model.”

Biomass Enzyme Loading (FPU/g dry biomass)
Classification 1h 6h 72 h
Low? 1,5, 30 1,5, 30 1,5,30
Medium® 1,3,10 1,3,10 0.5,15,5
High® 1,3,10 1,3,10 0.25,0.75, 2

% Conversion < 60%; yield < 400 mg/g biomass
® Conversion > 60%; 400 < yield < 800
¢ Conversion > 60%; yield > 800
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Analyses
The hydrolysis products, glucose, xylose and cellobiose, were determined by
high performance liquid chromatography (HPLC) with a Biorad Aminex HPX-87P
column with 0.2-um filtered reverse osmosis deionized water as the mobile phase. The
column temperature was 85°C and flow rate was 0.6 mL/min. The equipment used for
HPLC analysis was as follows:
Pump: LDC Analytical Pump, constaMetric 3200
Autosampler: Spectra-Physics, AS 100
Column Heater: Jones Chromatography
RI Detector: Lab Alliance RI 2000
Software: PeakSimple 3.21, SRI Instruments
The detailed procedure for HPLC sugar analysis is given in Appendix B. Knowing the
carbohydrate contents in each of the poplar wood model samples and the sugar yields of
the samples, the glucan, xylan, and total sugar conversions were calculated as follows:
3 ([G]-[G,D) %V x0.9
W x glucan contentx1000 mg/g

B ([X1-[X,DxV x0.9
T W x xylan content x1000 mg/g

(8)

G

©)

X

y glucan content X x xylan content

G X
X, = 0.9 088 100 (10)
glucan content . xylan content

0.9 0.88

where
Xe = 1-, 6-, or 72-h glucan conversion (%)
Xx = 1-, 6-, or 72-h xylan conversion (%)
Xt =1-, 6-, or 72-h total sugar conversion (%)
[G] = 1-, 6-, or 72-h glucose concentration (mg/mL)
[G]o = initial glucose concentration (mg/mL)
[X] = 1-, 6-, or 72-h xylose concentration (mg/mL)
[X]o = initial xylose concentration (mg/mL)
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V = initial volume of biomass slurry (mL)
W = initial dry weight of biomass (g)
0.9 = glucose conversion factor to equivalent glucan

0.88 = xylose conversion factor to equivalent xylan

Results and Discussion

Carbohydrate conversions of glucan, xylan, and total sugar were calculated at the
various enzyme loadings (Table V1) and incubation times (1, 6, 72 h) using Equations 8,
9, and 10, respectively. Using Equation 5, carbohydrate conversion versus enzyme
loading was plotted for all the 147 poplar wood model samples at 1, 6, and 72 h. Figure
15 (Sample 43) illustrates this plot for one of the 33 low-reactivity samples. Likewise,
Figures 16 (Sample 133) and 17 (Sample 77) are examples of one of the 58 medium-
reactivity and one of the 56 high-reactivity samples, respectively. From these plots, the
slopes (B) and intercepts (A) were determined in Microsoft Excel® using the linear
regression trendline option. As Figures 15, 16, and 17 indicate, Equation 5 was
successful in modeling carbohydrate conversion (glucan, xylan, and total sugar) as a
function of enzyme loading. It was important that the enzyme loadings were chosen to
ensure the conversions were never too high (>95%). Conversions in excess of 95%
resulted in nonlinear profiles. From our data, low conversion (<10%) does not appear to
significantly affect the linearity of the figures. However, ideally one would want
conversions to lie between 10% and 90%. These are the boundary conditions of the
linear form of the HCH-1 Model that accurately predicts carbohydrate conversion.

The slopes (B) and intercepts (A) calculated for the 147 poplar wood model
samples are summarized in Tables VII, VIII, and IX for glucan, xylan, and total sugar,
respectively. In general, the tables show an inverse relationship between both B and A
and crystallinity, lignin, and acetyl content. Discerning the relative importance of the
structural features will aid in understanding if they play a major or minor role in
affecting digestibility or if there are other structural features that may be more important.

If our study is successful, we should be able to answer the following questions: Do all
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structural features need to be altered to render biomass digestible or is it sufficient to
alter only one or two of them? Are the effects the structural features have on the slope
and intercept a function of time? Are the initial hydrolysis rates (1 h), rates at 50% of
maximum (6 h), and ultimate conversions (72 h) correlated? Are glucan, xylan, and total
sugar digestibility affected by different combinations of structural features? Because of
the amount of data and size of the tables, the answers to the previously proposed
questions are better illustrated graphically.

Due to the scatter of the data in Figure 18, it is evident that there is no correlation
between slopes or intercepts. As discussed in “Neural Network Modeling Study,” the
neural network model developed to predict the slope did not improve when the intercept
was included as an input to the network and vice versa. This indicates that there are
differences in the 1-h, 6-h, and 72-h hydrolysis rates. Therefore, a sample with a large
1-h or 6-h (initial rate) slope or intercept will not necessarily have a high 72-h slope or
intercept (ultimate digestion). This may be due to one or two structural features having
a major affect on the 1-h rate while eliciting only a minor affect on the 72-h rate.
Therefore, all possible combinations of structural features will be investigated at 1, 6,
and 72 h.

Figures 19, 20, and 21 were created to understand how the structural features
affect the slope and intercept independent of one another. The figures were constructed
by plotting the structural feature of interest over a wide range while holding the other
structural features constant. Figure 19 indicates that a six-fold decrease in crystallinity
results in a 10.5, 8.2, and 2.3 fold increase in the 1-, 6-, and 72-h total sugar slope,
respectively. Likewise, a six-fold decrease in crystallinity results in a 4.5, 7.3, and 8.2
fold increase in the 1-, 6-, and 72-h total sugar intercept, respectively. A similar inverse
relationship is illustrated between the slope and intercept and the acetyl and lignin
contents in Figures 20 and 21, respectively. It appears that either low lignin or low
crystallinity results in high total sugar slopes and intercepts, whereas low acetyl results
in only moderate slopes and intercepts. In this research, the slope and intercept are

intimately coupled to sugar conversion. Therefore, it was no surprise that Chang (1999)
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Figure 15. Low reactivity biomass. Plot of Equation 5 for Sample 43: (a) glucan
conversion, (b) xylan conversion, (c) total sugar conversion. Hydrolysis conditions:
1 g/L and 48 CBU/g dry biomass.
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Figure 16. Medium reactivity biomass. Plot of Equation 5 for Sample 133: (a) glucan
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1 g/L and 48 CBU/g dry biomass.
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Figure 17. High reactivity biomass. Plot of Equation 5 for Sample 77: (a) glucan
conversion, (b) xylan conversion, (c) total sugar conversion. Hydrolysis conditions:
1 g/L and 48 CBU/g dry biomass.
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Table VII. Summary of the glucan slopes (B) and intercepts (A) determined from

Equation 5 for the 147 poplar wood model samples.

Sample o 1-h Glucan 6-h Glucan 72-h Glucan

Crlb Lignin Acetyl

No. A R B A R? B A R
1 55  26.3 29 106 000 099 1.88 1.82 1.00 219 585 0.98
2 29 263 29 885 325 099 941 1547 099 6.45 3574 0.99
3 15  26.3 29 1202 288 097 1425 1962 099 7.01 5350 0.96
4 57 255 28 093 044 100 177 146 099 275 521 0.99
5 32 255 28 795 251 097 1030 1271 099 7.29 3504 0.96
6 20 255 28 1100 267 098 1253 1650 099 6.20 4550 0.98
7 58  25.6 25 098 000 099 1.90 081 099 225 579 1.00
8 28  25.6 25 888 276 098 979 1490 099 570 36.74 0.99
9 19 256 25 781 497 096 1566 16.06 1.00 10.35 4542 0.99
10 56 255 19 1.06 057 096 174 244 099 278 629 0.99
11 25 255 19 828 267 098 947 1410 099 6.88 33.64 0.99
12 20 255 1.9 1006 356 0.97 13.30 16.02 0.99 10.65 40.97 0.99
13 56 26 1.3 124 007 098 175 294 1.00 298 679 0.99
14 33 26 1.3 1345 321 098 13.37 2108 097 6.43 5203 0.98
15 13 26 1.3 1292 429 098 17.36 21.26 1.00 1228 54.18 0.94
16 60 26 09 143 076 099 268 252 099 443 719 0.99
17 22 26 09 1529 347 098 1537 2339 098 7.32 5811 0.95
18 9.9 26 09 1430 511 098 1791 2321 099 872 59.26 0.99
19 66 245 04 274 000 097 6.08 099 09 1282 6.19 0097
20 31 245 04 1241 564 098 1575 1863 1.00 13.87 4259 0.99
21 27 245 04 1234 725 097 1466 2312 1.00 1409 51.49 1.00
22 60  23.9 28 131 006 097 230 190 099 421 670 0.99
23 26 239 28 987 339 095 1473 1846 1.00 12.03 46.24 0.99
24 82 239 28 1397 287 0.96 2044 2117 099 1640 61.13 0.98
25 604 231 29 126 037 1.00 260 221 099 490 6.84 0.99
26 164 231 29 1324 261 099 1457 2024 099 1120 51.88 0.99
27 139 231 29 1140 246 094 1881 1826 1.00 13.17 5470 0.99
28 598 2238 28 124 106 096 251 289 099 499 794 0.99
29 227 228 28 1119 258 0.97 1340 17.74 1.00 8.68 48.02 0.97
30 14 228 28 1418 347 097 1878 2183 099 1070 60.20 0.97
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Sample 1-h Glucan 6-h Glucan 72-h Glucan
Crlb Lignin  Acetyl

No. A R B A R B A R®

31 60 22.4 2.9 160 035 099 271 263 100 522 816 0.99
32 27 22.4 2.9 1143 350 098 1545 18.81 0.99 11.37 4844 0.99
33 22 22.4 2.9 1438 3.71 097 19.06 2488 100 17.14 63.68 0.99
34 55.7 218 2.2 216 078 096 4.03 355 099 7.19 1072 0.99
35 248 21.8 2.2 1293 388 096 1751 2214 100 1179 5574 0.98
36 148 218 2.2 1505 254 095 1990 2264 099 1933 64.75 0.99
37 60.8 21.3 1.7 255 131 100 551 503 098 836 1572 0.99
38 211 213 17 1362 6.09 0.98 1895 2343 1.00 13.93 58.08 0.99
39 173 213 17 1702 456 0.97 2128 2811 1.00 13.81 6582 0.94
40 68.8 17.8 04 489 083 096 1497 472 097 1911 32.60 0.99
41 28.3 178 04 1730 561 096 2096 32.08 1.00 20.18 68.89 0.98
42 188 17.8 0.4 2080 7.08 0.98 24.26 34.36 0.99 19.95 79.83 0.99
43 503 215 2.9 187 081 098 355 350 099 740 10.05 0.98
44 19 21.5 2.9 13.16 565 0.94 2057 2229 099 13.00 59.72 0.96
45 16 21.5 2.9 1564 201 097 2083 2361 100 7.80 4547 0.99
46 589 211 3.1 195 062 096 396 345 098 810 746 0.99
47 233 211 3.1 753 6.27 099 19.18 20.05 100 1271 57.01 0.98
48 128 211 3.1 16.88 258 096 2294 2525 0.99 2453 75.66 0.99
49 59 20.9 3 204 165 097 457 411 097 889 1192 0.99
50 274 209 3 1146 480 096 16.83 2053 099 1082 5573 0.99
51 274 209 3 1325 331 096 2060 1933 100 7.64 67.44 0.98
52 5904 195 2.9 264 061 096 579 3.00 099 9.06 1515 0.98
53 265 195 29 1439 300 096 20.14 2096 1.00 16.25 56.49 0.95
54 22 195 29 1428 404 098 2168 20.85 0.99 1899 64.98 0.99
55 61.8 195 2.5 355 129 096 747 6.04 099 1085 20.65 1.00
56 252 195 25 1259 553 096 19.72 21.74 0.99 1228 6157 0.99
57 23 19.5 25 1563 3.13 0.97 2099 2466 100 1254 6531 0.95
58 61.4 184 1.7 440 049 095 968 492 098 1204 2423 0.99
59 285 184 1.7 17.14 349 097 2149 2836 100 13.15 6837 0.97
60 9.2 18.4 1.7 2115 395 096 2392 31.62 0.98 21.97 8357 0.99
61 66.4 14.8 0.3 6.76 214 095 20.08 892 097 2394 46.62 1.00
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Table VII. Continued

Sample o 1-h Glucan 6-h Glucan 72-h Glucan
Crlb Lignin  Acetyl

No. B A R B A R B A R

62 301 148 03 1866 7.96 097 2406 3134 099 19.68 73.75 0.99
63 9.6 14.8 03 2325 801 098 2044 4771 094 2646 8447 0.72
64 61.2 187 29 338 004 093 756 351 097 1320 16.27 0.99
65 235 187 29 18.09 341 096 2316 29.77 100 2149 74.48 0.98
66 9.8 18.7 29 2016 260 095 2322 3342 098 2262 8553 0.99
67 625 17.8 2.9 368 109 095 828 497 098 11.75 26.80 0.98
68 308 178 29 13117 343 098 2214 2034 100 1422 5990 0.98
69 105 178 29 1545 393 097 2331 3235 099 868 7748 0.90
70 619 17.1 2.5 381 030 093 874 416 098 1332 2130 0.99
71 235 171 25 1666 244 096 2289 2518 1.00 1477 67.30 0.93
72 104 171 25 1943 218 096 2413 2988 099 2312 8381 094
73 619 16.3 2.8 469 084 09 1136 555 0.99 13.09 30.92 0.99
74 246 16.3 28 1399 582 097 2477 2406 099 1870 69.96 0.98
75 142 163 28 2066 208 095 23.63 3279 099 2126 79.05 0.98
76 629 16.2 2.6 420 111 099 1271 513 099 14.29 3254 0.99
77 226 16.2 26 1805 326 096 23.78 2843 100 2137 7451 1.00
78 12 16.2 26 2180 297 096 2180 3740 097 2437 90.70 0.99
79 63 14.7 2.3 472 130 094 1632 6.28 097 1891 40.34 0.99
80 23.7 147 23 1562 6.24 097 25.02 29.64 099 21.78 76.95 0.99
81 204 147 23 2028 3.69 095 2331 3178 098 20.71 7712 1.00
82 67.2 10.6 0.4 766 146 094 2284 816 097 2156 50.12 0.99
83 342 10.6 04 20.05 580 096 2293 3492 099 2161 76.96 0.94
84 26 10.6 04 2201 6.04 097 2835 3358 099 2433 87.84 0.96
85 574 139 29 371 108 095 1432 497 097 2080 36.62 1.00
86 19 13.9 29 1847 405 096 26.06 2601 099 16.12 73.23 1.00
87 9.5 13.9 29 2214 370 096 2267 3741 094 20.80 8285 0.96
88 605 134 2.8 304 129 096 1127 516 096 17.05 3298 0.99
89 253 134 28 1757 256 096 2429 26.89 100 23.08 76.31 0.99
90 24 13.4 28 19.62 228 096 2495 2694 099 26.37 8331 0.95
91 62.1 133 2.7 179 194 098 726 758 096 2319 37.65 1.00
92 241 133 27 1522 507 098 2214 2451 099 2112 6826 0.99
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Table VII. Continued

Sample o 1-h Glucan 6-h Glucan 72-h Glucan
Crlb Lignin  Acetyl

No. B A R B A R B A R

93 119 133 27 2196 157 098 2347 3525 097 1932 80.16 091
94 617 125 2.6 443 0.69 096 1821 510 092 19.88 40.25 0.99
95 259 125 26 1796 3.07 095 2431 2746 100 2182 7440 1.00
96 127 125 26 2250 3.28 096 2494 33.63 097 2562 8896 0.99
97 65.6 11.8 2.3 474 113 096 1820 5.78 0.95 2227 43.26 0.99
98 256 11.8 23 1778 562 094 2506 2577 099 2579 8032 0.99
99 256 11.8 23 1833 585 094 2529 2725 098 26.14 7769 0.74
100 659 109 24 538 205 098 19.68 504 095 2422 4338 0.99
101 239 109 24 1902 385 097 2411 2915 099 2595 77.60 0.77
102 21 10.9 24 2300 423 097 2360 3482 095 2539 90.70 0.99
103 67.7 6.8 0.6 769 169 095 2393 882 097 2180 5359 0.95
104 39 6.8 06 1778 7.69 098 2658 2882 099 27.04 8786 0.99
105 24.6 6.8 06 2126 522 096 2354 3599 097 26.31 8580 0.96
106 66.1 6.1 2.7 486 032 097 1923 290 0.92 26.01 43.64 0.99
107 21.1 6.1 27 1966 432 097 2371 3246 098 27.02 83.69 0.94
108 17.5 6.1 27 2060 4.73 096 2443 3138 098 26.20 87.56 0.99

109 65.3 6 3 445 099 094 2118 375 094 2467 4643 0.98
110 28.9 6 3 1734 452 095 2721 2287 099 2571 76.38 0.98
111 14.7 6 3 2111 3.05 097 2371 3562 097 2883 93.08 1.00

112 66 59 2.7 499 167 099 1951 6.05 096 2755 4595 0.99
113 32 5.9 27 1744 3.01 096 2496 26.01 100 2286 74.35 0.97
114 17 5.9 27 2193 257 095 2420 3222 098 26.68 88.57 0.99
115 66.3 5.6 2.7 456 118 093 20.05 5.05 094 2461 4739 0.99
116 321 5.6 27 1681 581 096 2694 2559 099 23.03 7856 0.99
117 15.1 5.6 27 2104 324 097 2374 3462 098 20.62 79.83 0.93
118 68.3 45 2.5 582 078 092 2243 508 093 2573 49.04 0.99
119 321 45 25 1754 369 097 2421 2626 100 3341 69.30 0.91
120 279 45 25 1932 349 097 2530 26.63 099 2575 8148 0.95
121 675 41 21 509 100 094 2122 506 094 2330 4747 0.98
122 26 41 21 1820 6.20 095 2654 2845 099 24.07 7775 0.98
123 212 41 21 1942 420 097 2530 29.71 099 19.74 80.39 094
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Table VII. Continued

Sample o 1-h Glucan 6-h Glucan 72-h Glucan
Crlb Lignin  Acetyl

No. B A R B A R B A R

124 62.7 2.5 0.4 846 344 097 2654 1020 0.95 29.18 65.62 0.99
125 224 25 04 1842 413 096 2527 2830 099 28.78 87.46 0.99
126 19.5 2.5 04 2081 477 097 2995 30.15 099 30.32 89.26 0.99
127 68.8 1.8 2.7 318 043 092 7.09 621 099 2456 38.18 1.00
128 37 1.8 27 1425 455 097 2627 1866 099 2135 7271 0.99
129 54 1.8 27 1731 339 097 2576 2701 098 3024 73.74 0.83
130 68.2 1.6 2.6 409 079 0.92 18.08 254 093 2726 40.74 0.99
131 46.9 1.6 26 1244 147 096 2597 1318 099 33.68 6139 0.96
132 21.5 1.6 26 1634 205 095 2939 1929 099 2228 67.70 0.99
133 65.7 1.6 2.3 326 085 093 1525 417 098 26.10 36.76 1.00
134 50.6 1.6 23 1067 257 093 2281 1472 099 2320 58.77 0.99
135 19.2 1.6 23 1547 124 095 26.21 19.15 100 2136 73.83 0.97
136 64.6 15 2.2 486 201 095 1894 525 094 2814 40.08 0.99
137 48 15 22 1203 111 095 2494 1169 099 2571 6089 1.00
138 14.9 15 22 1794 191 095 2494 2480 099 29.61 83.83 0.99
139 65.4 13 1.8 462 100 091 1762 471 095 2383 4260 1.00
140 47.1 13 18 1257 249 097 2570 1286 0.99 2483 64.77 0.99
141 11.7 1.3 18 1736 123 095 2636 24.03 0.99 2859 83.62 0.95
142 62.3 11 1.6 6.33 244 095 2183 569 095 26.13 4820 0.99
143 44.8 11 16 1270 234 097 2659 13.62 1.00 2768 67.79 0.98
144 10.8 11 16 1635 259 095 26.13 2275 099 2896 83.64 0.99
145 66 0.7 0.1 897 195 094 2557 1082 097 27.65 60.39 0.99
146 50.9 0.7 0.1 1575 234 097 3013 1278 098 2436 7177 0.99
147 33 0.7 0.1 1645 266 096 2624 2238 100 32.01 7102 0.93
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Table VIII. Summary of the xylan slopes (B) and intercepts (A) determined from

Equation 5 for the 147 poplar wood model samples.

Sample o 1-h Xylan 6-h Xylan 72-h Xylan

Crlb Lignin Acetyl

No. R B A R? B A R?
1 55  26.3 2.9 - - - - - - 149 326 0.95
2 29 263 29 582 000 095 7.78 1047 099 691 2843 0.99
3 15 263 29 826 000 093 11.04 1846 100 8.28 4892 1.00
4 57 255 2.8 - - - - - - 134 290 095
5 32 255 28 491 089 095 779 1051 100 7.22 3123 0.96
6 20 255 28 7.8 000 094 1026 11.89 099 752 3650 1.00
7 58 256 25 - - - - - - - - -
8 28 256 25 6.07 000 094 822 1110 099 6.48 29.48 0.99
9 19 256 25 625 267 099 919 2471 098 812 4516 1.00
10 56 255 1.9 - - - - - - 126 494 0.94
11 25 255 19 569 088 092 848 1111 100 6.73 2859 1.00
12 20 255 19 580 1.28 094 1067 13.62 099 11.54 34.94 0.99
13 56 26 1.3 - - - 204 265 100 263 497 1.00
14 33 26 1.3 1031 0.00 093 11.80 19.71 099 7.71 49.22 0.99
15 13 26 13 836 414 094 1052 3317 099 1340 52.15 0.98
16 60 26 09 195 029 098 221 467 099 311 840 0.99
17 22 26 09 1196 110 0.92 1282 2825 100 845 59.68 0.98
18 9.9 26 09 818 328 095 1502 2538 0.99 935 61.39 0.99
19 66 245 04 886 000 094 1171 936 098 1431 2173 0.8
20 31 245 04 953 6.00 093 1593 3467 099 1215 66.17 0.99
21 27 245 04 924 674 094 864 5019 085 870 7510 0.87
22 60 239 2.8 - - - 153 281 099 336 641 0.99
23 26 239 28 648 251 0.84 9.04 27.07 080 1331 4543 1.00
24 82 239 28 758 143 094 1749 2024 099 1375 62.62 1.00
25 60.4 23.1 2.9 - - - 262 026 099 357 582 0.99
26 164 231 29 1018 0.00 0.92 1383 1750 0.99 10.36 53.26 0.99
27 139 231 29 697 228 086 6.97 2721 087 1163 5874 0.95
28 598 2238 2.8 - - - 175 302 099 394 593 0.99
29 227 228 28 836 027 090 1209 1711 099 975 46.47 0.98
30 14 228 28 7.69 131 096 16.37 1977 0.99 1169 59.65 0.99
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Sample o 1-h Xylan 6-h Xylan 72-h Xylan
Crlb Lignin  Acetyl

No. A R B A R B A R®

31 60 22.4 2.9 - - - 120 291 098 348 746 1.00
32 27 22.4 2.9 6.89 101 094 1474 1718 099 1184 48.27 0.99
33 22 224 29 868 336 093 1519 3257 096 11.19 6832 0.95
34 55.7 218 2.2 241 000 099 387 374 099 638 948 0.99
35 248 21.8 2.2 752 255 092 1492 2442 100 1282 5758 1.00
36 148 218 2.2 720 100 0.93 17.62 2091 099 1279 62.65 0.99
37 60.8 21.3 1.7 277 013 100 516 710 099 7.08 1753 1.00
38 211 213 1.7 751 3.96 097 1534 2878 099 10.74 6500 0.99
39 173 213 1.7 982 346 094 16.36 3924 095 1162 76.81 0.99
40 68.8 178 0.4 699 238 098 17.87 19.00 099 1553 59.41 0.99
41 283 17.8 04 10.20 498 0.82 1543 4848 095 13.32 85.06 1.00
42 188 17.8 0.4 822 521 094 1797 4037 099 1191 86.87 0.99
43 503 215 2.9 153 013 099 285 419 100 6.62 1096 0.99
44 19 21.5 2.9 773 281 091 1651 2581 099 1548 61.66 0.99
45 16 21.5 2.9 772 338 097 1402 3366 095 099 5293 0.90
46 589 211 3.1 176 000 099 342 352 097 784 746 0.99
47 233 211 3.1 554 1.66 099 17.74 2153 099 10.79 64.44 0.96
48 128 211 3.1 825 104 094 19.70 2653 099 1466 74.78 0.99
49 59 20.9 3 202 000 100 349 498 092 852 10.02 1.00
50 274 209 3 6.50 194 092 1446 2124 099 952 60.70 0.99
51 274 209 3 747 226 0.89 1517 28.02 095 1213 66.27 0.98
52 504 195 2.9 - - - 650 297 095 884 1596 0.99
53 265 195 2.9 758 244 087 1448 2935 093 1236 67.19 0.99
54 22 195 2.9 865 0.83 096 1856 2435 099 1162 66.96 0.99
55 61.8 195 2.5 397 0.00 099 654 9838 097 9.93 2398 0.99
56 252 195 25 715 380 096 16.92 28.09 099 16.27 66.35 0.99
57 23 19.5 25 8.18 3.16 088 1561 3437 097 1011 7532 0.99
58 61.4 184 1.7 572 0.00 0.97 947 930 098 11.62 29.05 0.99
59 285 184 1.7 790 269 095 1845 3039 1.00 1354 74.00 0.99
60 9.2 18.4 1.7 8.89 341 092 20.78 3388 099 1249 8456 0.99
61 66.4 14.8 0.3 6.48 432 096 1835 2783 099 1799 7173 0.99
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Sample o 1-h Xylan 6-h Xylan 72-h Xylan
Crlb Lignin  Acetyl

No. A R B A R’ B A R

62 30.1 148 03 864 669 093 1558 4370 0.99 13.84 87.25 0.97
63 96 148 03 772 564 096 1657 4393 1.00 1243 89.03 0.75
64 61.2 18.7 2.9 448 0.00 095 780 6.73 0.98 14.07 21.22 0.99
65 235 187 2.9 837 270 093 19.69 3184 100 11.62 79.84 1.00
66 9.8 18.7 2.9 9.12 292 092 2050 3549 099 1161 8525 0.99
67 625 17.8 2.9 398 000 098 831 599 0098 1194 2885 0.98
68 308 17.8 2.9 6.47 3.08 096 1540 26.99 098 1493 64.31 0.99
69 105 178 29 626 237 095 19.81 29.80 1.00 10.39 8154 0.99
70 619 17.1 25 435 0.00 095 878 565 0.98 1442 2482 0.99
71 235 17.1 2.5 7.71 137 094 1943 26.20 100 13.81 74.27 0.98
72 104 17.1 2.5 839 188 095 20.13 30.87 100 11.12 83.44 0.99
73 619 16.3 2.8 482 0.00 099 1049 845 099 1295 3430 1.00
74 246 16.3 2.8 6.83 294 093 16.78 30.00 0.99 11.77 75.13 0.99
75 142 16.3 2.8 799 188 094 19.77 3140 1.00 11.29 84.00 1.00
76 629 16.2 2.6 529 019 0.99 1239 1059 099 1325 40.07 0.99
77 226 16.2 26 785 250 0.94 18.99 3243 1.00 11.21 83.09 1.00
78 12 16.2 26 868 256 091 1825 37.98 0.99 1057 89.35 0.99
79 63 14.7 2.3 485 1.76 097 1422 1585 1.00 16.10 51.01 0.99
80 23.7 147 2.3 6.44 524 092 1920 37.19 099 1246 83.62 0.99
81 204 147 2.3 796 362 091 1848 3533 100 986 84.99 0.99
82 67.2 10.6 0.4 786 260 095 20.61 28.07 099 16.93 77.95 0.99
83 342 10.6 0.4 737 525 091 17.64 4123 098 1231 86.44 0.98
84 26 10.6 04 838 523 093 1697 42.06 0.99 10.65 90.12 0.99
85 574 139 29 413 3.05 097 1345 1536 1.00 1845 4996 1.00
86 19 13.9 29 743 526 096 18.89 3251 0.99 11.38 7751 0.99
87 95 139 29 803 361 094 17.88 37.73 1.00 9.20 8745 1.00
88 605 134 2.8 510 0.00 1.00 13.08 9.89 0.99 1580 44.87 0.99
89 253 134 2.8 741 270 093 18.32 33.86 1.00 12.06 8590 1.00
90 24 134 2.8 876 254 094 1898 3516 099 11.84 86.67 0.99
91 62.1 133 2.7 391 016 1.00 993 1271 099 2196 47.15 1.00
92 241 133 27 588 336 097 1320 3340 0.98 1520 83.18 0.99
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Sample o 1-h Xylan 6-h Xylan 72-h Xylan
Crlb Lignin  Acetyl

No. A R B A R’ B A R

93 119 133 27 801 216 096 19.22 3474 1.00 11.04 87.89 1.00
94 617 125 26 6.05 0.00 0.99 13.92 1840 0.99 16.09 57.19 0.99
95 259 125 26 788 215 093 18.96 32.98 1.00 10.83 83.84 1.00
96 127 125 2.6 853 261 093 18.81 3753 1.00 10.01 88.06 0.99
97 656 118 2.3 454 241 098 1266 2428 0.95 1744 5922 0.99
98 256 118 2.3 840 409 094 16.88 3846 099 984 8573 0.99
99 256 118 2.3 740 338 091 1954 3231 100 10.89 84.85 0.73
100 659 109 24 6.02 280 098 16.60 22.61 0.99 16.36 64.89 0.99
101 239 109 24 785 297 094 1816 35.66 1.00 13.85 8459 0.92
102 21 10.9 2.4 870 417 094 16.82 4196 099 8.87 89.89 0.99
103 677 6.8 06 569 440 097 1937 2496 1.00 1596 7233 0.93
104 39 6.8 0.6 6.73 769 096 1753 4146 097 1332 89.01 0.99
105 24.6 6.8 0.6 776 487 092 16.47 4163 1.00 11.18 87.45 0.98
106 66.1 6.1 2.7 6.76 3.68 091 16.01 29.71 098 1262 77.33 0.99
107 21.1 6.1 2.7 776 497 093 1575 43.10 1.00 10.14 88.26 1.00
108 175 6.1 27 826 511 092 1577 4326 0.99 9.26 86.79 0.99
109  65.3 6 3 541 333 096 1838 24.16 1.00 1519 73.23 0.96
110 289 6 3 791 471 094 1718 39.47 0.98 16.09 85.88 0.97
111 14.7 6 3 785 328 094 1798 37.82 1.00 1096 90.77 1.00
112 66 5.9 2.7 6.64 165 095 1726 26.21 099 17.81 75.08 0.98
113 32 5.9 2.7 784 296 093 18.19 36.86 1.00 1253 87.32 1.00
114 17 5.9 2.7 851 350 092 1649 4106 099 815 86.05 0.99
115 663 56 27 550 330 096 17.16 26.23 0.99 1573 7390 0.97
116 321 56 27 830 540 094 17.73 4278 0.99 11.00 9140 0.99
117 15.1 5.6 2.7 8.09 310 093 18.06 37.92 100 1525 87.24 0.98
118 683 45 25 690 295 0.93 18.06 29.65 0.98 16.46 77.95 0.99
119 32.1 4.5 2.5 794 358 095 16.97 3824 100 1553 8597 0.96
120 27.9 45 2.5 818 385 094 16.85 39.66 099 1154 86.98 0.99
121 67.5 4.1 2.1 585 3.08 096 1753 2591 0098 14.48 7142 0.98
122 26 4.1 2.1 770 6.14 093 1478 4593 099 14.40 87.75 0.99
123 212 41 21 790 382 094 16.90 3946 1.00 9.71 8824 1.00
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Table VIII. Continued

Sample o 1-h Xylan 6-h Xylan 72-h Xylan
Crlb Lignin  Acetyl

No. B A R B A R B A R

124 62.7 2.5 0.4 585 6.01 098 1948 30.29 096 20.17 84.22 0.99
125 224 25 0.4 718 526 093 1644 3887 1.00 1330 87.39 1.00
126 19.5 2.5 0.4 782 645 094 1445 4311 099 1148 8534 0.99
127 68.8 1.8 2.7 592 406 094 1090 30.05 100 1473 69.00 1.00
128 37 1.8 2.7 767 773 092 1458 4232 099 1196 89.32 0.99
129 54 1.8 2.7 862 480 095 1558 4432 100 1395 8212 0.98
130 68.2 1.6 2.6 715 360 094 1713 2865 098 1736 74.81 0.99
131 46.9 1.6 2.6 920 359 095 1782 3899 1.00 1578 8123 0.98
132 21.5 1.6 2.6 872 456 094 17.02 39.18 0.99 1142 8255 0.99
133 65.7 1.6 2.3 597 361 09 1630 26.28 0.99 17.70 68.11 1.00
134 50.6 1.6 2.3 826 538 092 1687 4124 097 11.09 8045 0.99
135 19.2 1.6 2.3 927 332 095 1849 3723 100 1416 8722 1.00
136 64.6 15 2.2 831 380 099 1815 3184 099 1920 7292 0.99
137 48 15 22 1135 320 0.89 16.14 4249 100 10.14 8189 0.96
138 14.9 15 2.2 928 556 094 16.16 4276 099 10.16 86.84 0.99
139 65.4 13 1.8 6.35 437 092 17.78 26.79 0.99 16.06 72.67 0.96
140 47.1 13 1.8 930 574 094 1725 4077 099 1282 8456 0.99
141 11.7 1.3 1.8 953 493 095 16.18 44.69 1.00 1508 88.94 0.99
142 62.3 11 1.6 846 3.23 097 20.18 2731 099 1842 7544 0.99
143 44.8 11 16 1026 4.27 092 17.00 41.08 099 1525 84.27 1.00
144 10.8 11 1.6 842 6.44 092 1635 4268 099 11.36 8581 0.98
145 66 0.7 0.1 6.56 453 095 20.40 2697 098 2181 76.14 0.99
146 50.9 0.7 0.1 807 496 093 2093 2888 0.99 1525 80.04 0.99
147 33 0.7 0.1 804 478 093 1737 3507 099 20.17 8151 1.00
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Table IX. Summary of the total sugar slopes (B) and intercepts (A) determined from

Equation 5 for the 147 poplar wood model samples.

