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ABSTRACT

Computing Leakage Current Distributions and

Determination of Minimum Leakage Vectors for Combinational Design. (May 2006)

Kanupriya Gulati, B.E., University of Delhi

Chair of Advisory Committee: Dr. Sunil Khatri

Analyzing circuit leakage and minimizing leakage during the standby mode of oper-

ation of a circuit are important problems faced during contemporary circuit design.

Analysis of the leakage profiles of an implementation would enable a designer to

select between several implementations in a leakage optimal way. Once such an im-

plementation is selected, minimizing leakage during standby operation (by finding

the minimum leakage state over all input vector states) allows further power reduc-

tions. However, both these problems are NP-hard. Since leakage power is currently

approaching about half the total circuit power, these two problems are of prime rel-

evance.

This thesis addresses these NP-hard problems. An Algebraic Decision Diagram

(ADD) based approach to determine and implicitly represent the leakage value for all

input vectors of a combinational circuit is presented. In its exact form, this technique

can compute the leakage value of each input vector, by storing these leakage values

implicitly in an ADD structure. To broaden the applicability of this technique, an

approximate version of the algorithm is presented as well. The approximation is done

by limiting the total number of discriminant nodes in any ADD. It is experimentally

demonstrated that these approximate techniques produce results with quantifiable

errors. In particular, it is shown that limiting the number of discriminants to a
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value between 12 and 16 is practical, allowing for good accuracy and lowered memory

utilization.

In addition, a heuristic approach to determine the input vector which minimizes

leakage for a combinational design is presented. Approximate signal probabilities of

internal nodes are used as a guide in finding the minimum leakage vector. Probabilistic

heuristics are used to select the next gate to be processed, as well as to select the

best state of the selected gate. A fast satisfiability solver is employed to ensure the

consistency of the assignments that are made in this process. Experimental results

indicate that this method has very low run-times, with excellent accuracy, compared

to existing approaches.
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CHAPTER I

INTRODUCTION

In CMOS technologies, the sources of power consumption can be classified as dynamic

power consumption (switching power), static power consumption (leakage power) and

short-circuit power (which, for most circuits is less than 20% of the dynamic power).

Traditionally, dynamic (switching) power has dominated the total power consumption

of a VLSI IC. However, due to current scaling trends, leakage power has now become

a major component of the total power consumption in VLSI circuits. The leakage

current for a PMOS or NMOS device corresponds to the Ids of the device when the

device is in the cut-off or sub-threshold region of operation. The expression for this

current [1] is:

Ids =
W

L
I0e

(
Vgs−VT −Voff

nvt
)
(1− e

(−
Vds
vt

)
) (1.1)

Here I0 and Voff
1 are constants, while vt is the thermal voltage (26mV at 300◦K)

and n is the sub-threshold swing parameter. Note that Ids increases exponentially

with a decrease in VT . This is why a reduction in supply voltage (which is accompanied

by a reduction in threshold voltage) results in exponential increase in leakage. This is

expected to be a major concern for VLSI design in the nanometer realm [2]. Further,

the increasing popularity for portable/hand-held electronics has meant that leakage

power consumption has received even greater attention. Since these portable devices

spend most of their time in a standby state (also sometimes called the sleep state),

reducing the leakage power consumption in this standby state is crucial to extending

the battery life of these designs.

The journal model is IEEE Transactions on Automatic Control.

1Typically Voff = −0.08V
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One of the natural techniques for reducing the leakage of a circuit is to gate the

power supply using power-gating transistors (also called sleep transistors). Typically

high-VT power-gating transistors are placed between the power supply and the logic

gates (MTCMOS [3, 4]). In some cases these power-gating transistors are embedded

in the logic gates itself [5]. In standby, these power-gating transistors are turned off,

thus shutting off power to the circuit in question. Such power-gating techniques can

reduce circuit leakages by 2 to 3 orders of magnitude. However, the addition of a

power-gating transistor causes an increase in the delay of the circuit. Further, the

process of waking the circuit up involves a delay (and a power transient), since the

supply rails need to reach their stable values before the circuit can operate again.

Increasing VT via body effect and bulk voltage modulation [6, 7] is another way

to reduce leakage power. The leakage current of a transistor decreases with greater

Reverse Body Bias (RBB). RBB affects VT through body effect, and sub-threshold

leakage has an exponential dependence on VT as seen in Equation 1.1. The body effect

equation can be written as VT = V 0
T +γ

√
Vsb where V 0

T is the threshold voltage at zero

Vsb. However, with current technology scaling, the body effect factor γ is reducing

and body biasing usually only yields a best-case decrease in leakage of about 10×.

All the techniques listed above require significant circuit modifications in order

to reduce leakage. Another technique, which proclaims up to 2 orders of magnitude

leakage reduction, is the technique of parking a circuit in its minimum leakage state (or

vector). This technique involves little or no circuit modification and does not require

any additional power supplies. A combinational circuit is parked in a particular state

by driving the primary inputs of the circuit to a particular value. This value can be

scanned in or forced using MUXes (with the standby/sleep signal used as a select

signal for the MUX). The leakage minimization approach presented in this thesis falls

under this category.
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With leakage power increasing as a fraction of the total power of a design, due

to the current design trends, it is no longer sufficient to simply find the input vector

that minimizes circuit leakage. It is arguably more important to find the leakage

for all input vectors. This is useful when comparing candidate implementations of a

design with the same minimum leakage values. An implementation, that has a leakage

histogram with larger number of input vectors contributing to lower leakage values,

would be preferred over other implementations. This would not only minimize the

leakage during the regular operation of the circuit, but also ease the task of finding a

vector which results in minimum leakage state.

The following sections discuss the problem definition, previous work and the or-

ganization of this thesis.

A. Problem Definition

Table A shows the leakage of a NAND3 gate for all possible input vectors to the gate.

The leakage values shown are from a SPICE simulation using the 0.1µ BPTM [8]

models, with a VDD of 1.2V.

As can be seen from Table A, setting a gate in its minimal leakage state (000

in the case of the NAND3 gate) can reduce leakage by about 2 orders of magnitude.

Ideally, it is desirable to set every gate in the circuit to its minimal leakage state.

However, this may not be possible due to the logical inter-dependencies between the

inputs of the gates. Finding this minimum leakage state (or the input vector to

park the circuit in its minimum leakage state) is an NP-hard problem. It is worth

noting that the reduction in circuit leakage may not be very conspicuous for a large

random logic design due to the law of large numbers. In the case of a very large
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Table I. Leakage of a NAND3 Gate

Input Leakage(A)

000 1.37389e-10

001 2.69965e-10

010 2.70326e-10

011 4.96216e-09

100 2.62308e-10

101 2.67509e-09

110 2.51066e-09

111 1.01162e-08

random logic design, the ratio of the maximum leakage to the minimum leakage is

approximately close to unity, i.e. the leakage is relatively constant. The results

obtained in the experimental section of this thesis are viewed in the context of the

law of large numbers as well.

It is important to note that with leakage power increasing as a fraction of the

total power of a design, it is no longer sufficient to simply find the input vector that

minimizes circuit leakage. It is arguably more important to find the leakage for all

input vectors (of course, the minimum leakage vector can be found by this exercise).

When comparing candidate implementations of a design with the same minimum

leakage values, one would prefer the design that has a leakage histogram with the

largest number of input vectors contributing lower leakage values. This would not

only minimize the leakage during the regular operation of the circuit, but also ease

the task of finding a vector which results in minimum leakage. It was reported in [9]
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that the maximum leakage value of a design can be as high as 2.4× the minimum

value (1.6× on average), again underscoring the importance of computing the leakage

of all input vectors for implementations and choosing one with a favorable leakage

histogram.

This thesis addresses both problems stated above. Clearly, an explicit represen-

tation of all leakage values would be infeasible. The problem of computing the leakage

of all input vectors for a design is approached as follows. An Algebraic Decision Dia-

gram (ADD) based approach is proposed to represent the leakage values of a circuit.

