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ABSTRACT

Supply Chain Contract Design in Supplier- versus Buyer-Driven

Channels. (May 2005)

Xingchu Liu, B.En.; M.S., Tsinghua University, P.R.China

Chair of Advisory Committee: Dr. Sıla Çetinkaya

In the context of supply contract design, the more powerful party has the lib-

erty of withholding private information which also improves its bargaining power.

Traditionally, the supplier (e.g., manufacturer) has been more powerful, and, hence,

the existing literature in the area emphasizes supplier-driven contracts. However, in

some current markets, such as the grocery channel, the bargaining power has shifted

to the buyer (e.g., retailer). For example, in the United States, large retailers, such

as Wal-Mart, exert tremendous market power over their suppliers. Also, with the

advent of the Internet, buyers have gained access to much more information about

multiple potential suppliers. Hence, this dissertation takes into account the recent

trends in power shifting between suppliers and buyers, and it attempts to provide a

comparison of optimal supply contract designs in supplier- versus buyer-driven chan-

nels. This research is unique in that we explore the impact of both power shifting

and information asymmetry while designing optimal supply chain contracts under

supply uncertainty and competition. Placing an emphasis on the cases of stochastic

and/or price-sensitive demand, we work on several novel problems in stochastic mod-

eling, nonlinear and dynamic optimization, and game theory. Hence, this research

has roots in applied probability, optimization, inventory theory, game theory, and eco-

nomics. The goal is to advance our practical knowledge of designing implementable

contracts because such knowledge is crucial for optimizing supply chain performance
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in the real world. This dissertation provides insights about

• the individual and joint impacts of the power structure and information asym-

metry on supply chain performance,

• the value of information for contract design in supplier- versus buyer-driven

channels,

• the impact of supply uncertainty and supplier competition on contract design

in supplier- versus buyer-driven channels.
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CHAPTER I

INTRODUCTION

Interest in the field of supply chain management has grown tremendously during

the past decade among both academics and practitioners. With that interest has

come a growing body of work on supply chain contracts. Since few firms are large

enough and few products are simple enough for one organization to manage the entire

provision of goods, most supply chains require the coordination of independently

managed entities who seek to maximize their own profits. For this reason, contractual

arrangements have been used as an efficient means to coordinate entities within the

supply chain to improve system-wide efficiency. This approach is called “channel

coordination,” a term adopted from the marketing literature. Channel coordination

may be achieved by first identifying the intra-chain dynamics which cause inefficiency

and then modifying the structure of these relationships contractually in order to more

closely align individual incentives with global optimization. Supply chain contracts

also help to divide the profits and to distribute the costs and risks arising from

various sources of uncertainty, e.g. market demand, selling price, product quality,

and delivery time, between the entities in the supply chain. Another important

rationale for contracts is that they facilitate long-term partnerships by delineating

mutual concessions that favor the persistence of the business relationship and make

its terms more explicit.

The volume of work on contracts is enormous in the economics and operations

management literature. Tirole (1988) and Tsay et al. (1999) provide excellent

overviews. While the work in economics contributes a deeper understanding of the

This dissertation follows the style and format of Management Science.
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basic issues of motivation for a broad variety of contractual structures, the work in

operations management focuses more explicitly on the modeling of material flows and

their complicating factors, such as the impact of demand uncertainty, forecasting, and

production capacity (Tsay et al. 1999).

A supply chain contract taxonomy provided by Tsay et al. (1999) classifies

contracts into eight categories based on the types of clauses they contain. These

are specification of decision rights, quality, pricing, minimum purchase commitments,

quantity flexibility, buy-back or return policies, allocation rules, and lead time. We

observe that the last six of these contract types approach the problem from the

supplier’s (e.g., manufacturer’s or distributor’s) perspective. These studies assume

that buyers (e.g., retailers or customers) are passive decision makers in the sense that,

for example, manufacturers can influence their retailers’ decisions through various

incentives, price schedules, and cooperation. This dissertation will concentrate on

supply contract design issues where this assumption is violated so that the buyers act

as the channel leaders. Such channels are called buyer-driven channels whereas the

traditional work in supply contracts concentrates on supplier-driven channels.

The suppliers in monopolistic markets are able to charge above-competitive

prices and, thereby, establish supplier-driven channels. However, as Messinger and

Narasimhan (1995) point out, in some markets such as the grocery channel, the bar-

gaining power has shifted to the buyer (e.g., retailer). For example, in the United

States, large retailers such as Wal-mart exert tremendous market power over their

suppliers. Also, with the advent of the Internet, buyers have access to much more in-

formation about multiple potential suppliers. Ertek and Griffin (2002) quote a recent

survey by Forrester, which indicates that manufacturers of standard products expect

approximately one-third of their sales to occur on-line within the next two years and

that 40% of producers expect the Internet to squeeze prices. Thus far, however, only
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a limited number of research papers have analyzed this shift in the power structure,

which is one of the important motivations of the dissertation.

Another deficiency in the current literature pertains to information asymmetry.

Information asymmetry usually occurs in a supply chain when some entities in the

chain are better informed than the others. Despite recent advances in information

technology and the trend towards sharing information among supply chain partners,

information asymmetry remains a key feature of real supply relationships. Since the

entities in a supply chain may belong to different firms that have conflicting objec-

tives, and/or they may not have access to private information, a system-wide optimal

solution may not be implementable unless it can fully resolve any incentive alignment

problems caused by asymmetric information in the system. This observation provides

another important motivation for the dissertation in which we will develop optimal

supply chain contracts via exploring the impact of both the power structure and

information asymmetry. More specifically, our goal is to develop a supply contract

design framework that considers decision power and information asymmetry issues in

supplier- and buyer-driven channels. In order to achieve this goal, we attempt to

• generalize existing channel coordination mechanisms, such as price protection

and return policies, which provide benchmarks for supply contracts,

• analyze optimal supply contract design mechanisms in buyer-driven channels,

• examine the impact of the power structure on supply contract design,

• evaluate the value of information in supply contract design for supplier- and

buyer-driven channels, and

• provide practical solutions and insights to improve system-wide efficiency in

supplier- and buyer-driven channels.
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While focusing on these objectives, we also investigate the impact of supply

uncertainty and supplier competition. Throughout this dissertation, we will refer to

the supplier as he and the buyer as she.

I.1. Scope of the Dissertation

In order to develop a supply contract design framework that considers power struc-

ture and information asymmetry issues in supplier- and buyer-driven channels, this

dissertation investigates the following four sets of problems.

I.1.1. Buyer’s Impact

Recent work provides insight into several contract-based channel coordination mech-

anisms commonly used in practice, such as price protection and returns agreements

(Lee et al. 2000, Taylor 2001), revenue sharing contracts (Cachon and Lariviere 2002),

and supply contracts with options (Barnes-Schuster et al. 2002). By considering a

two-period stochastic demand model and ignoring the possibility of returns or the dis-

posal of unsold inventory, Lee et al. (2000) show that price protection policies provide

a basis for channel coordination, i.e., a win-win contract. Taylor (2001) examines the

use of three different channel policies that are used in declining price environments:

price protection (P), midlife returns (M) and end-of-life returns (E). He shows that

PEM guarantees channel coordination, i.e., again, a win-win solution.

However, these two papers, by Lee et al. (2000) and Taylor (2001), assume that

the supplier (manufacturer) provides the contract and the buyer responds by passively

choosing the order quantity. In practice, the buyer has impact on the retail market

with pricing decisions (Emmons and Gilbert 1998) and sales efforts (Taylor 2002).

Furthermore, the buyer has the liberty of withholding private information (Corbett
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and Tang 1999) which also improves her bargaining power. Therefore, there is a need

to revisit and analyze price protection and returns agreements to consider the buyer’s

impact more explicitly. In this dissertation, we investigate the following problems in

this area:

• The design of optimal price protection contracts with retail-pricing decisions.

• The design of optimal price protection contracts with buyer’s sales effort con-

siderations.

• The design of optimal price protection contracts with incomplete information

about the buyer’s cost structure.

• The design of optimal return policies with incomplete information about the

buyer’s cost structure.

I.1.2. Information Asymmetry

The effect of bargaining power on supply chain performance is an interesting issue that

has arisen in recent years. Ertek and Griffin (2002) explore the impact of the power

structure on a two-stage supply chain and develop pricing contracts in a case where

the supplier has dominant bargaining power and a case where the buyer has dominant

bargaining power. They consider a pricing scheme for the buyer that involves both a

multiplier and a constant mark up and show that it is optimal for the buyer to set

the mark-up to zero and use only a multiplier. The analysis in this paper is based

on the assumption that each party in the supply chain has full information of the

channel. However, private information usually exists in a supply chain, and it is often

associated with the bargaining power. Therefore, the contract provider has to take

information asymmetry into account.
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Corbett and Groote (2000) derive an optimal quantity discount policy under

asymmetric information about the buyer’s holding costs. Corbett and Tang (1999)

analyze three types of contracts from the supplier’s point of view with information

asymmetry considerations about the buyer’s cost structure: the one-part linear con-

tract, the two-part linear contract, and the two-part nonlinear contract. Under the

one-part linear contract, the supplier charges a constant unit wholesale price. Under

the two-part linear contract, the supplier charges a constant unit wholesale price but

offers a fixed lump side payment to the buyer. Under a two-part nonlinear contract,

the supplier offers a menu of contracts where each item on the menu consists of a

pairing of a unit wholesale price and lump sum side payment. Corbett and Tang

find that the value of information is higher under two-part contracts and that the

value of offering two-part contracts is higher under full information. Also, they point

out that more flexible contracts allow the supplier to trade with buyers with higher

costs. Ha (2001) considers designing a contract to maximize the supplier’s profit in

the newsboy problem when demand is stochastic and price-sensitive and the supplier

has incomplete information on the marginal costs of the buyer. He shows that the

supplier’s profit is lower than in the complete information case while the buyer’s is

improved.

As we have mentioned earlier, we seek to extend the current literature by explor-

ing the impact of the power structure and information asymmetry simultaneously.

In this dissertation, we explore the impact of the power structure and the value of

information on designing contracts in a two-stage supply chain with a single-product

where the product is shipped from a supplier to a buyer at a wholesale price and

then sold to a price-sensitive market. Concentrating on a buyer-driven channel, we

consider three types of contracts with and without information asymmetry consider-

ations. These are i) one-part linear contracts, ii) two-part linear contracts, and iii)
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two-part nonlinear contracts. Under the one-part linear contract, the buyer declares

a non-negative price multiplier, denoted by α, and states that she will set the retail

price equal to the product of α and the wholesale price. Under the two-part linear

contract, the buyer declares an α and charges a slotting fee to the supplier. Under the

two-part nonlinear contract, the buyer offers a menu of contracts, where each item

on the menu consists of a pair of α and a slotting fee, leaving it up to the supplier

to select the pair of his choice. We compute the parameters of optimal supply con-

tracts with information asymmetry considerations in buyer-driven channels for these

three types of contracts. Utilizing our own and Corbett and Tang’s (1999) results, we

compare the performances of the supply chains (e.g., expected profits) under optimal

buyer- and supplier-driven contracts. Hence, we explore the impact of the power

structure on supply chain performance with, and without, information asymmetry

considerations. Our investigations are highlighted below:

• The design of different types of optimal contracts for a buyer-driven channel

with full information sharing.

• The design of different types of optimal contracts for a buyer-driven channel

with incomplete information of the cost structure.

• The analysis of the impact of the power structure and information asymmetry

on supply chain performance under different types of contracts.

I.1.3. Supply Uncertainty

The existing supply contract design literature ignores supply uncertainty issues. That

is, this literature assumes that when an order is placed, it is either filled immediately

(the case of zero lead time) or after a deterministic, or perhaps random, lead time. In
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reality, the supply of a product may sometimes be interrupted due to suppliers’ ran-

dom equipment breakdowns, maintenance durations, delays in raw material supply,

etc. Hence, supply availability remains an important, but overlooked, issue. Another

reason for unpredictability in the supply process is uncertainty in the yield quantity

due to the random proportion of defective items received.

A properly designed supply contract provides an opportunity to improve system-

wide profits under supply uncertainty by explicitly defining how to share the cost and

risk caused by this uncertainty, i.e., how to coordinate the channel. With cost-sharing,

the buyer can order more in each period so as to achieve optimal system-wide profits

(therefore, the supplier and the buyer have a bigger pie to share) without increasing

her cost. This is the main idea that we will implement in designing an optimal

contract with supply uncertainty considerations.

When the supplier and the buyer are two independent entities with incentive con-

flicts, the buyer may not have access to complete information about the supplier’s cost

structure (such as setup cost) or supply uncertainty. To provide more implementable

supply chain contracts, we further develop optimal contracts with information asym-

metry considerations under conditions of supply uncertainty. Based on our results on

contract design addressing the above issues, we explore further the value of supply

uncertainty information.

Previous work on the value of flow uncertainty information focuses on demand

uncertainty. For example, Cachon and Fisher (2000) find that the value of sharing

demand information is very limited under stationary demand. Lee et al. (2000), by

contrast, suggest that the value of demand information sharing can be quite high,

especially when demands are significantly correlated over time. However, to the best

of our knowledge, there is no work on the value of supply uncertainty information in

the literature, which is an important motivation of the dissertation. The problems
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investigated in this area are summarized below:

• The design of optimal cost-sharing contracts under supply uncertainty with full

information.

• The design of optimal cost-sharing contracts under supply uncertainty with

incomplete information about supplier’s costs.

• The design of optimal cost-sharing contracts with incomplete information about

supply quality/yield/availability.

• Exploration of the value of supply uncertainty information and the impact of

the power structure.

I.1.4. Supplier Competition

Most studies to date have focused on markets consisting of exclusive dealers that

sell only one producer’s brand; little attention has been given to the larger segment

of most consumer goods markets in which retailers sell multiple (often highly sub-

stitutable) brands at the same location. This latter channel structure represents

numerous markets including those consisting of specialty stores, such as consumer

electronics, sporting goods, and automobile parts, etc. As Tsay et al. (1999) point

out, “another deficiency in the current literature is the lack of attention to com-

petition, either between multiple buyers or multiple suppliers. Buyers that share a

common supplier and compete in the same consumer market might behave in a way

that obstructs their competitors’ access to suppliers ... Multiple suppliers to a com-

mon buyer might need to alter their price, service, lead time, or flexibility offerings

in light of the competitive environment.”

Although the consideration of competition is rare in the operations management
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literature, there is substantial coverage in the economics literature. For example,

Choi (1991) analyzes a channel structure with two competing manufactures and a

common retailer and studies three different power structures, i.e., supplier dominant,

balanced power, and buyer dominant structures. He shows that all channel members

are better off when no one dominates the structure. His work is followed by Trivedi

(1998), who models a channel structure in which there are duopoly manufacturers

and duopoly common retailers. Trivedi shows that the presence of competitive effects

at both the retail and manufacturer levels of distribution has a significant impact on

profits and prices.

Our research is based on the above work in the economics literature, but it focuses

on designing effective contracts to improve supply chain performance. In particular,

we investigate the following problems:

• The design of supply contracts under supply uncertainty and supplier competi-

tion.

• The design of supply contracts under power structure, supply uncertainty, and

supplier competition considerations.

• Exploration of the impact of power structure.

This research has roots in applied probability, optimization, inventory theory,

game theory, and economics. We intend to develop optimization models aimed at

minimizing entity/system costs or maximizing entity/system profits for the purpose of

optimal contract design. Our focus will be on probabilistic demand problems. From

the methodology perspective, our optimization models are all stochastic modeling

problems that require unconstrained/constrained dynamic or nonlinear optimization

techniques, depending on the factors considered.
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As previously indicated, current supply chain contract practices and the liter-

ature will be enriched by more research on power shifting, information asymmetry,

supply uncertainty, and competition considerations. This dissertation is unique in

that we explore the impact of both power shifting and information asymmetry while

designing optimal supply chain contracts under supply uncertainty and competition.

Hence, this research will advance our practical knowledge of designing implementable

contracts, and such knowledge is crucial for optimizing supply chain performance in

the real world. This dissertation will also shed light on the value of supply uncertainty

information and the role of suppliers’ and buyer’s competition in the design of supply

chain contracts. These are two important practical issues neglected in the existing

literature.

In the next section, we present a classification of the supply chain contracts

literature, which helps demonstrate the importance of our research and how our work

will fit in with current academic interest and recent trends in supply chain practice.

I.2. Related Literature

Contracts are, of course, a major consideration in law, and the literature in this area

is enormous. There is also a substantial literature on contracts in the economics

literature. To distinguish our supply chain contract study, we will define a supply

chain contract as follows: a supply chain contract is a mutual commitment between

supplier(s) and buyer(s) on operational details including funds, goods, and informa-

tion flow to improve the individual and/or joint entities’ performances. By defining

the purpose as “to improve the individual and/or joint entities’ performances,” we

distinguish our concentration from the work in law which focuses on the legality of

contracts. Also, our concentration is different from the work in economics since our
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emphasis is on operational details.

In supply contract design, the issues of who controls what decisions and how

entities will be compensated are critical. An understanding of contractual forms and

their economic implications is, therefore, an important part of evaluating supply chain

performance. Due to the importance of supply contracts, the field has developed in

many directions. A taxonomy of work in this area would be very helpful for under-

standing supply chain contracts. However, we still need to define what constitutes a

supply contract paper even after we restrict our search by the above definition. As

Tsay et al. (1999) point out , “the challenge arises because, broadly speaking, all

literature on inventory theory could qualify.” Therefore, we will further narrow our

search to those works in which the analysis explicitly offers guidance for negotiating

the terms of the relationship between the suppliers and buyers. Thus, we review

in depth only those papers which treat the terms of the contractual relationship as

decision variables.

Tsay et al. (1999) provide a good taxonomy based on contract clauses. In their

work, supply contracts are classified into eight categories: specification of decision

rights, pricing, minimum purchase commitments, quantity flexibility, buyback or re-

turns policies, allocation rules, lead time, and quality. Because several novel works

on supply contracts, such as price protection, revenue-sharing, etc., have appeared in

the last few years, the above taxonomy needs to be extended to include more cat-

egories. Expanding this taxonomy will be necessary as long as innovative work on

new contract clauses continues to appear in the future. In other words, the major

shortcoming of this taxonomy is that it does not provide a stable structural clas-

sification that allows for the incorporation of new specific clauses. To address this

shortcoming, in the following section, we present a three-level classification, which

is further narrowed down to the one-supplier-one-buyer supply chain structure. The
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reason for focusing on the one-supplier-one-buyer structure, rather than including

multiple-buyer and multiple-supplier structures, is that the work on supply chain

contract design based on the one-supplier-one-buyer structure is ample and more in

depth, which provides an insightful understanding of intra-chain dynamics under ex-

citing contractual arrangements. The work on multiple-buyer and multiple-supplier

structures, on the other hand, is relatively scarce and rarely offers optimal policies.

I.2.1. A Classification of the Supply Chain Contract Literature

It is worth noting that although a supply contract is a mutual commitment, the final

terms reached by both parties depend on their bargaining power. Usually one of the

entities initiates the contract. For example, a returns policy is initiated by a supplier

who takes responsibility for unsold inventory; a lead time quotation policy is provided

by a buyer to reduce the risk of supply uncertainty. As the leader of the channel, one

party initiates a contract and thus has the flexibility to adjust the contract and the

opportunity to gain more profit than the follower. The bargaining power structure is a

key issue in supply contract design, no matter what clauses are considered. Therefore,

as the top level of the taxonomy, we classify the supply contract design literature into

two categories: supplier-driven and buyer-driven channels.

The second level of the taxonomy has four categories under the supplier-driven

channel: decision right allocation, pricing alignment, quantity flexibility, and revenue

reallocation. Classification on the second level is based on the location of the main

thrust in the contract through the time-line of the supply chain. That is, after the

decision right is specified, the pricing scheme is determined, and then a certain order

quantity is shipped, and, finally, the revenue is realized. Similarly, the second level has

two categories under the buyer-driven channel: decision right allocation and pricing

alignment. Although we expect more categories will be added under the buyer-driven
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Figure 1 A Classification of the Supply Chain Contract Literature

channel in the future, currently only a limited number of papers analyze the buyer-

driven channel. The third level of the taxonomy is based on the contract clauses.

Figure 1 summarizes the classification.

Below, we briefly describe the concept represented by each category at the second

level as well as which category the clauses of the third level fit into.

• Decision Right Allocation in supplier-driven and buyer-driven channels: Each

party’s decision rights are specified and a way is provided to adjust the cost

structure and reallocate the risk so that the entities’ information and incentives

are more aligned with the system-wide optimum. Resale Price Maintenance

(RPM) and Vendor Managed Inventory (VMI) fit in this category.

• Pricing Alignment in supplier-driven channel: The supplier specifies a pricing

scheme that favors the buyer in exchange for her additional commitment or

responsibility. The category includes Two-Part Tariff, Quantity Discount, and
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Revenue-Sharing.

• Pricing Alignment in the buyer-driven channel: The buyer aligns her payment

with the supplier’s commitment or realized service level. Lead Time Quotation

and Quality Commitment belong in this category.

• Quantity Flexibility in the supplier-driven channel: The supplier provides the

buyer with flexibility against demand uncertainty. The quantity the buyer ul-

timately purchases may deviate from a previous planning estimate, subject to

certain constraints and/or financial consequences. The category includes Quan-

tity Flexibility and Minimum Purchase Commitment.

• Revenue Reallocation in the supplier-driven channel: The supplier is willing to

share the cost and partially return his revenue to the buyer after the demand

is realized so that the buyer’s behavior is better aligned with the system-wide

optimum. Returns Policy, Price Protection, and Rebate fit here.

We note that several papers are candidates for more than one of the above

categories. For example, the work of Wang et al. (2004) combines RPM, VMI, and

revenue sharing. This phenomenon is normal since a proper combination of different

types of contracts provides an opportunity to capitalize on their merits simultaneously

and improve the system efficiency. In fact, we expect many more such combinations

to appear in the future. The purpose of our classification is to help explain the intra-

chain dynamics under different contractual schemes. We do not intend to tear the

literature into isolated pieces. The way that we fit a paper into a category is based

on which category the paper fits first based on the time-line of the supply chain.

Therefore, we place the work of Wang et al. (2004) into the decision right allocation

category.
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In the next section, we will review the supply chain contract literature based on

our third level of classification.

I.2.2. A Review of the Supply Chain Contract Literature

Since Tsay et al. (1999) provide an excellent review of supply contracts, here we try

to avoid overlap by focusing on more recent work. However, since we also attempt

to provide a complete picture of the supply chain contract literature, we must review

some of the classical work to demonstrate the roots of certain important ideas.

I.2.2.1. Resale Price Maintenance and Vendor Managed Inventory

We note that the economics literature has contributed a great deal to Resale Price

Maintenance, in which the supplier is allowed to dictate the conditions of the retail

price that the buyer may charge. Rather than summarize this vast literature, we refer

the reader to Katz (1989) for a review. In this section, we concentrate on reviewing

three recent papers on VMI, in which the supplier assumes the management of the

buyer’s inventory, making such decisions as when and how much inventory to ship

to the buyer. The first paper focuses on the consignment stock which could be part

of a VMI scheme to offer superior customer service under competitive pressure. The

second paper considers a (z, Z) VMI contract, while the last paper designs a contract

that includes both RPM and VMI.

Corbett (2001) considers consignment stock to help reduce cycle stock by pro-

viding the supplier with an additional incentive to decrease batch size. Under con-

signment stock, the supplier owns the inventory held at the buyer’s site until it is

consumed. Corbett analyzes both supplier-driven and buyer-driven channels. First,

the optimal menu of contracts is derived in a buyer-driven channel when the supplier

has private information about the setup cost. He shows how consignment stock can
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help reduce the impact of this information asymmetry. Then, he studies consignment

under the assumption that the supplier cannot observe the buyer’s backorder cost.

The optimal menu of contracts on a consigned stock level is derived, and he shows

that the supplier effectively has to overcompensate the buyer for the cost of each

stockout.

Fry et al. (2001) model a type of vendor-managed inventory (VMI) agreement

that occurs in practice called a (z, Z) contract. They investigate the savings due to

better coordination of production and delivery that is facilitated by such an agreement

in a buyer-driven channel. The optimal replenishment and production policies for a

supplier are found to be up-to policies. Numerical analysis is conducted to compare

the performance of a single supplier and a single retailer operating under a (z, Z)

VMI contract with the performance of those operating under a traditional retailer-

managed inventory (RMI) with information sharing. They show that the (z, Z) type

of VMI agreement performs significantly better than the RMI in many settings but

worse in others.

Wang et al. (2004) consider a consignment contract with revenue sharing where

a supplier decides on the retail price and delivery quantity for his product and retains

ownership of the goods. For each item sold, the retailer deducts a percentage from

the selling price and remits the balance to the supplier. They assume that the retailer

is the leader and the supplier is the follower. They show that, under such a contract,

both the overall channel performance and the performance of individual firms depend

critically on the demand price elasticity and on the retailer’s share of the channel cost.

In particular, the (expected) channel profit loss, compared with that of a centralized

system, increases with demand price elasticity and decreases with retailer’s cost share,

while the profit share extracted by the retailer decreases with price elasticity and

increases with retailer’s cost share.
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I.2.2.2. Two-Part Tariff, Quantity Discount, and Revenue-Sharing

Monahan (1984) first considers the economic implications, from the supplier’s point of

view, of offering quantity discounts to the buyer. Assuming that the supplier follows

a lot-for-lot policy, he shows that a supplier may adjust his present pricing schedule

to entice his buyer to increase the present order size by a factor of “k” and increase

his profit as a result. Banerjee (1986a) incorporates supplier’s inventory carrying

costs and develops a generalized version of Monahan’s model and demonstrates its

equivalence with the joint economic lot size approach suggested by Banerjee (1986b).

Lee and Rosenblatt (1986) extend Monahan’s model by explicitly incorporating con-

straints imposed on the amount of discount that can be offered and relaxing the

implicit assumption of the lot-for-lot policy adopted by the supplier.

Moorthy (1987) argues that a two-part tariff is superior to quantity discounting

because it is simpler; it separates the coordination problem from the profit-sharing

problem (coordination is achieved by setting the wholesale price equal to the supplier’s

production cost, and a lump-sum transfer allows the profits to be split arbitrarily),

and leads to fewer legal problems (charging all retailers the same wholesale cost is

more consistent with the Robinson-Patman Act). Many subsequent papers in the

marketing literature have considered variants of this model.

Weng (1995) studies a policy coordinated through quantity discounts and fran-

chise fees. He shows that the optimal all-unit quantity discount policy is equivalent

to the optimal incremental quantity discount policy for achieving channel coordina-

tion. Hofmann (2000) analyzes the impact of all-units quantity discounts on channel

coordination in a system consisting of one supplier and a group of heterogeneous

buyers with a cash-flow-oriented lot-sizing model. His work provides insight into the

efficiency of channel coordination through quantity discounts, as well as the influence
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of the number of price breaks and the heterogeneity of the system. Khouja (2000)

extends to the case in which demand is price-dependent, and multiple discounts with

prices under the control of the supplier are used to sell excess inventory. Two algo-

rithms for determining the optimal number of discounts under fixed discounting costs

for a given order quantity and realization of demand are developed.

Corbett and Groote (1999) derive the optimal quantity discount policy under

asymmetric information of the buyer’s holding cost. Corbett et al. (2004) analyze

three types of contracts: the one-part linear contract, the two-part linear contract

and the two-part nonlinear contract with information asymmetry consideration of

the buyer’s cost structure. They find that the value of information is higher under

two-part contracts and the value of offering two-part contracts is higher under full

information. Also, they point out that more flexible contracts allow the supplier

to trade with buyers with higher costs. Ha (2001) designs a contract to maximize

the supplier’s profit in the newsboy problem when demand is stochastic and price-

sensitive and the supplier has incomplete information about the marginal cost of the

buyer. He shows that the supplier’s profit is lower than in the complete information

case while that of the buyer is improved.

Cachon and Lariviere (2002) study revenue-sharing contracts in a supplier-driven

channel with revenues determined by each retailer’s purchase quantity and/or price.

They demonstrate that revenue-sharing does coordinate a supply chain with a single

retailer. Also, they find that a number of other supply chain contracts (e.g., returns

policy, quantity discount, quantity-flexibility, rebate) do not effectively coordinate all

of the supply chains that they consider. However, they acknowledge several limita-

tions of revenue-sharing contracts. Revenue sharing does not coordinate competing

retailers when each retailer’s revenue depends on its order quantity and the vector of

the retail price. In addition, revenue sharing does not coordinate a supply chain with
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retail effort dependent demand.

I.2.2.3. Lead Time Quotation and Quality Commitment

Grout and Christy (1993) discuss the incentives faced by a supplier when quoting a

delivery time to a buyer. During the contracting process associated with the one-time

purchase of some item, the buyer offers a lump-sum bonus of B for on-time delivery,

and the supplier in turn specifies a delivery time A. The supplier’s risk is due to

uncertainty in the production time. If the supplier completes production prior to

time A, he collects B but incurs a cost of α per unit of time for holding the item until

delivery. If instead, a production delay causes tardiness, the supplier incurs a cost

of β per unit of time late. The authors show that a first-best outcome exists under

certain pairings of (A,B).

Reyniers and Tapiero (1995) use a simple game-theoretic formulation of a supplier-

producer channel to examine the impact of the contract structure on the supplier’s

quality and the producer’s inspection practices as well as its implications for the qual-

ity of the end product. Since suppliers often have more information about the quality

of the parts than the producer, Lim (2001) investigates contract design when there

is incomplete information regarding the quality of the parts. He shows that when

the supplier and the producer have to share damage costs, an optimal contract is

one where the supplier compensates the producer by the same amount, regardless of

his quality type. However, a supplier with low quality is more likely to be offered a

contract with an inspection scheme, while a supplier with high quality is likely to be

constrained with a warranty scheme.
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I.2.2.4. Quantity Flexibility and Minimum Purchase Commitment

Traditional inventory theory generally assumes that the buyer can order any quantity

from the supplier at any time. Certainly the buyer prefers to avoid any constraints

on her ability to meet her own customers’ demand. However, this may be undesirable

from the supplier’s point of view for a variety of reasons, such as the amplification of

demand variance, referred to as “bullwhip effect” (see Lee et al 1997). When signing

a contract, since the buyer prefers no quantity commitment while the supplier prefers

a fixed quantity commitment for the whole horizon, a compromised contract is finally

reached.

One type of these contracts is where the buyer agrees in advance to accept

delivery of at least a certain quantity of stock, either in each individual order or

cumulatively over some period of time. The supplier may offer the buyer a lower

unit cost on items purchased under the contract. Anupindi and Akella (1993) study

a class of contracts that require the buyer to commit to purchase a certain minimum

quantity in every period of the horizon. Orders for each period are permitted to be

adjusted upwards at a price premium. Bassok and Anupindi (1997) analyze a supply

contract for a single product that specifies that the cumulative orders placed by the

buyer over a finite horizon be at least as large as a given quantity. The demand for

the product is uncertain, and the buyer places orders periodically.

Another type of these contracts is when the buyer agrees in advance to accept

delivery of a fixed quantity of stock in each period and may adjust the quantity

(after obtaining further information such as realized market demand), which is called

quantity flexibility. When a buyer’s estimate does not entail enforceable commitment,

buyers commonly overstate their intended purchase, only to refuse undesired product

later on. Quantity flexibility is a way to encourage the buyer to forecast and plan more



22

deliberately and honestly. In exchange, the supplier might need to provide a price

break to give the buyer an incentive to participate. Li and Kouvelis (1999) develop

valuation methodologies for different types of supply contracts. A “time-inflexible

contract” requires the buyer to specify not only how many units she will purchase,

but also the timing of her purchases. A “time-flexible contract” allows the buyer

to specify the purchase amount over a given period of time without specifying the

exact time of purchase. Other than time flexibility, the supplier may offer “quantity

flexibility” to the buyer as well, i.e., purchase quantities could be within a pre-specified

quantity window. The objective is to minimize the net present value of the purchase

cost plus inventory holding costs. Milner and Rosenblatt (2002) analyze a two-period

supply contract which allows the buyer to adjust her order after observing the initial

demand and demonstrates that flexible contracts can reduce the potentially negative

effect of correlation of demand between two periods. Barnes-Schuster, Bassok and

Anupindi (2002) investigate the role of options in providing flexibility to a buyer to

respond to market changes. They show that, in general, channel coordination can be

achieved only if the exercise price is allowed to be piecewise linear.

I.2.2.5. Returns Policy, Price Protection, and Rebate

The supplier often uses returns policies to encourage retailers to stock and price items

more aggressively. Pasternack (1985) models a returns policy in a single period set-

ting in which demand is uncertain. He assumes that the retail price is determined

exogenously. Pasternack’s results indicate that global optimization, i.e., channel co-

ordination, can be achieved with either of the following forms of returns policy: (1)

the buyer receives a partial credit for all unsold units, or (2) the buyer gets a full

credit for the return of only up to a certain portion of her original order. Emmons

and Gilbert (1998) demonstrate the need to incorporate the self-interested behavior



23

of buyers into decisions relating to the establishment of a supplier’s pricing policy.

They show that uncertainty tends to increase the retail price and under certain con-

ditions, a supplier can increase his own profit by offering to repurchase excess stock

from the retailer at the conclusion of the period.

Price protection is a commonly used practice between manufacturers and retailers

in the personal computer industry, motivated by the drastic declines in product value

during the product life cycle. It is a form of rebate given by the supplier to the buyer

for units unsold at the retailer when the price drops during the product life cycle.

Lee et al. (2000) show that a properly chosen price protection credit coordinates the

channel when the buyer has a single buying opportunity. They also show that when

the buyer has two buying opportunities, channel coordination is achieved when the

price protection is set endogenously together with the wholesale prices. Taylor (2001)

further examines three channel policies that are used in declining price environments:

price protection, midlife returns and end-of-life returns, and he shows that the three

policies together guarantee both coordination and a win-win outcome.

A rebate is a payment from a supplier to a retailer based on buyer sales to the

end consumers. Two common forms of channel rebates are linear rebates, in which a

rebate is paid for each unit sold, and target rebates, in which the rebate is paid for

each unit sold beyond a specified target level. Taylor (2002) shows that when demand

is not influenced by the sales effort, a properly designed target rebate achieves channel

coordination and a win-win outcome but that coordination cannot be achieved by a

linear rebate in a way that is implementable. When demand is influenced by the sales

effort, a properly designed target rebate and returns contract achieves coordination

and a win-win outcome.

Through the above supply chain contract literature review, we can confirm that

the buyer’s impact (in a supplier-driven channel) is rarely examined and the number
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of papers investigating the buyer-driven channel is limited. Thus, our first and second

sets of problems “Buyer’s Impact” and “Information Asymmetry” enrich the literature

on both supplier- and buyer-driven channels. In addition, the literature reveals that

there is little contract design work on “Supply Uncertainty”; therefore, we must carry

out our investigation from the ground level. Fortunately, substantial work has been

done on supply uncertainty in inventory theory, and we will review that relevant

literature in the next section.

I.2.3. A Review of the Supply Uncertainty Literature

Substantial work has been done on supply uncertainty in inventory theory. Silver

(1976) initiates a main stream of literature on supply uncertainty which assumes that

the quantity of (good) products received by the buyer is (stochastically) proportional

to his/her order quantity. That is, Silver extends the classical economic order quantity

model by considering the possibility that the quantity received may be a random

variable whose expected value is proportional to the original order quantity. He shows

that the optimal order quantity depends on the mean and standard deviation of the

amount received. Kalro and Gohil (1982) extend Silver’s model to include complete

and partial backlogging of demands. Mak (1985) extends this model even further by

assuming that the fraction of demand lost during a stockout period is itself a random

variable. Gerchak and Parlar (1990) consider the problem of jointly determining yield

variability and lot sizes when yield variability can be reduced through appropriate

investments. Another stream of literature considers supply uncertainty issues as a

consequence of random capacity. Parlar and Berkin (1991) consider a generalization

of Silver’s model in which supply is not always available. That is, the supplier has

periods of supply availability and unavailability with random durations. Wang and

Gerchak (1996) study the effect of random supply capacity on optimal lot sizing in a
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continuous review environment.