Sample o 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Crlb Lignin Acetyl
No. A R B A R B A R
1 55 26.3 2.9 0.80 000 099 178 118 1.00 202 522 097
2 29 26.3 2.9 812 242 098 9.02 1426 099 6.56 3396 0.99
3 15 26.3 29 1111 210 097 1347 1934 099 732 5239 0.98
4 57 25.5 2.8 071 033 100 168 092 098 241 466 0.99
5 32 25.5 2.8 722 212 097 9.69 1218 1.00 7.27 34.12 0.96
6 20 25.5 2.8 10.08 193 098 1198 1539 099 6.52 4333 0.99
7 58 25.6 2.5 074 000 099 175 071 100 194 528 1.00
8 28 25.6 25 820 208 098 941 1399 099 588 3500 0.99
9 19 25.6 25 744 442 097 1411 1813 099 9.81 4536 0.99
10 56 25.5 1.9 1.00 032 093 173 204 098 241 596 0.99
11 25 25.5 1.9 765 224 097 9.23 1337 100 6.84 3242 0.99
12 20 25.5 1.9 9.03 3.01 097 1266 1544 099 10.86 39.51 0.99
13 56 26 1.3 127 000 094 182 287 100 289 635 1.00
14 33 26 1.3 1269 234 097 1299 20.75 098 6.74 5135 0.98
15 13 26 13 11.82 425 097 1571 2413 100 1255 53.69 0.95
16 60 26 0.9 156 064 099 257 304 100 411 748 0.99
17 22 26 0.9 1448 290 097 1475 2456 098 759 5849 0.96
18 9.9 26 09 1282 467 097 1721 2373 099 888 59.78 0.99
19 66 245 04 411 000 096 734 286 097 1315 9.67 0.97
20 31 24.5 04 11.77 5.72 097 1579 2223 0.99 1348 47.87 0.99
21 27 24.5 0.4 1165 7.13 096 1331 29.19 100 1288 56.78 1.00
22 60 23.9 2.8 125 010 094 212 217 100 400 6.63 0.99
23 26 23.9 2.8 9.05 318 093 1335 2055 099 1234 46.04 0.99
24 8.2 23.9 2.8 1242 252 096 19.72 2094 099 1576 6149 0.99
25 60.4 231 2.9 121 014 098 260 1.73 100 457 659 0.99
26 16.4 231 29 1250 159 097 1439 1957 0.99 11.00 5222 0.99
27 139 231 2.9 10.32 242 093 1722 2044 099 1280 55.68 1.00
28 59.8 228 2.8 122 064 093 232 292 099 473 745 0.99
29 227 22.8 2.8 1049 202 096 13.08 1758 100 8.94 4764 0.97
30 14 22.8 2.8 1259 294 097 1819 2132 099 1094 60.06 0.98
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Sample o 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Crlb Lignin  Acetyl

No. A R B A R B A R®

31 60 22.4 2.9 153 009 097 235 270 100 481 799 0.99
32 27 22.4 29 1034 290 098 1528 1842 099 1148 4840 0.99
33 22 224 29 1301 363 096 1813 26.73 1.00 1571 64.80 0.99
34 557 218 2.2 222 055 097 399 360 099 7.00 10.42 0.99
35 248 218 22 1162 356 095 16.89 22.69 1.00 12.04 56.18 0.99
36 148 21.8 22 1315 216 095 1934 2223 0.99 17.74 64.24 0.99
37 60.8 213 1.7 260 1.03 100 543 553 098 8.06 16.15 1.00
38 211 213 17 1216 558 0.98 18.09 2471 0.99 13.17 59.74 0.99
39 173 213 17 1530 430 0.96 20.11 30.76 1.00 13.29 68.44 0.97
40 68.8 17.8 0.4 536 117 097 1561 7.89 099 1832 3855 0.99
41 28.3 178 04 1728 547 095 19.74 3572 1.00 1865 7270 0.99
42 188 17.8 04 1801 6.67 098 2278 3575 0.99 1816 81.39 0.99
43 59.3 215 2.9 179 064 099 338 367 099 721 1027 0.98
44 19 21.5 29 1185 496 094 1959 2314 0.99 13.60 60.19 0.98
45 16 21.5 29 1372 234 097 1919 26.04 1.00 6.15 47.27 0.99
46 589 211 3.1 190 043 097 383 346 097 803 746 0.99
47 233 211 3.1 705 515 100 1883 2041 100 1224 5881 0.99
48 128 211 31 1478 220 096 2216 2556 099 2213 7544 0.99
49 59 20.9 3 204 125 098 431 432 097 880 1145 0.99
50 27.4 209 3 10.24 410 0.96 16.25 20.71 0.99 10.50 56.94 0.99
51 27.4 209 3 11.83 3.05 0.95 19.27 2146 1.00 874 67.15 0.98
52 59.4 195 2.9 274 030 096 596 3.00 098 9.00 1535 0.98
53 265 195 29 1273 286 095 1876 23.00 1.00 1531 59.09 0.98
54 22 195 29 1291 326 097 2092 2170 0.99 17.19 65.46 0.99
55 61.8 195 2.5 365 090 097 725 697 099 1063 2146 1.00
56 252 195 25 1127 511 096 19.04 2328 099 1324 6273 0.99
57 23 195 25 1382 313 096 19.68 27.02 1.00 11.95 67.74 0.98
58 61.4 184 1.7 472 010 096 963 598 0.98 11.94 2539 0.99
59 285 184 1.7 1490 330 0.97 20.75 2885 1.00 13.25 69.73 0.97
60 92 184 17 1819 382 0.95 2316 3217 0.99 19.66 83.80 0.99
61 66.4 14.8 0.3 6.70 2.62 095 19.70 13.10 097 2262 5218 1.00



Table IX. Continued

67

Sample o 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Crlb Lignin  Acetyl

No. A R B A R B A R®

62 30.1 148 03 1644 7.68 097 2219 3407 099 1838 76.73 0.99
63 96 148 03 1981 7.49 098 1958 46.87 096 2335 8548 0.72
64 612 187 29 365 023 093 762 430 098 1341 17.48 0.99
65 235 187 29 1572 324 095 2232 3027 1.00 19.09 75.78 0.98
66 98 187 29 1748 268 095 2256 3392 0.99 19.94 8546 0.99
67 625 178 2.9 375 0.69 096 829 522 098 11.79 27.30 0.98
68 308 178 29 1154 335 098 20.49 2196 1.00 14.39 60.98 0.99
69 105 178 29 1321 355 097 2245 3173 1.00 9.10 78.47 0.93
70 619 17.1 2.5 394 0.04 094 875 453 098 1359 2217 0.99
71 235 17.1 25 1446 218 095 22.04 2543 1.00 1453 69.01 094
72 104 171 25 1672 211 096 2315 30.12 099 20.18 83.72 0.99
73 619 163 2.8 472 051 097 1115 6.26 0.99 13.06 31.75 0.99
74 246 163 28 1224 512 096 2282 2550 1.00 17.15 71.22 0.99
75 142 163 28 1756 203 095 22.68 3245 0.99 18.82 80.26 0.99
76 629 16.2 2.6 446 088 0.99 12,63 6.45 0.99 14.04 34.36 0.99
77 226 16.2 26 1558 3.07 096 2262 29.40 1.00 1891 76,59 1.00
78 12 16.2 26 1862 287 095 2094 3754 098 21.62 90.83 0.99
79 63 14.7 2.3 475 141 095 1581 859 098 18.23 4291 0.99
80 23.7 147 23 1340 6.00 097 2326 3146 0.99 1954 7856 0.99
81 204 147 23 1731 367 095 2214 3263 0.99 1810 79.02 1.00
82 67.2 10.6 0.4 770 171 094 2236 1245 098 2056 56.12 0.99
83 342 106 04 1732 568 096 21.79 36.28 0.99 19.60 79.00 0.95
84 26 10.6 04 19.08 587 097 2572 3552 0.99 2145 88.43 0.99
85 57.4 139 2.9 381 156 095 1411 751 098 2023 39.88 1.00
86 19 13.9 29 1578 4.34 096 2430 27.60 1.00 14.96 74.27 1.00
87 95 139 29 1869 368 096 2150 3749 096 17.70 83.98 0.97
88 605 134 2.8 354 098 098 11.70 6.30 097 16.75 3585 0.99
89 253 134 28 1512 259 096 2285 2857 1.00 20.45 78.62 1.00
90 24 13.4 28 17.00 234 096 2351 2892 0.99 2287 84.11 0.99
91 62.1 133 2.7 231 151 099 791 882 097 2289 3996 1.00
92 24.1 133 27 1296 466 098 1997 26.67 099 19.69 7188 0.99
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Sample o 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Crlb Lignin  Acetyl

No. A R B A R B A R®

93 119 133 27 1858 171 097 2244 3513 098 1731 82.03 0.94
94 617 125 2.6 483 043 097 1717 832 095 1896 4436 0.99
95 259 125 26 1552 284 095 23.01 2880 1.00 19.15 76.69 1.00
96 127 125 26 1911 311 096 2346 3458 0.98 21.83 88.74 0.99
97 656 11.8 2.3 469 144 096 16.87 10.21 0.95 21.11 47.08 0.99
98 256 118 23 1555 525 094 2310 2881 0.99 2224 81.63 0.99
99 256 118 23 1571 525 094 2391 2846 098 2249 79.41 0.74
100 659 109 2.4 553 223 098 1895 9.18 096 2236 4845 0.99
101 239 109 24 1639 364 097 2271 3068 0.99 2248 79.58 0.77
102 21 10.9 24 1963 4.22 097 2200 36,51 097 2150 9051 0.99
103 67.7 6.8 0.6 727 226 095 2298 1217 0.97 2058 57.48 0.95
104 39 6.8 06 1549 7.69 0.98 2470 3144 0.99 23.81 87.94 0.99
105 246 6.8 06 1845 515 096 22.07 37.16 0.98 23.16 86.14 0.96
106 66.1 6.1 2.7 531 112 096 1846 931 094 2281 51.69 0.99
107 211 6.1 27 1681 4.47 096 21.81 3500 0.99 2254 84.67 0.94
108 175 6.1 27 1766 482 096 2236 34.07 099 2152 86.89 0.99
109 65.3 6 3 467 153 0.95 2053 847 0.96 2248 52.64 0.98
110 28.9 6 3 1516 456 0.95 24.89 26.71 0.99 2348 78.58 0.98
111 14.7 6 3 18.04 3.10 0.96 2239 36.13 0.98 24.69 9252 1.00
112 66 5.9 2.7 549 0.98 092 1978 871 094 2532 5262 0.99
113 32 5.9 27 1524 300 096 2341 2850 1.00 20.49 77.33 0.98
114 17 5.9 27 1886 279 0.95 2244 3429 0.99 2244 88.00 0.99
115 66.3 56 2.7 477 166 0.94 1940 980 0.96 22.62 53.34 0.99
116 321 56 27 1490 572 096 24.87 29.45 0.99 20.33 8144 0.99
117 151 56 27 1814 321 097 2246 3536 099 1941 8149 094
118 68.3 45 25 6.06 1.26 092 2148 1046 094 2370 5537 0.99
119 321 45 25 1544 366 097 2262 2888 1.00 29.49 7295 0.92
120 279 45 25 1688 357 0.96 2345 29.48 0.99 18.68 76.12 0.99
121 675 4.1 2.1 526 145 095 2042 9.60 095 21.38 52.68 0.98
122 26 4.1 21 1591 6.18 0.95 2398 3226 1.00 21.96 79.93 0.99
123 212 41 21 1691 411 096 2347 3183 099 1756 8210 0.95
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Sample o 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Crlb Lignin  Acetyl

No. A R B A R B A R®

124 627 25 0.4 796 3.93 097 2519 1403 095 27.46 69.17 0.99
125 224 25 04 1629 435 096 2359 3031 099 2584 8745 0.99
126 195 25 04 1834 509 097 2698 3264 099 26.73 8852 0.99
127 68.8 1.8 2.7 374 117 093 7.87 1107 099 2255 4447 1.00
128 37 1.8 27 1291 520 096 23.88 2349 0.99 19.44 76.10 0.99
129 5.4 1.8 27 1554 368 097 23.68 3054 0.99 26.92 7545 0.85
130 682 16 2.6 465 131 0.92 17.90 7.32 0.94 2544 46.98 0.99
131 469 16 26 1185 1.86 096 24.48 1791 0.99 3040 65.02 0.96
132 215 16 26 1495 251 095 2712 2293 0.99 20.18 69.83 0.99
133 65.7 1.6 2.3 374 134 094 1544 810 098 2461 4233 1.00
134 506 1.6 23 1024 3.07 093 2175 1943 099 21.05 62.63 0.99
135 192 16 23 1437 161 095 2483 2236 1.00 20.08 76.22 0.98
136 646 15 2.2 545 231 098 1881 9.78 095 26.62 4568 0.99
137 48 15 22 1191 146 095 2345 1691 0.99 23.07 64.45 1.00
138 149 15 22 1647 256 095 2345 27.86 0.99 26.86 84.50 0.99
139 654 1.3 1.8 491 156 0.92 17.65 836 0.96 2254 47.58 0.99
140 471 13 1.8 12.03 3.03 0.96 2430 1748 0.99 2285 68.04 0.99
141 117 13 18 16.06 184 0.95 2467 2745 0.99 2585 84.46 0.95
142 623 1.1 1.6 6.69 257 096 2155 931 096 2484 5276 0.99
143 448 11 16 1229 266 0.96 2498 1823 0.99 2559 70.55 0.98
144 108 1.1 16 1502 323 0.95 2449 26.09 0.99 26.24 84.35 0.99
145 66 0.7 0.1 857 238 094 2470 1354 097 26.67 63.04 0.99
146 509 0.7 01 1446 278 096 2859 1548 0.99 2283 73.16 0.99
147 33 0.7 0.1 1503 3.02 096 2475 2451 1.00 30.02 7278 0.94
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Figure 18. Correlation between total sugar slope and intercept: (a) 1-h slope versus 72-h
slope and 1-h intercept versus 72-h intercept, (b) 72-h slope versus 6-h slope and 72-h
intercept and 6-h intercept, (c) 1-h slope and 6-h slope and 1-h intercept versus 6-h

intercept. Data from Table IX.
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Figure 19. Effect of Crlb on total sugar (a) slope and (b) intercept while holding
acetyl (2.8%) and lignin (22.8%) constant. Data taken from Table IX.
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Data taken from Table IX.
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arrived at a similar conclusion when studying the effect of lignin, crystallinity, and
acetyl content on sugar conversion. When investigated independently, crystallinity and
lignin have a major affect on the slope and intercept whereas acetyl elicits only a minor
affect on the slope and intercept at 1, 6, and 72 h. This suggests that the major barriers
limiting initial rates and ultimate conversions are biomass crystallinity and lignin
content. In agreement with our work, Fan et al. (1981a) discovered that initial
hydrolysis rates strongly depend on the effectiveness of the adsorbed protein to promote
hydrolysis, which was shown to be a function of the crystallinity index.

Figures 22 and 23 illustrate the effects of crystallinity and acetyl content on total
sugar slopes and intercepts at 1, 6, and 72 h for high-lignin (24.5-26.3%) and low-lignin
(0.7-1.8%) samples, respectively. Figures 24 and 25 illustrate the effects of crystallinity
and lignin content on total sugar slopes and intercepts at 1, 6, and 72 h for high-acetyl
(2.7-2.9%) and low-acetyl (0.3-0.6%) samples, respectively. Figures 26 and 27
illustrate the effects of acetyl and lignin content on total sugar slopes and intercepts at 1,
6, and 72 h for high-crystallinity (55.4-66.2%) and low-crystallinity (9.4-20.6%)
samples, respectively. Table X summarizes the effects of lignin, acetyl, and crystallinity
on the slopes (B) and intercepts (A) of the 147 poplar wood model samples. It appears
that low crystallinity results in moderate increases in 1-h slopes regardless of lignin
content or acetyl content. Low lignin and low crystallinity led to high 1-h slopes
regardless of acetyl content. Interestingly, none of the structural features investigated
had a significant effect on 1-h intercepts, which ranged from 1-6.  Either low lignin or
low crystallinity led to moderate increases in 6-h slopes. It was shown that low lignin
and low crystallinity resulted in large 6-h slopes regardless of acetyl content. High 6-h
intercepts were observed with either low crystallinity and acetyl or low crystallinity and
lignin. Only a moderate increase in 6-h intercepts occurred with low lignin and low
acetyl. This supports the findings from Figure 19 that suggest crystallinity elicits a
major influence on early biomass digestibility. Low lignin, low lignin and low acetyl,
or low lignin and low crystallinity resulted in high 72-h slopes. Low lignin resulted in a

moderate increase in 72-h intercepts regardless of crystallinity or acetyl content. Low
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lignin and low crystallinity gave rise to high 72-h intercepts regardless of acetyl content.
In summary, crystallinity appears to be the rate-limiting factor in 1-h and 6-h biomass
digestibility whereas lignin content appears to be the rate-limiting factor in 72-h biomass
digestibility. Consequently, acetyl content appears to have minimal affect on 1-h, 6-h,
and 72-h rates. However, when low acetyl is combined with low crystallinity, 1-h and 6-
h intercepts increase from moderate to high. This suggests that acetyl content alone does
not greatly affect reactivity, but when combined with another structural feature such as
low crystallinity, it can alter the extent of digestibility.

Biomass hydrolysis is complicated due to its complex physical structure and the
intricate nature of its internal associations. The resulting heterogeneous reaction system
requires enzyme diffusion to the substrate and subsequent adsorption prior to hydrolysis.
Once adsorbed, the enzymes can begin to elicit their catalytic effects on hemicellulose
and cellulose.

As discovered in prior experiments and proposed by Mansfield et al. (1999),
enzyme diffusion only becomes a limiting factor in enzymatic hydrolysis at high
substrate concentrations because of the limited mobility of the enzymes. When enzyme
diffusion obstacles are eliminated, enzymatic hydrolysis solely depends on enzyme
accessibility and efficiency, which depends on biomass structural features such as lignin
content, acetyl content, and crystallinity. Mansfield et al. (1999) also proposed that the
initial hydrolysis rate is strongly affected by the degree of cellulose crystallinity and the
amount of adsorbed enzyme, which has been shown to be a function of specific surface
area or particle size (Lee and Fan, 1982) and pore volume or accessible surface area
(Mooney et al., 1998). Likewise, Lee and Fan (1982) suggested that the initial
hydrolysis rate strongly depends on the initial extent of enzyme adsorption and the
effectiveness of the adsorbed enzyme to hydrolyze the substrate. Additionally, Kong et
al. (1992) have shown that as the degree of acetyl content decreases the biomass
swellability increases (i.e., water retained by biomass). This increased swellability
resulted in an increase in glucose and xylose conversion. Lignin is thought to affect

biomass digestibility by acting as a barrier to prevent successful binding of the enzyme
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Figure 22. Effects of Crlb and acetyl on 1-h total sugar (a) slope and (b) intercept, 6-h

total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept.
All samples had a high lignin content (24.5-26.3%). Data from Table IX.
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Figure 23. Effects of Crlb and acetyl on 1-h total sugar (a) slope and (b) intercept, 6-h

total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept. All

samples had a low lignin content (0.7-1.8%). Data from Table IX.
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Figure 24. Effects of Crlb and lignin on 1-h total sugar (a) slope and (b) intercept, 6-h
total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept.
All samples had a high acetyl content (2.7-2.9%). Data from Table IX.
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Figure 25. Effects of Crlb and lignin on 1-h total sugar (a) slope and (b) intercept, 6-h
total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept. All
samples had a low acetyl content (0.3—0.6%). Data from Table IX.
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Figure 26. Effects of acetyl and lignin on 1-h total sugar (a) slope and (b) intercept, 6-h
total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept. All
samples had a high crystallinity index (55.4-66.2%). Data from Table IX.
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Figure 27. Effects of acetyl and lignin on 1-h total sugar (a) slope and (b) intercept, 6-h
total sugar (c) slope and (d) intercept, and 72-h total sugar (e) slope and (f) intercept. All
samples had a low crystallinity index (9.4—20.6%). Data from Table IX.



30

25

20

15

6-h Slope

10

40
35
30
25
20
15
10

6-h Intercept

Figure 27. Continued

92

. 0)
| \ Lignin (%)

D\D\n\m —=—245-26.3
| —0—17.8-22.8
i /\-\-/\.. —A—2.5-6
0 1 2 3 4 5

Acetyl (%)
_d)
Lignin (%)

T~ ﬁ\/t/‘ —8—245.26.3
. —0—17.8-22.8
4 —A—2.5-6
0 1 2 3 4 5

Acetyl (%)



72-h Slope
=
Ul

93

Lignin (%)
—a— 24.5-26.3
—0—17.8-22.8
—A— 2.5-6

100 -

72-h Intercept
iy (2] o]
o o o
| | |

N
o
|

Lignin (%)
—B— 24.5-26.3
—0—17.8-22.8
—&— 2.5-6

Figure 27. Continued

1 2 3
Acetyl (%)



94

Table X. Summary of the effects of lignin, acetyl, and crystallinity on 1-, 6-, and 72-h

total sugar slopes (B) and intercepts (A)®.

Crystallinity Total Sugar

1h 6h 72 h
High Low High Low High Low B A B A B A
X X X > L L L L L
X X M M M M M M
X X X L L L L M L
X X M H M H M M
X X L L M M H M
X H H H H H H
X X M M H M H M
X H H H H H H

8 Summarized from Figures 22-27.

® L = low, M = moderate, and H = high. These are relative to the actual tabulated values.
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to the substrate and by irreversibly binding free enzyme. Additionally, Grethlein (1984)
and Saddler et al. (1998) have shown that lignin removal increased porosity, which led
to increased biomass swellability. This increase in swellability is related to enzyme
accessibility due to larger pore volumes and increased internal surface area, which
increased biomass hydrolysis.

The structural features (acetyl content, lignin content, and crystallinity) chosen to
be investigated can be divided into two categories. The first category is classified as
those features (crystallinity) that affect the rate of reaction (i.e., the effectiveness of the
enzymes). Structural features (lignin and acetyl) that not only limit enzyme access to the
substrate but also in the case of lignin bind and inactivate otherwise active enzymes
define the second category.

The results of our work agree with Mansfield et al. (1999), Lee and Fan (1982),
and Saddler et al. (1998). A summary of the structural features effect on slopes (B) and
intercepts (A) of the 147 model samples can be found in Table X. Figures 22a and 22b
show that low crystallinity had a significant effect on 1-h slopes and intercepts,
respectively. We discovered that low lignin had a slightly less influential effect on 1-h
slopes (Figure 24a) and intercepts (Figure 24b) when compared to low crystallinity. As
illustrated in Figure 24, 6-h slopes and intercepts increased significantly with either
decreasing lignin content or crystallinity. The slopes and intercepts increased from
baseline levels to 50% of the maximum values observed at 1 h and 6 h when
investigating either low lignin or low crystallinity. By comparing Figure 24 (high acetyl
samples) to Figure 25 (low acetyl samples), it was discovered that acetyl content had
little affect on 1-h slopes and intercepts and 6-h slopes and intercepts compared to
samples with either low crystallinity or low lignin. When samples with both low lignin
and low crystallinity were investigated, the combined effect resulted in a two-fold
increase in the 1-h slopes and intercepts and 6-h slopes and intercepts (Figure 24) versus
the case when either low lignin or low crystallinity was investigated alone. Thus, either
low lignin or low crystallinity is enough to elicit a marked effect on digestibility whereas

a combination of the two results in maximal 1-h slopes and intercepts and 6-h slopes and
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intercepts regardless of acetyl content. Therefore, our results support the theory that the
initial rate of hydrolysis depends on both the extent of enzyme adsorption and the
effectiveness of the adsorbed enzyme. This is best explained by thinking of lignin as a
bottleneck that prevents enzyme access to the substrate, but once there, enzyme
effectiveness is controlled by the degree of cellulose crystallinity. This is logical
because crystalline cellulose has been shown to be more recalcitrant than the amorphous
portions due to the slow action of the CBHSs required to degrade crystalline cellulose
(Mansfield et al., 1999; Lee and Fan, 1982; Liu et al., 1991; Srishdsuk et al., 1998).
Therefore, biomass samples with similar lignin contents but different crystallinity
indices will illustrate noticeably different initial digestibilities with the higher crystalline
biomass being more recalcitrant. Others (Sinitsyn et al., 1991; Nieves et al., 1991) have
shown that cellulases primarily attack the more disordered portions of the cellulose fiber
during initial hydrolysis. Our work suggests that lignin content and crystallinity are
obstacles linked in series that hinder the initial rate of hydrolysis. Removing either one
will enhance digestibility while removing both significantly increases digestibility.
Saddler et al. (1998) found that even though initial hydrolysis conversions of a
Douglas-fir refiner mechanical pulp (high lignin content) and kraft pulp (low lignin
content) were similar (5% and 12% respectively), their ultimate conversions (72-h or
longer incubation times) were markedly different with the kraft pulp having an 85%
conversion versus a 20% conversion for the Douglas-fir pulp. Our results agree with
Saddler et al. (1998). We discovered that low lignin alone resulted in the highest
observed 72-h slopes (ca. 27) regardless of acetyl or crystallinity. This is illustrated in
Figure 23e where the slope is constant even when acetyl content and crystallinity were
decreased. Figure 23f illustrates that low lignin in combination with low crystallinity
resulted in the highest 72-h intercepts (ca. 90). Figure 23f also shows that reducing
acetyl content from 2.7-0.1% moderately increased the 72-h intercept from 45 to 62.
Therefore, it was concluded that lignin was the major hurdle in limiting complete
hydrolysis of the biomass carbohydrate components. Even though 1 h hydrolysis rates

are influenced by both lignin (enzyme accessibility) and crystallinity (enzyme
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efficiency), the ultimate digestibility is predominantly controlled by lignin. As
compared to 1-h and 6-h digestibility, 72-h digestibility appears to be limited by the
distribution and amount of lignin. It is hypothesized that after 72 h the undigested
biomass has a very high lignin content and the cellulose and hemicellulose are closely
associated if not completely surrounded by the lignin, thereby preventing enzyme access
to the carbohydrates. This makes sense because one could envision a biomass sample
having low lignin and high crystallinity, which would give rise to low initial hydrolysis
rates. However, the enzymes will completely degrade the biomass sample given
sufficient time because the enzymes have complete access to the substrate. This
assumes there are sufficient amounts of the CBH enzymes, which have been shown to
degrade crystalline cellulose.

It has been shown by several authors that hardwood substrates are inherently less
resistant to lignin removal and redistribution than softwoods (Grethlein et al., 1984;
Ramos et al., 1992). The lignin in softwoods is primarily guaiacyl whereas hardwoods
have a mix of guaiacyl and syringyl lignin. Ramos et al. (1992) suggest that guaiacyl
lignin restricts fiber swelling and thus enzyme accessibility more so than syringyl lignin.
The fiber swelling can result in a larger specific surface area upon wetting. The fact that
our substrate was hardwood (poplar wood) should be considered when comparing results
to other types of biomass.

Puri (1984) found that mechanically pretreating (ball milling) biomass not only
decreased crystallinity but also resulted in decreased particle size and increased available
surface area. This was due to the crushing and shearing action of the ball mill. Our
samples that were subjected to ball milling had a smaller average particle size and an
increased swellability versus the samples not subjected to ball milling. Gharpuray et al.
(1983) proposed that the increased digestibility from ball-milled samples is a result of
decreased particle size and increased available specific surface area, rather than a result
of reduced crystallinity. However, some studies have reported conflicting results in
regard to the effect of SSA on biomass digestibility. Fan et al. (1980) concluded that

surface area had no effect on the digestibility of biomass. In contrast, Gharpuray et al.
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(1983), Sinitsyn et al. (1991), and Nazhad et al. (1995) determined that specific surface
area plays a major role in limiting biomass enzymatic hydrolysis. The conflicting results
may be due to different methods (N, adsorption versus solute exclusion method) used to
determine specific surface area. We have shown that crystallinity exhibits an inverse
relationship with slopes and intercepts, but whether or not this is the underlying
structural feature responsible for the observed increase in digestibility will be discovered
when developing the neural network models. If the models do not accurately predict
slopes and intercepts, this would suggest that there are other structural features that may
play a more prominent role in affecting biomass digestibility.

Figures 28 and 29 were created with data from Tables VII and VIII. Figures 28
and 29 illustrate the effect of lignin, crystallinity, and acetyl on glucan and xylan
intercepts. Figure 28 displays flat profiles for 1-h and 72-h glucan intercepts. Therefore,
glucan intercepts are not influenced by biomass acetyl content. However, xylan
intercepts in Figure 28 display a strong correlation with biomass acetyl content. Figure
29b shows that both 72-h glucan and 72-h xylan intercepts are a function of biomass
lignin content. However, 1-h xylan intercepts demonstrate a more significant correlation
with lignin content than 1-h glucan intercepts. Our results show that acetyl content has a
major affect on 1-h and 72-h xylan digestibility. This concurs with the findings of
Grohmann et al. (1989). The same cannot be said when investigating glucan
digestibility. Because the acetyl content, lignin content, and crystallinity affect glucan
and xylan digestibility differently, separate neural network models will be developed for

glucan, xylan, and total sugar at 1, 6, and 72 h.

Method of Reproducibility

The reproducibility of biomass enzymatic hydrolysis experiments was
determined by conducting internal and external tests. The experimental conditions were
the same as described in “Material and Methods.” Samples 7 and 145 were chosen as
representative samples of the extremes exhibited of our poplar wood model samples’

inherent digestibility. Sample 7 is highly recalcitrant (small slopes and intercepts)
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Figure 28. Effect of acetyl content on (a) 1-h glucan and xylan intercepts with a
moderate lignin content (17.8-21.8%) and (b) 72-h glucan and xylan intercepts with a
high lignin content (24.5-26.3%). DC 0, DC6 = ball milled 0 days or 6 days. Data from
Tables VIl and VIII.
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acetyl content (2.9-3.0%) and (b) 72-h glucan and xylan intercepts with a high acetyl
content (2.9-3.0%). DC 0, DC 6 = ball milled 0 days or 6 days. Data from Tables VII
and VIII.
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whereas Sample 145 is highly digestible (large slopes and intercepts). Table XI
summarizes the experiments that were performed to determine the internal degree of
variability. Internal tests for Sample 7 were performed at an enzyme loading of 30
FPU/g dry biomass at 1 h and 72 h. Internal tests for Sample 145 were performed with
an enzyme loading of 10 FPU/g dry biomass at 1 h and an enzyme loading of 2 FPU/g
dry biomass at 72 h. The internal tests were conducted in parallel by loading 0.2 g dry
biomass into 25-mL Erlenmeyer flasks and performing simultaneous saccharification.
Enzyme aliquots were taken from the same dilution for each enzyme loading employed.
There were five experiments performed for each of the four conditions as outlined in
Table XI.

The external degree of variability was determined by comparing the internal tests
conducted on Samples 7 and 145 on August 17, 2004 to hydrolysis experiments
conducted on September 30, 2003 (Sample 7) and October 25, 2003 (Sample 145).
Table XII summarizes the experiments conducted to determine the degree of external
variability.

From the data summarized in Tables XI and XII, our enzymatic hydrolysis
experiments are reproducible. The same batch of cellulase enzyme from the National
Renewable Energy Laboratory (NREL) was used for all experiments. It should be noted
that it might be difficult to reproduce results if experiments are conducted with a
different batch of cellulase enzyme due to the unpurified nature of the cellulase mixture.
For example, even when adding the same 5 FPU/g dry biomass enzyme loading, our lab

has experienced different biomass conversions with different cellulase mixtures.

CONCLUSIONS

The 147 poplar wood model samples had a broad spectrum of lignin contents
(0.7-26.3%), acetyl contents (0.1-3.1%), and crystallinity indices (5.4—68.8%). The
slopes (B) and intercepts (A) calculated from Equation 5 for the model samples were
determined at 1, 6, and 72 h. The results show that lignin and crystallinity have a major
effect on 1-h total sugar slopes and intercepts and 6-h total sugar slopes and intercepts
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Table XI. Internal degree of reproducibility for enzymatic hydrolysis experiments.

Sample? Sample Size Mean” Standard Deviation
7-30-1 5 3.39 0.07
7-30-72 5 13.37 0.10
145-10-1 5 24.06 0.07
145-2-72 5 80.87 0.17

7-30-1 is Sample 7, 30 FPU/g dry biomass enzyme loading, 1-h incubation time.

® Units are (% glucan conversion).

Table XII. External degree of reproducibility for enzymatic hydrolysis experiments.

Sample Date of Experiment Glucan Conversion (%)
7-30-1 August 17, 2004 3.07
7-30-1 September 30, 2003 3.39
7-30-72 August 17, 2004 12.96
7-30-72 September 30, 2003 13.37
145-10-1 August 17, 2004 23.24
145-10-1 October 25, 2003 24.06
145-2-72 August 17, 2004 79.76

145-2-72 October 25, 2003 80.87
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whereas acetyl exhibits a minor effect. Therefore, a low crystallinity index is sufficient
to achieve a moderate increase in total sugar slopes and intercepts regardless of the
acetyl or lignin content. Also, low lignin in conjunction with low crystallinity is
sufficient to achieve high total sugar slopes and intercepts regardless of the acetyl
content. Low acetyl content with a moderate lignin content contributed to a moderate
increase in 1-h and 6-h slopes and intercepts. This suggests that even though acetyl
alone is not a major player in affecting biomass digestibility, when combined with the
reduction of other structural features it does enhance biomass digestibility.

The 72-h total sugar slopes and intercepts (ultimate digestion) appear to be
controlled by a slightly different mechanism. Low lignin is sufficient to achieve high
slopes and moderate intercepts regardless of crystallinity or acetyl content. When low
crystallinity and low lignin are considered together, nearly complete conversion of the
poplar wood model samples was observed (i.e., > 95%). Figure 27 shows that with
minimal acetyl content (0.1%) and moderate lignin content (17.8—-22.8%) biomass can
be significantly digested. Chang (1999) discovered that lime pretreatment is an effective
technique to deacetylate and moderately delignify biomass. Consequently, samples that
have been subjected to lime pretreatment have been shown to be readily digestible. This
suggests that regardless of the pretreatment technique employed, biomass digestibility is
a function of its structural features. Therefore, a pretreatment designed to alter at least
two of the three biomass structural features investigated (acetyl content, lignin content,
and crystallinity) would be sufficient to render biomass highly digestible. This would
allow for the design of more effective and less expensive pretreatment techniques.

Lignin, crystallinity, and acetyl can described as inherent inhibitors of biomass
digestibility. There are other factors such as enzyme activity, enzyme deactivation,
enzyme and substrate concentration, and product inhibition that can limit or control the
degree of biomass digestibility. However, our work has shown that by removing lignin,
acetyl groups, and crystallinity biomass can be rendered highly digestible.

Our work suggests there are two main paths in which the enzymes can travel. On

one path, they encounter lignin that acts to retard biomass digestion through limiting
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biomass swellability and irreversibly binding enzymes. The other path is hindered by
the presence of acetyl groups covalently bound to hemicellulose that sterically interfere
with the enzymes in their quest to reach the cellulose and hemicellulose. These two
paths are aligned in parallel until the enzymes reach the cellulose, where they merge into
one path. Once arriving at the cellulose, the enzymes encounter crystalline cellulose that
acts to retard the effectiveness of the enzymes resulting in reduced rates of digestibility.

Our results show that the structural features investigated affect glucan and xylan
digestibilities differently. It was noticed that lignin content and crystallinity elicit a
major effect on glucan digestibility whereas lignin content and acetyl content appear to
be more influential on xylan digestibility. Crystallinity has a major influence on initial
digestibility whereas lignin exhibits a minor influence. Lignin appears to have the
greatest influence on ultimate digestibility.  Additionally, 1-h, 6-h, and 72-h
digestibilities appear to be controlled by different mechanisms. Therefore, separate
models will be developed for glucan, xylan, and total sugar at each of the three
incubation times (1, 6, and 72 h).
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NEURAL NETWORK MODELING OF STRUCTURAL FEATURES
RESPONSIBLE FOR ENZYMATIC DIGESTIBILITY

INTRODUCTION

Many tasks such as speech understanding and visual recognition are still beyond
the reach of digital computers. However, neural networks have proven to be effective
tools in approximating nonlinear functions, pattern recognition, and classification
problems (Giustolisi, 2004). They act as model-free estimators. Compared to common
analytical approaches, neural networks require no explicit model and no limiting
assumptions of normality or linearity (Annema, 1995; Hagan et al., 1996), which gives
neural networks a key advantage over traditional approaches to function estimation. One
of the greatest neural network advantages is estimating a function without requiring a
mathematical description of how the output depends on the input. Instead, neural
networks learn from examples of input-output data sets supplied to them.

In the 1940s, McCulloch and Pitts showed that artificial neural networks (ANNS)
could compute any arithmetic or logical function. It was not until the late 1950s that
Rosenblatt solved a problem with a neural network for the first time (Rosenblatt, 1961).
He solved a recognition pattern problem. In the 1980s, multi-layer perceptron (MLP)
networks became the most widely used artificial neural networks for function
approximation (Zupan and Gasteiger, 1999).

Acrtificial neural networks consist of numerous processing units or neurons that
can be modified to estimate a desired function. ANN models represent a new extremely
robust approach to modeling complex processes. A neural network is an array of nodes
(neurons) linked by connections (synapses) that can be strengthened or weakened.
Neural network behavior is defined by the way its elements are connected and by the
strength of those connections, termed weights. The weights are automatically adjusted
by training the network according to a specified learning rule until it properly performs

the desired task (Annema, 1995). The idea was derived from the interconnected neurons
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of the brain (Hagan et al., 1996). The human brain consists of ~10™ neurons with
approximately 10,000 connections per neuron (Rao and Srinivas, 2003). Neural
networks possess only a small fraction of the computing power of the human brain;
however, they have proven successful in solving many complex problems in
telecommunications, medicine, robotics, biotechnology, and engineering.

Neural networks are trained from a series of inputs and associated outputs. The
network outputs are then compared to the actual target values after each iteration. If the
performance function (e.g., mean square error) is not satisfied, the connections between
neurons are strengthened or weakened according to the level of success in reproducing
the correct outputs. This iterative approach is continued until the performance function
is satisfied or the number of desired iterations is reached. An overview of a typical
neural network scheme is shown in Figure 30. In contrast to function approximation
techniques that use polynomials or general orthogonal functions, there are no guidelines
on choosing the number of terms in a neural network (i.e., the number of layers and
number of nodes in each layer of the network); these are determined through trial and
error.

Neural networks consist of neurons that are interconnected to one another as well
as other layers in the network. The high degree of interconnectivity makes artificial
neural networks extremely powerful and robust tools (Annema, 1995). A typical neuron
is shown in Figure 31. The input p is transmitted through a connection that multiplies its
strength by the weight w, to form the product wp. A bias term b is added to the product
wp by the summing junction. This sum is supplied as the input to the transfer function f,
which keeps the final output signal n of the neuron non-negative, continuous, and
confined to a specified interval. For nonlinear function approximation, the transfer
function is typically a sigmoid function (Wang et al., 2004).  The tangent-sigmoid
transfer function takes the input, which may be any value between + and — infinity, and
squashes the output into the range of —1 to 1 (see Figure 32). This operation can be
distributed across several layers, where the output of one layer forms the input to

another, and the magnitude and orientation of the weight vectors determine how
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Figure 30. Black-box model of a general neural network scheme.
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Figure 31. Simple neuron with single input and bias term.
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knowledge is distributed in the overall network. Two or more neurons can be combined
in a layer with a network possessing one or more such layers. The layers of a multi-
layer network play different roles. The output layer produces the network output
whereas all other layers in the network are called hidden layers. Multi-layer networks
are extremely powerful. For instance, a network of two layers, where the first layer is
sigmoid and the second layer is linear, can be trained to approximate any function
arbitrarily well (Annema, 1995; Hagan et al., 1996). An overview of a typical multi-
layer neural network is shown in Figure 33.

A single neuron, even with many inputs, is not sufficient for most applications.
Likewise, single-layer networks are not adequate to approximate complex nonlinear
functions, as is our case. Therefore, our work will use multi-layered networks with more
than one neuron in the hidden layer. After building the network, it must be trained to
perform the desired task. A training algorithm (also called learning rule) modifies the
weights and biases of a network. The objective of training a network is to minimize the
error between the actual outputs and the network outputs. Learning rules are classified
as either supervised or unsupervised. In supervised learning, the network is provided
with a set of examples of proper behavior (i.e., inputs and their corresponding targets).
As the inputs are applied to the network, the network outputs are compared to the
targets. If the outputs do not reflect the targets within a defined margin of error, the
training algorithm is used to adjust the network weights and biases to move the network
outputs closer to their target values. In unsupervised learning, the weights and biases
are modified in response to the network inputs only. There are no target values for the
network outputs to be compared against. The networks developed in our work will be
trained using a supervised learning rule.

Backpropagation is a commonly used training algorithm in multi-layer networks
that have a nonlinear differential transfer function such as tan-sigmoid (Wang et
al., 2004; Zupan and Gasteiger, 1999). The backpropagation algorithm was developed
for multi-layer networks by generalizing the Least Mean Squares learning rule (Demuth

and Beale, 2004). The error for these algorithms (backpropagation and LMS)
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Figure 32. Tangent-sigmoid and pure-linear transfer functions (Demuth and Beale,
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is calculated as the difference between the target output and the network-simulated
output. The goal is to minimize the average of the sum of these errors as shown in
Equation 11

MSE = ii[ti —a, [ (11)

N i=1

where MSE is the mean square error, t is the target value, a is the network output, N is
the number of examples of input-output data, and i is the number of iterations. The
learning algorithm (i.e., backpropagation) adjusts the weights and biases to minimize the
mean square error.

Standard backpropagation is a gradient descent algorithm, as is the Least Mean
Squares algorithm (Demuth and Beale, 2004). Backpropagation refers to the manner in
which the gradient is computed for nonlinear multiplayer networks, which involves
performing computations backwards through the network. The backpropagation is
derived using the chain rule of calculus (Hagan et al., 1996). The most basic
implementation of backpropagation updates the network weights and biases in the
direction in which the performance function (i.e., mean square error) decreases most
rapidly — the negative of the gradient. The algorithm can be written as

Xip1 = X — 4Gy (12)
where X is a matrix of current weights and biases, gk is the current gradient, and o is
the learning rate. There are two different ways the gradient descent algorithm can be
implemented: incremental mode or batch mode. This study employs the batch mode in
which all of the inputs are applied to the network before the weights and biases are
updated.

Backpropagation networks with biases, a hidden sigmoid layer, and a linear
output layer can approximate any function with a finite number of discontinuities
(Demuth and Beale, 2004). In batch training, the weights and biases are updated only
once in each epoch, which is defined as a complete pass from the input vectors/matrix to

the output.
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Properly trained backpropagation networks give reasonable answers when
presented with new inputs. Typically, new inputs lead to reasonably accurate outputs
when the new inputs are similar to the inputs used to train the network. This
generalization makes it possible to train a network on a representative set of input-output
pairs without training the network on all possible pairs. However, one of the problems
encountered when training neural networks is overfitting, which occurs when the error is
driven to a very small value during training, but when new data are presented to the
network, the error is large. In this situation, the network memorized the training
examples, but did not learn to generalize to new situations. Matlab® has two techniques
that are designed to improve network generalization — regularization and early stopping.

