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 ABSTRACT  
 
 
 
Establishment, Identification, Quantification of Methanogenic Archaea in Chicken Ceca 

and Methanogenesis Inhibition in in vitro Chicken Ceca by 

Using Nitrocompounds. (May 2006) 

Suwat Saengkerdsub, B.S., Chulalongkorn University; 

M.S., Chulalongkorn University 

Co-Chairs of Advisory Committee:  Dr. Steven C. Ricke 
            Dr. Jimmy T. Keeton 
 

In the first phase of this study, the diversity of methanogenic bacteria in avian 

ceca was found to be minimal.  Based on 16S rDNA clone libraries, a common 

phylotype, designated CH101, ranged between 92.86 to 100 % of the total clones 

whereas less than 1% of the other phylotypes were found.  On the basis of the sequence 

identity, all of the sequences, except sequence CH1270, are related from 98.97 to 

99.45% to 16S rDNA Methanobrevibacter woesei GS. Sequence CH1270 is 97.62% 

homologous to the sequence identified to uncultured archaeon clone ConP1-11F. 

Clearly, the predominant methanogen found to reside in the chicken ceca was M. woesei.  

By using a MPN enumeration method, methanogen counts were found to be in the range 

of 6.38 to 8.23 log10 organisms per gram wet weight.  The 16S rDNA copy number per 

gram wet weight in the samples was between log10 5.50 and 7.19. 

The second phase of the study was conducted to observe the effects of selected 

nitrocompounds and two different feedstuffs on in vitro methane production in chicken 
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cecal contents and rumen fluid. Initially, one of the three nitrocompounds was added to 

incubations containing cecal contents from laying hens supplemented with either alfalfa 

or layer feed.  Both feed materials influenced volatile fatty acids (VFA) production and 

also fostered methane production in the incubations although methane was lower (P < 

0.05) in incubations with added nitrocompound, particularly nitroethane.  Secondly, 

nitroethane was examined in incubations of bovine or ovine rumen fluid or cecal 

contents containing either alfalfa or layer feed.  Unlike cecal contents, layer feed 

significantly (P < 0.05) supported in vitro methane production in incubations of both 

rumen fluids. The results show that nitroethane impedes methane production, especially 

in incubations of chicken cecal contents.  

The final phase of this study was carried out to determine the methanogenic 

establishment in the chicken ceca by the cultural method with the quantitative PCR. The 

results suggested that methanogens colonized in chicken ceca at a few days after birth.  

Litter and house flies could be potential sources for methanogenic colonization in broiler 

chicks.  
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CHAPTER I 

INTRODUCTION 

   

Methane-producing archaea (known as methanogens) are a distinct group of 

organisms which are a normal component of the animal gastrointestinal microbial 

ecosystem.  Methanogens residing in the animal gastrointestinal tract belong to the 

genera Methanobacterium, Methanobrevibacter, Methanosphaera, Methanomicrobium, 

Methanogenium, and Methanosarcina (Miller and Wolin, 1986; Boopathy, 1996; Jarvis 

et al., 2000; Miller, 2001a; Miller, 2001b; Miller and Lin, 2002). Most methanogenic 

research has focused on humans and ruminants whereas studies of methanogens present 

in monogastic animals such as the chicken remain minimal (Miller, 1995; Lange et al., 

2005). For avian species, only one study has reported the isolation of methanogens from 

chicken, turkey, and goose feces (Miller et al., 1986). Based on bacterial cell wall 

composition, two methanogenic strains isolated from chicken and turkey belong to the 

genus Methanogenium (König, 1986) while one isolate from goose feces was 

Methanobrevibacter woesei (Miller and Lin, 2002).  

  The gastrointestinal tract harbors a wide variety of microbial species. Most of 

these microorganisms are anaerobes with many species able to hydrolyze 

polysaccharides to short-chain volatile fatty acids, hydrogen, and carbon dioxide as the 

primary fermentation products (Wolin et al., 1997).     Most methanogens obtain energy 

                                                 
  This thesis follows the style of Poultry Science. 
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by reduction of carbon dioxide to methane by using hydrogen as the electron donor.  

This process maintains the low partial pressure of hydrogen in the rumen and promotes 

the production of hydrogen and other products by the non-methanogenic, fermentative 

microbial community (Wolin et al., 1997).  In humans, Belay et al. (1990) found 

methanogenic activity in patients with bacterial vaginosis.  Recently, by using 

quantitative PCR, it has been suggested that methanogens might indirectly promote 

periodontal disease (Lepp et al., 2004).   However, the effect of methanogenic 

colonization in the chicken cecum is still unknown.  Characterization of the community 

structure of gastrointestinal microflora is the first important step in studying this 

ecosystem (Zoetendal et al., 2004a).  Unfortunately, the 16S rRNA sequence of 

methanogens isolated from chicken feces remains unidentified.   

 Methanogenesis accounts for 2 - 12% of the dietary energy loss in ruminants 

(Johnson and Johnson, 1995); therefore, there has been considerable interest in limiting 

methane production and avoiding energy loss. The addition of nitrocompounds showed 

that they not only reduced methanogenesis but also lowered foodborne pathogen 

colonization (Anderson et al., 2001; Anderson et al., 2003; Jung et al., 2004a; Jung et al., 

2004b).  

 Generally, when an animal is born, the intestinal tract is sterile and  becomes 

successively colonized by microorganisms acquired from the mother and surrounding 

environment (Conway, 1997).  Microbial diversity in the gastrointestinal tract becomes 

more complex as the host gets older.  Morvan et al. (1994) found that methanogens 

colonized the lamb rumen as early 30 hours after birth. Previous studies showed that 
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methanogens colonized animals when they were young and became established after 

settlement (Miller and Wolin, 1986; Maczulak et al., 1989; Skillman et al., 2004).   

 The first phase of this study (Chapter III) is focused on identification and 

quantification of methanogenic archaea in chicken ceca.  The 16S rDNA methanogenic 

gene libraries were constructed from genomic DNA isolated directly from chicken ceca. 

Using this method showed a more accurate picture of the bacterial composition in the 

gastrointestinal tract than did culturing (Zoetendal et al., 2004a).  Based on HaeIII 

digestion of partial 16S rDNA genes, all different riboprints were sequenced and 

compared with a DNA database. Concentrations of methanogens in the ceca were 

measured by using the most-probable-number method (MPN) and quantitative PCR 

approach.  Therefore, this experiment reports the presence and the number of 

methanogenic bacteria in the adult laying chicken ceca.  

 The second phase of this study (Chapter IV) investigated the effects of 

nitrocompounds and two different feedstuffs on in vitro methane production by chicken 

cecal contents and rumen fluid. First, we tested one of three nitrocompounds with one of 

the two types of feedstuffs in incubations of chicken cecal contents.  Volatile fatty acid, 

hydrogen, and methane were examined after 24-hour incubations. Second, nitroethane 

was examined in incubations of bovine or ovine rumen fluid or chicken cecal contents 

containing either alfalfa or layer feed. Methanogenesis was quantified after 3, 5, and 7 

hours of incubation.  

 The third phase of this study (Chapter V) examined the time course of 

methanogen establishment in the chicken ceca. One hundred and twenty, 1-day old 
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broilers were divided into twelve groups (10 birds/group).  Fecal samples from each 

group were collected on days 3 to 5, 9, and 12.  In addition, flies and litter were collected 

one time during the experiment. Methanogenic archaea in these samples were 

enumerated by culture in modified Balch1 medium (Balch et al., 1979; Miller and 

Wolin, 1982). Methanogenic DNA was also isolated from samples and quantified using 

quantitative PCR.  
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CHAPTER II 

LITERATURE REVIEW 

 

Intestinal Methanogenic Archaea in Animals 

 Introduction 

Methanogens, a sub-group of archaea, are present in numerous species of animals 

(Lange et al., 2005).  The unique feature of methanogens is their use of methane 

production as their sole energy generating mechanism. In the rumen, numerous bacteria 

and fungi provide hydrogen gas generated during the fermentation of cellulose and other 

carbohydrate substrates. The microbial ecology of methanogens has been studied often 

in ruminants since methane production in these animals is becoming recognized as a 

serious environmental issue.  To reduce the amount of methane produced from 

ruminants, the development a new diets or feeding regimes will be likely required.  

Other effects of methanogen colonization in animals remain unclear. For example, one 

study found methanogenic activity in patients with bacterial vaginosis (Belay et al., 

1990).  More recently, by using quantitative PCR, the relative abundance of archaeal 

small subunit ribosomal RNA genes (SSU rDNA) in the subgingival crevice was related 

to the severity of periodontal disease (Lepp et al., 2004). These archaea, presumably 

methanogens, may indirectly promote periodontal disease in some patients by serving as 

a hydrogen sink, which may support on increase in total microbial activity (Kulik et al., 

2001; Lepp et al., 2004).  
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  This review begins with a brief overview of the diversity and abundance of 

methanogenic bacteria in ruminant and non-ruminant animals; this is followed with a 

description of the physiology of these archaea.  The relationship between environmental 

factors and the physiology of methanogens is also examined.   

The diversity and amount of methanogenic archaea in gastrointestinal tracts 

The most predominant species of methanogens in the animals’ intestinal tracts 

are related to the genus Methanobrevibacter (Garcia et al., 2000). A few non-

Methanobrevibacter species, Methanobacterium, Methanosarcina, Methanosphaera, and 

Methanomicrobium, have also been isolated from animals (Pol and Demeyer, 1988; 

Boopathy, 1996).  Only two strains of Methanogenium spp. have been found to originate 

from the turkey and chicken feces (Miller et al., 1986). Methanogens comprise 

approximately 0.5 to 3% of the total population of microflora in steers, cows, sheep, 

pigs, and goats (Lin et al., 1997). 

Early studies on methanogens involved the bacteriological isolation and 

quantification of methanogenic bacteria (Smith and Hungate, 1958; Nottingham and 

Hungate, 1968; Paynter and Hungate, 1968; Miller et al., 1986; Sorlini et al., 1988; 

Butine and Leedle, 1989; Brusa et al., 1993; Morvan et al., 1996). Recently, molecular 

approaches have provided an alternative means ofinvestigating the gastrointestinal 

ecosystem without bacteriological culture methodology (Lin et al., 1997; Shinzato et al., 

1999; Tajima et al., 2001; Whitford et al., 2001; Shin et al., 2004; Wright et al., 2004; 

Eckburg et al, 2005). These molecular methods have become increasingly popular due to 

the difficulty of isolating methanogens, long incubation times and strict anaerobic 
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cultivation methods needed, and incomplete knowledge of the nutritional requirements 

of many methanogenic bacteria (Garcia et al., 2000).  It has generally been believed that 

methanogens are the only group of archaea living in animals. However, recent studies 

have demonstrated the presence of some other non-methanogenic archaea in the 

gastrointestinal tract.  Thermoplasma-associated sequences have been observed in the 

bovine rumen (Tajima et al., 2001), pig manure storage pits (Snell-Castro et al., 2005), 

and the hindgut of the lower termite Reticulitermes speratus (Shinzato et al., 1999). Shin 

et al. (2004) also found non-thermophilic-Crenarchaeota and thermophilic Crenarchaeota 

sequences in the bovine rumen.   

Ruminant animals 

Based on culture method, five methanogenic species have been isolated from the 

rumen: Methanobacterium formicicum, Methanobrevibacter ruminantium, 

Methanosarcina barkeri, Methanosarcina mazei, and Methanomicrobium mobile.   

In bovine rumen contents Methanobrevibacter ruminantium has been considered 

the predominant methanogen based on the frequency of cultural isolation and the 

specific molecular techniques used (Miller and Wolin, 1986; Sharp et al., 1998; 

Whitford et al., 2001; Shin et al., 2004). However, Methanomicrobium mobile may also 

be present at concentrations similar to that of Methanobrevibacter ruminantium (Paynter 

and Hungate, 1968; Jarvis et al., 2000). In mature bovine rumen, Methanosarcina spp. or 

Methanomicrobium spp. were not detected in a library of cloned methanogen 16S rRNA 

genes (Whitford et al., 2001). A study with hybridization probes found that less than 3% 
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of the archaeal DNA from the mature bovine rumen originated from the order 

Methanosarcinales (Sharp et al., 1998).  

From the culturable and molecular data, Methanobrevibacter spp. and 

Methanomicrobium spp. are the most abundant methanogens in the sheep rumen while 

Methanobacterium spp., Methanosarcina  spp. constitute minor populations (Lin et al., 

1997; Yanagita et al., 2000; Skillman et al., 2004). Previous studies have shown that 

Methanomicrobium mobile is the predominant methanogen in the ovine rumen (Lin et 

al., 1997; Yanagita et al., 2000). By using the fluorescent in situ hybridization (FISH) 

method, methanogen counts were approximately 3.6% of the total rumen microflora and 

approximately 54% of the total methanogens were Methanomicrobium mobile (Yanagita 

et al., 2000). 

The methanogenic community in the rumen is established very soon after birth. 

Methanogen densities reach 104 to 109 organisms per gram in rumen fluid of grazing 

lambs at 1 and 3 weeks of age, respectively (Skillman et al., 2004). Morvan et al. (1994) 

also found that methanogens colonize the lamb rumen by 30 hours after birth and reach 

106 organisms per ml by 15 days of age. These results showed that methanogens 

colonized the rumen well before the diet contains forage material. A strain of 

Ruminococcus flavefaciens, a hydrogen-producing, cellulolytic bacterium which is 

known to form syntrophic associations with methanogens (Wolin et al., 1997), was 

isolated from lamb rumen one day after birth (Skillman et al., 2004). The genus 

Methanobrevibacter become established early in young lambs and seem to be more 
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stable than the Methanobacterium populations which in several instances appeared and 

then disappeared as the rumen developed (Skillman et al., 2004).   

The levels of methanogenic archaea present in rumen contents range between 106 

to 108 organisms ml-1 and are shown in Table 2.1. Methanomicrobium mobile was 

present at a level of at least 106 organisms ml-1 the rumen of cattle grazing on 

ryegrass/clover pasture  (Jarvis et al., 2000) and 108 organisms ml-1 in cattle fed alfalfa 

hay (Paynter and Hungate, 1968). By cultural methodology, Methanobrevibacter 

ruminantium was found to be the most abundant methanogen in the bovine rumen and 

present at approximately 108 organisms ml-1in cattle fed alfalfa and grass (Smith and 

Hungate, 1958).  