Some recent research concentrates on the impact of the production process by

which defective products are delivered. Porteus (1986) and Rosenblatt and Lee (1986)

incorporate the effects of imperfect production processes into the classical economic

order quantity model with a deterministic and constant demand rate. Porteus as-

sumes that there is a constant probability that the process goes out of control while

producing each unit whereas Rosenblatt and Lee assume that the time-to-failure is

exponentially distributed. Kim and Hong (1999) extend Rosenblatt and Lee’s model

by considering a general time-to-failure distribution. Chung and Hou (2003) provide

a more generalized model by allowing shortages. In the above models with imperfect

yields, the yield distribution itself is assumed to be known and given. However, in-

vestments to improve the production process can have an impact on this distribution.

Cheng (1991) considers a constant yield rate and assumes that the unit production

cost of the item increases with the yield rate. Cheng shows that for a specific form of

the relationship between yield rate and unit production cost, a closed-form expression

for the economic production quantity can be obtained. Tripathy et al. (2003) extend

Cheng’s model by assuming that demand exceeds supply and that the unit cost of

production is directly related to reliability and inversely related to the demand rate.

While the above papers focus on continuous-time models, Henig and Gerchak

(1990) analyze the structure of inventory policies in the presence of stochastically

proportional yield in a periodic review setting with random demand. Erdem and

Özekici (2002) consider a periodic-review single item inventory model in a randomly

changing environment where all model parameters are specified by the state of the

environment. They also consider random yield specified by the random capacity of

the vendor, and they show that the optimal policy is a state-dependent-base-stock

policy. Yano and Lee (1995) provide a comprehensive review of lot sizing models with
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random yields that summarizes both continuous-time and discrete-time models.

Since the above papers concentrate on minimizing the cost of a specific entity

in the supply chain, they offer only a sub-optimal solution when used for decision

making without coordination in a supplier-buyer system. Some recent work highlights

the importance of supply uncertainty for effective supply chain coordination. For

example, Affisco et al. (2002) propose a quality-adjusted joint economic lot size model,

and they study the effect of quality improvement and setup reduction on system-wide

cost. Khouja (2003) formulates two-stage models in which the proportion of defective

products increases with increased production lot sizes, and he shows that quality

considerations can lead to significant reductions in optimal production lot sizes. A

basic assumption underlined in these papers is that the system has a single decision

maker, and, therefore, the system-wide optimal solution can be easily implemented.

However, effective supply chain coordination practices actually require resolving the

entities incentive alignment conflicts.

A properly designed supply contract should provide an opportunity to improve

system-wide profits under supply uncertainty by explicitly defining how to share the

cost and risks caused by this uncertainty, i.e., by addressing the question of how to

coordinate the channel. The difficulty in analysis is that placing emphasis on the

operational-level details of incentive alignment obstructs the simultaneous analysis

of supply uncertainty information. Starbird (2001) examines the effect of rewards,

penalties, and inspection policies on the behavior of an expected cost minimizing

supplier. However, to the best of our knowledge, there is no previous work on supply

contracts under supply uncertainty considerations. Our work seeks to fill this gap.
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I.3. Organization of the Dissertation

The dissertation is organized as follows. Chapter II examines the buyer’s impact

explicitly under price protection and returns policies. In Chapter III, we study three

types of contracts in a buyer-driven channel with information asymmetry considera-

tions, and we explore the impact of the power structure. In Chapter IV, we develop

supply contracts under supply uncertainty. Supplier competition issues are addressed

in Chapter V. The contributions of the dissertation are summarized in Chapter VI.
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CHAPTER II

BUYER’S IMPACT

Recent work provides insight into several contract-based channel coordination mech-

anisms commonly used in practice, such as price protection and returns agreements

(Lee et al. 2000, Taylor 2001, Lu et al. 2002), revenue sharing contracts (Cachon and

Lariviere 2002), and supply contracts with options (Barnes-Schuster et al. 2002). Lee

et al. (2000) explore the use of price protection with a two-period model, ignoring

the possibility of returns or the disposal of unsold inventory. They show that price

protection is an instrument for channel coordination. If products have long manu-

facturing lead times so that the retailer has a single buying opportunity, a properly

chosen price protection credit coordinates the channel. If, contrarily, products have

shorter manufacturing lead times so that the retailer has multiple buying opportu-

nities, price protection alone cannot guarantee channel coordination when wholesale

prices are exogenous. However, when the price protection credit is set endogenously

together with the wholesale prices, channel coordination is restored. Taylor (2001)

examines three channel policies that are used in declining price environments: price

protection (P), midlife returns (M) and end-of-life returns (E). He shows that EM

(i.e., midlife and end-of-life returns) achieves channel coordination if the wholesale

prices and the return rebates are set properly. However, such a policy may not be

implementable because it may require the manufacturer to be worse off as a result

of coordination. If P is used in addition to EM and the terms are set properly, then

PEM guarantees both coordination and a win-win outcome. Lu et al. (2002) further

identify protection policies and/or conditions under which the supply chain can be

coordinated and a win-win situation can be guaranteed. They also provide algorithms

to determine win-win policy parameters.
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However, these three papers, by Lee et al. (2000), Taylor (2001), and Lu et al.

(2002), assume that the supplier (manufacturer) provides the contract and the buyer

responds by passively choosing the order quantity. In practice, the buyer has impact

on the retail market with pricing decisions (Emmons and Gilbert 1998) and sales

efforts (Taylor 2002). Furthermore, the buyer has the liberty of withholding private

information (Corbett and Tang 1999) which also improves the buyer’s bargaining

power. Therefore, there is a need to revisit and analyze price protection and returns

agreements to consider the buyer’s impact more explicitly.

Emmons and Gilbert (1998) study the role of returns policies and the impact of

pricing on market demand. They model the relationship between a manufacturer and

a retailer in a single period setting with price dependent demand uncertainty. Using

a multiplicative model of demand uncertainty, they demonstrate that uncertainty

tends to increase the retail price and that under certain conditions, a manufacturer

can increase his own profit by offering to repurchase excess stock from the retailer at

the conclusion of the period.

Retailers can also influence demand by merchandising, doing point-of-sale or

other advertising, providing attractive shelf space, and guiding consumer purchases

with sales personnel. Taylor (2002) shows that when demand is influenced by retailer

sales effort, a properly designed target rebate and returns contract achieves coordi-

nation and a win-win outcome. Other contracts, such as linear rebate and returns or

target rebate alone, cannot achieve coordination in a way that is implementable.

In this chapter, we generalize existing channel coordination mechanisms policies,

such as price protection and return policies and explicitly examine the buyer’s impact.

The remainder of this chapter is organized as follows. In the next section, the impact

of the pricing decision on price protection design is examined and four demand-curves

are carefully explored. In section II.2, the impact of sales efforts is investigated. We
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further examine the impact of information asymmetry on price protection and returns

policiy design in section II.3 and section II.4, respectively. Section II.5 provides

concluding remarks.

II.1. Impact of Pricing Decisions

In this section, we examine the impact of pricing decisions on price protection designs

under both deterministic and stochastic demand cases. We start with the price-

sensitive deterministic demand case to investigate the dynamics of an optimal price

protection design, and then we study the stochastic price-sensitive demand case which

provides a better representation of real life applications.

II.1.1. Deterministic Demand Case

Consider a two-period model with deterministic price-sensitive demand. We assume

that products have long lead times, so the buyer has a single buying opportunity

at the beginning of the product life cycle. The buyer chooses an order quantity at

the beginning of period 1, and the units are delivered ready for sale in period 1 at

full price. At the beginning of period 2, another new product is introduced to the

market. The launch of the new product reduces the attractiveness of the existing

product. Consumers react to the introduction of the new product in one of two

ways. Some consumers prefer to purchase the existing product at a discount; other

consumers prefer to buy the new product. The buyer can adjust the retail price to

influence the demand. Since the demand is deterministic, the buyer knows exactly

how much the demand will be in the two periods at certain prices.

Assume the demand di in period i satisfies di = ai− bipi where ai, bi are positive
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constants; pi is the retail price in period i, i = 1, 2 satisfying

pi ≤
ai
bi

so the demand is always positive. The notation is summarized below:

pi: selling price per unit at the market in period i,

di: market demand in period i,

w: supplier’s wholesale price per unit to the buyer,

s: supplier’s cost per unit,

ci: buyer’s handling cost per unit in period i,

hi: holding cost per unit in period i,

gi: loss of goodwill cost per unit in period i,

Q: order quantity from the buyer at the beginning of period 1,

β̄: price protection factor (the supplier offers β̄(p1 − p2) for each unsold unit at

the end of period 1 to the buyer).

Also, we make the following assumptions.

ASSUMPTION 1 0 < s < w ≤ p1, 0 ≤ g2 ≤ g1.

ASSUMPTION 2 s, ci, hi, gi, are exogenous; w, pi, β̄ and Q are endogenous.

We begin our analysis by considering the integrated channel. Let x be the leftover

stock at the end of period 1. The channel’s total profit in period 2, denoted by πJ2(x),

is given by

πJ2(x) = −c2x+ p2x−
1

2
h2x.

Since the buyer knows exactly how much the demand is for a given retail price,

it is always true that x = Q− d1 = d2 = a2 − b2p2. Therefore, the total profit of the
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channel when Q units are ordered at the beginning of period 1, denoted by πJ(Q, p1),

is

πJ(Q, p1) = −(s+ c1)Q+ p1d1 −
1

2
h1(Q+ d2) + πJ2(Q− d1).

Since Q = d1 + d2, the total profit can be expressed as a function of p1 and p2 as

follows:

πJ(p1, p2) = −b1p21 +
[

b1(s+ c1) + a1 +
1

2
h1b1

]

p1 + [b2(s+ c1) + h1b2 + a2 + b2c2

+
1

2
h2b2]p2 − b2p

2
2 − (s+ c1)(a1 + a2)−

1

2
a1h1 − a2h1 − c2a2 −

1

2
h2a2.

The first-order conditions of the total profit function are given by

∂πJ(p1, p2)

∂p1
= −2b1p1 + b1(s+ c1) + a1 +

1

2
h1b1 = 0,

∂πJ(p1, p2)

∂p2
= −2b2p2 + b2(s+ c1) + h1b2 + a2 + b2c2 +

1

2
h2b2 = 0.

Further, we have

∂π2J(p1, p2)

∂p21
= −2b1 < 0,

∂π2J(p1, p2)

∂p22
= −2b2 < 0,

∂π2J(p1, p2)

∂p1∂p2
=

∂π2J(p1, p2)

∂p2∂p1
= 0.

Thus, the total profit function is strictly concave in p1 and p2. The optimal retail

prices and order quantity are unique as follows

p∗1 =
1

2

[

a1
b1

+ (s+ c1) +
1

2
h1

]

, (2.1)

p∗2 =
1

2

[

a2
b2

+ (s+ c1 + c2) + h1 +
1

2
h2

]

, (2.2)

Q∗ = a1 − b1p
∗

1 + a2 − b2p
∗

2. (2.3)
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Next we consider the situation in which the supplier offers no price protection

to the independent buyer. The buyer orders Q and receives the amount in time for

sales in period 1. The buyer’s optimal retail prices can be achieved by replacing the

s with w in (2.1) and (2.2) as follows

p̂1 =
1

2

[

a1
b1

+ (w + c1) +
1

2
h1

]

, (2.4)

p̂2 =
1

2

[

a2
b2

+ (w + c1 + c2) + h1 +
1

2
h2

]

, (2.5)

Q̂ = a1 − b1p̂1 + a2 − b2p̂2. (2.6)

Comparing (2.1–2.3) with (2.4–2.6), we have the following observation.

PROPOSITION 1 p̂1 > p∗1, p̂2 > p∗2, Q̂ < Q∗.

Proof: Since w > s, it is easy to verify by comparison. ¥

Proposition 1 shows that, without price protection, the independent buyer’s opti-

mal retail prices are strictly higher than the optimal prices of the integrated channel,

while the optimal quantity is strictly less than the integrated channel. Note that this

is a form of quantity distortion driven by double marginalization (Spengler 1950).

Now, we consider a price protection to align the buyer’s incentive with the channel

optimum. The price protection allows the supplier to offer to the buyer β̄(p1 − p2)

(0 ≤ β̄ ≤ 1) for each unit unsold at the end of period 1. Then the total profit to the

buyer, denoted by πB(p1, p2), is given by

πB(p1, p2) = −b1p21 +
[

b1(w + c1) + a1 +
1

2
h1b1

]

p1 + [b2(w + c1) + h1b2 + a2

+ b2c2 +
1

2
h2b2]p2 − b2p

2
2 − (w + c1)(a1 + a2)−

1

2
a1h1 − c2a2

+
1

2
h2a2 + β̄(p1 − p2)(a2 − b2p2). (2.7)

When the retail prices are exogenous, Lee et al. (2000) show that price protec-
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tion is able to achieve the channel coordination. However, price protection fails to

coordinate the channel when the buyer’s pricing decision is considered explicitly, as

shown in the following theorem.

THEOREM 1 Under price protection, the buyer’s optimal retail prices are unique.

Let p̃1, p̃2 represent the optimal retail prices in period 1 and 2, respectively. Then,

p̃1 > p̂1 > p∗1. Price Protection alone can NOT achieve channel coordination.

Proof: The first-order conditions of the total profit function (2.7) are given by

∂πB(p1, p2)

∂p1
= −2b1p1 + b1(w + c1) + a1 +

1

2
h1b1 + β̄(a2 − b2p2) = 0, (2.8)

∂πB(p1, p2)

∂p2
= −2b2p2 + b2(w + c1) + h1b2 + a2 + b2c2 +

1

2
h2b2 − β̄(a2 + b2p1)

+ 2b2β̄p2 = 0. (2.9)

Note that the determinant of the Hessian matrix (4(1 − β̄)b1b2 − β̄2b2) is not

always positive; thus the total profit function is not necessarily concave.

For a given p2, the optimal value of p̃1 is unique and can be achieved from (2.8)

such that

p̃1 =
1

2

(

a1
b1

+ (w + c1) +
1

2
h1 +

β̄

b1
(a2 − b2p2)

)

. (2.10)

Substituting (2.10) into (2.9), we can verify the uniqueness of the optimal value

of p2 with the second-order condition given by

∂2πB(p2)

∂p22
= − β̄

2b22
4b1

− (1− β̄)2b2. (2.11)

Thus, the buyer’s optimal retail prices are unique.

It can be easily verified that p̃1 > p̂1 by comparing (2.10) with (2.4). Thus,

p̃1 > p∗1 from Proposition 1. Since in the integrated channel, the optimal retail prices

are unique, the retail price in period 1 under price protection is always higher than

the optimal retail price in the integrated channel. Thus, price protection alone can
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not induce the buyer to set p̃1 = p∗1. Therefore, the channel can not be coordinated

by price protection alone. ¥

To provide a contract to coordinate the channel, we introduce the following term

into the contract:

DEFINITION 1 The recommended retail price, represented by T , is a retail price

upper-bound in period 1 recommended by the supplier. The supplier will provide price

protection to the buyer only if the buyer sets her retail price p1 satisfying p1 ≤ T .

To achieve channel coordination, the following theorem specifies the contract

terms.

THEOREM 2 Let

T =
1

2

[

a1
b1

+ (s+ c1) +
1

2
h1

]

, and

β̄ =
w − s

a1
2b1
− s

2
− c1

2
− c2 − 3

4
h1 − 1

2
h2
. (2.12)

Under the contract pair (T, β̄), channel coordination is achieved.

Proof: From Theorem 1, we know that p̃1 > p∗1, so the supplier needs a way to force

the buyer to reduce her retail price in period 1. By recommending a retail price upper

bound T , now the supplier offers price protection only when p1 ≤ T .

To achieve channel coordination, let T = p∗1. Since

∂πB(p1, p2)

∂p1
> 0

when p1 ≤ T , the buyer will set p1 = T to receive the price protection and maximize

her profit at the same time.

After p1 is determined, the buyer will adjust p2 to maximize her total profit as
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follows

p2 =
1

2(1− β̄)

[

w + c1 + c2 + h1 +
1

2
h2 +

a2
b2
− 1

2
β̄(
a1
b1

+ s+ c1 +
1

2
h1 +

a2
b2
)

]

.

To induce the buyer to set p2 = p∗2, we obtain (2.12). ¥

From the above analysis, we can see that price protection itself can not achieve

channel coordination in the models when the buyer’s pricing decision is considered

explicitly. The supplier has to specify additional terms in the contract to align

the buyer’s incentive with the system-wide optimal solution. Thus, considering the

buyer’s pricing decision is important for the design of implementable contracts.

Lau and Lau (2002) point out that when a price-demand relationship is needed

in inventory/pricing models, very often a convenient (typically linear) function is

arbitrarily chosen. The common-wisdom implication is that any downward-sloping

demand curve will lead to similar conclusions. They show that while the common-

wisdom implication is valid for a single-echelon system, assuming different demand-

curve functions can lead to very different results in a multi-echelon system. In

some situations, a very small change in the demand-curve appearance leads to very

large changes in the models optimal solutions. They put forward four representative

demand-curves: linear, exponential, iso-elastic, and algebraic.

Note that for ease of analysis we assume a linear demand-curve throughout the

above analysis. To thoroughly explore the impact of the buyer’s pricing decision, we

further design a pair of recommended retail prices and price protections under three

other demand curves: iso-elastic, exponential, and algebraic. The optimal retail prices

and contracts are summarized in Table I.

From Table I, we see that the price protection factor is always in the format

(w−s)/L where L depends on the demand curves. β̄ always increases as w1 increases.

That is, to coordinate the channel, the higher the wholesale price charged by the
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supplier, the more protection he must provide to the buyer. Additionally, different

demand-curves result in distinct retail prices. Obviously, the retial price p1 under the

iso-elastic demand-curve is always lower than the one under the algebraic demand-

curve. Therefore, the supplier needs to consider the impact of market demand and

the buyer’s pricing decision explicitly to precisely decide the order quantity and the

recommended retail price, which in turn determines his own profit.

Table I Price Protection Contracts with Four Demand Curves

Linear d = a− bp Iso-elastic d = Kp−α

p1 = 1
2 (

a1

b1
+ (s+ c1) +

1
2h1) p1 = α1

α1−1 (s+ c1 +
1
2h1)

p2 = 1
2 (

a2

b2
+ (s+ c1 + c2) + h1 +

1
2h2) p2 = α2

α2−2 (s+ c1 + c2 + h1 +
1
2h2)

T = 1
2 (

a1

b1
+ (s+ c1) +

1
2h1) T = α1

α1−1 (s+ c1 +
1
2h1)

β̄ = w−s
a1
2b1

−
s

2−
c1
2 −c2−

3
4h1−

1
2h2

β̄ = w−s
α1
α1−1 (s+c1+

1
2h1)−(s+c1+h1+c2+

1
2h2)

Exponential d = γe−αp Algebraic d = (Kp+ b)−α

p1 = 1
α1

+ s+ c1 +
1
2h1 p1 = α1

α1−1 (s+ c1 +
1
2h1 +

b1
α1K1

)

p2 = 1
α2

+ s+ c1 + h1 + c2 +
1
2h2 p2 = α2

α2−1 (s+ c1 + c2 + h1 +
1
2h2 +

b2
α2K2

)

T = 1
α1

+ s+ c1 +
1
2h1 T = α1

α1−1 (s+ c1 +
1
2h1 +

b1
α1K1

)

β̄ = w−s
1
α1

−
1
2h1−c2−

1
2h2

β̄ = w−s
α1
α1−1 (s+c1+

1
2h1+

b1
α1K1

)−(s+c1+h1+c2+
1
2h2)

Note that the implementation of price protection is based on an implicit assump-

tion that the retail price will drop. That is, p1 > p2. To verify this condition under

the different demand-curves, we compare the value of p1 and p2 in Table I which re-

sults in some interesting insights. If the demand-curve is linear, the condition p1 > p2

depends on the ratio of ai and bi, not on the individual value of a or b. That is, it
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depends on the maximal possible retail price, not the maximal possible demand or the

price-sensitivity of the demand. When demand curves are iso-elastic or exponential,

it depends on the shape of the curve (α), not the scale of the curve K or γ. When

the demand curve is algebraic, all of the parameters affect condition satisfaction.

To demonstrate the above insights more clearly, we assume h1 = h2 = c1 = c2 = 0

and summarize the results in Table II.

Table II Price Protection with Neglectable Holding Cost and Handling Cost

Linear Iso-elastic Exponential Algebraic
d = a− bp d = Kp−α d = γe−αp d = (Kp+ b)−α

Optimal Price p∗1 = 1
2 (

a1

b1
+ s) p∗1 = α1

α1−1s p∗1 = 1
α1

+ s p∗1 = α1

α1−1 (s+
b1

α1K1
)

p∗2 = 1
2 (

a2

b2
+ s) p∗2 = α2

α2−1s p∗2 = 1
α2

+ s p∗1 = α2

α2−1 (s+
b2

α2K2
)

p∗1 > p∗2
a1

b1
> a2

b2
α1 < α2 α1 < α2 (α1 − α2)s+ (α1 − 1) b2

K2

−(α2 − 1) b1
K1

< 0

Rec. Price T = 1
2 (

a1

b1
+ s) T = α1

α1−1s T = 1
α1

+ s T = α1

α1−1 (s+
b1

α1K1
)

Protection β̄ = w−s
1
2 (
a1
b1

−s)
β̄ = w−s

1
α1−1−s

β̄ = w−s
1
α1

β̄ = w−s
1

α1−1 s+
b1

(α1−1)K1

Since we assume that demand is price-sensitive deterministic, in the next sec-

tion we study the stochastic price-sensitive demand case in order to provide better

representation of real life applications.

II.1.2. Stochastic Demand Case

Consider a two-period model with stochastic price-sensitive demand. Again, we as-

sume that products have long lead times, so the buyer has a single buying opportunity

at the beginning of the product life cycle. The buyer chooses an order quantity and a

retail price at the beginning of period 1, and the units are delivered ready for sale in
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period 1 at full price. Unmet demand is lost. At the beginning of period 2, another

new product is introduced to the market. Assume the expected demand Di in period

i is Di = ai − bipi where pi is the retail price in period i, i = 1, 2. Along with the

idea in Table II, we assume

a2 < a1 and
a2
b2
<
a1
b1
.

That is, some customers may choose to buy the new products, and other customers

may be willing to buy the old products at a reduced price in period 2. Thus, the

maximal possible demand is lower and the demand approaches zero at a smaller price

in period 2. We introduce additional notation as follows:

Di(pi): expected demand in period i with a given retail price pi,

ξi: random variable denoting the demand in period i,

φi(·): density distribution function of demand in period i,

Φi(·): cumulative distribution function of demand in period i,

εi: positive random variable with mean equal to 1,

ψi(·): density distribution function of εi,

Ψi(·): cumulative distribution function of εi,

θ: discount factor for costs in period 2.

The demand faced by the buyer is uncertain and price-sensitive. The actual

demand is the product of Di(pi) and the positive random variable εi. Thus, the

density function of demand in period i, can be expressed as:

φi(ξi, pi) =
1

Di(pi)
ψi(

ξi
Di(pi)

), ξi ≥ 0, i = 1, 2.

Channel coordination can be achieved if the supplier replicates the performance

of the fully integrated channel. To do so, the supplier has to provide an incentive to
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induce the buyer to choose the ”right” order quantity and retail price that is optimal

for an integrated channel. Thus, we begin our analysis by considering an integrated

channel. To solve the decision problem for the integrated channel, we work backward

starting with period 2. At the end of period 1, if the leftover stock is x, the channel’s

expected profit in the second period, denoted by πJ2(x, p2), is given by

πJ2(x, p2) = −c2x+

∫ x

0

[pξ2 − h2(x− ξ2)]dφ2(ξ2) +

∫

∞

x

[p2x− g2(ξ2 − x)]dφ2(ξ2)

= −g2D2(p2) + (p2 + g2 − c2)x−
∫ x

0

[(p2 + g2 + h2)(x− ξ2)]dφ2(ξ2)

= −g2D2(p2) + (p2 + g2 − c2)x−
∫ x

D2(p2)

0

[(p2 + g2 + h2)(x

−D2(p2)ξ2)]ψ2(ξ2)dξ2. (2.13)

Let Γ2(x) =
∫ x

0
ξ2ψ2(ξ2)dξ2. Substituting Γ2(·) into (2.13) leads to

πJ2(x, p2) = −g2D2(p2)− (p2 + g2 + h2)

[

xΨ2(
x

D2(p2)
)−D2(p2)Γ2(

x

D2(p2)
)

]

+ (p2 + g2 − c2)x.

The first-derivative and second-derivative of πJ2(x, p2) with respect to p2 are

given by

∂πJ2(x, p2)

∂p2
= g2b2 + x− xΨ2(

x

a2 − b2p2
) + [a2 − b2p2 − b2(p2 + g2

+h2)]Γ2(
x

a2 − b2p2
),

∂2πJ2(x, p2)

∂p22
= −2b2Γ2(

x

a2 − b2p2
)− (p2 + g2 + h2)b

2
2

x2

(a2 − b2p2)3
ψ2(

x

a2 − b2p2
) < 0.

Thus, πJ2(x, p2) is a strictly concave function of p2. The optimal value of p2 is

unique. The optimal retail price p∗2 satisfies

g2b2 + x− xΨ2(
x

a2 − b2p2
) + [a2 − b2(2p2 + g2 + h2)]Γ2(

x

a2 − b2p2
) = 0.
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To maintain analysis tractability and provide insightful understanding, we as-

sume ψ2(x) = 0.5, ∀x ∈ [0, 2] for the rest of this section. Then, we have

πJ2(x, p2) =















(p2 − c2)x+ (x− a2 + b2p2)g2 − (p2 + g2 + h2)
x2

4D2(p2)
, a2 − b2p2 ≥ x

2
,

(p2 + h2(a2 − b2p2)− (h2 + c2)x, a2 − b2p2 ≤ x
2
.

Assume a2 is large enough that x < a2 is always true. That is, no matter how

many products are left at the end of the first period, there always exists a proper

price so that all products can be expected to be sold (or the expected demand is

greater than x). Then, the optimal price is

p∗2 =
1

b2



a2 −
√

b2(g2 + h2 +
a2
b2
)x2

4(x+ b2g2)



 . (2.14)

In the second period, a new product comes into the market. We further assume

g2 = 0, that is, the loss of goodwill is small and negligible in period 2 since the

customers have the option to buy the new product. Substituting (2.14) into πJ2(x, p2),

the maximal profit in period 2 for a given leftover stock x is given by

π∗J2(x) =

(

a2
b2
− c2

)

x− x2

4b2
. (2.15)

From (2.15), we note that the maximal expected profit only depends on a2, b2, c2,

not on h2. That is, the maximal expected profit in period 2 depends on the mar-

ket demand and the handling cost, but not the inventory cost. We may check the

concavity of π∗J2(x) with respect to x as follows

∂π∗J2(x)

∂x
=

(

a2
b2
− c2

)

− x

2b2
,
∂2π∗J2(x)

∂x2
= − 1

2b2
< 0.

Thus, π∗J2(x) is a strictly concave function of x. Moving back to the first period,

the expected profit of the integrated channel, denoted by πJ(Q, p1), is given by
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πJ(Q, p1) = −(s+ c1)Q+

∫ Q

0

[p1ξ1 − h1(Q− ξ1) + θπJ2(Q− ξ1)]dφ1(ξ1)

+

∫

∞

Q

[p1 − g1(ξ1 −Q) + θπJ2(0)]dφ1(ξ1)

= −(s+ c1)Q+

∫
Q

D1(p1)

0

[−D
2
1(p1)

4b2
ξ21 + (p1 + h1 − θk̃ +

Q

2b2
)D1(p1)ξ1

+ (θk̃ − h1)Q−
Q2

4b2
]ψ1(ξ1)dξ1 +

∫

∞

Q

D1(p1)

[(p1 + g1)Q

−g1D1(p1)ξ1]ψ1(ξ1)dξ1

where k̃ =
a2
b2
− c2.

The first-derivative and second-derivative of πJ(Q, p1) with respect to Q and p1

are given by

∂πJ(Q, p1)

∂Q
= −(s+ ĉ1) +

∫
Q

D1(p1)

0

[

D1(p1)ξ1
2b2

+ (θk̃ − h1)−
Q

2b2

]

ψ1(ξ1)dξ1

+

∫

∞

Q

D1(p1)

(p1 + g1)ψ1(ξ1)dξ1, (2.16)

∂2πJ(Q, p1)

∂Q2
=

∫
Q

D1(p1)

0

(− 1

2b2
)ψ1(ξ1)dξ1 −

p1 + g1 + h1 − θk̃

D1(p1)
ψ1(

Q

D1(p1)
) < 0,

∂πJ(Q, p1)

∂p1
=

∫
Q

D1(p1)

0

[
2b1D1(p1)

4b2
ξ21 +D1(p1)ξ1 − (p1 + h1 − θk̃

+
Q

2b2
)b1ξ1]ψ1(ξ1)dξ1 +

∫

∞

Q

D1(p1)

[Q+ g1b1ξ1]ψ1(ξ1)dξ1,

∂2πJ(Q, p1)

∂p21
=

∫
Q

D1(p1)

0

[

− b21
2b2

ξ21 − 2b1ξ1

]

ψ1(ξ1)dξ1 −
b21Q

2(p1 + g1 + h1 − θk̃)

D3
1(p1)

ψ1(
Q

D1(p1)
) < 0.

For a given p1, the optimal order quantity Q is unique. Also, for a given Q, the

optimal retail price p1 is unique.
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When the buyer is independent, all of the above formulations are true except for

replacing s with w. It is easy to see from (2.16) that for a given p1, the independent

buyer will order less than the optimal quantity in an integrated channel.

When the demand is stochastic, we can not use β̄(p1− p2) as a protection mech-

anism for each unsold unit at the end of period 1 to induce the buyer to order more

because the pricing decision in period 2 (p2) depends on the realized demand in pe-

riod 1 and is unknown at the beginning of period 1 when the contract is signed. To

explicitly specify the protection level, the supplier can provide the protection as r

dollars per unit for products unsold at the end of period 1. Next, we examine how

the supplier should set the protection level to coordinate the channel.

PROPOSITION 2 Protection credit r will always induce the independent buyer to

set a higher retail price for a given Q.

Proof: The independent buyer’s expected profit in period 1, denoted by π̂B(Q, p1),

and the first-order conditions are given by

π̂B(Q, p1) = πJ(Q, p1) +

∫
Q

D1(p1)

0

θr(Q−D1(p1)ξ1)ψ1(ξ1)dξ1 − (w + s)Q,

∂π̂B(Q, p1)

∂Q
=

∂πJ(Q, p1)

∂Q
+ θr

Q

2D1(p1)
− w + s,

∂π̂B(Q, p1)

∂p1
=

∂πJ(Q, p1)

∂p1
+

1

4
θrb1

Q2

D2
1(p1)

.

Since

∂2πJ(Q, p1)

∂p21
≤ 0,

1

4
θrb1

Q2

D2
1(p1)

> 0,

we have p̄1 ≥ p∗1 where

∂π̂B(Q, p1)

∂p1
|p̄1 = 0,

∂πJ(Q, p1)

∂p1
|p∗1 = 0.

¥
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Proposition 2 shows that since the protection credit r reduces the buyer’s cost

and risk of uncertain demand, the buyer will likely take more risk by increasing her

retail price such that the expected amount of unsold units at the end of period 1 is

larger than in the integrated channel. Therefore, price protection alone can not align

the independent buyer’s pricing decision with the channel optimum. An additional

term needs to be specified in the contract in order to coordinate the channel. A

common way of providing an incentive to the buyer is to offer a quantity discount

(Monahan 1988). The following theorem provides the pairing of a quantity discount

and a protection credit to coordinate the channel.

THEOREM 3 Let

K(Q, p1) = −
θrQ2

4D1(p1)
+ (w − s)Q+ k (2.17)

where k is a constant and K is the discount provided by the supplier. The pair of

(r,K(Q, p1)) coordinates the channel.

Proof: The buyer’s expected profit in period 1, denoted by π̃B(Q, p1), and the first-

order conditions are given by

π̃B(Q, p1) = π̂B(Q, p1) +K(Q, p1),

∂π̃B(Q, p1)

∂Q
=

∂πJ(Q, p1)

∂Q
+ θr

Q

2D1(p1)
− w + s+

∂K(Q, p1)

∂Q
,

∂π̃B(Q, p1)

∂p1
=

∂πJ(Q, p1)

∂p1
+

1

4
θrb1

Q2

D2
1(p1)

+
∂K(Q, p1)

∂p1
.

To align the buyer’s incentive with the integrated channel, the supplier is aiming

at

∂πJ(Q, p1)

∂Q
=
∂πJ(Q, p1)

∂p1
= 0.
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Thus, we have














θr Q

2D1(p1)
− w + s+ ∂K(Q,p1)

∂Q
= 0,

1
4
θrb1

Q2

D2
1(p1)

+ ∂K(Q,p1)
∂p1

= 0,

and (2.17) is obtained. A proper value of k needs to be determined to satisfy the

buyer’s reservation profit level. ¥

Besides pairing a quantity discount and a protection credit to coordinate the

channel, we can also use the concept in the deterministic price-sensitive demand case

to achieve another coordination policy below.

THEOREM 4 Suppose the optimal solution in the integrated channel is (Q∗, p∗1).

Then, under the contract of (T, r) where

T = p∗1, and

r =
w − s

Ψ1(
Q∗

D1(p∗)
)
, (2.18)

channel coordination is achieved.

Proof: First, we note that in either the centralized case or the decentralized case,

the buyer’s optimal pricing decision in period 2 remains the same for a given left over

stock. To simplify our proof, we assume that the price in period 2 is fixed. For the

unfixed price case, the proof is similar.

For the independent buyer with price protection and for the integrated channel,

respectively, the first-order conditions are as follows

∂π̂B(Q, p1)

∂Q
= p1 + g1 − w − ĉ1 − [p1 + g1 + h1 − θ(p2 + g2 + ĉ2]

∫
Q

D1(p1)

0

ψ1(ξ1)dξ1

− θ(p2 + g2 + h2)

∫
Q

D1(p1)

0

Ψ2(Q−D1(p1)ξ1)ψ1(ξ1)dξ1

+ θrΨ1(
Q

D1(p1)
) = 0, (2.19)
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∂πJ(Q, p1)

∂Q
= p1 + g1 − s− ĉ1 − [p1 + g1 + h1 − θ(p2 + g2 + ĉ2]

∫
Q

D1(p1)

0

ψ1(ξ1)dξ1

− θ(p2 + g2 + h2)

∫
Q

D1(p1)

0

Ψ2(Q−D1(p1)ξ1)ψ1(ξ1)dξ1 = 0. (2.20)

Setting p1 = p∗ and comparing (2.19) with (2.20), we obtain (2.18). ¥

Theorem 4 shows that price protection and a recommended retail price together

can also achieve channel coordination. From the analysis in this section, it is obvious

that price protection alone fails to coordinate the channel due to the impact of the

buyer’s pricing decision. Therefore, it is important to take the buyer’s pricing decision

into account when developing implementable supply contracts.