Regularization modifies the network performance function (Equation 11) by
adding a term that consists of the mean of the sum of squares of the network weights as
given by Equation 13

1 2 1&
MSEreguIarization = 7WZ(ti - ai) +(1_7)HZW1 (13)
i=1 j=1

where y is the performance ratio, which is a measure of how many parameters in the
network are effectively used to reduce the error. Using the modified performance
function causes the network to have smaller weights and biases, which gives a smoother
network response. The performance ratio can be determined in an automated fashion by
calling the trainbr function in Matlab®. Trainbr uses the Bayesian framework
developed by MacKay (1992), in which the weights and biases are assumed to be
random variables with specified distributions and the regularization parameters are
related to the unknown variances associated with these distributions. The regularization
parameters can then be estimated using statistical techniques. A detailed discussion of
Bayesian regularization can be found in Foresee and Hagan (1997). Regularization
produces a network that not only performs well with the training data, but also produces
smoother behavior when presented with new data. The trainbr algorithm was used

in this work to improve the network’s generalization ability.
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OBJECTIVES

The purpose of this research was to develop a neural network model that can
predict slopes (B) and intercepts (A) based solely on biomass acetyl content, lignin
content, and crystallinity. Matlab® was used to develop the neural network models by
taking advantage of its built-in algorithms and programs. The specific objectives of this

work were:

1. Develop neural network models to predict glucan, xylan, and total sugar
slopes and intercepts at 1, 6, and, 72 h.

2. Test the neural network’s predictive ability on lime- and AFEX-treated
corn stover; lime- and dilute-acid-treated rice straw; and lime-, dilute-

acid-, and aqueous-ammonia-treated bagasse.

NEURAL NETWORK MODELING STUDY

Purpose

The purpose of this study was to correlate slopes and intercepts (data from Tables
VI, VIII, and 1X) with biomass structural features (data from Table V) in Matlab® using
neural networks, a nonparametric modeling technique. This was accomplished by
supplying the networks with both inputs (i.e., biomass structural features) and outputs

(i.e., experimentally measured slopes and intercepts from the 147 model samples).

Materials and Methods
Substrate Preparation

The 147 poplar wood model samples used in this study were selectively
deacetylated with KOH, delignified with peracetic acid, and decrystallized by ball
milling in a prior study (Chang, 1999).
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Correlations for Poplar Wood Model Samples
A total of 18 networks were developed to correlate digestibility with acetyl,
lignin, and crystallinity. Figure 34 summarizes the nine networks developed to predict
slopes and the nine networks developed to predict intercepts. Because of the different
responses of glucan and xylan digestibility to changes in structural features, correlations
were developed separately for glucan, xylan, and total sugar. Due to the complexity of
the biomass-cellulase reaction, a neural network model to determine the correlation
between slopes and intercepts (Equation 14 and 15, respectively) and structural features

was proposed.

slope = f (acetyl, lignin, Crlc) (14)
intercept = f (acetyl, lignin, Cric) (15)
It was hypothesized that the predictive ability of glucan slope/intercept networks
could be improved by including the glucan content and xylan slope/intercept, and the
predictive ability of xylan slope/intercept networks could be improved by including the
xylan content and glucan slope/intercept. For example, when developing the 1-h glucan
slope neural network, the independent variables (i.e., acetyl content, lignin content,
glucan content, biomass crystallinity (Crlb), and cellulose crystallinity (Crlc)) were
systematically investigated as shown is Table XIII. After determining the best
combination of independent variables (Run No. 6 in Table XIII), the 1-h xylan slope was
added as an independent variable to see if the predictive ability of the networks could be
improved. This procedure was followed when developing all glucan and xylan
networks. The hypothesis being tested was if the digestibility of one component
depended on the other, i.e., does removing xylan enhance glucan digestibility and/or
does removing glucan enhance xylan digestibility. The criteria used to determine the
best combination of independent variables was the MSE and R® (coefficient of
determination) of the 147 poplar wood model samples and the MSE and R? of the 22
samples used to test the trained networks predictive ability. Only the 147 model samples
from Tables VII, VIII, and IX with a R?> 0.92 were used to build the 18 networks. Asa

result, all networks did not have the same dimensionality.
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The training algorithm (trainbr) of the 18 neural networks does not attempt
to achieve a desired training goal such as the MSE. Instead, trainbr is a measure of
how many network parameters (weights and biases) are being effectively used by the
network. The effective number of parameters should remain approximately constant
regardless of the network size (i.e., number of neurons in hidden layer). This indicates
the network was trained for a sufficient number of iterations to ensure convergence.

The trainbr algorithm works best when the network inputs and targets are
scaled so they fall in the range (-1,1) (Foresee and Hagan, 1997; Demuth and Beale,
2004). Because our inputs and targets did not fall in this range, the following functions
were used in Matlab®: premnmx - to normalize the inputs and targets, postmnmx
- to covert the network outputs back into the same units as the original targets, and
tramnmx - to preprocess new inputs to be fed to the trained network with the means
and standard deviations computed for the training set. The aforementioned Matlab®
functions normalize the inputs and targets so that they have zero mean and unity

standard deviations.

Building a Neural Network in Matlab®

Matlab® version 6.5.0.18013a Release 13 was used throughout the study. There
are numerous neural networks to select in Matlab®, such as radial basis,
backpropagation, and learning vector quantization. A multi-layer feedforward
backpropagation neural network was the framework chosen for all 18 networks. All
networks had one hidden layer with 15 neurons (tan-sig transfer functions) and an
output layer with a single neuron (purel in transfer function). This type of network is
commonly used for nonlinear function approximation because it can estimate almost any
function as long as there are enough neurons in the hidden layer (Zupan and Gasteiger,
1999).
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Figure 34. Organizational chart of nine neural network models used to correlate (a)

slope and (b) intercept with lignin, acetyl, and crystallinity. G + X is defined as total

sugar.
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Table XII1. Summary of 1-h glucan slope network runs to identify best combination of
independent variables®.

Model Prediction

Run Input Input  Input  Input Input Samples” Samples®
R®*  MSE R MSE
1 L/IG AIG Crlb/G G 0.97 14 0.33 28.3
2 L A/G  Crlb/G G 0.97 13 0.32 30.0
3 L/G A Crlb/G G 0.97 15 0.43 24.9
4 L/IG A/X Crlb/G G 0.97 15 0.44 24.6
5 L/IG A/X Crlb G 0.97 14 0.49 18.5
6 L/IG A/X Crlc G 0.97 1.4 0.53 17.6
7 L/IG A/X Crlc/G G 0.97 15 0.39 26.9
8 L/IG A/X Crlc 0.96 2.0 0.16 43.0
9 L/IG A/X G 0.15 38.0 0.05 45.0
10 L/G Crlc G 0.96 1.8 0.00 120.0
11 A/X Crlc G 0.95 2.0 0.03 123.0
12 LIG AIX Crlc G X1slope 0.99 0.45 0.00 49.0
13 LIG AIX Crlc G  Xlintercept 0.96 1.6 0.00 75.0
14 LIG AIX Crlc X1slope 0.98 0.6 0.10 43.0
15 L/IG AIX Crlc Xlintercept 0.96 1.7 0.21 35.0

% L=lignin; A=acetyl; Crlb=biomass crystallinity; Cric=cellulose crystallinity;
G=glucan; X=xylan; X1slope=1-h xylan slope; X1lintercept=1-h xylan intercept.
® Simulated values for 147 poplar wood model samples.

¢ Predicted values for the 22 samples used to determine the models predictive ability.
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As an example, the commands used to develop the 1-h glucan slope network are
shown below. First, the input matrix had to be created from the data arranged in column
vectors. The input vectors L_G, A_X, Crlc, and G were normalized and converted into a
single input matrix of order 147x4 with the following Matlab® code.

load L_G.m

load A_X.m

load Cric.m

load G.m

[L_Gn,minL_G,maxL_G]=premnmx(L_G);

[A_Xn,minA_X,maxA_X]=premnmx(A_X);

[Cricn,minCric,maxCric]=premnmx(Cric);

[Gn,minG,maxG]=premnmx(G) ;

[slope_ G 1n,minslope G 1,maxslope_G_l]=premnmx(slope G

_D;
for 1=1:147,

network_input_GS (I,1)=L_Gn(1)"
end

for 1=1:147,

network input_GS (I1,2)=A_ Xn(1)*
end

for 1=1:147,

network input_GS (I1,3)=Crilcn(l)*
end

for 1=1:147,

network input_GS (1,4)=6n(1)"

end
The input matrix was named network_input_GS. For all networks, a multi-layer
feedforward backpropagation network was used for training purposes with the Bayesian
regularization modification trainbr to the MSE performance function. The network

consisted of one hidden layer with 15 tan-sig neurons followed by an output layer
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with one purelin neuron. The linear transfer function is commonly used in function
approximation networks because it allows the output to be any value between -co and o«
(Figure 32). The function newff was used to build the 1-h glucan slope network as
well as the other 17 networks. The following code was written in a Matlab® to create the
network.

net=newffF([min(A_Xn)max(A_Xn);min(Cricn)max(Crlcn)

min(L_G) max(L_G); min(Gn) max(Gn)], [15 1],
{"tansig”, "purelin®}, "trainbr*);

net.trainParam.show=10;

net.trainParam.epoch=100;

randn("seed”,192836547) ;

net=init(net);

net=train(net,network _input_GS*,slope_G_1n%);
Trainlm (Levenberg-Marquardt) is the default training algorithm for feedforward
backpropagation networks; therefore, we had to instruct the network to use the
trainbr algorithm instead. The train function initiates network training with the
147x4 input matrix network__input_GS and the 147x1 target vector slope_G_1n.
Next, the outputs were simulated for the given set of inputs using the trained network.
Before comparing the simulated outputs (yn) to the actual outputs (slope_G_1n), the
simulated outputs had to be converted back into the same units as the original targets
with the function postmnmx. The difference between simulated and actual outputs
was designated as E. The MSE of the difference between the two outputs was
calculated. The network’s ability the correlate 1-h glucan slopes with biomass structural
features was evaluated by looking at the MSE and R?, which were generated with the
functions perf and postreg, respectively. The following code was written in
Matlab® to accomplish this purpose:

yn=sim(net, network_input_GS");

y=postmnmx(yn,minslope_G_1,maxslope G 1);

E=slope G 1"-y;
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min(E)

max(abs(E))

perf=mse(E)

[m,b, r]=postreg(y,slope G 1%)

Rsqr=r~"2
For the 1-h glucan slope network, 15 tan-sig neurons in the hidden layer were
sufficient to ensure convergence. By monitoring the number of effective parameters, 15
neurons proved adequate to achieve convergence for the other 17 networks as well.

The codes used in Matlab® to build the networks and simulate the outputs for the
147 poplar wood model samples are given in Appendix E. Also, the final weights and
biases of the networks can be found in Appendix E.

All network simulated slopes and intercepts for the 147 poplar wood model
samples are listed in Appendix F.

Results and Discussion
Neural Networks Validity

Because the neural networks were developed for the 147 poplar wood model
samples, they are only valid in the region covered by the data sets used to simulate
biomass digestibility. Results may vary when attempting to use the networks to predict
slopes and intercepts of biomass samples with structural features that lie outside of the
regions of the 147 model samples. The distribution of the independent variables of the

147 poplar wood model samples cover the region of

444 <G <765 (16)
139< X <175 (17)
58.3<TS <91.6 (18)
0.1<A<31 (19)
0.7<L<26.3 (20)
5.4<Crlb<68.8 (21)

10.3<Crlc <79.8 (22)
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where G=glucan, X=xylan, TS=total sugar, A=acetyl content, L=lignin content,
Crlb=biomass crystallinity, and Crlc=cellulose crystallinity. The 18 neural networks are

only valid in the above region.

1-h Slope and Intercept

The functionalities (i.e., the independent variables that gave the lowest MSE and
R? values) of the 1-h slope and intercept networks are summarized in Table XIV. Net-
simulated outputs from 1-h glucan, xylan, and total sugar neural networks (Appendix F)
were compared with measured slopes and intercepts from Tables VII, VIII, and IX as
shown in Figures 35 and 36.

After training, the MSEs of the 1-h glucan networks were 5.3 and 0.7 for slopes
and intercepts, respectively. Therefore, average differences between the experimentally
measured and network-simulated glucan data were +2.3% and +0.8% for slopes and
intercepts, respectively. In Figure 35a, the coefficient of determination (R?) was 0.92 for
measured versus simulated 1-h glucan slopes. The R? value of 1-h glucan intercepts was
0.81 (Figure 36a). Thus, the trained networks simulated the 1-h glucan slopes and
intercepts of the 147 poplar wood model samples fairly satisfactorily. Another 1-h
glucan slope network with a different functionality was run attempting to improve the
network’s ability to simulate the actual target values. Outputs (i.e., slopes) from the 1-h
xylan slope network, which did not have 1-h glucan slope as an input, were fed to the 1-
h glucan slope network as an additional independent variable. Similarly, another 1-h
glucan intercept network with a different functionality was run attempting to improve
the network’s ability to simulate the actual target values. Outputs (i.e., intercepts) from
the 1-h xylan intercept network, which did not have 1-h glucan intercepts as an input,
were fed to the 1-h glucan intercept network as an additional input. There was no
improvement in the MSE or R? for the 1-h glucan slope and intercept networks that
included xylan functionality. Our data suggest that xylan digestibility had no affect on
glucan digestibility during initial hydrolysis (1 h).
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After training, the MSEs were 0.7 and 0.9 for 1-h xylan slopes and intercepts,
respectively. Therefore, the average differences between the experimentally measured
and network-simulated data were +0.84% and +0.95% for slopes and intercepts,
respectively. The coefficients of determination (R%) were 0.81 and 0.78 for the 1-h xylan
slope (Figure 35b) and intercept (Figure 36b) regressions, respectively. As a result, the
trained networks describe the 1-h xylan slopes and intercepts of the 147 model samples
fairly satisfactorily. Another 1-h xylan slope network that included glucan slope
functionality was run attempting to improve the networks ability to simulate the actual
target values. Outputs (i.e., slopes) from the 1-h glucan slope network, which did not
have 1-h xylan slopes as an input, were fed to the 1-h xylan slope network as an
additional input. Similarly, another 1-h xylan intercept network with glucan intercept
functionality was run attempting to improve the network’s ability to simulate the actual
target values. Outputs (i.e., intercepts) from the 1-h glucan intercept network, which did
not have 1-h xylan intercepts as an input, were fed to the 1-h xylan intercept network as
an additional independent variable. Similar to 1-h glucan networks, no improvement in
the MSE or R? for 1-h xylan slope and intercept networks that included glucan
functionality was observed. Our data suggest 1-h xylan digestibility is independent of
initial glucan digestibility.

After training, the MSEs for the 1-h total sugar networks were 1.1 and 0.6 for
slopes and intercepts, respectively. Therefore, the average differences between the
experimentally measured and network-simulated data were +1.05% and +0.77% for
slopes and intercepts, respectively. In Figure 35c, the coefficient of determination (R?)
was 0.96 for experimentally measured versus simulated 1-h total sugar slopes. The R
value of 1-h total sugar intercepts was 0.81 (Figure 36¢). As a result, the total sugar
networks describe the 1-h slopes and intercepts of the 147 poplar wood model samples

fairly satisfactorily.
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Table X1V. Summary of the functionality and goodness of fit for the 1-h slope

and intercept neural networks.

Functionality® R° MSE
Slope B)  B=f(L/G, AIX, Cric, G) 092 53

Glucan
Intercept (A) A=1(L, A/X, Crlc, G) 0.81 0.7
Slope (B) B=f(L, A, Crlc, X) 081 0.7
Xylan
Intercept (A) A=f(L, A, Cric, X) 0.78 0.9
Slope (B) B =f(L/TS, A/TS, Crlc/TS, TS) 0.96 1.1
Total Sugar

Intercept (A) A=1f(L, A/X, Crlc, TS) 0.81 0.6

& L=lignin; A=acetyl; Crlc=cellulose crystallinity; G=glucan; X=xylan;

TS=total sugar.
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Figure 35. Correlation between experimentally measured and network-simulated slopes

for (a) 1-h glucan, (b) 1-h xylan, and (c) 1-h total sugar.

prediction interval.

Dotted lines describe 95%
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Rather than biomass crystallinity (Crlb), it was hypothesized that cellulose
crystallinity (Crlc) better measures the impediment to enzymatic cellulose degradation.
X-ray diffraction measures the gross crystallinity of biomass (i.e., amount of crystalline
material/total material). Hemicellulose (Holtzapple, 1993b) and lignin (Holtzapple,
1993c) are highly amorphous due to their branched and cross-linked structure; therefore,
the crystallinity of biomass measured by X-ray diffraction predominantly results from
the highly ordered regions of cellulose, but is expressed as gross crystallinity Lee and
Fan (1982) have shown that cellulose crystallinity is a major limiting factor in pure
cellulose digestibility; therefore, it would be advantageous to separate the crystallinity of
cellulose from the gross crystallinity measured by X-ray diffraction to obtain a mass
fraction of crystalline cellulose (i.e., mass of crystalline cellulose/mass of cellulose). We
have shown that for the samples in our study, Equation 24 in “Predicting Cellulose
Crystallinity” has the potential to predict cellulose crystallinity. By replacing biomass
crystallinity with cellulose crystallinity as an independent variable, our results show that
all 1-h networks better simulated the actual target values (i.e., networks with Crlc had a
lower MSE). This suggests that Crlc calculated with Equation 24 is a better predictor of
biomass reactivity than Crlb.

6-h Slope and Intercept

The functionalities (i.e., the independent variables that resulted in the lowest
MSE and R? values) of the 6-h slope and intercept networks are summarized in Table
XV. Net-simulated outputs from 6-h glucan, xylan, and total sugar slope and intercept
neural networks (Appendix F) were compared with measured slopes and intercepts from
Tables VII, VIII, and IX as shown in Figures 37 and 38.

After training, the MSEs of the glucan networks were 2.3 and 3.0 for 6-h slopes
and intercepts, respectively. Therefore, average differences between the experimentally
measured and network-simulated glucan data were +1.5% and +1.7% for slopes and
intercepts, respectively. In Figure 37a, the coefficient of determination (R%) was 0.96 for

measured versus simulated 6-h glucan slopes. The R? value for 6-h glucan intercepts
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was 0.97 (Figure 38a). Thus, the trained networks describe the 6-h glucan slopes and
intercepts for the 147 model samples fairly satisfactorily. In attempting to improve the
capability of the 6-h glucan slope network to simulate actual target values, outputs (i.e.,
slopes) from a 6-h xylan slope network, which did not have 6-h glucan slopes as an
input, were fed to another 6-h glucan slope network as an additional independent
variable. Similarly, another 6-h glucan intercept network with a different functionality
was run attempting to improve the network’s ability to simulate actual target values.
Outputs (i.e., intercepts) from the 6-h xylan intercept network, which did not have 6-h
glucan intercepts as an input, were fed to the 6-h glucan intercept network as an
additional input. No improvement in the MSE or R? was observed for the 6-h glucan
slope and intercept networks with xylan functionality. Our data conclude that xylan
digestibility had no affect on glucan digestibility after 6 h.

After training, the MSEs of the 6-h xylan networks were 1.3 and 8.0 for slopes
and intercepts, respectively. Therefore, average differences between the experimentally
measured and network-simulated data for slopes and intercepts were £1.1% and +2.8%,
respectively. The coefficients of determination were 0.94 and 0.95 for 6-h xylan slope
(Figure 37b) and intercept (Figure 38b) regressions, respectively. As a result, the trained
networks describe the 6-h xylan slopes and intercepts of the 147 poplar wood model
samples fairly satisfactorily. Another 6-h xylan slope network that included glucan
slope functionality was run attempting to improve the network’s ability to simulate the
actual target values. Outputs (i.e., slopes) from a 6-h glucan slope network, which did
not have 6-h xylan slopes as an input, were fed to the 6-h xylan slope network as an
additional input. Similarly, another 6-h xylan intercept network with glucan intercept
functionality was run attempting to improve the networks ability to simulate the actual
target values. Outputs (i.e., intercepts) from a 6-h glucan intercept network, which did
not have 6-h xylan intercepts as an input, were fed to the 6-h xylan intercept network as
an additional independent variable. Contrary to 1-h xylan networks, the 6-h xylan slope

and intercept networks that included glucan functionality showed a minor
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Table XV. Summary of the functionality and goodness of fit for the 6-h slope

and intercept neural networks.

Functionality® R® MSE
Slope (B)  B=f(L, A/G, Cric/G, G) 096 23

Glucan
Intercept (A) A =1 (L/G, AIX, Crlc/G, G) 097 3.0
vl Slope (B) B=f(L, A/X, Crlc, G6slope) 0.94 1.3
an

Y Intercept (A) A=f(L, A, Crlc/G, G6intercept) 0.95 8.0
Slope (B) B=f(L, A, Crlc) 097 1.6

Total Sugar
Intercept (A) A=1f(L, A Crlc, TS) 098 29

% L=lignin; A=acetyl; Crlc=cellulose crystallinity; G=glucan; X=xylan;

TS=total sugar; G6slope=6-h glucan slope; G6intercept=6-h glucan intercept.

Table XVI1. Comparison between 6-h xylan slope and intercept networks

with and without glucan slope and intercept functionality.

Functionality R® MSE
Xylan Slope (B)® B=f (L, A/X, Cric, X) 093 15
Slope (B)° B =f(L, A/X, Crlc, G6slope) 094 1.3
Intercept (A)? A=f(L, A, Crlc/G, X) 094 86
Xylan

Intercept (A)® A =f(L, A, Crlc/G, G6intercept) 0.95 8.0

# Networks without glucan functionality.

® Networks with glucan functionality.
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Figure 37. Correlation between experimentally measured and network-simulated slopes

for (a) 6-h glucan, (b) 6-h xylan, and (c) 6-h total sugar.

prediction interval.
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improvement in the MSE and R? as shown in Table XVI. The data imply that glucan
digestibility exhibits some effect on 6-h xylan digestibility.

After training, the MSE of the 6-h total sugar neural networks were 1.6 and 2.9
for slopes and intercepts, respectively. Therefore, the average differences between the
experimentally measured and network-simulated data were +1.3% and +1.7% for slopes
and intercepts, respectively. In Figure 37c, the coefficient of determination (R?) was
0.97 for measured versus simulated 6-h total sugar slopes. The R? value of 6-h total
sugar intercepts was 0.98 (Figure 38c). As a result, the total sugar networks describe 6-h
slopes and intercepts of the 147 poplar wood model samples fairly satisfactorily.

Similar to the results observed in the 1-h networks, replacing biomass
crystallinity with cellulose crystallinity as an independent variable improved all of the 6-
h networks ability to simulate the actual target values of the 147 poplar wood model

samples (i.e., the networks with Cric had a lower MSE).

72-h Slope and Intercept

The functionalities (i.e., the independent variables that resulted in the lowest
MSE and R? values) of the 72-h slope and intercept networks are summarized in Table
XVII.  Net-simulated outputs from 72-h glucan, xylan, and total sugar slope and
intercept neural networks (Appendix F) were compared with the measured slopes and
intercepts from Tables VII, VIII, and X as shown in Figures 39 and 40.

After training, the MSEs of the glucan networks were 5.3 and 8.6 for 72-h slopes
and intercepts, respectively. Therefore, average differences between the experimentally
measured and network-simulated glucan data were +2.3% and +2.9% for slopes and
intercepts, respectively. The coefficients of determination for 72-h glucan measured
versus simulated slopes (Figure 39a) and intercepts (Figure 40a) were 0.92 and 0.99,
respectively. Thus, the trained networks simulated the 72-h glucan slopes and intercepts
for the 147 model samples fairly satisfactorily. In attempting to improve the predictive
ability of the 72-h glucan slope network to simulate the actual target values, outputs (i.e.,

slopes) from the 72-h xylan slope network, which did not have 72-h glucan slopes as an
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input, were fed to the 72-h glucan slope network as an additional independent variable.
The same procedure was followed when testing xylan intercept functionality on a 72-h
glucan intercept network. There was no improvement in the MSE or R? for the 72-h
glucan slope and intercept networks that included xylan functionality. As a result, our
data indicate that ultimate glucan digestibility (72 h) does not depend on Xxylan
digestibility.

After training, the MSEs of the 72-h xylan networks were 2.0 and 3.4 for slopes
and intercepts, respectively. Therefore, average differences between the experimentally
measured and network-simulated data for slopes and intercepts were +1.4% and +1.8%,
respectively. The coefficients of determination (R?) were 0.87 and 0.99 for 72-h xylan
slope (Figure 39b) and intercept (Figure 40b) regressions, respectively. As a result, the
networks trained on the 147 poplar wood model samples describe the 72-h xylan slopes
and intercepts fairly satisfactorily. Another 72-h xylan slope network that included
glucan slope functionality was run in an attempt to improve the networks ability to
simulate the actual target values. Outputs (i.e., slopes) from a 72-h glucan slope
network, which did not have 72-h xylan slopes as an input, were fed to the 72-h xylan
slope network as an additional input. The same procedure was followed when testing
glucan intercept functionality on a 72-h xylan intercept network. Similar to 6-h xylan
networks, the 72-h xylan slope and intercept networks that included glucan functionality
showed an improvement in the MSE and R? as shown in Table XVIII. The data imply
that glucan digestibility exhibits some effect on ultimate xylan digestibility.

After training, the MSEs of the 72-h total sugar neural networks were 3.6 and 8.8
for slopes and intercepts, respectively. Therefore, the average differences between the
experimentally measured and network-simulated data were +1.9% and +3.0% for slopes
and intercepts, respectively. In Figure 39c, the coefficient of determination (R?) was
0.92 for measured versus simulated 72-h total sugar slopes. The R? value of 72-h total
sugar intercepts was 0.99 (Figure 40c). As a result, the networks trained on the 147

model samples describe 72-h total sugar slopes and intercepts fairly satisfactorily.
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Table XVII. Summary of the functionality and goodness of fit for the 72-h slope

and intercept neural networks.

Functionality® R° MSE
Slope (B) B=f(L, A/X, Crlc) 092 53
Glucan
Intercept (A) A=1(L, A/G, Crlc) 099 8.6
Ny Slope (B) B =f(L/X, A/X, Cric/X, G72slope) 0.87 2.0
an

Y Intercept (A) A=f(L/X, A, Cric, X, G72intercept) 0.99 3.4
Slope (B) B=f(L, A/X, Crlc/G, TS) 092 3.6

Total Sugar
Intercept (A) A=f(L, A, Crlc, TS) 099 838

% L=lignin; A=acetyl; Crlc=cellulose crystallinity; G=glucan; X=xylan;

TS=total sugar; G6slope=72-h glucan slope; G6intercept=72-h glucan intercept.

Table XVI1II. Comparison between 72-h xylan slope and intercept networks
with and without glucan slope and intercept functionality.

Functionality R° MSE
Wy Slope (B)? B = f (L/X, A/X, Crlc/X) 085 2.4
Slope (B)" B =f (L/X, A/X, Cric/X, G72slope) 0.87 2.0
Intercept (A)? A=f(L/X, A Crlc, X) 0.98 10.9
Xylan

Intercept (A)° A =f(L/X, A, Crlc, X, G72intercept)  0.99 3.4

 Networks without glucan functionality.

® Networks with glucan functionality.



133

35 .
a) T
qg;_ 30 ) "‘3 P
@ 25 | e
< NP F S I
S RS -
S - 3
G 207 RAEX R
< .. * -
& 15 R SO ¢
~ R 4 * @
o AR N/ (3 ’,"
g 10 T e .-
> - > .
2 ) hech
o .
= 5 4 5 “ R
0 T - T T T T T
0 5 10 15 20 25 30 35
Net-Simulated 72-h Glucan Slope
25 —~
® b) * e
g 207 n
— ~"
n . .
& LY [
> 15+ ® &
< R RN
N FER S
5 104 pTo-&
o o LN
? g
& 51
= - ' N
.
0 . T T T T
0 5 10 15 20 25
Net-Simulated 72-h Xylan Slope
35
8 30 *
g 8 e
o C) o8
© 25 - .. .
% o S ¢
9.
s 20 4 ¢ ~ ‘,‘0
° L% R
< 154 ‘ ”00 IO 4
N N .
~ R &4 R
e .-
8 10 L 0 : .
2 . %7
© 5 - .
P .
2
0 - T T T T T
0 5 10 15 20 25 30 35

Net-Simulated 72-h Total Sugar Slope

Figure 39. Correlation between experimentally measured and network-simulated slopes
for (a) 72-h glucan, (b) 72-h xylan, and (c) 72-h total sugar. Dotted lines describe 95%

prediction interval.



100

80 -

60 +

40 |

20 4

Measured 72-h Glucan Intercept

100

60

80

Net-Simulated 72-h Glucan Intercept

100

b)

80 |
60 -
40 |

20 4

Measured 72-h Xylan Intercept

100

40

60

Net-Simulated 72-h Xylan Intercept

80

100

80 4

60 +

40 |

20 4

Measured 72-h Total Sugar Intercept

Figure 40.

intercepts for (a) 72-h glucan, (b) 72-h xylan, and (c) 72-h total sugar.

describe 95% prediction interval.

20

40

60

80

Net-Simulated 72-h Total Sugar Intercept

100

134

Correlation between experimentally measured and network-simulated

Dotted lines



135

Similar to the results observed in the 1-h and 6-h networks, the 72-h networks
performed better with cellulose crystallinity as an independent variable instead of

biomass crystallinity (i.e., the networks with Cric had a lower MSE).

PREDICTIVE ABILITY OF NEURAL NETWORKS STUDY

Purpose

As previously explained, 18 neural networks were developed and trained with the
147 poplar wood model samples by supplying both the inputs (i.e., biomass structural
features) and the target values (i.e., the experimentally measured slopes and intercepts)
to the network. The purpose of this study was to test the 18 neural networks’ abilities to
predict slopes and intercepts of various biomass samples pretreated with different
techniques (i.e., only the inputs were supplied to the networks). This would provide a

measure of each network’s ability to generalize to new inputs.

Materials and Methods
Substrate Preparation

For use in this study, a total of 22 samples were created from 11 chemically
pretreated stock samples. There were six different pretreatment techniques performed
on the 11 biomass stock samples: (1) long-term lime with air, (2) long-term lime without
air, (3) short-term lime, (4) Ammonia Fiber Explosion (AFEX), (5) agueous ammonia,
and (6) dilute acid. The following feedstocks were employed: corn stover, bagasse, and
rice straw. A more thorough description of long-term lime pretreatment with and
without air and AFEX pretreatment can be found in Kim (2004) and Teymouri et al.
(2004), respectively. These pretreatments were performed by others and donated for use

in our study.
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Carbohydrate (glucan and xylan) content, acetyl content, and lignin content of
the 22 biomass samples were determined using a two-stage acid hydrolysis procedure as
described in NREL standard procedure “Determination of Structural Carbohydrates and
Lignin in Biomass” (NREL, 2004). First, the biomass was contacted with 72% sulfuric
acid for 1 h at 30°C, followed by a second 4% sulfuric acid hydrolysis for 1 h at 121°C.
The resulting sugar monomers were analyzed using high performance liquid
chromatography (HPLC) with a Biorad HPX-87P column. The acetyl groups were
analyzed as acetic acid using HPLC with a Biorad HPX-87H column. Klason lignin was
determined as the difference between the residue remaining after acid hydrolysis and the
residue after ashing at 575°C overnight. After acid hydrolysis, the liquid fraction was
analyzed for soluble lignin using a spectrophotometer. The total lignin content is the
summation of the Klason lignin and acid-soluble lignin. Table XIX summarizes the
structural features of the 22 pretreated biomass samples used in this study.

Short-term lime, dilute acid, and aqueous ammonia pretreatments were
conducted according to protocols outlined in Appendix C. After pretreating, washing,
and grinding the biomass, roughly 10 g of each of the 11 stock samples were subjected
to 2-d, 3-d, 4-d, or 6-d ball milling to modify the crystallinity of the biomass. The
procedures for ball milling and crystallinity measurements by X-ray diffraction are
described in “Materials and Methods — Enzymatic Hydrolysis of Model Samples.” Ball
milling resulted in a total of 22 samples that were used to test the predictive ability of the
18 neural networks developed in “Neural Network Modeling Study.” The chemical and
mechanical pretreatments were performed to obtain a wide range of structural features,
which include acetyl content (0.03-1.95%), lignin content (9.94-31.68%), and biomass
crystallinity indices (11.0-61.6%) (see Table XIX). These samples were investigated to

test the trained neural networks’ abilities to predict slopes and intercepts.

Enzyme Preparation
To verify the activity of the Trichoderma reesei cellulase preparation received

from NREL, a filter paper assay was performed according to NREL standard procedure
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Table XIX. Summary of structural features for the 22 samples used to measure neural

network’s predictive ability.

Ball ) Total
Sample ) ~ Glucan Xylan ASL® AIL* ~  Acetyl Crlc
N Biomass  Treatment* Mill ) ) W ) Lignin ) )
0. 0 0 0 0 0 0
(d) (%)
1 corn stover LT lime 0 44.3 14.4 1.1 8.9 9.9 0.03 69.7
2 corn stover LT lime 0 48.1 21.8 0.8 135 144 0.11 736
3 corn stover ST lime 3 45.8 20.8 0.9 172 18.1 0.03 29.1
4 corn stover ST lime 6 47.4 215 10 171 181 0.03 217
5 bagasse ST lime 0 335 13.5 6.5 206 27.2 050 67.1
6 bagasse ST lime 4 335 13.5 6.5 206 27.2 050 215
7 rice straw ST lime 0 30.1 14.1 72 240 312 0.80 58.2
8 rice straw ST lime 2 29.8 14.0 71 237 308 0.80 21.6
9 bagasse dilute acid 0 61.7 6.3 30 287 317 025 56.6
10 bagasse dilute acid 3 61.7 6.3 30 287 317 025 389
11 rice straw  dilute acid 0 55.1 5.1 33 263 296 0.23 54.6
12 rice straw  dilute acid 2 55.1 5.1 3.3 26.3 29.6 0.23 39.0
13 corn stover AFEX 0 37.9 21.3 25 156 181 188 64.2
14 corn stover AFEX 0 36.3 20.9 25 156 181 182 56.6
15 corn stover AFEX 0 37.3 21.2 25 161 186 195 575
16 corn stover AFEX 2 37.9 21.3 2.5 15.6 18.1 1.88 39.9
17 corn stover AFEX 4 36.3 20.9 2.5 15.6 18.1 182 26.1
18 corn stover AFEX 6 37.3 21.2 25 161 186 195 205
19 bagasse aqueous 0 49.2 18.7 55 175 229 0.04 68.6
ammonia
20 bagasse aqueous 0 48.7 18.7 54 176 230 0.05 675
ammonia
21 bagasse agueous 2 49.2 18.7 55 175 229 0.04 275
ammonia
22 bagasse agueous 2 48.7 18.7 54 176 23.0 0.05 337
ammonia

& LT=long-term treatment; ST=short-term treatment; AFEX=Ammonia Fiber Explosion.

® ASL=acid-soluble lignin.

¢ AlL=acid-insoluble lignin.
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No. 006. The filter paper activity of cellulase was 65 FPU/mL enzyme according to
NREL standard procedure and 101 FPU/mL enzyme according to Coward-Kelly et al.
(2003). (Note: NREL’s standard filter paper activity was used in the models.)
Cellobiase activity (Novozym 188, Novo Nordisk Biochem) determined by Novo
Nordisk was 321 CBU/mL based on the company’s assay.

Enzymatic Hydrolysis

The experiments were performed in 50-mL Erlenmeyer flasks with 0.2 ¢
biomass, 18 mL of distilled water, 1.0 mL of 1-M citrate buffer and 0.6 mL of 0.01 g/L
sodium azide solution, and placed inside a 100-rpm air-bath shaker at 50°C. Citrate
buffer and sodium azide were added to keep the pH constant (pH = 4.8) and prevent the
growth of microorganisms, respectively. When the reaction slurry temperature reached
50°C, hydrolysis was initiated by adding 0.2 mL of appropriately diluted cellulase
(activity = 65 FPU/mL) and 0.05 mL of cellobiase (activity = 321 CBU/g). It was
discovered that the same range of enzyme loadings could not be used for all samples.
The biomass samples’ inherent reactivities affected the range over which Equation 5 was
valid. Therefore, the 22 samples were divided into three classes (low, medium, and
high) based on their inherent reactivities. Table VI summarizes the range of enzyme
loadings in which the three classes of biomass exhibit the linear profile predicted by
Equation 5. The detailed procedure for enzymatic hydrolysis is given in Appendix A.

Samples were removed after an incubation time of 1, 6, or 72 h. After removal,
the Erlenmeyer flasks were boiled for 15 minutes to denature the enzymes thereby
quenching the reaction. The reaction slurry was transferred to 15-mL conical centrifuge

tubes, centrifuged, and the supernatant was frozen until sugar analysis was performed.

Testing the Trained Networks Predictive Ability in Matlab®
Matlab® version 6.5.0.18013a Release 13 was used throughout the study. The

18 previously trained neural networks developed to simulate the 147 poplar wood model
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samples were tested for their predictive ability on the 22 samples listed in Table XIX.

As an example, the commands used to predict 1-h glucan slopes of the 22
biomass samples are shown below. First, the input matrix had to be created from the
data arranged in column vectors. Because premnmx was used to preprocess the training
data (i.e., 147 model samples) for all 18 networks, new inputs (structural features from
the 22 samples) to the previously trained networks should be preprocessed with the
command tramnmx, which normalizes the new inputs using the minima and maxima
that were computed for the training set. For this example, the input vectors
L G pred, A X pred, G pred, and Crlc_pred were normalized using the
minimum and maximum values of the inputs from the 147 model samples with the

command tramnmx and converted into a single-input matrix of order 22x4 with the

following Matlab® code.
load L_G _pred.m
load A_ X pred.m
load G_pred.m
load Crilc_pred.m
load slope G 1 pred.m
[slope G 1 predn,minslope G 1,maxslope_G_1]=premnmx(sl
ope_G_1 pred);
Cric_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
A X _predn=tramnmx(A_X_pred,minA_X,maxA X);
L G _predn=tramnmx(L_G_pred,minL_G,maxL_G);
G_predn=tramnmx(G_pred,minG,maxG) ;
for 1=1:22,
finS(1,1)=A X predn(l)~;
end
for 1=1:22,
finS(1,2)=Crilc_predn(l)~;
end
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for 1=1:22,
finS(1,3)=L_G predn(l)~;
end

for 1=1:22,

FinS(1,4)=C _predn(l)~;

end

The 22x4 input matrix was named FInS. The previously trained 1-h glucan
slope network was renamed netSG1. It should be noted that the experimentally
measured slopes and intercepts for the 22 samples (Tables XX, XXI, and XXII) were not
fed to the network when testing its predictive ability. The command sim was used to
call netSGL1 to predict the outputs (i.e., slopes) of the 22 samples. The output ypredn
corresponds to the normalized inputs ¥I1nS. The command postmnmx was used to
un-normalize the outputs. The difference between predicted and actual outputs was
designated as E_pred.

Then, the MSE was calculated as the difference between the two outputs. The
predictive ability of the 1-h glucan slope network for the 22 samples was evaluated by
looking at the MSE and R?, which were generated with the functions perf_pred and
postreg, respectively. To predict the 22 samples’ 1-h glucan slopes, the following
code was written in Matlab®.

ypredn=sim(netSGl,finS");

ypred=postmnmx(ypredn,minslope_G_1,maxslope G 1);

E pred=slope G 1 pred”-ypred;

perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred,slope G 1 pred~)

Rsqrpred=rpred”2

The codes used in Matlab® to test the networks’ abilities to predict slopes and
intercepts for the 22 samples are given in Appendix G. All network predicted slopes and

intercepts for the 22 samples are listed in Appendix H.
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Table XX. Summary of the glucan slopes (B) and intercepts (A) determined from

Equation 5 for the 22 samples used to test the network’s predictive ability.

