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ABSTRACT

Piecewise Polynomial Functions on a Planar Region: Boundary Constraints and

Polyhedral Subdivisions. (May 2006)

Terry Lynn McDonald, B.S., The University of Texas at Tyler;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Henry Schenck

Splines are piecewise polynomial functions of a given order of smoothness r on a

triangulated region ∆ (or polyhedrally subdivided region �) of Rd. The set of splines

of degree at most k forms a vector space Cr
k(∆). Moreover, a nice way to study

Cr
k(∆) is to embed ∆ in Rd+1, and form the cone ∆̂ of ∆ with the origin. It turns

out that the set of splines on ∆̂ is a graded module Cr(∆̂) over the polynomial ring

R[x1, . . . , xd+1], and the dimension of Cr
k(∆) is the dimension of Cr(∆̂)k.

This dissertation follows the works of Billera and Rose, as well as Schenck and

Stillman, who each approached the study of splines from the viewpoint of homological

and commutative algebra. They both defined chain complexes of modules such that

Cr(∆̂) appeared as the top homology module.

First, we analyze the effects of gluing planar simplicial complexes. Suppose

∆1, ∆2, and ∆ = ∆1 ∪ ∆2 are all planar simplicial complexes which triangulate

pseudomanifolds. When ∆1 ∩ ∆2 is also a planar simplicial complex, we use the

Mayer-Vietoris sequence to obtain a natural relationship between the spline modules

Cr(∆̂), Cr(∆̂1), C
r(∆̂2), and Cr(∆̂1 ∩ ∆2).

Next, given a simplicial complex ∆, we study splines which also vanish on the

boundary of ∆. The set of all such splines is denoted by Cr(∆b). In this case, we will

discover a formula relating the Hilbert polynomials of Cr(∆̂b) and Cr(∆̂).
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Finally, we consider splines which are defined on a polygonally subdivided region

� of the plane. By adding only edges to � to form a simplicial subdivision ∆, we will

be able to find bounds for the dimensions of the vector spaces Cr
k(�) for k � 0. In

particular, these bounds will be given in terms of the dimensions of the vector spaces

Cr
k(∆) and geometrical data of both � and ∆.

This dissertation concludes with some thoughts on future research questions and

an appendix describing the Macaulay2 package SplineCode, which allows the study

of the Hilbert polynomials of the spline modules.
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CHAPTER I

INTRODUCTION

A. The Problems

Let ∆ be a connected, finite d-dimensional complex supported on |∆| ⊂ Rd. The

purpose of this dissertation is to explore problems associated to the spaces of piecewise

polynomial functions, known as splines, defined on ∆. In particular, splines that are

globally Cr functions on ∆. There are many applications which are related to splines.

To name a few, they have been used for tasks such as designing font curves, fitting

scattered data, and solving partial differential equations. Also, the study of splines

is very appealing because splines reach into several areas of mathematics such as

commutative and homological algebra, combinatorics, geometry, and topology.

Billera, in [3], was the first to introduce the use of homological algebra as a tool to

study splines when he solved a conjecture about the dimension of the space of smooth

planar splines. Further explorations in this direction were conducted by Billera and

Rose, in [4, 5], Rose, in [11], as well as Schenck and Stillman, in [13, 14]. For other

approaches to the study of spline spaces, see Alfeld and Schumaker, in [1, 2], Chui

and Wang, in [6], Dahmen, Dress and Micchelli, in [7], Haas, in [9], or Yuzvinsky in

[15]. This dissertation will follow in the homological approach.

We place a few restrictions on ∆. First, ∆ must be pure. That is, all the maximal

faces of ∆ must be of dimension d. Also, ∆ must be strongly connected, which means

for any two d-faces σ and σ̃, there is a sequence of d-faces

σ = σ1, σ2, . . . , σn = σ̃

The journal model is Advances in Computational Mathematics.
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such that for i < n, σi ∩ σi+1 has dimension d − 1. Finally, all links of faces in ∆

must also be strongly connected, where the link of a face τ of ∆ is defined to be the

set of all faces γ so that τ ∪ γ ∈ ∆ and τ ∩ γ = ∅. These conditions combined are

equivalent to saying that ∆ and its links are pseudomanifolds (See [3]).

Let x1, . . . , xd be coordinates of Rd. Given |∆| ⊂ Rd, we can form ∆̂, the join

of ∆ with the origin in Rd+1. Note that ∆̂ corresponds to embedding ∆ (Fig. 1) in

the hyperplane xd+1 = 1, and then forming a new simplicial complex ∆̂ (Fig. 2) by

joining each simplex in ∆ to the origin in Rd+1.