Non-ruminant animals 

In contrast to ruminants, bacterial fermentation in monogastric animals is 

concentrated on activity in the cecum and colon (Apajalahti, 2005).  These parts of the 

gastrointestinal tract receive dietary compounds that escape host digestion and 

absorption; therefore, bacteria do not compete with the host when they ferment these 

remaining substrates. However, in the upper GI tract, competition occurs for all simple 

sugars and amino acids utilized by the host, which are also available for the bacteria.  In 

poultry, equines, and rodents, the site for intense bacterial fermentation is a well-

developed appendix or cecum. In other monogastric animals, such as humans and swine, 

the cecal appendix is diminished, and the bacterial fermentation mainly occurs in the 

colon.   
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Table 2.1 Number of methanogenic bacteria present in rumen, feces, colon contents, ceca from various 
animals, and references of these studies.  

Species Numbers of methanogens Reference 

Cattle  105 to 108 per ml rumen samples Morvan et al., 1996 

Cattle  106 per gram dry wt feces Sorlini et al., 1988 

Sheep  107 to 108 per ml rumen samples Morvan et al., 1996 

Sheep  108 per ml rumen samples Yanagita et al., 2000 

Buffalo  107 per ml rumen samples Morvan et al., 1996 

Deer  108 per ml rumen samples Morvan et al., 1996 

Llama  106 to 108 per ml rumen samples Morvan et al., 1996 

Horse  104 to 106 per gram wet wt ceca Morvan et al., 1996 

Rabbit  104 per gram dry wt feces Sorlini et al., 1988 

Pig    108 per gram dry wt feces Sorlini et al., 1988 

Pig  6 * 106 per gram wet wt ceca Butine and Leedle, 1989 

Pig  108 per gram wet wt colon contents Butine and Leedle, 1989 

Rat 109 per gram dry wt feces Maczulak et al., 1989 

Human   107 per gram dry wt feces Sorlini et al., 1988 

Human   103 to 1010 per gram dry wt feces Miller and Wolin, 1982 

Chicken 106 to 108 per gram wet wt ceca This study 
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 Compared to ruminants, the methanogen diversity in non-ruminants appears to 

be minimal. In general, methane production by monogastric animals is lower than 

methane production by ruminants (Jensen, 1996). By using the FISH method, Lin et al., 

(1997) found that archaea were more abundant in the gastrointestinal tracts of ruminants 

than in cecal samples of non-ruminant pigs. While only 8 phylotypes were found in a pig 

manure storage pit (Snell-Castro et al., 2005), Wright et al. (2004) observed 65 

phylotypes in the sheep rumen. In our study, we found only 11 phylotypes in chicken 

ceca and one phylotype represented more than 96% of the total archaeal sequences.  

The predominant methanogen in non-ruminants is Methanobrevibacter spp. 

which is also found in ruminants. Eckburg et al. (2005) found that all of the 1524 

archaeal sequences examined from human intestinal tracts belonged to 

Methanobrevibacter smithii. Four strains belonging to the genus Methanobrevibacter 

have been isolated from rat feces (Maczulak et al., 1989).  In the cockroach hindgut, 

Gijzen et al. (1991) observed Methanobrevibacter spp. endosymbiosis with the ciliate 

Nycotherus ovalis.  In the hindgut of the lower termite Reticulitermes speratus, more 

than 93% of archaea has been reported to be Methanobrevibacter spp. (Shinzato et al., 

1999). 

In humans, the genetic diversity of oral methanogens is quite low and only three 

phylotypes have been reported (Kulik et al., 2001).  The major group of oral 

methanogens is Methanobrevibacter oralis while Methanobrevibacter smithii is found 

mainly in the colon (Miller et al., 1982; Kulik et al., 2001).  
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Zhu and Joerger (2003) detected microorganisms in chicken ceca of 2-day to 6-

week-old broilers by using FISH and found that hybridization with the archaea probe 

were obtained even from samples of very young birds. Methanogens represented 0.7 to 

3.3 % of the total microflora. Two methanogenic strains were isolated from turkey and 

chicken feces (Miller et al., 1986). Based on cell wall composition, these two strains 

isolated from chicken and turkey feces belong to the genus Methanogenium  (König, 

1986).   

A few non-Methanobrevibacter spp. have been isolated or found to be present, 

based on detection of the 16S rDNA genes, from these animals. Methanosarcina sp. has 

also been isolated from swine manure (Boopathy, 1996).  Less abundant methanogenic 

bacterium found in the human colon is Methanosphaera stadtmaniae (Miller et al., 

1982).  

The levels of methanogens harboring in the colon or cecum are similar to those 

in rumen fluid (Table 2.1).  The range of methanogens in ceca has been shown to be 104 

to 108 organisms per gram wet weight ceca (Table 2.1).  

Physiology of methanogens 

Some physiological characteristics of methanogenic archaea residing in animal 

gastrointestinal tracts are shown in Table 2.2. The optimal growth temperature and pH of 

these methanogens are similar (Table 2.2). The optimal temperature range of most 

methanogens, except Methanobrevibacter curvatus, Methanobrevibacter filiformis, and 

Methanosphaera stadtmanae, is 35 to 41 oC and the optimal pH of all methanogens is 

7.0 (Table 2.2).  Growth of methanogens isolated from the cow, rat, and sheep is 
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inhibited by bile salts; however, most methanogenic archaea isolated from non-

ruminants tolerate the same bile salts (Table 2.2).  

Most methanogens, except the genus Methanosarcina and Methanosphaera, 

residing in the gastrointestinal tract obtain energy by reducting CO2 to CH4 using H2 and 

sometimes formate as the electron donor. The genus Methanosphaera requires methanol 

and hydrogen for growth (Miller, 2001a).  The genus Methanosarcina obtain energy via 

formation of methane from acetate, methanol, monomethylamine, dimethylamine, 

trimethylamine, H2/CO2  and CO (Boone and Mah, 2001).  

Some methanogens have extraordinary characteristics from others. For example, 

most methanogenic strains isolated from bovine (Methanobrevibacter ruminantium; 

Methanobacterium formicicum; Methanosarcina barkeri) or ovine (Methanobrevibacter 

wolinii) species require either coenzyme M, a heat-stable factor in rumen fluid or other 

growth factors present in rumen fluid (Table2) (Taylor et al., 1974).  In addition, 

methanogens originating from geese (Methanobrevibacter woesei GS), the horse 

(Methanobrevibacter gottschalkii HO), and pigs (Methanobrevibacter gottschalkii PG) 

grow in a medium with salt concentrations similar to that of sea water (Blach medium 3) 

(Miller et al., 1986).  
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Table 2.2 Some phenotypic traits of the species isolated from animal intestinal tracts.  
 
Trait Opt. Temp. for 

growth (oC) 
Opt. pH Growth with bile Formate used for 

growth 
Medium 

additions for 
good growth 

1 38 7.2 - + AcH, AA, CoM, 
NH4, 2-MB 

2 30 7.2 NK - NutB, RF 
3 37 7.7 NK + AA, RF, YE 
4 30 7.2 NK - DTT, YE 
5 37 6.9-7.4 + - FaecX, VFA 
6 38 6.9-7.4 + + AcH, Bvits 
7 37 7 + - AcH, Trp+YE 
8 37 7 - - AcH, Trp+YE 
9 37 7 + + AcH, Trp+YE 
10 37 7 - - AcH, 

CoM+VFA 
11 35-41 7 - + NK 
12 38 6.5-7 NK + RF, YE 
13 38 6.5-7 NK + NK 
14 40 6.5 NK - RF 
15 37 6.8 NK - AcH 
16 30-40 6.5-6.9 + - Biotin, AcH 
17 35-40 6.8 NK - AcH 
 
Taxa are indicated as: 1. Methanobrevibacter ruminantium M1 isolated from bovine rumen; 2. 
Methanobrevibacter curvatusRFM-2 isolated from hindgut content of termite Reticulitermes flavipes 
(Kollar) Rhinotermitidae); 3. Methanobrevibacter curticularis isolated from hindgut content of termite 
Reticulitermes flavipes (Kollar) (Rhinotermitidae); 4. Methanobrevibacter filiformis RFM-3 isolated from 
hindgut content of termite Reticulitermes flavipes (Kollar) (Rhinotermitidae); 5. Methanobrevibacter 
oralis ZR isolated from human subgingival plaque; 6. Methanobrevibacter smithii PS isolated from human 
feces; 7. Methanobrevibacter gottschalkii HO isolated from horse feces and M. gottschalkii PG isolated 
from pig feces; 8. Methanobrevibacter thaueri CW isolated from cattle feces; 9. Methanobrevibacter 
woesei GS isolated from goose feces; 10. Methanobrevibacter wolinii isolated from sheep feces; 
11. Methanobrevibacter spp. isolated from rat feces; 12. Methanobacterium formicicum BRM9 isolated 
from grazing cattle; 13. Methanomicrobium mobile BRM16 isolated from grazing cattle; 14. 
Methanosarcina barkeri CM1 isolated from grazing cattle; 15. Methanosarcina sp. isolated from swine 
manure; 16. Methanosphaera stadmanae isolated from human feces ; 17.Methanosphaera cuniculi 
isolated from the contents of rabbit rectum; Abbreviations: NK, not known; AA, amino acid mixture; 
AcH, acetate; Bvits, B vitamin mixture; CoM, coenzyme M; DTT, dithiothreitol (cysteine and H2S 
inhibition growth); FaecX, fecal extract; 2-MB, 2-methylbutyric acid; NutB, nutrient broth; RF, rumen 
fluid; Trp, Trypticase; v, strain-dependent; VFA, volatile fatty acid mixture; YE, yeast extract. Most 
strains use H2 + CO2 for growth; no substrate other than formate, except Methanosarcina barkeri CM1 and 
Methanosarcina sp. can use acetate, methanol as substrates but not formate, and Methanosphaera spp. are 
able to utilize only methanol and H2.
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Factors affecting methanogens in animal intestinal tracts 

Environment and genetic attributes can affect the distribution of methanogenic 

archaea in the gut ecosystem.  Tajima et al. (2001) mentioned that the microorganisms in 

rumen are highly responsive to changes in diet, age, antibiotic use, and the health of the 

host animal, and vary according to geographical location, season, and feeding regimen. 

Diet 

Recent molecular approaches have revealed that the composition of methanogens 

in animal intestinal tracts can vary with different diets (Wright et al., 2004). By 

observing 16S rRNA sequences, Wright et al. (2004) found that pasture-grazed sheep 

had greater methanogen diversity than sheep fed either an oaten hay or lucerne hay.  

High fiber diets have been reported to increase the amount of methanogens in the 

rumen.  Pol and Demeyer (1988) demonstrated that sheep fed a hay-concentrate diet 

increased the rate of methanogenesis from methanol, which is the substrate for 

Methanosarcina spp.  

Cellulolytic organisms may play a role in the development of a methanogenic 

community in the gut by providing substrates for methanogens.  Minato et al. (1992) 

hypothesized that cellulolytic bacteria supply hydrogen gas to methanogens.  An 

increase in the fiber content of animal diets has been shown to result in an increase in 

methanogenesis in the cockroach gut (Kane et al., 1991).  Robert et al. (2003) found that 

the presence of certain fibrolytic species (cellulolytic isolates related to Enterococcus 

faecalis, Ruminococcus spp) was related to the presence of methanogenic archaea. A 

correlation was observed between the numbers of methanogens and those of cellulolytic 
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microorganisms in fresh rumen samples of sheep, cattle, deer, llama, and cecal contents 

from horses (Morvan et al., 1996).  Numbers of the ciliate Nyctotherus ovalis, which 

harbor Methanobrevibacter sp., and methane production increased when the cockroach 

was fed a high fiber diet (Gijzen et al., 1991).  On the other hand, one study found that 

the number of methanogens associated with ciliates in sheep rumen, not the number of 

ciliates, is modulated by feeding. Shrimpton (1966) found that a high-fiber diet increased 

methane production in the chicken by nine-fold in comparison to birds given low-fiber 

feed.  In contrast to other studies, Maczulak et al. (1993) did not observe significant 

differences in the numbers of methanogens in the fecal samples from rats fed a high-

fiber vs. fiber-free diets.  

Another reason that high-fiber diets increase either methanogenic diversity or the 

level of organisms is that methanol may be available in the gastrointestinal tract.  

Methanosarcina spp. in bovine and sheep rumens can utilize methanol as a 

methanogenic substrate. In addition, Methanosphaera spp., as well as Methanosphaera 

stadtmanae from the human colon and Methanosphaera cuniculi isolated from the 

contents of rabbit rectum, can utilize only methanol as the substrate for growth (Miller, 

2001a).  Methanol is produced by the hydrolysis of methyl esters from pectins, which 

are abundant polysaccharides in plants.  Based on the genomic sequence of 

Methanosphaera stadtmanae, this archaeon lacks the genes for biosynthesis of 

molybdopterin, indicating that Methanosphaera stadtmanae cannot synthesize active 

formylmethanofuran dehydrogenase (Fricke et al., 2006). 
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Bile acids 

Bile, produced and secreted by the liver, can act as a detergent to interact with 

bacterial membrane lipids.  Therefore, exposure to bile is a serious challenge for 

intestinal microorganisms (Begley et al., 2005).  Most bile acids, except those in the pig, 

are cholic acid or chenodeoxycholic acid as shown in Table 2.3. In mammals, primary 

bile acids include cholic acid and small amounts of chenodeoxycholic acid while 

chenodeoxycholic acid is the main bile acid in fowl (Singleton and Sainsbury, 2001).  

Elkin et al. (1990) reported that chenodeoxycholyltaurine and cholyltaurine are the 

primary bile salts in chicken and turkey (Table 2.3). In humans and chickens, more than 

90% of bile acids are resorbed in the small intestine (Begley et al., 2005; Denbow, 

2000).  The fecal loss of bile acids in human is in the range of 0.3-0.6 g per day (Begley 

et al., 2005). 

Most Methanobrevibacter spp. isolated from rumen do not have the ability to 

tolerate bile (Miller and Lin, 2002).  Therefore, these acids may inhibit methanogens.  