Sample . 1-h Glucan 6-h Glucan 72-h Glucan
Biomass  Treatment® , , )
No. A R B A R B A R
1 corn LT lime 1447 467 097 2513 2239 0.99 27.10 73.34 0.99
stover w/Air
2 corn LT lime 11.63 3.64 098 1862 17.19 0.99 1555 50.00 0.99
stover w/N,
3 corn ST lime 19.29 6.00 0.94 25.09 26.38 0.99 2238 69.82 0.99
stover
4 corn ST lime 20.82 8.08 096 2332 3241 099 2025 7552 0.98
stover
5 bagasse ST lime 6.12 074 098 868 9.76 100 798 27.72 0.94
6 bagasse ST lime 1994 951 096 21.76 3730 0.98 19.83 77.25 0.97
7 rice straw ST lime 10.74 3.00 096 1181 2050 0.98 8.49 4541 1.00
8 rice straw ST lime 2324 870 096 20.86 41.38 095 959 77.95 0.96
9 bagasse dilute acid 263 117 099 488 486 099 893 1032 1.00
10 bagasse dilute acid 440 160 097 1144 533 0.97 10.07 20.88 0.99
11 rice straw  dilute acid 890 443 100 894 2184 095 6.23 42.06 0.98
12 rice straw  dilute acid 850 274 099 2042 13.34 1.00 18.00 46.52 0.96
13 corn AFEX 6.44 377 099 1245 13.16 0.99 12.62 39.10 0.99
stover
14 corn AFEX 6.37 520 099 13.19 13.64 0.99 1358 42.07 0.99
stover
15 corn AFEX 6.20 3.88 094 1350 1581 1.00 11.70 42.85 0.99
stover
16 corn AFEX 1480 11.41 098 16.60 28.72 0.99 12.43 59.16 0.99
stover
17 corn AFEX 18.24 1322 0.97 19.40 3470 0.99 1395 68.69 0.98
stover
18 corn AFEX 19.24 1396 098 17.40 39.48 0.99 13.29 72.48 0.99
stover
19 bagasse aqg. 6.10 0.10 093 10.17 3.89 097 1221 1143 0.99
ammonia
20 bagasse aq. 6.20 013 092 1082 381 097 1281 1219 0.99
ammonia
21 bagasse aqg. 876 332 094 1759 10.06 098 1443 37.65 0.99
ammonia
22 bagasse ag. 870 374 096 1765 1046 097 1443 37.74 0.99
ammonia

# LT=long-term treatment; ST=short-term treatment; AFEX=ammonia fiber explosion.
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Table XXI. Summary of the xylan slopes (B) and intercepts (A) determined from
Equation 5 for the 22 samples used to test the network’s predictive ability.
Sample ) 1-h Xylan 6-h Xylan 72-h Xylan
Biomass  Treatment® , , )
No. A R B A R B A R
1 corn LT lime 6.18 582 099 17.70 32.14 0.99 1492 80.34 0.99
stover w/Air
2 corn LT lime 597 294 096 1472 21.74 097 837 5948 0.99
stover w/N,
3 corn ST lime 488 557 093 1399 36.84 098 10.48 80.22 0.98
stover
4 corn ST lime 481 6.01 097 1293 39.83 098 6.75 78.99 0.99
stover
5 bagasse ST lime 6.73 144 094 749 1805 100 6.37 3754 0.99
6 bagasse ST lime 369 777 0.77 1393 39.85 0.99 11.36 83.77 0.98
7 rice straw ST lime 749 174 093 820 2342 100 7.03 47.81 0.99
8 rice straw ST lime 701 595 092 1233 4413 099 545 80.05 0.94
9 bagasse diluteacid 262 0.00 096 452 427 097 705 1332 1.00
10 bagasse diluteacid 9.52 1158 097 934 3474 099 7.00 5220 0.92
11 rice straw  diluteacid 039 0.07 086 048 090 1.00 080 213 0.99
12 rice straw dilute acid 855 6.64 099 1319 2219 0.99 10.08 4953 1.00
13 corn AFEX 475 361 094 889 2257 099 6.03 4781 0.99
stover
14 corn AFEX 490 319 096 857 2175 099 6.96 47.77 0.99
stover
15 corn AFEX 440 362 092 994 2159 099 581 4571 0.99
stover
16 corn AFEX 578 513 096 991 3524 099 579 6373 099
stover
17 corn AFEX 567 526 092 1193 3554 099 452 6752 0.98
stover
18 corn AFEX 585 535 094 1161 3841 099 510 7124 0.99
stover
19 bagasse aqg. 6.18 094 094 836 1248 0.97 937 2469 0.99
ammonia
20 bagasse aqg. 6.32 087 093 875 13.13 097 10.06 2574 1.00
ammonia
21 bagasse aq. 587 389 094 1385 2428 099 7.80 5503 0.99
ammonia
22 bagasse aq. 6.34 383 094 1456 2482 097 806 57.28 0.99
ammonia

# LT=long-term treatment; ST=short-term treatment; AFEX=ammonia fiber explosion.
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Table XXII. Summary of the total sugar slopes (B) and intercepts (A) determined from

Equation 5 for the 22 samples used to test the network’s predictive ability.

Sample . 1-h Total Sugar 6-h Total Sugar 72-h Total Sugar
Biomass  Treatment?® , , )
No. A R B A R B A R
1 corn LT lime 1240 496 097 2328 2482 099 24.06 75.08 0.99
stover w/Air
2 corn LT lime 984 342 098 17.38 1844 0.99 13.28 53.00 0.99
stover w/N,
3 corn ST lime 1514 586 094 2156 29.71 099 1860 73.12 0.99
stover
4 corn ST lime 1575 7.42 096 20.03 34.76 099 1598 76.62 0.99
stover
5 bagasse ST lime 6.30 094 097 833 1217 1.00 751 3058 0.96
6 bagasse ST lime 1520 9.00 095 1948 38.05 099 1736 79.15 0.99
7 rice straw ST lime 969 259 096 1064 2147 099 8.02 46.81 1.00
8 rice straw ST lime 1796 780 095 18.09 4228 097 825 78.63 0.96
9 bagasse dilute acid 263 125 099 484 505 099 875 10.76 1.00
10 bagasse dilute acid 488 255 097 1124 811 097 9.78 2384 0.99
11 ricestraw  diluteacid 4.60 237 099 466 1140 096 348 22.02 0.99
12 rice straw  diluteacid 850 3.08 099 19.80 14.10 1.00 17.31 46.78 0.96
13 corn AFEX 582 371 098 11.15 16.59 0.99 10.22 4228 0.99
stover
14 corn AFEX 583 445 098 1147 16.65 099 11.13 44.18 0.99
stover
15 corn AFEX 554 379 094 1219 1793 1.00 953 4390 0.99
stover
16 corn AFEX 1151 912 098 14.16 31.09 1.00 10.01 60.83 0.99
stover
17 corn AFEX 13.58 10.27 096 16.63 35.01 099 10.46 68.26 0.99
stover
18 corn AFEX 14.32 10.80 0.98 15.27 39.08 0.99 10.28 72.02 0.99
stover
19 bagasse ag.ammonia 6.13 031 093 966 629 097 1141 1514 0.99
20 bagasse ag.ammonia 6.24 0.34 092 1023 6.44 097 12.03 16.02 1.00
21 bagasse ag.ammonia 7.95 348 094 1654 14.04 098 1257 4251 0.99
22 bagasse ag.ammonia 8.03 3.77 096 16.78 1452 097 12.63 43.26 0.99

% LT=long-term treatment; ST=short-term treatment; AFEX=ammonia fiber explosion.
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Results and Discussion
Correlations for Prediction Samples

The 22 samples used to test the neural networks predictive ability resulted in
correlations between structural features and slopes and intercepts similar to the results
obtained for the 147 poplar model samples. Figures 41, 42, and 43 illustrate the
correlations between biomass digestibility and lignin content and crystallinity index with
constant acetyl content.

In Figure 41, the 1-h total sugar slopes and intercepts are significantly increased
for low-crystallinity samples compared to high-crystallinity samples. Even at high
lignin contents, the samples with low crystallinity exhibited a significant increase in 1-h
total sugar slopes and intercepts. Lignin content affected both slopes and intercepts for
high-crystallinity samples. However, lignin content had no affect on the low-
crystallinity samples suggesting that crystallinity plays a more important role in
controlling initial hydrolysis rates. The relatively flat profile for the low-crystallinity
samples in Figure 41 illustrates that decreasing crystallinity increased the 1-h total sugar
slopes and intercepts regardless of lignin content. This suggests that regardless of
pretreatment type, initial biomass digestibility is controlled by its structural features.

Figure 42 illustrates that both 6-h slopes and intercepts increase with decreasing
crystallinity. Unlike the 1-h data, lignin content plays a more important role in affecting
biomass digestibility. As lignin decreases, 6-h slopes increase for both low- and high-
crystallinity samples (see Figure 42a). However, 6-h intercepts for low-crystallinity
samples appear independent of lignin content.  Low-lignin samples with high
crystallinity achieved higher slopes than low-crystallinity and high-lignin samples,
suggesting both lignin and crystallinity are important in affecting 6-h digestibility.

3-d biomass digestibility can be independently controlled by its lignin content or
crystallinity. Figure 43 illustrates that high slopes and intercepts were achieved with
either low crystallinity and high lignin or high crystallinity and low lignin. In other
words, at extended reaction times, crystallinity is less important at low lignin contents.

Similarly, lignin content is less important to biomass digestibility at low crystallinity.
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Figure 41. Effects of Crlb and lignin on 1-h total sugar (a) slope and (b) intercept. All
samples had a low acetyl content (0.05-0.8%). Low Crlb (11.8-18.5%) and High Crlb
(58.8-61.6%). Data from Table XXII.
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Figure 42. Effects of Crlb and lignin on 6-h total sugar (a) slope and (b) intercept. All
samples had a low acetyl content (0.05-0.8%). Low Crlb (11.8-18.5%) and High Crlb
(58.8-61.6%). Data from Table XXII.
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Figure 43. Effects of Crlb and lignin on 72-h total sugar (a) slope and (b) intercept. All
samples had a low acetyl content (0.05-0.8%). Low Crlb (11.8-18.5%) and High Crlb
(58.8-61.6%). Data from Table XXII.
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Predicted 1-h Slopes and Intercepts

After using the previously trained networks to predict 1-h glucan, xylan, and total
sugar slopes and intercepts for the 22 samples, the predicted outputs were compared to
the experimentally measured outputs as shown in Figures 44 and 45. The predictive
abilities of the 1-h networks are summarized in Table XXIII.

The MSEs of the 1-h glucan networks were 17.6 and 16.6 for slopes and
intercepts, respectively. This means the average differences between the measured data
and the glucan network predicted data were +4.2% for slopes and +4.1% for intercepts.
Two aqueous ammonia and two lime-pretreated samples fell outside the 95% prediction
interval (Figure 45a), but the other agueous ammonia and lime-treated samples lie within
the prediction interval. Thus, the trained glucan networks predicted the slopes and
intercepts of the 22 samples fairly satisfactorily. Therefore, the networks can predict 1-h
glucan digestibility regardless of biomass type or pretreatment. The 1-h xylan networks
resulted in MSE values of 3.5 and 4.6 for slopes and intercepts, respectively. Figure 44b
shows the predicted 1-h xylan slope agrees with the measured data within +2.2%.
Figure 45b shows the predicted 1-h xylan intercept agrees with the measured data within
+4%. Similar to the glucan intercept network, the xylan slope network predicted two
agqueous ammonia samples outside the 95% prediction interval. Thus, it can be
concluded that the trained xylan networks predicted the slopes and intercepts of the 22
samples fairly satisfactorily. Consequently, the networks can predict 1-h xylan
digestibility regardless of biomass type or pretreatment technique.

The 1-h total sugar networks resulted in MSE values of 9.5 and 4.3 for slopes and
intercepts, respectively. Figure 44c shows the predicted 1-h total sugar slope agrees with
the measured data within £5.8%. Figure 45c shows the predicted 1-h total sugar
intercept agrees with the measured data within +4.2%. It can be concluded that the
trained total sugar networks predicted the slopes and intercepts of the 22 samples fairly
adequately. Therefore, the networks can predict 1-h total sugar digestibility regardless

of biomass type or pretreatment.
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95% prediction interval.



Table XXI11. Summary of the predictive ability of the 1-h
slope and intercept neural networks.

MSE
Slope (B) 17.6
Glucan
Intercept (A) 16.6
Slope (B) 3.5
Xylan
Intercept (A) 4.6
Slope (B 9.5
Total Sugar pe (8)

Intercept (A) 4.3
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In general, the 1-h networks do a satisfactory job predicting slopes and intercepts
for the 22 samples. It should be noted that the aqueous ammonia samples appear to have

more scatter than the other pretreated samples.

Predicted 6-h Slopes and Intercepts

After using the previously trained networks to predict 6-h glucan, xylan, and total
sugar slopes and intercepts for the 22 samples, the predicted outputs were compared to
the experimentally measured outputs as shown in Figures 46 and 47. The predictive
abilities of the 6-h networks are summarized in Table XXIV.

The MSEs of the 6-h glucan networks were 22 and 75 for slopes and intercepts,
respectively. This means the average differences between the measured data and the
glucan network predicted data were +4.7% for slopes and +8.7% for intercepts. Thus,
the trained glucan networks predicted the slopes and intercepts of the 22 samples fairly
satisfactorily. Therefore, the networks predict 6-h glucan digestibility regardless of
biomass type or pretreatment.

The 6-h xylan networks gave MSE values of 15 and 138 for slopes and
intercepts, respectively. Figure 46b shows the predicted 6-h xylan slope agrees with the
measured data within £4.2%. Figure 47b shows the predicted 6-h xylan intercept agrees
with the measured data within £23.1%. The data in Figure 46b is skewed lower
indicating that the predicted slopes are slightly overestimated (i.e., predicted slopes
greater than measured slopes). Thus, the 6-h xylan intercept network does a better job
than the slope network when predicting outputs. The neural networks predicted 6-h
xylan slopes and intercepts equally regardless of biomass type or pretreatment technique.

The 6-h total sugar networks resulted in MSE values of 13 and 51 for slopes and
intercepts, respectively. Figures 46¢ and 47c¢ show predicted 6-h total sugar slopes agree
with the measured data within £6.6% and +14%, respectively. It can be concluded that
the trained total sugar networks predicted the slopes and intercepts of the 22 samples
fairly adequately. Therefore, the networks predicted digestibility regardless of biomass

type or pretreatment.
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Figure 46. Correlation between experimentally measured and network-predicted slopes

for (a) 6-h glucan, (b) 6-h xylan, and (c) 6-h total sugar. Dotted lines describe 95%

prediction interval.
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Figure 47.

50

40

30 +

20 +

10 -

60

50
40 1
30
20|

10 -

50

154

a)
+
A
+
- A
+
A
- +
o +
N + .
A * T +lime
At ) A dilute acid
+ O.g
N A AFEX
A
m 0 Ag. Ammonia
10 20 30 40 50
Net-Predicted 6-h Glucan Intercept
4o
T+ &+
A i
+
o0
*a » + e
+ .o +lime
8 = adilute acid
A AFEX
AA ',."‘ o Ag. Ammonia
10 20 30 40 50 60

Net-Predictedd 6-h Xylan Intercept

40

30 -

20 4

10 A

-
A +
A +
A +
+
+ -
A +
A . '
A o-a + lime
+ A dilute acid
At A AFEX
. o0 Ag. Ammonia
10 20 30 40

Net-Predicted 6-h Total Sugar Intercept

50

Correlation between experimentally measured and network-predicted

intercepts for (a) 6-h glucan, (b) 6-h xylan, and (c) 6-h total sugar. Dotted lines describe

95% prediction interval.



Table XXIV. Summary of the predictive ability of the 6-h
slope and intercept neural networks.

MSE
Slope (B) 22
Glucan
Intercept (A) 75
Slope (B) 15
Xylan
Intercept (A) 138
Slope (B 13
Total Sugar pe (8)

Intercept (A) 51
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Predicted 72-h Slopes and Intercepts

After using the previously trained networks to predict 72-h glucan, xylan, and
total sugar slopes and intercepts for the 22 samples, the predicted outputs were compared
to the experimentally measured outputs as shown in Figures 48 and 49. The predictive
abilities of the 72-h networks are summarized in Table XXV.

The MSEs of the 72-h glucan networks were 15 and 166 for slopes and
intercepts, respectively. This means the average differences between the input data and
the glucan network predicted data were +3.9% for slopes and +12.9% for intercepts.
Thus, the trained 72-h glucan network predicts slopes of the 22 samples fairly
satisfactorily; however, the 72-h glucan intercept network has a significant amount of
scatter in the data as illustrated in Figure 49a. The networks predict 72-h glucan
digestibility equally regardless of biomass type or pretreatment technique.

The 72-h xylan networks gave MSE values of 22 and 199 for slopes and
intercepts, respectively. Figure 48b shows the predicted 72-h xylan slope agrees with
the measured data within +4.9%. Figure 49b shows the predicted 6-h xylan intercept
agrees with the measured data within £27.0%. Similar to the 6-h xylan slope network,
the 72-h xylan slope network overestimated the experimentally measured slopes as
illustrated by the lower skewedness in Figure 48b (i.e., predicted slopes greater than
measured slopes). Even though the slope predictions are overestimated, the AFEX-
treated material in Figure 48b appears to be consistently higher than the other treatment
techniques investigated. Holtzapple et al. (1991) reported that AFEX treatment alters
lignin, but with little removal. Previously, we have shown that lignin has a major affect
on ultimate digestibility. Therefore, a measure of the total lignin content, as in our case,
may lead to difficulties in modeling the digestibility of AFEX-treated biomass. Thus,
care should be taken when studying pretreatments that do not remove barriers but instead
lead to physical or chemical rearrangement. With the exception of AFEX-treated
biomass, the networks equally predicted slopes and intercepts for xyaln digestibility
regardless of biomass type or pretreatment technique.
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Figure 48. Correlation between experimentally measured and network-predicted slopes
for (a) 72-h glucan, (b) 72-h xylan, and (c) 72-h total sugar. Dotted lines describe 95%

prediction interval.



Measured 72-h Glucan Intercept

Measured 72-h Xylan Intercept

Measured 72-h Total Sugar Intercept

Figure 49.

intercepts for (a) 72-h glucan, (b) 72-h xylan, and (c) 72-h total sugar.
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Table XXV. Summary of the predictive ability of the 72-h

slope and intercept neural networks.

MSE
Slope (B) 15
Glucan
Intercept (A) 166
Slope (B) 22
Xylan
Intercept (A) 199
Slope (B 36
Total Sugar pe (8)
Intercept (A) 122
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The 72-h total sugar networks resulted in MSE values of 36 and 122 for slopes
and intercepts, respectively. Figure 48c shows the predicted 72-h total sugar slope
agrees with the measured data within +7.9%. Figure 49c shows the predicted 72-h total
sugar intercept agrees with the measured data within £22.2%. It can be concluded that
the trained total sugar slope network is a better predictor of the 22 samples than the
intercept network. Figures 48 and 49 illustrate that regardless of biomass type or
pretreatment, the networks equally predict digestibility.

In general, lime-treated samples exhibited higher slopes and intercepts at 72 h,
thereby attesting to the effectiveness of lime pretreatment in rendering biomass highly

digestible.

Predicting Carbohydrate Conversions

The ability to predict sugar conversion regardless of biomass type or
pretreatment technique is advantageous. Researchers can use this knowledge to design
cost-effective pretreatments.

After predicting slopes and intercepts with the 18 neural networks, Equation 5
was used to back calculate sugar conversions at the enzyme loadings used during
hydrolysis experiments. Glucan, xylan, and total sugar conversions calculated from the
predicted slopes and intercepts were compared with experimentally measured
conversions as shown in Figures 50, 51, and 52, respectively. Figures 53, 54, and 55 are
examples of the measured and predicted glucan conversion, xylan conversion, and total
sugar conversion, respectively, plotted versus the natural logarithm of enzyme loading.
The results show predicted conversions have a high degree of variability between
samples as well as at different incubation times. In general, errors for 72-h predicted
glucan conversions were larger than for 1 h and 6 h. This was anticipated because larger
average absolute errors were observed for 72-h neural-network-predicted slopes and
intercepts. The average absolute error for 72-h slopes was 4.1 versus 3.1 and 3.8 for 1-h
and 6-h slopes, respectively. Similarly, the average absolute error for 72-h intercepts

was 11.2 versus 3.1 and 6.8 for 1-h and 6-h intercepts, respectively.
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Predicted 72-h Xylan Conversion

Figure 51. A plot of experimentally measured versus predicted xylan conversions for
the 22 prediction samples at (a) 1 h, (b) 6 h, and (c) 72 h.
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Figure 52. A plot of experimentally measured versus predicted total sugar conversions
for the 22 prediction samples at (a) 1 h, (b) 6 h, and (c) 72 h.
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In Equation 5, the slope (B) exhibits a more significant effect than intercept (A)
on predicted conversions because the slope forms a product with the enzyme loading
(Eo). Therefore, the larger the MSE for the predicted slope the larger the error in
predicting sugar conversions. However, the intercept becomes the more dominant term
at low enzyme loadings for highly reactive samples (i.e., when the contribution of the
slope and enzyme loading term is smallest).

The 6-h and 72-h xylan predicted conversions were expected to be larger than the
measured conversions because the respective networks overestimated the predicted
slopes (Figures 46b and 48b). The expectations were not met due to moderately
underestimated intercepts for 6-h and 72-h xylan samples in combination with low
enzyme loadings at 6 h and 72 h. As a result, the intercept term in Equation 5 was more
significant and resulted in predicted xylan conversions less than measured xylan
conversions, in most cases.

As illustrated in Figures 35-40 (experimentally measured versus network-
simulated) and Figures 44-49 (experimentally measured versus network-predicted), the
data do not lie on the diagonal. The data scatter may be a result of glucan, xylan, and
total sugar digestibility not being completely determined by acetyl content, lignin
content, and crystallinity. This suggests that there are other features that may play a
significant role in biomass digestibility. Another reason for the data scatter may be the
pretreatment techniques. Even though ball milling was effective in altering crystallinity
and not lignin or acetyl, it did affect other biomass structural features. As previously
mentioned, ball milling not only reduces biomass crystallinity, but also increases the
available surface area and pore volume resulting in additional adsorption sites for the
enzymes (Lee and Fan, 1982). Puri (1984) and Nazhad et al. (1995) reported that
surface area has a major effect on biomass digestibility; therefore, the reduction in
crystallinity due to ball milling is only one of the factors that influences biomass
digestibility. Also, lignin removal has been shown to increase biomass swellability
resulting in increased available surface area for the enzymes (Wong et al., 1988). As a

result, the treatments chosen to alter crystallinity and lignin resulted in changes in
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biomass surface area as well. This may explain why acetyl, lignin, and crystallinity
could not fully explain biomass digestibility. Lastly, as illustrated in Figure 56, the
pretreatments (dilute acid, lime, AFEX, and aqueous ammonia) resulted in at least one
structural feature (i.e., acetyl, lignin, glucan, xylan, or total sugar) outside the range of
the 147 model samples used to train the networks. As a result, the trained networks had
to predict slopes and intercepts with inputs from the 22 samples outside the range in
which they were trained (i.e., extrapolation). When predicting outputs, small errors in
estimation are magnified by extrapolations, which is called the extrapolation penalty.

The extrapolation penalty increases with the degree of extrapolation.

CONCLUSIONS

Neural networks were developed and trained to simulate slopes and intercepts for
147 poplar wood model samples with a variety of lignin contents (0.7-26.3%), acetyl
contents (0.1-3.1%), and crystallinity indices (5.4-68.8%). The networks were
developed for glucan, xylan, and total sugar slopes and intercepts at 1, 6, and 72 h
resulting in a total of 18 neural networks.

The networks performed consistently poorer when simulating slopes and
intercepts for xylan compared with glucan and total sugar. This may be due to low
biomass xylan content, which makes it difficult to measure small changes in xylan
digestibility over such a narrow range. The experiments were conducted for the 147
model samples and 22 prediction samples over an 18-month period. The NREL
cellulase activity procedure measures the activity of those enzymes that degrade
cellulose (glucanases). Because of the low xylanase activity in the cellulase complex; its
activity may have decreased more rapidly than glucanase activity. Therefore, xylan
slopes and intercepts showed consistently larger MSE and lower R? values compared
with glucan and total sugar. Nonetheless, the coefficients of determination (R?) were
0.81, 0.94, and 0.87 for 1-h, 6-h, and 72-h xylan slopes respectively, whereas the R?
values were 0.78, 0.95, and 0.99 for 1-h, 6-h, and 72-h xylan intercepts respectively.

This suggests the xylan networks simulated slopes and intercepts for the 147 model



169

25 4

20 -

Xylan (%)
&

10 -

20 30 40 50 60 70 80
Glucan (%)

3.5+

3.0
2.5

2.0 A ¢

1.5 A

Acetyl (%)

1.0 4

0.5 *

0.0 - L e

-0.5

0 10 20 30 40
Lignin (%)

70 -

60 * .
504 ¢ *
40 |

30 | .

Crib (%)

20 4 . **

10 1 . .

0

40 4‘5 éO 5‘5 éO 6; 7‘0 7‘5 E;O E;S 96 E;S 160

Total Sugar (%)
Figure 56. Summary of the 22 samples used to test the network’s predictive ability that
fall outside of the range of the structural features used to train the networks (boxed

regions).



170

samples fairly satisfactorily.

Biomass samples (corn stover, bagasse, and rice straw) were chemically
pretreated with long-term lime, short-term lime, dilute sulfuric acid, AFEX, and aqueous
ammonia plus mechanical ball milling to create 22 prediction samples with a broad
spectrum of acetyl contents (0.03-1.95%), lignin contents (9.94-31.68%), and biomass
crystallinity indices (11.0-61.6%). The various biomass samples were pretreated with
different techniques to test the neural networks’ ability to predict slopes and intercepts
regardless of biomass type or pretreatment. If the networks could accurately predict
slopes and intercepts for the 22 prediction samples, then we could say that acetyl, lignin,
and crystallinity completely determine the enzymatic digestibility of biomass.

Previously, biomass digestibility was described as a two-step process that
involved enzymes passing through barriers such as lignin and acetyl to gain access to the
cellulose (Chang, 1999). Once arriving at the cellulose, the effectiveness of the enzymes
was determined by biomass crystallinity, i.e., the more crystalline the biomass the less
effective the enzymes. This suggests that cellulose crystallinity and not overall biomass
crystallinity is a better measure of what impedes enzymatic hydrolysis of cellulose.
Because lignin and xylan are mostly amorphous and crystallinity is defined as the weight
fraction of crystalline material to total material, biomass crystallinity always
underestimates the true cellulose crystallinity. When cellulose crystallinity was used as
an input instead of biomass crystallinity, the predictive ability of all 18 networks
improved. As an example, MSE values for the 1-h total sugar slope networks with Cric
and Crlb were 9.5 and 13.8, respectively, and MSE values for the 6-h total sugar
intercept networks with Cric and Crlb were 51 and 103, respectively. Therefore,
cellulose crystallinity was a better gauge of biomass digestibility at all times.

In addition to investigating the effect of structural features on biomass
digestibility, simply increasing the dimensionality of the neural network input matrix
permitted investigation of the effect xylan removal has on glucan digestibility and the
effect glucan removal has on xylan digestibility. Kong et al. (1992) found that removal

of acetyl-free xylan backbone did not facilitate enzymatic hydrolysis. Likewise, our
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results indicate there was no correlation between xylan removal and glucan digestibility.
However, MSE values of 6-h xylan slope networks with and without 6-h glucan slope as
an input were 14.5 and 50, respectively, and MSE values of 72-h xylan intercept
networks with and without 72-h glucan intercept as an input were 199 and 465,
respectively. Therefore, there was a correlation between glucan removal and xylan
digestibility observed at 6 h and 72 h, i.e., the 6 h and 72 h networks predicted xylan
slopes and intercepts better when glucan functionality was included as an independent
variable. In other words, glucan removal helped destroy the intricate nature of
lignocellulosic biomass to permit easier access of enzymes to the xylan backbone.

The neural networks performed equally when predicting slopes and intercepts for
the different types of biomass treated with different techniques. In other words, the data
were scattered equally for the majority of samples regardless of biomass type or
pretreatment. A clear exception was the 72-h xylan slope network where the AFEX-
treated corn stover samples had a consistently larger error than the other samples. In
general, the AFEX-treated samples had a slightly larger error at 72 h than the other
samples. AFEX pretreatment increases biomass digestibility not by reducing the lignin
content but through physical and chemical alteration of the lignin. In “Enzymatic
Hydrolysis of Model Samples,” lignin content played a major role in ultimate biomass
digestibility (72 h). As a result, the 72-h slope networks were less effective in
correlating lignin content with AFEX-treated corn stover digestibility.

The calculated carbohydrate conversions from predicted slopes and intercepts
indicated that acetyl content, lignin content, and crystallinity do not completely explain
biomass digestibility. As discussed previously, other structural features such as surface
area and pore volume, which were not investigated in this study, may play a significant
role as well. Caulfield and Moore (1974) suggested coupling crystallinity measurements
with surface area measurements to more effectively study the influence of each aspect of
morphology on biomass digestibility. Also, the 147 poplar wood model samples used to
train the networks and the 22 samples used to test the networks predictive ability were

air-dried after pretreatment. When air-dried from the water-swollen state, biomass
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capillaries collapse and the physical features are drastically altered (Fan et al., 1980).
Crystallinity was measured on dry biomass samples by X-ray diffraction. When
performing enzymatic hydrolysis, the crystallinity may have changed because of its
rehydrated state. As a result, the neural networks may have had difficulty discerning a
firm correlation between crystallinity and biomass digestibility. Ideally, biomass
samples should be solvent dried instead of air-dried to preserve the physical
characteristics of water-swollen biomass such as crystallinity and surface area. Lastly,
pretreatment of the 22 samples resulted in glucan and xylan contents outside the range of
the 147 model samples used to train the networks. As a result, the trained networks
predicted slopes and intercepts with inputs from the 22 samples outside the range in
which they were trained (i.e., extrapolation). The errors associated with extrapolation
may explain the discrepancies between the measured and predicted conversions.
Additional studies performed with samples whose structural features fall within the
range of the 147 model samples would resolve this issue.
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PREDICTING CELLULOSE CRYSTALLINITY

INTRODUCTION

X-ray diffraction is a well-established method for determining the mass fraction
of crystalline material in a lignocellulosic biomass sample (Andersson et al., 2004;
Balta-Calleja and Vonk, 1989). However, the complex chemical composition of
biomass complicates the crystallinity determination because the separation of amorphous
background from the diffraction pattern of cellulose crystallites is difficult. It has been
shown that solid-state NMR measurements such as *C CP-MAS (cross polarization
magic angle spinning) can determine the intrinsic crystallinity of pure cellulose (Teeaar
et al., 1987; Zhbankov et al., 1987). It is characteristic of NMR spectra that chemically
equivalent carbons can be distinguished if they are in different magnetic environments.
The C-4 peaks of anhydroglucose units in crystalline and noncrystalline domains appear
at 6=89 and 6=84, respectively. For pure cellulose samples, the results obtained from
3C CP-MAS correlate well with corresponding crystallinities obtained by X-ray
diffraction (Horii et al., 1982; Teeaar et al., 1987). However, *C CP-MAS NMR cannot
determine biomass crystallinity due to overlapping hemicellulose and lignin signals.

3C CP-MAS NMR with spin locking permits the determination of biomass
crystallinity by eliminating the signals associated with hemicellulose and lignin carbons
(Teeaar et al., 1987). Spin locking is based on differences in proton spin relaxation time
constants due to different magnetic environments, i.e., different packing of the cellulose
chains (Teeaar et al., 1987; Newman and Hemmingson, 1990). The pulse sequence of
spin locking experiments is given in Figure 57 with a preparation pulse t,, a spin-locking
pulse ty, a contact time t; in which cross polarization occurs, a data acquisition time t,,
and a recovery delay time ty (Newman and Hemmingson, 1990). The spin-locking
sequence differs from basic cross-polarization by adding ty. As shown in Figure 58,
subspectra of crystalline cellulose and amorphous lignin and hemicellulose can be

separated by a linear combination of two spectra measured with and without spin-lock.
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Figure 58. Spectra typical of (A) normal *C CP-MAS measurement, (B) CP-MAS with
spin-locking measurement, and (C) difference between the two spectra (Liitia et al.,
2003).
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Purpose

The purpose of this study is to develop an empirical SAS model to determine
cellulose crystallinity as a function of structural features that can be easily determined by
standard NREL procedures (glucan, xylan, and lignin) and X-ray diffraction (biomass

crystallinity).

Materials and Methods
Substrate Preparation

Avicel pH 101 (Fluka BioChemika) was ball milled for 1 and 2 days to generate
cellulose with different crystallinities. The procedures for ball milling and crystallinity
measurements by X-ray diffraction are described in “Materials and Methods -
Enzymatic Hydroysis of Model Samples.” Raw and ball milled Avicel, hydrolytically
isolated lignin (Aldrich), and birchwood xylan (Sigma) were physically mixed in
different ratios (Table XXVI) to create 15 samples with a variety of compositions and
cellulose crystallinities. The samples were mixed thoroughly to ensure the components
were homogeneously distributed. The glucan, xylan, and lignin contents of the 15

samples were determined on a weight percent basis.

NMR Measurement

All *C CP-MAS NMR measurements were performed with a Bruker Avance-
400 Solids NMR spectrometer, based on a Linux workstation, operating at 75.5 MHz.
The spinning speed was 6000 Hz, acquisition time 20 us, contact time 1 us, and delay
between pulses 2 s. In addition to the ordinary cross-polarization experiment, another
experiment with a spin-lock pulse time of 16 ps was performed to spectroscopically
remove the interfering hemicellulose and lignin signals in the amorphous spectral region.
During the spin-lock pulse, some loss of magnetization occurs through relaxation, which

is faster for the amorphous hemicellulose and lignin matrices (Liitia et al., 2003).
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Table XXVI. Summary of structural features of the fifteen samples used to develop an
empirical model in SAS to predict cellulose crystallinity.

Sample Cellulose (%) Xylan (%) Lignin (%) Crlb (%)
1 33.5° 33.0 335 49.9
2 50.2° 24.9 24.9 64.8
3 85.0° 7.5 7.5 79.6
4 14.9% 50.0 35.1 33.6
5 60.0° 24.9 15.1 70.3
6 33.5° 33.0 335 22.2
7 50.2° 24.9 24.9 35.1
8 85.0° 7.5 7.5 413
9 14.9° 50.0 35.1 17.6
10 60.0° 24.9 15.1 36.5
11 33.5° 33.0 335 20.1
12 50.2° 24.9 24.9 25.0
13 85.0° 7.5 7.5 375
14 14.9° 50.0 35.1 18.6
15 60.0° 24.9 15.1 35.2

& Cellulose was not ball milled, Cric = 82.1%.
> Cellulose was ball milled for 1 day, Crlc = 48.3%.
¢ Cellulose was ball milled for 2 days, Crlc = 38.6%.
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The cellulose crystallinity was determined from the areas of the crystalline (86—
92 ppm) and amorphous (79-86 ppm) C4 signals as give by Equation 23 (Teeaar et al.,
1987)
Ags 92 ppm

(A79—86 ppm + A86—92 ppm )

Crlc= x100 (23)

where Crlc is the fraction of crystalline cellulose divided by total cellulose.

SAS Modeling
Biomass crystallinity (M1), glucan content (M2), lignin content (M3), xylan
content (M4), and were used as independent variables to determine cellulose crystallinity
with SAS v9.0. The following code was written in SAS to identify the best model to
predict cellulose crystallinity.
* Crl.sas
options Is=120 ps=75 nocenter nodate;
title "Regression of Crlc on Crilb, Mcellulose,
MIignin, Mxylosed”;
* Crlc = crystallinity of cellulose;
* M1 = crystallinity of biomass measured by XRD;
* M2 = mass fraction of cellulose;
* M3 = mass fraction of lignin;
* M4 = mass fraction of xylan;
data Crl; input Crlc M1 M2 M3 M4 @@; M5=M1*M1;
M6=M2*M2; M7=M3*M3; M8=M4*M4; MIO=M1*M2;
M10=M1*M3; M11=M1*M4; M12=M2*M3; M13=M2*M4;
M14=M3*M4; M15=M1*M2*M3; M16=M1*M3*M4;
M17=M2*M3*M4; M18=M1*M2*M3*M4 ;
cards;
82.1 49.9 33.5 33.5 33.0
82.1 64.8 50.2 24.9 24.9
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82.1 79.6 85.0 7.6 7.5
82.1 33.6 14.9 35.1 50.0
82.1 70.3 60.0 15.1 24.9
48.3 22.2 33.5 33.5 33.0
48.3 35.1 50.0 25.0 25.0
48.3 41.3 85.0 7.6 7.4
48.3 17.6 14.9 35.0 50.0
48.3 36.5 60.1 15.0 24.9
38.6 20.1 33.5 33.5 33.0
38.6 25.0 50.2 25.0 25.0
38.6 37.5 8.0 7.4 7.5
38.6 18.6 14.9 50.0 35.1
38.6 35.2 60.1 24.9 15.1

proc corr; var Crlc M1 M2 M3 M4;
proc reg; model Crilc=M1 M2 M3 M4 M5 M8/selection =cp
rsquare adjrsq sse mse best=7;

After determining the best combination of independent variables based on the C(p), R?,
SSE, and MSE of the empirical models, the top three models were investigated more
closely with the following commands.

proc reg; model Cric=M1 M4/vif r;

proc reg; model Crlc=M1 M2 M5 M8/vifT r;

proc reg; model Crlc=M1 M3 M5 M8/vif r;

Results and Discussion

A summary of the statistics used to determine the best empirical model for
predicting cellulose crystallinity is given in Tables XXVII and XXVIIl. Models 1, 2,
and 3 were investigated for their goodness of fit by comparing the F statistics and
variance inflation factors for the parameters in each model. As seen in Table XXVIII,



Table XXVII. Statistical selection method for best empirical model to predict

cellulose crystallinity.

Model C(p)® R? Adj::ted MSE  Variables in Model”
1 3.20 0.93 0.92 31.16 M1 M4
2 3.57 0.96 0.95 20.48 M1 M2 M5 M8
3 3.62 0.96 0.94 20.61 M1 M3 M5 M8
4 4.69 0.95 0.93 25.40 M1 M5 M8
5 471 0.95 0.93 25.44 M1 M4 M5
6 4.78 0.96 0.94 23.38 M1 M4 M5 M8
7 5.53 0.96 0.94 22.65 M1 M3 M4 M5 M8

% C(p) is a statistic used to choose the best multiple regression model.
® M1=biomass crystallinity; M2=glucan content; M3=lignin content; M4=xylan
content; M5=M1%; M8=M4?,

Table XXVIII. Statistical summary of the top three models used to predict
cellulose crystallinity.