Fig. 1. Let ∆ be the above simplicial complex.

Fig. 2. The associated ∆̂ for Figure 1.

Now, let r ≥ 0 be an integer and R = R[x1, . . . , xd+1].

Definition 1. Cr
k(∆) := {F : |∆| → R |F is continuously differentiable of order r

and F |σ is a polynomial of degree at most k, for all σ ∈ (∆)d}
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Definition 2. Cr(∆̂) := {F : |∆̂| → R |F is continuously differentiable of order r

and F | �

σ ∈ R, for all σ ∈ (∆)d}

The space Cr(∆̂) satisfies many nice properties. First, Cr(∆̂) is a finitely gener-

ated graded R-module. Also, the elements of Cr(∆̂)k, the kth degree piece of Cr(∆̂),

are the homogenizations of the elements of Cr
k(∆). Hence, it is sufficient to study

Cr(∆̂) when trying to answer questions about Cr
k(∆). Finally, it has been shown

that Cr(∆̂) is actually the top homology module of a chain complex R/J (to be seen

later). Moreover, the homology modules of the chain complex R/J are all graded,

which allows us to study invariants of these modules: for example, their Hilbert

polynomials.

The Hilbert polynomial of Cr(∆̂) has been studied by different authors. Billera

and Rose, in [4], were able to pinpoint some properties that the Hilbert polynomial

and its derivative had to satisfy. A later investigation by Schenck and Stillman, in

[13], produced formulas for the Hilbert series for finite planar simplicial complexes

where the complex and all its links were pseudomanifolds. These results serve as

inspiration for some of the questions discussed in this dissertation.

In all areas of mathematics, it is a common practice to build a new object from

already known objects and then try to formulate as much information as possible

about the new object in terms of known data. For this dissertation, we will use this

common practice on our simplicial complexes. Given two simplicial complexes ∆1

and ∆2, we will glue them along a common simplicial subcomplex, denoted ∆1 ∩∆2,

to form a new simplicial complex ∆ = ∆1 ∪ ∆2. There are a number of ways to

glue, but we will require that the simplicial complexes ∆ and ∆1 ∩∆2 also satisfy the

requirements mentioned previously in this chapter. In the planar case, we show that

there is a natural relationship between the spline spaces: Cr(∆̂), Cr(∆̂1), C
r(∆̂2),
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and Cr(∆̂1 ∩ ∆2). There is also a natural relationship in higher dimensions, but it is

more complex than the planar case.

Given a simplicial complex ∆, splines are not mandated to satisfy any conditions

along the boundary of ∆. Instead, they have only been required to be globally defined

Cr functions on the interior of ∆. We will want to see what happens when we require

splines to be Cr functions defined throughout the interior and which vanish on the

boundary of a simplicial complex. We can extend the previously used chain complexes

and techniques to get a handle on these new splines. We want to know how the splines

meeting boundary conditions relate to splines that do not satisfy boundary conditions

on a given simplicial complex ∆. In the planar case, we find a natural formula for

this relationship that is computationally pleasing.

As previously mentioned, splines show up in a wide variety of mathematics, and

they have many applications. One of the reasons for this is because splines may be

defined on many types of domains. They are not restricted to just being defined on

simplicial complexes. In particular, we will sometimes be interested in splines which

are defined on a connected polygonal region � of the plane. As in the simplicial

complex case, we will require these regions to be pure, strongly connected, and have

faces whose links are strongly connected. The definitions for Cr
k(�) and Cr(�̂) will

remain the same. Our main goal will be to find bounds on the dimensions of the

vector spaces Cr
k(�) when k is sufficiently large. We will do this by subdividing �

into a simplicial complex ∆ and then use homological algebra techniques to relate

Cr(�̂) and Cr(∆̂).

The rest of this chapter is organized as follows: the second section will introduce

some notation and review two ways that Billera and Rose used to identify the spline

space Cr(∆̂). The third section will include some additional notation as well as a third

way to identify the spline space using the chain complex R/J [∆]. This will prove to
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be our preferred way of considering the spline space due to some nice properties of

this chain complex.