Two methanogens isolated from horse feces and goose feces, Methanobrevibacter 

gottschalkii HO and Methanobrevibacter woesei GS, can grow in the presence of bile 

(Miller and Lin, 2002).  The concentration and types of bile acids influence bacterial 

growth. Florin et al., (1995) found that bile acid concentrations greater than 0.05 % can 

inhibit human methanogenesis in vitro. Grill et al.(2000) suggested that glycine 

conjugated bile salts exerted a higher level of toxicity than taurine conjugated salts, and 

bile containing trihydroxy conjugated bile salts was less inhibitory than that containing 

bihydroxy conjugated bile salts. In addition, Methanobrevibacter spp. that can tolerate   
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Table2.3 The primary bile acids and conjugated molecules present in animals. 

Animal Primary free bile acid Main conjugated molecule References 

Human Cholic acid a Glycine  Florin et al. (1995) 

Chicken/Turkey Chenodeoxycholic acid b 

Cholic acid a 

Taurine Elkin et al. (1990) 

Cow Cholic acid a (83.5%) c Taurine (31.0%) d Washizu et al. (1991) 

Horse Chenodeoxycholic acid b 

(68.4%)  

Taurine (85.3%) Washizu et al. (1991) 

Pig Chenodeoxycholic acid b 

(26.2) 

Hyodeoxycholic acid b 

(20.6%) 

Hyocholic acid a (33.8%) 

Glycine (85%) Legrand-Defretin et al. 

(1991) 

 

a Trihydroxy bile acid 

b Dihydroxy bile acid 

c The percentage of the total bile acid  

d The percentage of  either glycine or taurine to the conjugated molecule 
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bile salts usually can grow in seawater medium (Miller and Lin, 2002). Membrane 

architecture and composition, especially fatty acid composition, play an important role in 

bile and osmotic resistance (Begley et al., 2005).  Flahaut et al. (1996) showed that when 

Enterococcus faecalis ATCC19433 is subjected to an osmotic stress, it shows cross-

protection against exposure to bile acids.  

pH 

Rumen methanogenesis is also dependent on pH with no methane production at 

pH values less than 6.0 (Russell, 1998). In general, the pH in rumen contents is between 

5.0 to 7.0 (Cotta and Hespell, 1986). Chicken cecal pH values are in the ranges of 5.5 to 

7.0 (Shrimpton, 1966; Denbow, 2000).  

Host genotype 

Host specificity has been demonstrated to affect the colonization ability of 

certain methanogens since one bacterial strain from one animal may fail to colonize 

another animal. In spite of same breed, some individual rats in one study resist 

methanogenic colonization (Florin et al., 2000).  In humans, Methanobrevibacter smithii 

was found to range from a few to 1010 organisms per gram fecal dry weight (Miller and 

Wolin, 1986).  Tannock et al. (1982) examined various strains of lactobacilli isolated 

from many kinds of animals and noted that they exhibit host specificity to squamous 

epithelia in the gastrointestinal tracts.  However, a study of monozygotic and dizygotic 

twins did not find that genetics played an important role in methanogen colonization in 

human colon (Florin et al., 2000).  
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Gender 

In humans, males usually carry less methanogens than females.  Florin et al. 

(2000) mentioned that genetic traits of human males or behavioral effects, such as 

passage rate and difference in the enterohepatic circulation of bile acids, may influence 

mechanisms that control methanogenesis. 

Some compounds that are present in gastrointestinal tracts are necessary for 

growth of methanogens.  For example, Methanomicrobium mobile requires a heat-stable 

factor that is available in bovine rumen fluid (Tanner et al., 1988).  Taylor et al. (1974) 

also found that coenzyme M, a growth factor presenting in rumen fluid, is essential for 

growth of Methanobrevibacter ruminantium.  

 Hackstein et al. (1999) proposed that the presence of symbiotic methanogenic 

archaea in the gastrointestinal tracts is a necessary requirement for the evolution of 

foregut- and hindgut-fermenting structures, irrespective of the nutritional preferences of 

the hosts. In addition, methanogenesis seems to obey Dollo’s law which suggest that if it 

is lost in a particular phylogenetic branch, it will not reappear in any species of this 

branch-regardless of whether these species are herbivores or not (Hackstein et al., 1999).  

  

 

 

 

 

 

 



  21

Molecular Techniques in Chicken Gastrointestinal Tract Studies 

Introduction  

Bacterial populations as high as 1011 cells per gram of chicken cecum are 

composed of at least 38 different types of anaerobic bacteria  (Barnes et al., 1972; 

Barnes and Impey, 1972; Barnes, 1979).  Bacterial cells outnumber animal cells by a 

factor of 10 and have a profound influence on immunological, nutritional, and 

physiological processes in the host (Savage, 1977).  Although it is relatively easy to 

obtain a total viable count, enumerating individual bacterial species by culturing 

methods is laborious and time consuming.  Drawbacks associated with culture-based 

techniques are exacerbated in anaerobic habitats.  Selective media are not available for 

most of the strict anaerobes and several hundred isolates from each specimen should be 

identified for reliable statistics. Only those organisms whose niche can be mimicked 

relatively easily in the laboratory have been isolated and identified. Thus, despite 

extensive culture studies performed on the gastrointestinal ecosystem using conventional 

techniques, it must be assumed that, as for other natural ecosystems, the fraction of well-

described species is limited. Although traditional cultivation methods are generally 

tedious, expensive and probably more open to misinterpretation with intestinal samples, 

they remain the gold standard for identification.  Indeed, recent estimates of culturability 

range from 10 to 50% (Zoetendal et al., 2004b). The reasons for this cultivation anomaly 

include unknown growth requirements of the bacteria, the stress imposed by the 

cultivation procedures, the necessity of strictly anoxic conditions, and difficulties with 

stimulating the interactions of bacteria with other microbes and host cells.  
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 The study of gastrointestinal microbial ecology involves investigation of the 

organisms present (abundance and diversity), their activity (usually determined in vitro, 

but ideally in vivo activity should be measured), and their relationship with each other 

and the host animals (synergistic and competitive interactions). The circumvention of 

cultivation limitations requires culture-independent methods. A dramatic increase in the 

application of approaches based on the sequence diversity of the 16S rRNA gene have 

been made during the past decade to explore the diversity of bacterial communities in a 

variety of ecosystems, including chicken gastrointestinal tract (Gong et al., 2002; Zhu et 

al., 2002; Lu et al., 2003b). Sequence comparisons of nucleic acids isolated from 

complex microbial ecosystems can be used to provide molecular characteristics, while at 

the same time providing a classification system, which predicts natural evolutionary 

relationships (Woese et al., 1990). As such, the field of molecular microbial ecology is 

defined as the application of molecular technology, typically based on comparative 

nucleic acid sequence information, to identify specific microorganisms in a particular 

environment, to assign functional roles to these organisms, and to assess their 

significance or contribution to environment processes.   

Molecular characterization by rRNA analysis 

 The primary structure of all ribosomal sequences consists of alternating 

conserved and variable domains which makes them very suitable for the detection and 

identification of microbial species and ideal targets for species and ideal targets for 

specific DNA probes. By aligning the appropriate 16S rRNA sequences, genus-specific 

and species-specific sequences can be identified. As a result, molecular methods address 
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detection and classification at the same time.  Comparative sequencing of the 16S rRNA 

molecule has become by far the most commonly used measure of environmental 

diversity.  The 16S rRNA, consisting of about 1500 nucleotides, provides a large mount 

of information for phylogenetic inference and is a reasonable size for sequencing.  A 

comprehensive set, currently greater than 79000 small subunit rRNA entries, is available 

in generally accessible database such as GenBank and EMBL (Vaughan et al., 2000; 

Zoetendal et al., 2004a).  

Sequencing of 16S rDNA clone libraries 

 The construction of small subunit (SSU) rRNA libraries is required to inventory 

bacteria and archaea present in a given environment. Sequencing of SSU rRNA genes 

has become  a standard procedure for the identification of isolates and it is now 

impossible to adequately describe microbial communities without SSU rRNA sequence 

data.   

 Traditionally, bacteria have been classified on the basis of phenotypic properties 

and only after the availability of nucleic acid based technology have SSU rDNA 

sequences been recognized as a standard phylogenetic classification tool in the 

description of bacterial strains (Stackebrandt and Goebel, 1994). While large number of 

cloned SSU rDNA sequences from the gastrointestinal tract of a variety of animals have 

been deposited in DNA databases, few examples exist of direct comparisons between 

SSU rDNA sequences retrieved from cloned amplicons and colony forming units from 

culturable gastrointestinal tract bacteria (Zoetendal et al., 2004a).  
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DGGE/TGGE 

 Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods 

have been successfully applied to the analysis of chicken intestinal tract samples (van 

der Wielen et al., 2002; Zhu et al., 2002). DGGE and TGGE are gel-electrophoretic 

separation procedures for double stranded DNA’s equal size but different base-pair 

composition or sequence (Muyzer and Smalla, 1998).  In principle, the methods are 

sensitive enough to separate DNA’s on the basis of a single point mutation (Sheffield et 

al., 1989). Both techniques are gaining increased popularity in microbial ecology for 

analyzing the diversity of total bacterial communities.   

 Briefly, the 16S rRNA genes are amplified using the appropriate primer pair, one 

of which has a G+C clamp attached to the 5’ end that prevents the two DNA strands 

from completely dissociating even under strong denaturing conditions.  During 

electrophoresis through a polyacrylamide gel containing denaturants, migration of the 

molecule is essentially arrested once a domain in a PCR product reaches its melting 

temperature.  Following staining of the DNA, a banding pattern emerges that represents 

the diversity of the rRNA gene sequences present in the sample.  The intensity of an 

individual band is a semi-quantitative measure for the relative abundance of this 

sequence in the population. DGGE and TGGE of 16S rRNA amplicons are exceptional 

tools to study the bacterial species composition of unknown samples. Since individual 

bands can be excised and sequenced, the identity of the bacteria present in the sample 

can be determined without cultivation. DGGE has being used to monitor the bacterial 

succession in the chicken gastrointestinal tracts (van der Wielen et al., 2002). The 
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bacterial diversity remains very low during the first four days after birth and the 

dominant bacterial community becomes more complex when chickens age (van der 

Wielen et al., 2002).  

T-RFLP 

 Terminal RFLP of PCR-amplifed DNAs is a refined fingerprinting technique 

based on RFLP.  The general steps include PCR amplification of a conserved target of a 

conserved target sequence (most commonly a region of the SSU rRNA gene) followed 

by restriction enzyme digestion and gel fractionation of the resulting fragments. 

However, one of the two PCR primers is fluorescently labeled at the 5’ end.  This results 

in PCR amplification products that are tagged with a fluorescent dye at only one 

terminus.  Following restriction enzyme digestion (usually with a tetrameric restriction 

enzyme), the restricted products are resolved using an automated DNA sequencer or a 

capillary electrophoresis system equipped with a laser-induced fluorescence detector. 

Only the fluorescently tagged terminal fragments are detected and quantified.  T-RFLP 

analysis has been used to reveal some differences between bacterial populations present 

in the mucosa and lumen of the chicken ceca (Gong et al., 2002).  

Fluorescence in situ hybridization  

 In contrast to most molecular methods referred to in the above sections, whole 

cell fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide 

probes is quantitative on a cell by cell basis. Ultimately, enumeration of species in the 

intestinal tract is best addressed by this approach.  
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 The first report report on enumeration of bacteria in the chicken intestinal tract 

by FISH methods indicated that an enteric group and Clostridium leptum subgroup were 

the  dominant microbiota when the broilers were 2 days and 6 weeks old (Zhu and 

Joerger, 2003). 

Quantitative (RT) PCR of 16S rRNA 

 Although PCR is the mot sensitive technique to detect sequences that are present 

in very low concentrations in the environment, many factors can influence the 

amplification reaction, and fingerprinting techniques alone do not provide quantitative 

data (Wintzingrode  et al., 1997). However, it is possible to determine quantitatively 

SSU rDNA or rRNA using PCR.  Quantitative (RT) PCR is one approach to quantify the 

target.  Although RT-PCR still needs to be proven suitable for analyzing complex 

bacterial communities, this application looks promising because bacterial targets in very 

low concentration can be quantified, which are difficult using other approaches. Using 

RT-PCR, Campylobacter jejuni (Rudi et al., 2004) and Clostridium perfringens (Wise 

and Siragusa, 2005) were quantified in chicken gastrointestinal tract samples.  

Non-16S rRNA-based profiling 

 Most culture-independent techniques used to describe bacterial communities 

have focused on the sequence diversity of 16S rRNA. However, determining G+C 

content has been used successfully (Apajalahti et al., 1998; Apajalahti et al., 2001; 

Holben et al., 2004). The advantage of these types of profiling is that they are direct 

without any amplification step.  However, the identification of bacteria causing the shifts 

in the profiles is difficult, because the data lacks phylogenetic information.  Therefore, 
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16S rRNA approaches are needed for the validation of these alternative methods.  In 

addition, this method has not been widely applied at the moment, which may restrict 

researchers to use them.  
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CHAPTER III 

IDENTIFICATION OF METHANOGENIC ARCHAEA IN CHICKEN CECA 

BASED ON 16S rDNA AND QUANTIFICATION BY PERFORMING MPN, 

REAL-TIME PCR 

 

Introduction 

Methanogens, a sub-group of the archaebacteria, have been isolated from various 

animals (Miller and Wolin, 1986; Miller et al., 1986). In contrast to methanogens in 

ruminants and human, studies of methanogenic bacteria present in monogastric animals 

are still scarce (Miller, 1995; Jensen, 1996; Lange et al., 2005;).  For avian animals, only 

one report exists regarding the isolation of methanogens from chicken, goose, and turkey 

feces (Miller et al., 1986). In addition, a few notes have reported methanogens to harbor 

in chicken intestinal tracts (Shrimpton, 1966; Zhu and Joerger, 2003).  Unfortunately, 

analysis of the 16S rRNA genes of methanogen isolated originating from turkey and 

chicken feces was not carried out.  Based on cell wall composition, however, these two 

strains appeared to belong to the genus Methanogenium  (König, 1986).   