Model Parameter Variance Inflation F Pr>F
1 M1 1.31 77.67  <0.0001
M4 1.31
2 M1 34.31 61.16  <0.0001
M2 5.62
M5 31.50
M8 4.74
3 M1 35.58 60.77  <0.0001
M3 2.59
M5 32.16

M8 2.05

179



180

Model 1, which included biomass crystallinity and xylan content, proved superior to the
other models. Model 1 performs better than the other models because of its lower C(p)
statistic, which balances the pros and cons of other selection criteria along with the
problem of over- and under-specification. Additionally, lower variance inflation factors
were associated with Model 1 coefficients, which is a measure of how much the variance
of a coefficient is increased because of collinearity (i.e., no collinearity when VIF = 1).
Severe collinearity results in very large standard errors and therefore very inaccurate
estimates. As a result, Model 1 was chosen to predict cellulose crystallinity as given by
Equation 24

Crlc=1.097xM1+0.939x M4 -11.433 (24)

where M1 is biomass crystallinity measured by X-ray diffraction (XRD) and M4 is xylan
content.

13C CP-MAS NMR spectroscopy was used to verify the ability of the empirical
model to predict cellulose crystallinity. As a standard, *C CP-MAS NMR spectroscopy
and X-ray diffraction measurements were performed on an a-cellulose sample (Crl =
61%). If the two techniques resulted in similar Crl values, then NMR spectroscopy can
measure cellulose crystallinity. Basic CP-MAS and CP-MAS with a spin lock time of 8
us were performed to determine the purity of the a-cellulose sample (i.e., a pure sample
should have identical spectra with and without spin lock). A linear combination of the
experiments with and without spin lock is shown in Figure 59. Crl values from NMR
with and without spin-lock were 63% and 58%, respectively, whereas the Crl value
measured by X-ray diffraction was 61%. The small difference in NMR measurements
suggests there may be a small amount of something other than cellulose in the a-
cellulose sample. The good agreement between NMR and XRD values suggests that **C
CP-MAS NMR spectroscopy can determine cellulose crystallinity.

Andersson et al. (2004), Hult et al. (2002), and Liitia et al. (2003) have reported
the ability of solid-state **C CP-MAS NMR spectroscopy with spin locking to measure
cellulose crystallinity of lignocellulosic biomass. *C CP-MAS NMR spectroscopy and
XRD were performed on Sample 5 (DL00-DA007-DC3) of the 147 poplar wood model
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samples. Basic CP-MAS and CP-MAS with a spin lock time of 16 us were performed to
determine cellulose crystallinity of Sample 5. A linear combination of the experiments
with and without spin lock is shown in Figure 60. Crl values from NMR with and
without spin-lock were 24.6% and 38.8%, respectively, whereas the Crlb value from
XRD was 32.1%. To determine the potential of the SAS developed empirical model to
predict cellulose crystallinity, the crystallinity values determined by NMR and the
empirical model (Equation 24) were compared. The cellulose crystallinities determined
by CP-MAS NMR with spin lock and by the empirical model developed in SAS were
38.8% and 37.4%, respectively. As a result, the empirical model was successful in
predicting cellulose crystallinity for Sample 5.

Theoretically, cellulose crystallinity, which is the weight fraction of crystalline
cellulose to total cellulose, should always be greater than biomass crystallinity, which is
the weight fraction of crystalline material to total material, for a lignocellulosic biomass
sample. Equation 24 predicted cellulose crystallinity greater than biomass crystallinity
for all the 147 poplar wood model samples. However, Equation 24 failed to predict
cellulose crystallinity greater than biomass crystallinity for the four prediction samples
that were acid treated, which resulted in extremely low xylan contents (i.e., < 7). As
discussed previously, cellulose crystallinity calculated from Equation 24 instead of
biomass crystallinity measure by XRD improved the predictive ability of all the 18
neural networks as shown in Table XXIX. The cellulose crystallinity calculated from
Equation 24 may not represent the true cellulose crystallinity of the samples used in this
study; however, they did provide a better measure of biomass digestibility suggesting

Equation 24 did a reasonable job predicting cellulose crystallinity.

CONCLUSIONS

In this study, our data demonstrate that *C CP-MAS NMR spectroscopy and
XRD provide comparable results of cellulose crystallinity for pure cellulose samples.
Also, *C CP-MAS NMR with spin lock could remove the overlapping signals

associated with amorphous hemicellulose and lignin matrices from the C-4
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Table XXIX.

crystallinity and cellulose crystallinity.
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Comparison of neural networks predictive ability with biomass

Time Network MSE with Crlb®  MSE with Crlc®
1 Slope 19.5 17.6
Glucan
1 Intercept 24.5 16.6
6 Slope 44 22
Glucan
6 Intercept 88 75
72 Slope 74 26
Glucan
72 Intercept 260 166
1 Slope 13 11
Xylan
1 Intercept 5 4.5
6 Slope 25 21
Xylan
6 Intercept 268 264
72 Slope 56 36
Xylan
72 Intercept 581 465
1 Slope 22 9.5
Total Sugar
1 Intercept 4.3 4.2
6 Slope 29 19
Total Sugar
6 Intercept 103 51
72 Slope 38 36
Total Sugar
72 Intercept 365 122

# Biomass crystallinity measured by X-ray diffraction.

b Cellulose crystallinity calculated with Equation 24.
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anhydroglucose signals, thereby allowing the determination of cellulose crystallinity
according to Teeaar et al. (1987).

The crystallinities calculated with Equation 24 were greater than those measured
by XRD for the 147 poplar wood model samples suggesting the calculated crystallinities
more closely resembled the inherent cellulose crystallinity. The crystallinity value
calculated with Equation 24 improved the predictive ability of the 18 neural network
models as shown in Table XXIX. Therefore, cellulose crystallinity provided a better

measure of biomass digestibility than overall biomass crystallinity.
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IMPLICATIONS

INTRODUCTION

A major hindrance of current biomass processing schemes is the high cost
associated with enzymes and pretreatments. Despite the high costs, pretreatment is an
essential prerequisite to alter biomass structural features, thereby improving the
susceptibility of biomass to enzymatic hydrolysis (Chang, 1999). Most pretreatments
can be classified as either chemical (e.g., acid and alkaline) or physical (e.g., milling and
irradiation). Economic evaluations of processes that convert biomass to bioethanol
indicate that pretreatment is the single most expensive process step, accounting for
roughly one-third of the overall processing cost (Lynd et al., 1996). The pretreated
biomass is subsequently hydrolyzed through the synergistic action of a complex mixture
of enzymes to produce soluble monosaccharides (glucose, xylose, arabinose, and
mannose). The sugars are an intermediate in the chemical route before being fermented.
Enzyme production alone can account for as much as 30% of the total process cost
(Lynd et al., 1996). A thorough understanding of what structural features hinder
enzymatic hydrolysis has the potential to aid in the design of more effective and
economically feasible conditions of the two major contributors to the high cost of current
biomass technologies: pretreatment techniques and enzyme loading.

A mathematical model that accurately predicts biomass digestibility for different
types of biomass that have been subjected to different pretreatments has been the main
focus of a massive amount of research since the 1970s (Kadam et al., 2004; Chang,
1999; Claeyssens et al., 1990; Lee and Fan, 1982; Holtzapple et al., 1990; Pere et al.,
1995; Medve et al., 1998; Davies and Henrissat, 1995; Ghose and Ghosh, 1978). The
capability to predict carbohydrate conversion could lead to major breakthroughs in lower
costs of current biomass conversion processes. A successful mathematical model has the
potential to lead to the design of selective pretreatments that can alter one or more

structural features in order to render biomass digestible, which will lead to more efficient
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and economical pretreatments. By reducing pretreatment costs, more economically

viable biomass conversion processes could serve as an alternative to fossil fuels.

Purpose
The purpose was to predict carbohydrate conversions with neural networks for
typical biomass samples. Instead of using the neural networks directly, the figures could

be used to predict conversion at different enzyme loadings and reaction times.

Materials and Methods

The neural networks developed to predict total sugar slopes and intercepts at 1, 6,
and 72 h were used to predict carbohydrate conversions for a typical biomass sample
(i.e., glucan content = 54% and xylan content = 16%) at a variety of lignin contents (5-
25%). The figures illustrating these data have a biomass crystallinity range of 15-55%
at both high (3%) and low (0.2%) acetyl content.

Results and Discussion

Figures 61 and 62 show the 1-, 6-, and 72-h total sugar conversions predicted by
the neural networks at a variety of lignin contents for low- and high-acetyl content
biomass samples, respectively. Most chemical pretreatments significantly reduce acetyl
content and depending on the duration and severity of the pretreatment could
considerably reduce lignin content as well. Therefore, samples with low (0.2%) or high
(3%) acetyl content over a wide range of lignin contents (5-25%) were investigated for
their reactivity with the neural network models. Most physical pretreatments (e.g.,
mechanical ball milling) alter biomass crystallinity. Therefore, samples with a high
(55%), medium (35%), and low (15%) biomass crystallinity were investigated. General
rules or guidelines were established from the data and summarized in Table XXX.
Tables XXXI and XXXII can be used to interpolate total sugar conversions at various
lignin contents, crystallinities, and enzyme loadings for low (0.2%) and high (3%) acetyl

samples, respectively.
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Figure 61. Neural network predicted total sugar conversions as a function of lignin
content and biomass crystallinity of deacetylated biomass (acetyl content = 0.2%).
Predicted for a 54% glucan and 16% xylan sample, which falls within the range used to
train the networks with the 147 model samples (i.e., glucan = 44.4-76.5% and xylan =
13.9-17.5%).
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Figure 62. Neural network predicted total sugar conversions as a function of lignin

content and biomass crystallinity of acetylated biomass (acetyl content = 3%). Predicted

for a 54% glucan and 16% xylan sample, which falls within the range used to train the

networks with the 147 model samples (i.e., glucan = 44.4-76.5% and xylan = 13.9-
17.5%).
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Table XXX. Minimum biomass structural features and enzyme loadings required to
achieve a 1-h conversion >40%, 6-h conversion >80%, or 72-h conversion >80%.

Enzyme Loading Acetyl Content  Lignin Content Crlb Incubation Time

(FPU/g dry biomass) (%) (%) (%) (h)
5 0.2 5 35 1#
5 0.2 13 15 1
30 0.2 13 55 1
30 0.2 25 35 1
30 0.2 25 15 1
30 3 16 35 1
30 3 23 15 1
5 0.2 7 35 6
5 0.2 12 15 6
10 0.2 7 55 6
10 0.2 16 35 6
10 0.2 18 15 6
10 3 7 35 6
10 3 18 15 6
1 0.2 7 55 72°
1 0.2 16 35 72
1 0.2 21 15 72
2 0.2 15 55 72
2 0.2 20 35 72
2 0.2 25 15 72
1 3 5 35 72
1 3 16 15 72
2 3 7 55 72
2 3 15 35 72
2 3 21 15 72

% Total sugar conversions >40%.
b Total sugar conversions >80%.

° Total sugar conversions >80%.
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Table XXXI. Summary of network predicted total sugar conversions at various lignin

contents and crystallinities for a deacetylated (0.2%) biomass sample.

Enzyme Loading (FPU/g dry biomass)

L* A" Crib°
%) (%) (%) 1 5 10 20 30|075 1 5 10 30|02 05 1 2 5 10
1-h Conversion (%) 6-h Conversion (%) 72-h Conversion (%)
25 02 55 2 12 17 22 24| 12 14 26 31 39| 6 20 31 42 56 67
23 0.2 55 2 14 19 24 27| 14 16 31 37 47|11 27 38 50 65 77
22 02 55 3 15 20 26 29| 14 17 33 40 51|14 30 42 54 70 82
21 0.2 55 3 16 21 27 30| 15 18 36 43 55|17 33 46 58 75 87
20 0.2 55 3 17 22 28 31| 16 20 39 47 60| 20 37 50 63 80 92
19 0.2 55 4 17 23 29 33| 17 21 42 51 65|23 40 53 66 84 97
18 0.2 55 4 18 24 31 34| 18 22 44 54 70|25 43 57 70 88 -
16 0.2 55 4 20 26 33 37| 19 24 50 61 80|31 49 63 77 96 -
15 0.2 55 5 21 27 34 38| 19 24 53 65 84|33 52 66 8 99 -
13 0.2 55 6 22 29 36 40| 20 26 58 71 93|38 57 71 86 - -
12 0.2 55 6 23 30 37 41| 21 27 60 74 97|40 59 74 88 - -
11 0.2 55 6 23 31 38 42| 22 28 62 77 - |42 61 76 90 - -
10 0.2 55 7 24 31 39 43| 22 28 64 8 - |44 63 77 92 - -
0.2 55 8 26 33 41 46| 24 31 70 8 - |49 67 8 96 - -
0.2 55 8 27 35 42 47| 25 33 74 92 - |51 70 84 98 - -
25 0.2 35 3 23 32 41 46| 20 24 45 54 68|31 45 55 65 79 89
23 0.2 35 4 25 34 43 49| 23 27 49 59 74|36 51 62 73 83 99
22 02 35 4 26 35 45 50| 24 28 51 62 78|38 54 65 77 92 -
21 0.2 35 5 27 37 46 52| 25 29 54 65 81|40 56 68 80 96 -
20 02 35 5 28 38 48 53| 26 31 56 68 8|42 59 71 83 99 -
19 02 35 5 29 39 49 55| 27 32 59 71 90| 44 61 73 86 - -
18 02 35 6 30 40 51 57| 28 33 62 74 94| 46 63 76 88 - -
16 0.2 35 6 32 43 54 61| 29 35 67 81 - |49 66 79 93 - -
15 0.2 35 7 33 44 56 62| 30 36 69 84 - |50 68 8L 94 - -
13 02 35 8 3 47 59 66| 32 38 73 8 - |52 70 84 97 - -
12 0.2 35 8 36 48 60 67| 32 39 75 91 - |53 71 8 98 - -
11 0.2 35 8 37 49 62 69| 33 40 77 93 - |53 72 8 99 - -
10 02 35 8 3 50 63 70| 34 40 78 94 - |54 72 86 - - -
0.2 35 9 40 53 66 74| 36 43 8 97 - |54 73 8 - - -
0.2 3% |10 41 54 68 75| 38 44 8 - - |54 73 87 - - -
25 02 15 5 27 37 46 52| 25 29 54 65 82|49 61 71 81 93 -
23 02 15 5 30 40 51 57| 27 32 58 69 87|53 66 76 87 - -
22 02 15 6 31 42 53 60| 28 33 60 72 90|54 68 79 89 - -
21 0.2 15 6 33 44 55 62| 29 34 62 75 94|5 70 81 92 - -
20 0.2 15 6 34 46 58 64| 31 36 65 77 97|57 72 83 94 - -
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Enzyme Loading (FPU/g dry biomass)

(IO;:) (';f) (ig/lot))c 1 5 10 20 300|075 1 5 10 30|02 05 1 2 5 10
1-h Conversion (%) 6-h Conversion (%) 72-h Conversion (%)

19 0.2 15 7 35 47 60 67| 32 37 67 8 - |58 73 8 96 - -
18 0.2 15 7 36 49 62 69| 33 39 69 8 - |59 74 86 98 - -
16 0.2 15 7 38 52 65 73| 36 41 74 8 - |60 76 8 - - -
15 0.2 15 8 39 53 67 75| 37 43 76 9 - |61 77 8 - - -
13 0.2 15 8 41 55 70 78| 39 45 79 94 - |62 78 91 - - -
12 0.2 15 8 42 56 71 79| 39 46 8. 9% - |62 79 91 - - -
11 0.2 15 9 43 57 72 81| 40 47 8 98 - |62 79 92 - - -
10 0.2 15 9 43 58 73 82| 41 47 83 99 - |63 79 92 - - -
7 02 15 9 45 60 75 84| 42 48 84 99 - |63 8 93 - - -
5 02 15 |10 46 61 77 8 | 42 49 84 - - |62 80 93 - - -

% L=lignin content

® A=acetyl content

¢ Crlb=biomass crystallinity
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Table XXXII. Summary of network predicted total sugar conversions at various lignin

contents and crystallinities for an acetylated (3%) biomass sample.

Enzyme Loading (FPU/g dry biomass)

L* A" Cribf
%) (%) (%) 1 5 10 20 3 (075 1 5 10 30|02 05 1 2 5 10
1-h Conversion (%) 6-h Conversion (%) 72-h Conversion (%)
25 02 5 (0 4 6 7 8 4 5 11 14 18| 1 10 17 24 33 40
23 02 5 (0 5 7 9 11| 5 7 15 18 24| 1 12 20 28 39 47
22 02 5 |1 6 8 10 12| 6 8 17 21 27| 3 15 24 33 44 53
21 02 5 (1 7 9 12 13| 7 8 19 23 30| 5 18 27 37 49 59
20 02 5 (1 7 10 13 14| 7 9 20 25 33| 8 21 31 41 55 65
19 02 55 |1 8 11 14 16| 7 10 22 28 36|10 24 35 46 60 71
18 02 55 |1 9 12 15 17| 8 10 24 30 40|12 27 39 50 65 76
16 02 55 |2 10 14 17 19| 8 11 28 36 47|17 33 46 58 74 87
15 02 55 |2 11 15 18 21| 8 12 31 39 52|19 36 49 62 79 92
13 02 55 |2 12 16 20 23| 8 13 36 45 61|23 41 55 69 87 -
12 02 55 |3 13 17 21 24| 8 13 38 49 66|25 43 57 72 90 -
11 02 55 |3 13 18 22 25| 8 13 41 53 72|26 45 60 74 93 -
10 02 55 |3 14 18 23 26| 8 14 44 57 77|28 47 62 77 96 -
7 02 5 |4 15 20 26 29| 9 15 51 66 90|32 52 67 82 - -
5 02 55 |4 16 22 27 30| 9 16 53 69 94|35 55 71 8 - -
25 02 3 (0 13 18 23 27| 11 13 29 35 45|14 26 35 44 56 65
23 02 3 |1 15 21 27 30| 13 16 35 44 57|19 32 43 53 66 76
22 02 35 |1 16 22 29 32| 13 17 39 48 63|21 36 46 57 71 82
21 02 35 |1 17 23 30 34| 14 18 42 53 69|24 39 50 61 76 87
20 02 35 |1 18 25 32 36| 15 19 45 57 74|26 41 53 65 80 92
19 02 35 |2 19 26 33 38| 15 20 48 60 80|28 44 5 69 85 97
18 02 35 |2 20 27 35 39| 16 21 51 64 84|30 47 59 72 89 -
16 02 35 |2 21 29 38 42| 17 23 5 70 92|34 52 65 78 96 -
15 02 35 |2 22 30 39 44| 17 24 58 72 95|36 54 68 81 99 -
13 02 35 |3 23 32 41 46| 18 25 60 76 - |39 58 72 86 - -
12 02 35 |3 24 33 42 47|19 25 62 77 - |40 59 74 88 - -
11 02 35 |3 24 34 43 48| 19 26 62 78 - |42 61 75 90 - -
10 02 35 |3 25 34 44 49| 19 26 63 79 - |43 62 77 91 - -
7 02 35 |4 26 36 45 51| 20 27 66 83 - |46 65 80 94 - -
5 02 35 |5 27 37 46 52| 21 28 68 86 - |48 67 81 96 - -
25 02 15 (1 18 25 33 37| 15 20 43 53 70|27 43 55 66 82 94
23 02 15 (1 21 29 37 42| 17 22 51 63 83|32 49 62 75 92 -
22 02 15 (2 22 31 40 45| 18 24 55 68 89|35 52 66 79 96 -
21 02 15 |2 23 33 42 48| 19 25 58 72 95|37 55 69 82 - -
20 02 15 |2 25 35 44 50| 20 26 61 76 99|39 58 72 86 - -
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Enzyme Loading (FPU/g dry biomass)

((I;j) (ﬁ/:) %E/I:))C 1 5 10 2 30075 1 5 10 30|02 05 1 2 5 10
1-h Conversion (%) 6-h Conversion (%) 72-h Conversion (%)
19 02 15 |2 26 36 46 52| 21 27 63 79 - |42 60 75 8 - -
18 02 15 |3 27 38 48 55| 22 28 65 81 - |43 63 77 92 - -
16 02 15 |3 29 41 52 59| 24 31 68 8 - |47 67 82 9% - -
15 02 15 |3 31 42 54 61| 25 32 69 8 - |48 68 83 98 - -
13 02 15 |4 32 45 57 64| 27 34 70 86 - |49 69 84 99 - -
12 02 15 |4 33 46 58 66| 28 35 71 8 - |49 69 84 99 - -
11 02 15 |4 34 47 60 67|29 36 71 86 - |49 69 84 99 - -
10 02 15 |4 35 48 61 69| 30 36 71 8 - |50 70 8 99 - -
7 02 15 |5 37 50 64 72|33 39 74 8 - |51 70 8 99 - -
5 02 15 |6 38 51 65 73| 34 40 77 93 - |53 71 8 98 - -

% L=lignin content

® A=acetyl content

¢ Crlb=biomass crystallinity
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CONCLUSIONS

Numerous combinations of lignin content, acetyl content, biomass crystallinity,
and enzyme loading were investigated for a typical biomass sample (glucan content =
54% and xylan content = 16%) with the neural network models. Many chemical
pretreatments significantly reduce acetyl content and alter lignin content but have a
small effect on crystallinity; therefore, general guidelines to achieve moderate 1-h total
sugar conversions and high 6-h and 72-h total sugar conversions were investigated for
high-crystallinity samples. After analyzing the results, a lignin content <13% is
necessary to achieve 1-h total sugar conversions >40% at a 0.2% acetyl content, 55%
biomass crystallinity, and 5 FPU/g dry biomass enzyme loading. A lignin content <7%
is necessary to achieve 6-h total sugar conversions >80% at a 0.2% acetyl content, 55%
biomass crystallinity, and 10 FPU/g dry biomass enzyme loading. Lastly, a lignin
content <7% at a 0.2% acetyl content, 55% biomass crystallinity, and 1 FPU/g dry
biomass enzyme loading, or a lignin content <15% at a 0.2% acetyl content, 55%
biomass crystallinity, and 2 FPU/g dry biomass enzyme loading is necessary to achieve
72-h total sugar conversions >80%.
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CONCLUSIONS

Systematic studies on the effect of substrate concentration and enzyme loading
indicated the inhibition pattern was noncompetitive, which agrees with the inhibition
pattern used to develop the HCH-1 Model. Also, the degree of inhibition was lowest at a
substrate concentration of 10 g/L. Higher inhibition was experienced at higher substrate
concentrations because of the increased quantity of glucose in the reaction vessel (i.e.,
the more substrate present resulted in higher sugar conversions up to 5 g/L). The range
of enzyme loadings and substrate concentrations over which the simplified HCH-1
Model was valid for lime pretreated corn stover are 0.25-50 FPU/g dry biomass and
10-100 g/L, respectively. To minimize product inhibition and maintain the linearity of
Equation 5 for the 147 poplar wood model samples and the 22 prediction samples, the
recommended experimental conditions are an enzyme loading of <30 FPU/g dry
biomass, a substrate concentration of 10 g/L, and a cellobiase loading of >48 CBU/g dry
biomass.

Under the recommended conditions, the 147 poplar wood model samples were
enzymatically hydrolyzed and the slopes (B) and intercepts (A) were determined at 1, 6,
and 72 h. Then, sugar conversions were calculated with Equation 5. The results showed
that lignin and crystallinity have a major effect on 1-h and 6-h sugar conversions
whereas acetyl exhibits a minor effect. Therefore, a low crystallinity index was
sufficient to achieve a moderate increase in conversion regardless of acetyl or lignin
content. Also, low lignin in conjunction with low crystallinity was sufficient to achieve
higher conversions regardless of acetyl content. Low acetyl content with a moderate
lignin content contributed to a moderate increase in 1-h and 6-h conversions. This
suggests that even though acetyl alone is not a major player in affecting biomass
digestibility, when combined with the reduction of other structural features it does
enhance biomass digestibility. The ultimate digestion of biomass appears to be
controlled by a slightly different mechanism. Low lignin was sufficient to achieve high
conversions regardless of crystallinity or acetyl content. When low crystallinity and low
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lignin are considered together, nearly complete conversion of the poplar wood model
samples was observed at a 5 FPU/g dry biomass enzyme loading (i.e., >95%).
Therefore, a pretreatment designed to alter both lignin content and crystallinity would be
sufficient to render biomass highly digestible. This would allow for the design of more
effective and less expensive pretreatment techniques.

In the neural network modeling study, a total of 18 neural networks were
developed to predict slopes and intercepts for glucan, xylan, and total sugar at 1, 6, and
72 h. It should be noted that the slopes and intercepts were determined by plotting
conversion versus the natural logarithm of enzyme loading. The networks performed
consistently poorer when simulating and predicting slopes and intercepts for xylan
compared with glucan and total sugar. Xylan slopes and intercepts showed consistently
larger MSE and lower R? values compared with glucan and total sugar. Nonetheless,
glucan, xylan, and total sugar networks simulated slopes and intercepts for the 147
model samples fairly satisfactorily.

The 22 prediction samples were created with various types of biomass (corn
stover, bagasse, and rice straw) chemically pretreated with long-term lime, short-term
lime, dilute sulfuric acid, AFEX, and aqueous ammonia plus mechanical ball milling.
The various biomass samples were pretreated with different techniques to test the neural
networks’ abilities to predict conversion regardless of biomass type or pretreatment. The
neural networks performed equally when predicting conversions for the different types
of biomass treated with different techniques. In other words, the data were scattered
equally for the majority of samples regardless of biomass type or pretreatment. A clear
exception was the 72-h xylan slope network where the AFEX-treated corn stover
samples had larger MSEs than the other samples. The lime-treated, acid-treated, and
aqueous-ammonia-treated samples had MSE values of 3.04, 3.25, and 1.8, respectively,
whereas AFEX-treated samples had a larger MSE value of 6.21.

Our results indicate no correlation exists between xylan removal and glucan
digestibility. However, there was a correlation between glucan removal and xylan

digestibility observed at 6 h and 72 h (i.e., the 6 h and 72 h networks predicted xylan
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slopes and xylan intercepts better when glucan slopes and glucan intercepts,
respectively, were included as independent variables). In other words, glucan removal
helped destroy the intricate nature of lignocellulosic biomass to permit the enzymes
easier access to the xylan backbone.

The crystallinities calculated with Equation 24 were greater than those measured
by XRD for the 147 poplar wood model samples suggesting the calculated crystallinities
more closely resembled the inherent cellulose crystallinity. The neural networks
predictive ability improved when cellulose crystallinity calculated with Equation 24 was
used as an independent variable instead of biomass crystallinity. Therefore, cellulose
crystallinity provided a better measure of biomass digestibility.
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APPENDIX A

ENZYMATIC HYDROLYSIS

Enzymatic Hydrolysis of Lime Pretreated Corn Stover

Distilled water and corn stover were added to appropriately sized screw cap test

tubes. Reactions were performed at 10, 20, 50, 100 g/L corn stover concentration.
Citrate buffer (1.0 M, pH 4.8) and sodium azide solution (0.01g/mL) were added to the

slurry to keep pH constant and prevent the growth of microorganisms, respectively. The

test tubes were placed in a 100-rpm air-bath shaker. When the temperature reached

50°C, cellulase and cellobiase were added to the reaction flask. Samples were removed

after 1, 6, and 72 h and then glucose, xylose, and reducing sugars were measured. See

the following for the complete hydrolysis procedures.

1.

Prepare 1 L of 1-M citrate buffer (pH 4.5) and 500 mL of 0.01-g/L sodium azide
solution. (Citrate buffer is prepared as follows: dissolve 210 g of citric acid
monohydrate in 1000 mL of distilled water, then adjust the pH to 4.5 by adding
NaOH.)

Determine the moisture contents of the biomass (i.e., corn stover) using NREL
standard procedure No. 001.

Place 0.2 g dry weight of biomass and necessary distilled water, citrate buffer, and

sodium azide in a screw-capped test tube according to Table A-1.
Place the test tube inside the 100-rpm shaking air bath at 50°C.

When the temperature reaches 50°C (ca. 1 h), add diluted cellulase according to
Table A-2 (filter paper activity = 65 FPU/mL enzyme solution) and 50 uL cellobiase

(activity = 321 CBU/qg). This is considered time zero for the reaction mixture.

Remove flasks from shaking air bath after 3-d incubation time.
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Table A-1. Preparation of biomass slurry for enzymatic hydrolysis

Liquid Substrate concentration
components
10 g/L 20 g/L 50 g/L 100 g/L
(mL) g g g g
Distilled water 18.175 8.975 3.455 1.615
Citrate buffer 1 0.5 0.2 0.1
Sodium azide 0.6 0.3 0.12 0.06

7. Boil flasks for 15 min to denature the enzyme, thereby quenching the reaction. Cool

flasks in cold water bath.

8. Transfer contents of flasks to 15-mL centrifuge tubes. Centrifuge at 4500 rpm for 5
min.

9. Using a 0.22-um nylon membrane filter, filter a 1.5-mL aliquot in micro-centrifuge

tube to be frozen until sugar analysis is ready to be performed.

10. Perform DNS assay and/or HPLC analysis to measure the concentrations of glucose,

xylose, and cellobiose for each sample.
Enzymatic Hydrolysis Procedure for Fundamental Study of Biomass

1. Prepare 1 L of 1-M citrate buffer (pH 4.5) and 500 mL of 0.01-g/L sodium azide
solutions. (Citrate buffer is prepared as follows: dissolve 210 g of citric acid
monohydrate in 1000 mL of distilled water, then adjust the pH to 4.5 by adding
NaOH.)

2. Determine the moisture contents of the biomass (i.e., model lignocelluloses) using
NREL standard procedure No. 001.
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Table A-2. Preparation of diluted enzyme for enzymatic hydrolysis

Enzyme loading Cellulase enzyme o Total volume
(FPUJg biomass) L) Distilled water (mL) (mL)
0.1 0.025 16.225 16.250
0.25 0.05 12.95 13.00
0.5 0.1 12.90 13.00
0.75 0.1 8.57 8.67
1 0.1 6.40 6.50
1.5 0.1 4.23 4.33
2 0.1 3.15 3.25
3 0.15 3.10 3.25
5 0.25 3.00 3.25
10 0.5 2.75 3.25
20 1 2.25 3.25
30 1 1.17 2.17
50 1.5 0.45 1.95

3. Place 0.2 g dry weight of biomass and 18 mL of distilled water in a 50-mL screw-

capped Erlenmeyer flask.

4. Add 1.0 mL of citrate buffer and 0.6 mL of sodium azide solution into the flask.
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11.

12.

214

Place the flask inside the 100-rpm shaking air bath at 50°C.

When the temperature reaches 50°C, add diluted cellulase according to Table A-2
(Filter paper activity = 65 FPU/mL enzyme solution) and 50 uL cellobiase (activity =

321 CBU/g). This is considered time zero for the reaction mixture.
Remove flasks from shaking air bath.

Boil flasks for 15 min to denature the enzyme, thereby quenching the reaction. Cool

flasks in cold water bath.

Transfer contents of flasks to 15-mL centrifuge tubes. Centrifuge at 4500 rpm for 5
min.

Using a 0.22-um nylon membrane filter, filter a 1.5-mL aliquot in micro-centrifuge
tube to be frozen until HPLC analysis is ready to be performed.

Steps 7 to 10 should be completed after 1, 6, and 72 h.

Perform DNS assay and/or HPLC analysis to measure the concentrations of glucose,

xylose, and cellobiose for each sample.
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APPENDIX B

SUGAR MEASUREMENT

DINITROSALICYLIC ACID (DNS) ASSAY

Reducing sugar was measured using the DNS assay (Miller, 1959). A detailed

description of the procedure is as follows:

DNS Reagent Preparation

1.

4.

5.

Dissolve 10.6 g of 3,5-dinitrosaliculic acid crystals and 19.8 g of NaOH in 1416 mL
of distilled water.

Add 306 g of Na-K-tartrate (Rochelle salts).

Melt phenol crystals under a fume hood at 50°C using a water bath. Add 7.6 mL of
phenol to the above mixture.

Add 8.3 g sodium meta-bisulfite (Na,S;0,).

Add NaOH to adjust the solution pH to 12.6.

DNS Reagent Calibration

1.

2.

Prepare a 5 mg/mL glucose standard solution in a 50-mL volumetric flask.

Place 0.5 mL of the glucose standard solution into test tubes and diluted according to
Table B-1.

Dispense 1.5 mL of DNS reagent into each test tube using a 5-mL Eppendorf pipette.

Place the caps on the tubes and put samples into a vigorously boiling water bath for

exactly 5 min.
Cool the test tubes for a few minutes in a cold-water bath.

Add 10 mL of distilled water to the test tubes.
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9.
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Zero the spectrophotometer (Milton Roy, Spectronic 1001) at 540 nm with distilled
water. (Note: To stabilize the spectrophotometer, it should be turned on for at least 1

h before using.)
Measure the absorbance.

Prepare a calibration curve.

Reducing Sugar Measurement of Samples

1.

2.

Centrifuge samples at 4500 rpm for 5 min.

Dilute the centrifuged samples into test tubes according to Table B-1 such that the

sugar concentration lies between 0.2 to 5 mg/mL. Vortex the diluted samples.
Place 0.5 mL of each diluted sample into test tubes.
Repeat steps 3 to 8 described in “DNS Reagent Calibration.”

Calculate the sugar concentration from the absorbance of the samples using the

calibration curve.
Calculate the reducing sugar yield by following Formula B-1:

Y=SxDxV/W (B-1)

where Y = reducing sugar yield (mg equivalent glucose/ g dry biomass)

S = sugar concentration in diluted sample (mg equivalent glucose/mL)
D = dilution factor (V2/V1)
V = working liquid volume (mL)

W = weight of dry biomass (g)
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Table B-1. Preparation of Glucose Standard Solutions for DNS Assay

Glucose Concentration Glucose Standard Distilled Water

(mg/mL) (5 mg/mL) (mL)
0.2 0.2 4.8
0.4 0.4 4.6
0.6 0.6 4.4
0.8 0.8 4.2
1.0 1.0 4.0
2.0 2.0 3.0
3.0 3.0 2.0
4.0 4.0 1.0
5.0 5.0 0.0

HPLC CARBOHYDRATE ANALYSIS

Glucose, xylose, and cellobiose were measured using high performance liquid
chromatography (HPLC). A Biorad Aminex HPX-87P column was used in “Enzymatic
Hydrolysis of Model Samples” and “Predictive Ability of Neural Networks Study.” The

instrumental conditions are as follows:
For Biorad Aminex HPX-87P column:
Sample injection volume: 20 uL
Eluant: Degassed and 0.22-um filtered reverse osmosis deionized (RODI) water

Flow rate: 0.6 mL/min
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Column temperature: 85°C
Detector: refractive index
The equipment used in HPLC are as follows:
Pump: LDC Analytical Pump, constaMetric 3200
Autosampler: Spectra-Physics, AS100
Column heater: Jones Chromatography
RI detector: Lab Alliance RI 2000
Software: PeakSimple 3.21, SRI Instruments
RODI water: NANOpure Ultrapure Water System
Carbohydrate Standard Preparation

1. Prepare carbohydrate stock solution: dissolve 45°C-dried glucose (0.5 g), xylose
(0.1667 g), and cellobiose (0.25 g) in a 100-mL volumetric flask with RODI water.
2. Prepare standard solutions in test tubes according to Table B-2 and then filter with a

0.22-pum nylon filter into HPLC sample vials.
Equipment Setup

1. Degas the eluant by vacuum filtering 4 L of RODI using a 0.22-um nylon filter.
(Note: Degassed mobile phase not be used for more than 3 consecutive days.)

2. After connecting freshly degassed mobile phase to the system, prime pump by
removing a sufficient amount of liquid (ca. 50 mL) with a syringe.

3. Turn on the pump, the autosampler, the RI detector, and the computer. Launch
PeakSimple 321 software (see below, “Software Setup”) and select “OK” twice from

two popup dialog boxes.
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Table B-2. Preparation of HPLC standard solutions

Glucose Concentration

(mg/mL) Stock Solution (mL) RODI Water (mL)
mg/m
0.125 0.0375 1.4625

0.5 0.15 1.35

1 0.3 1.2

2 0.6 0.9

3 0.9 0.6

4 1.2 0.3

5 1.5 0

10.

Turn on the autosampler’s refrigerator by loading a user file (see below,
“Autosampler Setup”).

Flush the system for at least 1 h at 2.0 mL/min. Reduce flowrate to 0.18 mL/min.
Remove stainless-steel tubing and connect appropriate column.

At a flowrate of 0.18 mL/min, turn on the column heater and adjust the temperature
setting to the desired temperature (i.e., 85°C). Approximately 1 h is required to
reach the desired temperature.

After column temperature is stable, gradually increase (i.e., 0.01 mL/min every 30 s)
the flowrate to 0.6 mL/min.

Edit and Load the autosampler file as described in “Autosampler Setup.”

Press the spacebar on the computer to run a baseline. If the baseline is straight and

not drifting, start running the samples.

Measurement of Sample Sugars

Thaw previously filtered and frozen samples.

Dilute the samples so that the sugar concentrations fall between 0.125 to 5 mg/mL,
0.042 to 1.7 mg/mL, and 0.063 to 2.5 mg/mL for glucose, xylose, and cellobiose,
respectively.

Place 0.5-1.2 mL of dilute sample into HPLC sample vials.
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Load the sugar standards and samples in the autosampler tray. Edit and load a
sample file as described in “Autosampler Setup.”

Push the run button on the autosampler to initiate measurements.

Chromatograms were collected in PeakSimple 3.21. Prepare a calibration curve
according to the standard solutions. Calculate sample sugar concentrations
according the calibration curve prepared from the standard solutions.

Autosampler Setup

Editing and Loading Autosampler File

1.

Press the menu key to display the main menu. Select FILES, EDIT, and
INJECTION consecutively to display the edit menu using the arrow keys and the
enter key.

Adjust the loop size to 20 mL, the number of injections per sample to 1, the cycle
time to 20 minutes, and the tray temperature from 20°C to 5°C in increments of 5°C
by pressing the “+” or “-“ key to increase or decrease the values.

Load the file by selecting FILES and LOAD from the main menu and then pressing
the enter key.

Editing and Loading Sample File

1.

Press the sample key to display the main sample menu and specify the sample set
number.

Adjust the loop size, number of injections per sample, and the cycle time as
described in “Editing and Loading Autosampler Files.”

Specify the position of the first sample vial and the total number of samples using the
“+7 or “-* key.

Add the sample set to the queue by pressing the enter key.
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Software Setup

1.

Load control file by selecting from the FILE drop down menu “Open Control File”
and selecting proper control file (i.e., Jonathan87P.con). Select “OK” from the
popup dialog box that appears.

After loading the proper control file, select from the EDIT drop down menu
“Channels.”

Then press the “Post Run” radial button. From the pop up box, verify the desired file
storage location has been typed into the box as well as the auto increment box has
been checked to ensure the chromatograms are saved as successive file numbers (i.e.,
Jonathan87P.asc).

Close the pop up boxes by pressing the “OK” buttons.