II.2. Impact of Sales Efforts

Besides pricing decisions, buyers can also influence demand by merchandising, doing

point-of-sale or other advertising, providing attractive shelf space, and guiding con-

sumer purchases with sales personnel. In this section, we employ a two-period model

in which a buyer makes order quantity and sales effort decisions and then observes

demand. We will focus on a price protection contract in which the returns policy is

a special case under this setting. Specifically, let demand in period 1 be given as eξ1,

where e is the level of effort. Since a new product is introduced into the market in

period 2, we assume that the buyer loses interest in expending sales effort on the old

product in period 2. The cost to the buyer of exerting e units of effort is V (e). We

make the following assumption about cost function V (e).

ASSUMPTION 3 V (·) is convex, increasing, and V (0) = 0.

Thus, the marginal cost of effort is increasing. This modeling approach is con-

sistent with the implications of the sales response models having multiplicative error
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terms that are used in empirical studies of the relationship between advertising and

sales (Taylor 2002). In this section, we also assume that the retail prices are fixed in

order to concentrate on investigation of the impact of the sales effort.

In an integrated channel, the total expected profit of the channel is given by

πJ(Q, e) = −(s+ c1)Q+

∫
Q

e

0

[p1eξ1 − h1(Q− eξ1) + θπJ2(Q− eξ1)]dΨ1(ξ1)

+

∫

∞

Q

e

[p1Q− g1(eξ1 −Q) + θπJ2(0)]dΨ1(ξ1)− V (e).

Let Q0 = Q/e, then we have

πJ(Q0, e) = −(s+ c1)Q0e+

∫ Q0

0

[p1eξ1 − h1e(Q0 − ξ1) + θπJ2[e(Q0

− ξ1)]dΨ1(ξ1) +

∫

∞

Q0

[p1eQ0 + g1e(ξ1 −Q0)]dΨ1(ξ1)− V (e),

πJ2[e(Q0 − ξ1)] = −g2µ2 + (p2 + g2 − c2)e(Q0 − ξ1)−
∫ e(Q0−ξ1)

0

[(p2 + g2

+h2)[e(Q0 − ξ1)− ξ2]]dΨ2(ξ2).

The first-order and second-order conditions of πJ2(x) are given by

∂πJ2(x)

∂x
= p2 + g2 − c2 − (p2 + g2 + h2)Ψ2(x),

∂π2J2(x)

∂x2
= −(p2 + g2 + h2)f2(x) < 0.

Thus, πJ2(x) is a concave function of x. Next, we examine the impact of price

protection on the buyer’s sales effort decision.

PROPOSITION 3 In a decentralized channel, the optimal sales effort level with

price protection is higher than without price protection for a given Q0.

Proof: Let π̌B(Q0, e) and π̄B(Q0, e) denote the buyer’s total expected profit with and

without protection, respectively. Checking the first-derivative and second-derivative
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of π̄B(Q0, e) with respect to e, we have

∂π̄B(Q0, e)

∂e
= −(w + c1)Q0 +

∫

∞

Q0

(p1Q0 + g1(ξ1 −Q0))dΨ1(ξ1) +

∫ Q0

0

[p1ξ1

− h1(Q0 − ξ1) + θ[p2 + g2 − c2 − (p2 + g2 + h2)Ψ2(e(Q0

−ξ1)]]dΨ1(ξ1)− V ′(e), (2.21)

∂π̄2B(Q0, e)

∂e2
=

∫ Q0

0

−θ(p2 + g2 + h2)f2[e(Q0 − ξ1)](Q0 − ξ1)dΨ1(ξ1)

−V ′′(e) < 0, (2.22)

where V ′(e) and V ′′(e) are the first-derivative and second-derivative of V (e) with

respect to e.

With protection, the buyer’s total expected profit is

π̌B(Q0, e) = π̄B(Q0, e) + θ[

∫ Q0

0

re(Q0 − ξ1)dΨ1(ξ1)]. (2.23)

The first-derivative of π̌B(Q0, e) with respect to e is given by

∂π̌B(Q0, e)

∂e
=
∂π̄B(Q0, e)

∂e
+ θ

∫ Q0

0

rQ0dΨ1(ξ1). (2.24)

For a given Q0, the optimal sales effort level is unique from (2.22). Also π̄B(Q0, e)

and π̌B(Q0, e) are both concave functions over e. Let e1∗ and e2∗ denote the buyer’s

optimal sales effort level with and without protection. Comparing (2.21) with (2.24),

it can be easily verified that e1∗ > e2∗. ¥

Proposition 3 shows a counter-intuitive result. With price protection, the buyer

faces a lower risk of demand uncertainty; thus, she should be able to save some sales

effort and some cost as a result. However, Proposition 3 shows that, in fact, the buyer

expends more sales effort when price protection is available. The explanation is that

price protection encourages the buyer to order a larger quantity by sharing the risk

of demand uncertainty. Accordingly, the buyer will expend more sales effort to sell
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the larger quantity.

Next, we examine how the supplier may set the protection level to coordinate

the channel.

PROPOSITION 4 Price protection itself can NOT coordinate the channel.

Proof: To align the independent buyer’s order quantity with the integrated channel,

the following equation has to be satisfied:

∂π̌B(Q0, e)

∂Q0

=
∂πJ(Q0, e)

∂Q0

.

The first-derivative and second-derivative of the buyer’s total expected profit function

over Q0 in the integrated channel are given by

∂πJ(Q0, e)

∂Q0

= [p1 − g1 − s− c1]e− (p1 − g1 + h1)eΨ1(Q0) + e

∫ Q0

0

θ[p2 + g2 − c2

− (p2 + g2 + h2)Ψ2(e(Q0 − ξ1))]dΨ1(ξ1),

∂π2J(Q0, e)

∂Q2
0

= −[p1 + g1 + h1 − θ(p2 + g2 − c2)]ef1(Q0)− e2
∫ Q0

0

(p2 + g2

+h2)f2(e(Q0 − ξ1)dΨ1(ξ1) < 0.

With some algebra, we have θ
∫ Q0

0
redΨ1(ξ1) = (w − s)e. Thus, the protection

level has to satisfy

r =
w − s

θΨ1(Q0)
.

To align the buyer’s sales effort level with the integrated channel, the following

equation has to be satisfied:

∂π̌B(Q0, e)

∂e
=
∂πJ(Q0, e)

∂e
.

With some algebra, the following condition needs to be satisfied:

θ

∫ Q0

0

r(Q0 − ξ1)dΨ1(ξ1) = (w − s)Q0. (2.25)
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However,

θ

∫ Q0

0

r(Q0 − ξ1)dΨ1(ξ1) =
(w − s)

∫ Q0

0
(Q0 − ξ1)dΨ1(ξ1)

Ψ1(Q0)
< (w − s)Q0,

which contradicts (2.25). Thus, r alone is unable to coordinate the channel. The

sales effort level under r is lower than in the integrated channel. ¥

To coordinate the channel, we present the following contract terms.

THEOREM 5 To coordinate the channel, the supplier can provide price protection

together with cost sharing of the sales effort SE as follows:

r =
w − s

θΨ1(Q0)
, (2.26)

SE =
(w − s)Γ1(Q0)

Ψ1(Q0)
. (2.27)

Proof: Replacing s with w in πJ(Q0, e), the total expected profit π̄1(Q0, e) for the

independent buyer is achieved. With protection and sales effort sharing, the buyer’s

expected profit is π̄1(Q0, e) + Υ where Υ = θ[
∫ Q0

0
re(Q0 − ξ1)dΨ1(ξ1)] + SEe.

Checking the first-order conditions, after simplification, we have

∂Υ(Q0, e)

∂Q0

= θ

∫ Q0

0

redΨ1(ξ1) = (w − s)e, (2.28)

∂Υ(Q0, e)

∂e
= θ

∫ Q0

0

r(Q0 − ξ1)dΨ1(ξ1) + SE = (w − s)Q0. (2.29)

Solving (2.28-2.29) for r and SE, we obtain (2.26) and (2.27). ¥

In this section, we allow the buyer to make sales effort decisions to influence

demand. The impact of the buyer’s decision on the price protection contract design

is examined explicitly. When the contract is signed between a supplier and buyer, they

usually do not have complete information about each other. For example, the supplier

may not be able to observe the buyer’s handling cost c1 at the beginning of period

1. In the next section, we design contracts for the supplier that take information
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asymmetry into account.

II.3. Price Protection with Information Asymmetry

To provide an optimal design of price protection that considers information asymme-

try, we start with the case in which the demand is deterministic. The deterministic

case provides us with an example of the difficulties of designing incentive-compatible

contracts under conditions of information asymmetry. It also offers guidance on how

to design a proper contract in the stochastic demand case.

II.3.1. Deterministic Demand Case

Consider a two-period model with deterministic price-sensitive demand which is sim-

ilar to the model in Section II.1.1. The market demand in the final market is price-

sensitive. In this section, we assume the demand-curve is linear. Further results can

be easily achieved using other types of demand-curves based on the analysis in this

section. To maximize her profits, it is sufficient for the buyer to select either Q or p

as the other is then immediately determined.

In this section, for simplicity, we assume that the buyer’s handling costs in period

1 and 2 are the same and denote them by c. In general, the supplier does not know the

buyer’s marginal cost c exactly; we assume that the supplier holds a prior distribution

FS(c) with a continuous density function fS(c), defined on [c, c̄], where 0 ≤ c ≤ c̄ <∞.

Since the supplier has incomplete information, he may offer a menu of contracts

to the buyer. The sequence of events is as follows. The supplier offers a menu of

contracts [w(Q), r(Q)] where w(Q) is the wholesale price for a given Q and r(Q) is

the protection credit provided by the supplier to the buyer for each unit unsold by the

end of period 1. The buyer chooses an order quantity Q based on her internal cost
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c, pays the supplier w(Q)Q and receives r(Q) as protection. For any revealed choice

of Q, the supplier can infer the buyer’s true cost c, so, by the revelation principle

(Fudenberg and Tirole 1991), we can reformulate this equivalently as a menu of

contracts [w(c), r(c)]. A buyer announcing ĉ then chooses a contract [w(ĉ), r(ĉ)].

The supplier’s objective to is to maximize his expected profit as follows:

max
w(c),r(c)

∫ c̄

c

πS(c,Q(c))fS(c)dc (2.30)

s.t. Q(c) = argmax
Q

πB(c,Q) ∀c ≤ c ≤ c̄ (2.31)

The supplier’s expected net profits in (2.30) depend on the quantity Q ordered

by the buyer. Condition (2.31) is the buyer’s incentive-compatibility constraint. Pre-

sented with any menu of contracts, a buyer with cost c will choose Q to maximize

her profits.

Consider a menu of contracts [w(c), r(c)]. If a buyer with a marginal cost c

chooses ĉ, then the buyer’s profit is given by

πB(ĉ, c, p1, p2) = −(w(ĉ) + c)(a1 − b1p1 + a2 − b2p2) + p1(a1 − b1p1) + p2(a2 − b2p2)

+ r(ĉ)(a2 − b2p2)

= −(w(ĉ) + c)(a1 + a2) + b1(w(ĉ) + c)p1 + b2(w(ĉ) + c)p2 + a1p1

− b1p
2
1 + a2p2 − b2p

2
2 + a2r2(ĉ)− b2r(ĉ)p2. (2.32)

The buyer’s optimal price decision satisfies the first-order conditions

∂πB(ĉ, c, p1, p2)

∂p1
= b1(w(ĉ) + c) + a1 − 2b1p1 = 0,

∂πB(ĉ, c, p1, p2)

∂p2
= b2(w(ĉ) + c) + a2 − 2b2p2 − b2r(ĉ) = 0.

Thus, her unique optimal prices and order quantities, which can be easily verified,
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are

p∗1 =
1

2
(
a1
b1

+ w(ĉ) + c),

p∗2 =
1

2
(
a2
b2

+ w(ĉ) + c− r(ĉ)),

q∗1 =
1

2
[a1 − b1(w(ĉ) + c)],

q∗2 =
1

2
[a2 − b2(w(ĉ) + c− r(ĉ))].

Therefore, if a buyer with cost c chooses [w(ĉ), r(ĉ)], then her optimal profit is

given by

π∗B(c, ĉ) =
b1
4

[

a1
b1
− (w(ĉ) + c)

]2

+
b2
4

[

a2
b2
− (w(ĉ) + c) + r(ĉ)

]2

.

The revelation principle states that there is an optimal contract under which the

buyer will optimally announce ĉ = c. Requiring that the first-order condition solved

at ĉ = c gives the buyer’s incentive-compatibility constraint:

∂π∗B(c, ĉ)

∂ĉ
|ĉ=c =

b1
2

[

a1
b1
− (w(c) + c)

]

w′(c) +
b2
2
[
a2
b2
− (w(c) + c)

+r(c)][r′(c)− w′(c)] = 0.

The above incentive-compatibility constraint derivation is based on the work of

Laffont and Tirole (1993). Although it provides a useful method for describing the

buyer’s incentive-compatibility, the resulting constraints are often complicated and

analytic results are difficult to achieve. To gain some further insight into this problem,

we study a two-type case.

Assume that the supplier knows that c belongs to the two-point support c, c̄ with

c̄ > c. Incentive-compatibility says that the contract designed for type c (respectively

type c̄) is the one preferred by the type c buyer (resp. type c̄) in the menu. The

supplier has a prior distribution on the values of c characterized by v = P (c = c) and
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designs the contract to maximize his expected profit.

Let w1 = w,w2 = w−r, w̄1 = w̄, w̄2 = w̄−r; the incentive-compatibility amounts

to

b1
4

[

a1
b1
− w1 − c

]2

+
b2
4

[

a2
b2
− w2 − c

]2

≥ b1
4

[

a1
b1
− w̄ − c

]2

+
b2
4

[

a2
b2
− w̄2 − c

]2

(2.33)

b1
4

[

a1
b1
− w̄ − c̄

]2

+
b2
4

[

a2
b2
− w̄2 − c̄

]2

≥ b1
4

[

a1
b1
− w1 − c̄

]2

+
b2
4

[

a2
b2
− w2 − c̄

]2

(2.34)

Add up (2.33), (2.34) and after simplification, we have

b1(w̄1 − w1) + b2(w̄2 − w2) ≥ 0.

The supplier’s expected profit is given by

E[πS] =
1

2
v(w1 − s)(a1 − b1w1 − b1c) +

1

2
v(w2 − s)(a2 − b2w2 − b2c) +

1

2
(1− v)(w̄1

− s)(a1 − b1w̄1 − b1c̄) +
1

2
(1− v)(w̄2 − s)(a2 − b2w̄2 − b2c̄).

The optimal solution without constraints (2.33),(2.34) can be easily obtained as

follows

w1 =
1

2b1
(a1 − b1c+ b1s),

w2 =
1

2b2
(a2 − b2c+ b1s),

w̄1 =
1

2b1
(a1 − b1c̄+ b1s),

w̄2 =
1

2b2
(a2 − b2c̄+ b2s).

It is easy to check that constraint (2.33) is binding. The following theorem

provides the optimal menu of contracts for the supplier.

THEOREM 6 The supplier’s optimal wholesale prices under a buyer’s two-type
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cost structure are

w∗

1 =
(v − λ)a1

2
− (v − λ) b1

2
c+ 1

2
vb1s

vb1 − λ b1
2

,

w∗

2 =
(v − λ)a2

2
− (v − λ) b2

2
c+ 1

2
vb2s

vb1 − λ b2
2

,

w̄∗

1 =
1
2
(1− v + λ)a1 − 1

2
(1− v)b1c̄+

1
2
(1− v)b1s+

λ
2
a1 − λ

2
b1c

(1− v)b1 +
b1
2
λ

,

w̄∗

2 =
1
2
(1− v + λ)a2 − 1

2
(1− v)b2c̄+

1
2
(1− v)b2s+

λ
2
a2 − λ

2
b2c

(1− v)b2 +
b2
2
λ

,

where λ is the solution of

b1
4
A2

1(vb1 −
λb1
2

)−2 +
b2
4
B2

1(vb2 −
λb2
2

)−2 =
b1
4
A2

2((1− v)b1 −
λb1
2

)−2

+
b2
4
B2

2((1− v)b2 −
λb2
2

)−2

and A1 =
a1
2
v − 1

2
vb1c− 1

2
vb1s, A2 =

1
2
(1− v)a1 + (1− v)b1

[

1
2
c̄− c

]

− 1
2
(1− v)b1s,

B1 =
a2
2
v − 1

2
vb2c− 1

2
vb2s, B2 =

1
2
(1− v)a2 + (1− v)b2

[

1
2
c̄− c

]

− 1
2
(1− v)b2s.

Based on Theorem 6, we obtain the following insights.

THEOREM 7 The supplier will provide less price protection (r1) under incomplete

information than under full information (r) for the buyer with cost c ( resp. c̄) and

more protection for the other type buyer with cost c̄ (resp. c). Their relations are as

follows

r1 =
v − λ

v − λ
2

r,

r̄1 =
1− v + λ

1− v + λ
2

r̄.

Proof: Since r = w1 − w2, substituting w1, w2, w̄1, w̄2 leads to the value of r as

follows:

r =
a1
2b1

− a2
2b2

= r̄.
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Similarly, we have

r1 =
(v − λ)( a1

2b1
− a2

2b2
)

v − λ
2

,

r̄1 =
(1− v + λ)( a1

2b1
− a2

2b2
)

1− v + λ
2

.

The relations of protection follow the comparison. ¥

When the supplier has incomplete information about the buyer’s cost structure,

it is intuitively expected that the supplier needs to provide higher protection to the

buyer to align her incentives with the channel optimum. Theorem 7 shows that this

is not always true. In fact, the level of protection depends on the buyer’s cost type.

From this deterministic demand case, we demonstrate that one of the difficul-

ties in designing incentive compatible contracts under information asymmetry is the

complicated incentive-compatibility constraints which result in difficulty in obtaining

analytical results. The complexity of the constraints usually is due to the complex

optimal response of the buyer facing a menu of contracts. One way to design a proper

contract is to fix the buyer’s decision parameter(s) in the contract, so that her re-

sponse is easily trackable. In the next section, we will design an incentive-compatible

contract under stochastic demand by incorporating this idea.

II.3.2. Stochastic Demand Case

In this section, we study the stochastic price-sensitive demand case. We assume that

the prices in two periods are exogenous in order to concentrate on the impact of

information asymmetry. The buyer has a reservation profit level πmin
B if she does not

purchase. In general, the supplier does not know c; again we assume the supplier

holds a prior distribution FS(c) with a continuous density function fS(c), defined on

[c, c̄], where 0 ≤ c ≤ c̄ < ∞. The supplier offers a menu of contracts (Q(c), r(c))
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and charges a constant wholesale price w. Note that instead of designing a contract

providing the wholesale price, we provide the order quantity in the contract so that

the buyer’s decision parameter is explicitly defined in the contract and her response

is easier to track.

In the integrated channel, in which there is a single decision maker with full

information of the whole system, the total expected profit in period 1 is given by

πJ(Q(c), c) = −(s+ c)Q+

∫ Q

0

[p1ξ1 − h1(Q− ξ1 + θπJ2(Q− ξ1)]dΦ1(ξ1)

+

∫

∞

Q

[p1 − g1(ξ1 −Q) + θπJ2(0)]dΦ1(ξ1)

= [p1 + g1 − s− c− [p1 + g1 + h1 − θ(p2 + g2 − c2)]Φ1(Q)

− θ(p2 + g2 + h2)Φ3(Q)]Q− g1µ1 − θg2µ2 + [p1 + g1 + h1

− θ(p2 + g2 − c2)]Γ1(Q) + θ(p2 + g2 + h2)Γ3(Q),

where Γi(x) =
∫ x

0
ξidΦi(ξi), and Φ3(·) is the cumulative distribution function of ξ3 =

ξ1 + ξ2, i.e., the convolution of Φ1(·) and Φ2(·). Define Q∗(c) as the optimal solution

of the integrated channel, which can be easily achieved based on the work of Lee et al.

(2000). In the decentralized channel, when there is no price protection, the buyer’s

expected profit is given by

πB(Q(c), c) = [p1 + g1 − w − c− [p1 + g1 + h1 − θ(p2 + g2 − c2)]Φ1(Q)

− θ(p2 + g2 + h2)Φ3(Q)]Q− g1µ1 − θg2µ2 + [p1 + g1 + h1

− θ(p2 + g2 − c2)]Γ1(Q) + θ(p2 + g2 + h2)Γ3(Q).

Now define πB(ĉ|c) as the expected profit of a buyer who has a marginal cost c

and chooses to participate by signing the contract (Q(ĉ), r(ĉ)). Her expected profit
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is given by

πB(ĉ|c) = [p1 + g1 − w − c− [p1 + g1 + h1 − θ(p2 + g2 − c2)]Φ1(Q(ĉ))

− θ(p2 + g2 + h2)Φ3(Q(ĉ))]Q(ĉ)− g1µ1 − θg2µ2 + [p1 + g1 + h1

− θ(p2 + g2 − c2)]Γ1(Q(ĉ)) + θ(p2 + g2 + h2)Γ3(Q(ĉ))

+ θr(ĉ)Φ1(Q(ĉ))Q(ĉ)− θr(ĉ)Γ1(Q(ĉ))

= πJ(Q(ĉ), c)− A(ĉ), (2.35)

where A(ĉ) = (w − s)Q(ĉ) + θr(ĉ)Γ1(Q(ĉ))− θr(ĉ)Φ1(Q(ĉ))Q(ĉ).

To simplify our exposition, it is more convenient to consider the equivalent repre-

sentation of the contract menu as (Q(c), A(c)), from which r(c) can be easily derived.

The supplier’s optimization problem can be formulated as

max
Q(c),A(c)

∫ c̄

c

A(c)dFS(c).

We now provide the optimal design of the menu of contracts in the following

theorem.

THEOREM 8 When the supplier has incomplete information of the buyer’s cost c,

the optimal design of the menu of contracts is (Q(c), A(c)) where

Q(c) = Q∗(c+ z(c)), (2.36)

A(c) = πJ(Q(c), c)−
∫ c̄

c

Q(u)du− πmin
B , and (2.37)

z(c) =
FS(c)

fS(c)
.

Proof: With some algebra, it can be shown that

πB(ĉ|c) = πB(ĉ|ĉ) + (ĉ− c)Q(ĉ).
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To reveal the buyer’s true cost, we have πB(ĉ|c) ≤ πB(c|c). Reverse the roles of

c and ĉ to get another inequality and combine the two inequalities to get

(ĉ− c)Q(ĉ) ≤ πB(c|c)− πB(ĉ|ĉ) ≤ (ĉ− c)Q(c). (2.38)

Now apply the standard argument in incentive theory to divide (2.38) by ĉ − c

and then take the limit as ĉ → c to get π′

B(c|c) = −Q(c) where π′

B(c|c) is the first-

derivative of πB(c|c) with respect to c. Integrate π′

B(c|c) with the initial condition

πmin
B to get

πB(c|c) = πmin
B +

∫ c̄

c

Q(u)du.

Now we can rewrite the supplier’s objective function as follows:

max
Q(c),A(c)

∫ c̄

c

[πJ(Q(c), c)− πB(c|c)]dFS(c) =

∫ c̄

c

[πJ(Q(c), c)− z(c)Q(c)]dFS(c)− πmin
B .

The equality follows from integrating by part. Thus, according to the definition

of Q∗(c), the above problem can be easily solved and thus (2.36) and (2.37) are

obtained. ¥

Although the stochastic case is usually more complicated than the deterministic

case, an analytical result is achieved in this section. The reason is that the order

quantity is specified in the contract menu. Thus, the buyer needs only to choose

one pair from the menu and does not need to make any other operational decisions.

Therefore, her optimal response is easy for the supplier to track, and we can focus

on the contract design itself. In the next section, we study a returns policy contract

with a different menu design which offers a wholesale price instead of an order quan-

tity. To our best knowledge, this is the first work to provide contracts specifying a

wholesale price under information asymmetry due to the analysis complexity under

the stochastic demand case.
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II.4. Returns Policy with Information Asymmetry

In this section, we consider a one-period problem. The market demand is stochastic.

The supplier offers a returns policy to the buyer to coordinate the channel. After the

selling season is over, the buyer returns any left-overs to the supplier and receives a

refund r for each unit returned. Pasternack (1985) shows that a returns policy can

achieve channel coordination with full information of the buyer’s cost structure.

In this section, we consider the information asymmetry case and make the same

assumption of information as in Section II.3.2. When the supplier has incomplete

information of the buyer’s cost structure, one way of offering an optimal contract

is by specifying the buyer’s order quantity and payment in the contract as shown

in Section II.3.2. A similar result can be easily achieved with a menu of contracts

(Q(c), r(c)), providing pairings of order quantity and returns credit based on the

approach in Section II.3.2.

In this section, we study another type of contract that pairs wholesale price and

returns credit. As we pointed out in Section II.3.1, contracts involving wholesale

prices under information asymmetry are analytically difficult. Here, we accept this

challenge and seek to design an optimal returns policy with information asymmetry

consideration.

We assume that the supplier initiates the process by offering a wholesale price

w, at which he will sell items to the buyer, and a repurchase price r, at which he will

buy items back from the buyer at the end of the season. In response to the offered

wholesale and repurchase prices, the buyer determines a quantity Q to order from the

supplier. As the supplier has incomplete information of the buyer’s cost c, he offers

a menu of contracts (w(c), r(c)) and leaves it to the buyer to select the pair of her

choice.
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Define πB(ĉ|c) as the expected profit of a buyer who has a marginal cost c and

chooses to participate by signing the contract (w(ĉ), r(ĉ)). The buyer’s expected

profit is given by

πB(ĉ|c) = p

∫ Q(ĉ)

0

xφ(x)dx+ pQ(ĉ)

∫

∞

Q(ĉ)

φ(x)dx− [w(ĉ) + c]Q(ĉ)

+r(ĉ)

∫ Q(ĉ)

0

(Q(ĉ)− x)φ(x)dx.

It is easy to achieve the buyer’s optimal order quantity as

Q(ĉ) = Φ−1(
p− c− w(ĉ)

p− r(ĉ)
).

Since the optimal quantity depends on the demand distribution faced by the

buyer, it is hard to track the buyer’s behavior without specific knowledge of Φ. To gain

some insight into the optimal design, we assume the demand is uniformly distributed

on [0,1] for the rest of this section. Then, we have the optimal order quantity

Q(ĉ) =
p− c− w(ĉ)

p− r(ĉ)
.

The buyer’s maximal expected profit is given by

πB(ĉ|c) =
1

2

(p− c− w(ĉ))2

p− r(ĉ)
.

By the revelation principle, solving the first-order condition at ĉ = c gives the

buyer’s incentive-compatibility constraint:

∂πB(ĉ|c)
∂ĉ

|ĉ=c=
−2w′(c)(p− c− w(c))(p− r(c)) + r′(c)(p− w(c)− c)2

2(p− r(c))2
= 0,

where w′(c) and r′(c) are the first-derivatives of w(c) and r(c) with respect to c. After

simplification, we have

r′(c)(p− w(c)− c) = 2w′(c)(p− r(c)) or w′ =
1

2
Qr′.
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To maximize his expected profit, the supplier faces the following optimization

problem:

max
w,r

∫ c̄

c

[

(w − s)Q− 1

2
rQ2

]

fSdc

s.t. w′ =
1

2
Qr′

where Q =
p− c− w

p− r

The following theorem provides the property of the optimal solutions.

THEOREM 9 The supplier’s optimal design of the menu of contracts is the solu-

tions of the following two equations:

w′ =
1

2

p− c− w

p− r
r′,

r′ =
(2r − p)fS + (w − s− r)(p− c− w)f ′S

p

2(p−r)
fS

. (2.39)

When the cost distribution is uniform, the optimal design can be solved through

w′ =
2r − p

p
, (2.40)

r′ = 3pr − 2r2 − p2. (2.41)

Proof: The proof relies on some fundamental results from optimal control theory as

outlined below (see Kamien and Schwartz (1991), pp. 142–146 for details). Letting

h = (w − s)
p− c− w

p− r
fS −

1

2
r(
p− c− w

p− r
)2,

g1 =
1

2
(
p− c− w

p− r
)u, and

g2 = u = r′,
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the above problem can be expressed as

max

∫ c̄

c

h(c)dc

s.t. w′(c) = g1(c), r
′(c) = g2(c).

The necessary and sufficient conditions for optimality can be stated in terms of

the Hamiltonian

H = h+ λ1g1 + λ2g2.

These conditions include the multiplier equations given by

λ′1 = −
[

p− c− 2w + s

p− r
fS +

r(p− c− w)

(p− r)2
fS −

1

2(p− r)
uλ1

]

, (2.42)

λ′2 = −[ (w − s)(p− c− w)

(p− r)2
fS −

1

2
(
p− c− w

p− r
)2fS − r

(p− c− w)2

(p− r)3
fS

+
1

2

p− c− w

(p− r)2
uλ1], (2.43)

and the optimality condition given by

1

2

p− c− w

p− r
λ1 + λ2 = 0. (2.44)

Differentiating (2.44), we have

[

−1− p−c−w

2(p−r)
u
]

(p− r) + u(p− c− w)

(p− r)2
λ1 +

p− c− w

2(p− r)
λ′1 + λ′2 = 0.

Substituting (2.42),(2.43) into (2.44), we have

λ1 = r(
p− c− w

p− r
)2fS − (w − s)

p− c− w

p− r
fS,

λ2 =
1

2
(w − s)(

p− c− w

p− r
)2fS −

1

2
r(
p− c− w

p− r
)3fS. (2.45)

Differentiating (2.45) and substituting it into (2.43), we obtain (2.39). When the

cost distribution is uniform, we have f ′

S = 0; thus (2.40) and (2.41) are obtained. ¥
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Based on Theorem 9, an optimal design of the menu of contracts can be solved

numerically for any instance. The difficulty in our analysis is due to the wholesale

price design in the menu. The buyer will make her own order decision, and it is hard

to track her behavior with the information asymmetry consideration.

II.5. Summary

In this chapter, we explicitly examine the buyer’s impact while designing price protec-

tion and returns policies contracts. We show that when the buyer is making pricing

or sales effort decisions to influence the market demand, a price protection or re-

turns policy alone is not able to coordinate the channel. Additional terms have to be

introduced into the contracts to achieve channel coordination. We provide optimal

contracts with pricing, sales effort, and information asymmetry considerations. Our

investigations are highlighted below:

• The design of optimal price protection contracts with retail-pricing decisions

under deterministic and stochastic price-sensitive demand.

• The design of optimal price protection contracts with buyer’s sales effort con-

siderations.

• The design of optimal price protection contracts and returns policies with in-

formation asymmetry consideration.

We have shown how to provide optimal supply contracts when the supplier has in-

complete information of the buyer’s cost, but there is also another type of information

asymmetry existing in practice. Note that in Section II.2, since the buyer may im-

prove the market demand with sales effort, the supplier needs to provide cost sharing

of the sales effort together with price protection to coordinate the channel. However,
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the supplier may not be able to observe the buyer’s level of sales effort. Therefore,

the cost sharing mechanism is difficult to implement. This type of information asym-

metry is called Moral Hazard (Laffont and Martimort 2002). This situation is also

sometimes referred to as hidden action. It is shown that Moral Hazard is not an issue

with a risk-neutral agent despite the non-observability of the effort. A system-wide

optimal solution is still implementable (see Laffont and Martimort 2002, pp. 154 for

details). One possible mechanism of coordination under a non-observable sales effort

is to provide a rebate to the buyer and set up a target rebate level simultaneously

(Taylor 2002). A similar target protection level can also be developed together with

price protection to coordinate the channel.
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CHAPTER III

INFORMATION ASYMMETRY

In the context of supply contract design, the common wisdom is that the party holding

the bargaining power realizes the greater profit. Traditionally, the supplier (e.g.,

manufacturer) has been more powerful, and, hence, the existing literature in the area

emphasizes supplier-driven contracts. In fact, suppliers in monopolistic markets are

able to charge above-competitive prices and, thereby, easily establish supplier-driven

channels. However, in some markets, such as the grocery channel, the bargaining

power has shifted to the buyer (e.g., retailer) (Messinger and Narasimhan 1995).

In the United States, large retailers, such as Wal-mart, exert tremendous market

power over their suppliers. Furthermore, with the advent of the Internet, buyers have

access to much better information about alternative potential suppliers. As quoted

in Ertek and Griffin (2002), a recent survey by Forrester indicates that manufacturers

of standard products expect approximately one-third of their sales to occur on-line

within the next two years. Also, 40% of these manufacturers expect the Internet to

squeeze prices. Thus far, however, only a limited number of research papers have

analyzed this shift in the power structure.

This chapter considers the bilateral monopoly setting that has been analyzed

previously from the supplier’s perspective (Corbett and Tang 1999, Corbett et al.

2004, Corbett and Groote 2000, and Ha 2001). However, we focus on the case where

the buyer has the dominant bargaining power and establishes a buyer-driven channel

by offering the terms of the contract. In this context, the bilateral monopoly setting

is, in fact, of practical importance. Using Wal-Mart as an example, it is obvious

that any major cosmetics brand-name targeting budget-conscious, medium-income

female customers, such as Revlon, Maybelline, Cover Girl, etc., would be greatly
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interested in one-on-one negotiations with the price-cutting retailer and vice versa.

The list of examples can be easily extended by including the market shares of the few

retail giants for brand-name household items from personal hygiene products to small

electric appliances. This is due to increased consolidation at the retail level; larger

retailers have greater bargaining influence over their suppliers (Carstensen 2000).

In fact, consolidation in grocery retailing has been a powerful trend in recent

years. At the national level, the top five supermarket chains accounted for 20% of

the U.S. grocery sales in 1993, but 42% of the sales seven years later (Swenson 2000).

Some observers predict the near term emergence of four or five chains with more

than 60% of all U.S. supermarket sales (Foer 2000). As a natural consequence of

these trends, buyer-driven channels have become more prevalent, and the underlying

supply contract problems addressed in this chapter are increasingly important.

The three general types of contracts, i.e., one-part linear schemes, two-part linear

schemes, and two-part nonlinear schemes, that have been studied in the context of

supplier-driven channels are still applicable in the context of buyer-driven channels. In

the ACNielsen’s 2000 Annual Survey of Trade Promotion Practices (ACNielsen 2000),

85% of the retailers reported charging slotting fees whereas 42% of the manufacturers

reported that they were charged increased slotting allowances. As a general practice,

powerful retailers are seeking to provide more general contracts, and slotting fees

are identified as a mechanism through which their influence is exercised (Dimitri

2001). In order to investigate the impact of these practices, this chapter first examines

the impact of the power structure under the one-part linear scheme and then under

the more general schemes involving slotting fees. By deriving the buyer’s optimal

contracts and profits for different contract types and providing a comparative analysis

of our results with the early work on supplier-driven channels in Corbett and Tang

(1999) and Corbett et al. (2004), we aim to quantify the financial value of power in
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contract design.

Despite recent advances in information technology and the trend towards shar-

ing information among supply chain partners, information asymmetry remains a key

feature of real supply chain relationships. Since the entities in a supply chain may

belong to different firms that have conflicting objectives and/or may not have access

to private information, a system-wide optimal solution is not implementable unless

it can fully resolve any incentive alignment problems caused by asymmetric infor-

mation. For this reason, we investigate a total of six scenarios for the buyer-driven

channel: three general contracts, each under full and incomplete information about

the supplier’s cost structure. We develop the counterpart buyer-driven models which

complement the supplier-driven models studied in Corbett and Tang (1999) and Cor-

bett et al. (2004) and derive the buyer’s optimal contracts and profits for the three

different contract types. Obviously, by applying our results to any practical problem

instance, one can easily answer a set of questions for the buyer-driven channel similar

to those addressed in Corbett and Tang (1999) and Corbett et al. (2004) for the

supplier-driven channel, such as the value of information and the value of contract

flexibility. However, our main focus is on the impact of power shifting in the channel.