 Characterizing the community structure of gastrointestinal microorganisms is the 

first important step in studying this ecosystem (Zoetendal et al., 2004a). It has been 

reported that only 10 to 50% of the gastrointestinal tract bacteria are able to be cultured 

(Zoetendal et al., 2004b). Molecular techniques provide improved ways to study mixed 

populations of gastrointestinal microorganisms (Vaughan et al., 2000; Zoetendal et al., 

2004a, Zoetendal et al., 2004b).  Compared to the culture-dependent approaches, 
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molecular methods revealed greater diversity of bacterial populations from chicken ceca 

(Gong et al., 2002).  Several molecular methods, 16S rRNA libraries (Lu et al., 2003a), 

Fluorescent In Situ Hybridization (FISH) (Zhu and Joerger, 2003), terminal restriction 

fragment length polymorphism (T-RFLP) (Gong et al., 2002), temporal temperature 

gradient gel electrophoresis (TTGE) (Zhu et al., 2002), denaturing gradient gel 

electrophoresis (DGGE) (Knarreborg et al., 2002; van der Wielen et al., 2002; Hume et 

al., 2003), percent G + C content (Apajalahti et al., 1998; Apajalahti et al., 2001; Holben 

et al., 2004), and specific 16S rDNA primers (Amit-Romach et al., 2004), have been 

used to examine the intestinal microbiota of the chicken.  

The cultural methods have been used to count methanogens in human and 

animals (Smith and Hungate; 1958; Nottingham and Hungate, 1968; Miller and Wolin, 

1982; Weaver et al., 1986; Sorlini et al., 1988; Butine and Leedle, 1989; Brusa et al., 

1993; Morvan et al., 1996).  Molecular methods, especially quantitative real-time PCR 

(Q-PCR), have also been used to quantify specific bacterial populations in the chicken 

gastrointestinal tract (Rudi et al., 2004; Wise and Siragusa, 2005; Dumonceaux et al., 

2006).   The use of Q-PCR for counting methanogens has already been used to examine 

anaerobic treatment systems (Shigematsu et al., 2003; Tang et al., 2004; Yu et al., 

2005a), sediments (Chan et al., 2005), and rice fields (Kemnitz etal., 2005).   

 To the best our knowledge, this is the first study to examine, quantify 

methanogens in chicken using 16S rDNA genes, and count using most-probable-number 

(MPN) enumeration. The ribosomal gene sequences were amplified by PCR with 

specific methanogenic archaea primers, primers Met86F and Met1340R (Wright and 
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Pimm, 2003) followed by riboprinting to determine the relative proportions of different 

methanogen groups.  In addition, methanogens in these cecal contents were quantified 

by a MPN method based on Balch 1 medium supplemented with rumen fluid and 

additional NH4Cl (Balch et al., 1979; Miller and Wolin, 1982), and by real-time PCR by 

using primers MBT (Yu et al., 2005b).   

 

Materials and Methods 

Source of cecal samples 

 Ceca were obtained from female Leghorn chickens 56 to 72 weeks of age and 

maintained on a layer ration.  The composition of the Texas A&M University (TAMU, 

College Station, TX) layer ration was (%): corn 56.72; soy bean meal 31.63; vegetable 

oil 7.68; monocalcium phosphate 1.69; calcium carbonate 1.56; methionine (98 %) 0.17; 

vitamin premix 0.25; NaCl 0.25; and a trace mineral premix 0.05. A preliminary trial 

was performed and consisted of the ceca from one chick, and was as designed as sample 

1.  Twenty-four chickens were divided into four groups and were sacrificed to take cecal 

contents. Ceca from each individual of 6 birds were pooled and these 4 groups designed 

as samples 2-5. 

DNA extraction 

 Bacterial genomic DNA was isolated by the method of Wright et al. (1997) with 

some modifications. Cecal contents were suspended in Tris-EDTA (TE) buffer and 

treated with proteinase K for 1 h at 37 oC, followed by five cycles of freezing at –80 oC 

for 1 h and heating in a water bath at 65 oC for 30 min. The lysate was treated with  
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cetryltrimethylammonium bromide/sodium chloride (CTAB/NaCl). The CTAB was 

extracted with an equal volume of chloroform-isoamyl alcohol (24:1), mixed, and 

centrifuged at 7,000 xg for 5 min.  The DNA solution was transferred to a new 

microcentrifuge tube with an equal volume of phenol-chloroform-isoamyl alcohol 

(25:24:1), mixed and centrifuge at 7,000 g for 5 min and isopropanol precipitation.  The 

extracted DNA was further purified with a Dneasy® Tissue kit (Quigen, Valencia, CA).  

The DNA solution was stored at -20°C. 

Riboprinting and sequencing   

Methanogenic 16S rDNA sequences from five chicken cecal samples were 

amplified using methanogen-specific forward and reverse primers Met86F and 

Met1340R (Wright and Pimm, 2003).  The sequences of primers Met86F and Met1340R 

are shown in Table 3.1. The PCR conditions followed the protocol of Wright et al. 

(2004).  Cloning of the 1.2-kb PCR product was performed by using a TOPO TA 

cloning kit (Invitrogen, Carlsbad, CA) following the manufacturer’s protocol, and the 

resulting ligation product was used to transform Escherichia coli One Shot TOP10 

competent cells (Invitrogen, Carlsbad, CA).  A total of 420 clones were cultured 

overnight in Luria Broth with ampicillin (Sigma, St. Louis, MO) for extracting plasmids 

with a QIAprep spin miniprep Kit (Quigen, Valencia, CA).  The 16S rDNA-inserted 

plasmids were reamplified by PCR using the parameters and primers described above.  

The PCR products were purified with a QIAquick PCR purification kit (Quigen, 

Valencia, CA) and   digested overnight at 37 oC with AluI or HaeIII (Promega, Madison, 

WI).  Restriction fragment were separated on agarose gels (4%, w/v) and stained with  
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Table 3.1 Names, sequences, application, and references of the primers used in this study.  

Name Sequence 5’ – 3’ Application Reference 

Met86F GCT CAG TAA CAC GTG G Cloning Wright et al (2003) 

Met1340R CGG TGT GTG CAA GGA G Cloning Wright et al. (2003) 

MBT857F CGWa AGG GAA GCT GTT AAG T Real-time PCR Yu et al. (2005b) 

MBT929F AGC ACC ACA ACG CGT GGA TaqMan  Yu et al. (2005b) 

MBT1196R TAC CGT CGT CCA CTC CTT Real-time PCR Yu et al. (2005b) 

 

a W = A/T 
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ethidium bromide as shown in Fig. 3.1. Restriction fragment length polymorphisms were 

grouped according to their riboprint patterns and were compared to a riboprint database 

for identification (Wright and Pimm, 2003).  Clones representing all HaeIII restriction 

fragment length polymorphism patterns were bidirectionally sequenced with ABI 

Prism® BigDye® Primer Cycle Sequencing kits (Applied Biosystems, Foster City, CA).  

Phylogenetic analysis 

The partial nucleotide sequences for the 16S rDNA  cloned from chicken cecal 

populations were used to query Genbank. To place these chicken cecal sequences within 

a phylogeny of representative methanogenic archea, the following sequences from 

Genbank were included in the analysis: Methanobrevibacter woesei (U55237), 

Methanobrevibacter sp. (U55241), Methanobrevibacter thaueri (U55236), 

Methanobacterium bryantii (AF028688), Methanosphaera stadtmanae (M59139), 

Methanotermobacter thermautotrophicus (X68713), Methanopyrus kandleri (M59932), 

Methanothermus fervidus (M59145), uncultured archaeal symbiont (AB062309) and 

Methanococcus voltae (U38488).  The alignment was generated with ClustalW 

(Thompson, 1994). The neighbor joining tree was constructed in Phylogenetic Analysis 

Using Parsimony and Other Methods (PAUP* 4.0b) (Swofford, 2002) employing a 

distance matrix calculated with the Jukes-Cantor correction model. The Methanococcus 

voltae (U38488) sequence served as the outgroup. The tree was subjected to 1000 

replicates of bootstrapping, the percentage of replicates supporting a given node are 

indicated on Fig. 3.2. 
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Culturing methanogen and most-probable-number (MPN) 

 Methanobrevibacter woesei GS was cultured in a serum tube containing 

modified Balch 1 medium supplied with cephalothin and clindamycin and maintained as 

described below (Balch et al., 1979; Miller and Wolin, 1982).  

Cecal samples 2-5 were transferred and mixed together in an anaerobic glove box 

maintained in an atmosphere of 95% N2/ 5% H2. One gram was added into a serum tube 

containing 9 ml of modified Balch 1 medium (Balch et al., 1979; Miller and Wolin, 

1982).  Dilutions from 10-5 to 10-12 were inoculated into five serum tubes at each dilution 

and the tubes were removed from the glove box after being sealed with stoppers and 

aluminum caps.  Each tube was flushed with 80% H2/ 20% CO2 under 200 kPa. The 

bottles were incubated standing at 37 oC and mixed one time per day by hand. After 20 

days, methane was determined in the headspace gas by GC (SRI, model 8610C, 

Torrance, CA). Tubes with methane concentrations greater than 100 ppm (µg/ml) were 

counted positive for the determination of methanogens by MPN. The freeware MPN 

calculator (VB6 version; Michael Curiale [members.ync.net/mcuriale/mpn/index.html]) 

was used to calculate MPN numbers.  In this study, fresh bovine rumen fluid was used as 

a positive control and collected from a cannulated Holstein-Friesian cow maintained on 

a 50 % alfalfa hay, 50 % flaked corn diet. The fluid was diluted from 10-3 to 10-10 and 

incubated as described above.  The cecal samples were stored at –80 oC until DNA 

extraction as described above.  
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Quantitative PCR assays 

Calibration standards for the quantitative PCR assays were developed with a 10-

fold dilution series of plasmid containing sequence CH101.  Plasmid copy number was 

calculated from plasmid molecular weight, and plasmid concentration was measured 

with Picogreen (Molecular Probes, Eugene, OR) with a Spectrafluor Plus (Research 

Triangle Park, NC). The quantitative PCR reactions by using primers MBT857F, 

MBT929F, MBT1196R including the PCR conditions were followed as described in Yu 

et al. (2005b).  The sequences of these primers are available in Table 3.1.  

 

Results and Discussion 

Methanogens have been described traditionally as strictly anaerobes found in 

many environmental habitats including the animal gastrointestinal tract.  Most 

methanogen research conducted in humans and rumens has been studied, and many 

methanogen strains have been described (Miller 2001b; Miller and Lin, 2002).  

However, knowledge regarding methanogens, particularly in the chicken cecum, is 

extremely limited due to the difficulty of isolation, long incubation periods, strictly 

anaerobic cultivation, and incomplete nutritional knowledge (Garcia et al., 2000).  

Molecular techniques provide an alternative route to study this ecosystem without 

culturing the microorganisms (Vaughan et al., 2000).  In this study, we identified and 

quantified methanogenic archaea in chicken ceca by using both culture methods and 

molecular approaches.   
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Riboprinting and phylogenetic analysis 

We directly amplified methanogenic 16S rDNA sequences from 5 cecal samples 

using methanogen-specific primers Met86F and Met1340R (Wright and Pimm, 2003).  

Primers Met86F and Met1340R were used in this experiment since these primers can 

amplify 26 diverse strains of methanogens (Wright and Pimm, 2003).  Even though this 

approach is more accurate than the cultural methods, it still has a bias in amplification 

and formation of chimeric molecules (Wintzingerode et al., 1997). These primers may 

not recover sequences from some archaea existing in gastrointestinal tracts. 

Thermoplasma-associated sequences have been observed in bovine rumen (Tajima et al., 

2001), pig manure storage pit (Snell-Castro et al., 2005), and hindgut of the lower 

termite Reticulitermes speratus (Shinzato et al., 1999). Using the archaea-specific 

primers, Zhu et al. (2002) were unsuccessful in detecting methanogens in chicken ceca.  

This failure might be due to low specificity of the archaeal primers (Wright and Pimm, 

2003). 

In our study, eleven banding patterns, designed as phylotype CH101, CH103, 

CH138, CH194, CH1117, CH344, CH389, CH3126, CH5164, CH1254, CH1270, were 

observed from the total 420 clones digested by HaeIII and are shown in Fig. 3.1 and 

Table 3.2.  Our observation shows that the riboprint pattern of Methanobrevibacter 

woesei GS was similar to that of sequence CH101 (Fig. 3.1). The sequences ranged in 

size from 1256 to 1268 base pairs (bp). From the total 420 clones, 406 clones belonged 

to sequence CH101 while other banding patterns consisted of only two or fewer clones 

(Table 3.2).  Despite finding eleven different sequences in chicken ceca, sequence 
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identity data shows that all of the sequences, except sequence CH1270, were 98.97 to 

99.45 % similar to the 16S rDNA sequence of Methanobrevibacer woesei GS (accession 

number U55237), a methanogen isolated from goose feces. Sequence CH1270 had a 

97.62 % sequence identity to an uncultured archaeon clone ConP1-11F (accession 

number AY911630.1). However, phylotype CH1270 was not identifiable to the species 

level.  Our finding that only one out of the eleven phylotypes was dominant in this study 

is consistent with the finding of Snell-Castro et al. (2005), who also found only one of 

eight phylotypes in a pig manure storage pit that contained 61% of the total archaeal 

sequences.   

Based on riboprinting patterns, our results show that methanogen diversity in 

chicken ceca is minimal.  In our preliminary study, PCR products of 133 clones obtained 

from sample 1 were digested with HaeIII or AluI.  However, we did not observe 

differences among PCR products digested by AluI (data not shown).  The percentage of 

sequence CH101 in sample 1 from one chick, was similar to that of the other four 

samples (Table 3.3).  This suggests that the diversity of methanogenic archaea is not 

different among individual birds.  From 5 cecal samples, data generated by 16S rDNA 

clone libraries shows that phylotype CH101 was between 92.86 to 100 % of the total 

clones whereas less than 1 % of the other phylotypes was found.   

Clearly, phylogenetic analysis supported the conclusion that the predominant 

methanogenic species harboring in chicken ceca is Methanobrevibacter woesei while 

Miller et al. (1986) isolated Methanogenium spp. from chicken and turkey feces. 
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Figure 3.1 HaeIII-riboprinting 16S rDNA of methanogenic archaea harboring in chicken cecal samples. 
Key: Lane 1 and 14: low molecular weight DNA ladder (New England BioLab, Beverly, MA); 2: 
Methanobrevibacter woesei GS DNA isolated from pure culture; 3 to 13: 16S rRNA riboprinting of 
sequences CH101, CH103, CH138, CH194, CH1117, CH344, CH389, CH3126, CH5164, CH1254, 
CH1270 , respectively.  
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Table 3.2 The 420 clones of 16S rDNA genes obtained in this study.  
 