In Chapter II, we examine how gluing simplicial complexes in the plane affects

their spline modules. By gluing simplicial complexes ∆1 and ∆2 along ∆1∩∆2 to form

∆ = ∆1 ∪ ∆2, we will apply the technique of obtaining a Mayer-Vietoris sequence to

show a relationship on the Hilbert polynomials of their spline spaces. In particular,

we show:

HP (Cr(∆̂)) = HP (Cr(∆̂1)) +HP (Cr(∆̂2)) −HP (Cr(∆̂1 ∩ ∆2))

In Chapter III, we will require splines on a given simplicial complex ∆ to meet

boundary conditions. Then, we show that the space of splines vanishing on ∂∆,

denoted Cr(∆̂b), is related to Cr(∆̂) by using the long exact sequence in homology

gotten from the short exact sequence of chain complexes in relative simplicial ho-

mology. The key to this will be to show that some of the newly created homology

modules in the long exact sequence are finite length modules.

In Chapter IV, we examine splines which are defined on a connected polygonal

region � of the plane. We obtain bounds on the dimension of the graded pieces

of the spline module Cr(�̂)k for k � 0. To find these bounds, we used a process

which has three key steps. First, we find a simplicial subdivision ∆ of � by adding

only edges. Second, we build a short exact sequence of chain complexes that relates

Cr(�̂) and Cr(∆̂) in the resulting long exact sequence in homology. Finally, we show

that the newly introduced homology modules are finite length modules or they have

computable Hilbert polynomials.

This dissertation will conclude with two final sections: Chapter V and an Ap-

pendix. In Chapter V, we will give a final summary of our conclusions and take a

glance at future research questions. In the Appendix, we will look at some more



6

detailed examples using code written for Macaulay2 called SplineCode and present

the actual code.

Throughout this dissertation, (∆)0 denotes the set of interior faces of ∆, (∆)i

denotes the i-dimensional faces of ∆, (∆)0
i denotes the set of interior i-dimensional

faces of ∆, and (∂∆)i denotes the i-dimensional boundary faces of ∆. Also, f 0(∆),

fi(∆), f 0
i (∆), and f ∂

i (∆) denote the cardinality of these sets, respectively. Finally,

the complexes defined in this chapter depend on an integer r ≥ 0 even though the

notation does not make this explicit.

B. Definitions and Notation

Definition 3. Let R be a ring. A complex F of R-modules on (∆)0 consists of the

following:

(a) For each σ ∈ (∆)0 an R-module F(σ)

(b) For each i ∈ {0, . . . , d} an R-module homomorphism

∂i :
⊕

σi∈(∆)0i

F(σi) −→
⊕

σi−1∈(∆)0i−1

F(σi−1)

such that ∂i−1 ◦∂i = 0. That is, image ∂i ⊆ ker ∂i−1. Note that such a complex is said

to be exact if image ∂i = ker ∂i−1.

Example 1. Let R be the constant chain complex on (∆)0. That is, R(σ) = R, for

every σ ∈ (∆)0, and the maps will be the usual boundary operators.

Example 2. Let r ≥ 0 be an integer. For each σ ∈ (∆)0, let Iσ be the homogeneous

ideal of σ̂ ⊆ Rd+1. For example, if σ is an edge of ∆ ⊂ R2 with vertices (x1, y1) and

(x2, y2) then

Iσ = 〈x(y1 − y2) − y(x1 − x2) + z(x1y2 − x2y1)〉 ⊆ R[x, y, z]
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Define a complex I[∆] of ideals on (∆)0 by I(σ) = Ir+1
σ and the quotient complex

R/I[∆] by R/I(σ) = R/Ir+1
σ .

Given a complex F of R-modules on (∆)0:

0 −→
⊕

σ∈(∆)d

F(σ)
∂d−→

⊕

τ∈(∆)0
d−1

F(τ)
∂d−1

−→ · · ·
⊕

v∈(∆)0
0

F(v) −→ 0

denote H∗(F) as the homology of this complex. Also recall, if given a short exact

sequence of complexes:

0 −→ A −→ B −→ C −→ 0

Then there is a resulting long exact sequence in homology:

0 −→ Hd(A) −→ Hd(B) −→ Hd(C) −→ Hd−1(A) −→ · · · −→ H0(C) −→ 0

A key fact proved by Billera, in [3], is that the spline module Cr(∆̂) is isomorphic to

Hd(R/I[∆]).