Hence, we use our work here, in combination with the analytical work presented in

Corbett and Tang (1999) and Corbett et al. (2004), to seek an answer to the funda-

mental question “Is bargaining power as beneficial as it is believed to be?”

By searching for an answer to this question, we obtain results addressing the following

additional questions:

• From the system’s perspective, which power structure is better under different

contract types?

• What is the value of power for the individual parties under different contract
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types and information structures? That is, what is the impact of power on

the buyer’s and supplier’s profits under three types of contracts with full and

asymmetric information?

Our analysis leads to several interesting observations. First, we prove that a

shift of power from the supplier to the buyer improves the system efficiency under

a one-part linear contract. Secondly, in the case of full information, we provide an

analytical confirmation that the bargaining power is beneficial for both the buyer

and the supplier and that the value of the bargaining power is higher under the

more general contract type. Thirdly, by investigating the interaction between the

power structure and information asymmetry, we find that the bargaining power is

not necessarily beneficial for either party and that this tenet of common wisdom does

not hold. In other words, it is not always wise for either the buyer or the supplier to

pursue the bargaining power when accurate information is not available. Finally, we

demonstrate that the more general types of contracts may not increase the value of

holding the power when information asymmetry exists. That is, the value of holding

the power may not be significantly higher under more general contract types, and

further, the party without accurate information does not necessarily benefit from the

power even when a two-part nonlinear contract is allowed. Our findings indicate that

sometimes one party can forfeit the bargaining power and retain a higher profit!

The remainder of this chapter is organized as follows. Section III.1 introduces the

modeling framework. Buyer’s optimal contracts are analyzed in Section III.2. The

impacts of power structure, information asymmetry, and contract type on channel

performance are explored in Section III.3. Finally, Section III.4 provides concluding

remarks.
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III.1. Power Structure and Information Asymmetry

We consider the same setting, with a single supplier and a single buyer, analyzed

in Corbett and Tang (1999) and Corbett et al. (2004) with the exception that our

preliminary goal is to derive the buyer’s optimal contracts and profits by focusing

on the buyer-driven channel. The supplier provides the product to the buyer at a

wholesale price w who in turn resells it to a final market with price-sensitive demand.

Demand per period for the product is denoted by d, and the selling price is denoted by

p where d decreases linearly in price, i.e., d = a−bp, where a ≥ 0 and b ≥ 0 are known

parameters. Thus, the buyer’s order quantity d is uniquely determined by the selling

price p. In this context, the corresponding supplier- and buyer-driven contract design

models are developed by considering the supplier and the buyer as, respectively, the

first movers in a Stackelberg game to reflect channel power. Throughout the rest of

the chapter, we refer to the supplier as he and the buyer as she.

The supplier’s marginal cost is denoted by s whereas the buyer’s marginal cost

is denoted by c. Naturally, p > s + c, and since d = a − bp, to assure nonnegative

demand, we assume a − b(s + c) > 0. In the case of full information, each party

knows the actual value of the other party’s marginal cost. However, in general, there

is information asymmetry in the channel, and, hence, each party may keep his/her

marginal cost private so that the other party does not know the corresponding actual

value. If this is the case in the buyer-driven channel, then the buyer holds a prior

distribution FB(s) of the supplier’s marginal cost s (with continuous density function

fB(s), and mean µs, and second moment γs,) where the distribution is defined on a

finite interval [s, s̄]. Similarly, if information asymmetry exists in the supplier-driven

channel, then the supplier holds a prior distribution FS(c) (with continuous density

function fS(c), mean µc, and second moment γc,) where the distribution is defined on
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a finite interval [c, c̄].

Under these assumptions, for a given contract, i.e., when the contractual param-

eter values are known, the realized profit functions of the supplier and the buyer are

given, respectively, by

πS = (w − s)(a− bp)− L and πB = (p− w − c)(a− bp) + L,

where L represents a lump-sum side payment from the supplier to the buyer. When

L > 0, the side payment can be interpreted as a slotting fee, which is common when

dealing with large retailers. When L < 0, this lump sum can be seen as a franchise

fee which is more common when the supplier’s product is a strong brand.

In the supplier-driven channel, the supplier designs and provides the contract

while the reverse occurs in the buyer-driven channel. As we have already mentioned,

the three types of contracts that have been studied in Corbett and Tang (1999) for

the supplier-driven channel include the following:

• A basic one-part linear scheme, in which the supplier can only specify a constant

wholesale price w independent of the order quantity q selected by the buyer.

• A two-part linear scheme, denoted by (w,L), in which the supplier offers a unit

wholesale price w and a per-period lump-sum side payment L independent of

the order quantity q.

• A two-part nonlinear contract, denoted by (w(q), L(q)), in which both the actual

wholesale price w(q) and the side payment L(q) offered by the supplier depend

on the order quantity q selected by the buyer.

In order to develop the contract terms in the corresponding buyer-driven channel

that complements the above described supplier-driven channel, let us first examine



72

the buyer’s response to the three types of contracts in the above list. In the supplier-

driven channel under the corresponding one-part linear scheme, after the supplier

specifies the constant wholesale price w, the buyer follows with the order quantity

q, and, thus, the retail price p is uniquely determined. For a given w, the buyer’s

optimization problem is given by maxp πB = (p−w−c)(a−bp). The optimal solution

is

p = αw + β, (3.1)

where α = 1/2 and β = a/(2b) + c/2. That is, after the supplier declares the

wholesale price w, the buyer responds with a specific relationship between w and p.

This relationship includes a multiplier α and a markup β. Under the two-part linear

scheme, the side payment is independent of p so it does not affect the buyer’s response.

Under the two-part nonlinear scheme, the menu of contracts is designed to reveal the

buyer’s true marginal cost. That is, the buyer with cost c chooses (w(c), L(c)) and

responds in the same way as in Expression (3.1) (see Section 4 in Corbett et al.

2004). Consequently, in order to examine the corresponding buyer-driven channel,

we let the buyer move first and specify the relationship between w and p in the same

way as in Expression (3.1). However, as we explain in Remark 1 below, without loss

of generality, it suffices to analyze the case where β = 0. Hence, the three types of

contracts we consider for the buyer-driven channel include the following:

• A one-part linear scheme in which the buyer declares a non-negative price mul-

tiplier α and states that the retail price will be equal to the product of α and

the wholesale price w.

• A two-part linear scheme, denoted by (α,L), in which the buyer charges a

slotting fee L along with declaring an α value.

• A two-part nonlinear contract, denoted by (α(w), L(w)), in which the buyer
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offers a menu of contracts where each item on the menu consists of a pair

including multiplier α(w) and slotting fee L(w), both of which depend on the

wholesale price w provided by the supplier. From this menu, the supplier selects

the desirable pair.

REMARK 1 Ertek and Griffin (2002) analyze the buyer-driven one-part linear con-

tract by considering the pricing scheme given by Expression (3.1), and they prove that,

under full information, it is optimal for the buyer to set β = 0 as outlined below. Ob-

serve that, for the one-part linear contract, considering given values of α and β, the

supplier’s optimization problem is given by maxw πS = (w−s)(a−bp) where p satisfies

Expression (3.1). The optimal solution is

w =
a− bp

bα
+ s. (3.2)

Observe that, when a, b, p, and s are fixed, the optimal w decreases as α, and, hence,

the buyer’s profit, increases. Also, observe that the largest α can be obtained by setting

β = 0. Therefore, under full information, we let

p = αw, (3.3)

without loss of generality. Under the two-part linear scheme, the side payment is

independent of w so that it does not affect the supplier’s response. Under the two-

part nonlinear scheme, the menu of contracts is designed to reveal the supplier’s’s true

marginal cost. That is, the supplier with cost s chooses (α(s), L(s)) and responds in

the same way as in Expression (3.2) (see Section III.2.1).

Since three types of contracts are considered under full and asymmetric infor-

mation for each channel structure, there are a total of twelve cases of interest, all of

which are summarized in Table III. In Table III, Cases BF1, BF2, and BF3 (resp.
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SF1, SF2, and SF3) represent the corresponding one-part linear, two-part linear, and

two-part nonlinear schemes for the buyer-driven (resp. supplier-driven) channel un-

der full information. Similarly, Cases BA1, BA2, and BA3 (resp. SA1, SA2, and

SA3) represent the corresponding one-part linear, two-part linear, and two-part non-

linear schemes for the buyer-driven (resp. supplier-driven) channel under asymmetric

information. As we have mentioned earlier, Cases SF1, SF2, SF3, SA1, SA2, and

SA3 have been analyzed in Corbett and Tang (1999), and the corresponding results

are summarized in the table on p.84 for the sake of completeness. Cases BF1, BF2,

BF3, BA1, BA2, and BA3 are the focus of the current chapter, and they provide the

foundation for a comparative analysis of buyer- and supplier-driven channels for the

purpose of quantifying the financial value of power in contract design.

The specifics of the setting we consider are as follows. In Cases BF1, BF2, and

BF3 (resp. SF1, SF2, and SF3), the buyer (resp. supplier) knows s (resp. c) and

offers a one-part linear contract α (resp. w), a two-part linear contract (α,L) (resp.

(w,L)), and a two-part nonlinear menu of contracts (α(w), L(w)) (resp. (w(q), L(q))),

respectively. Cases BA1, BA2, and BA3 (resp. SA1, SA2, and SA3) are analogous

except that the buyer (resp. supplier) does not know s (resp. c) and only holds a

prior FB(s) (resp. FS(c)). In the buyer-driven (resp. supplier-driven) channel, the

supplier (resp. buyer) chooses a wholesale price w (resp. an order quantity q) based

on his (resp. her) marginal cost s (resp. c). Then, all sales and financial transactions

take place simultaneously. Under information asymmetry, i.e., in Cases BA1, BA2,

and BA3 (resp. SA1, SA2, and SA3), for any revealed choice of w (resp. q), the

buyer (resp. supplier) can infer the supplier’s (resp. buyer’s ) true cost s (resp.

c). Therefore, by applying the revelation principle (Fudenberg and Tirole 1991), one

can reformulate the buyer-driven (resp. supplier-driven) two-part nonlinear menu of

contracts (α(w), L(w)) (resp. (w(q), L(q))) as a menu of contracts (α(s), L(s)) (resp.
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Table III Problem Cases in Supplier- and Buyer-driven Channels

Contract Type Supplier-Driven Buyer-Driven

1. one-part Case SF1: Case BF1:
linear contract the supplier offers a one-part the buyer offers a one-part
under full information linear contract at wholesale

price w;
linear contract with multiplier
α;

full information about c full information about s
2. one-part Case SA1: Case BA1:
linear contract the supplier offers a one-part the buyer offers a one-part
under incomplete information linear contract at wholesale

price w;
linear contract with multiplier
α;

incomplete information about
c

incomplete information about
s

3. two-part Case SF2: Case BF2:
linear contract the supplier offers a two-part the buyer offers a two-part
under full information linear contract (w,L); linear contract (α,L);

full information about c full information about s
4. two-part Case SA2: Case BA2:
linear contract the supplier offers a two-part the buyer offers a two-part
under incomplete information linear contract (w,L); linear contract (α,L);

incomplete information about
c

incomplete information about
s

5. two-part Case SF3: Case BF3:
nonlinear contract the supplier offers a two-part

menu
the buyer offers a two-part
menu

under full information of contracts (w(q), L(q)); of contracts (α(w), L(w));
full information about c full information about s

6. two-part Case SA3: Case BA3:
nonlinear contract the supplier offers a two-part

menu
the buyer offers a two-part
menu

under incomplete information of contracts (w(q), L(q)); of contracts (α(w), L(w));
incomplete information about
c

incomplete information about
s

(w(c), L(c))). The supplier (resp. buyer) announces ŝ (resp. ĉ) and then chooses the

contract (α(ŝ), L(ŝ)) (resp. (w(ĉ), L(ĉ))).

III.2. Optimal Contracts for the Buyer-Driven Channel

We begin our analysis by determining the supplier’s optimal wholesale price under

the contracts offered by the buyer. Next, we present the buyer’s optimal contracts

for the six cases of interest.
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III.2.1. The Supplier’s Optimal Wholesale Price

Given the contract parameters, the following proposition provides an expression of

the supplier’s optimal wholesale price denoted by w∗.

PROPOSITION 5

• In Cases BF1, BF2, BF3, BA1, and BA2,

w∗ =
a

2αb
+
s

2
. (3.4)

• In Case BA3, letting α′(s) and L′(s) denote the first derivatives of α(s) and

L(s) with respect to s, respectively, and considering the incentive-compatibility

constraint given by

IC : L′(s) =
b2s2α2(s)− a2

4bα2(s)
α′(s), ∀ s ≤ s ≤ s̄, (3.5)

for the supplier, we have

w∗ =
a

2α(s)b
+
s

2
(3.6)

Proof: In Case BF1, the buyer declares an α value, and, the supplier solves

SPBF1 max
w

πS = (w − s)(a− bp).

Since p = αw, the optimal wholesale price is given by (3.4).

In Case BF2, the buyer also charges a slotting fee L so that the supplier solves

SPBF2 max
w

πS = (w − s)(a− bp)− L.

However, since L is fixed and independent of w, this does not affect the supplier’s

wholesale price decision. In Section III.2.3, we show that Cases BF2 and BF3 are

equivalent so that the optimal wholesale price is given by Expression (3.4) in all three

cases.
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In Case BA1, the supplier solves the same problem as SPBF1, so the optimal

wholesale price is again given by Expression (3.4). We also note that the supplier’s

problem is the same as SPBF2 in Case BA2, and, as a result, the optimal wholesale

price is given by Expression (3.4) as well.

In Case BA3, the buyer offers a menu of (α(s), L(s)), and the supplier chooses

which cost parameter ŝ to announce. Once he announces ŝ, α(ŝ) and L(ŝ) are fixed.

In this case, it can be easily shown that the supplier’s optimal wholesale price is given

by

w =
a

2α(ŝ)b
+
s

2

so that, according to the contract, the buyer sets the retail price at

p =
a

2b
+
sα(ŝ)

2
. (3.7)

Consequently, in order to determine the marginal cost value to be announced, the

supplier solves the following problem:

SPBA3 max
ŝ
πS(s, ŝ) =

(

a

2bα(ŝ)
− s

2

)(

a

2
− bsα(ŝ)

2

)

− L(ŝ). (3.8)

The revelation principle states that there is an optimal contract under which the

supplier will optimally announce ŝ = s. Taking the first derivative of the above

expression of πS(s, ŝ) with respect to ŝ, setting it equal to zero, and requiring that ŝ =

s, we have Expression (3.5) which represents the incentive-compatibility constraint

for the supplier. This constraint, in turn, guarantees that the supplier announces his

true marginal cost s by choosing (α(s), L(s)) so the supplier’s optimal wholesale price

is given by Expression (3.6). ¥



78

III.2.2. The Buyer’s Optimal Contract in Case BF1

When the buyer has complete information about the supplier’s marginal cost s, the

buyer knows the supplier’s optimal wholesale price w∗ and needs to determine the

value of α so that her profit is maximized. Recalling Expressions (3.3) and (3.4), and

noting that q = a− bp, it is easy to show that the buyer’s problem is

BPBF1 max
α

πB(α) = (p− w − c)q =
( a

2b
+
sα

2
− a

2bα
− s

2
− c

)

(

a

2
− bsα

2

)

.

The following proposition provides a method for computing the buyer’s optimal

markup value in Case BF1 denoted by1 α∗

BF1.

PROPOSITION 6 In Case BF1, α∗

BF1 is the unique positive solution of

α3 −
(

1

2
+
c

s

)

α2 − a2

2b2s2
= 0. (3.9)

Proof: Observe that the above expression of πB(α) is concave, and, hence, the

optimal value of α, denoted by α∗

BF1, satisfies

a2

4bα2
− bs2α

2
+
bs2

4
+
bcs

2
= 0. (3.10)

After some algebra, Expression (3.10) leads to Expression (3.9) for which it is easy

to verify that there is a unique and finite positive solution. ¥

Since Expression (3.9) is a third degree polynomial, we do not have a closed form

solution of α∗

BF1, but a numerical value can be easily obtained. It is worth noting

that here we implicitly assume that the buyer’s reservation profit level is zero, and,

thus, the buyer will trade as long as her profit is non-negative. Otherwise, the buyer

needs to determine her cut-off level (Corbett et al. 2004, Ha 2001). This assumption

1Similar notation is used in the remainder of the chapter, where the superscript (∗) represents the
optimal value of the contract parameter of interest, and the subscript (SF1, BF1, etc.) represents
one of the twelve cases of interest.
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is useful in that it allows us to concentrate on a detailed investigation of the impact

of power structure, information asymmetry, and contract type.

III.2.3. The Buyer’s Optimal Contract in Cases BF2 and BF3

Using the same argument presented for Case BF1, it is easy to show that the buyer

can determine the contract of (w,L) that optimizes her profit by solving the following

problem:

BPBF2 max
α

πB(α) =
( a

2b
+
sα

2
− a

2bα
− s

2
− c

)

(

a

2
− bsα

2

)

+ L

s.t. πS ≥ π−S (3.11)

Here, Condition (3.11) represents the supplier’s individual rationality constraint.

That is, the supplier’s net profits must exceed his reservation profit level denoted

by π−S .

PROPOSITION 7 In Case BF2, the buyer’s optimal contract is as follows:

α∗

BF2 = 1 +
c

s
, and (3.12)

L∗

BF2 = −π−S +
a2s

4b(s+ c)
− as

2
+
bs(s+ c)

4
.

Proof: The proof relies on two observations. First, because the buyer has complete

information, she sets Expression (3.11) to be binding. Second, the buyer’s profit is

thus given by πB = πJ−π−S where πJ denotes the joint profit so that problem BPBF2

is equivalent to maximizing the joint profit πJ . This completes the proof. ¥

Observe that, in Case BF2, it follows from Expressions (3.4) and (3.12) that the

supplier’s optimal wholesale price is given by

w∗

BF2 =
as

2b(s+ c)
+
s

2
. (3.13)
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Since a − b(s + c) > 0, we have w > s. This is different from the two-part linear

contract in the supplier-driven channel where the supplier sets w = s. That is, in the

supplier-driven channel, the supplier extracts profit only through L. Note that using

Expressions (3.3), (3.12), and (3.13), we have

p∗BF2 − w∗

BF2 − c =
ac

2b(s+ c)
− c

2
> 0,where p∗BF2 = α∗

BF2w
∗

BF2

and, thus, in the corresponding buyer-driven channel, the buyer also extracts a per

unit profit from the sale of individual items. Since the buyer is able to extract all of

the profit from the supplier in Case BF2, the flexibility to offer a nonlinear contract

will not increase the buyer’s profit. As a result, we have the following corollary.

COROLLARY 1 The optimal contract is the same in Cases BF2 and BF3.

III.2.4. The Buyer’s Optimal Contract in Case BA1

In this case, the buyer holds a prior distribution FB(s) of the supplier’s marginal cost

s (with continuous density function fB(s)), where the distribution is defined on the

finite interval [s, s̄]. The buyer solves

BPBA1 max
α

Es[πB(α)] =

∫ s̄

s

( a

2b
+
sα

2
− a

2bα
− s

2
− c

)

(

a

2
− bsα

2

)

dFB(s).

PROPOSITION 8 In Case BA1, α∗

BA1 is the unique positive solution of

α3 −
(

1

2
+
cµs

γs

)

α2 − a2

2b2γs
= 0. (3.14)

Proof: It is easy to verify that Es[πB(α)] is concave in α, and the first order optimality

condition leads to Expression (3.14) which has a unique positive solution. ¥
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III.2.5. The Buyer’s Optimal Contract in Case BA2

The buyer’s optimization problem in Case BA2 is given by

BPBA2 max
α

Es[πB(α)] =

∫ s̄

s

[
( a

2b
+
sα

2
− a

2bα
− s

2
− c

)

(

a

2
− bsα

2

)

+L]dFB(s) (3.15)

s.t. πS ≥ π−S (3.16)

PROPOSITION 9 In Case BA2, the buyer’s optimal contract is as follows:

α∗

BA2 =
1

2
+

1

2

s̄2

γs
+
cµs

γs
, and (3.17)

L∗

BA2 =
( a

2bα
− s̄

2

)

(

a

2
− bs̄α

2

)

− π−S . (3.18)

Proof: For any given α, the buyer will always choose the highest L that still satisfies

the supplier’s individual rationality constraint given by Expression (3.16). Observe

that πS(s) is decreasing in s so the constraint holds for all s if it holds at s = s̄. This

observation leads to Expression (3.18). Using Expression (3.18) in Expression (3.15)

and solving for α, we obtain Expression (3.17). ¥

III.2.6. The Buyer’s Optimal Contract in Case BA3

In this case, the buyer has the flexibility to offer a two-part nonlinear menu of con-

tracts (α(s), L(s)). By selecting any specific pair, the supplier reveals a marginal cost

value ŝ which will be his true marginal cost s according to the revelation principle. To

maximize her expected profit, the buyer solves the problem BPBA3. Observe that, in

the formulation, Expression (3.19) is identical to Expression (3.5) which represents the

supplier’s incentive-compatibility constraint. Under this constraint, presented with a

menu of contracts (α(s), L(s)), the supplier with cost s will choose w∗ to maximize
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his profit.

BPBA3 max
α(s)

Es[πB(α(s))] =

∫ s̄

s

[

(

a

2b
+
sα(s)

2
− a

2bα(s)
− s

2
− c

)(

a

2
− bsα(s)

2

)

+L]dFB(s)

s.t. L′(s) =
b2s2α2(s)− a2

4bα2(s)
α′(s) (3.19)

πS ≥ π−S . (3.20)

PROPOSITION 10 In Case BA3, the buyer’s optimal contract is as follows:

α∗

BA3 = 1 +
c

s
+
FB(s)

sfB(s)
, and (3.21)

L∗
′

BA3 =
b2s2α∗

BA3
2 − a2

4bα∗

BA3
2 α∗

′

BA3. (3.22)

Proof: The proof relies on some fundamental results from optimal control theory as

outlined below (see Kamien and Schwartz 1991, pp. 142–146 for details.) Letting

h(s) =

(

a

2b
+
sα(s)

2
− a

2bα(s)
− s

2
− c

)(

a

2
− bsα(s)

2

)

fB(s) + L(s)fB(s),

g1 =
b2s2α2(s)− a2

4bα2(s)
u, and

g2 = u = α′(s),

the above problem representing Case BA3 can be expressed as

max

∫ s̄

s

h(s)ds (3.23)

s.t. L′(s) = g1 (3.24)

α′(s) = g2 (3.25)

πS ≥ π−S (3.26)

The necessary and sufficient conditions for optimality can be stated in terms of the

Hamiltonian

H = h+ λ1g1 + λ2g2.
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These conditions include the state equations given by Constraints (3.24) and (3.25),

the multiplier equations given by

λ′1 = −
∂H

∂L
= −

(

∂h

∂L
+ λ1

∂g1
∂L

+ λ2
∂g2
∂L

)

, λ′2 = −
∂H

∂u
= −

(

∂h

∂α
+ λ1

∂g1
∂α

+ λ2
∂g2
∂α

)

,

and the optimality condition given by

∂H

∂u
=
b2s2α2(s)− a2

4bα2(s)
λ1 + λ2 = 0. (3.27)

Then, it is easy to show that λ′1 = −fB(s) so that λ1 = −FB(s), whereas

λ′2 = −
(

a2

4bα2(s)
fB(s)−

bs2α(s)

2
fB(s) +

bs2

4
fB(s) +

bcs

2
fB(s) +

2a2

4bα3(s)
uλ1

)

.

(3.28)

Differentiating Expression (3.27), we have

λ′2 = −
[(

2bs

4
+

2a2

4bα3(s)
u

)

λ1 −
b2s2α2(s)− a2

4bα2(s)
fB(s)

]

, (3.29)

and substituting Expression (3.29) into Expression (3.28) leads to Expression (3.21).

Since we have ignored Expression (3.20) in the above discussion, we need to check

whether or not it is satisfied for all s ∈ [s, s̄]. Recalling Expression (3.8), πS(s) is

decreasing in s because

dπS(s)

ds
=

(

− a

2bα2(s)
α′(s)− 1

2

)(

a

2
− bsα(s)

2

)

−
(

bα(s)

2
+
bsα′(s)

2

)

(
a

2bα(s)

−s
2
)− b2s2α2(s)− a2

4bα2(s)
α′(s)

=
bsα(s)− a

2
< 0.

Consequently, we can set L(s̄) such that Expression (3.20) is binding, and this com-

pletes the proof. ¥
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Table IV Supplier-driven and Buyer-driven Optimal Supply Contracts

Contract Type Supplier Driven Buyer Driven

1. one part linear under w∗

SF1 = a
2b +

1
2 (s− c) w∗

BF1 = a
2bα∗

BF1
+ s

2

full information: p∗SF1 = 3a
4b +

1
4 (s+ c) p∗BF1 = a

2b +
s
2α

∗

BF1

w;α q∗SF1 = 1
4a− 1

4b(s+ c) q∗BF1 = 1
2a− 1

2sbα
∗

BF1

π∗S,SF1 = 1
8b [a− b(s+ c)]2 π∗S,BF1 = a2

4bα∗
BF1

− as
2 +

bs2α∗
BF1

4

π∗B,SF1 = 1
16b [a− b(s+ c)]2 π∗B,BF1 =

a2
−b2s2α∗

BF1
2

4b −
a2

−b2s2α∗
BF1

2

4bα∗
BF1

− ac−bcsα∗
BF1

2

where α∗BF1
3 − ( 12 + c

s
)α∗BF1

2 −
a2

2b2s2 = 0
2. one part linear under w∗

SA1 = a
2b +

1
2 (s− µc) w∗

BA1 = a
2bα∗

BA1
+ s

2

asymm. information: p∗SA1 = 3a
4b +

1
4 (s+ c) + 1

4 (c− µc) p∗BA1 = a
2b +

s
2α

∗

BA1

w;α q∗SA1 = 1
4a− 1

4b(s+c)− 1
4b(c−µc) q∗BA1 = 1

2a− 1
2sbα

∗

BA1

Ec[π
∗

S,SA1] =
1
8b [a− (b(s+ µc)]

2 π∗S,BA1 = a2

4bα∗
BA1

− as
2 +

bs2α∗
BA1

4

π∗B,SA1 = 1
16b [a− b(s+ 2c− µc)]

2 Es[π
∗

B,BA1] =
a2

−b2γsα
∗

BA1
2

4b −
a2

−b2γsα
∗

BA1
2

4bα∗
BA1

− ac−bcµsα
∗

BA1

2

where α∗BA1
3− ( 12 +

cµs
γs

)α∗BA1
2−

a2

2b2γs
= 0

3. two part w∗

SF2 = s w∗

BF2 = as
2b(s+c) +

s
2

linear under L∗

SF2 = π−B − 1
4b [a− b(s+ c)]2 L∗

BF2 = −π−S + a2s
4b(s+c) − as

2 +
bs
4 (s+ c)

full information: p∗SF2 = 1
2b [a+ b(s+ c)] p∗BF2 = 1

2b [a+ b(s+ c)]

(w,L); (α,L) q∗SF2 = 1
2 [a− b(s+ c)] q∗BF2 = 1

2 [a− b(s+ c)]

π∗S,SF2 = −π−B + 1
4b [a− b(s+ c)]2 π∗S,BF2 = π−S

π∗B,SF2 = π−B π∗B,SF2 = −π−S + 1
4b [a− b(s+ c)]2

α∗BF2 = s+c
s
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Table IV Continued.

Contract Type Supplier Driven Buyer Driven
4. two part w∗

SA2 = s+ c̄− µc w∗

BA2 = a
2bα∗

BA2
+ s

2

linear under L∗

SA2 = π−B− 1
4b [a−b(s+c̄)−b(c̄−

µc)]
2

L = ( a
2bα∗

BA2
− s̄

2 )(
a
2−

bs̄α∗
BA2

2 )−π−S

asymm. information: p∗SA2 = 1
2b [a+ b(s+ c̄+ c− µc)] p∗BA2 = a

2b +
s
2α

∗

BA2

(w,L); (α,L) q∗SA2 = 1
2 [a− b(s+ c̄+ c− µc)] q∗BA2 = 1

2a− 1
2sbα

∗

BA2

Ec[π
∗

S,SA2] = −π−B + 1
4b [a− b(s+

2c̄− µc)]
2

π∗S,BA2 = a2

4bα∗
BA2

− as
2 +

bs2α∗
BA2

4 −
L

+ 1
2 (c̄− µc)[a− b(s+ c̄)]

π∗B,SA2 = π−B + 1
4b [a − b(s + c̄ +

c− µc)]
2

Es[π
∗

B,BA2] =
a2

−b2γsα
∗

BA2
2

4b

− 1
4b [a− b(s+ 2c̄− µc)]

2 −a2
−b2γsα

∗

BA2
2

4bα∗
BA2

− ac−bcµsα
∗

BA2

2 +L

α∗BA2 = 1
2 + s̄2

2γs
+ cµs

γs
5. two part Case SF3: results are the same as

Case SF2
Case BF3: results are the same

nonlinear under as Case BF2
full information:
(w,L); (α,L)

6. two part w∗

SA3 = s+ FS(c)
fS(c)

w∗

BA3 = a
2bα∗

BA3
+ s

2

nonlinear under L∗
′

SA3 = 1
2 [a− b(w + c)]w′ L∗

′

BA3 =
b2s2α∗

BA3
2
−a2

4bα∗
BA3

2 α∗BA3
′

asymm. information: α∗BA3 = 1 + c
s
+ FB(s)

sfB(s)

(w,L); (α,L)

III.3. The Impact of Power Structure, Information Asymmetry, and Con-

tract Type

Using the analysis above and the results summarized in Table IV, we are now able to

explore the impacts of power structure, information asymmetry, and contract type.

For this purpose, by assuming that both parties will trade as long as their profits are

nonnegative, we can concentrate on our investigation. In Section III.3.1, we examine
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the impact of information asymmetry on the buyer’s profit margin in the buyer-

driven channel. In Section III.3.2, we evaluate the impact of the power structure on

joint profits under full information in both supplier- and buyer-driven channels. The

simultaneous impact of power structure, information asymmetry, and contract type

is investigated in Section III.3.3.

III.3.1. The Impact of Information Asymmetry on the Buyer’s Profit

Margin

Considering the case where the buyer holds a prior distribution FB(s) of the supplier’s

marginal cost s, suppose that the supplier’s real marginal cost ŝ is equal to µs so the

buyer has an unbiased estimator of the supplier’s cost. Then, we have the following

theorem regarding the impact of information asymmetry on the buyer’s profit margin.

THEOREM 10 Information asymmetry decreases the buyer’s profit margin (p−w−

c) under the one-part linear contract and increases the buyer’s profit margin under

the two-part nonlinear contract. Specifically, we have

α∗

BA1 ≤ α∗

BF1, w∗

BA1 ≥ w∗

BF1, p∗BA1 ≤ p∗BF1,

α∗

BA3 ≥ α∗

BF3, w∗

BA3 ≤ w∗

BF3, p∗BA3 ≥ p∗BF3,

p∗BA1 − w∗

BA1 − c ≤ p∗BF1 − w∗

BF1 − c, (3.30)

p∗BA3 − w∗

BA3 − c ≥ p∗BF3 − w∗

BF3 − c. (3.31)

Under the two-part linear contract, information asymmetry decreases the buyer’s profit

margin when

s̄2 − γs
δ2s

<
2c

µs

, (3.32)
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and it increases the buyer’s profit margin when

s̄2 − γs
δ2s

>
2c

µs

(3.33)

where δ2s is the buyer’s estimation variance of s.

Proof: Considering the one-part linear contract and recalling Expression (3.9), first

we show that if s1 ≤ s2, then α1 ≥ α2 where s1, s2, α1, and α2 satisfy the following

two expressions:

α3
1 −

(

1

2
+

c

s1

)

α2
1 −

a2

2b2s21
= 0, (3.34)

α3
2 −

(

1

2
+

c

s2

)

α2
2 −

a2

2b2s22
= 0. (3.35)

Note that if s1 ≤ s2, then

c

s1
≥ c

s2
, and

a2

2b2s21
≥ a2

2b2s22
.

Also, recalling Expression (3.10), we have

a2

4bα2
1

− bs21α1

2
+
bs21
4

+
bcs1
2

= 0,

which is equivalent to Expression (3.34). Then, if α2 > α1,

a2

4bα2
2

− bs21α2

2
+
bs21
4

+
bcs1
2

< 0,

and, hence,

α3
2 − (

1

2
+

c

s1
)α2

2 −
a2

2b2s21
> 0.

This, in turn, implies that

α3
2 −

(

1

2
+

c

s2

)

α2
2 −

a2

2b2s22
≥ α3

2 −
(

1

2
+

c

s1

)

α2
2 −

a2

2b2s21
> 0,

which contradicts Expression (3.35), and, therefore, if s1 ≤ s2, α1 ≥ α2.
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Since γs ≥ µ2s, comparing Expressions (3.9) and (3.14), we have

α∗

BA1 ≤ α∗

BF1,

Then, it follows from Expressions (3.3) and (3.4) that (also see the results summarized

in Table IV)

w∗

BA1 ≥ w∗

BF1 and p∗BA1 ≤ p∗BF1,

and this inequality leads to Expression (3.30). Under the two-part linear and non-

linear contracts, Expressions (3.31), (3.32), and (3.33) can be easily verified by a

comparison of the corresponding selling price and wholesale price values obtained in

Section III.2 and summarized in Table IV. ¥

Theorem 10 implies that the impact of information asymmetry on the buyer’s

profit margin varies depending on the contract type. Under the one-part linear con-

tract, information asymmetry decreases the buyer’s profit margin such that a buyer

with incomplete information should accept a smaller profit margin in order to main-

tain demand volume. Under the two-part linear contract, the impact of information

asymmetry depends on the information structure, i.e., the mean and variance of the

prior distribution FB(s) held by the buyer. If the variance is large, information asym-

metry decreases the buyer’s profit margin and the buyer should accept a smaller profit

margin to maintain demand volume. On the other hand, if the variance is small, in-

formation asymmetry increases the buyer’s profit margin, and the buyer may achieve

a higher profit margin under incomplete information. The latter case is counter-

intuitive. Since information asymmetry decreases the buyer’s total profit, how could

her profit margin be increased? To examine this phenomenon more precisely, one

must take the slotting fee into account. If the variance is small, the buyer prefers to

maintain a higher profit margin and to charge a smaller slotting fee at the same time.
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Under the two-part nonlinear contract, information asymmetry always increases the

buyer’s profit margin which suggests that the buyer can use the additional flexibility

offered by nonlinear contracts to maintain a high unit profit margin in a way that she

cannot always do when restricted to offering linear contracts.

III.3.2. The Impact of Power Structure on the Joint Profit

The following theorem provides a comparison of the resulting joint profits in both

supplier- and buyer-driven channels.

THEOREM 11 Assume that both parties have full information. Under the one-part

linear contract,

π∗S,SF1 + π∗B,SF1 < π∗S,BF1 + π∗B,BF1 (3.36)

where π∗S,SF1 represents the supplier’s optimal profit in the supplier-driven channel

under full information and π∗

B,SF1 represents the buyer’s profit in the supplier-driven

channel under full information2. Under the two-part linear contract,

π∗S,SF2 + π∗B,SF2 = π∗S,BF2 + π∗B,BF2 = π∗J (3.37)

where π∗J represents the corresponding optimal joint profit of the channel.

Proof: The joint profit function of the channel is given by

πJ = (p− s− c)(a− bp),

where πJ is a concave function of p. Hence, the corresponding optimal retail price is

given by

p∗J =
a

2b
+

1

2
(s+ c).