16S rDNA 
phylotype 
 

No. of 
clones 

Size (bp) Nearest taxon % Sequence  
identity 

CH101 406 1266 Methanobrevibacter woesei GS 
 

99.21 

CH103 
 

2 1264 Methanobrevibacter woesei GS 99.21 

CH138 
 

2 1268 Methanobrevibacter woesei GS 98.97 

CH194 
 

1 1266 Methanobrevibacter woesei GS 99.21 

CH1117 
 

2 1266 Methanobrevibacter woesei GS 98.97 

CH344 
 

1 1263 Methanobrevibacter woesei GS 98.97 

CH389 
 

1 1263 Methanobrevibacter woesei GS 99.45 

CH3126 
 

1 1263 Methanobrevibacter woesei GS 99.29 

CH5164 
 

1 1262 Methanobrevibacter woesei GS 99.13 

CH1254 
 

2 1264 Methanobrevibacter woesei GS 99.05 

CH1270 
 

1 1256 Uncultured archaeon clone ConP1-11F 97.62 
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It is not surprising that all sequences were very closely related to Methanobrevibacter 

woesei GS with the exception of sequence CH1270 as shown in Fig. 3.2.  The primary 

methanogens in animal intestinal tracts are related to the genus Methanobrevibacter 

(Garcia et al., 2000).  Methanogenium spp., on the other hand, originate from aquatic 

environments (Romesser, 2001).  In contrast to ruminant animals, methanogen diversity 

in non-ruminants is minimal.  In this study, 11 phylotypes were observed in chicken ceca 

while 8 phylotypes were found in a pig manure storage pit (Snell-Castro et al., 2005), 

and 65 phylotypes were found in sheep rumen (Wright et al., 2004). Eckburg et al. 

(2005) found that all 1524 archaeal sequences in human intestinal tracts belonged to 

Methanobrevibacter smithii.   On the other hand, the Methanomicrobiaceae family and 

the Methanobacteriaceae family were found in cow rumen (Shin et al., 2004). In 

addition, by using FISH method, Lin et al. (1997) found that archaea were relatively 

more abundant in the GI tracts of ruminants than in the cecum samples of non-ruminant 

pigs. In contrast to other animals, we did not observe Methanosphaera- or 

Methanosarcina-related sequences.  The methanogenic substrates may be the limiting 

factor in chicken cecum since birds are usually fed with low-fiber diets.  

Methanosphaera spp.  require to and Methanosarcina spp. can use methanol as the 

substrate for growth (Boone et al., 2001; Miller, 2001a).  In general, methanol is 

produced by the fermentation of pectins, which are abundant polysaccharides in plants.  

 



 

Table 3.3 Distribution of phylotype patterns from chicken cecal samples. 
 
Riboprinting 
patterns 

CH101            CH103 CH138 CH194 CH1117 CH344 CH389 CH3126 CH5164 CH1254 CH1270 Total
no. of 

the 
clones 

Sample 1 a  
(1 chick) 
 

129  
(96.99) 

1 
(0.75) 

1 
(0.75) 

1 
(0.75) 

1 
(0.75) 

0 
NAb 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

133 

Sample 2  
(6 chicks) 
 

52 
(92.86) 

0 
NA 

1 
(1.79) 

0 
NA 

0 
NA 

1 
(1.79) 

1 
(1.79) 

1 
(1.79) 

0 
NA 

0 
NA 

0 
NA 

56 

Sample 3  
(6 chicks) 
 

150 
(98.04) 

1 
(0.65) 

0 
NA 

0 
NA 

1 
(0.65) 

0 
NA 

0 
NA 

0 
NA 

1 
(0.65) 

0 
NA 

0 
NA 

153 

Sample 4  
(6 chicks) 
 

20 
(100) 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

20 

Sample 5  
(6 chicks) 
 

55 
(94.83) 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

0 
NA 

2 
(3.45) 

1 
(1.72) 

58 

Total no. of the 
clones c 

406 
(96.67) 

2 
(0.48) 

2 
(0.48) 

1 
(0.24) 

2 
(0.48) 

1 
(0.24) 

1 
(0.24) 

1 
(0.24) 

1 
(0.24) 

2 
(0.48) 

1 
(0.24) 

 

420 

 

a Number of strains and percentage of methanogens for all clones observed in one sample.  

b NA, not applicable. 

c Number of strains and percentage of methanogens in parenthesis for all 420 clones examined in this study.  
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Methanococcus voltae [U38488]

CH1270

Uncultured archaeal symbiont [AB062309]

Methanothermus fervidus [M59145]

Methanothermobacter thermautotrophicus 
[X68713] 

Methanopyrus kandleri [M59932]

Methanosphaera stadtmanae [M59139]

Methanobacterium bryantii [AF028688] 

Methanobrevibacter thaueri [U55236]

Methanobrevibacter sp. [U55241]

CH1117

Methanobrevibacter woesei [U55237]
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Figure 3.2 Phylogeny of partial SSU rDNA sequences from chicken ceca placed within the context of 
several methanogenic species within archaea. Evolutionary distances were produced by the Jukes-Cantor 
correction model and the phylogram was constructed using the neighbor-joining method (Swofford, 2002). 
Sequences harvested from Genbank are followed by accession numbers in brakets. Bootstrap support for 
1000 replicates is indicated at the nodes. The scale bar represents the nucleotide substitution rate. 
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The physiology of Methanobrevibacter woesei GS is described in Miller and Lin (2002).  

The optimum temperature of this strain is 37 oC which corresponds to 41.5 oC, the body 

temperature of domestic fowl (Gallus gallus) (Dawson and Whittow, 2000).  Chicken 

cecal pH values are from 5.5 to 7.0 (Denbow, 2000); the optimum pH of strain GS is 7.0 

(Miller and Lin, 2002). Shrimpton (1966) also reported that the pH range of the bird 

cecum fresh weight content was 6.2-7.8 and that the temperature range was 36-40 oC. 

Unlike Methanobrevibacter woesei GS, optimal temperature of Methanogenium spp. 

range from 15-57 oC while the optimal temperature of Methanogenium organophilium 

CV is 30-35 oC (Romesser, 2001).  

Methanobrevibacter woesei GS also grows with bile and in Balch 3 medium that 

has salt concentrations similar to seawater (Miller and Lin, 2002).  Bile, produced and 

secreted by the liver, act as detergents to interact with bacterial membrane lipids.  

Therefore, exposure to bile is a serious challenge for intestinal microorganisms.  Elkin et 

al. (1990) reported that chenodeoxycholyltaurine and cholyltaurine are the primary bile 

acids in chicken and turkey.  In chickens, more than 90 % of bile acids are reabsorbed in 

the small intestine (Denbow, 2000); therefore, some bile acids pass through cecum and 

colon.  Membrane architecture and composition, especially fatty acid composition, play 

an important role in bile and osmotic resistance (Begley et al., 2005).  Flahaut et al. 

(1996) showed that when Enterococcus faecalis ATCC19433 is subjected to osmotic 

stress, it shows cross-protection against exposure to bile acids.  

Diets, gender, and host specificity may affect methanogenic colonization in the 

chicken cecum. In the present study, however, all birds, fed with a corn-soy based diet, 
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were female, the same age, and the same Leghorn breed.  By observing 16S rRNA 

sequences, Wright et al. (2004) found that pasture-grazed sheep had more methanogen 

diversity than sheep fed either an oaten hay or lucerne hay diet. High fiber diets have 

been reported to increase the level of methanogens in the gut. The number of the ciliate 

Nyctotherus ovalis, which harbors Methanobrevibacter sp., and methane production 

increased when the cockroach was feed with high fiber diet (Gijzen et al., 1991). 

Shrimpton (1966) found that the high-fiber diet increased methane production in the 

chicken by ninefold in comparison with birds given low-fiber feed.  Florin et al. (2000) 

mentioned that human male genetic effects or behavioral effects, such as passage rate 

and the difference in the enterohepatic circulation of bile acids, may influence 

mechanisms that control methanogenesis.  In spite of the same traits, some individual 

rats resist methanogenic colonization (Florin et al., 2000).  In humans, 

Methanobrevibacter smithii was found in the range of a few to 1010 organisms per gram 

fecal dry weight (Miller and Wolin, 1986).  Tannock et al. (1982) examined the various 

strains of lactobacilli isolated from many kinds of animals that exhibit host specificity to 

squamous epithelia in the gastrointestinal tract. However, Hackstein et al. (1999) 

suggested that the presence of symbiotic methanogenic archaea in the gastrointestinal 

tract is a necessary requirement for the evolution of foregut- and hindgut-fermenting 

structures, irrespective with the feeding habits of a particular host.  

Methanogen counts 

By using the MPN enumeration method, the log transformations of the 

methanogen concentrations for one bovine rumen fluid sample and four chicken cecal 
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samples are shown in Table 3.4. The methanogen population in bovine the rumen fluid 

was used as a positive control and found to be 7.15 log10 cells/ml. The number of 

methanogens in the rumen fluid was similar to those found in previous studies (Smith 

and Hungate, 1958; Morvan et al., 1996).  From four chicken cecal samples (samples 2 

to 5), composed of contents pooled from twenty-four birds, harboring methanogens in 

ceca between a log10 of 6.38 to 8.23 cells per gram wet weight and the numbers of 

methanogen per gram dry weight were between 7.04 to 8.88 log10 cells. The number of 

methanogens in chicken ceca closely resembled that in both horse and pig ceca and 

ranged from log10 of 4 to 6 and 6.78 per gram wet weight, respectively (Butine and 

Leedle, 1989; Morvan et al., 1996).  In this study, we used clarified rumen fluid as the 

supplement.  Salanitro et al. (1974) indicated that 60 % of the total bacteria in chicken 

ceca could be recovered with a rumen medium while 45 % of these organisms were 

enumerated with a liver extract and chicken fecal extract medium.  In addition, clarified 

rumen fluid is markedly stimulatory to the growth of Methanobrevibacter spp. (Miller 

2001b).  

Bacteria in chicken ceca occur at levels as high as 1011 cells per gram of dry 

cecum (Salanitro et al., 1974).  Based on the MPN enumeration results, therefore, 

methanogens in this study range from 0.01 to 0.76 % of the total numbers of organisms.  

By using the Bacterial, Eucarya, and Archaea fluorescent probes to detect microbes, 

archaea comprised 0.5 to 3 % of the rRNA in steer rumens, cow rumens, sheep rumens, 

pig gastrointestinal contents, goat rumens (Lin et al, 1997) while Methanobrevibacter 
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Table 3.4 The log10 numbers of methanogenic archaea in bovine rumen and chicken cecal contents. 
 
 MPN    
  95 % Confidence limits   
Sample cells/ g wet wt. 

(or ml. bovine 
rumen fluid) 
 

Lower Upper 16S rDNA copy 
number/ g wet wt. 
 

Reference 

Bovine rumen fluid 
 

5 to 8 NK a NK NK Morvan 
et al., 
1996 
 

Bovine rumen fluid 
 

6 to 8 NK NK NK Smith 
and 
Hungate 
(1958) 
 

Bovine rumen fluid  
 

7.15 6.72 7.58 ND b This 
study 
 

Chicken cecal 
sample 1  
(1 bird) 
 

ND NA c NA ND This 
study 

Chicken cecal 
sample 2  
(6 birds) 
 

6.45 (7.08) d 6.00 6.87 5.50 ± 0.11 e This 
study 

Chicken cecal 
sample 3  
(6 birds) 
 

8.23 (8.88) 7.82 8.67 7.19 ± 0.09 This 
study 

Chicken cecal 
sample 4  
(6 birds) 
 

6.73 (7.36) 6.23 7.23 6.76 ± 0.08 This 
study 

Chicken cecal 
sample 5  
(6 birds) 
 

6.38 (7.04) 5.96 6.81 6.78 ± 0.12 This 
study 

 
a NK, not known. 

b ND, not determined. 

c NA, not applicable. 

d Log10 MPN/ g dry weights are given in parentheses.  

e The mean of log10 16S rDNA copy number/ g dry weights and standard deviations.  
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smithii was found in humans from a few up to 10% of the total anaerobic bacteria 

(Weaver et al., 1986).  In the chicken ceca, methanogens counts using FISH ranged from 

0.7 to 3.3 % of the total microbial community from 2-d-old to 6-wk-old broilers (Zhu 

and Joerger, 2003).    

Primers MBT, designed specifically for the order Methanobacteriales (Yu et al., 

2005b) were used to quantify the methanogen population.   The means of log10 16S 

rDNA copy number per gram wet weight cecum with the corresponding standard 

deviations are shown in Table 3.4.  The results represent two PCR replicates of DNA 

samples.  All PCR reactions were performed in triplicate in the same run. We found that 

the 16S rDNA copy number per gram wet weight in the samples was between log10 5.50 

to 7.19.  Sequence CH101 exactly matches with primer MBT857F, MBT929F, and 

MBT1196R.  According to Yu et al., (2005b), estimates of the 16S rDNA methanogenic 

copy number in this study should not have false-positive or false-negative results from 

MBT primers. The results of this experiment revealed that the copy number of 16S 

rDNA in four samples, particularly samples 4 and 5, was much the same as the number 

observed by MPN method.  The log10 16S rDNA copy number per gram wet weight in 

samples 1 and 2 was less than the lower numbers of 95 % confidence limits counted by 

MPN method.  Our results show that methanogens in chicken caca might have one SSU 

rDNA copy.  In general, all methanogens have only one or two SSU rRNA genes (Fogel 

et al., 1999).  However, a recent study showed that the genome sequence of 

Methanosphaera stadtmanae contains 4 copies of 16S rRNA genes (Fricke et al., 2006).  

 



  48

CHAPTER IV 

EFFECTS OF NITROCOMPOUNDS AND FEEDSTUFFS ON IN VITRO  

METHANE PRODUCTION FROM CHICKEN CECAL CONTENTS  

AND RUMEN FLUID 

 
Introduction 

 
The gastrointestinal tract harbors a wide variety of microbial species, including 

Bacteriodes spp., Clostridium spp., Enterobacteriacae spp., Enterococus spp., 

Eubacterium spp., and Lactobacillus spp.  Most of these microorganisms hydrolyze 

polysaccharides to short-chain volatile fatty acids (VFA), hydrogen, and carbon dioxide 

as the primary fermentation products (Wolin et al., 1997). Some endproducts of 

fermentation such as hydrogen are utilized by a second group of organisms (i.e. 

methanogens) to produce methane. Methanogens are members of the domain Archaea, 

and fall within the phylum Euryarchaeota (Woese et al., 1990). They catalyze the 

transfer of hydrogen and carbon dioxide into methane.  In addition to the production of 

methane, the maintenance of a low partial pressure of hydrogen by methanogenesis has a 

profound influence on the production of hydrogen and other products by the non-

methanogenic, fermentative microbial community (Wolin et al., 1997). 