To finish this section, we should recall a second way to characterize the spline

module. Billera and Rose, in [4], used the following exact sequence of graded modules

to show that Cr(∆̂) is isomorphic to the kernel of a matrix M (also given below):

0 −→ kerM −→ Rfd ⊕ Rf0

d−1(−r − 1)
M
−→ Rf0

d−1 −→ cokerM −→ 0

where

M =


∂d

∣∣∣∣∣∣∣∣

lr+1
ε1

. . .

lr+1
ε
f0

d−1


 ,

∂d is the simplicial boundary operator on Rfd −→ Rf0

d−1 , and lεi
is the homogeneous

linear form generating Iεi
for εi ∈ (∆)0

d−1.
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C. The Complexes J [∆] and R/J [∆]

Let integer r ≥ 0 be fixed. Define a complex of ideals J [∆] on (∆)0 as follows:

J (σ) = 0 for σ ∈ (∆)d

J (τ) = Ir+1
τ for τ ∈ (∆)0

d−1

J (ξ) =
∑
ξ∈τ

Ir+1
τ for ξ ∈ (∆)0

d−2

...
...

J (v) =
∑
v∈τ

Ir+1
τ for v ∈ (∆)0

0

Again, let R[∆] be the constant complex defined in Example 1 and R/J [∆]

as the quotient complex of R[∆] and J [∆]. Since,
⊕

β∈(∆)0i

J (β) is a submodule of

⊕
β∈(∆)0i

R(β), the usual boundary operator, ∂i, induces a differential on J [∆] for all i.

Similarly, for the quotient R/J [∆]. Hence, the short exact sequence of complexes

0 −→ J [∆] −→ R[∆] −→ R/J [∆] −→ 0

yields a long exact sequence in homology:

· · · −→ Hi+1(R/J [∆]) −→ Hi(J [∆]) −→ Hi(R[∆]) −→ Hi(R/J [∆]) −→ · · ·

Notice, the complexes J [∆] and I[∆] agree on the d faces and the d− 1 faces of ∆.

Hence, we know that

Hd(R/J [∆]) = Hd(R/I[∆])

Consequently, the top homology module of the complex R/J [∆] is isomorphic

to Cr(∆̂). This gives us a third way to characterize the spline module. However, the

lower homology modules of R/I[∆] and R/J [∆] do not agree. More importantly, the

complex R/J [∆] and its homology modules are known to have some nice properties.

Some of these properties will be noted and used throughout this dissertation.
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CHAPTER II

ANALYSIS OF GLUING IN THE PLANAR CASE

A. Introduction

In this chapter, we explore spline spaces using the Mayer-Vietoris sequence. Suppose

∆1, ∆2, and ∆ = ∆1 ∪ ∆2 are all planar simplicial complexes which triangulate

pseudomanifolds. We study the relation between the spline modules on ∆1, ∆2, ∆,

and ∆1∩∆2 when ∆1∩∆2 also triangulates a pseudomanifold. In this case, there is a

natural relationship between the Hilbert polynomials (which measure the dimension

of Cr(∆̂)k for k � 0) of the spline modules.

The main theorem in this chapter states if ∆1, ∆2, ∆ = ∆1 ∪ ∆2 and ∆1 ∩ ∆2

are all finite simplicial complexes triangulating pseudomanifolds, then for k � 0 we

have the following:

dimR C
r(∆̂)k = dimRC

r(∆̂1)k + dimR C
r(∆̂2)k − dimR C

r(∆̂1 ∩ ∆2)k

Of course, this is a relation on Hilbert polynomials in the language of commutative

algebra.

In the next section, we state some basic properties of the homology modules of

the chain complex R/J [∆]. In the third section, the Mayer-Vietoris sequence will be

presented and applied to our problem. In the final section, the Hilbert polynomial

and some of its properties will be presented and used to obtain our first result.

B. The Homology Modules of R/J [∆]

Let r ≥ 0 be an integer and R = R[x, y, z]. Also, let ∆ be a finite, connected

simplicial complex embedded in R2. Define a chain complex J [∆] as follows:
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J (σ) = 0 for σ ∈ (∆)2

J (τ) = Ir+1
τ for τ ∈ (∆)0

1

J (v) =
∑
v∈τ

Ir+1
τ for v ∈ (∆)0

0

Next, the complex R/J [∆] defined on (∆)0 is given by the quotient of the constant

complex R[∆] (which computes relative homology with R coefficients) and the com-

plex J [∆] defined above. The maps for this chain complex are again induced from

the usual relative simplicial boundary operators.