2Similar notation is used in the remainder of the chapter, where the first subscript (S, B, or
J) represents the supplier, buyer, or supplier-buyer pair, and the second subscript (SF1, BF1, etc.)
represents one of the twelve cases of interest.
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From Table 2, under the one-part linear contract, the joint profit in the supplier-

driven channel is

πJ,SF1 = π∗S,SF1 + π∗B,SF1 =
3

16b
[a− b(s+ c)]2.

Let πJ1 = πJ,SF1 − πJ,BF1 where πJ,BF1 denotes the joint profit in the buyer-driven

channel. Recalling Expression (3.4), we know that

p∗BF1 =
a

2b
+
s

2
α∗

BF1.

Then, substituting

p =
a

2b
+
s

2
α

in the above expression of πJ1 and solving πJ1 = 0 for α leads to the following two

roots:

α1 =
a+ bs+ bc

2bs
, and α2 = −

a− 3bs− 3bc

2bs
.

Observe that α1 > α2 since a− b(s+ c) > 0. As a result, πJ1 < 0 when α2 < α < α1.

Next, we show that α2 < α∗

BF1 < α1. In order to show that α∗

BF1 < α1, we

rewrite a as a = b(s+ c)+k where k is a positive constant and recall that α∗

BF1 solves

Expression (3.9). Then, using the above expressions of a and α1, the left-hand side

of Expression (3.9) reduces to

k(4b2c2 + bsk + 4bck + 4b2sc+ k2)

8b3s3
,

which is positive. It follows that α∗

BF1 < α1 and p∗BF1 < p∗SF1. Finally, in order to

show that α2 < α∗

BF1, we use the same expressions of a and α2 in the left-hand side

of Expression (3.9). After some algebra, we have

−k(4b
2c2 + 16b2s2 − bsk − 4bck + 20b2sc+ k2)

8b3s3
.
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Observe that the above quantity is negative as long as 4b2c2 + 16b2s2 − bsk − 4bck +

20b2sc+ k2 > 0 which is minimized at

k =
bs

2
+ 2bc,

with a corresponding minimum value of

18b2sc+
63b2s2

4
> 0.

It follows that α2 < α∗

BF1. Therefore, πJ1 < 0, and this completes the proof of

Expression (3.36).

Under the two-part linear contract, Expression (3.37) holds because the corre-

sponding optimal joint solutions are always realizable, so the leader extracts all of

the additional system profits using the optimal contracts summarized in Table IV. ¥

Theorem 11 implies that, under the one-part linear contract, the buyer-driven

channel always performs better than the counterpart supplier-driven channel. That

is, the shift of power from the supplier to the buyer actually improves the system

efficiency. This is counter-intuitive in the sense that the performance of the channel

is expected to depend on the cost and demand parameters so that one power struc-

ture dominates the other in some cases whereas the opposite is true in other cases.

However, according to Theorem 2, the power structure itself determines the channel

performance, and the buyer-driven channel always achieves a higher joint profit under

the one-part linear contract. The intuitive explanation is that, in the supplier-driven

channel, the buyer is the follower and responds to the supplier’s wholesale price. Since

the supplier seeks to maximize his own profit, the buyer is pushed to select a higher

than system optimal retail price which limits the market demand. On the other hand,

when the buyer is the leader, she selects the α value before the supplier declares the

wholesale price, and, thus, the buyer has more freedom to warrant a higher market
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demand by choosing a relatively smaller retail price which is closer to the system op-

timal retail price. Under the two-part linear contract, obviously, the value of power

shifting is higher than under the one-part linear contract since the party with the

dominant bargaining power extracts all of the additional profits.

III.3.3. The Impact of Power Structure versus the Impact of Information

Asymmetry

In this section, we investigate the impact of power structure and information asym-

metry on individual profits under three types of contracts. The common wisdom is

that the buyer (resp. supplier), with dominant bargaining power, will gain more profit

in the buyer-driven (resp. supplier-driven) channel than in the supplier-driven (resp.

buyer-driven) channel. The following theorem provides a formal presentation of the

common wisdom which is true when each party has full information of the system

under the assumption that the buyer (resp. supplier) does not have any reservation

profit in the buyer-driven (resp. supplier-driven) channel.

THEOREM 12 For the case of full information, we have

π∗B,BF1 ≥ 2π∗B,SF1, (3.38)

π∗S,SF1 ≥ π∗S,BF1, (3.39)

π∗B,BF2 = π∗S,SF2 = π∗J , and (3.40)

π∗B,SF2 = π∗S,BF2 = 0. (3.41)

Proof: The theorem cannot be verified analytically by a direct comparison of the

buyer’s profits in the two channels simply because we do not have a closed form

expression for α. Hence, instead of a direct comparison of the π∗

B,BF1 and π∗B,SF1

values, we complete the proof by analyzing the more general one-part linear scheme
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(α, β).

First, we examine the case where the buyer uses only a mark-up in the contract,

that is, α = 1. In this case, given the value of β, it is easy to show that the supplier’s

optimal wholesale price is

w∗

BF1 =
a

2b
+

1

2
(s− β),

whereas the buyer’s optimal mark-up is

β∗

BF1 =
a

2b
+

1

2
(c− s).

Thus, the optimal retail price is

p∗BF1 =
3a

4b
+

1

4
(s+ c),

which is the same as the one in the supplier-driven channel. As a result, the buyer’s

optimal profit under the contract (α = 1, β = a
2b

+ 1
2
(c− s)) is given by

π∗∗B,BF1 =
[a− b(s+ c)]2

8b
= 2π∗B,SF1.

Now, recall Expression (3.2) in Remark 1, and note that for any fixed value of p, the

corresponding α and β values can be calculated once w is determined. Expression

(3.2) shows that when all other parameters are fixed, the supplier will select a smaller

w as α increases. The largest α can be obtained by setting β = 0. Thus, there exists

a contract (α, β), such that α > 1 and β = 0, under which the buyer’s profit is larger

than π∗∗B,BF1. Hence, π
∗

B,BF1 ≥ π∗∗B,BF1 so Expression (3.38) is verified.

Noting that π∗S,BF1 + π∗B,BF1 ≤ π∗J , we have

π∗S,BF1 ≤ π∗J − π∗B,BF1 ≤
1

8b
[a− b(s+ c)]2,
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where

π∗J =
1

4b
[a− b(s+ c)]2

is the optimal joint profit, so Expression (3.39) is verified.

Expressions (3.40) and (3.41) can be easily verified using the results summarized

in Table IV. ¥

Naturally, the next question is whether or not the bargaining power remains

a significant advantage under conditions of information asymmetry. For example,

in the buyer-driven channel, when the buyer has incomplete information about the

supplier’s costs, is it still beneficial for the buyer to act as the channel leader? Below

we discuss some numerical results that answer this question.

Suppose that q = a − bp = 120 − 9p and the supplier’s and buyer’s prior dis-

tributions of c and s are on the bounded domains [c, c̄] = [1, 3.6], [s, s̄] = [3.6, 6.5],

respectively. Let Πb1 = π∗B,BA1 − π∗B,SA1, so that Πb represents the buyer’s relative

benefit from being the leader in a buyer-driven channel rather than being the fol-

lower in a supplier-driven channel. Under these assumptions, Figure 2 illustrates the

buyer’s realized relative benefit under power shifting when c is uniformly distributed

and s is exponentially distributed with

Fs(s) =
1− e

3.6−s
2.9

1− e−1
.

Observe that Πb1 is higher when the buyer’s marginal cost c is smaller. This obser-

vation suggests that the buyer should keep the bargaining power when c is small.

Also, Πb1 decreases as the supplier’s marginal cost s increases, and, obviously, the

supplier’s (follower’s) marginal cost has a more significant impact on Πb1 than the

buyer’s (leader’s) marginal cost. In Figure 2, one interesting observation is that when

c is close to c̄ and s is close to s̄, the corresponding Πb1 value is negative. That is,
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Figure 2 The Impact of Power Structure and Information Asymmetry on the Buyer’s

Profit

considering those cases where the supplier’s marginal cost is large (so the buyer is

likely to underestimate its value), if the buyer’s own marginal cost is large as well,

then the buyer achieves a higher profit by giving up her bargaining power and acting

as a follower! As a result, under information asymmetry, the buyer (leader) may

potentially lose the relative benefit of the bargaining power to the supplier (follower.)

According to Figure 3, this is also true for the supplier-driven channel where Πs1 rep-

resents the supplier’s relative benefit of being the leader in a supplier-driven channel

rather than being the follower in a buyer-driven channel, i.e, Πs1 = π∗S,SA1 − π∗S,BA1.

Observe that, in Figure 3, Πs1 is decreasing in c, and, again, the follower’s (buyer’s)

marginal cost has a more significant impact than the leader’s (supplier’s) marginal

cost on the supplier’s relative benefit. Also, note that the supplier’s relative benefit

is negative when s is close to s and c is close to c̄. That is, when the supplier’s own

marginal cost is small, and the buyer’s marginal cost is large (so the supplier is likely

to underestimate the buyer’s cost), the supplier achieves a higher profit by acting
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as a follower. This phenomenon, in which the bargaining power under information

Figure 3 The Impact of Power Structure and Information Asymmetry on the Supplier’s

Profit

asymmetry reduces the leader’s relative benefit, can be explained as follows. When

information asymmetry exists in the channel, private information helps the follower

without the dominant bargaining power improve his/her bargaining position, and,

thus, the relative benefit of possessing the power is reduced and the follower’s conse-

quent profit might be improved. The above example shows that it is not always good

to pursue the bargaining power, especially when accurate information is not available.

Sometimes, in fact, one can forfeit the bargaining power and still have higher profit.

It is worth noting that Figures 2 and 3 illustrate the impact of power structure

and information asymmetry under one-part linear contracts for buyer- and supplier-

driven channels, respectively. Since two-part linear contracts help the leader of the

channel exercise his/her influence and extract all profits under full information, the

following questions arise:

• Should the leader offer more general contracts so that the advantage of leader-
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ship would be guaranteed?

• Is the relative benefit definitely positive under more general contracts?

The answer to both of these questions is still NO! Under information asymmetry,

more general contracts do not necessarily improve the relative benefits of holding

the bargaining power. Considering the above numerical example and concentrating

on the buyer-driven channel, suppose that the buyer offers both two-part linear and

two-part nonlinear contracts. The buyer’s relative benefits are negative when, for

instance, [c, s] = [3.2, 6.5] and [c, s] = [1, 6.3] under the two-part linear and non-linear

contracts, respectively. Therefore, even under two-part contracts, it is not necessarily

more beneficial for the buyer to act as the leader rather than as the follower. A

similar observation is true for the supplier-driven channel as well. Even under the

two-part nonlinear contract, the supplier may achieve less profit as the leader than as

the follower when, for instance, [c, s] = [3.6, 5.7]. Due to the existence of information

asymmetry, being the leader is not necessarily as beneficial as being the follower, even

under more general contracts. Figures 4 and 5 illustrate the relative value of power

shifting under three types of contracts in full and incomplete information cases from

the buyer’s and supplier’s perspectives, respectively. Assuming that c = 1, Figure 4

provides a comparison of the corresponding three types of contracts for the buyer-

driven channel. We let Πb2 = π∗B,BA2−π∗B,SA2 and Πb3 = π∗B,BA3−π∗B,SA3, so that Πb2

and Πb3 represent the relative values of power shifting for the buyer under two-part

linear and nonlinear contracts with an information asymmetry consideration. Also,

we let ΠbF1 = π∗B,BF1 − π∗B,SF1 and ΠbF2 = π∗B,BF2 − π∗B,SF2, so that ΠbF1 and ΠbF2

represent the relative values of the power shifting to the buyer under the one-part and

two-part linear contracts with full information. Similarly, Πs1 = π∗S,SA1−π∗S,BA1, Πs2 =

π∗S,SA2−π∗S,BA2, Πs3 = π∗S,SA3−π∗S,BA3, ΠsF1 = π∗S,SF1−π∗S,BF1, ΠsF2 = π∗S,SF2−π∗S,BF2.
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Figure 4 The Impact of Power Structure, Information Asymmetry, and Contract Type

on the Buyer’s Profit

The corresponding illustration for the supplier-driven channel is presented in Figure

5. Figure 4 illustrates that the two-part linear contract always dominates the one-part

linear contract under full information, i.e., the relative value of the power shifting is

always higher for the buyer under the two-part linear contract than under the one-

part linear contract. This is consistent with Theorem 3, so the buyer extracts all

of the profits of the channel. Also, in Figure 4, under full information, the relative

value of the power shifting to the buyer depends purely on the contract type. Under

incomplete information, the one-part linear contract dominates the two-part contracts
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Figure 5 The Impact of Power Structure, Information Asymmetry, and Contract Type

on the Supplier’s Profit

when s is small (s < s1), whereas the two-part linear contract dominates both the

one-part linear and the two-part nonlinear contracts when s is large (s > s2). The two-

part nonlinear contract dominates the other two types of contracts when s1 < s < s2.

Obviously, no contract always dominates the other two under asymmetric information

where the relative value of the power shifting to the buyer does not purely depend

on the contract type due to the existence of information asymmetry. Figure 5 also

confirms that the relative value of power shifting does not depend purely on the

contract type from the supplier’s perspective.
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These numerical results imply that information asymmetry dramatically reduces

the benefits of possessing the bargaining power as well as the benefits of contract

flexibility. Therefore, bargaining power and/or more general contracts alone are not

necessarily helpful for extracting significant benefits in cases of incomplete informa-

tion.

III.4. Summary

In this chapter, we explore the impact of power structure, information asymmetry,

and contract type on the joint and individual profits in a two-stage supply chain with

a single-product. Considering the buyer-driven channel, we derive optimal supply

contracts with information asymmetry considerations. We show that the impact of

information asymmetry on the buyer’s profit margin is quite different under different

types of contracts. Under the one part linear contract, information asymmetry de-

creases the buyer’s profit margin. Under the two-part linear contract, the impact of

information asymmetry depends on the buyer’s estimation accuracy. Under the two-

part nonlinear contract, information asymmetry increases the buyer’s profit margin.

We also show that, from the system’s perspective, the buyer-driven channel is

more efficient than the supplier-driven channel under the corresponding one-part lin-

ear contract. We confirm the common wisdom that the bargaining power is beneficial

for both the buyer and the supplier and that the value of possessing bargaining power

is higher under more general contract types in full information cases. However, when

information asymmetry exists in the supply chain, the bargaining power is not nec-

essarily beneficial for either party and the common wisdom does not hold. Thus, it

is not always wise for the buyer or the supplier to pursue the bargaining power when

accurate information is not available. In addition, more general types of contracts
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may not increase the benefits of possessing power when information asymmetry ex-

ists. That is, the value of the bargaining power may be smaller under more general

contract types. Hence, the party without accurate information may not benefit from

having power even when a two-part nonlinear contract is allowed which means that

sometimes one can forfeit the bargaining power and still gain higher profit. Our

investigations are highlighted below:

• The design of different types of optimal contracts for a buyer-driven channel

with full information sharing.

• The design of different types of optimal contracts for a buyer-driven channel

with incomplete information of cost structure.

• The analysis of the impact of power structure and information asymmetry on

supply chain performance under different types of contracts.
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CHAPTER IV

SUPPLY UNCERTAINTY

The existing supply contract design literature ignores supply uncertainty issues. That

is, this literature assumes that when an order is placed, it is either filled immediately

(the case of zero lead time) or after a deterministic, or perhaps random, lead time.

In reality, the supply of a product may sometimes be interrupted due to suppliers’

random equipment breakdowns, maintenance durations, delays in raw material sup-

ply, etc. Hence, supply availability remains an important, but generally overlooked,

issue. Another reason for unpredictability in the supply process is uncertainty in the

yield quantity/quality due to the random proportion of defective items received.

A properly designed supply contract provides an opportunity to improve system-

wide profits under supply uncertainty by explicitly defining how to share the cost and

risk caused by this uncertainty, i.e., how to coordinate the channel. With cost-sharing,

the buyer can order more in each period so as to achieve optimal system-wide profits

(therefore, the supplier and the buyer have a bigger pie to share) without increasing

her cost. This is the main idea that we implement in designing an optimal contract

with supply uncertainty considerations.

As we have discussed in Chapter III, the power structure plays a key role in

supply contract design. Therefore, it is important to first build a fundamental model

that considers power structure and supply uncertainty and to present a framework

on which we may develop more dedicated contractual mechanisms. Therefore, the re-

minder of this chapter is organized as follows. Section IV.1 presents a framework that

incorporates power structure and supply uncertainty. Section IV.2 designs optimal

contracts with continuous deterministic demand. Under a stochastic single-period

demand, supply contracts are addressed in section IV.3. Concluding remarks are
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provided in Section IV.4.

IV.1. Optimal Contracts under Power Structure and Supply Uncertainty

In this section, we develop a one-supplier-one-buyer model in a single period that con-

siders power structure and supply uncertainty. Note that supply uncertainty refers to

several situations including supply availability, yield quantity, and yield quality. To

develop the fundamental model and to provide insights into the dynamics of the chan-

nel, we assume that the supply availability and yield quantity is in statistical control.

That is, the supplier’s production process generates a known, constant proportion of

defective items p̄ (such an assumption has been made previously in the literature by

Affisco et al. 2002 and Cheng 1991). Also, we assume that the demand is determin-

istic price-sensitive. Under this setting, the analysis to derive the supplier’s optimal

production lot size q1, or the buyer’s optimal order quantity Q1, is the same as that

without a supply uncertainty consideration (q2 or Q2) after adjustment with factor

p̄, that is, (1 − p̄)q1 = q2 or (1 − p̄)Q1 = Q2. Without loss of generality, we assume

that p̄ = 0 in this section. However, even if each product is non-defective, the design,

functions, and other aspects of the products may also affect the customer’s satisfac-

tion, and thus, the market demand. We assume that yield quality τ is a measurable

attribute with values in the interval [0,∞). Also, we assume that the market demand

function is linear in price and quality:

d = a− bp+ cτ.

The supplier has the option to improve the quality level with investment. The

investment cost function is given by

C = (ν + ζτ)d+ κ+ ητ 2.
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Such an assumption has been made previously in the literature by Banker et al.

(1998). Thus, the quality level selected by the supplier affects total cost in two ways:

1. Investment in a quality improvement program increases fixed production costs.

The fixed cost κ+ ητ 2 is increasing and convex at the quality level τ .

2. The quality level also has an impact on the production cost per unit. Specifi-

cally, ν denotes the variable production costs per unit not including the quality related

costs. Given a quality level τ selected by the supplier, the unit variable cost increases

by ζτ .

To develop the framework with power structure and supply uncertainty consider-

ations, we study the simple contract design in which the supplier decides the quality

level and the wholesale price and the buyer decides the retail price. Additional dedi-

cated contractual mechanisms can be further developed based on the model that we

present in this section. First we study the case where the supplier is the leader of the

channel. The price and quality decisions take place in the following sequence in time:

i) Supplier (manufacturer) selects his quality level; buyer (retailer) observes the

quality level;

ii) Supplier (manufacturer) selects the wholesale price;

iii) Buyer (retailer) selects the retail price.

Our model also reflects the assumption that price decisions are made after quality

decisions, since the choice of a quality level reflects a long-term decision which cannot

be changed as easily or as frequently as price. To solve this three-stage game, we first

calculate the optimal retail price for the buyer assuming a given quality level and

wholesale price, and then determine the optimal wholesale price assuming a given

quality level. Lastly, the optimal quality level is decided for the supplier.
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The profit functions of the supplier and buyer are given by:

πS = (w − ν − ζτ)(a− bp+ cτ)− κ− ητ 2, (4.1)

πB = (p− w)(a− bp+ cτ). (4.2)

For a given quality level and wholesale price, the first-order condition character-

izing the optimal retail price is given by

∂πB

∂p
= (a− bp+ cτ)− b(p− w) = 0.

We obtain the optimal retail price for a given quality level and wholesale price

as follows:

p =
a

2b
+
w

2
+
cτ

2b
. (4.3)

Substituting (4.3) into (4.1), we have

πS = (w − ν − ζτ)(
a

2
− bw

2
+
cτ

2
)− κ− ητ 2.

The first-order condition characterizing the optimal wholesale price is given by

∂πS

∂w
= (

a

2
− bw

2
+
cτ

2
)− b

2
(w − ν − ζτ) = 0.

Thus, we obtain the optimal wholesale price for a given quality level:

w =
a

2b
+
cτ

2b
+
ζτ

2
+
ν

2
. (4.4)

Substituting (4.4) into (4.3), we have

p =
1

4b
(3a+ 3cτ + bν + bητ). (4.5)
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Substituting (4.4) into (4.1), we have

πS = (
a

2b
+
cτ

2b
− ν

2
− ζτ

2
)(
a

4
+
cτ

4
− bζτ

4
− bν

4
)− κ− ητ 2.

The first-order condition characterizing the optimal quality level is given by

∂πS

∂τ
= (

c

2b
− ζ

2
)(
a

4
+
cτ

4
− bζτ

4
− bν

4
) + (

c

4
− bζ

4
)(
a

2b
+
cτ

2b
− ν

2
− ζτ

2
)− 2ητ = 0.

Finally, we obtain the optimal quality level

τ =
aζ − ac

b
+ cν − bζν

c2

b
− 2cζ + bζ2 − 8η

. (4.6)

Now we study the case when the supplier is the follower in the channel. The

price and quality decisions take place in the following sequence in time:

i) Supplier (manufacturer) selects his quality level; buyer (retailer) observes the

quality level;

ii) Buyer (retailer) announces her profit margin m;

iv) Supplier (manufacturer) selects the wholesale price.

REMARK 2 Note that here the buyer announces only her profit margin while in

Chapter III the buyer announces both the profit margin and the price multiplier. Thus,

the buyer has less bargaining power in this section than in Chapter III. An analysis

considering both the profit margin and a price multiplier can be easily conducted based

on the framework in this section.

To solve this three-stage game, we first calculate the optimal wholesale price

assuming a given quality level and the buyer’s profit margin, and then we determine

the optimal profit margin assuming a given quality level. Lastly, the optimal quality

level is determined.
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The profit function of the supplier is given by:

πS = (w − ν − ζτ)(a− b(w +m) + cτ)− κ− ητ 2. (4.7)

The first-order condition characterizing the optimal retail price for a given quality

level and the buyer’s profit margin is as follows

∂πS

∂w
= (a− b(w +m) + cτ)− b(w − ν − ζτ) = 0.

We obtain the optimal wholesale price for a given quality level and the buyer’s

profit margin:

w =
1

2b
(a− bm+ cτ + bν + bζτ). (4.8)

Substituting (4.8) into (4.2), we have

πB = m(a− bm− 1

2
(a− bm+ cτ + bν + bζτ) + cτ).

The first-order condition characterizing the optimal profit margin for a given

quality level is

∂πB

∂m
= (a− bm− 1

2
(a− bm+ cτ + bν + bζτ) + cτ)− bm

2
= 0.

Thus, we obtain the optimal profit margin for a given quality level:

m =
1

2b
(a+ cτ − bν − bζτ). (4.9)

Since p = w +m, we have

p =
1

4b
(3a+ 3cτ + bν + bητ). (4.10)

Recalling (4.5), note that the optimal retial prices are the same under both

channels for a given quality level τ .
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Substituting (4.9) into (4.7), we have

πS =
1

2
(
1

4b
(a+ cτ + 3bν + 3bζτ)− ν − ζτ)(a+ cτ − 1

4
(3a+ 3cτ

+bν + bζτ))− κ− ητ 2.

The first-order condition characterizing the optimal quality level is given by

∂πS

∂τ
=

1

32
(
c

b
− ζ)(a+ cτ − bν − bζτ) +

1

32
(c− bζ)(

a

b
+
cτ

b
− ν − bζτ)− 2ητ = 0.

Finally, we obtain the optimal quality level:

τ =
aζ − ac

b
+ cν − bζν

c2

b
− 2cζ + bζ2 − 32η

. (4.11)

Comparing the quality levels under two power structures, we obtain the following

theorem.

THEOREM 13 The optimal quality level is higher when the supplier is the follower

of the channel than when he is the leader.

Proof: It is easy to check by comparing (4.6) with (4.11). ¥

Theorem 13 shows that usually the supplier maintains a higher quality level

when he does not have the dominant bargaining power in the channel. Since the

buyer’s optimal retail prices are the same under both power structures for a given

quality level, the buyer will sell products at a higher price when she has the dominant

bargaining power according to (4.10). The supplier will also increase the wholesale

price accordingly. Therefore, it is important to take the power structure and supply

uncertainty into account when designing supply contracts. Now we have presented

the general framework with power structure and supply uncertainty considerations.

Further investigation of more subtle considerations of supply uncertainty can be con-

ducted under the general framework we have presented. In the next section, we will
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consider an infinite planning horizon problem with continuous deterministic demand,

in which the proportion of defective items p̄ has to be treated carefully.

IV.2. Optimal Contracts under Deterministic Demand

In this section, we seek to improve supply chain efficiency by designing supply chain

contracts that include lot sizing and quality (defective items) considerations. Specif-

ically, we consider a supply chain consisting of a single supplier and a single buyer

where the supplier ships in response to orders from the buyer on a lot-for-lot basis. A

proportion of products is defective in each lot. We investigate two cases. In the first

case, the quality level is fixed and the buyer is seeking proper contracts that promotes

cooperation with the supplier in order to reduce the system total cost and to prop-

erly share the savings. In the second case, the buyer initiates a supplier development

program and helps the supplier improve his product quality level. Also, the buyer

offers contracts as a formal mutual commitment to specify the targeted quality level,

to share the investment expense to improve quality level and to distribute the result-

ing savings between both parties. In the first case, one critical piece of information

that the buyer must have when offering contracts is the supplier’s product quality

level since the buyer needs to specify her lot size decision accordingly. However, the

supplier may not be willing to share his full knowledge with the buyer because, for

instance, there is lack of mutual trust or the supplier is an opportunist. In the sec-

ond case, the knowledge of how much total effort and investment must be spent to

improve the current quality to a certain level is also critical to the buyer offering con-

tracts. It may depend on the supplier’s current production conditions, management

effectiveness, employee training level, etc. Again, the supplier may hesitate to release

all of the information. Therefore, to design implementable supply chain contracts, we
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need to address the following questions:

• How can we design optimal contracts for the buyer when information asymmetry

exists in the system?

• What is the impact of information asymmetry on the system and the individual

parties?

To examine the situation where information asymmetry exists, we adapt the

principal-agent contracting approach and derive optimal menus of contracts for the

buyer. Our analysis leads to several interesting observations. Firstly, we show that

the buyer will order a larger lot size than the channel optimum when she has incom-

plete information of the supplier’s quality level. That is, the buyer tends to order

more than the optimum to guarantee that she will have a large enough inventory of

good units to reduce the average setup costs under asymmetric information. Sec-

ondly, a contract may be less effective than no form of contract when information

asymmetry exists, which occurs when the hazard rate of the buyer’s estimation of the

supplier’s quality level is small. Thirdly, when the buyer initiates a supplier develop-

ment program to help the supplier improve his quality level, asymmetric information

about the investment sensitivity evokes a lower quality requirement from the buyer

than when the buyer has full information. Fourthly, the buyer may give up the sup-

plier development program if her estimated hazard rate of the supplier’s investment

sensitivity is significantly small. Finally, through numerical examples, we show that

variation in the buyer’s estimation impairs her capability of extracting savings from

the supplier while she can extract all of the savings when she has full information

of the system. To our best knowledge, this work is the first attempt in the supply

chain contract literature to investigate the effect of lot sizing, quality information,

and supplier development programs.
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IV.2.1. Supply Uncertainty in Statistical Control

We consider a stylistic setting in which a single supplier ships on a lot-for-lot basis

in response to orders from a single buyer. Demand is deterministic. To concentrate

explicitly on the quality issue in our analysis, we assume in this setting that the sup-

plier’s inventory carrying cost is negligible or that the supplier’s production rate is

infinite so that the supplier bears no inventory cost. This setting can be easily ex-

tended to a considerable carrying cost setting, however. Under our stated conditions,

the joint economic lot size (JELS) of the channel may be obtained by minimizing the

joint total relevant cost as

Cj(Q) =
D

Q
(Ss + Sb) +

Q

2
hb,

where

D: annual demand or usage of the item,

Sb: buyer’s ordering cost per order,

Ss: supplier’s setup cost per setup,

hb: buyer’s annual inventory carrying cost,

Q: buyer’s order lot size in units.

The result of classical optimization yields the following formula:

Q∗

j =

√

2D(Ss + Sb)

hb

. (4.12)

The implicit assumption in this derivation is that all units produced by the supplier, in

response to the buyer’s order, are of acceptable quality. This is a strong assumption,

and below we will analyze cases where defective units exist.

Let us look at a situation where the supplier operates a process that is in statis-

tical control. That is, the process generates a known, constant proportion of defective
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items, p (such an assumption has been made previously in the literature by Affisco

et al. 2002 and Cheng 1991). Under these circumstances, Deming (1981) proves that

the buyer should consider only two inspection policies on receiving the parts from the

supplier – zero inspection or 100% inspection. Full inspection is preferred when the

cost of inspecting an incoming item is small compared to the cost of a defective item

being released to the buyer’s production process. We assume this to be the situation

for the present research. To be consistent with Deming’s ideas, we further assume

that the buyer’s inspection process is perfect, and that all rejected parts are disposed

of by the supplier at his own expense.

Based on this scenario, we now adjust the model for the quality factor to provide

the benchmark for the channel. The joint total relevant cost including quality may

be written as

CJ(Q, p̄) =
D(Ss + Sb)

p̄Q
+
p̄Qhb

2
+
D

p̄
[(1− p̄)CM + CN ], (4.13)

where

p̄ proportion of good items produced by the supplier’s process,

CM supplier’s cost of disposing defective items per unit,

CN buyer’s cost of inspection per unit.

The implicit assumption in the structure of the cost function (4.13) is that defective

units are detected before they go into the buyer’s inventory and are immediately

returned to the supplier. The result of classical optimization yields the following

formula for the quality-adjusted JELS:

Q∗

J1 =

√

2D(Ss + Sb)

hbp̄2
. (4.14)

Noting that in Expression (4.14), if p̄ = 1, then the quality is perfect and the quality-

adjusted JELS simply reduces to the basic JELS expressed in Expression (4.12). Also
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note that Q∗

J1 is inversely related to p̄. This is intuitively evident because the required

joint lot size is smaller if more items in the lot are acceptable.

Now, we formally introduce the notion that the system described above is being

managed by two independent entities. We first examine the case in which the supplier

and the buyer do not coordinate. Then, the supplier’s and the buyer’s total costs,

denoted by Cs1 and Cb1, respectively, may be written as

Cs1 =
DSs

p̄Q
+
D

p̄
(1− p̄)CM ,

Cb1 =
DSb

p̄Q
+
p̄hbQ

2
+
D

p̄
CN .

It is easy to derive the optimal lot size of the buyer:

Q∗

b1 =

√

2DSb

hbp̄2
. (4.15)

In the absence of some form of coordination, the resulting lot size is smaller than

the joint optimum, that is, Q∗

b1 < Q∗

J1, and thus, the system’s total cost increases.

To improve the system’s performance and thus to increase the competence of the

channel, the buyer may seek to coordinate with the supplier. In the next section, we

will show that the contracting approach may reduce the system’s cost by modifying

the structure of the relationships contractually in order to more closely align the

individual incentives with the channel optimum.

IV.2.2. Contracting in Supply Uncertainty

With the facilitation of a contract, the buyer may build up a long-term partnership

with the supplier by delineating mutual concessions that favor the persistence of the

business relationship and make its terms more explicit. Obviously, the fundamental

term in the contract is the proper lot size to improve the system’s savings. Also, the
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way to distribute the total savings to each party is a critical term. Therefore, in the

next section, we design supply contracts based on lot size and the buyer’s sharing of

savings when each party has full information of the system. When we closely examine

both parties’ objectives, we can see that, on one hand, both parties are glad to see

more system savings so that they have a bigger pie to share; on the other hand, each

party seeks to take more of the total savings. Due to these conflicting objectives,

they may not be willing to share their private information. One critical piece of

information is the product quality level p̄. It determines the optimal lot size of the

system and the total realizable savings. Therefore, in Section IV.2.2.2, we design

supply contracts based on lot size and the buyer’s sharing of the savings when the

buyer has incomplete information of p̄.

IV.2.2.1. Coordination on Lot Size Q under Full Information

It is clear that by coordinating on the jointly optimal lot sizeQ∗

J1, rather than choosing

Q∗

b1, both supplier and buyer will be better off. Analogously to the basic principle

of the joint economic lot sizing literature (see, e.g., Banerjee 1986, Lal and Staelin

1984, and Monahan 1984), we know that both parties will reduce their total costs

by coordinating on Q∗

J1; i.e., Cs1(Q
∗

b1)−Cs1(Q
∗

J1) ≥ Cb1(Q
∗

J1)−Cb1(Q
∗

b1). The buyer

can implement this by placing her order lot size at Q∗

J1 to the supplier and specifying

that a sharing rate of L ∈ [Cb1(Q
∗

J1) − Cb1(Q
∗

b1), Cs1(Q
∗

b1) − Cs1(Q
∗

J1)] be charged to

the supplier in return for the buyer’s choosing Q = Q∗

J1. Under full information,

the buyer can set the sharing rate at L = Cs1(Q
∗

b1) − Cs1(Q
∗

J1), extracting all of the

savings from the supplier. Let Cmax
s be the highest total net costs (after sharing) under

which the supplier is still willing to contract with the buyer. With full information,

the buyer can impose a sharing rate L = Cmax
s − Cs1(Q

∗

J1), pushing the supplier to

incur the highest costs he will accept while keeping all remaining cost savings for
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herself. However, such a rate L, and the jointly optimal lot size Q∗

J1, depend on the

supplier’s product quality p̄, so the buyer must know the supplier’s product quality.

In practice, this is often an unrealistic assumption, and below we show how the buyer

can offer a menu of contracts when she does not know the exact product quality p̄.

IV.2.2.2. Coordination under Incomplete Information of p̄ with Contract

(Q(p̄), L(p̄))

To address this problem, we follow the approach outlined in Laffont and Tirole (1993).

The buyer is the entity taking the initiative and, therefore, is the principal, but the

supplier holds private information about his product quality p̄. Assume the buyer

holds a prior distribution F (·), differentiable on its domain [pL, pU ] with 0 < pL <

pU ≤ 1, density f(·), mean µp̄ and standard deviation δp̄. We make a common

assumption as follows:

ASSUMPTION 4 Increasing hazard rate:

d

dp̄

(

f(p̄)

1− F (p̄)

)

≥ 0.

Many common distributions satisfy Assumption 4, including uniform, normal, logistic,

chi-squared, and exponential; see Bagnoli and Bergstrom (1989) for details on the

hazard rate. Instead of proposing a single contract (Q,L) as in section IV.2.2.1, the

buyer now offers a menu of contracts (Q,L(Q)), letting the supplier choose a specific

pair from the menu. To model the contracting process, we parameterize each Q and

L on p̄. Note that offering a (Q(p̄), L(p̄)) menu is equivalent to a (Q,L(Q)) menu,

although the equivalence relation need not exist in the closed form. The supplier’s

product quality p̄ can be inferred from the (Q(p̄), L(p̄)). The contracting steps are:

Step 1. The supplier knows his product quality p̄; the buyer does not.
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Step 2. The buyer offers a menu (Q(·), L(·)), linking Q(p̂) to compensation rate

L(p̂) for whatever product quality p̂ the supplier announces.

Step 3. The supplier chooses a contract (Q(p̂), L(p̂)), effectively announcing p̂.

Step 4. Production and delivery lot size are fixed at Q(p̂), and the supplier pays

sharing rate L(p̂).