 In the chicken gastrointestinal tract, the cecum has the highest microbial activity, 

harboring approximately 1010 to 1011 obligate anaerobes per gram (wet weight) (Mead, 

1989; Jensen, 1996). In chickens, the cecum functions as a fermentor to provide VFA 

(Marounek et al., 1999).  Józefiak et al. (Józefiak et al., 2004) concluded that 8 % of the 

energy requirements of chickens are derived from VFA.  Surprisingly, few studies have 
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reported methane gas production in the chicken ceca.  However, we hypothesize that 

altering production of cecal methane production could influence the fermentation profile 

from the cecal microbial population. Both in situ and in vitro studies demonstrated that 

different types of substrates influence methane production in the chicken ceca 

(Marounek et al., 1999; Shrimpton, 1966).  In addition, the age of the birds may be a 

factor as methane gas has been reported to occur in cecal contents from two-month old 

birds (Marounek and Rada, 1998). By measuring fluorescent in situ hybridization, 

methanogens were found from cecal samples of very young chicks (Zhu and Joerger, 

2003). However, only one methanogen strain (i.e., Methanogenium sp.) has thus far been 

isolated from chicken feces (Miller et al., 1986). 

 In contrast to chicken ceca, microbial composition in the bovine and ovine rumen 

and the effect of feed material on methane production have been well studied.  Using 

molecular techniques, rumen bacteria as well as methanogen diversity are dependent on 

the types of feed material (Tajima et al., 2000; Tajima et al., 2001; Wright et al., 2004). 

Methane, a greenhouse gas, accounts for 2-12 % of dietary energy loss in ruminants 

(Johnson and Johnson, 1995). Consequently, there has been considerable interest in 

developing compounds and dietary regimes that limit methane production.  From 

previous studies, the addition of nitrocompounds not only reduced methane production, 

but also lowered foodborne pathogen colonization (Anderson et al., 2001; Anderson et 

al., 2003; Jung et al., 2004a; Jung et al., 2004b).  By administering 2-nitropropanol to 

broiler chicks, the concentration of Salmonella enterica serovar Typhimurium in the 

cecum was significantly reduced (Jung et al., 2004b). Moreover, these nitrocompounds 
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inhibited the growth of pure cultures of Campylobacter jejuni, Escherichia coli 

O157:H7, Enterococcus faecalis, and Yersinia enterocolitica in vitro (Jung et al., 2004a; 

Anderson et al., 2005). In an in vitro study, 12 mM of nitroethane, nitroethanol, or 2-

nitropropanol significantly inhibited ruminal methanogenesis (Anderson et al., 2001; 

Anderson et al., 2003).   In addition, nitroethane reduced in vivo methane production in 

the ovine rumen (Anderson et al., 2004). Corn layer diets are typically fed during the egg 

laying cycle (Coon, 2001). During molt for shifting birds into a second egg laying cycle, 

high fiber diets such as alfalfa have been proposed to avoid problems associated with 

feed withdrawal (Landers et al., 2005a; Landers et al., 2005b; Woodward et al., 2005). 

The addition of alfalfa could also lead to increased methane production since alfalfa has 

been shown to support extensive VFA production in the ceca of molting birds 

(Woodward et al., 2005).  The specific objective of this study was to evaluate the 

addition of nitrocompounds on in vitro methane production and VFA production within 

the chicken ceca, ovine rumen fluid, and bovine rumen fluid.  In this study, we examined 

the effect of three nitrocompounds on in vitro methanogenesis in cultures derived from 

adult chicken ceca, bovine, and ovine rumen fluid incubated with either high fiber alfalfa 

or high-energy corn-based diet as the substrate.  

 

Materials and Methods 

Experimental design 

Experiments 1 and 2 in this chapter examined the efficiency of three 

nitrocompounds to inhibit methanogenesis.  Experiments 3-8 were designed to compare 
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the effect of nitroethane on in vitro methane production in chicken ceca contents and 

rumen fluid from cattle and sheep. VFA in experiment 1 and methane production in 

experiments 1-8 were subjected to statistical analyses (see section Statistical analyses) as 

a completed randomized design.   

Source of samples 

Experiment 1 and 2 in this chapter conducted with cecal mixtures mixed and 

pooled from 10, 56 to 72-wk old Leghorns maintained on a layer ration. The diluted 

cecal contents were incubated with each nitrocompound under a CO2 and H2 (50:50) gas 

mixture. Experiments 3-8 were conducted with chicken ceca, rumen fluid from cattle 

and sheep. Bovine rumen fluid was obtained from a cannulated Holstein-Friesian cow 

maintained on a 50% alfalfa hay, 50% flaked corn diets, sheep rumen fluid was obtained 

via stomach tube from a mature Suffolk ewe.  Rumen fluid was strained through a nylon 

paint strainer (Leyendecker et al., 2004).  To avoid excess handling of the samples and 

subsequent shock to the microbial population, ceca and rumen fluid were used 

immediately.  These mixtures were incubated under a CO2 and H2 (20:80) gas mixture at 

200 kPa pressure (Miller et al., 1986).   

Nitrocompounds and in vitro cecal methane production 

Cecal contents from laying hens were diluted 1:20 (cecal content: final mixture 

volume) concentration with a mixture (1:1) of anaerobic culture medium (Maciorowski 

et al., 1997) and anaerobic dilution solution (Bryant and Burkey, 1953) containing 60 

mM added sodium formate.  The cecal suspension (10 ml/ tube) was added to 18 x 150 

millimeter crimp top culture tubes containing 0.2 g alfalfa (AF), 0.2 g layer ration (LF) 
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(10 ml/ tube) or no feed material (NF).  The four nitrocompound treatments were: no 

nitrocompound (NN), 12 mM nitroethane (NE), 12 mM nitroethanol (NOH), and 12 mM  

2-nitropropanol (NP). The tubes were capped and incubated at 37 oC for 24 h under a 

CO2 and H2 (50:50) gas mixture.  The composition of the Texas A&M University 

(TAMU, College Station, TX) layer feed will be (%): corn 56.72; soy bean meal 31.63; 

vegetable oil 7.68; monocalcium phosphate 1.69; calcium carbonate 1.56; methionine 

(98 %) 0.17; vitamin premix 0.25; NaCl 0.25; trace mineral premix 0.05. In experiment 

2 (Table 1), a comparative no-feedstuff incubation containing only diluted mixture and 

no-nitrocompound treatment was included in the experimental design and VFA was 

quantified in this treatment without replication. However, there were triplicates in 

experiment 1. 

Comparison of in vitro ruminal methane production 

Experiments 3-8 were designed to compare the effect of nitroethane on in vitro 

methane production in chicken ceca contents and rumen fluid from bovine and ovine 

sources. Essentially the same procedure was used as that described in experiment 1, 

except for the following modifications: 1) cecal contents, bovine rumen fluid, and ovine 

rumen fluid was inoculated in experiments 3 and 4, 5 and 6, and 7 and 8, respectively; 2) 

only nitroethane was added in these treatments; 3) the tubes were incubated at 37 oC for 

3, 5, 7 h under a CO2 and H2 (20:80) gas mixture at 200 kPa pressure.  
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Analytical 

Final concentrations of hydrogen and methane gas present in the headspace of 

treatments at the end of the incubation period were determined via gas chromatography 

(Gow Mac Instrument Company, Bethlehem, PA) equipped with a HaysepQ column 

(Anderson et al., 2003). Final concentrations of acetate, propionate and butyrate from the 

samples were collected at the end of the incubation period and determined via gas 

chromatography (Shimadzu GC-14A, Tokyo, Japan) equipped with a Supelco 4% 

Carbowax, 80/120 Carbopack BDA column (2 m x 5 mm x 3mm; Sigma-Aldrich, St. 

Louis, MO) (Hinton et al., 1990). 

Statistical analyses 

Standard errors are presented in the subsequent tables and figures, and these 

values represent the average of triplicate measurements. The statistical tests for 

treatment effects were performed using an analysis of variance (ANOVA) procedure of 

Statistix® 8 Analytical Software (Tallahassee, FL). Means were further separated using 

least significant difference (LSD) multiple comparisons. 

 

Results and Discussion 

Effects of feedstuff and nitrocompounds on in vitro chicken cecal fermentation 

The corn-based layer feed and 100 % alfalfa diets were described in Donalson et al. 

(Donalson et al., 2005). The levels of VFA production, hydrogen, and methane are 
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shown in Tables 4.1 and 4.2.  The results show that alfalfa or corn-based diets provided 

substrates for cecal microorganisms to produce more VFA and that the nitrocompounds 

shifted the VFA production pattern.  The type of substrate is the most importance factor 

influencing the microbial activity in the gastrointestinal tract of monogastric animals 

(Jensen, 1996; Apajalahti et al., 2001). In experiment 1 (Table 4.1), acetic acid 

concentration in alfalfa and layer feed supplement with and without nitrocompounds was 

not (P > 0.05) different.  In both experiment 1 and 2, acetic acid was the primary VFA 

product.  Acetic acid has been shown to be the major VFA produced in vivo in ceca 

from hens fed either alfalfa or corn-based diets (Woodward et al., 2005; Park et al., 

2004; Ricke et al., 2004). However, different acetic acid producing microorganisms 

could be present in different diets.  By using molecular techniques and cultural methods, 

several microorganisms have been identified as acetic acid-producing bacteria in chicken 

ceca (Barnes et al., 1972; Salanitro et al., 1974; Salanitro et al., 1978; Donalson et al., 

2005).   Salanitro et al. (1978) isolated acetic acid-producing bacteria from chicken ceca, 

namely Eubacterium spp., Clostridium spp., and Bacteroides spp. In general, the 

saccharolytic bacteria in the chicken ceca are the primary producers of acetic acid 

(Mead, 1989). Barnes et al. (1980) found Clostridium spp. harbored in chicken ceca as 

high as 108 per gram wet weight.  However, chicken ceca also contain cellulolytic 

bacteria that are capable of producing acetate.  Based on 16S rDNA analysis, 19% of the 

cecal bacteria were Ruminococcus spp. which produce acetic and formic as their primary 

products (Apajalahti et al., 2001).

 



  

Table 4.1 Effect of three nitrocompounds and feedstuffs on in vitro chicken cecal fermentation during 24 h incubation. 
 

                                                                        Experiment 1                                      Experiment 2 

Treatment Concentration of fermentation producta 

(µmol/g cecal content) 
Concentration of fermentation producta 

(µmol/g cecal content) 
        

    

Acetate Propionate Butyrate Totalb Acetate:
propionate 

 

Acetate Propionate Butyrate Totalb Acetate:
propionate 

Alfalfa 
 
 

198.7±14.2 
(85.9) 

23.9±1.0d 
(10.3) 

8.7±0.4f.g 
(3.8) 

231.3 8.3c 73.5
(85.7) 

9.0 
(10.5) 

3.3 
(3.8) 

85.8 8.2

Alfalfa-nitroethane 
 
 

186.5±11.9 
(85.7) 

22.9±1.2d 
(10.7) 

8.2±0.4g 
(3.8) 

217.6     

     

     

     

8.1c 83.9
(86.8) 

9.6 
(9.9) 

3.2 
(3.3) 

96.7 8.7

Alfalfa-
nitroethanol 

 
 

209.2±16.9 
(79.8) 

39.9±3.4c 
(15.2) 

13.2±1.0c 
(5.0) 

262.3 5.2d 58.6
(85.4) 

7.4 
(10.8) 

2.7 
(3.9) 

68.6 7.9

Alfalfa-2-

nitropropanol 

204.4±10.0 

(81.5) 

34.9±1.7c 

(13.9) 

11.4±0.5e 

(4.5) 

250.7 5.9d 71.3

(83.2) 

10.6 

(12.4) 

3.8 

(4.4) 

85.7 6.7

Layer feed 219.1±17.3 

(82.9) 

27.5±2.5d 

(10.4) 

17.8±1.5d 

(6.7) 

264.4 8.0c 73.1

(82.6) 

9.2 

(10.4) 

6.2 

(7.0) 

88.5 7.9

Layer feed-

nitroethane 

194.5±8.5 

(85.8) 

21.0±1.4d 

(9.3) 

11.2±1.3d,e 

(4.9) 

226.7     

     

9.3c 67.4

(87.4) 

6.7 

(8.7) 

2.9 

(3.8) 

77.1 10.0

Layer feed-

nitroethanol 

172.4±4.2 

(76.9) 

34.3±1.2c 

(15.3) 

17.5±0.1d 

(7.8) 

224.2 5.0d 57.7

(86.4) 

6.2 

(9.3) 

3.0 

(4.5) 

66.8 9.3
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Table 4.1 Continued. 
 
                                                                         Experiment 1                                           Experiment 2 

Treatment Concentration of fermentation producta 

(µmol/g cecal content) 
Concentration of fermentation producta 

(µmol/g cecal content) 
        

     

Acetate Propionate Butyrate Totalb Acetate:
propionate 

Acetate Propionate Butyrate Totalb Acetate:
propionate 

Layer feed-2-

nitropropanol 

198.1±6.2 

(77.0) 

38.6±1.3c 

(15.0) 

20.5±1.0c 

(8.0) 

257.2 5.1d 66.3

(79.7) 

11.1 

(13.3) 

5.9 

(7.1) 

83.2 6.0

No-feedstuff and 

no-nitrocompound 

(control) 

ND h        ND ND 64.8

(94.0) 

3.0 

(4.4) 

1.1 

(1.6) 

68.9 21.9

 

a Values in parenthesis represent molar proportion as a percent of total.  

b Total = sum of acetate + propionate + butyrate. 

c,d,e,f,g  Means within same columns with unlike superscripts differ (P < 0.05).   

h ND, not determined.  
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Incubations containing either corn-based layer ration or alfalfa had increased 

propionate concentrations approximately three times higher than the incubation 

containing no-feedstuff and no-nitrocompound as a control in experiment 2 (Table 4.1). 