We recall some results of previous work applying homological algebra to the study

of spline theory. In particular, we need those results which describe the homology

modules of the chain complex R/J [∆]. The first lemma relates the second homology

of R/J [∆] with the spline space of a simplicial complex. The second lemma describes

the homology modules H1(R/J [∆]) and H0(R/J [∆]).

Lemma 1. (See [3]) Let ∆ be a connected finite simplicial complex. If R/J [∆] is

the complex defined above, then Cr(∆̂) is isomorphic to the module H2(R/J [∆]).

Lemma 2. (See [14]) The R-module H1(R/J [∆]) has finite length. Moreover, the

R-module H0(R/J [∆]) = 0.

C. The Mayer-Vietoris Sequence

Suppose that ∆1 and ∆2 are two simplicial complexes glued so that ∆ = ∆1∪∆2 and

∆1∩∆2 are also simplicial complexes. Let Ck be the oriented k-simplices and consider

the map ψ : Ck(∆1)⊕Ck(∆2) → Ck(∆) defined as follows: ψ(σ1, σ2) = σ1 − σ2. Note

that ψ is a surjective map with kernel ψ isomorphic to Ck(∆1 ∩∆2) since ψ(σ, σ) = 0

for σ ∈ Ck(∆1 ∩∆2) (See [10]). Hence, there is a short exact sequence of complexes:

0 −→ C∗(∆1 ∩ ∆2) −→ C∗(∆1) ⊕ C∗(∆2) −→ C∗(∆) −→ 0
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Definition 4. The Mayer-Vietoris sequence is the long exact sequence in homology

induced from the above short exact sequence of complexes:

· · · → Hk+1(∆) → Hk(∆1∩∆2) → Hk(∆1)⊕Hk(∆2) → Hk(∆) → Hk−1(∆1∩∆2) → · · ·

Example 3. Suppose that ∆1, ∆2, ∆1 ∩ ∆2, and ∆ = ∆1 ∪ ∆2 are all simplicial

complexes. The following is a short exact sequence of complexes:

0 −→ R/J [∆1 ∩ ∆2] −→ R/J [∆1] ⊕R/J [∆2] −→ R/J [∆] −→ 0

Hence, there is a resulting Mayer-Vietoris sequence:

0 → H2(R/J [∆1 ∩ ∆2]) → H2(R/J [∆1]) ⊕ H2(R/J [∆2]) → H2(R/J [∆]) →

H1(R/J [∆1 ∩ ∆2]) → H1(R/J [∆1]) ⊕H1(R/J [∆2]) → H1(R/J [∆]) → 0

Now, for an integer r ≥ 0, we apply Lemma 1 to the Mayer-Vietoris sequence to

get the following long exact sequence:

0 → Cr(∆̂1 ∩ ∆2) → Cr(∆̂1) ⊕ Cr(∆̂2) → Cr(∆̂) → H1(R/J [∆1 ∩ ∆2]) →

H1(R/J [∆1]) ⊕H1(R/J [∆2]) → H1(R/J [∆]) → 0

D. The Hilbert Polynomial When ∆1 ∩ ∆2 Is a Triangulation

For a finitely generated graded module M over the polynomial ring R = R[x, y, z]

there is a polynomial (the Hilbert polynomial) HP (M, t) ∈ Z[t] such that dimRMl =

HP (M, l) for l � 0 (See [8], Theorem 1.11). The Hilbert polynomial satisfies some

key facts (See [8]).

Lemma 3. If 0 →M →M0 →M1 → · · · →Mk → 0 is an exact sequence of finitely

generated graded modules over R, then HP (M, t) =
k∑

i=0

(−1)iHP (Mi, t).



12

Lemma 4. If M and N are finitely generated graded R-modules, then

HP (M ⊕N, t) = HP (M, t) +HP (N, t).

Lemma 5. If M is a finitely generated graded R-module of finite length, then

HP (M, t) = 0.

The proofs of Lemma 3 and Lemma 4 are simple exercises and are well known

facts for the Hilbert polynomials. The reason that Lemma 5 is true is because a

module of finite length vanishes in high degree. Hence, the dimension of the high

degree pieces are zero, which causes its Hilbert polynomial to also be zero.