The problem of building an ADD to implicitly represent the exact2 leakage values of

a design has been formulated and solved. In order to expand the applicability of this

approach to larger designs, a method to implicitly compute the approximate leakage

values of a design is also presented. These approaches can be used to construct the

histogram of leakage values for a design. This data is beneficial when comparing two

or more candidate implementations (with similar maximum leakage values) of a single

circuit. Experimental data indicates that the approximate calculation of leakage val-

ues demonstrated a bounded loss of accuracy, with a significant improvement in the

efficiency of the technique. Leakage histograms for area-mapped and delay-mapped

versions of some benchmark circuits were computed, and their leakage characteristics

were compared.

Several research efforts have addressed the problem of determining an input

vector that minimizes the leakage of a design. This problem is also called Input Vector

Control (IVC). An efficient heuristic to determine the minimum leakage vector (i.e.

the input vector which drives the circuit to its lowest leakage state) is proposed in

the thesis. This problem can be viewed as one of selecting the state of each gate in

2The term exact used here and in the sequel refers to an algorithmic exact as
opposed to an absolute exact.
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the circuit such that the total leakage over all gates is minimized, and the state of

each gate in the circuit is logically feasible (i.e. is logically compatible with states

of all the other gates). The key idea presented here uses signal probabilities as a

guide to determine the minimum leakage vector. In other words, the selection of the

best candidate gate, as well as the input state to use for that gate, will be performed

probabilistically.

Some of the previous work done in these two areas is discussed in the following

section.

B. Previous Work

The problem of finding the minimum leakage sleep vector for a combinational CMOS

gate-level circuit has received some attention recently. Researchers have used models

and algorithms to estimate the nominal leakage current of a circuit [10, 11, 12].

In [13], the authors find a minimal leakage vector using random search with the

number of vectors used for the random search selected so as to achieve a specified

statistical confidence and tolerance. In [11], the authors reported a genetic algorithm

based approach to solve the problem. The authors of [14] introduce a concept called

leakage observability, and based on this idea, describe a greedy approach as well as an

exact branch and bound search to find the maximum and minimum leakage bounds.

The work of [9] is based on an ILP formulation. It makes use of pseudo-Boolean

functions which are incorporated into an optimal ILP model and a heuristic mixed

integer linear programming method as well. In contrast to these approaches to solve

IVC, the approach described in this thesis is a heuristic that uses signal probabilities

and leakage values of the gates to help assign values to the nodes in a combinational
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circuit.

In [15], the authors present a greedy search based heuristic, guided by node

controllabilities and functional dependencies. The algorithm used in [15] involves

finding the controllability and the controllability lists of all nodes in a circuit and

then using this information as a guide to choose the gates to set to a low leakage

state. The controllability of a node is defined as the minimum number of inputs that

have to be assigned to specific states in order to force the node to a particular state

(based on concepts used in automatic test pattern generation). Controllability lists

are defined as the minimum constraints necessary on the input vector to force a node

to particular state. The time complexity of their algorithm is reported to O(n2) where

n is the number of cells (gates) in the circuit. However, in estimating the complexity

of their algorithm, it is not clear if the authors include the time taken to generate the

controllabilities and controllability lists of each node in the circuit. While finding the

controllabilities can be done fairly easily [16], generating the controllability lists can

be more involved. In the approach followed in this thesis, node controllabilities or

their controllability lists are not computed. Instead signal probabilities are computed.

This can be done in O(n) time. The algorithm for this is detailed in Section C in

Chapter III. In [17], the authors describe several methods to set pass/fail limits

for IDDQ testing, among which is a probabilistic method. For each cell in a design

(each cell is assumed to have a single output, implemented in static CMOS), the

authors compute the maximum IDDQ when the output is ON (OFF), assuming 4σ

process variation limits. Additionally, the cell probabilities are determined for the

input vectors that result in the maximum IDDQ of the cell for both the ON and OFF

state. In contrast to [17], the approach in this thesis takes into account probabilities

of all input vectors of a cell implicitly, and not just those of two outputs that result in

a worst-case IDDQ value. Further, the signal probabilities, in the heuristic presented
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in this thesis, are adjusted for reconvergence, unlike [17].

In [18, 19], the authors formulate the problem of finding a minimum leakage

vector as a satisfiability problem. In [18] the authors use an incremental SAT solver

to find the minimum and maximum leakage current. While their approach worked

well for small circuits, the authors report very large runtimes for large circuits. The

authors therefore suggest using their algorithm as a checker for the random search

suggested in [13]. In [19], the authors introduced a method for controlling the internal

nodes by modifying some gates, without using extra multiplexers. In addition, the

delay constraints are explicitly accounted for and the optimal subset of internal nodes

of the circuit to be controlled is determined by the SAT formulation. The approach

described for IVC in this thesis requires a SAT solver as well, but does not involve

internal node modifications, which makes it computationally tractable. Moreover,

larger designs are handled more easily, since the SAT solver is invoked only to verify

the state assignments of individual gates, after every k iterations. The frequency with

which the SAT solver is invoked is decided using experimental data, in order to run

large circuits with low run-times and good accuracy.

Once the minimum leakage input pattern is found, this vector is used to drive the

circuit in its standby mode. This may require the addition of a number of multiplexers

at the primary inputs of the circuit. The multiplexers are controlled using a sleep

signal. (In a scan based design, these multiplexers are not required). Since the power

reduction using these techniques can be achieved only for sleep durations that are

sufficiently long, the sleep signal is activated only if the sleep duration is long enough.

In [20], the authors use ADDs to find the leakage of a channel-connected region

(CCR) as a function of its inputs. The focus in [20] was on full-custom circuitry and

the authors used their technique to find functional failures in CCRs due to excessive

leakage (input vectors that caused leakage to go above a certain value). Exclusivity
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constraints were added to constrain the ADD of a CCR to legal input vectors.

All of the techniques cited above attempt to compute a single vector which results

in a minimum (or maximum) leakage state. An approach to compute the leakage val-

ues for all possible input combinations is also presented in this thesis. Using Algebraic

Decision Diagrams (ADDs) [21, 22], the leakage of the circuit for all input vectors are

implicitly represented in a single structure. The inherent sharing of nodes in such a

structure allows for a compact representation of the leakage of the design. In order to

improve the efficiency of the leakage ADD construction, the values of the leaf nodes

are binned so as to reduce the number of leaf nodes of the ADD. This reduces the

number of discriminants3 (as well as the number of nodes) in the leakage ADD of

the design. The histogram of leakage values (constructed from the leakage ADD) is

used for comparing candidate implementations of a circuit. In [23], the authors also

present an ADD based algorithm to determine the lowest leakage state of a circuit.

They partition a circuit η into subcircuits and determine the minimum leakage value

and IVC of each subcircuit. These leakage values are then summed in order to gener-

ate the minimum leakage value of η and the IVC for η is generated by concatenation

of the IVCs of the subcircuits. This may, clearly, not lead to a global minima since

the search space is greatly pruned by propagating only the minimum leakage (and

the corresponding IVC) for each subcircuit. This is not the case with the approach

described in this thesis since here the entire range of leakage values are binned as

opposed to pruning of all the leakage values except the minimum (or maximum) for

the individual subcircuits.

3The number of discriminants of an ADD is the number of unique leaves of the
ADD
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C. Organization

This section serves as an introduction to the content of the thesis. Chapter II provides

a background on the data structures and certain functions based on them, which are

used extensively in this thesis. In Chapter III, the algorithms for computing the exact

and approximate leakage values for all input vectors are presented. The algorithm for

determining the minimum leakage vector is also presented in another section of the

same chapter. The approximations and steps used in this algorithm are discussed as

well.