By pressing the “Run” button on the Autosampler, the software will be initiated and

a new chromatogram will start each time the autosampler injects a sample.
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APPENDIX C

PRETREATMENT TECHNIQUES

Short-Term Lime Pretreatment of Corn Stover, Rice Straw, and Bagasse

1. Grind biomass to achieve more uniform particle size distribution (-40 mesh).
2. Determine moisture content of biomass according to NREL standard procedure No.
001.
3. Load desired amount of biomass into a deep-metal container.
4. Add 0.1 g Ca(OH),/g dry biomass and 10 g H,O/g dry biomass to biomass. Stir
thoroughly with a spatula to ensure a uniform mixture.
5. Place metal container oven Bunsen burner and bring slurry to a boil, continue boiling
for 2 h. After 2-h pretreatment time, allow the slurry to cool enough to be handled.
6. The slurry pH is high (ca. 12) and needs to be adjusted to a range of 5-6 by adding
acetic acid (CH3COOH) all the while monitoring the pH and stirring with a magnetic
stirrer.
a. Transfer slurry to large high-density polypropylene centrifuge bottles.
b. Add water to fill bottles completely and then place bottles inside centrifuge.
(Note: Before placing bottles inside centrifuge, balance bottles so as not to
damage the centrifuge rotor.)
c. Centrifuge at 4200 rpm for 15 minutes. Pour off supernatant and add clean
water.
d. Mix slurry with a magnetic stirrer and measure pH. Add acetic acid if pH is
above 6.
e. Repeat steps b through d until pH is between 5 and 6 and supernatant is clear
(ca. 7 cycles).
7. Dry biomass in a 45°C oven for 3 d.

8. Grind dried biomass to ensure more uniform particle size distribution.
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Dilute-Acid Pretreatment of Rice Straw and Bagasse

1.

Grind biomass (i.e., rice straw or bagasse) to achieve more uniform particle size
distribution (-40 mesh).

Determine moisture content of biomass according to NREL standard procedure No.
001.

The biomass was prepared for acid pretreatment by presoaking the biomass at room
temperature overnight in 500-mL autoclavable Pyrex glassware, 0.05 g/mL solids

concentration, and 0.01 g/mL solution of H,SO,.

4. The presoaked slurry was pretreated at 121°C in an autoclave reactor for 2 h.
5.
6
7

After pretreatment, allow the Pyrex bottle to cool before opening.
Repeatedly wash the biomass with distilled water until the supernatant pH reached 6.

Repeat Steps 7 to 8 in “Lime Pretreatment of Corn Stover.”

Agueous Ammonia Pretreatment of Bagasse

1.
2.

4.
5.

Repeat Steps 1 to 2 in “Dilute Acid Pretreatment of Rice Straw and Bagasse.”

Equal amounts of biomass were loaded into four 500-mL autoclavable Pyrex
glassware in a 1:6 (2 bottles) and 1:8 (2 bottles) solid to liquid ratio based on weight
with a 15% (w/w) aqueous ammonia concentration. (Note: Handle the aqueous
ammonia under a fume hood to avoid exposure.)

The pretreatment was conducted in a 60°C oven for 12 h. (Note: Cool Pyrex bottles
before opening.)

Repeat Steps a to e in “Short-Term Lime Pretreatment.”

Repeat Steps 7 to 8 in “Short-Term Lime Pretreatment.”

Long-Term Lime Pretreatment of Corn Stover

1.

Reagent loading of 0.5 g lime/g dry biomass was used with a water loading of 10
mL/g dry biomass.

Air- and nitrogen-treated samples were pretreated for 2688 h and 2016 h,
respectively.

Pretreatment temperature was 45°C.
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4. A detailed explanation of long-term lime pretreatment can be found in Kim (2004).

AFEX Pretreatment of Corn Stover

1. Reagent loading of 1 g NHs/g dry biomass with a hold time of 5 seconds was used

for all pretreatments.

2. Three different samples were pretreated as follows:

a.

The first sample was pretreated with 0.4 mL H,O/g dry biomass with a
reaction temperature of 90°C.
The second sample was pretreated with 0.6 mL H,O/g dry biomass with a
reaction temperature of 90°C.
The third sample was pretreated with 0.6 mL H,O/g dry biomass with a

reaction temperature of 100°C.

3. A detailed explanation of AFEX pretreatment can be found in Teymouri et al.

(2004),
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APPENDIX D

ENZYME ACTIVITY MEASUREMENT

CELLULASE ENZYME ASSAY

The standard cellulase enzyme assay according to NREL laboratory analytical
procedure No. 006 was used as a basis for determining the amount of enzyme added to
the reaction mixtures. In addition to NREL standard procedures, an improved assay
according to Coward-Kelly et al. (2003) was used to determine enzyme activity for
comparison purposes only. Coward-Kelly et al. (2003) suggested using a 0.5-mL
supplemental cellobiase loading to relieve cellobiose inhibition vyielding a true
representation of cellulase activity free from product inhibition. In the current study, the
optimal supplemental cellobiase loading was investigated by performing experiments
with no cellobiase, 0.25-mL cellobiase, 0.5-mL cellobiase, 0.75-mL cellobiase, and 1.0-
mL cellobiase. Cellobiase activity was 321 CBU/mL according to Sigma’s assay. The
results are summarized in Table D-1. It was found that cellobiase loadings greater than
0.75 mL resulted in minimal enzyme activity increases. Therefore, if one wants to
evaluate product inhibition free enzyme activity, a supplemental cellobiase loading of
0.75 mL is recommended. However, this value may vary depending on the inherent

cellobiase activity of the cellulase and/or the activity of the cellobiase.

Table D-1. Enzyme activity as a function of cellobiase loading.

Cellobiase Loading (mL) Enzyme Activity (FPU/mL enzyme)

0 65
0.25 92
0.50 98
0.75 101

1.00 102




APPENDIX E

MATLAB CODES FOR TRAINING AND SIMULATION AND
THEIR ASSOCIATED WEIGHT AND BIAS MATRICES

Exhibit E-1. Matlab codes for training and simulating 1-h glucan slope network.
clc
clear
load L_G.m
load A_X.m
load G.m
load Cric.m
load slope G 1.m
[L_Gn,minL_G,maxL_G]=premnmx(L_G);
[A_Xn,minA_X,maxA_X]=premnmx(A_X);
[Cricn,minCric,maxCric]=premnmx(Cric);
[Gn,mInG,maxG]=premnmx(G) ;
for 1=1:146,

network input_GS (I1,1)=A Xn(1)*

end
for 1=1:146,

network input_GS (I1,2)=Crilcn(l)*
end
for 1=1:146,

network input_GS (I1,3)=L_Gn(1)"
end
for 1=1:146,

network input_GS (1,4)=6n(1)"
end
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[slope G 1n,minslope_G_1,maxslope_G_1]=premnmx(slope G 1);
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Exhibit E-1. Continued
net=newff([min(A_Xn)max(A_Xn);min(Cricn)
max(Crilcn) ;min(L_G) max(L_G);min(Gn) max(Gn)], [15 1],
{"tansig”", "purelin®}, "trainbr™);
net.trainParam.show=10;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network _input GS*,slope G _1n%);
net=train(net,network _input GS*,slope G _1n%);
net=train(net,network _input _GS*,slope G _1n%);
net=train(net,network_input _GS*,slope G _1n%);
net=train(net,network _input _GS*,slope G _1n%);
net=init(net);
net=train(net,network_input _GS*,slope G _1n%);
net=train(net,network_input _GS*,slope G _1n%);
net=train(net,network _input_GS*,slope_G_1n%);
net=train(net,network _input_GS*,slope_G_1n%);
net=train(net,network _input_GS*,slope_G_1n%);
yn=sim(net, network_input_GS%);
y=postmnmx(yn,minslope_G_1,maxslope G 1);
E=slope G 1"-y;
min(E)
max(abs(E))
perf=mse(E)
[m,b,r]=postreg(y,slope G 1)
Rsqr=r"2
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Exhibit E-2. Final weights and biases for 1-h glucan slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.9862 0.0452 -0.0097 0.4638
0.0162 0.1013 0.0596 -0.0678
-0.0162 -0.1013 -0.0596 0.0678
-0.0162 -0.1013 -0.0596 0.0678
0.0162 0.1013 0.0596 -0.0678
0.1944 0.7978 0.9967 -0.3334
-0.2883 -0.2963 -0.4692 0.8003
0.0162 0.1013 0.0596 -0.0678
-0.5564 -0.0893 1.1576 0.4013
-0.0534 -1.2929 0.6046 0.9617
0.0162 0.1013 0.0596 -0.0678
0.0162 0.1013 0.0596 -0.0678
0.0162 0.1013 0.0596 -0.0678
-0.0162 -0.1013 -0.0596 0.0678
-0.0162 -0.1013 -0.0596 0.0678

b{1}: Bias to layer 1 (15x1 matrix)

0.4644
-0.0528
0.0528
0.0528
-0.0528
0.1723
-0.4461
-0.0528
-0.3100
0.5933
-0.0528
-0.0528
-0.0528
0.0528
0.0528

LW{2,1}: Weights to layer 2 (1x15 matrix)

[[0.1489 0.7160 -0.1489 0.1489 0.1489 0.1489 0.8299 0.1489 -0.1489 0.6480
-0.1489 0.1489 0.6973 0.8000 0.1489]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.381]
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Exhibit E-3. Matlab codes for training and simulating 1-h glucan intercept network.
clc
clear
load L.m
load A_X.m
load G.m
load Cric.m
load intercept G 1.m
[Ln,minL,maxL]=premnmx(L);
[A_Xn,minA_X,maxA_ X]=premnmx(A_X);
[Gn,miInG,maxG]=premnmx(G) ;
[intercept G _1n,minintercept G_1,maxintercept G_l]=premnmx(
intercept G 1);
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:146,
network input_ G (1,1)=Gn(l1)"
end
for 1=1:146,
network_input_G (1,2)=Cricn(l)*
end
for 1=1:146,
network_input_G (1,3)=A Xn(l)"
end
for 1=1:146,
network_input_G (1,4)=Ln(l1)"
end
[intercept_G_1n,minintercept_G_1,maxintercept_G_l]=premnmx(
intercept_G 1);
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Exhibit E-3. Continued

net=newff([min(Gn)max(Gn) ;min(Cricn)max(Cricn) ;minA_Xn)max(
A Xn);min(L)max(L)],[15 1],{ "tansig", "purelin™},
"trainbr®);

net.trainParam.show=10;

net.trainParam.epoch=100;

randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network input G-, intercept G _1n");

net=train(net,network _input G-, intercept G _1n");

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

net=init(net);

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

net=train(net,network _input G-, intercept G 1n");

yn=sim(net, network_input _G");

y=postmnmx(yn,minintercept_G_1,maxintercept G 1);

E=intercept G _1"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept G 17)

Rsqr=r"2
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Exhibit E-4. Final weights and biases for 1-h glucan intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

-0.0295 -0.0607 -0.0071 -0.0025
0.0305 0.0627 0.0074 0.0027
0.0311 0.0640 0.0075 0.0028
0.4576 -0.4986 -0.9164 -0.5309
-0.2148 -0.3371 -0.2845 -0.1289
0.0306 0.0629 0.0074 0.0027
0.0339 0.0698 0.0085 0.0033
0.0307 0.0632 0.0074 0.0027
0.9279 -1.3589 0.0030 -0.1325
0.2872 -1.2237 0.1590 -0.3395
-0.0305 -0.0628 -0.0074 -0.0027
0.7310 0.3784 -0.1581 -0.2085
-0.0313 -0.0644 -0.0076 -0.0028
-0.1273 0.4512 -0.7890 -0.2210
0.0565 -0.4499 -0.7031 0.1940

b{1}: Bias to layer 1 (15x1 matrix)

0.4644
-0.0528
0.0528
0.0528
-0.0528
0.1723
-0.4461
-0.0528
-0.3100
0.5933
-0.0528
-0.0528
-0.0528
0.0528
0.0528

LW{2,1}: Weights to layer 2 (1x15 matrix)

[[0.5577 0.6565 0.1051 -0.0783 0.9835 -0.8270 0.1065 0.6371 0.0998 -0.0252
0.0794 -0.0796 0.8224 0.1132 -1.1093]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.5553]



Exhibit E-5. Matlab codes for training and simulating 6-h glucan slope network.
clc
clear
load L.m
load A_G.m
load G.m
load Crilc_G.m
load slope G 6.m
[Ln,minL,maxL]=premnmx(L);
[A_Gn,minA_G,maxA_G]=premnmx(A_G);
[Cric _Gn,minCric_G,maxCrlc_G]=premnmx(Cric_G);
[Gn,mInG, maxG]=premnmx(G) ;
for 1=1:147,

network input_GS (I1,1)=A Gn(1)"
end
for 1=1:147,

network input_GS (I1,2)=Crlc_Gn(l)*
end
for 1=1:147,

network_input_GS (I1,3)=Ln(1)*
end
for 1=1:147,

network_input_GS (I1,4)=Gn(1)"
end
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[slope_G 6n,minslope G 6,maxslope_G_6]=premnmx(slope G 6);

net=newff([min(Ln)max(Ln) ;min(A_Gn)max(A_Gn);min(Crilc_Gn)

max(Crilc_Gn) ;min(Gn)max(Gn)],[15 1],{ tansig”,
"purelin®}, "trainbr™);

net.trainParam.show=10;

net.trainParam.epoch=100;
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Exhibit E-5. Continued

randn("seed”,192836547) ;
net.trainParam.goal=.01;

net=init(net);
net=train(net,network_input_GS*,slope_G_6n");
net=train(net,network _input GS*,slope G 6n%);
net=train(net,network _input GS*,slope G 6n%);
net=train(net,network _input GS*,slope G 6n%);
net=train(net,network _input GS*,slope G 6n%);
net=init(net);
net=train(net,network _input GS*,slope G 6n%);
net=train(net,network_input _GS*,slope_ G _6n%);
net=train(net,network_input _GS*,slope G _6n%);
net=train(net,network_input _GS*,slope G _6n%);
net=train(net,network_input _GS*,slope G _6n%);
yn=sim(net, network_input _GS%);
y=postmnmx(yn,minslope_G_6,maxslope_G 6);
E=slope G 6"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y,slope G 67)

Rsqr=r~"2
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Exhibit E-6. Final weights and biases for 6-h glucan slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

-0.0770 -0.0919 0.0290 0.0675
-0.2286 -0.4055 0.4470 0.0972
0.5904 -0.2395 0.8339 -1.0436
-0.3138 0.8601 1.0248 -0.4768
0.3008 1.6993 -0.5281 -0.2796
0.6438 -0.9413 -0.1663 0.5668
0.0770 0.0919 -0.0290 -0.0675
-0.8142 -0.9440 0.5915 -0.4219
0.0770 0.0919 -0.0290 -0.0675
-1.0637 0.3228 0.4990 -0.7329
-0.0770 -0.0919 0.0290 0.0675
1.1580 0.2411 0.1666 0.5855
0.3493 0.7582 0.9094 -1.0425
-0.0770 -0.0919 0.0290 0.0675
-0.0770 -0.0919 0.0290 0.0675

b{1}: Bias to layer 1 (15x1 matrix)

0.0106
-0.2559
-0.1494
-0.5663
-0.7106
-0.7333
-0.0106

0.1126
-0.0106

0.2891

0.0106

0.3472

0.1398

0.0106

0.0106

LW{2,1}: Weights to layer 2 (1x15 matrix)

[[0.1666 -0.9659 0.1666 -0.1666 -0.1666 -0.1666 1.0572 -0.8194 0.8958 -0.8027
0.7077 -0.1666 0.9915 0.7555 0.1666]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.0482]



235

Exhibit E-7. Matlab codes for training and simulating 6-h glucan intercept network.
clc
clear
load L_G.m
load A_X.m
load G.m
load Crilc_G.m
load intercept G 6.m
[L_Gn,minL_G,maxL_G]=premnmx(L_G);
[A_Xn,minA_X,maxA_ X]=premnmx(A_X);
[Cric _Gn,minCric_G,maxCrlc_G]=premnmx(Cric_G);
[Gn,mInG, maxG]=premnmx(G) ;
for 1=1:147,
network input_Gl1 (I1,1)=Crlc_Gn(l)*
end
for 1=1:147,
network input_GI1 (1,2)=A_ Xn(1)"
end
for 1=1:147,
network_input_GI (I1,3)=L_Gn(l)*
end
for 1=1:147,
network_input_GI (1,4)=Gn(1)"
end
[intercept_G_6n,minintercept_G_6,maxintercept_G_6]=premnmx
(intercept G 6);
net=newff([min(Cric_Gn)max(Cric_Gn) ;min(A_Xn)max(A_Xn);;min(
L_Gn)max(L_Gn);min(Gn)max(Gn)],[15 1],{ tansig",
"purelin®}, "trainbr™);
net.trainParam.show=10;
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Exhibit E-7. Continued

net.trainParam.epoch=100;
randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input GI~,intercept G 6n%);
net=train(net,network_input GI~,intercept G 6n%);
net=train(net,network_input GI~,intercept G 6n%);
net=train(net,network_input GI~,intercept G 6n%);
net=train(net,network_input GI~,intercept G 6n%);
net=init(net);

net=train(net,network_input _GI~,intercept G _6n%);
net=train(net,network_input GI~,intercept G _6n%);
net=train(net,network_input GI~,intercept G _6n%);
net=train(net,network_input GI~,intercept G _6n%);
net=train(net,network_input GI~,intercept G _6n%);
yn=sim(net, network_input _GI%);
y=postmnmx(yn,minintercept_G_6,maxintercept G 6);
E=intercept G _6"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept G 6%)

Rsqr=r"2
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Exhibit E-8. Final weights and biases for 6-h glucan intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0313 0.0352 0.1559 -0.0279
0.0313 0.0352 0.1559 -0.0279
-0.3136 -0.1593 -0.0223 1.4229
-0.1944 -0.3640 1.6741 0.0620
0.5178 -0.8172 -0.0392 -0.2834
-0.7619 -0.1184 1.0236 0.2541
0.0313 0.0352 0.1559 -0.0279
0.0313 0.0352 0.1559 -0.0279
0.0313 0.0352 0.1559 -0.0279
-0.0313 -0.0352 -0.1559 0.0279
-0.0313 -0.0352 -0.1559 0.0279
0.7329 0.0201 0.6887 -0.8305
-1.2934 0.5759 -0.1963 -0.4342
-0.0313 -0.0352 -0.1559 0.0279
-0.0313 -0.0352 -0.1559 0.0279

b{1}: Bias to layer 1 (15x1 matrix)

-0.1080
-0.1080
-0.4571
-0.6971
-0.2753
-0.0877
-0.1080
-0.1080
-0.1080
0.1080
0.1080
0.3938
0.4091
0.1080
0.1080

LW{2,1}: Weights to layer 2 (1x15 matrix)

[[0.7396 -0.2122 -0.2122 -0.9975 -0.2122 -0.2122 -0.2122 -0.2122 -0.2122 0.7857
0.2122 -0.5381 0.8548 -0.8274 -0.2122]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.3754]
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Exhibit E-9. Matlab codes for training and simulating 72-h glucan slope network.
clc
clear
load L.m
load A_X.m
load Cric.m
load slope G 72.m
[Ln,minL,maxL]=premnmx(L);
[A_Xn,minA_X,maxA_ X]=premnmx(A_X);
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:138,
network input_GS (I1,1)=A_ Xn(1)"
end
for 1=1:138,
network input_GS (I1,2)=Ln(1)"
end
for 1=1:138,
network_input_GS (I1,3)=Crilcn(l)"
end
[slope G 72n,minslope G _72,maxslope_G_72]=premnmx(slope_G_7
2);
net=newff([min(A_Xn)max(A_Xn);min(Ln)max(Ln);min(Cricn)
max(Cricn)], [15 1], {"tansig~®, “purelin”}, "trainbr®);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input_GS",slope_G_72n");
net=train(net,network_input_GS",slope_G_72n");



Exhibit E-9. Continued

net=train(net,network_input_GS*,slope_G_72n");
net=train(net,network_input_GS*,slope_G_72n");
net=train(net,network_input _GS",slope_G_72n");

net=init(net);

net=train(net,network_input GS*,slope G 72n");
net=train(net,network_input GS*,slope G 72n");
net=train(net,network_input GS*,slope G 72n");
net=train(net,network_input GS*,slope G 72n");
net=train(net,network_input GS*,slope G 72n");
yn=sim(net, network_ input GS%);
y=postmnmx(yn,minslope G 72,maxslope G 72);

E=slope G 72"-y;

min(E)
max(abs(E))
perf=mse(E)

[m,b,r]=postreg(y,slope G 72*%)

Rsqr=r~"2

Exhibit E-10. Final weights and biases for 72-h glucan slope network.
IW{1,1}: Weights to layer 1 from input (15x3 matrix)

0.0000
0.8077
0.0000
0.0000
0.0000
0.0000
0.5036
0.0000
0.5697
-0.0626
0.0000
0.0000
0.0000
-0.4887
0.0000

0.0000
0.0929
0.0000
0.0000
0.0000
0.0000
0.5064
0.0000

-0.4446

0.9278
0.0000
0.0000
0.0000

-1.2632

0.0000

0.0000
0.5348
0.0000
0.0000
0.0000
0.0000

-0.6639

0.0000

-0.4330

0.1463
0.0000
0.0000
0.0000

-0.1965

0.0000
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Exhibit E-10. Continued

b{1}: Bias to layer 1 (15x1 matrix)

0.0000
0.3316
0.0000
0.0000
0.0000
0.0000
0.3417
0.0000
-0.3115
-0.3921
0.0000
0.0000
0.0000
-0.5095
0.0000

LW{2,1}: Weights to layer 2 (1x15 matrix)

[-0.0000 -0.6337 -0.0000 -0.0000 0.0000 -0.0000 -0.7699 0.0000 0.7599 -0.8944
0.0000 0.0000 -0.0000 -0.6977 0.0000]

b{2}: Bias to layer 2 (1x1 matrix)
[0.1525]

Exhibit E-11. Matlab codes for training and simulating 72-h glucan intercept network.
clc

clear

load L.m

load A_ G.m

load Cric.m

load intercept G 72.m
[Ln,minL,maxL]=premnmx(L) ;
[A_Gn,minA_G,maxA_G]=premnmx(A_G);
[Cricn,minCric,maxCric]=premnmx(Cric);
[Gn,mInG, maxG]=premnmx(G) ;

for 1=1:138,
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Exhibit E-11. Continued
network_input_GI1 (I1,1)=A_6n(1)"
end
for 1=1:138,
network_input_Gl1 (1,2)=Crilcn(l)*
end
for 1=1:138,
network input_GI (1,3)=Ln(1)"
end
[intercept G _72n,minintercept G_72,maxintercept G _72]=premn
mx(intercept G 72);
net=newff([min(A_Gn)max(A_Gn);min(Cricn)max(Cricn);min(Ln)
max(Ln)], [15 1], {"tansig”, “"purelin®}, "trainbr®);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,196836549) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input _GI~,intercept G 72n");
net=train(net,network_input _GI~,intercept G 72n");
net=train(net,network_input _GI~,intercept G 72n");
net=train(net,network_input _GI~,intercept G 72n");
net=train(net,network_input _GI~,intercept G 72n");
net=init(net);
net=train(net,network_input_GI",intercept G _72n");
net=train(net,network_input_GI~,intercept G _72n");
net=train(net,network_input_GI~,intercept G _72n");
net=train(net,network_input_GI~,intercept G _72n");
yn=sim(net, network_input_GI");
y=postmnmx(yn,minintercept_G_72,maxintercept G 72);
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Exhibit E-11. Continued
E=intercept G 727-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept G _72%)
Rsqr=r~"2

Exhibit E-12. Final weights and biases for 72-h glucan intercept network.
IW{1,1}: Weights to layer 1 from input (15x3 matrix)

0.1849 0.4436 2.0048
0.1022 0.3935 2.1109
-0.0919 -1.2824 0.2028
0.1509 0.3021 0.2353
0.1509 0.3021 0.2353
-0.1509 -0.3021 -0.2353
0.6118 2.3543 0.4073
-1.4948 0.5219 0.6287
1.3461 -0.9300 -0.1261
1.4222 -0.2262 -1.2908
-0.1509 -0.3021 -0.2353
0.5802 0.1442 -1.0038
-0.1060 -0.9585 -0.7127
-0.1509 -0.3021 -0.2353
0.1509 0.3021 0.2353

b{1}: Bias to layer 1 (15x1 matrix)

-1.1784
0.6521
-1.0616
0.0388
0.0388
-0.0388
-0.8610
-0.3598
0.5341
0.3309
-0.0388
-0.2098
0.5804
-0.0388
0.0388



243

Exhibit E-12. Continued
LW{2,1}: Weights to layer 2 (1x15 matrix)

[-0.4082 -0.5304 0.4083 -0.4082 -0.9960 -0.7987 0.5253 0.4082 0.4082 -0.8670
-0.8576 0.6835 1.5270 1.6656 0.4083]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.2638]

Exhibit E-13. Matlab codes for training and simulating 1-h xylan slope network.
clc
clear
load L.m
load A.m
load X.m
load Cric.m
load slope X 1.m
[Ln,minL,maxL]=premnmx(L);
[An,minA, maxA]=premnmx(A);
[Xn,minX, maxX]=premnmx(X) ;
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:123,

network input_GS (I,1)=Crilcn(l)*
end
for 1=1:123,

network_input_GS (I1,2)=Ln(1)*
end
for 1=1:123,

network_input_GS (I1,3)=An(1)"
end
for 1=1:123,
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Exhibit E-13. Continued
network_input_GS (I1,4)=Xn(1)"
end
[slope_X 1n,minslope_X_ 1,maxslope_X_ 1]=premnmx(slope_X 1);
net=newff([min(Cricn)max(Cricn) ;min(Ln)max(Ln) ;min(An)
max(An) ;min(Xn)max(Xn)],[151],{ " tansig”, "purelin”}, "tr
ainbr®);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input_GS*,slope_ X 1n%);
net=train(net,network _input _GS*,slope_ X 1n%);
net=train(net,network_input_GS*,slope_ X 1n%);
net=init(net);
net=train(net,network_input _GS*,slope_ X 1n%);
net=train(net,network _input_GS*,slope_X 1n%);
net=train(net,network _input_GS*,slope_X 1n%);
yn=sim(net, network_input_GS%);
y=postmnmx(yn,minslope_X 1,maxslope_X 1);
E=slope X 1"-y;
min(E)
max(abs(E))
perf=mse(E)
[m,b,r]=postreg(y,slope X 1)
Rsqr=r"2
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Exhibit E-14. Final weights and biases for 1-h xylan slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

-0.0186 0.0322 0.0100 -0.0061
0.8718 0.0751 0.5075 0.8932
0.3201 -0.7804 -0.1902 0.0469
-0.0162 0.0281 0.0088 -0.0054
0.0176 -0.0305 -0.0095 0.0058
0.9855 0.8280 0.5793 0.5775
0.2159 -0.3659 0.9807 0.2793
-0.0145 0.0252 0.0079 -0.0049
-0.6049 -1.2427 -0.4137 -0.4043
0.0180 -0.0312 -0.0097 0.0059
-0.0189 0.0327 0.0102 -0.0061
-0.2083 -0.2964 0.5158 -0.2713
0.0209 -0.0361 -0.0112 0.0067
0.0200 -0.0347 -0.0108 0.0065
-0.0150 0.0261 0.0082 -0.0050

b{1}: Bias to layer 1 (15x1 matrix)

0.0212
0.3367
0.5152
0.0185
-0.0201
-0.6664
-0.2949
0.0167
-0.1704
-0.0206
0.0216
0.2848
-0.0238
-0.0229
0.0173

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0558 0.0416 0.0378 -0.0409 0.0393 0.0387 -0.5403 0.0040 0.9413 -0.7355
1.2362 0.8032 0.0572 1.0568 -0.0393]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.4913]
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Exhibit E-15. Matlab codes for training and simulating 1-h xylan intercept network.
clc
clear
load L.m
load A.m
load X.m
load Cric.m
load intercept X 1.m
[Ln,minL,maxL]=premnmx(L);
[An,minA,maxA]=premnmx(A);
[Xn,minX, maxX]=premnmx(X) ;
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:123,

network input_Gl1 (1,1)=Ln(1)"
end
for 1=1:123,

network input_Gl1 (1,2)=An(1)"
end
for 1=1:123,

network_input_GI (I1,3)=Crilcn(l)"
end

for 1=1:123,
network_input_GI (I1,4)=Xn(1)*
end
[intercept X 1n,minintercept_X_1,maxintercept X 1]=premnmx(
intercept_X 1);
net=newff([min(Ln)max(Ln) ;min(An)max(An) ;min(Cricn)
max(Crilcn) ;min(Xn)max(Xn)],[15 1],{"tansig”", "purelin”
},"trainbr*);
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Exhibit E-15. Continued

net.trainParam.show=20;

net.trainParam.epoch=100;
randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
net=init(net);

net=train(net,network_input _GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
net=train(net,network_input GI~,intercept X 1n%);
yn=sim(net, network_input _GI%);
y=postmnmx(yn,minintercept_X 1,maxintercept X 1);
E=intercept X 1"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept_X 1%)

Rsqr=r~"2
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Exhibit E-16. Final weights and biases for 1-h xylan intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0436 0.0024 -0.0728 0.0154
-0.0436 -0.0024 0.0728 -0.0154
-0.5918 -0.1113 -1.1204 0.0379
-0.0436 -0.0024 0.0728 -0.0155
-0.0436 -0.0024 0.0728 -0.0155
-0.0436 -0.0024 0.0728 -0.0155
-0.9048 0.0460 0.1379 0.5963
0.0682 0.4254 0.4198 0.8420
-0.0424 -0.0023 0.0708 -0.0149
0.0429 0.0024 -0.0717 0.0152
-0.0424 -0.0023 0.0707 -0.0149
0.0436 0.0024 -0.0728 0.0155
-0.8265 -0.7954 -0.0596 -0.4606
0.0383 0.0021 -0.0637 0.0132
-0.0389 -0.0022 0.0648 -0.0135

b{1}: Bias to layer 1 (15x1 matrix)

0.0072
-0.0072
0.6972
-0.0072
-0.0072
-0.0072
0.0474
-0.3791
-0.0072
0.0072
-0.0072
0.0072
-0.0214
0.0071
-0.0071

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0862 0.0864 0.0850 -0.0846 1.1917 -0.0839 0.0846 1.1393 -0.0847 0.0850
0.0848 -0.6867 -0.9522 0.0844 -0.0844]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.1247]
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Exhibit E-17. Matlab codes for training and simulating 6-h xylan slope network.
clc
clear
load L.m
load A_X.m
load Cric.m
load slope G 6.m
[Ln,minL,maxL]=premnmx(L);
[A_Xn,minA_X,maxA_ X]=premnmx(A_X);
[Cricn,minCric,maxCric]=premnmx(Cric);
[slope G 6n,minslope G _6,maxslope_G_6]=premnmx(slope G 6);
for 1=1:139,
network input_GS (I1,1)=Ln(1)"
end
for 1=1:139,
network input_GS (1,2)=A_ Xn(1)*
end
for 1=1:139,
network_input_GS (I1,3)=Crilcn(l)"
end
for 1=1:139,
network input_GS (I1,4)=slope_G 6n(l1)"
end
[slope X 6n,minslope_X 6,maxslope_X 6]=premnmx(slope_X 6);
net=newff([min(Ln)max(Ln) ;min(A_Xn)max(A_Xn);min(Crilc_Xn)
max(Crilc_Xn);min(slope_G _6n) max(slope G 6n)], [15 1],
{"tansig”", "purelin®}, "trainbr™);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
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Exhibit E-17. Continued

net.trainParam.goal=.01;

net=init(net);
net=train(net,network_input_GS*,slope_X 6n%);
net=train(net,network_input_GS*,slope_X 6n%);
net=train(net,network _input GS*,slope X 6n%);
net=train(net,network _input GS*,slope X 6n%);
net=train(net,network _input GS*,slope X 6n%);
net=init(net);
net=train(net,network _input _GS*,slope X 6n%);
net=train(net,network _input GS*,slope X 6n%);
net=train(net,network_input _GS*,slope_X 6n%);
net=train(net,network_input_GS*,slope_X 6n%);
net=train(net,network _input_GS*,slope_X 6n%);
yn=sim(net, network_input _GS%);
y=postmnmx(yn,minslope_X 6,maxslope_X 6);
E=slope X 6"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y,slope X 6%)

Rsqr=r~"2
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Exhibit E-18. Final weights and biases for 6-h xylan slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

-0.0459 0.0523 -0.0132 -0.1013
-0.1696 -0.4565 0.7264 0.2691
-0.0459 0.0523 -0.0132 -0.1013
-0.0459 0.0523 -0.0132 -0.1013
-0.0459 0.0523 -0.0132 -0.1013
-0.0459 0.0523 -0.0132 -0.1013
0.0459 -0.0523 0.0132 0.1013
0.4938 0.2635 0.0912 -0.6390
-0.0459 0.0523 -0.0132 -0.1013
0.0459 -0.0522 0.0132 0.1013
0.0459 -0.0523 0.0132 0.1013
-0.0459 0.0523 -0.0132 -0.1013
0.6322 -0.7708 0.3782 0.1083
0.9061 0.0956 -0.3111 -0.3117
0.0459 -0.0523 0.0132 0.1013

b{1}: Bias to layer 1 (15x1 matrix)

0.0047
-0.8230
0.0047
0.0047
0.0047
0.0047
-0.0047
-0.8037
0.0047
-0.0047
-0.0047
0.0047
0.0210
0.1445
-0.0047

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.1255 0.1255 0.1255 -0.1255 -0.1255 1.4128 0.1255 0.1255 -0.1255 0.1240
0.1255 -0.7701 -0.1254 0.5811 0.9140]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.0353]
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Exhibit E-19. Matlab codes for training and simulating 6-h xylan intercept network.
clc
clear
load L.m
load A.m
load Crlc_G.m
load intercept G 6.m
[Ln,minL,maxL]=premnmx(L);
[An,minA,maxA]=premnmx(A);
[Cric _Gn,minCric_G,maxCrilc_G]=premnmx(Cric_G);
[intercept G 6n,minintercept G _6,maxintercept G _6]=premnmx(
intercept_G 6);
for 1=1:139,
network input_Gl1 (1,1)=Ln(1)"
end
for 1=1:139,
network input_Gl1 (1,2)=An(1)"
end
for 1=1:139,
network_input_GIl (1,3)=Crlc_Gn(l1)*
end
for 1=1:139,
network_input_Gl (I,4)=intercept G 6n(l)*
end
[intercept_X 6n,minintercept_X_6,maxintercept_ X 6]=premnmx(
intercept_X 6);
net=newff([min(Ln)max(Ln) ;min(An)max(An) ;min(Crlc_Gn)
max(Crilc_Gn) ;min(intercept_G_6n) max(intercept_G 6n)],
[15 1], {"tansig”, "purelin™}, "trainbr™);
net.trainParam.show=20;
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Exhibit E-19. Continued

net.trainParam.epoch=100;
randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input GI~,intercept X 6n%);
net=train(net,network_input GI~,intercept X 6n%);
net=train(net,network_input GI~,intercept X 6n%);
net=train(net,network_input GI~,intercept X 6n%);
net=init(net);

net=train(net,network_input GI~,intercept X 6n%);
net=train(net,network_input _GI~,intercept_X 6n%);
net=train(net,network_input _GI~,intercept_X 6n%);
net=train(net,network_input GI~,intercept_X 6n%);
yn=sim(net, network_input _GI%);
y=postmnmx(yn,minintercept_X 6,maxintercept X 6);
E=intercept X 6"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept_X 6%)

Rsqr=r~"2
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Exhibit E-20. Final weights and biases for 6-h xylan intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0000 0.0000 0.0000 0.0000
0.3525 -0.6052 -0.2994 -0.2302
-0.9090 -0.2653 -0.6298 0.0345
0.9789 0.8875 -0.0536 0.2776
-0.2450 -0.3422 0.6032 0.1695
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.3144 -0.2562 -0.0385 0.3228
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.4987 0.2278 0.3257 -1.0622
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

b{1}: Bias to layer 1 (matrix 15x1)

0.0000
0.3865
-0.1991
-0.1274
-0.2354
0.0000
0.0000
0.0000
-0.2235
0.0000
0.0000
0.0000
-0.6924
0.0000
0.0000

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0000 -0.6567 -0.6602 -0.8374 -0.5530 -0.0000 -0.0000 -0.0000 0.4282 -0.0000
0.0000 -0.0000 -0.9544 0.0000 0.0000]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.041]
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Exhibit E-21. Matlab codes for training and simulating 72-h xylan slope network.
clc

clear

load L_X.m

load A_X.m

load Crilc_X.m

load slope G 72.m

[L_Xn,minL_X,maxL_X]=premnmx(L_X);

[A_Xn,minA_X,maxA_ X]=premnmx(A_X);

[Cric_ Xn,minCric_X,maxCrlc_X]=premnmx(Cric_X);

[slope G 72n,minslope G 72,maxslope_G_72]=premnmx(slope G 7

2);
for 1=1:140,

network input_GS (I1,1)=L_Xn(1)*
end
for 1=1:140,

network input_GS (1,2)=A_ Xn(1)*
end
for 1=1:140,

network_input_GS (I1,3)=Crlc_Xn(l1)*
end
for 1=1:140,

network_input_GS (I,4)=slope G 72n(1)~
end

[slope_ X 72n,minslope_X 72,maxslope_X_72]=premnmx(slope_X_ 7
2);

net=newff([min(L_Xn)max(L_Xn) ;min(A_Xn)max(A_Xn);min(Crilc_X
n)max(Crilc_Xn);min(slope_G_72n)max(slope_G_72n)],[15
1], {"tansig”, “"purelin™}, “"trainbr®);

net.trainParam.show=20;
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Exhibit E-21. Continued

net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;

net=init(net);
net=train(net,network_input GS*,slope_ X 72n*);
net=train(net,network_input GS*,slope_ X 72n");
net=train(net,network_input GS*,slope X 72n");
net=train(net,network_input GS*,slope_ X 72n");
net=init(net);
net=train(net,network_input GS*,slope_ X 72n*);
net=train(net,network_input _GS*,slope_X 72n*);
net=train(net,network_input _GS*,slope_X 72n*);
net=train(net,network_input _GS*,slope_X 72n*);
yn=sim(net, network_input _GS%);
y=postmnmx(yn,minslope X 72,maxslope X 72);
E=slope X 72"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y,slope X 72%)

Rsqr=r~"2
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Exhibit E-22. Final weights and biases for 72-h xylan slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0600 -0.0870 0.0137 -0.0606
-0.0600 0.0870 -0.0137 0.0606
0.9704 -0.2968 -0.2111 -0.0698
0.0600 -0.0870 0.0137 -0.0606
0.4326 0.5520 0.6865 0.3931
0.0600 -0.0870 0.0137 -0.0606
0.0600 -0.0870 0.0137 -0.0606
-0.7837 0.3041 -0.7967 -1.1349
-0.0600 0.0870 -0.0137 0.0606
0.0600 -0.0870 0.0137 -0.0606
1.1056 0.2392 0.2976 -0.8763
0.0600 -0.0870 0.0137 -0.0606
0.0600 -0.0870 0.0137 -0.0606
-0.6199 0.3813 -0.7095 0.6782
0.0600 -0.0870 0.0137 -0.0606

b{1}: Bias to layer 1 (matrix 15x1)