We make a common assumption here that contracting is a one-shot process, so

that renegotiation is not allowed. From the revelation principle (Laffont and Tirole

1993), we can restrict our attention to menus of contracts in which the supplier an-

nounces his product quality truthfully. The intuitive explanation of the revelation

principle is that the buyer can predict what product quality p̂ any supplier with true

quality p̄ will announce, so she can take this knowledge of p̂(p̄) into account in de-

signing the menu (Q(·), L(·)). This allows us to formulate an incentive-compatibility

constraint, which ensures that a supplier with product quality p̄ will indeed announce

p̂ = p̄. The optimization problem S1 faced by a supplier with true product quality p̄,

who has to choose what product quality p̂ to announce, is

S1 min Cs1(p̄, p̂) =
DSs

p̄Q(p̂)
+
D

p̄
(1− p̄)CM + L(p̂). (4.16)

Letting Q′(p̂) and L′(p̂) denote the first derivatives of Q(p̂) and L(p̂) with respect to

p̂ respectively, the first-order condition of (4.16) for the supplier to minimize his own

cost requires

− DSs

p̄Q2(p̂)
Q′(p̂) + L′(p̂) = 0. (4.17)

In fact, (4.17) is also sufficient to provide the optimal product quality p̂ for the

supplier’s optimization problem S1 (see proof of proposition 11). Inducing truthful

revelation is equivalent to ensuring that the optimum is reached at p̂ = p̄; hence, we
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can formulate the incentive-compatibility constraint:

IC1 : L′(p̄) =
DSs

p̄Q2(p̄)
Q′(p̄), ∀p̄ ∈ [pL, pU ]. (4.18)

To make the contract acceptable to the supplier, regardless of p̄, total costs under the

contract may not exceed some predetermined and commonly known cost limit Cmax
s .

This is formulated as an individual rationality constraint:

IR1 : Cs1(p̄, p̄) ≤ Cmax
s , ∀p̄ ∈ [pL, pU ]. (4.19)

To find the optimal menu of contracts, the buyer solves the following problem:

B1 min
Q(·),L(·)

∫ pU

pL

[
DSb

p̄Q(p̄)
+
Q

2
p̄hb +

D

p̄
CN − L(p̄)]f(p̄)dp̄

s.t. (IC1), (IR1), ∀p̄ ∈ [pL, pU ].

Solving the optimal control problem, B1 yields the optimal menu of contracts

below.

PROPOSITION 11 When the supplier holds private information about p̄, the op-

timal menu of contracts (Q∗

JA(p̄), L
∗

JA(p̄)), is such that:

Q∗

JA =

√

2D(Ss + Sb +
Ss(1−F (p̄))

p̄f(p̄)
)

hbp̄2
, ∀p̄ ∈ [pL, pU ], (4.20)

L∗

JA
′(p̄) =

DSs

p̄Q∗

JA
2(p̄)

Q∗

JA
′(p̄), ∀p̄ ∈ [pL, pU ]. (4.21)

Proof: The proof relies on some fundamental results from optimal control theory as

outlined below (see Kamien and Schwartz (1981), pp. 142-146 for details.). Letting

h(p̄) = [
DSb

p̄Q(p̄)
+
Q

2
p̄hb +

D

p̄
CN − L(p̄)]f(p̄),

g1 =
DSs

p̄Q2(p̄)
u, and
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g2 = u = Q′(p̄),

the above problem B1 can be expressed as

min

∫ pU

pL

h(p̄)dp̄ (4.22)

s.t. L′(p̄) = g1, (4.23)

Q′(p̄) = g2, (4.24)

IR1 : Cs1(p̄, p̄) ≤ Cmax
s (4.25)

The necessary conditions for optimality can be stated in terms of the Hamiltonian

H = h+ λ1g1 + λ2g2.

These conditions include the state equations given by Constraints (4.23) and (4.24),

the multiplier equations given by

λ′1 = −
∂H

∂L
= −

(

∂h

∂L
+ λ1

∂g1
∂L

+ λ2
∂g2
∂L

)

, λ′2 = −
∂H

∂p̄
= −

(

∂h

∂p̄
+ λ1

∂g1
∂p̄

+ λ2
∂g2
∂p̄

)

,

and the optimality condition given by

∂H

∂u
=
DSs

p̄Q2
λ1 + λ2 = 0. (4.26)

Then, it is easy to show that λ′1(p̄) = f(p̄) and λ1(p̄) = F (p̄)− 1, whereas

λ′2 = −[−
DSb

p̄Q2
f(p̄) +

1

2
p̄hbf(p̄)− 2λ1

DSs

p̄Q3
u], (4.27)

Differentiating (4.26), we have

λ′2 = −[
DSs

p̄Q2
f(p̄)− DSs

p̄2Q2
λ1 − 2λ1

DSs

p̄Q3
u]. (4.28)

Substituting (4.28) into (4.27) leads to (4.20). Since we have ignored Expression

(4.25) in the above discussion, we need to determine whether or not it is satisfied for
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all p̄ ≥ pL. Recalling Expression (4.16), Cs1(p̄, p̄) is decreasing in p̄ because

dCs1(p̄)

dp̄
= − DSs

p̄2Q(p̄)
− D

p̄2
< 0.

Consequently, we can set L(pL) such that Expression (4.25) is binding.

To prove that IC1 (4.18) is sufficient for the supplier’s optimization problem, we

use a contradiction analogous to that in Laffont and Tirole (1993).

Assume there is a p̂ 6= p̄ such that Cs1(p̄, p̂) < Cs1(p̄, p̄). This is equivalent to

∫ p̂

p̄

∂

∂x
[Cs1(p̄, x)]dx < 0.

Since

∂

∂x
[Cs1(x, x)] = 0

for all x, so that the previous expression is equivalent to

∫ p̂

p̄

[
∂

∂x
[Cs1(p̄, x)]−

∂

∂x
[Cs1(x, x)]]dx < 0,

which in turn is equivalent to

∫ p̂

p̄

∫ p̄

x

∂

∂x∂u
[Cs1(u, x)]dudx < 0. (4.29)

Since Q(p̄) is decreasing in p̄ according to Assumption 4, it is easy to verify that

∂

∂x∂u
[Cs1(u, x)] =

DSs

u2Q2(x)

∂Q(x)

∂x
< 0.

So, if p̂ > p̄, then x > p̄ for all x ∈ [p̄, p̂], so that the double integral in (4.29) is

positive, which is a contradiction. A similar contradiction follows for the case p̂ < p̄.

If the prior distribution F (p̄) is uniform, we have

Q∗

JA =

√

2D(Ss + Sb + Ss(
pU
p̄
− 1))

hbp̄2
,
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and Q∗

JA is decreasing in p̄, so the incentive-compatibility constraint is sufficient for

the supplier’s optimization problem. ¥

Based on Proposition 11, we can explicitly examine the system’s performance

and individual decisions.

THEOREM 14 When the supplier holds private information about p̄, the buyer’s

realized lot size is larger than the channel optimum. It holds that Q∗

JA ≥ Q∗

J1 > Q∗

b1.

Further, the realized costs of the decentralized channel without contract (CJ(Q
∗

b1)),

with contract and full information (CJ(Q
∗

J1)), and with contract and asymmetric

information (CJ(Q
∗

JA)), satisfy the following relationships:

1. CJ(Q
∗

J1) ≤ CJ(Q
∗

JA) < CJ(Q
∗

b1) if

1− F (p̄)

p̄f(p̄)
< 1 +

Ss

Sb

; (4.30)

In this case, contracting is more effective than no form of contract;

2. CJ(Q
∗

J1) ≤ CJ(Q
∗

b1) ≤ CJ(Q
∗

JA) if

1− F (p̄)

p̄f(p̄)
≥ 1 +

Ss

Sb

; (4.31)

In this case, contracting is less effective than no form of contract.

Proof: Q∗

JA ≥ Q∗

J1 > Q∗

b1 follows directly from Proposition 11.

To compare CJ(Q
∗

JA) with CJ(Q
∗

b1), recalling expression (4.13), we need only to

compare

D(Ss + Sb)

p̄Q∗

JA

+
p̄Q∗

JAhb

2
with

D(Ss + Sb)

p̄Q∗

b1

+
p̄Q∗

b1hb

2
.

Letting

CEOQ(Q) =
D(Ss + Sb)

p̄Q
+
p̄Qhb

2
,
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it is true that

CEOQ(Q)

CEOQ(Q∗

J1)
=

1

2
[
Q

Q∗

J1

+
Q∗

J1

Q
].

It follows that CEOQ(Q
∗

JA) < CEOQ(Q
∗

b1) if Q∗

JAQ
∗

b1 < Q∗2
J1. That is, CJ(Q

∗

JA) <

CJ(Q
∗

b1) if

Q∗

JA ≤
2D(Ss + Sb)

hbp̄2Q∗

b1

. (4.32)

Substituting (4.15) and (4.20) into (4.32), the inequality in (4.32) follows from (4.30).

Similarly, it can be shown that CJ(Q
∗

b1) ≤ CJ(Q
∗

JA) if (4.31) holds. ¥

Theorem 14 shows that the buyer will order a larger lot size than the channel

optimum when she has incomplete information of the supplier’s product quality. This

is because the buyer does not know the exact quality level and thus she tends to order

more than the optimum in order to guarantee that she will have enough good units

per lot to satisfy demand as well as to reduce the average setup costs. Theorem 14 also

shows that contracting may not always be more efficient than no form of coordination.

If the hazard rate of the buyer’s estimation of the supplier’s true quality level is small,

then (4.31) may hold and thus no contract is more effective. If the ratio Ss/Sb is large,

that is, the potential for performance improvement under a contract is considerable,

contracting tends to be more efficient than no form of coordination. For example,

suppose that Ss = $400/setup, Sb = $250/order, the supplier’s product quality level

p̄ = 0.785, the buyer’s prior distribution of the supplier’s quality level is truncated

normal over the interval [0.75, 0.95] with a mean of 0.85 and a standard deviation of

0.023. Thus, F (p̄) = 0.0024, f(p̄) = 0.3198, we have

1− F (p̄)

p̄f(p̄)
= 3.97 > 1 +

Ss

Sb

= 2.6,
CEOQ(Q

∗

JA)

CEOQ(Q∗

b1)
= 1.25.
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If Sb = $100/order, then

1− F (p̄)

p̄f(p̄)
= 3.97 < 1 +

Ss

Sb

= 5,
CEOQ(Q

∗

JA)

CEOQ(Q∗

b1)
= 0.85.

Therefore, the buyer’s information structure of the supplier’s quality level p̄ is critical

to contracting efficiency. Sometimes the buyer is unable to improve the system’s

performance by offering a contract due to asymmetric information, especially when

potential improvement is insignificant.

COROLLARY 2 When the buyer holds a prior uniform distribution, CJ(Q
∗

b1) ≥

CJ(Q
∗

JA), ∀p̄ ∈ [pL, pU ] only if

δp̄
µp̄

≤
(1 + Ss

Sb
)

√
3(3 + Ss

Sb
)
. (4.33)

If µp̄ ≥ 0.75, then CJ(Q
∗

b1) ≥ CJ(Q
∗

JA), ∀p̄ ∈ [pL, pU ]. Also, if p̄ = µp̄, then CJ(Q
∗

b1) ≥

CJ(Q
∗

JA).

Proof: When the buyer holds a prior uniform distribution, we have the upper bound

and lower bound of the domain of p̄ as follows:

pL = µp̄ −
√
3δp̄, (4.34)

pU = µp̄ +
√
3δp̄ (4.35)

Substituting (4.34) and (4.35) into (4.31), after simplification, we have (4.33). If

µp̄ ≥ 0.75, noting that pU ≤ 1, we have

δp̄
µp̄

≤ 1

3
√
3
≤

(1 + Ss
Sb
)

√
3(3 + Ss

Sb
)
.

If p̄ = µp̄, the left-hand side of inequality (4.30) can be simplified as

√
3δp̄
µp̄

≤ 1 since pL ≥ 0.
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¥

When the buyer holds a prior uniform distribution, contracting is more efficient

than no form of contract as long as the buyer’s expected quality level µp̄ is high

enough (more than 0.75) or the buyer’s estimation of the quality level is unbiased.

Thus, if the supplier provides high quality products, it is always more efficient for the

buyer to offer a contract to the supplier even when asymmetric information exists. In

the following proposition, we provide the closed form of optimal contracts when the

buyer’s prior distribution of p̄ is uniform.

PROPOSITION 12 When the prior F (p̄) is uniform, and the buyer’s ordering cost

Sb = 0, the optimal menu of contracts are:

Q∗

JA =

√

2DSspU
hbp̄3

, ∀p̄ ∈ [pL, pU ], (4.36)

L∗

JA = −3
√

hbDSsp̄

2pU
+ Cmax

s +

√

2hbDSspL
pU

− D

pL
(1− pL)CM , ∀p̄ ∈ [pL, pU ].

Proof: When F (p̄) is uniform,

F (p̄) =
p̄− pL
pU − pL

,

and

(1− F (p̄))

p̄f(p̄)
=
pU
p̄
− 1. (4.37)

Thus, substituting (4.37) into (4.20) we have (4.36), and

dQ∗

JA

dp̄
= −3Q∗

JA

2p̄
. (4.38)
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Substituting (4.38) into (4.21) leads to

L∗

JA
′(p̄) = − 3DSs

2
√

2DSspU p̄

hb

,

L∗

JA(p̄) = −3
√

hbDSsp̄

2pU
+X for some constant X.

To solve for X, solving Cs1(pL, pL) = Cmax
s , that is, when (4.19) is binding at p̄ = pL,

leads to

X = Cmax
s +

√

2hbDSspL
pU

− D

pL
(1− pL)CM .

¥

Proposition 12 provides an explicit menu of contracts under the uniform case.

Both the lot size and the sharing rate are decreasing in p̄. A larger lot size Q will lead

to a larger sharing rate L. From the supplier’s perspective, a higher product quality

level will incur a smaller order lot size from the buyer, which results in larger setup

costs and less sharing. This is a tradeoff for the supplier to balance his setup costs

and sharing rate, which is designed by the buyer under the incentive-compatibility

constraint to make sure that the supplier will announce his true product quality.

IV.2.3. Contracting in Supplier Development Program

In this section, we study the case when the buyer initiates a supplier development

program and both parties work closely to improve the supplier’s product quality level

in order to reduce the total costs. We consider p̄ to be a decision variable. From

the perspective of the system, the objective is to minimize the sum of the investment

cost for increasing p̄ and the quality-adjusted joint total relevant cost. Specifically,

we seek to minimize

G(Q, p̄) = iap̄(p̄) + CJ(Q, p̄), (4.39)
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s.t 0 < p̄0 ≤ p̄ < 1,

where i is the cost of capital; p̄0 is the original proportion of good units produced by

the supplier’s process; ap(p̄) is a convex and strictly increasing investment function

of p̄. Thus, iap̄(p̄) represents the annual investment cost. We use the following

logarithmic form, which is similar to the one employed in Porteus (1986):

ap̄(p̄) = β − αln(1− p̄) 0 < p̄0 ≤ p̄ < 1,

where α denotes the investment sensitivity. The following proposition provides system-

wide optimal quality improvement and determines the lot size decisions in the supplier

development program.

PROPOSITION 13 The optimal lot size and the product quality level are unique

and given by

p̄∗J2 = max{p̄0, p̄∗J3},

Q∗

J2 = min{Q∗

J0, Q
∗

J3},

where

p̄∗J3 =

√

(CM + CN)2D2 + 4iα(CM + CN)D − (CM + CN)D

2iα
, (4.40)

Q∗

J0 =

√

2D(Ss + Sb)

hbp̄20
,

Q∗

J3 =

√

2D(Ss + Sb)

hbp̄∗2J3
. (4.41)

Proof: For a given p̄, there exists a unique optimal lot size Q∗

J3 since

∂2G

∂Q2
=

2D(Ss + Sb)

pQ3
> 0
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and (4.41) can be easily obtained from

∂G

∂Q
= 0.

Define Gp̄(p̄) = G(Q∗

J3(p̄), p̄) so that

Gp̄(p̄) = i(β − αln(1− p̄)) +
√

2hbD(Ss + Sb) +
D

p̄
[(1− p̄)CM + CN ]. (4.42)

Also, let p̄∗J3 denote the optimal minimizer of Gp̄(p̄). It follows that Q
∗

J3(p̄
∗

J3) and p̄
∗

J3

minimizes (4.39). Therefore, in order to complete the proof, it is sufficient to compute

p̄∗J3. Solving

∂Gp̄(p̄)

∂p̄
=

iα

1− p̄
− (CM + CN)D

p̄2
= 0 (4.43)

for p̄, we have

iαp̄∗2J3 + (CM + CN)Dp̄
∗

J3 − (CM + CN)D = 0,

and (4.40) is easily achieved. Noting that

∂Gp̄(p̄)

∂p̄
|0+ = −∞,

∂Gp̄(p̄)

∂p̄
|1− = +∞,

and

∂2Gp̄(p̄)

∂p̄2
> 0,

we conclude that p̄∗J3 is unique and 0 < p̄∗J3 < 1. ¥

Proposition 13 provides the benchmark to the supplier development program.

In the next section, we further investigate the case where both parties are managed

independently, and examine the joint and individual performances.
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IV.2.3.1. Coordination on Lot Size Q and Product Quality p̄ under Full

Information

Here, again, by properly targeting the improved quality level at p̄∗J3, and coordinating

on the jointly optimal lot size Q∗

J2 accordingly, both supplier and buyer will be better

off, i.e., G(Q∗

b1, p̄0) ≥ G(Q∗

J2, p̄
∗

J3). The buyer can implement this by placing her order

lot size at Q∗

J2, urging and committing to help the supplier to improve his product

quality level up to p̄∗J3, and specifying a cost/saving sharing rate L which includes

the buyer’s investment in a supplier development program and the saving-sharing

rate from coordination. Let Cmax
s be the highest total net costs (after sharing) under

which the supplier is still willing to contract with the buyer. With full information, the

buyer can impose a sharing L = Cmax
s −[Cs1(Q

∗

J2, p̄
∗

J3)+iap̄(p̄
∗

J3)], pushing the supplier

to incur the highest costs he will accept while keeping all remaining cost savings for

herself. However, such a sharing L depends on how much total effort and investment

have to be spent to improve the supplier’s quality to a certain level. It may depend

on the supplier’s current production conditions, management effectiveness, employee

training level, etc. Although the supplier is better informed about these conditions,

he may hesitate to release all his information to the buyer. In the next section, we

show how the buyer can offer a menu of contracts when she does not know the exact

value of the supplier’s investment sensitivity α.

IV.2.3.2. Coordination under Incomplete Information about α with Con-

tract (Q(α), p̄(α), L(α))

Now assume that only the supplier observes α. We follow a contracting approach anal-

ogous to that in Section IV.2.2.2. The buyer offers a menu of contracts (Q(·), p̄(·), L(·)),

letting the supplier choose according to the latter’s investment sensitivity α. The con-



128

tracting process is analogous to that in Section IV.2.2.2. We also assume that there

is no renegotiation after the initial contracting.

The buyer holds a prior distribution H(α), differentiable on its domain [α, ᾱ]

with 0 < α < ᾱ < ∞ with density h(α), mean µα and standard deviation δα. We

make a common assumption as follows:

ASSUMPTION 5 Decreasing reverse hazard rate:

d

dα

(

h(α)

H(α)

)

≤ 0.

Many common distributions satisfy Assumption 5, including uniform, normal, logistic,

chi-squared, and exponential; see Bagnoli and Bergstrom (1989) and Corbett (2001)

for details on the reverse hazard rate. The optimization problem S2 faced by a

supplier with a true investment sensitivity parameter α and having to choose what α̂

to announce is

S2 min Cs2(α, α̂) = i[β − α ln (1− p̄(α̂))] +
DSs

p̄(α̂)Q(α̂)
+

D

p̄(α̂)
(1− p̄(α̂))CM

+L(α̂). (4.44)

Similarly to Section IV.2.2.2, we derive the supplier’s incentive-compatibility con-

straint and individual-rationality constraint

IC2 : L′(α) = − iα

1− p̄(α)
p̄′(α) +DSs[

1

p̄2(α)Q(α)
p̄′(α)

+
1

p̄(α)Q2(α)
Q′(α)] +

D

p̄2(α)
p̄′(α)CM , ∀α ∈ [α, ᾱ],(4.45)

IR2 : Cs2(α, α) ≤ Cmax
s , ∀α ∈ [α, ᾱ]. (4.46)

To find the optimal menu of contracts, the buyer solves the following problem:

B2 min
Q(·),p̄(·),L(·)

∫ ᾱ

α

[
DSb

p̄(α)Q(α)
+
Q(α)

2
p̄(α)hb +

D

p̄(α)
CN − L(α)]h(α)dα
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s.t. IC2, IR2, ∀α ∈ [α, ᾱ].

Solving the optimal control problem, B2 yields the optimal menu of contracts below.

PROPOSITION 14 When the supplier holds private information about α, the op-

timal menu of contracts, (Q∗

JAI(α), p̄
∗

JAI(α), L
∗

JAI(α)), is such that:

p̄∗JAI(α) = max{p̄0, p̄∗JAα}, ∀α ∈ [α, ᾱ],

Q∗

JAI(α) = min{Q∗

J0, Q
∗

JAα}, ∀α ∈ [α, ᾱ],

L′(α) = − iα

1− p̄∗JAI(α)
p̄∗

′

JAI(α) +
D

p̄∗2JAI(α)
p̄∗

′

JAI(α)CM , ∀α ∈ [α, ᾱ],

where

p̄∗JAα =

√

D2(CM + CN)2 + 4iD(CM + CN)(α+ H(α)
h(α)

)−D(CM + CN)

2i(α + H(α)
h(α)

)
,(4.47)

Q∗

JAα =

√

2D(Ss + Sb)

hbp̄∗2JAα

. (4.48)

In addition, p̄∗JAI(α) is decreasing in α and Q∗

JAI(α) is increasing in α.

Proof: We use an approach similar to that in the proof of Proposition 11. The above

problem B2 can be expressed as

min

∫ ᾱ

α

h2(α)dα (4.49)

s.t. L′(α) = g1, (4.50)

p̄′(α) = g2, (4.51)

Q′(α) = g3, (4.52)

IR2 : Cs2(α, α) ≤ Cmax
s ,

where
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h2(α) = [
DSb

p̄(α)Q(α)
+
Q(α)

2
p̄(α)hb +

D

p̄(α)
CN − L(α)]h(α),

g1 = − iα

1− p̄(α)
u+DSs[

1

p̄2(α)Q(α)
u+

1

p̄(α)Q2(α)
v] +

DCM

p̄2(α)
u,

g2 = p̄′ = u,

g3 = Q′ = v.

The necessary conditions for optimality can be stated in terms of Hamiltonian

H2 = h2 + λ1g1 + λ2g2 + λ3g3.

These conditions include the state equations given by Constraints (4.50), (4.51), and

(4.52), the multiplier equations given by

λ′1 = −
∂H2

∂L
= −

(

∂h2
∂L

+ λ1
∂g1
∂L

+ λ2
∂g2
∂L

+ λ3
∂g3
∂L

)

,

λ′2 = −
∂H2

∂p̄
= −

(

∂h2
∂p̄

+ λ1
∂g1
∂p̄

+ λ2
∂g2
∂p̄

+ λ3
∂g3
∂p̄

)

, and

λ′3 = −
∂H2

∂Q
= −

(

∂h2
∂Q

+ λ1
∂g1
∂Q

+ λ2
∂g2
∂Q

+ λ3
∂g3
∂Q

)

,

and the optimality condition given by

∂H2

∂u
= − iα

1− p̄
λ1 +

DSs

p̄2Q
λ1 +

D

p̄2
CMλ1 + λ2 = 0, (4.53)

∂H2

∂v
=

DSs

p̄Q2
λ1 + λ3 = 0. (4.54)

Then, it is easy to show that λ1 = H(α) whereas

λ′2 = −[−DSb

p̄2Q
h(α) +

1

2
Qhbh(α)−

D

p̄2
CNh(α)−

iα

(1− p̄)2
uλ1 −

2DSs

p̄3Q
uλ1 −

DSs

p̄2Q2
vλ1

− 2D

p̄3
CMuλ1], (4.55)
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λ′3 = −[−DSb

p̄Q2
h(α) +

1

2
p̄hbh(α)−

DSs

p̄2Q2
uλ1 −

2DSs

p̄Q3
vλ1]. (4.56)

Differentiating (4.53), (4.54) results in

λ′2 = −[− iα

1− p̄
h(α)− i

1− p̄
λ1 −

iα

(1− p̄)2
uλ1 +

DSs

p̄2Q
h(α)− 2DSs

p̄3Q
uλ1 −

DSs

p̄2Q2
vλ1

+
D

p̄2
CMh(α)−

2D

p̄3
CMuλ1], (4.57)

λ′3 = −[DSs

p̄Q2
h(α)− DSs

p̄2Q2
uλ1 −

2DSs

p̄Q3
vλ1]. (4.58)

Substituting (4.58) into (4.56), we have (4.48). Substituting (4.57) and (4.48) into

(4.55) leads to

i(α + H(α)
h(α)

)

1− p̄
=
D(CM + CN)

p̄2
. (4.59)

and (4.47) is obtained.

Since we have ignored Expression (4.46) in the above discussion, we need to

determine whether or not it is satisfied for all α ≤ ᾱ. Recalling Expression (4.44),

Cs2(α) is increasing in α because

dCs2(α)

dα
= −iln(1− p̄(α)) > 0,

Consequently, we can set L(α) such that Expression (4.46) is binding, and this com-

pletes the proof. ¥

Proposition 14 shows that a larger value of investment sensitivity α would result

in a lower quality level p̄, which is intuitively evident since a larger α means a greater

expense for a certain quality level. The buyer’s order lot size increases according to

the lower product quality in order to guarantee a certain amount of realized lot size

p̄Q.

THEOREM 15 The targeted quality level under asymmetric information is lower
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than under full information, that is,

p̄∗JAα ≤ p̄∗J3. (4.60)

The optimal lot size under asymmetric information is larger, that is,

Q∗

JAα ≥ Q∗

J3. (4.61)

Contracting under asymmetric information is worthwhile only if

D(CM + CN)(1− p̄0)

ip̄20
≥ α+

H(α)

h(α)
. (4.62)

Proof: (4.60) and (4.61) can be easily obtained by comparing (4.40) and (4.41) with

(4.47) and (4.48). Contracting under asymmetric information is worthwhile only if

p̄∗JAα ≥ p̄0. Note that p̄
∗

JAα is the root of equation (4.59). Thus, we need only to show

that

i(α + H(α)
h(α)

)

1− p̄0
≤ D(CM + CN)

p̄20
(4.63)

and (4.62) is achieved. ¥

The asymmetric information results in a lower quality requirement from the

buyer. Interestingly, the realized lot size p̄∗JAαQ
∗

JAα is the same as the joint optimal

realized lot size p̄∗J2Q
∗

J2. Recalling (4.13), the joint setup cost and inventory holding

cost are

D(Ss + Sb)

p̄Q
and

p̄Qhb

2
,

respectively. Under an optimal menu of contracts, the resulting setup cost and in-

ventory holding cost are system-wide optimal. However, the buyer specifies a lower

quality level than the optimum to the supplier, which results in a lower investment ex-

pense for the supplier and higher inspection and disposal costs as well. The intuitive

explanation is that since the buyer has incomplete information of the product quality



133

level, she will conservatively request a lower quality level. After the buyer specifies

the product quality level, she adjusts her order lot size accordingly to minimize the

total setup and inventory holding cost so that she may ask for more compensation

from the supplier without driving him away.

Contracting under asymmetric information may not be worthwhile. If the reverse

hazard rate of the buyer’s estimation of the supplier’s true investment sensitivity is

small, then (4.62) may not hold and thus no investment will be made. For example,

suppose that D = 1000 units/year, CM = $12/unit, CN = $5/unit, i = 0.1, the

supplier’s original product quality level p̄0 = 0.85, investment sensitivity α = 14600,

the buyer’s prior distribution of the supplier’s investment sensitivity is truncated

normal over the interval [8750, 16250] with a mean of 12500 and a standard deviation

of 1000. Thus, H(α) = 0.9823, f(α) = 0.4399× 10−4, and we have

α +
H(α)

f(α)
= 36929.59 >

D(CM + CN)(1− p̄0)

ip̄20
= 35294.12, p̄∗JAα = 0.845 < p̄0.

Thus, no investment decision will be made. The existence of information asymmetry

may ruin the buyer’s interest in initiating a supplier development program in this

instance.

IV.2.4. Numerical Analysis

We first present an example to illustrate the form of the optimal contract and the

performance of the system and each party. The parameters of the example are as

follows: D = 1000 units/year, Cp = $25/unit, Ss = $400/setup, Sb = $20/order,

r = 0.2, CM = $12/unit, and CN = $5/unit. The initial product quality level is

p̄ = 0.85. Investment may be made in improving the quality with i = 0.1, α = 12500,

and β = −23714. Suppose that the prior distribution of the supplier’s quality level p̄

is uniform over the interval [0.75, 0.95] with a mean of 0.85 and a standard deviation
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of 0.0577. Suppose that the prior distribution of the supplier’s investment sensitivity

α is uniform over the interval [8750, 16250] with a mean of 12500 and a standard

deviation of 2165.13. Thus, the buyer’s estimation of p̄ and α is unbiased in this

example. For simplicity, we assume that the supplier’s highest cost for signing a

contract with the buyer is Cmax
s = 6589.78, which is the same as his total cost with

no form of contract.

Table V presents five cases, including no form of contract, a contract with full

information, a contract with asymmetric information of the quality level p̄, a con-

tract to improve the quality with full information, and a contract with asymmetric

information of the investment sensitivity α. As Table V indicates, when each party

has full information of the system, a contract based on the lot size can help reduce

the total cost of the system by 22.22%, and the buyer extracts all of the savings from

the supplier by initiating the contract. When the buyer has incomplete information

of the supplier’s quality level p̄, the total savings are almost the same as in the full

information case since the buyer’s estimation is unbiased in this example. However,

the buyer can only reduce her own cost by 13.78%, instead of 45.34% as in the full in-

formation case, due to the information asymmetry. The supplier’s cost is reduced by

30.27% at the same time since he has full knowledge of his quality level. If a supplier

development program is initiated by the buyer and both parties reach a contractual

agreement, the total cost of the system can by further reduced by 28.20%, and the

buyer extracts all of the savings from the supplier if she has full information of the

system. If the buyer has incomplete information of the investment sensitivity to im-

prove the quality level, her own cost can be reduced by 43% in contrast to 57.55%

in the full information case. The total savings are almost the same as in the full

information case since the buyer’s estimation of α is unbiased. The supplier’s cost

is reduced by 13.36% at the same time. In this example, we observe that a contract
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Table V Comprehensive Results under Supply Uncertainty

Variable No contract Contract with Contract with Contract to Contract to
full infor. asym. p̄ improve (full) improve (asym. α)

Q 105 482 612 438 446

L - 3496.24 1718.29 3730.80 2905.25

p̄ 0.85 0.85 0.85 0.936 0.919

Supplier’s cost 6589.78 6589.78 4595.01 6589.78 5709.34

% Savings - 0 30.27% 0 13.36%

Buyer’s cost 6329.57 3459.60 5457.27 2686.67 3607.58

% Savings - 45.34% 13.78% 57.55% 43.00%

Total costs 12919.35 10049.38 10052.28 9276.45 9316.92

% Savings - 22.22% 22.19% 28.20% 27.88%

would help reduce the system’s total cost, and a supplier development program would

help achieve further savings. If the buyer has full information of the system, she is

able to extract all of the savings from the supplier. However, information asymme-

try does impair the buyer’s capability to extract savings. Next, we examine further

how the buyer can design contracts under information asymmetry and the impact of

information asymmetry on the system’s and both individuals’ costs.

Figure 6 illustrates the buyer’s contract pairs (Q,L(Q)) when she has incomplete

information of the supplier’s quality level p̄. We observe that a larger lot size Q will

lead to a larger sharing rate L. From the supplier’s perspective, a larger lot size

means a smaller setup cost, and he would receive less savings as well. The tradeoff

for the supplier, which is designed by the buyer under the incentive-compatibility

constraint, is that he balances his setup costs and sharing rate which guarantees that

the supplier will announce his true product quality.

Figure 7 illustrates the relationship of p̄ and L in the buyer’s contract menu
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Figure 6 Buyer’s Contract Menu (Q,L(Q))

(Q, p̄, L) when she has incomplete information of the supplier’s investment sensitiv-

ity α. We observe that a higher quality expectation p̄ is associated with a smaller

sharing rate L. Recall Proposition 14 which states that the realized lot size p̄Q in

the buyer’s contract menu is the same as the joint optimal realized lot size, and thus

the joint setup cost and inventory holding cost are system-wide optimal. Thus, from

the supplier’s perspective, a lower quality expectation means less investment expense,

larger disposal costs, and less savings received. When the quality expectation is high,

the buyer’s sharing rate drops significantly. This is because the total investment to

improve the quality level increases dramatically, and thus the buyer needs to expend

much more effort and investment to help the supplier improve product quality as

well as to make sure that the supplier is still willing to reveal his true investment

sensitivity under the contract menu.

Obviously, when the buyer has incomplete information of the supplier’s quality
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Figure 7 p̄ and L in Buyer’s Contract Menu (Q, p̄, L)

level p̄ or investment sensitivity α, she is unable to extract all of the savings from the

supplier. Next, we examine explicitly the impact of information asymmetry on the

system’s and both individuals’ costs.

Figure 8 illustrates the impact of the coefficient of variation of the buyer’s esti-

mation of p̄ on the joint total cost T1, the supplier’s cost S1 and the buyer’s cost B1.

It indicates that the buyer’s estimation variation has little impact on the system’s

cost. However, the buyer’s cost increases significantly as the coefficient of variation

increases. That is, the buyer’s capability of extracting savings from the supplier is

considerably impaired if she has information about p̄ that is not accurate. Of course,

the supplier’s benefits from this and his cost are significantly reduced.

Figure 9 illustrates the impact of the coefficient of variation of the buyer’s esti-

mation of α on the joint total cost T2, the supplier’s cost S2 and the buyer’s cost B2.

Again, we observe that the buyer’s capability of extracting savings from the supplier
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Figure 8 The Impact of the Coefficient of Variation δp̄
µp̄

is considerably impaired if she has inaccurate information of α, while the supplier’s

benefits from this and his cost is significantly reduced.

The findings reported here clearly show that ignoring incentive conflicts and qual-

ity information issues can lead to undesirable behavior. The practical implications

are significant. In designing a supply chain, it is tempting to take the perspective of

a central planner and focus on improving overall efficiency. Few supply chains have

any mechanism that can pass for a central planner, so this is rarely an option. This

section proposes a framework for how lot size, quality level, and transactions should

be structured to help reduce supply chain inefficiency due to individual incentives

and private information.

In this section, to concentrate on the supply contract design, we assume that

the supply is in statistical control. In the next section, we further develop the model

when the supply is random.
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Figure 9 The Impact of the Coefficient of Variation δα
µα

IV.2.5. Random Supply

In this section, we present a modification of the well-known single-vendor single-buyer

integrated production-inventory model on the assumption that the percentage of de-

fective items in the accepted lot is a random variable whose probability distribution

is known to management from their experience. We also assume that the defective

items are non-reworkable. We seek to demonstrate more closely how the possible

presence of defective items in the accepted lot affects the structure as well as the

cost of certain production-inventory systems. We present the total expected costs of

the system and provide the optimal solutions. Further, we investigate the effect of

defective items on the system performance. Our findings show that a high percentage

of defective items, together with a large demand, has a significant impact on the total

expected cost.
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IV.2.5.1. Problem Formulation

The problem considered here concerns a single vendor supplying a single buyer with

a product. The vendor manufactures, at a finite rate, in batches and incurs a batch

setup cost. Each batch is despatched to the buyer in a number of shipments. Both

vendor and buyer incur time-proportional holding costs. The buyer has to meet a

fixed, level external demand. We summarize the additional notation below.