So, by applying Lemmas 3 and 4 to the long exact sequence at the end of the

previous section, we obtain the following equation:

HP (Cr(∆̂)) − HP (Cr(∆̂1)) − HP (Cr(∆̂2)) + HP (Cr(∆̂1 ∩ ∆2)) =

HP (H1(R/J [∆1 ∩∆2])) −HP (H1(R/J [∆1])) −HP (H1(R/J [∆2])) + HP (H1(R/J [∆]))

Finally, by Lemmas 2 and 5, the second line vanishes and we obtain the following:

Theorem 1. Let r ≥ 0 be an integer and R = R[x, y, z]. If ∆1, ∆2, ∆1 ∩ ∆2, and

∆ = ∆1 ∪ ∆2 are all simplicial complexes, then

HP (Cr(∆̂)) = HP (Cr(∆̂1)) +HP (Cr(∆̂2)) −HP (Cr(∆̂1 ∩ ∆2))

Example 4. Below, we give two simplicial complexes ∆1 and ∆2 along with the

simplicial subcomplex ∆1 ∩ ∆2 (Fig. 3), on which they are to be glued to form

a simplicial complex ∆ and Table I which contains various r values demonstrating

Theorem 1:
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Fig. 3. Simplices ∆1, ∆2, and ∆1 ∩ ∆2, respectively.

Table I. The values of Theorem 1 for the complexes in Fig. 3.

r HP (Cr(∆̂)) HP (Cr(∆̂1)) HP (Cr(∆̂2)) −HP (Cr(∆̂1 ∩ ∆2))

0 4t2 + 2t+ 1 3t2 + 2t + 1 3t2 + 2t+ 1 −2t2 − 2t− 1

1 4t2 − 8t+ 8 3t2 − 5t+ 6 3t2 − 5t+ 6 −2t2 + 2t− 4

2 4t2 − 18t+ 31 3t2 − 12t+ 22 3t2 − 12t+ 22 −2t2 + 6t− 13

3 4t2 − 28t+ 68 3t2 − 19t+ 48 3t2 − 19t+ 48 −2t2 + 10t− 28

4 4t2 − 38t+ 121 3t2 − 26t+ 85 3t2 − 26t+ 85 −2t2 + 14t− 49

It is natural to ask what happens in higher dimensions. Results of [12] show

that Hi(R/J [∆]) is of dimension i − 2 for all 1 ≤ i < d = dim(∆). We will

get that χ(HP (Hi(R/J [∆]))) = χ(HP (Hi(R/J [∆1]))) + χ(HP (Hi(R/J [∆2]))) −

χ(HP (Hi(R/J [∆1 ∩∆2]))) but since the lower homology modules may have nonzero

Hilbert polynomials (as opposed to the planar case), the Hilbert polynomials them-

selves satisfy a more complicated relationship.
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CHAPTER III

BOUNDARY CONSTRAINTS IN THE PLANAR CASE

A. Introduction

Splines have been defined and studied as globally defined Cr functions across the

interior of a simplicial complex ∆; thus far, we have placed no conditions on ∂∆.

This is why the use of simplicial homology relative to the boundary is well suited to

the problem. Throughout this chapter, we want to consider splines that are globally

defined Cr functions across the interior and which vanish on the boundary of a sim-

plicial complex. We can get a handle on these new splines by forming a new chain

complex that involves all the faces of ∆; i.e. both interior and boundary faces:

R/J [∆b] : 0 −→
⊕

σ∈(∆)2

R/J (σ)
∂2−→

⊕

τ∈(∆)1

R/J (τ)
∂1−→

⊕

v ∈(∆)0

R/J (v) −→ 0

Notice that ∆ has the same two-dimensional faces as (∆)0,but (∆)1 = (∆)0
1 ∪

(∂∆)1 and similarly for (∆)0. The top homology module of this complex will be

denoted by Cr(∆̂b) and is the space of the new type of splines. Our goal is to find a

formula relating HP (Cr(∆̂)) and HP (Cr(∆̂b)).

When using relative simplicial homology, there is a short exact sequence of com-

plexes. In this case, it takes the following form:
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R/J [∂∆] : 0

��

//
⊕

τ∈(∂∆)1

R/J (τ)

��

//
⊕

v∈(∂∆)0

R/J (v)

��

R/J [∆b] :
⊕

σ∈(∆)2

R

��

//
⊕

τ∈(∆)1

R/J (τ)

��

//
⊕

v∈(∆)0

R/J (v)

��

R/J [∆] :
⊕

σ∈(∆)2

R //
⊕

τ∈(∆)0
1

R/J (τ) //
⊕

v∈(∆)0
0

R/J (v)

Thus, we have the following long exact sequence in homology:

0 → Cr(∆̂b) → Cr(∆̂) → H1(R/J [∂∆]) → H1(R/J [∆b]) → H1(R/J [∆]) →

H0(R/J [∂∆]) → H0(R/J [∆b]) → 0

B. H0(R/J [∂∆]), H0(R/J [∆b]), and H1(R/J [∆b]) Are Finite Modules

The previous long exact sequence can be simplified by showing that H0(R/J [∂∆]),

H0(R/J [∆b]), and H1(R/J [∆b]) are all modules of finite length (by Lemma 2,

H1(R/J [∆]) is a finite length module).