Chapter IV contains the experimental results for the algorithms described in

Chapter III. Section B reports the results obtained for the approximate leakage ADD

computed with varying numbers of discriminants. In addition, this section shows

the comparison of two different implementations of a few designs with respect to

their leakage histograms. Section C compares the leakage values obtained by the

probabilistic IVC algorithm with the exact minimum leakage for small designs. For

the large designs, the comparison is made against the approximate minimum leakage

generated after an appropriately large number of random simulations. The thesis

is summarized in Chapter V, with a discussion on the key conclusions that can be

drawn from the results.
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CHAPTER II

BACKGROUND

A. Chapter Overview

This chapter serves as an introduction to the various functions and data structures

which are used in Chapter III.Section B explains the Reduced Ordered Binary Deci-

sion Diagram (ROBDD) data structure and the functions on ROBDDs used in the

algorithms in this thesis. Section C discusses the properties of Algebraic Decision Di-

agrams (ADDs) and the ADD functions used in this thesis. The chapter is concluded

in Section D.

B. Reduced Ordered Binary Decision Diagrams (ROBDD)

An ROBDD is a graphical representation of a Boolean function. It can represent

many logic functions compactly as compared to a sum-of product (SOP) or a truth

table representation. Moreover, several logic operations like tautology checking and

complementation can be performed on ROBDDs in constant time. For a particular

variable ordering, an ROBDD is a canonical form of representing a Boolean func-

tion. However, it is more efficient in memory utilization as compared to a truth table

which is another canonical representation of a Boolean function. As the name sug-

gests, ROBDDs are a reduced form of BDDs with a particular variable ordering. The

structure of the BDD and the reduction rules followed are described in the sequel.

A BDD represents a Boolean function as a directed acyclic graph (DAG), with

each nonterminal node assigned to a variable of the function. It is also referred to

as a Shannon co-factoring tree. Each node performs the Shannon co-factoring of the
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Boolean function represented by that node, with respect to the variable assigned to it.

Figure 1 illustrates the BDD for the function (x1+x2)·x3. Each node has two outgoing

edges, corresponding to the positive cofactor of the node function with respect to the

node variable (shown as a solid line) or the negative cofactor of the node function with

respect to the node variable (shown as a dashed line). The terminal nodes (shown as

boxes) are labeled with 0 or 1, corresponding to the possible function values. For any

assignment to the function variables, the function value is determined by tracing a

path from the root of the BDD to a terminal node following the appropriate positive

or negative branch from each node. The number of vertices in the BDD is exponential

in terms of number of variables in the logic function. Therefore, for functions with

a large number of variables, BDDs may not be a good choice for representing the

function. In general, the variable ordering along different paths in the BDD can be

different.

1 0

x3

x1

x2

0 00

x3

1 1 0

x2 x2

x3

Fig. 1. Shannon Cofactoring Tree of Logic Function (x1 + x2) · x3

The graph in Figure 1 is transformed into an ordered BDDs (OBDDs) if we use

a fixed variable ordering along any path from root to leaves. Consider the variable
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to be order x1 < x2 < x3. That is, every path from the root to a leaf encounters

variables in the order x1 < x2 < x3. The resulting OBDD is shown in Figure 2. In

addition, on application of the following reduction rules on the OBDD, an ROBDD

for the function is obtained.

1 0

x3

1 0

x3

x1

x2 x2

x3

0 00

x3

1

Fig. 2. OBDD of Logic Function (x1 + x2) · x3

• Remove nodes which have identical children.

• Merge nodes which have isomorphic BDDs.

ROBDDs are a canonical representation of a logic function for a given variable

ordering. Figure 3 shows the resulting ROBDD when the above mentioned reduction

rules are applied to the OBDD shown in Figure 2. Note that even in an ROBDD, the

number of nodes can be exponential in terms of the number of variables. However, the

size of ROBDDs (i.e. number of nodes) depends upon the variable ordering. There-

fore, variables must be ordered in a manner that minimizes the size of the ROBDD.

Computing an optimum variable ordering is an NP-Complete problem. However there

are efficient heuristics available that can choose an appropriate ordering of variables
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x1

x3

x2

01

Fig. 3. ROBDD for Logic Function (x1 + x2) · x3

which results in the ROBDD of reasonable size. However, there are functions that

have polynomial sized multi-level representations while their ROBDDs are exponen-

tial for all input orderings. A multiplier is an example of such a function. The terms

ROBDD and BDD are used interchangeably in the rest of this document.

The following BDD operations are used in the work presented in the thesis:

• bdd find minterm(f): This function returns one cube or minterm from all the

existing cubes or paths to terminal node ’1’ of the BDD for f . This path is

basically a cube in the onset of the Boolean function represented by f .

• bdd count onset(f,var array): This function counts the number of minterms in

the onset of the function f , over the variables in var array (single variable

BDD formulas). var array must contain the variables in the support of f . For

example, if f=b · d, and var array=[a,b,c,d], then this function returns 4.
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• bdd substitute(f, old array, new array): This function substitutes all variables

from the array old array with the corresponding variables from the array new array

in the BDD of ’f ’. old array and new array are arrays of BDDs with equal

cardinality. Given two arrays of variable BDDs a and b consisting of member

values (a1 .. an) and (b1 .. bn), this function replaces all occurrences of ai by bi

in f . This operation linear in the number of nodes in the BDD representation

of f .

C. Algebraic Decision Diagrams (ADD)

BDDs with multiple terminal nodes are called Multi-terminal BDDs (MTBDD). Due

to their applicability to different algebras (including Boolean algebra) the term Al-

gebraic BDD was coined in [21]. A BDD can be viewed as an ADD with of terminal

values from the set {0,1}. An ADD with n terminals has terminal values selected

from the set { a1, a2, · · · , an}, where ai are algebraic or symbolic values. The values

are also called discriminants of the ADD.

Some general properties of ADDs are as follows.

• ADDs are canonical. When dealing with ADDs with a large number of discrim-

inants the usefulness of this property may decrease.

• Edge attributes such as complementation flags may be of limited utility, because

complementation in Boolean algebra may not have a meaningful counterpart in

the ADD context.

• These factors leads to a recombination efficiency (which arises due to sharing

of isomorphic subgraphs) which is relatively small in comparison to BDDs.

• In comparison to other sparse data structures, ADDs provide a uniform log(N)
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access time where N is the number of real numbers being stored in the ADD.

• ADDs cannot beat sparse matrix data structures in terms of worst case space

complexity. However, recombinations of isomorphic subgraphs may give con-

siderable practical advantage to ADDs over other data structures.

An example of an ADD on three variables x1, x2 and x3 is shown in Figure 4. The

discriminants here are not restricted to {0,1}. Also, note that the sharing mechanism

is similar to that in a BDD, but since the terminal nodes can be any numeric (or

symbolic) value, the number of nodes shared could be fewer as compared to those in

a BDD.

7 45 0 2 6 1

x1

x2 x2

x3x3x3 x3

Fig. 4. An Example ADD on Three Variables x1, x2 and x3

.

The following ADD operations are used in the work presented in the thesis:

• ITE(f,g,h): The If-Then-Else(ITE) function takes three arguments. The first is

an ADD restricted to have only 0 or 1 as terminal values. The second and third

arguments are generic ADDs. ITE is defined as
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ITE(f, g, h) = f · g + f
′ · h

ITE can be applied as a recursive procedure for traversing through an entire

ADD structure.

• ADD threshold(f,g): This function thresholds the discriminants of ADD f against

a constant g. If the value of a terminal node is greater that or equal to g, it

keeps the terminal node value as it is, else assigns the terminal node to a value

0 or FALSE.

• ADD to BDD(f,t): This function is identical to ADD threshold(f,t) except that

when the value of a a terminal node is greater than or equal to t, the terminal

node is assigned the value 1 or logical TRUE. In effect, the decision diagram is

left with terminal nodes belonging to the set {0,1} and hence is now a BDD.

• cofactor(f,g): This function returns Shannon cofactor of an ADD f with respect

to ADD g. g must be an ADD or a BDD of a cube.