However, the levels of propionate were not different (P > 0.05) between incubations 

containing added feedstuffs in experiment 1 (Table 4.1).  Incubations in experiment 1 

containing added nitroethanol or 2-nitropropanol had higher (P < 0.05) propionate 

concentrations than incubations containing no nitrocompound or containg added 

nitroethane supplement (Table 4.1). However, incubations cotaining nitroethanol and 

incubations containing mixtures between layer feed and nitroethane addition exhibited 

lower values than others in experiment 2 (Table 4.1).  Some clostridia, such as 

Clostridium propionicum can oxidize lactate to carbon dioxide, propionic and acetic 

acids via the acrylate pathway.  Clostridium spp. have typically been identified as one 

microbial group in chicken ceca without distinction for fermentation capabilities. Based 

on 16S rDNA analysis, Apajalahti et al. (Apajalahti et al., 2004) determined that 

approximately 7% of cecal bacteria are clostridia. In contrast, Zhu et al. (2002) found 

that more than 50% of total bacteria belonged to Clostridium spp. (Zhu and Joerger, 

2003) and Lu et al. (2003) found that 65% of 16S rRNA gene clones had Clostridiaceae-

related sequences.  

 Adding nitroethane was associated with an increase in the ratio of acetic acid to 

propionic acid suggesting that this compound might affect some gram-negative 

propionic-producing bacteria.  In general, the phospholipid-rich cell wall in gram-

negative bacteria is more susceptible to damage by lipid solvents, alcohol, and acetone 
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(White, 2000).  The 2-nitropropanol supplement tended to increase the percentage of 

propionic acid.  However, this compound is more effective against gram-negative 

bacteria and may not inhibit Clostridium propionicum (Jung et al., 2004b). By using a 

strict anaerobic isolation method, Salanitro et al. (1978) found that 18% of cecal 

microorganisms were Propionibacterium acnes, a gram-positive, acetic and propionic-

producing bacterium.   

 Results from experiment 1 indicated that incubations containing layer feed 

produced more (P < 0.05) butyrate than incubations containing alfalfa (Table 4.1).  In 

addition, alfalfa and layer feed supplements increased butyric acid concentration 3 and 6 

times, respectively, as compared to the incubation containing no-feedstuff and no-

nitrocompound in experiment 2 (Table 4.1).  With the alfalfa supplement, adding 

nitroethanol and 2-nitropropanol increased (P < 0.05) butyrate producing, whereas 

nitroethane treatment decreased (P < 0.05) butyrate production during experiment 1 

(Table 4.1). In experiment 2, approximately 3 to 4 µmol butyrate/ g cecal content were 

produced in incubations a containing combination of alfalfa and nitrocompounds (Table 

4.1).  In the layer feed supplement, only nitropropanol treatment yielded a significantly 

(P < 0.05) higher value in butyrate production and nitroethane treatment decreased (P < 

0.05) butyrate production in experiment 1 (Table 4.1).  In experiment 2 (Table 4.1), 

butyrate production of incubations containing either nitroethane or nitroethanol plus the 

layer feed treatment was lower numerically than nitropropanol treatment.  Like 

propionic acid production, Bacteroides spp., Fusobacterium spp., and Gemmiger spp., 

gram-negative and butyric-acid producing bacteria, might be influenced by adding 
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nitroethane.  Salanitro et al. (1978) found that. Bacteroides spp., Fusobacterium spp., 

and Gemmiger spp. comprised 12.8%, 6.2%, and 3.4% of the cecal microorganisms, 

respectively.  By analysis of partial 16S rRNA gene sequences, 5% and 14% of the 

sequences belonged to Bacteroides spp., and Fusobacterium spp., respectively (Lu et al., 

2003). As mentioned previously, gram-negative bacteria are likely more susceptible to 2-

nitropropanol.  This compound may promote growth of gram-positive bacteria, 

especially Clostridium spp. Some clostridia, C. perfringens (formerly C. welchii), C. 

innocum, C. sporogenes isolated from chicken ceca, are saccharolytic, acetic and 

butyric-producing bacteria (Barnes et al., 1972). 

The mechanism of inhibition by these nitrocompounds is currently unknown.  

Further studies to more fully elucidate the spectrum of inhibitory activity and the mode 

of action of these nitrocompounds are needed to determine the specific effects on 

different fermentative cecal microbial populations. 

Effects of feedstuffs and nitrocompounds addition on in vitro chicken cecal methane 

formation 

Compared to an earlier study on ruminal fermentation (Anderson et al., 2003), it 

was also observed in this study that hydrogen gas accumulated in the fermentation flasks 

containing nitrocompounds (Table 4.2).  These results indicate that microbial 

interspecies-hydrogen transfer may not have been optimized under these incubation 

conditions (Anderson et al., 2003).   

Methane production was obviously increased in feedstuff only supplemented 

incubations (P < 0.05) as shown in Table 4.2.  In experiment 2, methane production in 
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incubations containing added feedstuff increased 2 to 6 times (19.1 to 59.1 µmol/g cecal 

content) as compared to incubations without added feedstuff (10.7 µmol/g cecal 

content).  Alfalfa addition supported more methane production than layer feed addition. 

Shrimpton (1966) found that the rate of methane production of in situ was higher in 

chickens offered a fiber-based diet consisting of wheat, barley, oats, and maize.  

However, in vitro production of methane in cecal contents was not significantly different 

between starch and pectin as substrates (Marounek et al., 1999).  Maczulak et al. (1993) 

found that no difference in concentration of methanogens in rats fed a high-fiber diet or a 

fiber-free diet, but a higher level of methanogens in fecal output of rats fed high-fiber 

diet caused higher excretion of methanogens.  Several studies have shown that these 

nitrocompounds reduce methane production in ruminants (Anderson et al., 2001; 

Anderson et al., 2003).  In vitro methane production was also significantly reduced (P < 

0.05) in incubations with added nitrocompound additions (Table 4.2).  

Comparison of nitroethane supplement on in vitro ruminal and chicken cecal methane 

production  

Since only nitroethane completely inhibited methane production in in vitro 

chicken cecal fermentation in experiments 1 and 2 (Table 4.2), it was chosen for 

comparative effects on in vitro methane production in rumen fluid from cattle and sheep 

(Figs. 4.1 to 4.4) and in chicken ceca (Fig. 4.5 to 4.6).  Each rumen fluid or cecal 

incubation was repeated twice. Bovine rumen fluid, ovine rumen fluid, and chicken cecal 

incubations were designed as experiments 3-4, 5-6, and 7-8, respectively.  The results of 

in vitro bovine ruminal methane production are shown in Figs. 4.1 and 4.2. 

 



  

Table 4.2  Effect of three nitrocompounds and feedstuff source on in vitro chicken cecal methane production during 24 h incubation 
 (Experiments 1 and 2).  
 

 Concentration of hydrogen and methane a (µmol/g cecal content) 

Treatment Experiment 1 Experiment 2 

 Hydrogen Methane Methane reduction (%) Hydrogen Methane Methane reduction (%) 

Alfalfa     14.7±2.6d 32.0±0.2c - 7.6 ± 6.9d 59.1 ± 3.1b - 

Alfalfa-nitroethane   

   

   

 

  

  

  

   

30.3±0.5c 0.7±0.0e 97.9 ± 0.0 49.3 ± 2.3b 0.2 ± 0.0e 99.7 ± 0.0 

Alfalfa-nitroethanol 34.9±0.0b 7.3±0.4d 77.2 ± 1.2 14.4 ± 0.7c,d 0.5 ± 0.3e 99.2 ± 0.6 

Alfalfa-2-nitropropanol 35.7±0.1b 9.7±2.8d 69.8 ± 8.6 28.4 ± 16.4c 31.9 ± 5.0c 46.6 ± 5.7 

Layer feed 18.6±0.2d 38.0±0.4b - 5.0 ± 2.9d 19.1 ± 0.9 - 

Layer feed-nitroethane 30.8±0.5c 0.7±0.0e 98.3 ± 0.0 52.1 ± 2.2b 0.2 ± 0.0e 99.0 ± 0.1 

Layer feed-nitroethanol 37.4±0.2b 2.7±0.1e 92.8 ± 0.1 51.9 ± 0.6b 0.2 ± 0.0e 99.0 ± 0.1 

Layer feed-2-nitropropanol 35.5±0.9b 7.3±0.4d 80.9 ± 0.9 55.0 ± 2.0b 27.2 ± 23.0c - 

No-feedstuff and no-nitrocompound 

(control) 

ND g ND - 10.3 ± 0.2 10.7 ± 0.3 - 

a Values in parenthesis represent percentage of methane reduction. (Methane production in alfalfal or layer feed supplement – methane production in 

each nitrocompound supplement)/ methane production in alfalfal or layer feed supplement x 100.  

b,c,d,e,f  Means within same columns with unlike superscripts differ (P < 0.05).   

g ND, not determined.  

 

61



  62

At 3 h incubation, methane production was not significantly (P > 0.05) different 

between treatments during experiment 3 (Fig 4.1). However, nitroethane addition 

significantly suppressed in vitro methane production during experiment 4 (Fig. 4.2). At 5 

h, the nitroethane supplement also (P < 0.05) inhibited methane production in both 

experiments (Figs 4.1 and 4.2).  At 7 h, feed material influenced (P < 0.05) in vitro 

methane production.  Layer feed enhanced (P < 0.05) and nitroethane decreased (P < 

0.05) in vitro methane production in both experiments (Figs. 4.1 and 4.2). 

The results of in vitro ovine ruminal methane production are shown in Figs. 4.3 

and 4.4.  In experiment 5, nitroethane completely inhibited methane production (Fig. 

4.3).  In experiment 6, nitroethane supplement significantly (P < 0.05) inhibited in vitro 

methane production after 5 h incubation.  Like in vitro bovine ruminal methane 

production, layer feed significantly (P < 0.05) increased and nitroethane significantly (P 

< 0.05) inhibited methane accumulation in headspaces (Figs. 4.3 and 4.4).   

Only nitroethane inhibited (P < 0.05) in vitro chicken cecal methane production 

at 5 and 7 h incubation (Figs. 4.5 and 4.6).  Neither alfalfa or layer feed significantly 

influenced mean methane production by the in vitro chicken ceca incubations (P < 0.05). 

Feedstuffs had an impact on methane generation in vitro rumen fluid (Figs 4.1 to 4.4), 

particularly at 7-hour incubation. By using 16S rDNA identification, Wright et al. 

(Wright et al., 2004) reported that the types of feed material affect methanogen diversity 

in the ovine rumen.  Based on preliminary work in our laboratory, the diversity of 

methanogens in the chicken ceca appears to be minimal compared to the rumen 

population (Saengkerdsub et al., 2005).   
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Figure 4.6 Methane production in in vitro chick
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Among these three animal species, in vitro methane production in chicken ceca was the 

lowest.  In general, methane production by monogastric animals is lower than methane 

production by ruminants (Jensen, 1996).   

Nitroethane clearly impeded methane production, especially in incubations of 

chicken cecal contents. One reason is that the microbial diversity harbored in chicken 

ceca is minimal.  From our preliminary work (Saengkerdsub et al., 2005), only 16S 

rDNA of Methanobrevibacter woesei was obtained from chicken ceca, while 65 

phylotypes belonging to order Methanobacteriales have been sequenced from ovine 

rumen (Wright et al., 2004).  Moreover, in the bovine rumen, three clusters of 

methanogens have been identified (Whitford et al., 2001).   

Cell wall permeability in gram-negative bacteria is a mechanism that protects 

them from bile acid (White, 2000). The archael cell wall of Methanobrevibacter woesei 

may behave in a similar fashion to gram-negative eubacteria cell walls since 

Methanobrevibacter woesei can tolerate bile acid (Miller and Lin, 2002).  As previously 

discussed, gram-negative bacteria are more susceptible to nitroethane and this may be a 

reason why nitroethane can more efficiently reduce methane in in vitro incubations of 

chicken cecal contents.    

Three nitrocompounds can reduce in vitro methane production in chicken ceca. 

However, nitroethane gave the best results.  Therefore, this nitrocompound was chosen 

for comparative studies.  For comparison, three gastrointestinal microbial sources (i.e. 

chicken ceca, bovine rumen, and ovine rumen) were used to study the ability of 

nitroethane to reduce methane production.  However, only chicken ceca results showed 
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complete inhibition.  One reason might be the methanogens harbored in chickens are not 

as diverse as those found in ruminants.  Moreover, the mechanism of nitroethane 

inhibition is currently unknown.  Further studies will be necessary to more fully 

elucidate the toxicity, the spectrum of inhibitory activity, and the mode of action of 

nitroethane. In addition, in vivo studies are needed to determine if methane formation is 

inhibited in the bird by addition of these nitrocompounds and whether shifts in 

fermentation influence bird physiology.  

 

 

 



  71

CHAPTER V 

ESTABLISHMENT OF METHANOGENIC ARCHAEA IN CHICKEN CECA 

 

Introduction 

A complex diverse microbial community plays an important role in the health 

and well-being of the host and harbors in the gastrointestinal (GI) tracts of animals.  

When animals are born, the intestinal tracts are sterile and are successively colonized by 

microorganisms from the mother and the surrounding environment.  Microbial diversity 

in intestinal tracts becomes more complex as the host gets older. Previous reports using 

culture and molecular techniques indicates that the cecal flora evolve from a simple to a 

more complex mixture as a chicken ages. Barnes et al. (1972) and Salanitro et al. (1974) 

observed that the microbial community structure in chicken ceca varies with age. In 

chickens, the gastrointestinal tract becomes rapidly colonized by bacteria with maximum 

bacterial densities achieved within the first 5 d after hatching.  During the following 

weeks, the composition of microflora changes markedly (Apajalahti, 2005).  Recently, 

molecular approaches have provided ways to directly observe microbial diversity in the 

gastrointestinal tract without culture.  Hume et al. (2003), using DGGE method, found 8 

and 26 major bands from chicken cecal samples at 2 and 32 days of age.  

Methanogens, a sub-group of the archaebacteria, have also been isolated from 

various animals (Miller and Wolin, 1986; Miller, Wolin, and Kusel, 1986).  Several 

studies showed that methanogens establish in intestinal tracts when animals are young. 

Methanogen densities reach 104 and 109 per gram in rumen fluid of grazing lambs at 1 
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and 3 weeks of age, respectively (Skillman et al., 2004). Morvan et al. (1994) found that 

methanogens colonize in the rumen of lambs 30 hours after birth and reach 106 per ml at 

15 days.  In the rat, the concentration of methanogens increases from 105 per gram dry 

weight at 3 weeks of age (shortly after weaning) to 109 per gram dry weight at 96 weeks 

of age (shortly before the end of the life span) (Maczulak et al., 1989).  Rutili et al. 