-0.0343
0.0343
0.3806

-0.0343
0.0467

-0.0343

-0.0343
0.6077
0.0343

-0.0343
0.2789

-0.0343

-0.0343
0.8416

-0.0343

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.1330 -0.1330 0.7767 -0.1330 -0.7899 0.6386 -1.2048 0.1330 0.1330 0.1330
-0.9055 0.1330 0.1330 -0.1330 0.1330]

b{2}: Bias to layer 2 (1x1 matrix)
[0.2811]
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Exhibit E-23. Matlab codes for training and simulating 72-h xylan intercept network.
clc
clear
load L_X.m
load A.m
load X.m
load Cric.m
load intercept G 72.m
[L_Xn,minL_X,maxL_X]=premnmx(L_X);
[An,minA,maxA]=premnmx(A);
[Xn,minX, maxX]=premnmx(X) ;
[Cricn,minCric,maxCric]=premnmx(Cric);
[intercept G _72n,minintercept _G_72,maxintercept G _72]=premn
mx(intercept_G _72);
for 1=1:140,
network input_Gl1 (I1,1)=Crilcn(l)*
end
for 1=1:140,
network_input_GI (I1,2)=L_Xn(l)"*
end
for 1=1:140,
network_input_GI (I1,3)=An(1)"
end
for 1=1:140,
network_input_Gl1 (1,4)=Xn(1)"
end
for 1=1:140,
network_input_Gl1 (I,5)=i1ntercept G _72n(l1)"
end
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Exhibit E-23. Continued
[intercept X 72n,minintercept_X_72,maxintercept_X 72]=premn
mx(intercept_X 72);

net=newff([min(Cricn)max(Cricn) ;min(L_Xn)max(L_Xn);min(An)m
ax(An) ;min(Xn)max(Xn) ;min(intercept_G_72n)max(intercept_
G_72n)], [15 1], {"tansig", "purelin”},"trainbr®);

net.trainParam.show=20;

net.trainParam.epoch=100;

randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input _GI~,intercept X 72n");

net=train(net,network_input _GI~,intercept X 72n");

net=train(net,network_input _GI~,intercept X 72n");

net=train(net,network_input _GI~,intercept X 72n");

net=init(net);

net=train(net,network_input _GI~,intercept X 72n");

net=train(net,network_input _GI~,intercept_X 72n");

net=train(net,network_input _GI~,intercept X 72n");

net=train(net,network_input _GI~,intercept X 72n");

yn=sim(net, network_input _GI%);

y=postmnmx(yn,minintercept_X_ 72,maxintercept X 72);

E=intercept_X 727-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept_X 72%)

Rsqr=r"2
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Exhibit E-24. Final weights and biases for 72-h xylan intercept network.
IW{1,1}: Weights to layer 1 from input (15x5 matrix)

0.0502 0.0034 -0.0197 0.0095 -0.0034
-0.0471 -0.0031 0.0184 -0.0089 0.0032
-0.0641 -0.0047 0.0255 -0.0116 0.0046
0.1987 0.5397 -0.6408 -0.1225 -0.5739
-0.2296 0.2880 -0.2293 0.3777 0.7244
-0.0752 -0.0058 0.0302 -0.0131 0.0057
-0.0582 -0.6319 0.0478 -0.2003 0.5218
-0.1299 -1.1060 -0.4965 -0.1679 0.4196
-0.4052 -0.0102 0.2484 0.0197 0.1044
0.2469 0.4308 0.9953 0.3058 -0.1262
-0.0511 -0.0035 0.0200 -0.0096 0.0035
0.0039 -0.4263 -0.0675 0.8588 0.3914
-0.1378 -0.3920 -0.4108 -0.6054 0.4999
0.0513 0.0035 -0.0201 0.0096 -0.0035
-0.0613 -0.0044 0.0243 -0.0112 0.0044

b{1}: Bias to layer 1 (15x1 matrix)

-0.0128
0.0119
0.0166
0.2132
0.5271
0.0198

-0.5971
0.5143
0.0898

-0.5758
0.0130
0.3694
0.0068

-0.0131
0.0158

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.5933 -0.6262 -0.0497 0.0543 -0.4578 0.0429 -0.1093 0.7166 -0.6465 -0.0403
-0.7663 0.0758 -1.1401 0.0586 0.5021]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.2196]
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Exhibit E-25. Matlab codes for training and simulating 1-h total sugar slope network.
clc
clear
load L_TS.m
load A_TS.m
load TS.m
load Crilc_TS.m
load slope TS 1.m
[L_TSn,minL_TS,maxL_TS]=premnmx(L_TS);
[A_TSn,minA_TS,maxA _TS]=premnmx(A_TS);
[TSn,minTS,maxTS]=premnmx(TS) ;
[Cric_TSn,minCric_TS,maxCrlc_TS]=premnmx(Crlc_TS);
for 1=1:146,

network input_GS (I1,1)=L_TSn(l)*

end
for 1=1:146,
network input_GS (1,2)=A_TSn(l)*
end
for 1=1:146,
network input_GS (1,3)=Crlc_TSn(l)"
end
for 1=1:146,
network_input_GS (1,4)=TSn(l)"
end

[slope TS 1n,minslope TS 1,maxslope TS 1]=premnmx(slope TS
1);

net=newff([min(L_TSn)max(L_TSn) ;min(A_TSn)max(A_TSn) ;min(Cr
Ic_TSn)max(Cric_TSn) ;min(TSn)max(TSn)],[15 1],{ tansi
g","purelin®}, "trainbr®);

net.trainParam.show=20;
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Exhibit E-25. Continued

net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;

net=init(net);
net=train(net,network_input GS*,slope TS 1n");
net=train(net,network_input GS*,slope TS 1n");
net=train(net,network_input GS*,slope TS 1n");
net=train(net,network_input GS*,slope TS 1n");
net=train(net,network_input GS*,slope TS 1n");
net=init(net);

net=train(net,network_input _GS*,slope_TS 1n");
net=train(net,network_input _GS*,slope_TS 1n");
net=train(net,network_input _GS*,slope_TS 1n*);
net=train(net,network_input _GS*,slope_TS 1n");
net=train(net,network_input _GS*,slope_TS 1n");
yn=sim(net, network_input_GS%);
y=postmnmx(yn,minslope TS 1,maxslope TS 1);
E=slope TS 1°-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y,slope TS 1)

Rsqr=r"2
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Exhibit E-26. Final weights and biases for 1-h total sugar slope network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0261 -0.0489 0.1466 -0.2310
0.0261 -0.0489 0.1466 -0.2310
0.0261 -0.0489 0.1466 -0.2310
0.0261 -0.0489 0.1466 -0.2310
0.0261 -0.0489 0.1466 -0.2310
-0.0261 0.0489 -0.1466 0.2310
0.0261 -0.0489 0.1466 -0.2310
-0.0261 0.0489 -0.1466 0.2310
0.5967 0.0493 1.1589 -0.3651
0.0261 -0.0489 0.1466 -0.2310
-1.0515 0.0197 -0.1583 0.0638
0.4685 -0.1937 -1.6905 0.3269
0.0261 -0.0489 0.1466 -0.2310
0.0261 -0.0489 0.1466 -0.2310
-0.0261 0.0489 -0.1466 0.2310

b{1}: Bias to layer 1 (15x1 matrix)

-0.0196
-0.0196
-0.0196
-0.0196
-0.0196
0.0196
-0.0196
0.0196
0.4332
-0.0196
0.5069
0.3648
-0.0196
-0.0196
0.0196

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.3241 0.3241 0.3241 0.3241 -0.3241 -0.3241 0.7965 -0.3241 0.3241 0.8419
-0.6041 0.3241 0.5053 0.3241 -0.3241]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.2253]



Exhibit E-27. Matlab codes for training and simulating 1-h total sugar intercept
network.
clc
clear
load L.m
load A_X.m
load TS.m
load Crilc.m
load intercept TS 1.m
[Ln,minL,maxL]=premnmx(L);
[A_Xn,minA_X,maxA_X]=premnmx(A_X);
[TSn,minTS,maxTS]=premnmx(TS) ;
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:146,

network input_GS (I,1)=Crilcn(l)*
end
for 1=1:146,

network input_GS (I1,2)=A_ Xn(1)*
end
for 1=1:146,

network input_GS (1,3)=Ln(1)"
end
for 1=1:146,

network input_GS (1,4)=TSn(l)"

end

264

[intercept TS 1n,minintercept TS 1,maxintercept TS l]=premn

mx(intercept_TS 1);

net=newff([min(Cricn)max(Cricn);min(A_Xn) max(A_Xn);min(Ln)
max(Ln) ;min(TSn)max(TSn)],[15 1],{ "tansig", "purelin},

"trainbr*);
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Exhibit E-27. Continued

net.trainParam.show=20;

net.trainParam.epoch=100;

randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input GS",intercept TS 1n");
net=train(net,network_input GS",intercept TS 1n");
net=train(net,network_input GS*",intercept TS 1n");
net=train(net,network_input GS*,intercept TS 1n");
net=train(net,network_input GS*,intercept TS 1n");
net=init(net);

net=train(net,network_input _GS*,intercept TS 1n");
net=train(net,network_input _GS*,intercept TS 1n");
net=train(net,network_input _GS*,intercept TS 1n");
net=train(net,network_input _GS*,intercept TS 1n");
net=train(net,network_input _GS*,intercept TS 1n");
yn=sim(net, network_input _GS%);
y=postmnmx(yn,minintercept_TS 1,maxintercept TS 1);
E=intercept_TS 17-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept TS 17)

Rsqr=r"2
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Exhibit E-28. Final weights and biases for 1-h total sugar intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.1400 0.6941 0.3669 -0.4279
-0.4324 0.1885 0.2232 -0.5597
-0.4494 -0.6915 0.2500 -0.0752
-0.0458 -0.0034 -0.0284 0.0088
0.0459 0.0034 0.0284 -0.0088
-0.3918 -0.7677 -0.4788 -0.4738
-1.1135 -0.0137 -0.4477 0.0510
0.0461 0.0034 0.0286 -0.0089
0.0423 0.0031 0.0263 -0.0082
-0.0459 -0.0034 -0.0285 0.0088
-0.0458 -0.0034 -0.0284 0.0088
-0.0457 -0.0034 -0.0283 0.0088
-1.2915 0.0360 0.0184 1.0227
0.0457 0.0034 0.0283 -0.0088
-0.0455 -0.0033 -0.0282 0.0088

b{1}: Bias to layer 1 (15x1 matrix)

0.0170
0.5309
0.0965
-0.0230
0.0230
-0.8075
0.2900
0.0231
0.0212
-0.0230
-0.0230
-0.0229
-0.5036
0.0229
-0.0228

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0582 -0.0597 -1.0321 1.0266 0.0595 -0.5516 0.0591 -0.0592 0.0598 -0.6463
-0.7123 -1.1192 -0.0585 -0.0599 0.0581]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.3918]
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Exhibit E-29. Matlab codes for training and simulating 6-h total sugar slope network.
clc
clear
load L.m
load A.m
load A_X.m
load Cric.m
load slope TS 6.m
[Ln,minL,maxL]=premnmx(L);
[An,minA,maxA]=premnmx(A);
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:147,
network input_GS (I,1)=Crilcn(l)*
end
for 1=1:147,
network input_GS (I1,2)=An(1)"
end
for 1=1:147,
network_input_GS (I1,3)=Ln(1)"
end
[slope TS 6n,minslope TS 6,maxslope_ TS 6]=premnmx(slope_TS
6);
net=newff([min(Cricn)max(Cricn) ;min(An)max(An);min(Ln)
max(Ln)], [15 1], {"tansig”, "purelin™}, "trainbr®);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input_GS*,slope_TS 6n");



Exhibit E-29. Continued

net=train(net,network_input_GS",slope_TS 6n");
net=train(net,network_input_GS",slope_TS 6n");
net=train(net,network_input_GS*,slope_TS 6n");

net=init(net);

net=train(net,network_input GS*,slope TS 6n");
net=train(net,network_input GS*,slope TS 6n");
net=train(net,network_input GS*,slope TS 6n");
net=train(net,network_input GS*,slope TS 6n");
yn=sim(net, network_ input GS%);
y=postmnmx(yn,minslope TS 6,maxslope TS 6);

E=slope TS 6"-y;

min(E)
max(abs(E))
perf=mse(E)

[m,b,r]=postreg(y,slope TS 6%)

Rsqr=r~2

Exhibit E-30. Final weights and biases for 6-h total sugar slope network.

IW{1,1}: Weights to layer 1 from input (15x3 matrix)

-0.0739
-1.1221

0.0880
-0.5174
-0.0880

0.6064

0.6737
-2.0658
-0.7265
-1.0666
-1.3185
-1.0236

0.0880

0.0880
-0.0880
-0.0880

0.1253

0.0739
0.1241
0.5363
0.3780
0.5354
0.3937
0.1071

-0.2306
-0.0739
-0.0739

0.0739
0.0739
0.4971

-0.0494

0.1298
0.0494
1.2518

-1.7033

0.7873

-0.4888

0.8681

-1.2448

1.1095

-0.0494
-0.0494

0.0494
0.0494

-1.2270
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Exhibit E-30. Continued

b{1}: Bias to layer 1 (15x1 matrix)

0.1969
-0.1095
-0.1969

0.4932
-1.5270
-0.0266

0.2783

0.3473

0.1597

2.1698

0.1969

0.1969
-0.1969
-0.1969

0.6366

LW{2,1}: Weights to layer 2 (1x15 matrix)

[[0.2449 0.4136 0.2449 1.0718 1.0706 0.8153 -0.8025 -0.9100 0.8433 1.9239
-0.2449 -0.2449 0.2449 0.2449 0.9704]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.8848]

Exhibit E-31. Matlab codes for training and simulating 6-h total sugar intercept
network.

clc

clear

load L.m

load A.m

load TS.m

load Cric.m

load intercept TS 6.m
[Ln,minL,maxL]=premnmx(L) ;
[An,minA, maxA]=premnmx(A) ;
[TSn,minTS,maxTS]=premnmx(TS);
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Exhibit E-31. Continued
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:147,
network_input_GS (I,1)=An(1)"
end
for 1=1:147,
network input_GS (I1,2)=Crilcn(l)*
end
for 1=1:147,
network input_GS (I1,3)=Ln(1)"
end
for 1=1:147,
network input_GS (1,4)=TSn(l)"
end
[intercept TS _6n,minintercept TS 6,maxintercept TS 6]=premn
mx(intercept_TS 6);
net=newff([min(An)max(An) ;min(Cricn)max(Cricn) ;min(Ln)
max(Ln) ;min(TSn)max(TSn)],[15 1],{ tansig", "purelin},
"trainbr*);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=init(net);



Exhibit E-31. Continued

net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input_GS",intercept TS 6n");
net=train(net,network_input GS*",intercept TS 6n");
yn=sim(net, network input GS%);
y=postmnmx(yn,minintercept TS 6,maxintercept TS 6);
E=intercept_TS 6"-y;

min(E)
max(abs(E))
perf=mse(E)

[m,b,r]=postreg(y, intercept TS 67)

Rsqr=r~2

Exhibit E-32. Final weights and biases for 6-h total sugar intercept network.

IW{1,1}: Weights to layer 1 from input (15x4 matrix)

-0.0716
0.1269
0.0710
0.0714
0.2935
1.1317
0.9558
0.0713
0.0710
0.0714
0.1542
0.5006
0.0714
0.0712
0.0713

0.0126
0.8119
-0.0124
-0.0125
1.0084
0.0713
-0.6006
-0.0125
-0.0124
-0.0125
0.3110
0.4087
-0.0125
-0.0124
-0.0125

0.0219
-1.0444
-0.0218
-0.0219

0.0121

0.1808
-0.0376
-0.0218
-0.0217
-0.0219
-0.6824
-0.7677
-0.0219
-0.0218
-0.0218

-0.0275
-0.1820
0.0273
0.0274
-0.6272
0.2700
-0.2893
0.0274
0.0273
0.0275
0.6496
-1.0859
0.0275
0.0274
0.0274
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Exhibit E-32. Continued

b{1}: Bias to layer 1 (15x1 matrix)

-0.0575
0.2669
0.0570
0.0573

-0.3817
0.4847
0.7264
0.0572
0.0570
0.0573
0.8338
0.0002
0.0573
0.0572
0.0572

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0999 -0.8299 -0.0991 -0.0996 -0.7567 -1.0153 0.5072 -0.0994 -0.0990 -0.0996
1.0085 1.1252 -0.0996 -0.0993 -0.0994]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.6043]

Exhibit E-33. Matlab codes for training and simulating 72-h total sugar slope network.
clc

clear

load L.m

load A X.m

load TS.m

load Cric.m

load slope TS 72.m
[Ln,minL,maxL]=premnmx(L) ;
[A_Xn,minA_X,maxA_X]=premnmx(A_X);
[TSn,minTS,maxTS]=premnmx(TS) ;
[Cricn,minCric,maxCric]=premnmx(Cric);
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Exhibit E-33. Continued
for 1=1:139,
network _input_GS (I1,1)=Crlc_Gn(l)*

end
for 1=1:139,

network input_GS (1,2)=A_ Xn(1)*
end
for 1=1:139,

network input_GS (I1,3)=Ln(1)"
end
for 1=1:139,

network input_GS (1,4)=TSn(l)"
end

[slope TS 72n,minslope_TS 72,maxslope TS 72]=premnmx(slope_
TS_72);

net=newff([min(Cric_Gn)max(Cric_Gn) ;min(A_Xn)max(A_Xn);min(
Ln)max(Ln) ;min(TSn)max(TSn)],[15 1],{ tansig", "purelin
"}, "trainbr®);

net.trainParam.show=20;

net.trainParam.epoch=100;

randn("seed”,192836547) ;

net.trainParam.goal=.01;

net=init(net);

net=train(net,network_input _GS*,slope_TS 72n%);

net=train(net,network_input_GS*,slope_TS 72n%);

net=train(net,network_input_GS",slope_TS 72n%);

net=train(net,network_input_GS",slope_TS 72n%);

net=train(net,network_input_GS*,slope_TS 72n%);

net=init(net);

net=train(net,network _input_GS*,slope_TS 72n%);



Exhibit E-33. Continued

net=train(net,network_input_GS*,slope_TS 72n%);
net=train(net,network_input_GS",slope_TS 72n%);
net=train(net,network_input_GS*,slope_TS 72n%);
net=train(net,network _input_GS",slope_TS 72n%);

yn=sim(net, network input GS%);

y=postmnmx(yn,minslope TS 72,maxslope TS 72);

E=slope TS 72"-y;

min(E)

max(abs(E))

perf=mse(E)
[m,b,r]=postreg(y,slope TS 72%)

Rsqr=r~2

Exhibit E-34. Final weights and biases for 72-h total sugar slope network.

IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.3193 -0.6398 -0.0466
0.6151 0.9804 -0.2133
0.1777 -0.0774 0.8437
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
-0.5208 0.5320 0.4474
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
-0.3212 -0.5746 -0.8766

0.0000 0.0000 0.0000

0.0000
0.0000
-0.4409
-0.2346
-0.2819
0.0000
0.0000
0.0000
0.0000
0.0000
-0.3099
0.0000
0.0000
0.4227
0.0000
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Exhibit E-34. Continued

b{1}: Bias to layer 1 (15x1 matrix)

0.0000
0.0000
0.3158
0.2188
-0.6896
0.0000
0.0000
0.0000
0.0000
0.0000
0.1092
0.0000
0.0000
-0.3465
0.0000

LW{2,1}: Weights to layer 2 (1x15 matrix)

[0.0000 0.0000 -0.8421 -0.5745 -0.9434 -0.0000 0.0000 0.0000 0.0000 0.0000
-0.7929 0.0000 0.0000 -0.7941 0.0000]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.0226]

Exhibit E-35. Matlab codes for training and simulating 72-h total sugar intercept
network.

clc

clear

load L.m

load A.m

load TS.m

load Cric.m

load intercept TS 72.m
[Ln,minL,maxL]=premnmx(L) ;
[An,minA, maxA]=premnmx(A) ;
[TSn,minTS,maxTS]=premnmx(TS);
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Exhibit E-35. Continued
[Cricn,minCric,maxCric]=premnmx(Cric);
for 1=1:139,
network_input_GS (I1,1)=Crilcn(l)*
end
for 1=1:139,
network input_GS (I1,2)=An(1)"
end
for 1=1:139,
network input_GS (I1,3)=Ln(1)"
end
for 1=1:139,
network input_GS (1,4)=TSn(l)"
end
[intercept TS _72n,minintercept TS 72,maxintercept TS 72]=pr
emnmx(intercept TS 72);
net=newff([min(Cricn) max(Crlicn);min(An) max(An);min(Ln)
max(Ln) ;min(TSn) max(TSn)], [15 1],
{"tansig”, "purelin®}, "trainbr™);
net.trainParam.show=20;
net.trainParam.epoch=100;
randn("seed”,192836547) ;
net.trainParam.goal=.01;
net=init(net);
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=init(net);



Exhibit E-35. Continued
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network_input_GS*",intercept TS 72n");
net=train(net,network _input GS*",intercept TS 72n*);
yn=sim(net, network input GS%);
y=postmnmx(yn,minintercept TS 72,maxintercept TS 72);
E=intercept TS 72"-y;

min(E)

max(abs(E))

perf=mse(E)

[m,b,r]=postreg(y, intercept TS 72%)

Rsqr=r~2

Exhibit E-36. Final weights and biases for 72-h total sugar intercept network.
IW{1,1}: Weights to layer 1 from input (15x4 matrix)

0.1489 0.1695 0.9000 -0.9989
-0.0079 -0.0573 -0.0719 0.1298
-0.3851 -0.2054 -0.3089 0.2815
0.6674 -0.3497 0.3378 -0.1941
-0.2157 -1.7140 0.0730 -0.1164
0.0079 0.0573 0.0719 -0.1298
-0.6493 1.3668 -0.0378 0.0637
0.0079 0.0573 0.0719 -0.1298
-0.8914 0.3769 0.0767 0.3710
0.6122 0.0658 -1.2505 -0.2043
0.0079 0.0573 0.0719 -0.1298
-0.0079 -0.0573 -0.0719 0.1298
1.8894 0.3735 0.3977 -0.1343
-0.2615 -0.7853 1.0453 0.3670

-0.0079 -0.0573 -0.0719 0.1298
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Exhibit E-36. Continued

b{1}: Bias to layer 1 (15x1 matrix)

-1.1428
-0.0003
0.2361
0.4005
-0.4969
0.0003
0.8888
0.0003
0.5122
0.6771
0.0003
-0.0003
-0.8043
-0.5978
-0.0003

LW{2,1}: Weights to layer 2 (1x15 matrix)

[-1.0951 -0.1707 -0.5722 -0.6809 0.8878 0.1707 0.7241 0.1707 -1.1857 -0.7744
0.1707 -0.1707 -0.7296 -0.9122 -0.1707]

b{2}: Bias to layer 2 (1x1 matrix)
[-0.0223]



APPENDIX F

NETWORK-SIMULATED SLOPES AND INTERCEPTS

Table F-1. Net-simulated glucan slopes and intercepts.
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
1 0.60 0.81 1 1.07 1.12 1 1.22 6.66
2 7.78 3.28 2 9.37 13.88 2 6.05 37.67
3 10.33 3.20 3 1444  16.21 3 9.95 50.89
4 0.84 0.45 4 1.67 131 4 1.70 4.89
5 7.96 2.98 5 9.76 14.19 5 5.84 32.41
6 10.53 3.19 6 1350 16.98 6 8.92 45.90
7 0.46 0.30 7 1.27 0.92 7 1.40 3.68
8 8.83 3.23 8 10.51  15.40 8 6.51 36.19
9 10.50 3.30 9 1347  16.88 9 8.94  43.49
10 1.40 0.32 10 1.45 3.08 10 2.40 5.67
11 10.26 3.44 11 1213 17.59 11 7.13 38.35
12 11.19 3.55 12 13.74  18.33 12 8.48 40.97
13 2.37 0.65 13 2.07 4.17 13 3.94 10.10
14 9.39 3.40 14 11.35  17.65 14 6.18 48.84
15 1338 421 15 17.31  20.98 15 11.01  53.11
16 248 0.56 16 2.86 2.50 16 6.51 5.85
17 1311 485 17 15.07 22.34 17 9.70 58.44
18 1495 490 18 18.02  23.49 18 1211  59.91
19 2.52 0.70 19 5.38 0.34 19 11.67 6.40
20 12.61 5.43 20 15.68  20.75 20 1193 4498
21 13.64 5.78 21 16.06  22.70 21 1221  49.18
22 1.07 0.25 22 2.64 1.05 22 3.65 6.03
23 10.56 3.34 23 13.92 1753 23 9.43 44.72
24 13.78 2.43 24 19.70  21.67 24 14.64  61.35
25 1.35 0.47 25 2.95 1.20 25 4.94 7.25
26 12.96 3.32 26 18.16  20.43 26 1346  58.49
27 13.42 3.15 27 18.95 21.03 27 1419  60.72
28 1.57 0.43 28 3.35 211 28 5.25 7.57
29 12.00 3.50 29 16.35  19.50 29 11.73  52.38
30 13.83 3.10 30 19.02  21.86 30 1425 61.11
31 1.79 0.54 31 3.57 2.65 31 5.97 8.27
32 11.24 3.46 32 16.03  18.98 32 1146  48.97
33 12.56 3.42 33 1754  20.67 33 12.77  55.19
34 3.04 0.92 34 5.44 5.96 34 7.14 13.68
35 12.79 3.74 35 16.80  20.98 35 12.04 52.83
36 15.20 3.50 36 19.86  23.88 36 1497  63.17
37 291 0.51 37 6.09 4.46 37 8.90 12.54
38 1499 433 38 19.37  23.87 38 14.04  61.49
39 15.93  4.27 39 2048 2494 39 15.09 64.44
40 4.59 0.94 40 15.54 5.17 40 18.90 31.38
41 17.95 6.59 41 22.01  30.46 41 19.03  69.58
42 20.25 6.85 42 2151  36.51 42 19.28  79.65
43 2.17 0.78 43 4.13 3.55 43 7.40 10.12



Table F-1. Continued
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
44 13.79 3.46 44 1950 22.46 44 14.84  62.15
45 14.48 3.27 45 20.27 2350 46 8.19 10.47
46 2.46 0.88 46 4.27 422 47 1439  58.22
47 13.13 3.49 47 19.70 21.93 48 17.18  69.56
48 15.67 2.80 48 21.83 26.14 49 8.37 11.28
49 2.43 0.86 49 4.43 4.09 50 13.47 5343
50 11.86 3.65 50 18.17  19.98 52 1045  16.39
51 11.86 3.65 51 18.17  19.98 53 1540  60.47
52 2.82 0.93 52 5.87 4.90 54 16,51 66.03
53 13.06 3.75 53 20.12 21.72 55 10.30 18.78
54 14.51 3.67 54 21.24  23.83 56 1518 62.78
55 2.67 0.45 55 6.71 4.39 57 1574  65.13
56 13.97 3.85 56 19.73  22.93 58 1330 25.76
57 14.68 3.83 57 20.26  23.92 59 1598 68.16
58 4.28 0.94 58 10.04 6.57 60 20.68  83.95
59 15.11 4.70 59 21.06 2455 61 2157  46.03
60 20.56 421 60 24.27 3292 62 2150 73.95
61 6.51 1.78 61 19.35 7.49 64 1163 19.21
62 19.35 6.99 62 24.06  32.48 65 17.09 66.73
63 23.14 6.91 63 22.20  46.02 66 20.71 81.11
64 2.80 0.75 64 6.45 4.44 67 13.02 2258
65 14.64 3.73 65 21.87 2394 68 16.51 59.68
66 18.41 2.74 66 2327 31.03 70 14.09 28.18
67 2.87 0.62 67 7.29 4.14 71 18.49 7151
68 12.64 3.77 68 21.12  20.77 72 2191 85.28
69 19.06 2.78 69 23.43  32.23 73 1532 2832
70 3.51 0.74 70 9.32 5.43 74 19.43  70.98
71 16.23 4.14 71 2276  25.60 75 21.86  81.23
72 20.05 3.30 72 2353 3290 76 1544  30.54
73 3.40 0.86 73 9.26 4.88 77 19.77 73.91
74 15.92 3.99 74 23.84  24.85 78 22,37  84.70
75 19.30 3.34 75 24.05 31.34 79 1769  37.63
76 3.46 0.67 76 10.37 4.93 80 20.71  77.08
77 17.12 3.96 77 2359  27.03 81 21.38  79.92
78 20.22 3.19 78 23.26  33.67 82 23.06 52.28
79 4.24 0.81 79 14.39 5.81 83 2395 79.49
80 18.36 431 80 23.97 28.76 84 23.81 85.44
81 19.43 4.17 81 23.67  30.92 85 18.82 34.11
82 7.57 1.87 82 23.35 8.63 86 22.84 7827
83 19.53 6.57 83 2551 3164 87 2484  87.59
84 21.70 6.96 84 2475 3791 88 1939  36.09
85 4.65 1.77 85 13.28 6.80 89 2191  74.07
86 19.20 3.72 86 25.44  29.45 90 2213  75.17
87 21.74 2.86 87 23.46  36.45 91 1950 36.61
88 431 1.28 88 14.45 5.60 92 22.11  75.65
89 17.56 3.95 89 2529 26.44 94 20.38 3941
90 18.05 3.89 90 25.18 27.36 95 2223  76.02
91 4.17 1.14 91 14.07 5.12 96 2458 88.14
92 18.06 4.16 92 25.33  26.96 97 21.14  43.64



Table F-1. Continued
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept

93 21.70 3.23 93 23.12 3573 98 2254  80.25
94 4.59 1.25 94 16.13 5.58 100 22.04 4469
95 18.01 4.32 95 2535  26.69 102 23.67 84.30
96 21.92 3.39 96 22.60 36.10 103 2353 54.82
97 4.56 0.87 97 18.12 4.90 104 2559  83.02
98 18.93 4.72 98 25.27 2829 105 25.87  90.39
99 18.93 4.72 99 25.27  28.29 106 25.37  46.16
100 4.36 0.77 100 19.28 4.38 107 2477  83.17
101 19.60 431 101 2426 30.11 108 25.03 8558
102 20.44 413 102 2355 3207 109 26.16 4542
103 7.54 1.99 103 24.00 9.20 110 24.60  79.08
104 17.95 5.81 104 26.33  26.93 111 2530 87.58
105 21.31 6.11 105 2555  35.39 112 2554  46.67
106 4.95 1.40 106 20.53 4.22 113 2438 78.39
107 20.43 4.36 107 25.15  30.36 114 25.09 86.12
108 21.27 4.06 108 2436 3244 115 25.87  46.62
109 4.50 1.28 109 18.82 4.24 116 2449 7842
110 17.63 3.97 110 26.16  25.63 117 25.27  87.80
111 21.11 2.90 111 23.92 3342 118 25.69  46.39
112 4.68 1.26 112 19.89 4.68 120 2469  78.20
113 16.81 4.39 113 2555  24.69 121 2479  46.68
114 20.84 3.41 114 23.74  32.72 122 2516  78.19
115 4.59 1.35 115 20.03 457 123 25.42  80.62
116 16.62 4.38 116 25.68 24.56 124 2554  62.72
117 21.13 3.22 117 23.44  33.65 125 29.28  84.93
118 4.42 1.12 118 19.27 4,77 126 29.31  86.92
119 16.86 4.36 119 25.45  25.08 127 26.66  39.93
120 18.16 4.15 120 25.47  27.06 128 2520 69.05
121 5.30 1.69 121 20.95 6.54 130 27.02  38.45
122 19.12 4.85 122 2559 2891 131 2572  61.65
123 20.11 453 123 25.15  30.92 132 2485  72.08
124 9.41 2.78 124 2535 11.26 133 26.24  39.25
125 19.70 4.18 125 27.04  28.99 134 2574 57.71
126 19.78 4.10 126 27.02  29.99 135 2537 7458
127 3.73 0.73 127 13.40 4.67 136 26.23 4042
128 14.82 2.95 128 26.25 18.83 137 25.64  61.65
129 18.22 2.58 129 25.38 27.76 138 2559  79.37
130 3.67 0.49 130 14.30 4.18 139 25.42 4313
131 11.63 2.01 131 2448 1331 140 2578  65.19
132 17.04 1.27 132 28.02  20.86 141 26.94  84.40
133 4.57 1.01 133 16.55 5.11 142 25.27  48.35
134 10.38 2.15 134 2348 11.60 143 26.21  68.20
135 16.90 1.57 135 27.18 21.35 144 27.80  85.39
136 4.99 1.09 136 17.92 5.44 145 26.38  60.52
137 11.44 1.95 137 2499 1224 146 2890 7246
138 16.69 1.70 138 26.52 2210 147 30.78  73.98
140 12.02 2.42 139 19.26 4.85

141 16.34 2.53 140 25.82 12.26

142 6.49 2.13 141 25.94  23.07



Table F-1. Continued
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1lh 6h 72 h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept

143 12.98 2.78 142 21.34 6.24
144 16.33 2.97 143 26.55 13.15
145 8.89 2.17 144 26.06 2351
146 14.37 3.16 145 26.45 9.36
147 17.53 2.68 146 28.18 14.42

147 2791 2175




Table F-2. Net-simulated xylan slopes and intercepts.
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
2 6.19 -0.07 2 6.66 12.26 1 0.47 2.75
3 8.07 0.88 3 1119 18.81 2 5.88 28.82
5 4.72 0.27 5 7.51 9.57 3 8.76 49.12
6 6.82 1.01 6 10.09 15.11 4 1.27 3.27
8 6.73 0.60 8 7.62 12.56 5 6.83 29.23
9 7.73 1.15 9 1227 1493 6 8.48 41.30
11 7.12 1.42 11 7.85 13.68 8 6.30 30.80
12 7.61 1.70 12 10.76  16.48 9 9.83 40.79
14 8.03 1.63 13 2.06 2.44 10 1.35 3.39
15 8.47 3.00 14 1033  22.76 11 7.78 28.19
16 3.79 -0.25 15 13.69  25.66 12 10.36 3594
17 9.10 3.07 16 4.33 471 13 2.20 5.69
18 8.79 3.58 17 1255  29.57 14 5.87 50.11
19 8.11 1.10 18 1433  30.24 15 12.06  54.08
20 10.06 4.72 19 10.12 9.80 16 4.52 8.82
21 9.74 5.05 20 1420 3152 17 8.37 59.09
24 8.20 1.66 22 1.46 0.30 18 10.73  61.11
26 8.02 1.50 24 16.93 2265 19 13.29 2170
30 7.76 1.81 25 1.98 1.27 20 1335 65.32
32 6.49 1.32 26 13.14  21.80 22 3.08 5.43
33 7.25 1.53 28 2.15 1.68 23 10.68  44.05
34 2.82 -0.04 29 12.01 18.64 24 12.68 61.02
36 7.96 2.28 30 1599 23.88 25 4.00 6.43
37 3.59 0.00 31 2.41 2.05 26 1150 54.08
38 8.29 2.84 32 13.03  19.90 27 12.02 5733
39 8.31 2.96 33 1557 27.25 28 4.26 7.01
40 6.52 2.19 34 4.23 3.72 29 10.62  48.24
42 8.79 5.76 35 14.67  25.08 30 12.10 61.18
43 2.51 -0.66 36 16.68  25.84 31 4.65 7.89
44 7.98 1.72 37 6.17 7.07 32 10.88  49.77
45 8.26 1.77 38 15.69  28.69 33 12.80 65.33
46 2.29 -0.12 39 16.88  31.93 34 6.17 9.96
47 6.52 1.93 40 1752 19.21 35 1154 57.44
48 7.96 2.04 41 16.82  43.60 36 13.27 66.88
49 2.45 -0.14 42 1743  43.32 37 7.17 17.70
50 6.13 1.80 43 3.36 3.34 38 1240 64.84
54 7.48 2.12 44 16.96  25.11 39 1255 7178
55 3.21 0.02 45 1736  26.57 40 16.83 5854
56 7.30 2.23 46 3.73 4.01 41 1372  84.86
58 4.19 0.81 47 1596 22.78 42 12.10  87.72
59 7.80 3.02 48 18.67  28.63 43 6.92 10.39
60 7.95 3.25 50 1443  23.19 44 12.17  64.65
61 7.31 3.02 51 16.37 21.80 46 8.17 8.31
62 9.01 5.73 52 5.69 4,98 47 12.19  59.69
63 7.76 6.07 53 16.63  24.85 48 12.88  75.69
64 3.34 0.16 54 17.68  24.83 49 8.76 11.89
65 7.25 2.29 55 7.05 7.02 50 1161 58.62
66 8.45 2.26 56 16.48  26.00 51 11.01 68.94
67 3.61 0.33 57 17.18  28.77 52 9.38 16.48
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Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
68 6.18 2.40 58 1029  11.63 53 1292 6282
69 8.23 2.45 59 16.65  34.63 54 13.01 70.88
70 4.08 0.56 60 18.69  33.86 55 1045 21.44
71 7.54 2.69 61 19.23  26.33 56 1240 67.82
72 8.22 2.58 62 1722  43.99 57 1258 71.25
73 4.22 0.58 63 16.63  43.22 58 1115  29.71
74 7.34 2.71 64 7.08 6.02 59 12.17  75.64
75 8.13 2.63 65 1820  33.59 60 1145 85.35
76 4.34 0.59 66 19.44 3458 61 18.16  74.05
77 7.70 2.75 67 7.88 7.87 62 11.84 87.10
79 491 1.08 68 17.30  25.46 64 1327 18.14
80 7.63 3.21 69 19.46  34.04 65 13.13  78.43
81 7.78 3.18 70 8.93 9.18 66 1165 85.30
82 6.62 3.75 71 18.01  30.76 67 1229  28.65
84 8.02 5.68 72 1949 3221 68 13.05 66.68
85 5.00 1.28 73 1050  10.47 70 1311  25.51
86 7.90 2.98 74 1857 30.14 71 1299  75.49
87 8.28 2.73 75 19.20 34.70 72 1093  85.31
88 5.10 1.16 76 1151 1081 73 13.46  36.29
89 7.48 3.20 77 18.38  33.35 74 12.68  77.79
90 7.58 3.19 78 18.83  35.97 75 1153  83.29
91 5.18 1.08 79 1416  15.38 76 1414  38.72
92 7.77 3.15 80 18.16  35.38 77 12.09 81.44
93 8.22 2.90 81 18.11  35.81 78 10.63  88.64
94 5.43 1.36 82 19.40 26.80 79 16.53 51.03
95 7.65 3.42 83 16.49  43.10 80 1152  83.18
96 8.10 3.17 84 16.87  43.06 81 11.37  83.08
97 5.63 1.44 85 1286  13.53 82 16.43  74.19
98 7.94 3.58 86 19.06  32.22 83 1143  86.79
100 5.78 151 87 19.23  35.79 84 11.22  88.67
101 8.00 3.71 88 1138  14.63 85 16.83  48.26
102 8.06 3.66 89 18.11  33.98 86 13.17 81.88
103 6.18 4.64 90 18.33 33.84 87 11.14  85.78
104 7.12 5.85 91 9.12 17.03 88 1530 4556
105 7.40 571 92 1772 3254 89 1145  84.00
107 8.06 4.47 93 19.01  35.50 90 11.23  87.08
108 8.08 4.38 94 15.08 16.83 91 18.60  50.99
109 5.87 2.13 95 1783 3531 92 11.62  80.28
110 7.73 4.27 96 18.93  35.46 93 1153 85.43
111 8.07 3.98 97 1553 19.64 94 16.08  56.32
112 6.07 2.51 98 17.70  35.85 95 11.40 83.99
113 7.85 451 99 1773  36.54 96 9.87 87.91
114 8.11 4.21 100 16.19  20.02 97 17.68  60.92
115 6.13 2.64 101 1757 3741 98 11.18 87.31
116 8.07 4.26 102 1769  38.63 100 18.17 63.25
117 8.28 3.76 103 19.47  27.86 102 1054  89.85
118 6.15 3.17 104 17.20  40.93 103 1584  75.11
119 8.00 4,78 105 15.88 4254 104 14.64  89.90
120 8.07 4.69 106 16.71  24.05 105 11.63  88.12
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1h 6h 72 h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept

121 6.39 4.07 107 16.81  40.63 106 16.33  73.71
122 7.90 5.11 108 17.04  39.78 107 11.09 88.04
123 7.94 4,94 109 17.01  23.83 108 10.95 87.96
124 6.09 5.56 110 17.06  37.63 109 1550 74.38
125 7.70 5.72 111 17.08  39.12 110 1125  88.11
126 7.78 5.65 112 16.77  26.97 111 10.87 89.14
127 5.81 3.82 113 16.74  40.59 112 17.35 74.68
128 7.72 5.35 114 17.00  40.02 113 1153 87.94
129 8.42 4.18 115 16.91  26.50 114 10.96 88.44
130 6.66 3.65 116 16.99  40.65 115 16.14  74.60
131 8.07 4.64 117 16.99  40.36 116 1155 89.75
132 9.23 433 118 1835  27.99 117 11.78  87.36
133 7.23 3.87 119 16.49  42.44 118 16.66  76.60
134 8.14 4.66 120 16.64  42.09 119 1437  85.79
135 9.48 4.66 121 18.28  28.36 120 1156  88.93
136 7.89 3.74 122 16.77  43.40 121 1530 73.75
138 9.59 5.13 123 16.61  43.28 122 1159  86.90
139 7.82 3.94 124 20.18  28.50 123 11.82 86.82
140 8.81 5.15 125 1596  39.99 124 20.57  81.69
141 8.83 5.62 126 16.45  40.62 125 13.16  86.63
142 7.60 4.35 127 1221 31.22 126 1355  86.55
144 8.65 5.49 128 16.77  41.70 127 1473  70.37
145 6.64 4.49 129 16.51  41.27 128 1211  86.95
146 7.57 5.30 130 16.92  28.33 129 1224  82.25
147 8.27 5.57 131 17.19  38.93 130 17.08  71.68
132 16.60 41.28 131 16.63  82.80

133 1593 29.82 132 1225  83.52

134 16.96  39.79 133 16.37  69.12

135 16.30 41.58 134 1271  81.35

136 17.12  30.90 135 12.38  85.39

137 1721  37.87 136 18.09 7353

138 16.19  43.25 137 1332  82.96

139 1730  29.26 138 1226  88.08

140 17.68  37.89 139 1591 73.24

141 16.39  43.15 140 1344  83.43

142 18,59  29.87 141 1234  87.82

143 17.88  37.86 142 16.80 74.17

144 16.33  42.79 143 1472 83.68

145 20.57  27.06 144 1246  86.70

146 20.05 30.11 145 20.67 76.74

147 17.17  35.78 146 1564 8141

147 18.13  80.96
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
1 0.91 0.42 1 1.99 0.95 1 0.70 5.77
2 7.46 2.60 2 8.78 12.24 2 5.39 34.73
3 9.61 2.81 3 13.00 17.44 3 9.26 46.91
4 0.66 0.20 4 1.41 1.44 4 2.45 5.29
5 7.13 2.23 5 9.11 12.38 5 6.58 33.37
6 9.43 2.58 6 1224  16.69 6 9.55 4351
7 0.70 0.11 7 1.10 1.03 7 1.33 3.03
8 8.34 2.59 8 10.10  14.46 8 6.46 36.35
9 9.65 2.75 9 1256  17.26 9 8.85 42.36
10 1.30 0.02 10 1.55 2.22 10 2.59 3.68
11 9.73 2.82 11 11.73  16.59 11 7.82 39.23
12 10.39 2.96 12 13.09 1791 12 9.14 41.77
13 2.41 0.21 13 2.38 4.48 13 3.48 8.82
14 9.56 2.93 14 1114 17.22 14 6.34 44.42
15 12.23 4.02 15 16.15 23.19 15 10.64  54.58
16 2.51 0.13 16 2.93 2.83 16 6.53 7.75
17 12.22 4.56 17 1450 2352 17 10.08  56.56
18 13.08 4.69 18 16.99  25.65 18 1155 59.44
19 3.22 0.56 19 6.95 3.24 19 10.98 8.69
20 12.44 5.42 20 1439 2521 20 11.75 5230
21 13.12 5.85 21 1524  27.01 21 11.77  56.10
22 0.94 0.14 22 1.77 1.50 22 4.22 5.52
23 9.36 2.75 23 13.04 1731 23 9.81 45.16
24 12.20 1.96 24 18.19  21.50 24 1475 61.74
25 1.42 0.32 25 2.44 1.46 25 4.49 4.63
26 11.61 2.98 26 17.38  21.96 26 12.47  59.09
27 12.02 2.83 27 18.06 22.64 27 13.16  61.67
28 1.38 0.28 28 2.75 2.25 28 5.38 7.51
29 10.67 2.99 29 1570 2021 29 1144  52.88
30 12.24 2.65 30 18.17  22.86 30 13.78  61.69
31 1.53 0.36 31 3.08 2.60 31 6.28 8.49
32 9.94 2.99 32 1523  18.97 32 11.37 50.22
33 11.13 3.00 33 16.77 21.18 33 1253  56.05
34 2.41 0.62 34 451 5.26 34 7.27 15.38
35 11.48 3.24 35 16.33 2171 35 1193 53.96
36 13.36 3.03 36 18.98  24.47 36 1449  62.38
37 2.90 0.37 37 5.81 4.61 37 8.35 14.55
38 13.67 3.99 38 18.66  26.24 38 1334  63.57
39 14.34 3.94 39 1952  27.19 39 1418  66.55
40 5.52 1.12 40 15.90 6.93 40 18.97  39.16
41 16.43 6.28 41 20.46  33.97 41 18.24  72.09
42 17.96 6.40 42 21.67 37.87 42 1754  82.23
43 1.99 0.54 43 3.98 3.15 43 7.02 9.47
44 12.34 3.17 44 18.91  23.60 44 1371  63.02
45 12.93 3.00 45 19.64 24.64 46 8.65 12.01
46 2.07 0.57 46 4.29 3.97 47 1413  60.13
47 11.72 3.11 47 18.70  22.50 48 16.57 72.68
48 13.89 2.51 48 21.20 26.35 49 8.24 11.48
49 2.20 0.59 49 4.48 3.78 50 12.77  54.70
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Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
50 10.60 3.23 50 17.46  20.40 52 10.09  15.99
51 10.60 3.23 51 17.46  20.40 53 1430 60.66
52 2.77 0.69 52 5.87 4,70 54 1521 66.76
53 11.76 3.43 53 19.36 22.70 55 9.94 18.49
54 13.04 3.38 54 20.55 25.10 56 1414  62.69
55 2.74 0.42 55 6.73 4.20 57 1462  65.26
56 12.42 3.49 56 19.24  24.14 58 12.37 28.11
57 13.01 3.48 57 19.82  25.18 59 1478  67.32
58 4.23 0.80 58 10.07 6.98 60 17.88  83.83
59 13.60 4.42 59 19.97 27.30 61 20.68  50.04
60 17.53 4.04 60 22.38  33.17 62 19.49  75.05
61 6.92 2.21 61 19.23  12.39 64 1134 18.86
62 17.25 7.08 62 2198 36.21 65 1583 67.50
63 19.88 6.86 63 20.52  44.23 66 18.80  81.87
64 3.03 0.59 64 6.77 4.76 67 1290  23.47
65 13.15 3.45 65 21.00 2534 68 1570  59.77
66 16.02 2.51 66 22.69  30.52 70 1324 2755
67 3.29 0.52 67 7.98 5.07 71 16.49  71.83
68 11.31 3.43 68 19.68 21.98 72 19.04  82.99
69 16.43 2.54 69 2295 31.60 73 1464 2855
70 3.78 0.70 70 9.73 5.91 74 1753  71.90
71 14.28 3.88 71 21.88  27.69 75 19.28  82.46
72 17.02 3.09 72 22.60 32.60 76 1499  32.16
73 3.94 0.76 73 9.94 6.21 77 1796  75.81
74 14.19 3.77 74 2240 2719 78 19.78  84.09
75 16.71 3.16 75 23.05 3232 79 1750 4194
76 3.91 0.66 76 10.78 6.16 80 19.11  80.15
77 14.96 3.71 77 2256  28.87 81 19.48 82.81
78 17.13 2.99 78 22.77 3311 82 21.78  56.98
79 4.33 0.83 79 13.59 7.09 83 2150 82.74
80 15.59 3.93 80 2295 29.86 84 21.05 86.81
81 16.38 3.78 81 23.16  31.45 85 1791  37.06
82 7.17 2.44 82 22.37 13.79 86 20.06  80.67
83 16.98 6.54 83 22.88  33.85 87 21.33  85.80
84 18.82 6.64 84 2421 38.64 88 19.14  42.20
85 4.84 1.52 85 12.49 9.14 89 20.12 78.13
86 16.78 3.61 86 23.35  32.00 90 20.24  79.50
87 18.37 2.79 87 2220 36.19 91 18.62  40.63
88 4.54 1.14 88 13.62 8.43 92 19.62  77.45
89 15.24 3.73 89 23.14  28.75 93 2096 85.38
90 15.62 3.68 90 2323  29.53 94 19.64 4497
91 4.71 1.07 91 14.17 8.07 95 1994  77.99
92 15.69 4.00 92 23.11  29.76 96 21.07  86.15
93 18.21 3.14 93 22.08 3572 97 20.00 4597
94 4.78 1.20 94 15.39 8.63 98 19.77  79.55
95 15.43 4.09 95 22.88  29.13 100 21.34  47.03
96 18.20 3.25 96 21.85 35.65 102 20.89  85.28
97 5.04 0.99 97 17.47 8.06 103 2196 5751
98 16.07 4.48 98 22.83 30.64 104 2295 85.29
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99 16.07 4.48 99 22.83 30.64 105 22.88  89.86
100 4.68 0.93 100 18.25 7.76 106 23.11 52.38
101 16.52 4,01 101 22.70  30.87 107 20.41  81.99
102 17.15 3.85 102 2255 3232 108 20.40 83.98
103 6.81 2.49 103 23.43 13.08 109 24.47  53.07
104 15.70 5.59 104 2356  28.73 110 21.69 80.13
105 18.61 5.59 105 24.02  36.18 111 21.35 90.81
106 5.21 1.52 106 19.73 9.80 112 2362 52.39
107 17.57 4.36 107 23.05 32.86 113 21.30 78.72
108 18.21 412 108 2227  34.49 114 21.02  87.17
109 4.84 1.33 109 19.52 9.66 115 2359 53.91
110 15.45 4.02 110 25.12 27.96 116 21.04  77.96
111 18.11 3.13 111 22.49 3458 117 20.69  86.49
112 4.80 1.43 112 19.77 9.64 118 23.32 51.37
113 14.60 4.35 113 2349  26.95 120 2098 80.53
114 17.88 3.55 114 22.18 33.74 121 21.84  52.46
115 511 1.53 115 19.68 10.11 122 20.67  81.57
116 14.73 4.59 116 23.66  27.66 123 20.71 82.74
117 18.46 3.62 117 21.67 3550 124 2406  68.45
118 4.71 1.45 118 18.34 9.51 125 26.26  85.37
119 14.93 4.44 119 23.42  27.86 126 26.31  85.98
120 16.08 4.27 120 23.67 29.71 127 2454  47.39
121 5.23 2.00 121 1957  10.89 128 22.87  72.05
122 17.03 4.78 122 23.18 3218 130 25.17  44.99
123 17.87 454 123 23.12  33.89 131 23.89  64.59
124 8.68 3.28 124 25.47 14.84 132 22.89  75.62
125 17.32 452 125 2465  31.57 133 2432 45.69
126 17.35 459 126 2485 3293 134 23.84  61.39
127 3.91 1.21 127 12.91 8.53 135 2341  75.71
128 13.20 3.12 128 24.32  23.16 136 2426  47.52
129 15.97 2.67 129 23.03 30.32 137 23.76  63.87
130 4.24 1.15 130 14.03 8.35 138 23.45 78.88
131 10.73 2.61 131 2293 18.40 139 23.67 4731
132 15.23 2.15 132 26.43  25.18 140 24.05 66.80
133 5.11 1.63 133 16.92 9.04 141 2496  84.00
134 9.89 2.68 134 2271 16.44 142 23.77  53.27
135 15.40 2.33 135 2559 24091 143 24.67  70.77
136 5.68 1.80 136 18.09 9.83 144 26.01 87.13
137 11.02 2.72 137 2325 17.75 145 26.01 63.16
138 15.51 2.38 138 24.88  25.75 146 2720 72.86
140 11.86 2.89 139 19.15 8.81 147 28.21  75.95
141 15.60 2.83 140 24.16 1749
142 7.26 2.37 141 24.44  26.56
143 12.68 2.93 142 21.21 9.95
144 15.55 3.08 143 2477 17.77
145 8.82 2.57 144 24.74  26.97
146 13.21 3.21 145 2439  12.00
147 15.68 3.41 146 28.31 17.18

147 25.57  23.29
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APPENDIX G

MATLAB CODES FOR PREDICTION

Exhibit G-1. Matlab codes for 1-h glucan slope network prediction.
netSGl=net
load Crilc_pred.m
load A_X pred.m
load L G pred.m
load G _pred.m
load slope G 1 pred.m
[slope G 1 predn,minslope G _1,maxslope G 1]=premnmx(slope_G
_1 pred);
Crilc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
A X _predn=tramnmx(A_X_pred,minA_X,maxA X);
L G predn=tramnmx(L_G_pred,minL_G,maxL_G);
G_predn=tramnmx(G_pred,minG,maxG);
for 1=1:21,
FinS(1,1)=A X predn(l)~;

end
for 1=1:21,
finS(1,2)=Crlc_predn(l)~;
end
for 1=1:21,
finS(1,3)=L_G predn(l)~;
end
for 1=1:21,
finS(1,4)=G_predn(l1)*~;
end

ypredn=sim(netSGl,finS");
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Exhibit G-1. Continued
ypred=postmnmx(ypredn,minslope_G_1,maxslope_G_1);
E pred=slope G 1 pred®-ypred;

perf _pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred,slope_G 1 pred®)
Rsqgrpred=rpred”2

Exhibit G-2. Matlab codes for 1-h glucan intercept network prediction.

netlGl=net

load Crlc _pred.m

load A_X pred.m

load L pred.m

load G_pred.m

load intercept G 1 pred.m

[intercept G 1 predn,minintercept_G_1,maxintercept G 1l]=pre
mnmx(intercept G 1 pred);

Crlc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);

A X _predn=tramnmx(A_X_pred,minA_X,maxA X);

L _predn=tramnmx(L_pred,minL,maxL) ;

G_predn=tramnmx(G_pred,minG,maxG) ;

for 1=1:21,
Ffin5(1,1)=C _predn(l)~;
end
for 1=1:21,
fin5(1,2)=Crlc_predn(l)~;
end
for 1=1:21,
fin5(1,3)=A_X_predn(l1)*;
end

for 1=1:21,
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Exhibit G-2. Continued

fin5(1,4)=L_predn(l)*~;
end
ypredn=sim(netlGl,fin5%);
ypred=postmnmx(ypredn,minintercept_G_1,maxintercept G 1);
E pred=intercept G 1 pred”-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred, intercept G 1 pred®)
Rsqgrpred=rpred”2

Exhibit G-3. Matlab codes for 6-h glucan slope network prediction.
netSG6=net
load Crlc G pred.m
load A G pred.m
load L_pred.m
load G_pred.m
load slope G 6 pred.m
[slope G 6 predn,minslope G 6 pred,maxslope G 6 pred]=premn
mx(slope G 6 pred);
Crilc_G_predn=tramnmx(Crlc_G_pred,minCrlc_G,maxCrilc_G);
A G _predn=tramnmx(A_G_pred,minA_G,maxA G);
L _predn=tramnmx(L_pred,minL,maxL) ;
G_predn=tramnmx(G_pred,minG,maxG) ;
for P=1:22,
FfinP(P,1)=A G predn(P)";
end
for 1=1:22,
finP(P,2)=Crilc_G_predn(P)";
end
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Exhibit G-3. Continued
for P=1:22,

finP(P,3)=L _predn(P)";
end
for P=1:22,

FfinP(P,4)=C predn(P)";
end
ypredn=sim(netSG6,finP");
ypred=postmnmx(ypredn,minslope G _6,maxslope_G 6);
E pred=slope G 6 pred”-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred,slope G 6 pred*)
Rsqrpred=rpred”2

Exhibit G-4. Matlab codes for 6-h glucan intercept network prediction.
netlG6=net
load Crlc G pred.m
load A X pred.m
load L_G _pred.m
load G_pred.m
load intercept G 6 pred.m
[intercept G 6 predn,minintercept_G_6 pred,maxintercept G 6
_pred]=premnmx(intercept_G_6 pred);
Crilc_G_predn=tramnmx(Crlc_G_pred,minCrlc_G,maxCrilc_G);
A X _predn=tramnmx(A_X_pred,minA_X,maxA X);
L G _predn=tramnmx(L_G_pred,minL_G,maxL_G);
G_predn=tramnmx(G_pred,minG,maxG) ;
for P=1:22,
finP(P,1)=Crlc_G_predn(P)";
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Exhibit G-4. Continued
end
for P=1:22,
finP(P,2)=A X predn(P)";
end
for P=1:22,
finP(P,3)=L G predn(P)";
end
for P=1:22,
finP(P,4)=C predn(P)";
end
ypredn=sim(netlG6,finP");
ypred=postmnmx(ypredn,minintercept G 6,maxintercept G 6);
E _pred=intercept G 6 pred”-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred, intercept G 6 pred~)
Rsqgrpred=rpred”2

Exhibit G-5. Matlab codes for 72-h glucan slope network prediction.

netSG72=net

load Crilc_pred.m

load A X pred.m

load L_pred.m

load slope G 72 pred.m

[slope G 72 predn,minslope_G 72 pred,maxslope G 72 pred]=pr
emnmx(slope_G 72 pred);

Crilc_predn=tramnmx(Crilc_pred,minCric,maxCrlic);

A X _predn=tramnmx(A_X_pred,minA_X,maxA X);

L_predn=tramnmx(L_pred,minL,maxL);

for P=1:22,
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Exhibit G-5. Continued
finS(P,1)=A X predn(P)";

end

for P=1:22,
finS(P,2)=L_predn(P)";

end

for P=1:22,
finS(P,3)=Crlc_predn(P)";

end

ypredn=sim(netSG72,finS");
ypred=postmnmx(ypredn,minslope G 72,maxslope G 72);
E pred=slope G 72 pred~"-ypred;
perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred,slope G 72 pred®)
Rsqgrpred=rpred”2

Exhibit G-6. Matlab codes for 72-h glucan intercept network prediction.

netlG72=net

load Crlc _pred.m

load A G pred.m

load L_pred.m

load intercept G 72 pred.m

[intercept G 72 predn,minintercept G 72 pred,maxintercept G
_ 72 _pred]=premnmx(intercept G 72 pred);

Crlc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);

A G _predn=tramnmx(A_G_pred,minA_G,maxA G);

L _predn=tramnmx(L_pred,minL,maxL) ;

for P=1:22,
FfinP(P,1)=A G predn(P)";

end
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Exhibit G-6. Continued

for P=1:22,
finP(P,2)=Cric_predn(P)";
end
for P=1:22,
finP(P,3)=L predn(P)";
end

ypredn=sim(netlG72,finP");
ypred=postmnmx(ypredn,minintercept _G_72,maxintercept G 72);
E _pred=intercept G 72 pred®-ypred;

perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred, intercept G 72 pred®)
Rsqrpred=rpred”2

Exhibit G-7. Matlab codes for 1-h xylan slope network prediction.
netSXl=net
load L_pred.m
load A pred.m
load X _pred.m
load Crilc_pred.m
load slope X 1 pred.m
[slope X 1 predn,minslope X 1 pred,maxslope X 1 pred]=premn
mx(slope X 1 pred);
L _predn=tramnmx(L_pred,minL,maxL) ;
A _predn=tramnmx(A_pred,minA,maxA);
X_predn=tramnmx(X_pred,minX,maxX) ;
Cric_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
for P=1:20,
TinS(P,1)=Crlc_predn(P)";
end
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Exhibit G-7. Continued
for P=1:20,

finS(P,2)=L _predn(P)";
end
for P=1:20,

FinS(P,3)=A predn(P)";
end
for P=1:20,

FinS(P,4)=X predn(P)";
end
ypredn=sim(netSX1,finS");
ypred=postmnmx(ypredn,minslope_X_ 1,maxslope X 1);
E pred=slope X 1 pred”-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred,slope X 1 pred*)
Rsqgrpred=rpred”2

Exhibit G-8. Matlab codes for 1-h xylan intercept network prediction.

netlX1l=net

load L_pred.m

load A _pred.m

load X _pred.m

load Crilc_pred.m

load intercept X 1 pred.m

[intercept X 1 predn,minintercpet_X_ 1 pred,maxintercept X 1
_pred]=premnmx(intercept_X_1 pred);

L_predn=tramnmx(L_pred,minL,maxL);

A_predn=tramnmx(A_pred,minA,maxA);

X_predn=tramnmx(X_pred,minX,maxX) ;

Crilc_predn=tramnmx(Crilc_pred,minCric,maxCrlic);
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Exhibit G-8. Continued

for P=1:20,
finl(P,1)=L predn(P)";
end
for P=1:20,
finl(P,2)=A _predn(P)";
end
for P=1:20,
finl(P,3)=Crlc_predn(P)";
end
for P=1:20,
finl(P,4)=X_predn(P)";
end

ypredn=sim(netIX1,finl*);
ypred=postmnmx(ypredn,minintercept X 1,maxintercept X 1);
E _pred=intercept X 1 pred”-ypred;

perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred, intercept X 1 pred®)
Rsqrpred=rpred”2

Exhibit G-9. Matlab codes for 6-h xylan slope network prediction.

netSX6=net

load L_pred.m

load A X pred.m

load Crilc_pred.m

load slope X 6 pred.m

load slope G 6 pred.m

[slope X 6 predn,minslope X 6 pred,maxslope X 6 pred]=premn
mx(slope_X_6 pred);

L_predn=tramnmx(L_pred,minL,maxL);



298

Exhibit G-9. Continued
A _X_predn=tramnmx(A_X_pred,minA_X,maxA_ X);
Crilc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
slope G _6 predn=tramnmx(slope G 6 pred,minslope G 6,maxslop
e G 6);

for P=1:22,

FfinS(P,1)=L predn(P)";
end
for P=1:22,

FinS(P,2)=A X predn(P)";
end
for P=1:22,

finS(P,3)=Crlc_predn(P)";
end
for P=1:22,

finS(P,4)=slope_G 6 predn(P)";
end
ypredn=sim(netSX6,finS");
ypred=postmnmx(ypredn,minslope_X 6,maxslope_X 6);
E pred=slope X 6 pred”-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred,slope X 6 pred*)
Rsqgrpred=rpred”2

Exhibit G-10. Matlab codes for 6-h xylan intercept network prediction.
netlX6=net

load L_pred.m

load A _pred.m

load Crilc_G pred.m

load intercept X 6 pred.m
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Exhibit G-10. Continued

load intercept G 6 pred.m

[intercept_X 6 predn,minintercept_X_6_pred,maxintercept_X 6
_pred]=premnmx(intercept_X_6_pred);

L_predn=tramnmx(L_pred,minL,maxL) ;

A _predn=tramnmx(A_pred,minA,maxA) ;

Crlc_G_predn=tramnmx(Crlc_G_pred,minCrlc_G,maxCrilc_G);

intercept_G 6 predn=tramnmx(intercept_G_6_pred,minintercept

_G_6,maxintercept G 6);

for P=1:22,
finl(P,1)=L _predn(P)";
end
for 1=1:22,
finl(P,2)=A predn(P)";
end
for 1=1:22,
finl(P,3)=Crlc_G_predn(P)";
end
for 1=1:22,
finl(P,4)=intercept_G_6_predn(P)";
end

ypredn=sim(netlX6,finl");
ypred=postmnmx(ypredn,minintercept_ X 6,maxintercept X 6);
E_pred=intercept_X 6 pred”-ypred;

perf _pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred, intercept X 6 pred®)
Rsqrpred=rpred”2
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Exhibit G-11. Matlab codes for 72-h xylan slope network prediction.
netSX72=net
load L_X pred.m
load A_X pred.m
load Crilc_X pred.m
load slope X 72 pred.m
load slope G 72 pred.m
[slope X 72 predn,minslope X 72 pred,maxslope X 72 pred]=pr
emnmx(slope_ X 72 pred);
[slope G 72 predn,minslope G 72 pred,maxslope G 72 pred]=pr
emnmx(slope_ G 72 pred);
L X predn=tramnmx(L_X_pred,minL_X,maxL_X);
A X _predn=tramnmx(A_X_pred,minA_X,maxA X);
Crilc_X predn=tramnmx(Crlc_X_ pred,minCrlc_X,maxCrilc_X);
for P=1:21,
finS(P,1)=L X predn(P)";
end
for P=1:21,
TinS(P,2)=A_X_predn(P)";
end
for P=1:21,
finS(P,3)=Crilc_X_ predn(P)";
end
for P=1:21,
finS(P,4)=slope G 72 predn(P)";
end
ypredn=sim(netSX72,finS");
ypred=postmnmx(ypredn,minslope_X 72,maxslope_X 72);
E pred=slope X 72 pred--ypred;
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Exhibit G-11. Continued

perf _pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred,slope X 72 pred®)
Rsqrpred=rpred”2

Exhibit G-12. Matlab codes for 72-h xylan intercept network prediction
netlX72=net
load L_X pred.m
load A pred.m
load X pred.m
load Crlc _pred.m
load intercept X 72 pred.m
load intercept G 72 pred.m
[intercept X 72 predn,minintercept X 72 pred,maxintercept_ X
_ 72 _pred]=premnmx(intercept X 72 pred);
intercept G 72 predn=tramnmx(intercept G 72 pred,mininterce
pt G _72,maxintercept G 72);
L X predn=tramnmx(L_X_ pred,minL_X,maxL_X);
A _predn=tramnmx(A_pred,minA,maxA);
X_predn=tramnmx(X_pred,minX,maxX) ;
Crlc_predn=tramnmx(Crilc_pred,minCric,maxCrlic);
for P=1:21,
finl(P,1)=Crilc_predn(P)";
end
for P=1:21,
finl(P,2)=L X predn(P)";
end
for P=1:21,
finl(P,3)=A_predn(P)";
end
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Exhibit G-12. Continued
for P=1:21,

finl(P,4)=X_predn(P)";
end
for P=1:21,

finl(P,5)=intercept G 72 predn(P)";
end
ypredn=sim(netIX72,finl");
ypred=postmnmx(ypredn,minintercept_X_ 72,maxintercept X 72);
E _pred=intercept X 72 pred®-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred, intercept X 72 pred®)
Rsqrpred=rpred”2

Exhibit G-13. Matlab codes for 1-h total sugar slope network prediction.
netSTS1=net
load L_TS pred.m
load A_TS pred.m
load TS pred.m
load Crilc_TS pred.m
load slope TS 1 pred.m
[slope TS 1 predn,minslope_ TS 1 pred,maxslope TS 1 pred]=pr
emnmx(slope_ TS 1 pred);
L TS predn=tramnmx(L_TS pred,minL_TS,maxL_TS);
A TS predn=tramnmx(A_TS pred,minA_TS,maxA_TS);
TS predn=tramnmx(TS_pred,minTS,maxTS);
Crilc_TS_predn=tramnmx(Crlc_TS_pred,minCrilc_TS,maxCrlc_TS);
for P=1:22,
finS(P,1)=L_TS predn(P)";
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Exhibit G-13. Continued
end
for P=1:22,
finS(P,2)=A TS _predn(P)";
end
for P=1:22,
finS(P,3)=Crlc_TS predn(P)";
end
for P=1:22,
finS(P,4)=TS predn(P)";
end
ypredn=sim(netSTS1,finS");
ypred=postmnmx(ypredn,minslope_ TS 1,maxslope TS 1);
E pred=slope TS 1 pred"-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred,slope TS 1 pred®)
Rsqgrpred=rpred”2

Exhibit G-14. Matlab codes for 1-h total sugar intercept network prediction.

netSTS1=net

load L_pred.m

load A X pred.m

load TS pred.m

load Crilc_pred.m

load intercept TS 1 pred.m

[intercept TS _1 predn,minintercept TS 1 pred,maxintercept T
S 1 pred]=premnmx(intercept_TS 1 pred);

L_predn=tramnmx(L_pred,minL,maxL);

A X _predn=tramnmx(A_X_pred,minA_X,maxA X);

TS predn=tramnmx(TS_pred,minTS,maxTS);
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Exhibit G-14. Continued
Crilc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
for P=1:22,

finS(P,1)=Crlc_predn(P)";
end
for P=1:22,

FinS(P,2)=A X predn(P)";
end
for P=1:22,

FinS(P,3)=L _predn(P)";
end
for P=1:22,

finS(P,4)=TS predn(P)";
end
ypredn=sim(netSTS1,finS");
ypred=postmnmx(ypredn,minintercept TS 1,maxintercept TS 1);
E _pred=intercept TS 1 pred®-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred, intercept TS 1 pred®)
Rsqrpred=rpred”2

Exhibit G-15. Matlab codes for 6-h total sugar slope network prediction.

netSTS6=net

load L_pred.m

load A _pred.m

load Crilc_pred.m

load slope TS 6 pred.m

[slope TS 6 predn,minslope_ TS 6 pred,maxslope TS 6 pred]=pr
emnmx(slope_TS_6_pred);

L_predn=tramnmx(L_pred,minL,maxL);
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Exhibit G-15. Continued
A_predn=tramnmx(A_pred,minA,maxA);
Crilc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
for P=1:22,

finS(P,1)=Crlc_predn(P)";
end
for P=1:22,

FinS(P,2)=A predn(P)";
end
for P=1:22,

FfinS(P,3)=L _predn(P)";
end
ypredn=sim(netSTS6,finS");
ypred=postmnmx(ypredn,minslope_TS 6,maxslope TS 6);
E pred=slope TS 6 pred"-ypred;
perf_pred=mse(E_pred)
[mpred,bpred, rpred]=postreg(ypred,slope TS 6 pred®)
Rsqrpred=rpred”2

Exhibit G-16. Matlab codes for 6-h total sugar intercept network prediction.

netSTS6=net

load L_pred.m

load A _pred.m

load TS pred.m

load Crilc_pred.m

load intercept TS 6 pred.m

[intercept TS _6 predn,minintercept TS 6 pred,maxintercept_ T
S _6_pred]=premnmx(intercept_TS 6 pred);

L_predn=tramnmx(L_pred,minL,maxL);

A_predn=tramnmx(A_pred,minA,maxA);
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Exhibit G-16. Continued
TS _predn=tramnmx(TS_pred,minTS,maxTS);
Crilc_predn=tramnmx(Crlc_pred,minCric,maxCrlic);
for P=1:22,
finS(P,1)=A predn(P)";
end
for P=1:22,
finS(P,2)=Crilc_predn(P)";
end
for P=1:22,
FfinS(P,3)=L _predn(P)";
end
for P=1:22,
finS(P,4)=TS predn(P)";
end

ypredn=sim(netSTS6,finS");
ypred=postmnmx(ypredn,minintercept TS 6,maxintercept_TS 6);
E_pred=intercept TS 6 pred®-ypred;

perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred, intercept TS 6 pred®)
Rsqrpred=rpred”2

Exhibit G-17. Matlab codes for 72-h total sugar slope network prediction.
netSTS72=net

load L_pred.m

load A_X pred.m

load TS pred.m

load Crilc_G pred.m

load slope TS 72 pred.m



Exhibit G-17. Continued

307

[slope TS 72 predn,minslope TS 72 pred,maxslope TS 72 pred]

=premnmx(slope_TS 72 pred);
L_predn=tramnmx(L_pred,minL,maxL) ;
A _X_predn=tramnmx(A_X_pred,minA_X,maxA_ X);
TS predn=tramnmx(TS_pred,minTS,maxTS);

Crlc_G_predn=tramnmx(Crlc_G_pred,minCrlc_G,maxCrilc_G);

for P=1:22,
finS(P,1)=Crlc_G_predn(P)";
end
for P=1:22,
finS(P,2)=A_X predn(P)";
end
for P=1:22,
finS(P,3)=L_predn(P)";
end
for P=1:22,
finS(P,4)=TS predn(P)";
end

ypredn=sim(netSTS72,finS");
ypred=postmnmx(ypredn,minslope_TS 72,maxslope_TS 72);
E _pred=slope_ TS 72 pred”-ypred;

perf_pred=mse(E_pred)

[mpred,bpred, rpred]=postreg(ypred,slope_ TS 72 pred~)
Rsqrpred=rpred”2
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Exhibit G-18. Matlab codes for 72-h total sugar intercept network prediction.
netSTS72=net
load L pred.m
load A pred.m
load TS pred.m
load Crilc _pred.m
load intercept TS 72 pred.m
[intercept TS 72 predn,minintercept TS 72 pred,maxintercept
_TS 72 pred]=premnmx(intercept TS 72 pred);
L _predn=tramnmx(L_pred,minL,maxL);
A _predn=tramnmx(A_pred,minA,maxA);
TS predn=tramnmx(TS_pred,minTS,maxTS);
Crlc_predn=tramnmx(Crilc_pred,minCric,maxCrlic);
for P=1:22,
finS(P,1)=Crlc_predn(P)";
end
for P=1:22,
finS(P,2)=A_predn(P)";
end
for P=1:22,
finS(P,3)=L _predn(P)";
end
for P=1:22,
finS(P,4)=TS_predn(P)";
end
ypredn=sim(netSTS72,finS");
ypred=postmnmx(ypredn,minintercept_TS 72,maxintercept TS 72
)
E pred=intercept TS 72 pred"-ypred;
perf _pred=mse(E_pred)
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Exhibit G-18. Continued
[mpred,bpred, rpred]=postreg(ypred, intercept TS 72 pred®)
Rsqrpred=rpred”2



APPENDIX H

NETWORK-PREDICTED SLOPES AND INTERCEPTS

Table H-1. Net-predicted glucan slopes and intercepts.
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept

1 13.18 8.22 1 2740 14.43 1 2462  62.05
2 10.14 5.34 2 2451  10.40 2 19.14  52.20
3 19.81 14.64 3 20.26  31.79 3 18.72  67.03
4 21.94  15.16 4 20.70  35.70 4 1833 76.94
5 4.22 2.38 5 13.21 7.76 5 7.88 9.42
6 13.79  10.85 6 1321  39.62 6 1336 58.41
7 4.96 0.30 7 9.27 3.98 7 3.77 27.14
8 10.32 3.60 8 9.27 15.06 8 6.82 47.61
9 7.78 1.78 9 11.01  23.36 9 7.07 34.24
10 12.12 5.24 10 11.16  39.98 10 11.19 60.23
11 5.62 2.56 11 11.55 7.89 11 3.34 24.36
12 9.46 5.32 12 1155 12.71 12 7.67 31.00
13 8.07 4.63 13 15.83 3.05 13 1489  27.65
14 8.79 6.28 14 15.32 4.54 14 1460  34.32
15 8.48 5.68 15 14.76 4.40 15 13.98 29.73
16 13.41 9.52 16 1583 16.13 16 16.81  58.40
17 1691 11.80 17 1532 25.60 17 16.97 71.76
18 1835 11.85 18 1476  28.41 18 1712 7554
19 6.39 3.92 19 16.70 6.14 19 8.33 22.60
21 17.14  12.45 20 16.63 6.57 20 8.43 23.55
22 1581 11.65 21 16.70  26.90 21 1150 50.28

22 17.09  24.80 22 12.00 43.22




Table H-2. Net-predicted xylan slopes and intercepts.
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1h 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept

1 8.87 4.49 1 19.77  40.53 1 20.41  92.33
2 5.28 2.11 2 19.04  37.06 2 10.44  68.19
3 4.86 5.07 3 18.07  32.99 3 11.72  63.19
4 4.89 4.94 4 17.47  33.07 4 8.84 65.86
5 8.68 0.72 5 9.85 22.63 5 7.41 35.54
7 4.18 3.64 6 16.01 2263 6 21.85  79.49
8 0.44 7.28 7 3.84 18.23 7 8.70 8.29
9 5.48 -1.03 8 7.94 18.23 9 6.46 37.28
10 8.49 0.90 9 8.38 18.68 10 6.79 61.81
12 0.06 6.94 10 1419  19.08 11 7.85 23.09
13 6.16 1.01 11 7.48 20.20 12 9.05 21.95
14 5.43 1.92 12 1453  20.20 13 1179 61.38
15 5.60 1.64 13 12.60  33.05 14 1191 6134
16 4.92 3.30 14 1292 32.99 15 11.94  62.20
17 4.43 4.00 15 12.86 3242 16 1224  73.32
18 4.20 4.03 16 1474  33.05 17 11.62  74.65
19 1.89 2.07 17 16.36  32.99 18 1199 7594
20 1.91 2.15 18 16.03  32.42 19 1010 16.72
21 5.40 4.84 19 1487  27.32 20 10.77  17.20
22 4.64 4.70 20 15.16  27.30 21 10.67  35.29

21 16.00 27.32 22 1096  35.41

22 16.25  29.81




Table H-3. Net-predicted total sugar slopes and intercepts.
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1lh 6h 72h
Sample No. slope intercept Sample No. slope intercept Sample No. slope intercept
1 12.56 6.93 1 23.10 28.16 1 18.73  56.22
2 7.62 3.25 2 19.69  15.90 2 20.48  49.68
3 17.30 8.44 3 20.33 37.13 3 16.78  63.61
4 18.18 7.74 4 20.50 38.67 4 16.52  74.40
5 5.95 1.69 5 3.88 14.27 5 1.41 24.83
6 14.51 8.25 6 1494  40.93 6 3.24 69.82
7 5.23 0.05 7 7.16 1.07 7 8.59 20.95
8 9.26 2.09 8 1338  18.63 8 1021  42.82
9 5.60 1.34 9 6.42 19.30 9 -4.03 4321
10 10.35 3.95 10 11.20 28.56 10 -410  61.80
11 5.78 1.08 11 8.22 8.51 11 5.55 28.60
12 10.15 3.04 12 1274 17.07 12 6.59 48.23
13 5.19 2.32 13 9.28 8.80 13 1017 21.92
14 5.88 3.52 14 1038  12.02 14 8.98 29.89
15 5.18 3.01 15 9.41 10.66 15 8.93 26.34
16 10.30 5.67 16 18.05 22.63 16 10.43 5452
17 14.95 7.31 17 22.01 31.26 17 10.68  74.86
18 15.82 6.86 18 22.06 3232 18 1198 7731
19 4.80 1.82 19 9.04 6.71 19 16.56  16.95
20 4.97 2.00 20 8.83 7.52 20 16.29 16.84
21 14.63 6.51 21 17.02  29.90 21 1456  56.80
22 13.87 6.32 22 1590 27.77 22 1490  50.59
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