R: annual production rate,

hs: annual inventory holding cost per unit for the vendor,

n: an integer multiplier, and thus the vendor’s production batch size is nQ,

TCS: the total expected annual cost for the vendor,

TCB: the total expected annual cost for the buyer,

TCJ : = TCS + TCB, the total expected annual cost for both vendor and buyer.

Under the assumption of perfect quality, Hill (1997) shows that the total annual

costs, denoted by CJ , are:

CJ =
D

nQ
(nSb + Ss) +

hbQ

2
+ hs

[

(n− 1)Q

2
− (n− 2)DQ

2R

]

,

and the joint optimal solution (Q∗∗, n∗∗) satisfies:

Q∗∗(n) =

√

2D(nSb + Ss)

n(hb + hs[(n− 1)− (n−2)D
R

])
,

n∗∗(n∗∗ − 1) ≤ Ss[2hsD +R(hb − hs)]

Sbhs(R−D)
≤ n∗∗(n∗∗ + 1).

However, the quantity accepted may not exactly match the quantity requisitioned

by the buyer due to the existence of defective items. Defective items may occur during

production or in transit, i.e., during transportation or handling. We assume that

the buyer inspects each incoming shipment and returns the defective items to the

vendor. Further, we assume that the inspection time is negligible. We will discuss a
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considerable inspection time case in the concluding section. For simplicity, we assume

that all of the defective items are non-reworkable and have to be disposed of and that

there is no disposal cost or salvage value related to the defective items. The case in

which the defective items are partially reworkable and there is a cost related to the

reworking and disposal can be easily incorporated into our model.

Define p̄i as the percentage of non-defective items in lot i received by the buyer

where the p̄i’s are independent and identically distributed (i.i.d.) random variables

with cumulative distribution F (·) and 0 < pL ≤ p̄i ≤ pU ≤ 1. E[p̄i] = µ and

V ar[p̄i] = δ2. Further, we assume that the vendor’s production rate is high enough

so that he can always produce enough units to fulfill the buyer’s order on time within

consecutive shipments to the buyer.

ASSUMPTION 6

QpL
D

>
Q

R
, or R >

D

pL
.

Thus, shortages would not occur.

We use the renewal-reward theorem for deriving an expression of the total ex-

pected long-run average cost. Naturally, this quantity is a function of Q and n. Thus,

the total expected long-run average cost is denoted by TCJ(Q, n). The renewal-reward

theorem simply states that

TCJ(Q, n) =
E[Production cycle cost]

E[Production cycle length]
. (4.64)

The optimal joint policy parameters Q and n can be computed via minimizing

TCJ(Q, n). Hence, the mathematical problem can be stated as

min TCJ(Q, n)

s.t. Q ≥ 0, n ≥ 0, n is an integer.
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Denote

Xi =
p̄iQ

D
, i = 1, 2, ..., n.

Then, the Xi’s are also i.i.d. random variables, which represent the buyer’s replen-

ishment cycle length. Letting S0 = 0 and Si =
∑i

j=1Xj, we define

N(t) = sup{i : Si ≤ t}.

It follows that N(t) is a renewal process that registers the number of shipments

by time t. Since the event {N(t) ≥ i} occurs if, and only if, {Si ≤ t}, we have

P{N(t) ≥ i} = F (i)(
tD

Q
), (4.65)

where F (i)(·) denotes the i-fold convolution of F (·).

IV.2.5.2. Expected Production Cycle Length

First, we need to clearly define the cycle since random shipments are involved in each

cycle. We assume that the production of a batch is started as late as possible and

that the despatch of the first shipment returns the vendor’s stock to zero. Recall

Assumption 6: the time to consume the last shipment of one batch will be greater

than the time to produce the first shipment of the next batch, and, therefore, the

despatch of the last shipment of one batch takes place before the production of the

next batch starts. We define each production cycle as starting when the buyer receives

the last shipment of a batch from the vendor and ending when the vendor despatches

the last shipment of the next batch. Therefore, the buyer receives n shipments from

the vendor in each cycle. It follows that

E[Production Cycle Length] = E[
n
∑

i=1

Xi] =
nµQ

D
. (4.66)
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IV.2.5.3. Expected Production Cycle Cost

The total expected cost of a production cycle has two components: i) setup costs,

ii) inventory costs. The setup costs can be easily obtained as Ss + nSb. However,

the computation of inventory costs is much more challenging due to the existence of

defective items. We compute the buyer’s and vendor’s inventory costs, respectively,

as follows.

Buyer’s Expected Inventory Cost

Qp̄i units are accepted in the shipment i by the buyer. Thus, the replenishment

cycle time of the buyer is

Qp̄i
D

.

Since the buyer receives n shipments in each production cycle, the buyer’s expected

inventory cost, denoted by E[ICb], is

E[ICb] = E[
n
∑

i=1

hb

2

Q2p̄2i
D

] =
nhbQ

2(µ2 + δ2)

2D
(4.67)

Vendor’s Expected Inventory Cost

Since defective items exist in each shipment, and thus the shipment frequency

is random, the shape of the vendor’s inventory profile is stochastic. Therefore, the

computation of the vendor’s expected inventory cost is challenging. We consider two

cases as follows.

Case 1. n = 1

When n = 1, the vendor is implementing a lot-for-lot policy. Q units are pro-

duced in each production batch with the production rate R. Recall Assumption 6

which makes the lot-for-lot policy feasible. It follows that the vendor’s inventory cost,

which becomes deterministic, is

1

2
hs

Q2

R
.
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Case 2. n > 1

Let Is(t) and Ib(t) denote the inventory level at time t of the vendor and the

buyer, respectively. A realization of Is(t) and Ib(t) is depicted in Figure 10.

Figure 10 Inventory Profile under Random Supply

Define

τ =
(n− 1)Q

R
,

which is the production time length of a batch excluding the first shipment. Let T

denote the production cycle length, that is, T =
∑n

i=1Xi. Further, let A0 denote

the triangle area in the vendor’s inventory profile between the beginning of a batch

and the first shipment of the batch in the vendor’s inventory profile. Let A3 denote

the total inventory between the first shipment of a batch and the first shipment right
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after the end of the batch production, if there is such a shipment; otherwise, let A3

denote the total inventory between the first shipment of a batch and the end of the

batch production. Let A4 denote the total inventory between the first shipment right

after the end of the batch production and the last shipment of the batch.

A0 is deterministic and easily obtained as

A0 =
1

2

Q2

R
.

Now we calculate the expected value of A4. Recall that N(t) registers the number

of shipments by time t. Thus, if N(τ) = n− 1, which means there are no shipments

after the batch production according to the definition of τ , then A4 = 0 since there

are n shipments totally within the production cycle; if N(τ) = n − 2, which means

there is only one shipment after the batch production, then A4 = 0 as well since the

shipment right after the end of the batch production is taken into account by A3. If

N(τ) ≤ n − 3, there are n − 2 − N(τ) shipments within A4 as shown in Figure 11.

Thus, we have

A4 =















0, if N(τ) ≥ n− 2,

∑n−1−N(τ)
i=2 [n− i−N(τ)]pN(τ)+i

Q2

D
, if N(τ) ≤ n− 3 and n ≥ 3.

Thus, E[A4] = 0 if n = 2. When n ≥ 3, note that N(τ) and pN(τ)+i are

independent. We have

E[A4] = E[E[A4|N(τ)]] =
Q2

D

n−3
∑

j=0

E[

n−1−j
∑

i=2

(n− i− j)pi+j]P (N(τ) = j)

=
µQ2

D

n−3
∑

j=0

n−1−j
∑

i=2

(n− i− j)P (N(τ) = j)

=
µQ2

2D

n−3
∑

j=0

(n− 1− j)(n− 2− j)P (N(τ) = j)
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Figure 11 A Realization of A4

We do not calculate the area of A3 directly. Instead, we calculate the area of the

large triangle first, which is A1 +A2 +A3 in Figure 10. The extra inventory A1 +A2

occurs under the assumption that the vendor keeps producing after the first shipment

of a batch until the first shipment after τ and that there is no shipment in-between.

The total inventory of A2 is the extra stock under the assumption that the vendor

keeps producing after τ until the first shipment after τ . So A1 = 0 if, in fact, there is

no shipment between the first shipment of a batch and the end of production, that is,

N(τ) = 0. Obviously, N(τ) ≤ n− 2 according to Assumption 6, and thus N(τ) = 0

if n = 2. Let A = A1 + A2 + A3. The length of the bottom of A is

Q

D

N(τ)+1
∑

i=1

p̄i

and the height of A is

QR

D

N(τ)+1
∑

i=1

p̄i.
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It follows that

A =
Q2R

2D2
(

N(τ)+1
∑

i=1

p̄i)
2.

A1 is a set of parallelograms as shown in Figure 10. Thus, we have

A1 =















0, if n = 2,

∑N(τ)
i=1

∑N(τ)+1
j=i+1

Q2pj
D
, if n > 2.

A2 can be easily obtained as

A2 =
R

2
(

N(τ)+1
∑

i=1

Qp̄i
D
− τ)2.

Therefore, we have

A3 =















τRQp̄i
D
− τ2R

2
, if n = 2,

τR
∑N(τ)+1

i=1
Qp̄i
D
− τ2R

2
−
∑N(τ)

i=1

∑N(τ)+1
j=i+1

Q2pj
D
, if n > 2.

(4.68)

Now we calculate E[A3] when n > 2. Since N(τ) + 1 is a stopping time for

p̄i, i = 1, 2, ..., by Wald’s Equation, we have

E[τR

N(τ)+1
∑

i=1

Qp̄i
D

] =
µτRQ

D
E[N(τ) + 1]. (4.69)

Define

Ii =















1, if N(τ) + 1 ≥ i,

0, otherwise.

Then Ii and p̄i are independent since N(τ) + 1 is a stopping time for pi. Thus,

we have
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E[

N(τ)
∑

i=1

N(τ)+1
∑

j=i+1

Q2pj
D

] = E[

N(τ)+1
∑

i=2

(i− 1)
Q2p̄i
D

]

=
Q2

D
E[

n−1
∑

i=2

(i− 1)p̄iIi]

=
Q2

D

n−1
∑

i=2

(i− 1)E[p̄i]E[Ii]

=
µQ2

D

n−1
∑

i=2

(i− 1)P (N(τ) + 1 ≥ i)

=
µQ2

D

n−2
∑

i=1

iP (N(τ) ≥ i) (4.70)

From (4.68), (4.69), and (4.70), we have

E[A3] =















τRQµ

D
− τ2R

2
if n = 2

µτRQ

D
E[N(τ) + 1]− τ2R

2
− µQ2

D

∑n−2
i=1 iP (N(τ) ≥ i) if n > 2

Hence, the vendor’s expected holding costs, denoted by E[ICs], can be expressed

as

E[ICs] = hs(A0 + E[A3] + E[A4])

=































hs[
1
2
Q2

R
+ τRQµ

D
− τ2R

2
] if n = 2

hs[
1
2
Q2

R
+ µτRQ

D
E[N(τ) + 1]− τ2R

2
− µQ2

D

∑n−2
i=1 iP (N(τ) ≥ i)

+µQ2

2D

∑n−3
j=0 (n− 1− j)(n− 2− j)P (N(τ) = j)] if n ≥ 3

(4.71)

When n ≥ 3, recall (4.65), we have

E[N(τ) + 1] = 1 +
n−2
∑

i=1

F (i)(
(n− 1)D

R
), (4.72)

P (N(τ) ≥ i) = F (i)(
(n− 1)D

R
), (4.73)
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P (N(τ) = i) = F (i)(
(n− 1)D

R
)− F (i+1)(

(n− 1)D

R
). (4.74)

Let

Z =
(n− 1)D

R
.

Substituting (4.72)-(4.74) into (4.71), we have

E[ICs] = hs[
1

2

Q2

R
+
µ(n− 1)Q2

D
− (n− 1)2Q2

2R
+
µQ2

D

n−2
∑

i=1

(n− 1− i)F (i)(Z)

+
µQ2

2D

n−3
∑

i=0

(n− 1− i)(n− 2− i)[F (i)(Z)− F (i+1)(Z)]]

= hs[
1

2

Q2

R
+
µ(n− 1)Q2

D
− (n− 1)2Q2

2R
+
µQ2

D

n−2
∑

i=1

(n− 1− i)F (i)(Z)

+
µQ2

2D

n−3
∑

i=0

(n− 1− i)(n− 2− i)F (i)(Z)− µQ2

2D

n−2
∑

i=1

(n− i)(n− 1

−i)F (i)(Z)]] (4.75)

= hs[
1

2

Q2

R
+
µ(n− 1)Q2

D
− (n− 1)2Q2

2R
+
µQ2

2D
(n− 1)(n− 2)]

= hs[
µn(n− 1)Q2

2D
− n(n− 2)Q2

2R
]. (4.76)

When n = 2, we have

E[ICs] = hs[
Q2

2R
+
Q2µ

D
− Q2

2R
] =

hsµQ
2

D
(4.77)

It is easy to see that (4.77) is a special form of (4.76) when n = 2. In addition,

it is easy to verify that the case n = 1 is a special case of n > 1 by comparing the

expected holding costs.

IV.2.5.4. Long-Run Average Cost

Substituting (4.66), (4.67), and (4.76) into (4.64), we obtain the long-run average cost
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TCJ(Q, n) =
Ss + nSb +

nhbQ
2(µ2+δ2)
2D

+ hs[
µn(n−1)Q2

2D
− n(n−2)Q2

2R
]

nµQ

D

= (Ss + nSb)
D

nµQ
+
hbQ(µ2 + δ2)

2µ
+ hs[

(n− 1)Q

2
− (n− 2)DQ

2µR
]

The buyer’s expected average cost is

TCB =
DSb

µQ
+
hbQ(µ2 + δ2)

2µ
,

which is the same as that derived by Silver (1976). The buyer’s expected holding

cost depends on both µ and δ. An interesting finding is that the vendor’s expected

average cost is

TCS =
DSs

nµQ
+ hs[

(n− 1)Q

2
− (n− 2)DQ

2µR
]

and δ has no effect on it. The explanation is that since there are n shipments within

a batch, the uncertainty of defective items neutralizes its own effect on the vendor’s

inventory and thus δ does not appear in the vendor’s expected average cost. If we look

only at the vendor’s expected holding cost, it appears as if the vendor is producing

at a constant rate µR.

Obviously, the model in Section IV.2.1 is a special case of TCJ(Q, n) when n = 1.

Thus, contracts under this general model can be developed based on the analysis in

Section IV.2.2 and IV.2.3.

IV.2.5.5. Numerical Analysis

The joint optimal solution for the single-vendor single-buyer production-inventory

model with defective items satisfies:
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Q∗(n) =

√

2D(nSb + Ss)

n(hb(µ2 + δ2) + hs[(n− 1)µ− (n−2)D
R

])
,

n∗(n∗ − 1) ≤ Ss[2hsD − µhsR +Rhb(µ
2 + δ2))]

Sbhs(µR−D)
≤ n∗(n∗ + 1).

Obviously, Q∗(n) ≥ Q∗∗(n) for a given n. That is, the joint optimal order

quantity is larger with consideration of the defective items. This is intuitively evident

since the existence of defective items would incur more frequent orders and thus

increase setup costs while the larger order quantity would reduce the order frequency

and thus relieve the effect of defective items. In addition, Q∗(n) is decreasing in µ

and δ. A large proportion of non-defective items and high uncertainty would both

decrease the joint optimal order quantity.

Table VI Numerical Example 1 under Random Supply (D=1000)

Solution 1: Solution 2:

Perfect Quality Defective items

Q 110 120

n 5 5

TCB 500.13 501.46

TCS 1458.44 1450.88

TCJ 1958.57 1952.34

Consider the example used by Banerjee (1986a), Goyal (1988), and Khouja (2003)

in which D = 1000 units/year, R = 3200 units/year, Sb = $25/order, Ss = $400/set-

up, hb = $5/unit/year, and hs = $4/unit/year. In addition, suppose that µ = 0.9

and δ = 0.02. Table VI shows two solutions to the problem. Solution 1 optimizes the
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whole supply chain without incorporating defective items. In solution 2, decectives

are incorporated and the whole chain is optimized.

Under this setting, there is only a slight difference between the two solutions.

Define

α =
Cj(Q

∗∗, n∗∗)− TCJ(Q
∗, n∗)

TCJ(Q∗, n∗)
.

α1 = 0.3%. The next example is under the same setting except that the demand

is significantly larger (D = 2750). Table VII shows that when the demand is large,

Table VII Numerical Example 2 under Random Supply (D=2750)

Solution 1: Solution 2:

Perfect Quality Defective items

Q 132 171

n 15 27

TCB 875.88 831.88

TCS 1036.22 991.56

TCJ 1912.1 1823.44

the difference between the two solutions is significant. α1 = 4.9%. To examine the

effects of incorporating defective items into the two-stage model as well as the impact

of demand level, we plot the α versus the expected proportion of defective items µ

and the demand D in Figures 12 and 13. In Figure 12, α is large when µ is small

(α = 16% when µ = 0.5). That is, when the proportion of defective items is high,

it has a significant impact on the joint optimal costs. In Figure 13, the increase in

α becomes larger as demand increases. The defective items have little impact on the

joint optimal costs when the demand is small, i.e., the production capacity is abundant
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to satisfy the demand. When the demand is large, i.e., the production capacity is

barely adequate to satisfy the demand, the defective items have a significant effect

on the joint optimal costs (α = 7.5% when D = 2800).

Figure 12 α versus µ

In our analysis, we assume that the inspection process time is negligible. For a

considerable inspection process time as in Salameh and Jaber (2000) and Goyal and

Cardenas-Barron (2002), the vendor’s inventory profile remains the same because the

buyer’s order quantity and frequency does not change. Thus, our analysis can be

easily extended by adopting the buyer’s cost of Salameh and Jaber (2000).

IV.3. Optimal Contracts under Stochastic Demand

In this section, we study a general two-stage single-period model with uncertain

supply and demand. When production activities are initiated or orders placed, the

outputs or quantities received can be somewhat uncertain. The yield, or quantity

received, might be itself uncertain, or possibly the usable portion of the yield varies.
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Figure 13 α versus D

These uncertainties can affect inventory stocking decisions and production lot sizes.

A general analysis of production/inventory models with uncertain yield requires

complete specification of the form of the dependence between the output level and

the input level. A rather plausible assumption is that the output level is the product

of the input level and a random variable which is independent of the input level. Let

ξ be the random demand, with cumulative distribution Φ. Denote the supplier’s lot

size by q, and the resulting random yield by Yq. Assume that Yq is contingent on the

input level q in the following manner

Yq = p̄q

where p̄ is a non-negative random variable which is not contingent on q and is

independent of ξ. When Yq represents the proportion of nondefective discrete units

in a lot size q, we clearly have Yq ≤ q and p̄ ≤ 1; in other applications, this might

not be the case. For instance, if Yq represents a random output measured in volume
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units (e.g., liquid), and q is input measured in weight units (e.g., powder), there is

no obvious upper bound on Yq. For the sake of generality then, we do not impose a

prior upper bound on Yq and p̄.

The following notation is used throughout:

p: unit retail price,

c: unit production cost,

w: unit wholesale price,

gb: unit shortage cost for the buyer,

gs: unit shortage penalty paid to the buyer by the supplier if there is such

term in their agreement,

hb: unit overage value for the buyer; hb can be positive (salvage value) or

negative (holding cost). If hb > 0, it is assumed that hb < c,

hs: unit overage value for the supplier; hs can be positive (salvage value) or

negative (holding cost). If hs > 0, it is assumed that hs < c. Also, it is

assumed that hs ≥ hb. That is, the unit salvage value at the supplier’s is

at least as high as that at the buyer’s since the supplier disposes of the

item at the beginning of the period while the buyer disposes of the item

at the end of the period; the unit holding cost for the buyer is at least

as high as that for the supplier,

Q: order quantity from the buyer,

Fp̄: cumulative distribution of p̄,

µp̄: mean value of p̄.

Let πS, πB, and πJ denote the supplier’s, buyer’s and joint expected profits,

respectively. To provide a benchmark, we first consider the centralized channel.
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IV.3.1. The Centralized Model

There are two decision variables q and Q. In this centralized model, q is the input

level of the chain while Q specifies the throughput level of the yield product. That

is, if Yq > Q, then Yq −Q units are discarded at the beginning of the period to save

on holding costs and to achieve a higher salvage value.

The realized joint profit of the channel, denoted by ΠJ , will be

ΠJ(q,Q) =















































−cpq + hb(pq − ξ) + pξ if pq ≤ Q and ξ ≤ pq

−cpq − gb(ξ − pq) + ppq if pq ≤ Q and ξ > pq

−cpq + hs(pq −Q) + hb(Q− ξ) + pξ if pq > Q and ξ ≤ Q

−cpq + hs(pq −Q)− gb(ξ −Q) + pQ if pq > Q and ξ > Q

(4.78)

where ξ represents the market demand. From (4.78), we have the expected joint profit

of the channel as follows

πJ(q,Q) = −cµp̄q + hs

∫

∞

Q

q

(pq −Q)dFp̄(p̄) +

∫
Q

q

0

[hb

∫ pq

0

(pq − ξ)dΦ(ξ)

−gb
∫

∞

pq

(ξ − pq)dΦ(ξ) + p(

∫ pq

0

ξdΦ(ξ) +

∫

∞

pq

pqdΦ(ξ))]dFp̄(p̄)

+

∫

∞

Q

q

[hb

∫ Q

0

(Q− ξ)dΦ(ξ)− gb

∫

∞

Q

(ξ −Q)dΦ(ξ)

+p(

∫ Q

0

ξdΦ(ξ) +

∫

∞

Q

QdΦ(ξ))]dFp̄(p̄). (4.79)

To find the optimal order quantity Q of the buyer, we derive the first derivative of

E[πJ(q,Q)] with respect to Q as follows

∂πJ(q,Q)

∂Q
= [1− Fp̄(

Q

q
)][−hs + hbΦ(Q) + gb(1− Φ(Q)) + p(1− Φ(Q))]. (4.80)



157

Letting (4.80) equal 0 and solving for Q, we have

Q∗

J = Φ−1

(

gb + p− hs

gb + p− hb

)

. (4.81)

Since hs ≥ hb, then Q
∗

J in (4.81) exists. Furthermore,

∂πJ(q,Q)

∂Q
|0 = gb + p− hs > 0,

∂πJ(q,Q)

∂Q
> 0 for all Q < Q∗

J ,

and

∂πJ(q,Q)

∂Q
≤ 0 for all Q > Q∗

J .

Thus, Q∗

J is the unique minimizer of (4.79). Note that Q∗

J is independent of q. That

is, the buyer is able to make optimal order quantity decisions independently without

considering the supplier’s lot size decision.

To find the optimal lot size q for the supplier, we derive the first derivative of

πJ(q,Q) with respect to q as follows

∂πJ(q,Q)

∂q
= −cµp̄ + hs

∫

∞

Q

q

pdFp̄(p̄) + hb

∫
Q

q

0

pΦ(pq)dFp̄(p̄) + gb

∫
Q

q

0

p[1

−Φ(pq)]dFp̄(p̄) + p

∫
Q

q

0

p[1− Φ(pq)]dFp̄(p̄). (4.82)

Substituting Q∗

J into (4.82) and solving

∂πJ(q,Q)

∂q
= 0

for q, we have

∫

Q∗
J
q

0

p[1− Φ(pq)]dFp̄(p̄) =
cµp̄ − hb

∫

Q∗
J
q

0 pdFp̄(p̄)− hs

∫

∞

Q∗
J
q

pdFp̄(p̄)

gb + p− hb

. (4.83)
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Deriving the second derivative of πJ(q,Q) with respect to q leads to

∂2πJ(q,Q)

∂q2
= −

∫
Q

q

0

p2fξ(pq)dFp̄(p̄) < 0.

Since

∂πJ

∂q
|0+ = µp̄(gb + p− c) > 0,

lim
q→∞

∂πJ

∂q
=

µp̄(hs − c)

gb + p− hb

< 0,

the minimizer q∗J exists and is unique.

When Q∗

J =∞, (4.83) reduces to

∫

∞

0

pΦ(pq)dFp̄(p̄) =
µp̄(gb + p− c)

gb + p− hb

.

We are not able to achieve the closed form of the optimal lot size q for the

supplier analytically. However, since we know the optimal lot size q exists and is

unique, for any instance we can solve (4.83) numerically and find the optimal lot size

q for the supplier. Next, we examine the decentralized channel and the impact of

supply uncertainty on the channel’s performance.

IV.3.2. The Decentralized Model

To examine the impact of supply uncertainty on the channel’s performance, we ana-

lyze two cases. In the first case, the buyer makes an order quantity decision without

considering the supply uncertainty. In the second case, the buyer makes her decision

taking the supply uncertainty into account.

In case 1, since the buyer does not consider supply uncertainty and assumes

she will receive exactly as she orders, the buyer is facing the classical newsvendor’s

problem as follows:
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min πB(Q) = −wQ+ hb

∫ Q

0

(Q− ξ)dΦ(ξ)− gb

∫

∞

Q

(ξ −Q)dΦ(ξ)

+p[

∫ Q

0

ξdΦ(ξ) +

∫

∞

Q

QdΦ(ξ)].

We can easily achieve the optimal order quantity Q∗

D1 for the buyer

Q∗

D1 = Φ−1

(

gb + p− w

gb + p− hb

)

. (4.84)

Thus, the expected profit for the supplier is

πS(q) = −cµp̄q + hs

∫

∞

Q∗
D1
q

(pq −Q∗

D1)dFp̄(p̄) + w[

∫

Q∗
D1
q

0

pqdFp̄(p̄) +

∫

∞

Q∗
D1
q

Q∗

D1dFp̄(p̄)].

To obtain the optimal lot size q for the supplier, we derive the first derivative of

πS(q) with respect to q as follows

∂πS(q)

∂q
= w

∫

Q∗
D1
q

0

pdFp̄(p̄) + hs

∫

∞

Q∗
D1
q

pdFp̄(p̄)− cµp̄.

Define Λ(ξ) =
∫ ξ

0
pdFp̄(p̄). Solving

∂πS(q)

∂q
= 0

for q leads to

q∗D1 =
Φ−1

(

gb+p−w

gb+p−hb

)

Λ−1
(

µp̄(c−hs)

w−hs

) . (4.85)

By comparing the optimal order quantity and lot size in the decentralized channel

with the centralized channel, we achieve the following theorem.

THEOREM 16 Q∗

D1 < Q∗

J and q∗D1 < q∗J(Q
∗

D1).

Proof: Q∗

D1 < Q∗

J can be easily achieved by comparing (4.84) with (4.81). To show
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that q∗D1 < q∗J(Q
∗

D1), recall (4.83); it is equivalent to show that

∫

Q∗
D1
q∗
D1

0

p[1− Φ(pq∗D1)]dFp̄(p̄) >

cµp̄ − hb

∫

Q∗
D1
q∗
D1

0 pdFp̄(p̄)− hs

∫

∞

Q∗
D1
q∗
D1

pdFp̄(p̄)

gb + p− hb

. (4.86)

Substituting (4.85) into the left-hand side of (4.86), we have

∫

Q∗
D1
q∗
D1

0

p[1− Φ(pq∗D1)]dFp̄(p̄) >

∫

Q∗
D1
q∗
D1

0

p[1− Φ(Q∗

D1)]dFp̄(p̄)

=
w − hb

gb + p− hb

∫

Q∗
D1
q∗
D1

0

pdFp̄(p̄)

=

(

w − hb

gb + p− hb

)(

µp̄(c− hs)

w − hs

)

Substituting (4.85) into the right-hand side of (4.86), we have

µp̄(c− hs)− (hb − hs)
µp̄(c−hs)

w−hs

gb + p− hb

=

(

w − hb

gb + p− hb

)(

µp̄(c− hs)

w − hs

)

.

¥

Theorem 16 shows that the buyer’s optimal order quantity in case 1 is always

smaller than that in the centralized channel. The supplier’s lot size in case 1 is also

smaller than that in the centralized channel for a given order quantity Q∗

D1. Thus, the

behaviors of both the buyer and the supplier deviate from the channel optimum due

to the existence of supply uncertainty and the buyer’s ignorance of it. An immediate

question arises: if the buyer is aware of the supply uncertainty, how should she make

the proper order quantity decision? Next, we study case 2 in which the buyer is aware

of the supply uncertainty and selects the order quantity accordingly. Additionally,

there is a penalty term gs specified between the supplier and the buyer for each unit

not delivered to the buyer.

In this case, the supplier’s expected profit for a given order quantity Q is given

by
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πS(q) = −cµp̄q + hs

∫

∞

Q

q

(pq −Q)dFp̄(p̄)− gs

∫
Q

q

0

(Q− pq)dFp̄(p̄)

+w[

∫
Q

q

0

pqdFp̄(p̄) +

∫

∞

Q

q

QdFp̄(p̄)].

The optimal lot size q for a given order quantity Q can be easily achieved as

follows

q∗D2(Q) =
Q

Λ−1
(

µp̄(c−hs)

w+gs−hs

) .

Let

K = Λ−1

(

µp̄(c− hs)

w + gs − hs

)

,

then we have

q∗D2(Q) =
Q

K
.

Based on the supplier’s optimal response to the buyer’s order quantity Q, the

buyer’s expected profit is given by

πB(Q) = −w[
∫ K

0

pQ

K
dFp̄(p̄) +

∫

∞

K

QdFp̄(p̄)] + gs

∫ K

0

(Q− pQ

K
)dFp̄(p̄)

+

∫ K

0

[hb

∫
pQ

K

0

(
pQ

K
− ξ)dΦ(ξ)− gb

∫

∞

pQ

K

(ξ − pQ

K
)dΦ(ξ)

+p[

∫
pQ

K

0

ξdΦ(ξ) +

∫

∞

pQ

K

pQ

K
dΦ(ξ)]]dFp̄(p̄) +

∫

∞

K

[hb

∫ Q

0

(Q− ξ)dΦ(ξ)

−gb
∫

∞

Q

(ξ −Q)dΦ(ξ) + p[

∫ Q

0

ξdΦ(ξ) +

∫

∞

Q

QdΦ(ξ)]]dFp̄(p̄).

To find the optimal order quantity Q for the buyer, we derive the first derivative

of πB(Q) with respect to Q as follows
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∂πB(Q)

∂Q
= −w[Λ(K)

K
+ (1− Fp̄(K))] + gs[Fp̄(K)− Λ(K)

K
] +

∫ K

0

[hb

p

K
Φ(
pQ

K
)

+
p

K
gb(1− Φ(

pQ

K
)) +

p

K
p[1− Φ(

pQ

K
)]]dFp̄(p̄) +

∫

∞

K

[hbΦ(Q)

+gb[1− Φ(Q)] + p[1− Φ(Q)]]dFp̄(p̄)

= −w[Λ(K)

K
− Fp̄(K))]− w + gs[Fp̄(K)− Λ(K)

K
] + (gb + p)

Λ(K)

K

+(gb + p)[1− Fp̄(K)] +

∫ K

0

[hb

p

K
Φ(
pQ

K
)− p

K
gbΦ(

pQ

K
)

− p

K
pΦ(

pQ

K
)]dFp̄(p̄) +

∫

∞

K

[hbΦ(Q)− gbΦ(Q)− pΦ(Q)]dFp̄(p̄).

Solving

∂πB(Q)

∂Q
= 0

for Q, we have

∫ K

0

p

K
Φ(
pQ

K
)dFp̄(p̄) +

∫

∞

K

Φ(Q)dFp̄(p̄) =
1

(p+ gb − hb)
[(p+ gb − w − gs)[1

+
Λ(K)

K
− Fp̄(K))] + gs]. (4.87)

Denote the solution of (4.87) as Q∗

D2. Let

M =
(p+ gb − w)[1 + Λ(K)

K
− Fp̄(K))] + gs(Fp̄(K)− Λ(K)

K
)

(p+ gb − hb)
,

Q2 = Φ−1(M).

Since

Fp̄(K) ≥ Λ(K)

K
,

we have M ≥ 0 and Q2 ≤ Q∗

D2.

It is easy to verify that

∂2πB(Q)

∂Q2
< 0,
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and thus the minimizer Q∗

D2 is unique. In addition, from (4.87) it is true that Q∗

D2

is increasing in gs. Obviously, the buyer would like to charge a higher penalty to the

supplier when the supplier is unable to fulfill her order. However, a high penalty may

result in poor channel performance as shown in the following theorem.

THEOREM 17 For a given Q, if gs > gb + p− w + hs − hb, then q
∗

D2(Q) < q∗J(Q).

Proof: For a given Q define variables q∗J(Q), q1(Q), and q2(Q) as follows:

∫
Q

q∗
J
(Q)

0

p[1− Φ(pq∗J(Q))]dFp̄(p̄) =

cµp̄ − hb

∫

Q

q∗
J
(Q)

0 pdFp̄(p̄)− hs

∫

∞

Q

q∗
J
(Q)

pdFp̄(p̄)

gb + p− hb

,

∫
Q

q1(Q)

0

p[1− Φ(pq1(Q))]dFp̄(p̄) =
µp̄(c− hs)

gb + p− hb

,

∫
Q

q2(Q)

0

pdFp̄(p̄) =
µp̄(c− hs)

gb + p− hb

.

Obviously, q1(Q) < q2(Q). If gs > gb + p−w+ hs− hb, then q2(Q) < q∗D2(Q). In

addition, q1(Q) > q∗J(Q) since

cµp̄ − hb

∫

Q

q∗
J
(Q)

0 pdFp̄(p̄)− hs

∫

∞

Q

q∗
J
(Q)

pdFp̄(p̄)

gb + p− hb

>
µp̄(c− hs)

gb + p− hb

.

Thus, we have q∗D2(Q) > q∗J(Q). ¥

Theorem 17 shows that for a given order quantity Q from the buyer, if the buyer

charges a penalty larger than gb + p − w + hs − hb, the supplier will always choose

a smaller lot size than the channel optimum. Although the buyer prefers a higher

penalty, Theorem 17 shows that, from the system’s perspective, it is not good to set

the penalty level too high. To determine the optimal penalty level for the system,

knowledge of the distributions of the supply uncertainty and the market demand is

critical to the buyer. In the following section, we provide a consignment contract

where the terms can be easily determined.
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IV.3.3. Consignment Contract

Under a consignment contract, the supplier decides the delivery quantity for his prod-

uct and retains ownership of the goods. For each item sold, the buyer deducts a

percentage from the selling price; for each item unsold, the buyer shares a percent-

age of the cost. Also, the buyer specifies the maximal stock level. The contracting

procedure is as follows:

1. The supplier decides the production input level and delivers all of the output

to the retailer;

2. The buyer inspects the products and returns all of the defective items and

overstock good items to the supplier;

3. The supplier disposes of all returned items;

4. Demand occurs. The buyer returns all unsold items to the supplier and remits

his revenue share as well as his cost share.

Define r as the percentage of the revenue share where 0 ≤ r ≤ 1 and β as the

percentage of cost share where 0 ≤ β ≤ 1.

To coordinate the channel, the buyer should set the maximal stock level at Q∗

J .