D. Chapter Summary

This chapter explains the BDD and ADD date structures, which are used extensively

in this thesis. The general properties of these data structures are discussed along

with some functions based on these data structures, that are used by the algorithms

presented in this thesis.
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CHAPTER III

APPROACH

A. Chapter Overview

This chapter is divided into the following sections. Section B describes the approach

for computing the exact and approximate leakage values for all input vectors for a

circuit. The algorithms are explained in detail (along with pseudocode), followed

by a discussion on the expandability and applications of the approach. Section C

presents a probabilistic heuristic (which is guided by signal probabilities) to deter-

mine the input vector which drives the circuit into its lowest leakage state. Again,

the pseudocode is explained in detail after a brief outline of the heuristic. Section D

concludes the chapter.

B. Computing Leakage Values Across All Input Vectors

The approach described in this thesis is based on an ADD [21, 22] based computation,

which enables the determination of the leakage values for all possible input vectors

in the design. The approach described in this section is termed as ALall. The exact

version of ALall is called ALall
ex , while the approximate version is called ALall

app. The

determination the leakage values for all input vectors is useful in several contexts,

such as

• It allows the computation of the average, minimum and maximum leakage for

the design in an accurate manner.

• It allows the construction the histogram of leakage values for a design. This

can be of use when comparing two or more candidate implementations (with
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similar minimum or maximum leakage values) of a single circuit. The design

with a leakage histogram that is skewed towards the lower leakage values would

be preferred, since it would reduce dynamic power under normal operation. For

example, during dynamic operation, the circuit may switch between repeatedly

between a set of vectors. In this case, the implementation which has a leakage

histogram skewed towards lower leakage values would be preferred. Figure 5

illustrates this idea. The leakage histograms of two designs (with similar maxi-

mum leakage values) is shown. The histogram to the right is preferred, since it

has a large number of vectors with low leakage values.

Leakage Leakage

#vec #vec

Lmin Lmin LmaxLmax

Fig. 5. Leakage Histograms for Two Implementations of a Design

1. Exact Computation of the Leakages of all Vectors

In order to compute the exact leakages of all vectors, the approach, called ALall
ex , is

described below. Consider a combinational logic network η, consisting of logic gates

Gj selected from some library P . The ROBDD of Gj is referred to as gj, and the
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leakage ADD of Gj as Gj. This ADD represents the leakage value of each primary

input minterm m of gj (obtained by following the path from the root, indicated by

the literals of m, until a terminal vertex is reached). The value of this vertex is the

leakage of Gj under the input m. Note that the support of Gj is the primary inputs

of the circuit.

Assume that for each gate Gj, there is an array called (lkg array(Gj)) describing

its leakage values for all possible values of its immediate fanins. For example, if the Gj

was a 2-input gate, then its leakage array would consist of 4 values, corresponding to

all 4 possible input combinations for the gate. Let the 2 fanins be called H1 and H2.

For ease of the exposition, assume that these are sorted in a numerical order, so that

the leakage value of the input combination 00 appears first, followed by that of the

input values 01, and so on. Suppose that under some primary input minterm m, the

ROBDDs h1 and h2 evaluate to h1val
and h2val

respectively. The corresponding leakage

value for the gate Gj is found by indexing the (h1val
: h2val

)th value of lkg array(Gj).

For example, if h1val
= 1 and h2val

= 0, the second value of lkg array(Gj) is indexed

to obtain the appropriate leakage value.

The algorithm ALall
ex proceeds as follows. It first finds the ROBDDs of all net-

work nodes. Next, it finds the (global) leakage ADDs of each of the nodes in the

network using Algorithm 1. Suppose the leakage ADD of H is computed. Assume

that it has 2 fanins F and G. The leakage ADD of H is found by the subroutine

node compute lkg ADD(f, g, lkg array(H)). In this routine, if the ROBDDs f and

g are constant (fval and gval respectively), then the leakage value for this condition is

simply found by indexing the (fval : gval)
th value of lkg array(H) and returning an

ADD node of this value. If either of f or g are non-constant, then the top variable

v among these ROBDDs is returned. The computation recursively computes Hv and

Hv, and finally returns H = ITE(v,Hv,Hv).
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Algorithm 1 The node compute lkg ADD Algorithm

node compute lkg ADD(f, g, lkg array(H)

// terminal case below

if fval = is constant(f) && gval = is constant(f) then

H = create ADD node(fval : gval)

return H

end if

v = topvar(f, g)

fv = cofactor(f, v)

fv = cofactor(f, v)

gv = cofactor(g, v)

gv = cofactor(g, v)

Hv = node compute lkg ADD(fv, gv, lkg array(H))

Hv = node compute lkg ADD(fv, gv, lkg array(H))

H = ITE(v,Hv,Hv)

return H
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Algorithm 1 is applicable for gates Gj with two inputs. The technology library

usually consists of at most 4-input gates. As a result, two additional routines similar

to Algorithm 1, for 3 and 4 input gates are required.

Note that leakage ADDs of the mapped gates of the network need not be com-

puted in any particular order. After the leakage ADDs of each gate have been com-

puted, the leakage ADD of the entire circuit (this is referred to as Htotal), is found

by adding each gate’s leakage ADD. The routine to add two ADDs is shown in Algo-

rithm 2. If the circuit has n gates, then this operation requires n− 1 ADD addition

operations, since the addition of ADDs is performed in a pair-wise manner.

Algorithm 2 first tests if the ADDs F and G to be added are both constants.

If this is the case (call the constants Fval and Gval) it creates and returns an ADD

node with value Fval + Gval. If at least one of F or G are non-constant, then the top

variable v is found among them. Hv = add ADD(Fv,Gv) andHv = add ADD(Fv,Gv)

is recursively computed, and H = ITE(v,Hv,Hv) is returned.

Once Htotal (the sum of all the leakage ADDs of the gates in the design) is

computed, the minimum valued leaf Lmin (which is the minimum discriminant of

Htotal) of the final ADD is found. This discriminant corresponds to the lowest leakage

state of the design. A primary input vector that results in this leakage value is found

by using Algorithm 3. A similar exercise can be conducted for any discriminant,

which enables the construction of a leakage histogram for the design.

Thresholding an ADD consists of the task of converting it into an ADD with fewer

discriminants. ADD threshold(H, val) makes all discriminants with values greater

than or equal to val point to the 0 discriminant. All discriminants with values less

than val are retained in the result.

Algorithm 3 first thresholds Htotal with the value Lmin + δ. The value δ is such

that there is no leakage value for the design in the closed interval [Lmin, Lmin + δ]. In
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Algorithm 2 The add ADD Algorithm

add ADD(F ,G)

// terminal case below

if fval = is constant(F) && gval = is constant(G) then

H = create ADD node(Fval + Gval)

return H

end if

v = topvar(F ,G)

Fv = cofactor(F , v)

Fv = cofactor(F , v)

Gv = cofactor(G, v)

Gv = cofactor(G, v)

Hv = add ADD(Fv,Gv)

Hv = add ADD(Fv,Gv)

H = ITE(v,Hv,Hv)

return H

Algorithm 3 Finding an Input Vector with Minimum Leakage Lmin

find a minterm with min leakage(Htotal)

Hthresholded = ADD threshold(Htotal, Lmin + δ)

hthresholded = ADD to BDD(Hthresholded)

return BDD find minterm(hthresholded)



24

other words, there is no discriminant in the leakage ADD Htotal in the above closed

interval. Therefore the resulting leakage ADD after thresholding (Hthresholded) consists

of exactly two discriminants (Lmin and 0). Next, Hthresholded is converted into a BDD,

by replacing the Lmin discriminant by the 1 discriminant. A path to the 1 terminal

node in this BDD is now found by using the well known linear-time BDD algorithm

to find a single minterm.

In a similar manner, the BDD for any specific leakage value (i.e. any specific

discriminant of the leakage ADD) can be found. For a general leakage value L other

than the maximum or minimum, the thresholding with threshold values L+ δ as well

as L− δ needs to be done, where δ is such that there is no other discriminant of the

leakage ADD in the interval [L + δ, L− δ]. From the resulting BDD of the result, the

standard linear-time BDD algorithms can be used to find the number of minterms

for the discriminant of value L. From this, the leakage histogram for the circuit is

computed.