(1996) showed that methanogens in fecal samples obtained from children under 27 

months were not detected and found 40 and 60% of fecal samples from the 3 and 5 years 

old children, respectively.   

In contrast to other anaerobes in the chicken ceca, studies showing of the 

presence of methanogens are still scarce. One in vitro ceca study observed methane gas 

when the chicks were 2 months old (Marounek and Rada, 1998).  Zhu and Joerger 

(2003), using FISH method, found that methanogens become established in ceca of very 

young chicks.   

In this study, we describe methanogen colonization in the cecal ecosystem of 

broiler chicks that were fed a corn-soy diet during 1 to 26 days of age. We detected 

methanogens in fecal samples based on culture method by using Balch 1 medium 

supplemented with rumen fluid and additional NH4Cl (Balch et al., 1979; Miller and 

Wolin, 1982) and quantified 16S rDNA copy number of methanogenic archaea by using 

real-time PCR based on primers MBT (Yu et al., 2005).  An understanding of the 

development of methanogen community may allow us to manipulate fermentation 

characteristics and ecological balance in chicken ceca.   
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Materials and Methods 

Animal sampling  

One hundred and twenty 1-day-old commercial broiler chicks, were placed on 

sawdust bedding and used as the source of bacteria for DNA extractions.  These chicks 

were maintained on a layer feed ration.  The composition of the Texas A&M University 

(TAMU, College Station, TX) layer feed ration was (%): corn 56.72; soy bean meal 

31.63; vegetable oil 7.68; monocalcium phosphate 1.69; calcium carbonate 1.56; 

methionine (98 %) 0.17; vitamin premix 0.25; NaCl 0.25; trace mineral premix 0.05.  All 

chicks were divided into twelve groups designated as groups 1-12.  Each group was 

composed of ten chicks and feces from all 12 groups were collected on days 5, 9, and 12.  

The fecal specimens were also subjected to bacteriological cultivation and real-time PCR 

for the detection of methanogens. Only samples from groups 3,5,and 7 were collected on 

days 3 and 4 for methanogen detection using real-time PCR. Houseflies (Musca 

domestica) and litter in the bird house were collected one time to measure methanogens 

using the same method as fecal samples.  Dust and layer feed ration were also collected 

for bacterial cultivation.  

DNA extraction 

 Bacterial genomic DNA was isolated by the method of Wright et al. (1997) with 

some modifications. Fecal samples were suspended in TE buffer and treated with 

proteinase K for 1 h at 37 oC, followed by five cycles of freezing at –80 oC for 1 h and 

heating in a water bath at 65 oC for 30 min. The lysate was treated with CTAB/NaCl. 

The CTAB was extracted with an equal volume of chloroform-isoamyl alcohol (24:1), 
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mixed, and centrifuged at 7,000 g for 5 min.  The DNA solution was transferred to a new 

microcentrifuge tube with an equal volume of phenol-chloroform-isoamyl alcohol 

(25:24:1), mixed and centrifuged at 7,000 xg for 5 min and isopropanol precipitation.  

The extracted DNA was further purified with a Dneasy® Tissue kit (Quigen, Valencia, 

CA).  The DNA solution was stored at 20°C. 

Methanogenesis detection 

  Fecal samples were transferred and mixed together in an anaerobic glove box 

maintained in an atmosphere of 95% N2/ 5% H2. The fecal samples were added into a 

serum tube contained 9 ml of modified Balch 1 medium (Miller and Wolin, 1982). The 

tubes were removed from the glove box after being sealed with stoppers and aluminum 

caps.  Each tube was flushed with 80% H2/ 20% CO2 under 200 kPa. The bottles were 

incubated standing at 37 oC and mixed one time per day by hand. After 20 days, methane 

was determined in the headspace gas by GC (SRI, model 8610C, Torrance, CA). Tubes 

with methane concentrations greater than 100 ppm (µg/ml) were counted positive for the 

presence of methanogens in fecal samples. The fecal samples were stored at –80 oC until 

extracted DNA as described above.  

Quantitative PCR assays 

Calibration standards for the quantitative PCR assays were developed with a 10-

fold dilution series of plasmid containing sequence CH101 closely related to M. woesei 

GS.  Plasmid copy number was calculated from plasmid molecular weight, and plasmid 

concentration was measured with Picogreen (Molecular Probes, Eugene, OR) with a 

Spectrafluor Plus (Research Triangle Park, NC). The quantitative PCR reaction and 
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condition were followed as described in Yu et al. (2005).  All PCR reactions were 

performed in triplicate in the same run.  

 

Results and Dicussion 

In the present study, methanogenic archaea were recovered during culture in 

BRN medium (Balch et al., 1979; Miller and Wolin, 1982) and methane was found to 

occur later in the headspace of the cultures.  Concentrations of methane greater than 100 

ppm (µg/ml) in the headspace were considered positive for the presence of methanogens 

in fecal samples (Table 5.1). The copy number of methanogenic16S rDNA present in 

samples, as measured by using primers MBT specifically designed to the order 

Methanobacteriales (Yu et al., 2005). From our previous study, we isolated bacterial 

genomic DNA directly from chicken ceca and found that the predominant methanogen 

was Methanobrevibacter woesei, which belongs to the order Methanobacteriales.  The 

plasmid containing 16S rDNA gene of the primary phylotype in chicken ceca was used 

as the standard in real-time PCR reactions.  All PCR reactions were performed in 

triplicate in the same run (Table 5.1).  

The copy number of methanogenic 16S rDNA gene in chicken feces ranged from 

log10 4.19 to 5.05 per gram wet weight when the broilers were 3, 4, 5, 9, and 12 days of 

age (Table 5.1).  Methanogens in litter and house flies collected in the bird house were 

log104.94 ± 0.10 and 5.51 ± 0.11 16S rDNA copy number per gram wet weight, 

respectively.  
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Table 5.1  The log10 copy numbers of 16S rDNA methanogenic archaea in chicken fecal samples. 

   Day   
Group 3 

 
4 5 9 12 

1 NDa ND 4.60 ± 0.01 b 
(-) c 

4.62 ± 0.05 
(-) 

 

5.34 ± 0.14 
(+) 

2 ND ND 4.63 ± 0.03 
(-) 

4.68 ± 0.05 
(+) 

 

4.54 ± 0.14 
(+) 

3 4.53 ± 0.03 5.03 ± 0.02 4.85 ± 0.07 
(-) 

4.30 ± 0.04 
(+) 

 

4.61 ± 0.05 
(+) 

4 ND ND 4.97 ± 0.02 
(+) 

4.59 ± 0.09 
(+) 

 

4.73 ± 0.07 
(+) 

5 4.51 ± 0.02 4.57 ± 0.02 4.87 ± 0.02 
(-) 

4.86 ± 0.11 
(+) 

 

4.72 ± 0.06 
(+) 

6 ND ND 4.92 ± 0.04 
(+) 

4.50 ± 0.06 
(+) 

 

4.89 ± 0.03 
(+) 

7 4.50 ± 0.06 4.62 ± 0.06 4.70 ± 0.02 
(-) 

4.52 ± 0.04 
(-) 

 

4.80 ± 0.06 
(+) 

8 ND ND 4.82 ± 0.12 
(-) 

4.42 ± 0.04 
(-) 

 

4.96 ± 0.04 
(+) 

9 ND ND 5.03 ± 0.04 
(-) 

5.05 ± 0.18 
(+) 

 

4.81 ± 0.01 
(+) 

10 ND ND 4.37 ± 0.05 
(-) 

4.19 ± 0.05 
(+) 

 

4.72 ± 0.06 
(+) 

11 ND ND 4.19 ± 0.04 
(+) 

4.48 ± 0.14 
(-) 

 

4.86 ± 0.11 
(+) 

12 ND ND 4.27 ± 0.08 
(-) 

4.80 ± 0.06 
(+) 

 

4.75 ± 0.01 
(+) 

 

a ND, not determined. 

b Values are the mean ± standard deviation of triplicate in the same RT-PCR reactions.  

c +/- in the parenthesis represent methane production based on BRN medium.  
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Methane gas was also observed in headspace of the tubes inoculated with litter and flies. 

However, incubations with dust and layer feed ration collected from the house were not 

produced methane gas in headspace. Methanogenesis was observed in culture tubes of 25, 

67, and 100 % of the samples at 5, 9, and 12 days of age, respectively. We found methane 

gas in headspace from 5-day fecal samples and the percentage of positive results was 

dramatically increased when the broilers were 9 and 12 days of age.  Results of this study 

showed that methanogens rapidly colonized in chicken ceca.  The results from one study 

agreed with this study that methanogens establish in ceca of very young chicks (Zhu and 

Joerger, 2003). In addition, obligate anaerobes become dominant in the chicken cecum 

after the first few days of life (Mead and Adams, 1975). One in vitro ceca study, on the 

other hand, observed methane gas when the chicks were 2 months old (Marounek and 

Rada, 1998).  The failure to detect methane gas in in vitro cecal fermentation from one-

month chicks might have been due to the lack of hydrogen gas during incubation 

atmosphere that would support the reducing CO2 to CH4.   In addition, the chicken cecal 

samples were incubated for only 20 h.  According to Nottingham and Hungate (1968), 

methane could be detected from the lowest dilution of human fecal samples after 2 days 

of incubation; but 20 to 30 days were required for it to appear in easily measurable 

amounts in the highest positive dilution.  

An important finding in this study is that methanogens colonized in chicken ceca 

before the full development of the gastrointestinal tract. Generally, the gastrointestinal 

tract of the chick is sterile when the bird is hatched.  However, bacterial colonization 

occurs with in a few hours and the dominant bacterial community becomes more 
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complex as the chickens age (van der Wielen et al., 2002). According to van der Wielen 

et al. (2002) and Lu et al. (2003) almost microflora in chicken ceca were similar to those 

in ilea in 3-day broilers.   

Enterococcus spp. and Ruminococcus spp. might play an important role in 

methanogenic settlement in the chicken ceca.  Morvan et al. (1996) and Robert et al. 

(2003) suggested that these cellulolytic organisms might play a role in the development 

of a methanogenic community in the gut by providing substrates for methanogens.  These 

microorganisms were found in cecal samples when the chicks were 3-day old (Lu et al., 

2003a).  In addition, the abundance of Ruminococcus spp. was increased from 3-14 days, 

and after 14 days the percentage of Ruminococcous spp. was 16% of the total clones in 

chicken ceca (Lu et al., 2003a).  In contrast, only Enterococcus spp. were found when the 

chicks were 3 days of age in ileal samples, and after 21 days of age, Enterococcus spp. 

was only 3% of the total flora (Lu et al., 2003a). A strain of Ruminococcus flavefaciens, a 

hydrogen-producing, cellulolytic bacterium which is known to form synthrophic 

associations with methanogens (Wolin et al., 1997), was isolated from the rumen of lamb 

one day after birth (Skillman et al., 2004).  In humans, the presence of certain fibrolytic 

species (cellulolytic isolates related to Enterococcus faecalis, Ruminococcus spp.) was 

related to the presence of methanogens (Robert and Bernalier-Donadille, 2003).   

Litter and flies might be vehicles for transmitting methanogenic archaea in these 

birds.  Bacteria in cultures of poultry litter were to be as higher as 109 CFU/g of material 

and some primary microorganisms were microaerobic bacteria  (Lu et al., 2003b).  The 

presence of methanogens in litter might be due to the residual presence of these 
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organisms from previous flocks.  The presence of methanogens in fly samples might be 

due either to methanogen contamination from chick feces or methanogen colonization in 

this insect.  House flies carry heterogeneous mixtures of organism and have been 

considered to be a source of Campylobacter colonization in broiler chickens (Newell et 

al., 2003; Ekdahl et al., 2005; Nichols, 2005).  Methanogens, however, might be normal 

flora in the house fly.  Methanobrevibacter spp. have been isolated from the cockroach 

hindgut (Gijzen et al., 1991) and the hindgut content of termite Reticulitermes flavipes 

(Kollar) (Rhinotermitidae) (Miller, 2001). Further studies are needed to more fully 

elucidate the source(s) of methanogens that serve as consistent inoculation reservoirs for 

chickens. 
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CHAPTER VI 

CONCLUSIONS 

 

The results of this study provide evidence indicating that the methanogenic 

diversity in chicken ceca is minimal.  Methanogenic communities were composed of 

eleven phylotypes; however, only one phylotype belonging to Methanobrevibacter 

woesei GS was dominant. By using a MPN enumeration method, the numbers of 

methanogens in chicken ceca were found to be approximately that in horse and pig ceca.  

These numbers were also similar to those obtained from quantitative PCR.  From 

quantitative PCR data, the results suggested that methanogens in chicken ceca may have 

only one SSU rDNA copy per cell. This study reports the first identification of the 

methanogenic archaea 16S rDNA gene in chicken ceca and shows that the primary 

methanogen in chicken ceca is Methanobrevibacter woesei. In addition, the amount of 

methanogens in this ecosystem is as high as found in other animals.  

 Based on in vitro studies, feed material influenced VFA production and acetic 

was the primary component. We also found that incubations with nitroethanol and 2-

nitropropanol had significantly (P < 0.05) higher propionate concentrations than 

incubation with added nitroethane.  Layer feed supplement produced more butyrate than 

alfalfa addition. These feed materials fostered, while nitrocompounds retarded, in vitro 

methanogenesis in chicken ceca.  Unlike cecal contents, layer feed significantly (P < 

0.05) supported in vitro methane production in incubations of both rumen fluids. The 
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results show that nitroethane impedes methane production, especially in incubation of 

chicken cecal contents.   

Also, I found that methanogenesis in culture tubes presented in fecal samples when 

broilers were 5 days old and the number of positive tubes increased when the birds aged.   

However, the copy number of 16S rDNA methanogens was similar for 3- to 12-day old 

broilers.  The results of this study showed that methanogens rapidly colonize in young 

chicken. An important finding in this study is that methanogens colonized before the full 

development of gastrointestinal tract.   Litter and house flies collected from the broiler 

house contained 16S rDNA methanogenic copy numbers similar to those in fecal 

samples.  Litter and flies may be the potential source of methanogenic colonization in 

chicken cecum.   
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