Then, the supplier’s expected profit is given by

πS(q,Q) = −cµp̄q + (β(c− hs) + hs)

∫

∞

Q

q

(pq −Q)dFp̄(p̄) +

∫
Q

q

0

[(β(c− hb)

+ hb)

∫ pq

0

(pq − ξ)dΦ(ξ) + (1− r)p(

∫ pq

0

ξdΦ(ξ)

+

∫

∞

pq

pqdΦ(ξ))]dFp̄(p̄) +

∫

∞

Q

q

[(β(c− hb) + hb)

∫ Q

0

(Q− ξ)dΦ(ξ)

+(1− r)p(

∫ Q

0

ξdΦ(ξ) +

∫

∞

Q

QdΦ(ξ))]dFp̄(p̄). (4.88)

To find the optimal lot size q for a given maximal stock level Q, we derive the
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first derivative of ΠS(q,Q) with respect to q as follows

∂πS(q,Q)

∂q
= −cµp̄ + (β(c− hs) + hs)

∫

∞

Q

q

pdFp̄(p̄) + (β(c− hb)

+hb)

∫
Q

q

0

pΦ(pq)dFp̄(p̄) + (1− r)p

∫
Q

q

0

p[1− Φ(pq)]dFp̄(p̄).(4.89)

Recall (4.81), substituting Q∗

J into (4.89) and solving

∂πS

∂q
= 0

for q, we have

∫

Q∗
J
q

0

p[1− Φ(pq)]dFp̄(p̄) =
(1− β)(cµp̄ − hb

∫

Q∗
J
q

0 pdFp̄(p̄)− hs

∫

∞

Q∗
J
q

pdFp̄(p̄))

(1− r)p− (1− β)hb − βc
.

Recall (4.83), to align the supplier’s optimal lot size with the channel optimum,

the buyer should set r and β satisfying

1− β

(1− r)p− (1− β)hb − βc
=

1

gb + p− hb

.

That is,

(r − β)p+ (1− β)gb + βc = 0, or

r = β − (1− β)gb + βc

p
. (4.90)

From (4.90), we can see that r < β and r is increasing in β. That is, to coordinate

the channel, the more revenue share that is taken by the buyer, the more cost she

should share. The advantage of the consignment contract is that the buyer does not

need to have specific knowledge of the distribution of the supply uncertainty to design

the contract, and thus it makes the buyer’s contract design easier.
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IV.4. Summary

In this chapter, we seek to provide implementable contractual arrangements to coor-

dinate a channel with supply uncertainty considerations. We first develop a general

framework that includes power structure and supply uncertainty. We demonstrate

that power structure and supply uncertainty are important considerations when de-

signing supply contracts. Based on this general framework, we further develop supply

contracts under supply uncertainty and deterministic demand with an infinite plan-

ning horizon. The findings reported clearly show that ignoring incentive conflicts

and supply information issues can lead to undesirable behavior. We propose a model

that shows how lot size, quality level, and transactions can be structured to reduce

supply chain inefficiency due to individual incentives and private information. In ad-

dition, we develop supply contracts under supply uncertainty and stochastic demand

in a single period. We examine the impact of both supply and demand uncertainty

on channel performance and propose a consignment contract to help coordinate the

channel. The problems investigated in this chapter are summarized below:

• A general framework of supply chain contract design under supply uncertainty

in supplier- and buyer-driven channels.

• Exploration of the impact of the power structure.

• The design of optimal cost-sharing contracts under supply uncertainty and con-

tinuous deterministic demand.

• The design of optimal cost-sharing contracts under supply uncertainty and

stochastic single-period demand.

• Exploration of the value of supply uncertainty information.
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CHAPTER V

SUPPLIER COMPETITION

Most studies to date have focused on markets consisting of exclusive dealers that

sell only one producer’s brand; little attention has been given to the larger segment

of most consumer goods markets in which retailers sell multiple (often highly sub-

stitutable) brands at the same location. This latter channel structure represents

numerous markets including those consisting of specialty stores, such as consumer

electronics, sporting goods, and automobile parts etc. As Tsay et al. (1999) point

out, “another deficiency in the current literature is the lack of attention to com-

petition, either between multiple buyers or multiple suppliers. Buyers that share a

common supplier and compete in the same consumer market might behave in a way

that obstructs their competitors’ access to suppliers...Multiple suppliers to a common

buyer might need to alter their price, service, lead time, or flexibility offerings in light

of the competitive environment.”

Although consideration of competition is rare in the operations management

literature, there is substantial coverage of it in the economics literature. For example,

Choi (1991) analyzes a channel structure with two competing manufactures and a

common retailer and studies three different power structures, i.e., supplier dominant,

balanced power, and buyer dominant structures. He shows that all channel members

are better off when no one dominates the structure. His work is followed by Trivedi

(1998), who models a channel structure in which there are duopoly manufacturers

and duopoly common retailers. Trivedi shows that the presence of competitive effects

at both the retailer and manufacturer levels of distribution has a significant impact

on profits and prices.

As we discussed in Chapters III and IV, consideration of the power structure and
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supply uncertainty is important for implementable supply contract design. In this

chapter, we follow the ideas in Chapters III and IV to develop a general framework

with power structure, supply uncertainty, and supplier competition considerations.

Under this framework, we further examine the case in which a single buyer is facing

one stable supplier and one unstable supplier and provide optimal ordering policies

for the buyer in each case. In addition, we study the case in which a single buyer is

facing two unstable suppliers.

The reminder of this chapter is organized as follows. Section V.1 develops the

general framework with power structure, supply uncertainty, and supplier competition

considerations concentrating on the case of two stable suppliers. Section V.2 considers

the one stable supplier and one unstable supplier case. The two unstable suppliers

case is addressed in section V.3. Concluding remarks are provided in Section V.4.

V.1. Optimal Contracts under Power Structure, Supply Uncertainty, and

Supplier Competition

In this section we develop a two-supplier-one-buyer model in a single period with

power structure, supply uncertainty, and supplier competition considerations. This

model is based on Choi (1991) and Banker et al. (1998). Similarly as in Section IV.1,

in this section, we assume that the proportion of defectives is p̄ = 0. In addition, the

model we construct is based on the following assumptions.

(1) There are two suppliers, labeled 1 and 2. Each supplier has one product, for

which he must choose a wholesale price level w and a quality level τ . We assume

that quality is a measurable attribute with values in the interval [0,∞). There is one

buyer placing orders to the two suppliers. She sells the product to the retail market

at price pi for each unit of product i, i = 1, 2.
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(2) We assume that the market demand function is linear in price and quality:

di = kiα− βpi + γpj + λτi − µτj,

i, j = 1, 2, i 6= j, (5.1)

where k1+ k2 = 1. Here kiα is the intrinsic demand potential parameter for firm

i, i = 1, 2. Parameter β (λ) denotes the demand responsiveness to the firm’s own

price (quality), while γ (µ) denotes the demand responsiveness to the competitor’s

price (quality). We refer to β/γ (λ/µ) as the relative responsiveness to price (quality)

and assume that it is greater than one, i.e.,

β > γ and λ > µ.

Thus, the demand di for each firm i’s product is affected more by changes in

its own price and quality than those of its competitors. This condition is necessary

because if both firms were to raise their prices by $1 or to decrease their quality by

one unit, then both firms would lose sales (Tirole 1988).

(3) The supplier has the option to improve the quality level with investment.

The investment cost function is given by

ci = Ci(di, τi) = (ν + ζτi)di + κ+ ηiτ
2
i , i = 1, 2.

To develop the framework while considering power structure and supply uncer-

tainty, we study the simple contract design in which the suppliers decide the quality

levels and wholesale prices and the buyer decides the retail prices. Additional dedi-

cated contractual mechanisms can be further developed based on the model that we

present in this section. First, we study the case when the suppliers are the leaders of

the channel. The price and quality decisions take place in the following sequence in
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time:

i) Two suppliers simultaneously select their own quality levels; two suppliers and

one buyer observe each supplier’s quality level;

ii) Each supplier selects a wholesale price for his product;

iii) The buyer selects the retail prices for two products. Demand is realized based

on the prices and quality levels.

Our model also reflects the assumption that price decisions are made after the

quality decisions, since the choice of a quality level reflects a long-term decision which

cannot be changed as easily or as frequently as price. To solve this three-stage game,

we first calculate the optimal retail prices assuming given quality levels and wholesale

prices, and then determine the optimal wholesale prices assuming given quality levels.

At last, the optimal quality levels are determined.

The profit functions of the suppliers and the buyer are given by:

πi
S = (wi − ν − ζτi)(kiα− βpi + γpj + λτi − µτj)− κ− ηiτ

2
i , (5.2)

πB =
2

∑

i=1

(pi − wi)qi, (5.3)

i, j = 1, 2, i 6= j.

The buyer’s reaction function given wholesale prices and quality levels can be

derived from the first-order conditions for maximizing (5.3) as follows

∂πB

∂p1
= k1α + λτ1 − µτ2 − 2βp1 + 2γp2 + βw1 − γw2 = 0,

∂πB

∂p2
= k2α + λτ2 − µτ1 − 2βp2 + 2γp1 + βw2 − γw1 = 0.

Note that the Hessian matrix of (5.3) in terms of p1 and p2 is negative-definite

since β > γ > 0. Thus, πB is a joint concave function of p1 and p2. The optimal

values of p1 and p2 are unique. We obtain the optimal retail prices for given quality
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levels and wholesale prices as follows

p1 =
w1

2
+
β(k1α + λτ1 − µτ2) + γ(k2α + λτ2 − µτ1)

2(β2 − γ2)
, (5.4)

p2 =
w2

2
+
β(k2α + λτ2 − µτ1) + γ(k1α + λτ1 − µτ2)

2(β2 − γ2)
, (5.5)

both of which are linear in wholesale prices. These expressions imply that only

half the change in the wholesale price is reflected in the retail price, and the other

half is absorbed by the buyer.

Substituting (5.4) and (5.5) into (5.2), the suppliers’ Nash equilibrium of whole-

sale prices can be derived from the first-order conditions for maximizing (5.2) which

are given by

∂πi
s

∂wi

=
1

2
(kiα + λτi − µτj − 2βwi + γwj + β(ν + ζτi)) = 0. (5.6)

Solving (5.6) results in the following wholesale prices

w∗

i = ν + ζτi +
1

W
(Ri + Sτi − Tτj),

where

W = 4β2 − γ2,

R = 2kiαβ + kjαγ − ν(β − γ)(2β + γ),

S = 2βλ− 2β2ζ − γµ+ ζγ2, and

T = 2βµ− βγζ − γλ, (5.7)

and the corresponding profits and demand quantities at the equilibrium prices

are computed as

πi∗
s =

β

2W 2
(Ri + Sτi − Tτj)

2 − κ− ηiτ
2
i , (5.8)

q∗i =
β

2W
(Ri + Sτi − Tτj). (5.9)
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Having characterized the price equilibrium, we now are able to analyze the quality

equilibrium. Differentiating (5.8) with respect to τi and equating it to zero, we obtain

the following reaction function for firm i that gives the best action for firm i given

that firm j chooses τj:

τi =
βS

2W 2ηi − βS2
(Ri − Tτj). (5.10)

Finally, we obtain the optimal quality levels given by

τ ∗i =
sβ[Ri(2W

2ηj − βS2)−RjSTβ]

(2W 2ηi − βS2)(2W 2ηj − βS2)− S2T 2β2
. (5.11)

Now we study the case when the suppliers are the followers of the channel. The

price and quality decisions take place in the following sequence in time:

i) Two suppliers simultaneously select their own quality level; two suppliers and

one buyer observe each supplier’s quality level;

ii) The buyer announces her profit margin m;

iii) Each supplier selects a wholesale price for his product; demand is realized

based on the prices and the quality levels.

To solve this three-stage game, we first calculate the optimal wholesale prices for

given values of quality levels and buyer’s profit margin, and then we determine the

optimal profit margin for given quality levels. At last, the optimal quality levels are

determined.

The profit functions of the suppliers are given by:

πi
S = (wi − ν − ζτi)(kiα− β(wi +mi) + γ(wj +mj) + λτi − µτj)− κ− ηiτ

2
i ,

i, j = 1, 2, i 6= j.(5.12)

The suppliers’ reaction functions, given the buyer’s profit margins and quality
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levels, can be derived from the first-order conditions as follows:

∂π1S
∂w1

= k1α− β(w1 +m1) + γ(w2 +m2) + λτ1 − µτ2 − β(w1 − ν − ζτ1) = 0,

∂π2S
∂w2

= k2α− β(w2 +m2) + γ(w1 +m1) + λτ2 − µτ1 − β(w2 − ν − ζτ2) = 0.

It can be easily seen that the second-order Jacobian matrix is negative-definite,

implying that a unique Nash equilibrium exists between the two suppliers. The

resulting reaction functions are as follows

w1 =
1

2β
(k1α− βm1 + γp2 + λτ1 − µτ2 + βν + βζτ1),

w2 =
1

2β
(k2α− βm2 + γp1 + λτ2 − µτ1 + βν + βζτ2).

or, equivalently,

w1 =
1

β
(k1α− βp1 + γp2 + λτ1 − µτ2 + βν + βζτ1),

w2 =
1

β
(k2α− βp2 + γp1 + λτ2 − µτ1 + βν + βζτ2).

The buyer applies these suppliers’ reaction functions to maximize her own profit

by setting optimal retail prices. Her optimization problem is given by

max
p1,p2

πB = (p1 − w1(p1, p2))q1(p1, p2) + (p2 − w2(p1, p2))q2(p1, p2). (5.13)

Solving the optimization problem (5.13) with respect to retail prices p1 and p2

leads to:

pi =
2βai + γaj
2(4β2 − γ2)

+
β(kiα + λτi − µτj) + γ(kjα + λτj − µτi)

2(β2 − γ2)

where

ai = kiα + λτi − µτj + β(ν + ζτi),

and from the suppliers’ reaction functions, we obtain the following equilibrium
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wholesale prices:

w∗∗

i = ν + ζτi +
1

2W
(Ri + Sτi − Tτj).

Note that, after rearrangement, the retail prices are the same as those when the

suppliers are the leaders, while the wholesale prices are lower. That means, when

the suppliers do not have the dominant bargaining power, they have to charge less

to the buyer though the market demand remains the same. The corresponding profit

margins can be derived using mi = pi − wi as follows

m∗∗

i = −1

2
(ν + ζτi) +

β(kiα + λτi − µτj) + γ(kjα + λτj − µτi)

2(β2 − γ2)
,

and the corresponding profit and demand quantities at the equilibrium prices are

computed as

πi∗∗
s =

β

4W 2
(Ri + Sτi − Tτj)

2 − κ− ηiτ
2
i , (5.14)

q∗∗i =
β

2W
(Ri + Sτi − Tτj). (5.15)

Having characterized the price equilibrium, we now analyze the quality equilib-

rium. Differentiating (5.14) with respect to τi and equating it to zero, we obtain the

following reaction function for firm i that gives the best action for firm i given that

firm j chooses τj:

τi =
βS

4W 2ηi − βS2
(Ri − Tτj). (5.16)

Solving (5.16) for τi, we obtain the optimal quality levels as

τ ∗i =
sβ[Ri(4W

2ηj − βS2)−RjSTβ]

(4W 2ηi − βS2)(4W 2ηj − βS2)− S2T 2β2
. (5.17)

Comparing the quality levels under two power structures, we obtain the following



175

theorem.

THEOREM 18 The optimal quality levels are higher when the suppliers are the

leaders of the channel than when they are the followers.

Proof: The theorem is easy to prove by comparing (5.11) with (5.17). ¥

The conclusion of Theorem 18 is opposite to the conclusion of Theorem 13 under

the single-supplier-single-buyer case. That is, when suppliers compete, they choose

to increase their quality levels when they have the bargaining power, rather than

to decrease the quality level as when there is no supplier competition. The intuitive

explanation is that when there is a single supplier, he is willing to improve his product

quality level so that the market demand will increase. However, when suppliers

compete, they have less interest in improving quality since their market share is less

than in the no competition case, and they invest more than they can gain due to the

competition. In this section, we assume that the proportion of defectives is p̄ = 0 and

that the demand is deterministic. In the next two sections, we will consider supplier

competition under stochastic supply and demand.

V.2. Optimal Contracts under One Stable Supplier and One Unstable

Supplier

In this section, we consider a supply chain consisting of one buyer and two suppliers

where one supplier is stable and the other is unstable. Ciarallo et al. (1994) consider

a one-supplier one-buyer supply chain in which the supplier’s production capacity is

uncertain. Our model is based on their work and our interest lies in the optimal

ordering policy for the buyer under supplier competition.

Supplier 1 has infinite capacity and delivers the order quantity, u, received from

the buyer on time at cost $s1/unit; while supplier 2 has variable capacity, Y , and
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charges $s2 for each delivered unit where s2 ≤ s1. We consider the case where Y is

a random variable with cumulative distribution Fy(y). The actual amount of units

received from supplier 2 may be limited by his capacity. If the order quantity exceeds

the actual capacity that is available, the actual amount is determined by the capacity.

Otherwise, the complete order quantity is received successfully. In terms of the order

quantity, v, and the uncertain capacity, y, the actual amount received is min(u, y).

The orders are intended to satisfy a random demand, ξ, with distribution Φ(ξ).

It is assumed that the inventory holding and backlog penalty costs are linear,

with per unit costs of h and gb, respectively. The unit sale price is w. The single-

period profit for the buyer, πB(x, u, v), is a function of the starting inventory, x, as

well as orders u and v given by:

πB(x, u, v) = −s1u− s2v[1− Fy(v)]− s2

∫ v

0

yfy(y)dy + [1− Fy(v)][w

∫ x+u+v

0

ξ

φ(ξ)dξ + w

∫

∞

x+u+v

(x+ u+ v)φ(ξ)dξ − gb

∫

∞

x+u+v

(ξ − x− u

−v)φ(ξ)dξ − h

∫ x+u+v

0

(x+ u+ v − ξ)φ(ξ)dξ]

+

∫ v

0

[w

∫ x+u+y

0

ξφ(ξ)dξ + w

∫

∞

x+u+y

(x+ u+ y)φ(ξ)dξ

−gb
∫

∞

x+u+y

(ξ − x− u− y)φ(ξ)dξ − h

∫ x+u+y

0

(x+ u+ y

−ξ)φ(ξ)dξ]fy(y)dy (5.18)

In (5.18), note that the number of units received is given by x + u + v, if the

capacity is greater than v. Otherwise, it is x + u + y, where y is the realization of

capacity. Also, note that the expectation is taken over both the demand and the

capacity distributions.

The following proposition provides the optimal ordering policy for the buyer.
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PROPOSITION 15 When x < X, the optimal ordering policy for the buyer is

(u∗, v∗) =































(X − x, 0) if s1 = s2

(u∗∗, X − x− u∗∗) if s2 < s1 < s3(x)

(0, X − x) if s1 ≥ s3(x)

where

X = Q−1(
gb + w − s2
gb + w + h

),

s3(x) = [1− Fy(X − x)]s2 +

∫ X−x

0

[(w + gb)− (w + gb + h)Q(x+ y)]fy(y)dy,

−s1 + [1− Fy(X − x− u∗∗)]s2 +

∫ X−x−u∗∗

0

[(w + gb)− (w + gb + h)Q(x+ u∗∗

+y)]fy(y)dy = 0.

When x ≥ X, the optimal ordering policy is (u∗, v∗) = (0, 0).

Proof: We compute the optimal values of u and v using the first partial derivatives

of (5.18), with respect u and v. For this purpose, we have

∂πB(x, u, v)

∂u
= −s1 + [1− Fy(v)][w

∫

∞

x+u+v

φ(ξ)dξ + gb

∫

∞

x+u+v

φ(ξ)dξ

−h
∫ x+u+v

0

φ(ξ)dξ] +

∫ v

0

[w

∫

∞

x+u+y

φ(ξ)dξ + gb

∫

∞

x+u+y

φ(ξ)dξ

−h
∫ x+u+y

0

φ(ξ)dξ]fy(y)dy

= −s1 + [1− Fy(v)][(w + gb)− (w + gb + h)Q(x+ u+ v)]

+

∫ v

0

[(w + gb)− (w + gb + h)Q(x+ u+ y)]fy(y)dy, (5.19)

∂πB(x, u, v)

∂v
= [1− Fy(v)][(−s2 + w + gb)− (w + gb + h)Q(x+ u+ v)].(5.20)
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First, we show that for a given pair of x and u, the optimal order quantity v∗

minimizing (5.18) is given by

v∗ =















Q−1( gb+w−s2
gb+w+h

)− x− u if x+ u < Q−1( gb+w−s2
gb+w+h

)

0 if x+ u ≥ Q−1( gb+w−s2
gb+w+h

)

(5.21)

Setting (5.20) equal to zero and solving for v, we have

v∗∗ = Q−1(
gb + w − s2
gb + w + h

)− x− u

as the unique v value that satisfies the first-order condition. Noting that,

∂πB(x, u, v)

∂v
≥ 0 for all v ≤ v∗∗,

and

∂πB(x, u, v)

∂v
< 0 for all v > v∗∗,

we conclude that (5.21) is correct. That is, since v∗ must be nonnegative, v∗ = v∗∗

when v∗∗ ≥ 0 and v∗ = 0 when v∗∗ < 0.

Below we consider two cases with x < X and x ≥ X respectively.

When x < X, we substitute v∗∗ into (5.19). The resulting expression is denoted

by g(u) and given by

g(u) = −s1 + [1− Fy(X − x− u)]s2 +

∫ X−x−u

0

[(w + gb)− (w + gb + h)Q(x+ u

+y)]fy(y)dy. (5.22)

Now, we show that g(u) is decreasing in u when 0 ≤ u ≤ X − x. For any ua and

ub satisfying 0 ≤ ua < ub ≤ X − x, we have
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g(ua)− g(ub) = [Fy(X − x− ub)− Fy(X − x− ua)]s2 +

∫ X−x−ua

0

[(w + gb)− (w

+gb + h)Q(x) + ua + y)]fy(y)dy −
∫ X−x−ub

0

[(w + gb)− (w

+gb + h)Q(x) + ub + y)]fy(y)dy

≥ [Fy(X − x− ub)− Fy(X − x− ua)]s2 +

∫ X−x−ua

X−x−ub

[(w + gb)

−(w + gb + h)Q(x) + ua + y)]fy(y)dy

> [Fy(X − x− ub)− Fy(X − x− ua)]s2 +

∫ X−x−ua

X−x−ub

[(w + gb)

−(w + gb + h)Q(X)]fy(y)dy = 0.

Next, we set (5.22) equal to 0 and solve for u. If s1 = s2, it is easy to see that

u∗ = X − x is the solution. If s2 < s1 ≤ s3, there exists a unique solution u∗∗

minimizing πB(x, u, v
∗). If s1 > s3(x), u

∗ = 0 minimizes πB(x, u, v
∗).

When x ≥ X, it is easy to check that u∗ = v∗ = 0 minimizes πB(x, u, v). ¥

Proposition 15 shows that the total order-up-to level from the buyer to both

suppliers is X, which does not depend on the cost of supplier 1 (s1). Also, if supplier

1’s product is too expensive (s1 ≥ s3(x)) for the buyer, then the buyer will give up

supplier 1 and place orders with supplier 2 only. Since supplier 2 is unstable, the

buyer will give up supplier 2 if supplier 1 and supplier 2 provide the products at the

same price. Therefore, the buyer is balancing price and supply uncertainty when she

is placing orders in order to maximize her own expected profit.

V.3. Optimal Contracts under Two Unstable Suppliers

In this section, we consider the case where both suppliers are unstable. Our interest

is in the optimal ordering policy for the buyer in this environment.
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Suppose both suppliers have variable capacities, Yi, i = 1, 2. The buyer requests

u and v units from supplier 1 and 2, and pays $s1 and $s2 for each received unit,

respectively. Without the loss of generality, we assume s1 ≤ s2.

Yi is a random variable with cumulative distribution Fi(yi). The actual amount

of units received from both suppliers may be limited by their capacities. If the placed

order exceeds the actual capacity that is available, the actual amount is determined by

the capacity. Otherwise, the complete order quantity is received successfully. In terms

of the order quantity, u and v, and the uncertain capacity, yi, the actual amounts

received are min(u, y1) and min(v, y2), respectively. The orders are intended to satisfy

a deterministic demand, D.

Again, we assume that the inventory holding and backlog penalty costs are linear,

with per unit costs of h and p, respectively. The unit sale price is w. The single-period

profit, πB(x, u, v), is a function of the starting inventory, x, as well as orders u and

v. The following proposition provides the optimal ordering policy for the buyer.

PROPOSITION 16 Let

U = F−1
1

(

s2 + h

w + gb + h

)

, V = F−1
2

(

s1 + h

w + gb + h

)

,W = F−1
1

(

s2 − s1
w + gb − s1

)

.

The optimal order quantity pair for the buyer is as follows:

(u∗, v∗) =















































(D − x− V,D − x− U) if x ≤ D − U − V

(u∗∗, D − x− u∗∗) if D − U − V < x ≤ D −W

(D − x, 0) if D −W < x < D

(0, 0) if x ≥ D
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where

(w + gb − s2)F2(D − x− u∗∗)− (w + gb − s1)F1(u
∗∗)− s1 + s2 = 0.

Proof: We consider five cases as follows

• Case 1: x < D, x+ u ≤ D, x+ v ≤ D, and x+ u+ v ≥ D.

• Case 2: x < D, x+ u ≥ D, x+ v ≤ D.

• Case 3: x < D, x+ u ≤ D, x+ v ≥ D.

• Case 4: x < D, x+ u+ v ≤ D.

• Case 5: x ≥ D.

In Case 1, the buyer’s expected profit function πB(x, u, v) is given by

πB(x, u, v) = −s1u[1− F1(u)]− s1

∫ u

0

y1f1(y1)dy1 − s2v[1− F2(v)]

−s2
∫ v

0

y2f2(y2)dy2 + [1− F1(u)][1− F2(v)][wD − h(x+ u+ v −D)]

{+[1− F2(v)]

∫ D−x−v

0

[w(x+ y1 + v)− gb(D − x− y1 − v)]f1(y1)dy1

+

∫ u

D−x−v

[wD − h(x+ y1 + v −D)]f1(y1)dy1}+ [1− F1(u)]{
∫ D−x−u

0

[w(x+ u+ y2)− gb(D − x− u− y2)]f2(y2)dy2 +

∫ v

D−x−u

[wD − h(x

+u+ y2 −D)]f2(y2)dy2}+
∫ D−x−v

0

[

∫ v

0

[w(x+ y1 + y2)− gb(D − x

−y1 − y2)]f2(y2)]f1(y1)dy1 +

∫ u

D−x−v

[

∫ D−x−y1

0

[w(x+ y1 + y2)

−gb(D − x− y1 − y2)]f2(y2)dy2 +

∫ v

D−x−y1

[wD − h(x+ y1

+y2)]f2(y2)dy2]f1(y1)dy1 (5.23)
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The first derivatives of (5.23), with respect to the orders, u and v, are given by:

∂πB(x, u, v)

∂u
= [1− F1(u)][(w + gb + h)F2(D − x− u)− s1 − h], (5.24)

∂πB(x, u, v)

∂v
= [1− F2(v)][(w + gb + h)F1(D − x− v)− s2 − h]. (5.25)

Solving (5.24) and (5.25) simultaneously for u and v, we have (u∗, v∗) = (D −

x− V,D− x−U). It is optimal only when x+ u∗ + v∗ ≥ D, that is, x ≤ D−U − V .

When x > D − U − V , the constraint x + u + v ≥ D is binding. That is,

x+ u+ v = D or v = D− x− u. Thus, we have the buyer’s expected profit function

as follows:

πB(x, u,D − x− u) = −s1u[1− F1(u)]− s1

∫ u

0

y1f1(y1)dy1 − s2(D − x− u)[1

−F2(D − x− u)]− s2

∫ D−x−u

0

y2f2(y2)dy2 + [1− F1(u)]

∫ D−x−u

0

[w(x+ u+ y2)− gb(D − x− u− y2)]f2(y2)dy2

+[1− F2(D − x− u)]

∫ u

0

[w(D − u+ y1)− gb(u

−y1)]f1(y1)dy1 +
∫ u

0

∫ D−x−u

0

[w(x+ y1 + y2)− gb(D − x

−y1 − y2)]f2(y2)dy2f1(y1)dy1 + [1− F1(u)][1− F2(D − x

−u)]wD. (5.26)

The first-order and second-order conditions of (5.26), with respect to the order

u are given by:

∂πB(x, u, v)

∂u
= (w + gb − s2)F2(D − x− u)− (w + gb − s1)F1(u)− s1 + s2,

(5.27)

∂π2(x, u, v)

∂u2
= −(w + gb − s2)f2(D − x− u)− (w + gb − s1)f1(u) ≤ 0.
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Set (5.27) equal to 0 and denote the root as u∗∗. Since s1 ≤ s2, u
∗∗ > D − x if

x > D − F−1
1

(

s2 − s1
w + gb − s1

)

.

In this case, the optimal order quantity is D− x. In addition, it is easy to check that

1. If x < D, x+ u ≥ D, x+ v ≤ D, then the optimal order pair is (D − x, 0);

2. If x < D, x+ u ≤ D, x+ v ≥ D, then the optimal order pair is (0, D − x);

3. If x < D, x + u + v ≤ D, then the optimal order pair always satisfies that

u∗ + v∗ = D;

4. If x ≥ D, then the optimal order pair is (0, 0). ¥

Proposition 16 shows that the buyer should adjust her ordering policy according

to the initial stock level. When the initial stock level is lower than D − U − V , the

buyer should place orders with both suppliers, and her total order-up-to level will

be larger than the market demand. However, since both suppliers are unstable, the

buyer’s orders may not be fulfilled completely. When the initial stock level is larger

than D−U−V while less than D−W , the buyer’s total order-up-to level should equal

the market demand. If the initial stock level is larger than D −W but smaller than

D, the buyer should order from supplier 1 only since he provides cheaper products.

If the initial stock level is larger than D, no order should be placed.

V.4. Summary

In this chapter, we study a simple setting that includes considerations of power struc-

ture, supply uncertainty, and competition between two suppliers. We show that the

optimal quality level is higher when the supplier is the follower of the channel than

when he is the leader. In this setting, we further examine the case in which a single

buyer is facing one stable supplier and one unstable supplier. We also study the case
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in which a single buyer is facing two unstable suppliers. We provide optimal ordering

policies for the buyer in both cases. Our contributions are highlighted below:

• The design of supply contracts under supply uncertainty and supplier competi-

tion.

• The design of supply contracts under power structure, supply uncertainty, and

supplier competition considerations.

• Exploration of the impact of power structure.
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CHAPTER VI

SUMMARY AND CONCLUSION

This dissertation investigates supply chain contract design with power structure, in-

formation asymmetry, supply uncertainty, and supplier competition considerations.

Our goals are to develop a supply contract design framework that considers power

structure and information asymmetry issues in supplier- and buyer-driven channels

and to advance practical knowledge of the design of implementable contracts. In

order to achieve our objectives, we investigate four sets of problems: buyer’s impact,

information asymmetry, supply uncertainty, and supplier competition.

In Chapter II, we explicitly examine the buyer’s impact on designing price pro-

tection and returns policies contracts. We show that when the buyer is making pric-

ing or sales effort decisions to influence market demand, price protection or returns

policies alone are not able to coordinate the channel. Additional terms must be intro-

duced into the contracts to achieve channel coordination. Threre, we provide optimal

contracts with pricing, sales effort, and information asymmetry considerations. Our

investigations are highlighted below:

• The design of optimal price protection contracts with retail-pricing decisions

under deterministic and stochastic price-sensitive demand.

• The design of optimal price protection contracts with the consideration of the

buyer’s sales effort.

• The design of optimal price protection contracts and returns policies with the

consideration of information asymmetry.

In Chapter III, we explore the impact of power structure, information asymme-

try, and contract type on joint and individual profits in a two-stage supply chain
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with a single-product. Considering a buyer-driven channel, we derive optimal supply

contracts with the considerations of information asymmetry. We show that the im-

pact of information asymmetry on the buyer’s profit margin is quite different under

different types of contracts. Under a one-part linear contract, information asymmetry

decreases the buyer’s profit margin. Under a two-part linear contract, the impact of

information asymmetry depends on the buyer’s estimation accuracy. Under a two-

part nonlinear contract, information asymmetry increases the buyer’s profit margin.

We also show that, from the system’s perspective, the buyer-driven channel is more

efficient than the supplier-driven channel under the corresponding one-part linear

contract. We confirm the common wisdom that the bargaining power is beneficial for

both the buyer and the supplier and that the value of possessing bargaining power is

higher under more general contract types in full information cases. However, when

information asymmetry exists in the supply chain, the bargaining power is not nec-

essarily beneficial for either party and the common wisdom does not hold. Thus,

it is not always wise for the buyer or the supplier to pursue the bargaining power

when accurate information is not available. In addition, more general types of con-

tracts may not improve the benefit of possessing power when information asymmetry

exists. That is, the value of the bargaining power may be smaller under more gen-

eral contract types. Hence, the party without accurate information may not benefit

from having power even when a two-part nonlinear contract is allowed, which means

that sometimes one can forfeit the bargaining power and still gain higher profit. Our

investigations are highlighted below:

• The design of different types of optimal contracts for a buyer-driven channel

with full information sharing.

• The design of different types of optimal contracts for a buyer-driven channel
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with incomplete information of cost structure.

• The analysis of the impact of power structure and information asymmetry on

supply chain performance under different types of contracts.

In Chapter IV we seek to provide implementable contractual arrangements to

coordinate the channel with the consideration of supply uncertainty. We first de-

velop a general framework that incorporates power structure and supply uncertainty

and show that both are important when designing supply contracts. Based on the

general framework, we further develop supply contracts under conditions of supply

uncertainty and deterministic demand with an infinite planning horizon. The find-

ings reported clearly show that ignoring incentive conflicts and supply information

issues can lead to undesirable behavior. We propose a model for how lot size, quality

level, and transactions should be structured to help reduce supply chain inefficiency

due to individual incentives and private information. In addition, we develop supply

contracts under supply uncertainty and stochastic demand in a single period. We

examine the impact of both supply and demand uncertainty on channel performance

and propose a consignment contract to help coordinate the channel. The problems

investigated in this chapter are summarized below:

• A general framework of supply chain contract design under supply uncertainty

in supplier- and buyer-driven channels.

• An exploration of the impact of the power structure.

• The design of optimal cost-sharing contracts under supply uncertainty and con-

tinuous deterministic demand.

• The design of optimal cost-sharing contracts under supply uncertainty and

stochastic single-period demand.
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• An exploration of the value of supply uncertainty information.

Finally, in Chapter V, we first develop a general framework with power struc-

ture, supply uncertainty, and supplier competition considerations. We show that the

optimal quality level is higher when the supplier is the follower of the channel than

when he is the leader. Under this framework, we further examine the case in which

a single buyer is facing one stable supplier and one unstable supplier. In addition,

we study the case in which a single buyer is facing two unstable suppliers. We pro-

vide optimal ordering policies for the buyer in both cases. Our investigations are

highlighted below:

• The design of supply contracts under supply uncertainty and supplier competi-

tion.

• The design of supply contracts under power structure, supply uncertainty, and

supplier competition considerations.

• Exploration of the impact of the power structure.

This research has roots in applied probability, optimization, inventory theory,

game theory, and economics. We develop optimization models aimed at minimizing

entity/system costs or maximizing entity/system profits for the purpose of optimal

contract design. Our focus is on probabilistic demand problems. From the method-

ology perspective, our optimization models are all stochastic modeling problems that

require unconstrained/constrained dynamic or nonlinear optimization techniques, de-

pending on the factors considered.

As previously indicated, current supply chain contract practice, as well as the

supply chain literature, will be enriched by this research on power shifting, information

asymmetry, supply uncertainty, and competition considerations. This dissertation is
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unique in that we explore the impact of both power shifting and information asym-

metry while designing optimal supply chain contracts under supply uncertainty and

competition. Hence, this research will advance practical knowledge about designing

implementable contracts, and such knowledge is crucial for optimizing supply chain

performance in the real world. This dissertation also sheds light on the significance

of supply uncertainty information and the role of suppliers’ and buyer’s competition

in the design of supply chain contracts. These are two important practical issues

previously neglected in the literature.
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