The CUDD [24] package is used for all the ADD operations in this paper. This

package has routines to perform the operations described in the algorithms described

in this thesis.

2. Approximate Computation of Leakages of all Vectors

The algorithm ALall
ex of Section 1 produces the exact leakage values for the circuit

being considered. Also, the BDD representation of all minterms with any specific

leakage value L can be computed as described in Section 1. From this BDD, the

number of input vectors (or a single vector) with leakage L can be computed in linear

time. However, in an exact ADD representation of circuit leakage, the number of

discriminants can be quite large. As a consequence, it is important to compute the
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circuit leakage ADDs in an approximate manner. This results in a reduction in the

memory utilization and thereby allows the method to to handle larger designs.

The algorithm ALall
app, computes the approximate leakage ADD of the circuit. In

this approach the discriminant values are discretized during the add ADD operation,

such that the total number of discriminants of the added result are bounded by a

user-specified constant m. The following subsection elaborates upon the discretiza-

tion approach.

a. Binning of Leakage ADD Values

Since the library used consists of gates with up to 4 inputs, the maximum number

of discriminants for the leakage ADDs of any gate is limited to 16. However, the

resulting ADD after the add ADD operation on two ADDs with D1 and D2 discrimi-

nants respectively), may have as many as D1 ·D2 discriminants. To control the size of

the resulting ADD after addition, discretization of the discriminants of the result is

performed. The discretization is driven by a user-specified constraint m, which repre-

sents the maximum number of discriminants in any ADD constructed (intermediate

or final).

Consider the addition of two ADDs F and G, using the add ADD routine. Let

the minimum and maximum discriminant values of F (G) be LF
min and LF

max (LG
min

and LG
max) respectively. As a consequence, the minimum and maximum discriminant

values of the result will be (LF
min + LG

min) and (LF
max + LG

max) respectively. Let the

interval between these two values be R. Next discretize the interval into m values

(LF
min + LG

min), (LF
min + LG

min + R
m−1

), (LF
min + LG

min + 2R
m−1

), (LF
min + LG

min + 3R
m−1

), · · ·,

(LF
min + LG

min + (m−2)R
m−1

), (LF
max + LG

max).

Next, during the terminal case computation of Algorithm 2, compute v = Fval +
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Gval and adjust its value to the nearest of the m discretized discriminant values

described in the previous paragraph. Let the adjusted value be vadj. Then, the

value returned by Algorithm 2 in the terminal case is vadj.

This limits the total number of discriminants in the result of add ADD to m,

instead of D1 · D2, resulting in significantly reduced memory utilization in general.

Also, the maximum error introduced by a single step of this addition is 1
2(m−1)

, allow-

ing the user to trade off the memory utilization and maximum tolerable error.

b. Extensions to the Approach

In its current form, this algorithm computes the leakage ADDs for upto medium sized

circuits. To improve this further, a partitioned [25] construction of leakage ADDs may

prove beneficial. In this approach, a k-way min-cut partitioning of the circuit is first

performed, and the leakage ADDs of each partition is computed separately (on the

space of the local inputs for that partition), before finally computing the image of

these ADDs on the space of the primary inputs of the design.

Another application of this approach would be to compute the leakage ADD G

for an arithmetic unit, from the leakage ADD Gs of a bit-slice of the unit. Suppose

that the ith bit slice depends on free variables1 vi
f and bound variables2 vi

b. Let the

leakage ADD of the ith bit slice be Gi
s(v

i
b, v

i
f )

3, and the leakage ADD of the logic

driving variables vi
b be called gi

b. The leakage ADD G can be computed by Algorithm

4.

1Free variables are variables that are primary inputs of G.
2Bound variables are variables of Gs that are the outputs of other bit slices in the

design.
3Gi

s(v
i
b, v

i
f) is computed from the leakage ADD of a generic slice (Gs) by a simple

variable substitution.



27

Algorithm 4 Finding G from Gi
s

G ← G1
s

for (i = 2; i <= n; i + +) do

G ← G + BDD substitute(Gi
s, v

i
b, g

i
b)

end for

return G

In this manner, the total leakage of the arithmetic unit is computed iteratively,

using the computed leakage ADD of a single slice. In the ith iteration, each bound

variables is substituted in the leakage ADD of the ith slice with the leakage ADD

of the driving logic for that variable. The resulting leakage ADD of the slice is then

added to the leakage ADD of the entire design. Hence, the computation of the leakage

ADD of any slice i includes the constraints imposed by the leakage values for slices j

whose outputs are inputs to the slice i.

C. Determining an Input Vector Resulting in the Lowest Leakage

If the requirement is only to determine the minimum leakage vector, and the knowl-

edge of the leakage distribution is not required, constructing the exact or approximate

leakage ADD may not be the most relevant approach. Therefore, a heuristic to com-

pute only the minimum leakage vector is presented. This heuristic is called PLmin.

The brief outline of the methodology for selecting the input vector that minimizes

circuit leakage is as follows:

• First, signal probabilities are computed for all nodes in the design, assuming that
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all inputs have a signal probability of 0.54. These probabilities are heuristically

adjusted for inaccuracies arising from reconvergent fanouts.

• Next, the best candidate gate is selected, whose leakage would be set in a given

iteration. This is performed by selecting the gate that is probabilistically most

likely to result in the largest leakage reduction.

• For the gate thus selected, its best state is assigned next, such that the leakage

of the selected gate is probabilistically minimized. All other gates in the cir-

cuit which are newly implied by the state just selected are accounted for while

making this decision.

• To test if the logic values that were set to 1 or 0 during this iteration are

satisfiable, a Boolean Satisfiability solver is invoked. The SAT solver is called

every p iterations to reduce the runtime overhead. If the circuit is unsatisfiable,

the assignments of the last p iterations are discarded, and the iteration that

caused the circuit to become unsatisfied is determined. After making a different

selection for that iteration, the method proceeds as before.

• After any iteration, gate probabilities are adjusted to account for the nodes that

were newly assigned fixed logic values.

• A fixed number of passes are made for the circuit, with the above steps being

applied successively. Each pass is more ”lenient” in setting a node to a logic

value v when its signal probability deviates from v. The last pass is most lenient,

allowing any deviation from v to be accepted.

4In case of sequential circuits, utilize the probabilities of the signals at the outputs
of memory elements instead. Also, for combinational designs, if it is known that input
signal probabilities are skewed away from 0.5, then these skewed values can be used.
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Algorithm 5 describes the pseudocode for the approach (PLmin) for computing

the minimum leakage vector for a combinational network η.

Algorithm 5 Pseudocode of Minimum Leakage Vector Algorithm: PLmin

compute minimum leakage vector(η, p){
compute signal probabilities(η)
platinumvalues← Φ
for i = 1; i ≤ k; i + + do

goldvalues← Φ
iteration = 1
(G = find best gate(η)
if (G is not marked visited) then

mark G as visited
(S = find best leakage state(G, η)
if S satisfies mi then

goldvalues ← goldvalues ∪ S ∪ get implications(S)
propagate probabilities in TFO of goldvalues nodes

end if

if iteration is a multiple of p OR all inputs assigned/implied then

if goldvalues are satisfiable then

if all inputs assigned then

exit
end if

platinumvalues ← platinumvalues ∪ goldvalues
else

goldvalues ← platinumvalues
end if

end if

end if

iteration += 1
mark all gates as unvisited

end for

}

1. Computing Signal Probabilities

The algorithm compute minimum leakage vector(η, p) begins by computing signal

probabilities for all nodes in the network η. The inputs are assumed to have probabil-
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ities of 0.5, and these probabilities are propagated throughout the circuit5. After the

initial pass of probability propagation, a heuristic adjustment is performed to account

for errors due to reconvergent fanouts. The heuristic for probability adjustment in

the presence of reconvergence is illustrated in Figure 6. The input parameter p is

used to determine how frequently a boolean satisfiability solver is invoked.