Lemma 6. The module H0(R/J [∂∆]) is of finite length.

Proof. The complex R/J [∂∆] has the following form:

R/J [∂∆] : 0 →
⊕

τ∈(∂∆)1

R/J (τ)
∂1→

⊕

v∈(∂∆)0

R/J (v) → 0

In particular, H2(R/J [∂∆]) = 0 since ∂∆ is one-dimensional. Thus, we have the

following exact sequence:

0 → H1(R/J [∂∆]) →
⊕

τ∈(∂∆)1

R/J (τ)
∂1→

⊕

v∈(∂∆)0

R/J (v) → H0(R/J [∂∆]) → 0
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Fix ṽ ∈ (∂∆)0, by a change of coordinates, we may assume ṽ satisfies
√
J(ṽ) =

〈x, y〉. Let P be a codimension 2 prime ideal. To obtain our result, we will localize at

P. Recall that localization is an exact functor and commutes with finite sums. Thus,

we have the following exact sequence:

0 → H1(R/J [∂∆])P →
⊕

τ∈(∂∆)1

(R/J (τ))P
∂1→

⊕
v∈(∂∆)0

(R/J (v))P → H0(R/J [∂∆])P → 0

Notice, if J (v) 6⊆ P , then (R/J (v))P = 0. Thus, if P 6=
√

J (v) for any v ∈ (∂∆)0,

then
⊕

v∈(∂∆)0

(R/J (v))P = 0 which forces H0(R/J [∂∆])P = 0.

Suppose P =
√

J (ṽ). In this case, the exact sequence takes on the form:

0 → H1(R/J [∂∆])P →
⊕

τ∈(∂∆)1

(R/J (τ))P
∂1→ (R/J (ṽ))P → H0(R/J [∂∆])P → 0

Also, note that (R/J (τ))P = (R/lr+1
τ )P 6= 0 iff lτ ∈ P . Since we are working

with simplicial complexes, there exist τ1, . . . , τm ∈ (∂∆)1, with m ≥ 2 so that

(R/J (τi))P 6= 0 for i = 1, . . . , m. Since (R/J (v))P = 0 for all v 6= ṽ, this

forces the map
m⊕

i=1

(R/J (τi))P
∂1→ (R/J (ṽ))P to be surjective. So, again we have

H0(R/J [∂∆])P = 0.

Therefore, H0(R/J [∂∆])P = 0 for any codimension 2 prime ideal. Hence,

H0(R/J [∂∆]) must be supported on the ideal 〈x, y, z〉, which means thatH0(R/J [∂∆])

is a finite length module. (See [8], Cor. 2.17).

Note that there are two important conclusions that we may draw from Lemma

6. Next, we will present the first corollary but the second corollary will be discussed

in the following section.

Corollary 1. H0(R/J [∆b]) is a finite length module.

Proof. By Lemma 6, H0(R/J [∂∆]) surjects onto H0(R/J [∆b]). Since H0(R/J [∂∆])
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vanishes in high degree, H0(R/J [∆b]) must also.

Proposition 1. The module H1(R/J [∆b]) has finite length.

Proof. To see this, we will be considering the chain complex R/J [∆b]. Our strat-

egy will be to apply a localization argument at a prime ideal P and show that

H1(R/J [∆b])P vanishes unless P is 〈x, y, z〉.

First, if we localize at any prime ideal P where lτ 6⊆ P for every τ ∈ (∆)1, then

⊕
τ∈(∆)1

(R/J (τ))P =
⊕

τ∈(∆)1

(R/lr+1
τ )P = 0. As a consequence, (ker ∂1)P = 0 which

forces H1(R/J [∆b])P = 0. Thus, we must consider a prime P that contains lτ for

some τ ∈ (∆)1.