W

X

Z
V

Fig. 6. Adjusting Probabilities for Reconverging Nodes

Suppose a node X, with a statically computed probability of PX reconverges at

Z. Setting the probability of X to 1 and 0, the probabilities of the inputs to the

reconvergent gate (V and W ) are found. Suppose the probabilities of V (W ) are V1

(W1) and V0 (W0) respectively, when X is set to 1(0). In this case, the new probability

of Z is P new
Z = V0·W0+V1·W1

2
.

From this the adjustment factor for the probability of Z is computed as follows:

Adjustment(Z) =
(P new

Z
−PZ)

PZ

In future updates of the probability of the node Z, suppose the statically com-

puted probability of node Z is P
modified
Z . In that case, the final adjusted value of the

probability of node Z is

P
adj
Z = (P modified

Z ) · (1 + Adjustment(Z)).

In other words, Adjustment(Z) is computed once, and utilized to adjust the

5If the input i of an n-input AND gate has probability pi, then the output has
probability Πipi. Likewise, for an OR gate, the output has probability 1−Πi(1− pi).
The probabilities of other gates can be found in a similar fashion
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statically computed values of the probability of node Z, each time it is modified due

to other assignments in the circuit.

In the example of Figure 6, Adjustment(Z) = −1. Therefore, P
adj
Z = 0 each

time the probability of Z is modified. This is reasonable, given that the output Z is

logically 0.

If an adjusted probability of a node results in its probability becoming higher

than a user specified value Padj (lower than 1−Padj), then the probability of the node

is capped at Padj (1− Padj) respectively.

2. Finding the Best Leakage Candidate

Once signal probabilities are computed, the best candidate gate whose input state

is to be finalized during the current iteration is selected. Gates are ranked by the

probabilistic criterion described below:

C =
∑

(pi·li)∑
(pi)

(lmax
i − lmin

i )

Here, pi is the probability that the gate is in state i. Here ”state”, means a

complete assignment of the inputs (and outputs) of the gate. The quantity li is the

leakage of the state i. The value lmax
i (lmin

i ) is the maximum (minimum) leakage value

of this gate. The gate with the maximum value of C is selected. In other words, this

criterion selects gates that have a high probability of being in a high-leakage state.

The last term in the expression for C ensures that gates with large leakage ranges

are favored, since they offer potentially greater optimization flexibility. The gate that

maximizes C is selected preferentially over others.
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3. Finding the Best Leakage State for a Selected Gate

Suppose a gate G was selected by the previous step. Next it is assigned it a state

such that its leakage is minimized. This is done by applying the probabilistic criterion

L below. Note that all gates other than G whose states become fully assigned6 on

account by implication propagation of the current state of G, are included in the

computation of L. Let the number of such gates be n. The value of probabilistic

leakage in the numerator of L is normalized with respect to the number of such gates,

and is computed as follows:

L =

∑
j
(dj ·lj)

n

The state of gate G that minimizes L is preferentially selected over others. Here

dj is the deviation of the values assigned to the gate inputs from their probabilistic

values. For example, consider an AND gate with inputs a and b with probabilities 0.1

and 0.7 respectively. If inputs a and b are logic 1 and logic 0 respectively, then the

deviation is (|1−0.1|)(|0.7−0|). In other words, while attempting to select a state for

gate G, we try to minimize the resulting leakage and also maximize the probabilistic

’ease’ with which this state can be assigned.

In order to bias the state selection towards assignments with lower leakage, the

deviation is incremented by a value β. Likewise, in order to bias the state selection

towards those with lower deviation, lj is incremented by a fixed value γ. Therefore,

the modified value of L that is used is

L =

∑
j
(dj+β)·(lj+γ)

n

6A gate is said to be fully assigned if all its inputs are assigned to specific logic
values
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4. Accepting Leakage States and Endgame

The state selected from the previous section is now implied throughout the circuit.

The resulting implied values are referred to as golden values. The deviations of the

resulting implications are now checked against a margin value mi. If any deviation

is greater than mi, then the assignment to gate G is discarded. Initially, mi is set to

a small value, and with increasing iteration i, it is relaxed. This is in an attempt to

get closer to a global minima, by a more careful selection of states in early iterations.

The number of iterations is the variable k, which in the experiments is set to 3.

Once the new implications are computed, the implied nodes’ probabilities are

adjusted to reflect the freshly computed implications. If a node is set to a logic

1, then its probability is set to (1-α), while a node which is set to logic 0 has its

probability updated to α. Here, α is a user-specified constant close to 0.

For every p gates selected (or if all primary inputs have been assigned or im-

plied), the golden values are tested for satisfiability (this test is done by invoking the

BerkMin [26] satisfiability solver). If these golden values are consistent, then they are

designated as new platinum values, never to be modified in the future. If the golden

values are satisfiable, and all inputs are assigned, then the algorithm exits. If the

golden values are not satisfiable satisfied, then the golden values are rolled back and

discarded, by copying the last set of platinum values into the set of golden values.

For up to the next p iterations, the satisfiability solver is called after each new state

assignment. This is in an attempt to locate which of the last p assignments caused

the unsatisfiability condition to occur. Once this assignment has been identified, the

invocation of the satisfiability solver is again performed after every p state assign-

ments. If the satisfiability solver returns an unsatisfiable condition for a certain state

s assigned at a particular gate g, then s is never assigned to g again.
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D. Chapter Summary

This chapter described the algorithms used for computing the exact and approximate

leakage values for all input vectors for a circuit and also a probabilistic heuristic to

determine the input vector which drives the circuit to its lowest leakage state (or to

any required leakage state.) The intuition behind these algorithms was explained,

along with an exposition of the details. In addition, some extensions for future work

were discussed. The pseudocode was provided for a peruse explanation of the algo-

rithms. The experimental results for both the approaches and the conclusions drawn

from them are discussed in the following chapters.
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CHAPTER IV

EXPERIMENTAL RESULTS

A. Chapter Overview

This chapter presents the experimental results for the algorithms described in the

previous chapter, namely ALall
app and PLmin. Section B discusses results obtained for

the approximate leakage ADD computed with varying numbers of discriminants. In

addition, two different implementations of few design were compared with respect to

their leakage histograms. Section C compares the leakage values obtained by the min-

imum leakage vector algorithm (PLmin) with the exact minimum leakage for small

designs, and with the approximate minimum leakage (generated after 10,000 ran-

dom simulations) for large designs. These designs were such that the computation

of the exact minimum leakage was not feasible. The chapter is concluded in Section D.

B. Results for ALall
app

The technique ALall
app was applied on a series of MCNC91 benchmark designs, using a

0.1µm technology library with 13 gates, with between 1 and 4 inputs. After running

technology independent logic optimizations (script rugged in SIS [27]), these designs

were mapped for area and delay (again in SIS).

The ALall
ex and ALall

app leakage computation techniques were implemented in SIS,

and implemented using the CUDD [24] package. Applying the approximate technique

ALall
app with discretized discriminants, enabled the computation of leakage ADDs for

larger designs.

Tables B and B describe the maximum and minimum leakages (in pA) of four
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designs, as a function of the value of m (the number of discretized discriminants

used during ADD construction). Each design was mapped for minimum area as

well as minimum delay. The row labeled ”exact” represents the leakages with no

discretization of leakage values (effectively m = ∞). Note that a good choice of the

values of m is between 12 and 16 for most cases.

Table II. Accuracy Versus Bin Size I

9symml cc

Delay map Area map Delay map Area map

min max min max min max min max

exact 622.9 734.6 474.1 611.8 193.2 272.5 127.2 227

20 bins 540.8 772.3 429.1 633.2 209.6 267.8 131.5 221.1

16 bins 396.7 955.8 402.9 600.8 197.2 261.5 122 209.8

12 bins 285 1064.5 284 821.6 197.5 270.4 117.3 253.5

8 bins 212.4 1206.6 199.3 964.4 91 360.1 76.4 278

4 bins 212.4 1206.6 199.3 964.4 91 360.1 76.4 278

Figure 7 describes the range of leakage values for the minterms mapped to the

lowest discriminant of the ADD, compared against the normalized value of the range

of the exact leakage. Ideally, this should be a point, with leakage Lmin. It was

observed that for most designs, this range is small, indicating that the method is

accurate. The approximate experiments for this figure were performed with m = 20.

Tables B and B indicate the maximum and minimum leakage (represented in

10’s of pA) for several designs, mapped both for minimum area as well as delay. It
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Table III. Accuracy Versus Bin Size II

decod alu2

Delay map Area map Delay map Area map

min max min max min max min max

exact 187.8 238.6 30.6 79.9 1241.9 1382.9 872.8 1060.7

20 bins 200.8 239.1 31 83 905.5 1771.4 645.1 1348.5

16 bins 208 241.9 27.6 90.8 700.5 2005.2 576 1563.3

12 bins 212.6 235.5 23.6 74.9 536.7 2193.2 484.8 1753.4

8 bins 89.3 314.5 33 92.3 511.9 2251.2 382 1856.5

4 bins 89.3 314.5 33 92.3 511.9 2251.2 382 1856.5

was observed that mapping for minimum area results on average in a 20% reduction

in both the maximum and minimum leakage value, compared to delay mapping. The

experiments in these tables were performed with m=12.

The leakage histograms associated with the leakage ADDs were computed for

some designs. For this experiment, m=20 was used. The comparison between the

area mapped and delay mapped histograms suggests that the area-mapped histograms

are typically ”better”, with a larger number of minterms which have smaller leakage

values. Figure 8 illustrates the results of this experiment.
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C. Minimum Leakage Vector Determination Using PLmin

Extensive experiments were conducted to validate the probabilisitic leakage minimiz-

ing heuristic. Results were compared with the exact minimum circuit leakage values.

When it was not possible to find the exact minimum circuit leakage values, the min-

imum leakage value over a large number of input vector samples was found. In all

experiments, the value of k, (i.e. the number of iterations) was 3. The 3 sets of

parameter sets (M1, M2 and M3) that were utilized for the experiments are described

in Table C. These are referred to as methods in the sequel. The value of p used was

1, but it can be increased for less accurate but faster invocations of the algorithm.

The parameter values reported in Table C were found after extensive experimentation

with many circuits.

Methods M1 and M2 utilize a value of m1 of 0.6. As a consequence, these

methods can be expected to set more gates to platinum values in the first iteration.

These methods are designed to reduce the number of gates discarded due to margin

violations. Among these methods, M1 has a higher γ value, and therefore biases the

state selection towards states which have smaller deviations. On the other hand, M2
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has a higher β value, and as a consequence, state selection favors states with lower

leakage. Method M3 has a smaller m1 value, and therefore tends to reject gates due to

margin violations. It is biased towards state selections which have smaller deviations.

For these three methods, the minimum leakage values were compared with those

obtained by an exhaustive evaluation of leakages. This was performed for small

examples, and results are reported in Table C. The minimum leakage value returned

by the PLmin method (Column 4), along with the exact maximum (Column 2) and

minimum (Column 3) leakages are shown in this table. Further, a figure of merit R

is reported in Column 5.

R = PLmin min leakage−Exactmin leakage
Exactmax leakage−Exactmin leakage

The values of the maximum and minimum range of leakages are computed based

on an exhaustive simulation of the circuit. Ideally, R should be 0. Runtimes for the

PLmin method are reported in Column 7, while the method utilized is reported in

Column 6.

Note that the figure of merit R is a more rigorous metric for comparing the

effectiveness of any MLV determination technique. In the prior approaches to the

MLV determination problem, the figure of merit utilized was

Rold = Heuristicmin leakage−Exact min leakage

Exactmin leakage

The R metric is a more rigorous method for evaluating the results of an MLV

technique compared to the Rold metric. This is because Rold may give optimistic

results when the minimum leakage value is high, and comparable to the maximum

leakage value. Such behavior is exhibited by larger circuits. The R metric avoids this

artificial optimism.

From Table C, the average value of R for PLmin method was about 0.125. For

the PLmin method, the average value of the previously utilized figure of merit Rold is

about 0.053.
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Table C shows that runtimes for the PLmin method are very small, with a good

figure of merit for the method. Given that the run-times are very small, we can afford

to apply all three methods (M1, M2 and M3), and choose the best result among the

three. In general, we may try several methods and select one that yields the vector

with the smallest leakage.

The algorithm PLmin was tested on larger circuits as well. The results of this

experiment are shown in Tables C and C. The columns in these tables are as in

Table C, with the exception that exact leakage values could not be computed for the

examples in this table. Instead, the minimum and maximum leakage values (found

over 10,000 random vectors) are reported in Tables C and C. According to [13], this

results in a greater than 99% confidence that the resulting leakage is within 0.5%

from the minimum leakage value.

Tables C and C show that PLmin method produces MLVs with very low errors,

with small runtimes. For the previously reported methods of [9], [28] and [15], the

errors were respectively 5.3%, 3.7% and 10.4% (using the Rold
1 metric, for which

PLmin results in an error of 3.7%). Further, the runtimes for PLmin are significantly

smaller than those of [28].

D. Chapter Summary

This chapter presents the experimental results for the algorithms described in this the-

sis, namely ALLall, ALall
Ab and PLmin. Results obtained for the approximate leakage

ADD (computed with varying number of discriminants) are compared with exact val-

ues. In addition, two different implementations, mapped for area and delay, for some

1Previous papers have reported results using the Rold metric alone.
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design are compared. The comparison is made on the different leakage histograms

obtained for the above two common mapping criteria. In Section C, the leakage

values obtained by the minimum leakage vector determination algorithm PLmin, are

compared against the exact minimum leakage values obtained for small designs and

against the approximate minimum leakage values generated after 10,000 random sim-

ulations for large designs. From Table C, for most designs the ratio of maximum

leakage versus minimum leakage found from experimental results averaged around

2.6. The conclusions based on the experimental data obtained are discussed in the

following chapter.
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Table IV. Leakage Min/max Values for Area and Delay Mapped Designs I

Delay mapped Area mapped

max min max min

9symml 10645.4 2850.7 8216.3 2840.0

b9 6385.3 1385.7 5573.1 1333.5

c8 6542.8 2564.5 6572.5 2337.5

cc 2704.7 1975.5 2535.9 1173.6

cht 9589.2 3248.4 9077.8 3100.9

cm138a 1179.0 885.5 618.4 291.6

cm150a 2332.8 1078.2 2109.1 956.3

cm151a 1153.0 653.5 1153.0 653.5

cm152a 974.6 613.2 974.6 613.2

cm162a 2167.7 1213.4 2131.3 958.1

cm163a 1976.9 1189.4 2218.4 1067.8

cm42a 993.4 777.0 672.0 417.9

cm82a 1062.0 855.8 929.8 712.6

cm85a 2147.4 1245.9 1658.8 1084.7

count 7740.8 2354.9 6427.2 892.0

cu 2316.0 1328.5 1912.7 1091.8

f51m 3331.7 2562.7 3224.4 2255.6

frg1 7814.1 1723.1 7515.6 1298.4
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Table V. Leakage Min/max Values for Area and Delay Mapped Designs II

Delay mapped Area mapped

max min max min

i1 2453.0 785.8 1950.9 558.3

lal 5406.9 1400.9 4584.6 1004.8

majority 429.8 269.1 350.7 192.1

mux 2541.8 1672.0 2064.6 1088.3

parity 3031.0 1884.9 3031.0 1884.9

pcle 3982.1 1453.9 3578.4 1397.3

pcler8 5485.5 1527.7 4849.5 1352.9

pm1 2043.5 856.1 1763.3 504.1

sct 3730.8 1729.9 3136.4 1618.2

t 321.8 179.7 321.8 179.7

tcon 1465.8 1052.5 1070.2 656.9

unreg 5199.0 2893.4 5083.3 1966.5

x2 1557.5 704.9 1340.0 587.2

z4ml 1715.6 1389.2 1482.5 1051.8

decod 2355.1 2126.8 749.7 236.9

alu2 21932.5 5367.9 17534.8 4848.5

alu4 43888.3 10457.2 33218.0 7870.9

t481 48647.5 9664.6 38554.8 5936.5

vda 34696.6 11041.7 25198.8 7223.9

apex7 14949.1 3320.9 12413.3 1802.8

AVERAGE 7286.6 2323.3 5942.1 1711.7
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Table VI. Parameters Used in the Experiments

Method m1 m2 m3 β γ Padj α

M1 0.6 0.96 1 0.5 50 0.95 0.95

M2 0.6 0.96 1 5 10 0.95 0.95

M3 0.4 0.96 1 0.1 100 0.9 0.9

Table VII. Exhaustive and Estimated Leakages for Small Circuits

Circuit Low High PLmin Low R Rold Meth. Time (s)

C17 12.47 30.15 12.47 0.000 0.000 M2 0

cm138a 70.80 109.86 71.63 0.021 0.012 M1 0.01

cm151a 129.55 167.57 135.75 0.163 0.048 M2 0.02

cm152a 65.95 99.07 75.54 0.290 0.145 M3 0.01

cm42a 90.19 111.23 90.73 0.026 0.006 M1 0

cm82a 87.22 101.16 91.37 0.298 0.048 M2 0.02

cm85a 142.25 217.08 162.08 0.265 0.139 M1 0.06

decod 185.97 237.43 185.97 0.000 0.000 M3 0.08

majority 32.41 44.55 32.41 0.000 0.000 M2 0.01

t 17.48 33.72 20.7 0.198 0.184 M2 0

AVG 0.1261 0.053



46

Table VIII. Leakages for Large Circuits I

Circuit Low High PLmin Low R Rold Meth. Time (s)

apex6 2738.57 3085.62 2609.550 -0.372 -0.047 M3 81.86

b9 328.16 554.04 362.11 0.150 0.103 M2 0.47

C1908 2353.45 2833.71 2473.570 0.250 0.051 M2 42.73

C2670 3430.12 3880.88 3459.29 0.065 0.009 M2 141.31

C3540 5268.64 5918.25 5402.009 0.205 0.025 M1 296.19

C432 841.13 1074.19 893.27 0.224 0.062 M2 1.78

C499 1748.97 1942.81 1775.1 0.135 0.015 M2 20.18

c8 507.41 829.42 552.24 0.139 0.088 M3 1.46

cc 190.44 402.85 203.87 0.063 0.071 M1 0.12

cht 735.31 1066.45 777.480 0.127 0.057 M3 3.39

cm150a 257.87 324.84 264.81 0.104 0.027 M3 0.21

cm162a 157.88 228.34 173.2 0.217 0.097 M1 0.04

cm163a 151.72 213.44 165.62 0.225 0.092 M1 0.05

cmb 119.87 203.63 130.61 0.128 0.090 M1 0.03

comp 523.47 691.71 563.31 0.237 0.076 M3 1.03

count 483.50 624.68 488.97 0.039 0.011 M3 0.81

cu 159.71 276.39 184.16 0.210 0.153 M3 0.14

example2 1079.71 1396.58 998.44 -0.256 -0.075 M3 9.49
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Table IX. Leakages for Large Circuits II

Circuit Low High PLmin Low R Rold Meth. Time (s)

frg1 362.57 499.46 377.66 0.110 0.042 M3 0.6

i1 124.17 234.66 127.47 0.030 0.027 M1 0.05

i3 705.68 823.34 672.36 -0.283 -0.047 M1 2.94

i4 624.79 951.79 539.9 -0.260 -0.136 M3 4.29

i5 1090.40 1417.71 909.120 -0.554 -0.166 M2 9.44

lal 357.52 687.27 389.02 0.096 0.088 M3 0.94

mux 287.66 400.43 304.31 0.148 0.058 M1 0.22

parity 213.38 271.10 221.56 0.142 0.038 M2 0.08

pcle 219.48 316.58 229.22 0.100 0.044 M1 0.07

pcler8 307.10 397.61 310.9 0.042 0.012 M3 0.18

pm1 92.63 285.76 95.66 0.016 0.033 M3 0.07

rot 2294.48 2658.33 2321.8 0.075 0.012 M3 63.35

tcon 139.77 190.54 139.77 0.000 0.000 M1 0.04

ttt2 857.95 1222.36 919.51 0.169 0.072 M2 3.43

unreg 473.89 615.77 497.68 0.168 0.050 M1 0.51

x1 1156.81 1708.28 1273.85 0.212 0.101 M1 10.65

x3 3219.92 4274.29 3528.949 0.293 0.096 M1 167.64

x4 1690.86 2471.53 1919.870 0.293 0.135 M3 30.27

AVG 0.0746 0.037
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Table X. Ratio of Maximum to Minimum Leakage (Delay Mapped)

Circuit No. Of Gates Ratio

i1 59 3.1

lal 165 3.86

majority 12 1.6

mux 103 1.52

parity 75 1.61

pcle 83 2.74

pcler8 107 3.59

pm1 56 2.39

sct 128 2.16

t 7 1.79

tcon 49 1.39

unreg 148 1.8

x2 56 2.21

z4ml 67 1.23

decod 76 1.11

alu2 532 4.09

alu4 1053 4.2

t481 5612 5.03

vda 1111 3.14

apex7 313 4.5

AVG 2.653
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CHAPTER V

CONCLUSIONS

In recent times, heuristic as well as exact approaches have been developed to compute

the input vector which minimizes the leakage of a circuit. In this thesis, an approach to

compute an ADD based implicit approach to find the leakage of all vectors in a circuit

has been described. The knowledge of the leakage of a circuit over all vectors can be

used in several ways, one of which is to select between competing implementations of

a circuit.

The algorithm ALall
ex computes the leakage ADDs of each circuit node, and then

adds these ADDs to compute the leakage ADD of the circuit in terms of its primary

inputs. Also, an approximate version of this algorithm (ALall
app), is implemented,

which discretizes the number of discriminants of an ADD to a user-specified limit m.

It is experimentally demonstrated that these approximate techniques produce

results which have reasonable errors. It is shown that limiting the number of discrim-

inant nodes to a value between 12 and 16 is practical, allowing for good accuracy and

lowered memory utilization. Also, area-mapped designs typically have better leak-

age characteristics than their delay-mapped counterparts. Viewed more generally,

it is important to note that for large designs the ratio of maximum leakage versus

minimum leakage found from experimental results averaged at 2.5. ALall
app readily

generates this information even for large designs.

Additionally in this thesis, a probabilistic method to perform input vector as-

signment for leakage minimization in a combinational circuit is presented. The cor-

responding algorithm (PLmin), begins by computing signal probabilities throughout

the circuit. These probabilities are used to guide the selection of the next gate to

which fixed values should be assigned. The selected gate is the one with the proba-
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bilistic highest leakage value. Once this gate is selected, it is assigned a state, again

in a manner which probabilistically minimizes its leakage. The implications induced

by such a state selection are computed. A satisfiability solver is invoked, to validate

the state selection before our algorithm commits to this assignment. The algorithm

terminates when all inputs have been assigned or are implied.

The method is fast, flexible and provides accurate results. On average, for small

examples, the PLmin method found minimum leakage values which were 5.3% from

the minimum circuit leakage. For larger examples, it was impractical to compute

the minimum circuit leakage exactly. The statistics for purposes of comparison were

computed on the basis of running 10,000 random vectors. For these examples, the

PLmin method produces MLVs with leakage values within 3.7% from the minimum.

The runtimes of the PLmin method are much lower than existing techniques which

produce results of similar quality. Some of the future work includes modifying the

algorithms for a multi-VT circuit by targeting the high VT gates earlier, modifying the

algorithm where the leakage of a gate for a particular input is not a fixed value (is

instead a range), and determining the gates whose change in leakage is not observable

in any of the consistent assignments. Such modifications might lead to better runtimes

and higher applicability.
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