Suppose that P = 〈lε〉 where ε ∈ (∆)1. In this case, (R/J (τ))P = 0 for all

τ 6⊆ V (lε). We also have (R/J (v))P = 0 for every v ∈ (∆)0, since J (v) 6⊆ lε. So, the

localized complex is of the form:

0 →
n⊕

i=1

RP →
⊕

τj⊆V (lε)

(R/J (ε))P → 0

Hence, (ker ∂1)P =
⊕

τj⊆V (lε)

(R/J (ε))P and we need to show that ∂2 is surjective. For

this, consider a generator, µj of
⊕

τj⊆V (lε)

(R/J (ε))P . That is, µj =
(

0, . . . , 1, . . . , 0
)t

with a 1 in the jth position and the rest zeros. Suppose that σi is a triangle with bound-

ary edges τj, τk, and τn with τj ⊆ V (lε) and τk, τn 6⊆ V (lε). Let γ =
(

0, . . . , 1, . . . , 0
)t

with a 1 in the ith position and the rest zeros be an element in
n⊕

i=1

RP . Since, τk, τn 6⊆

V (lε), we have that ∂2(γ) =
(

0, . . . , ∂2(σi), . . . , 0
)t

= µj ∈
⊕

τj⊆V (lε)

(R/J (ε))P which

means ∂2 is surjective. Therefore, H1(R/J [∆b])P = 0.

We finally consider the case when P is a codimension 2 prime ideal. By an earlier

observation, 〈lτ 〉 must be contained in P for some edge τ of ∆. So, since codimension

2 prime ideals correspond to points, we can assume P = 〈lε1, lε2〉. There are two

cases to consider. Suppose V (P ) = ṽ is a vertex of the simplicial complex ∆. If
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ṽ is an interior vertex, then we are done since H1(R/J [∆]) is of finite length and

H1(R/J [∆b]) is isomorphic to H1(R/J [∆]) in this situation.

So, we assume that ṽ is on the boundary of ∆. Here, we will have (R/J (v))P = 0

for all v 6= ṽ and (R/J (τ))P = 0 for τ where ṽ 6⊆ V (lτ ). Note, if ṽ ⊆ V (lτ ) for some

edge τ but ṽ 6⊆ τ , then H1(R/J [∆])P = 0 by an argument similar to the last case.

We may suppose that τ1, . . . , τk are all edges which contain ṽ. The localized

complex will have the following form:

0 →
k−1⊕

i=1

RP →
k⊕

i=1

(R/J (τi))P ⊕
⊕

ṽ 6⊆τ

(R/J (τ))P → (R/J (ṽ))P → 0

Suppose γ =
(
g1, . . . , gk

)t

∈
k⊕

i=1

(R/J (τi))P is an element of H1(R/J [∆b])P so that

∂1(γ) =
k∑

i=1

gi ∈ J(ṽ). γ is only defined up to
(
α1l

r+1
τ1

, . . . , αkl
r+1
τk

)t

, so fix a represen-

tative for γ in
k⊕

i=1

RP . There exists ai, for i = 1, . . . , k so that
k∑

i=1

gi =
k∑

i=1

ail
r+1
τi

. Con-

sider ψ =
(
−a1l

r+1
τ1

+ a2l
r+1
τ2

, a3l
r+1
τ3

, . . . , akl
r+1
τk

)t

∈
k−1⊕
i=1

RP and notice that ∂2(ψ) =

(
a2l

r+1
τ2

, a1l
r+1
τ1

+ a3l
r+1
τ3

, a4l
r+1
τ4

, . . . akl
r+1
τk

, 0
)t

= φ and ∂1(φ) =
k∑

i=1

ail
r+1
τi

. Also, we

have the following short exact sequence of complexes with γ − φ ∈ ker ∂1:

J [∆b]P : 0

��

//
k⊕

i=1

R(−r − 1)P

��

// J (ṽ)P

��
R[∆b]P :

k−1⊕
i=1

RP

��

∂2 //
k⊕

i=1

RP

��

∂1 // RP

��
R/J [∆b]P :

k−1⊕
i=1

RP
//

k⊕
i=1

(R/J (τi))P
// (R/J(ṽ))P

Note that H1(R[∆b]) = 0 since the localized simplicial complex has no holes, and from
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this we know that ker ∂1 = image ∂2. So, there exists some element G ∈
k−1⊕
i=1

RP with

∂2(G) = γ−φ. This implies that γ = φ+∂2(G) ∈ image ∂2. Hence, H1(R/J [∆b])P =

0 and this is equivalent to saying that H1(R/J [∆b]) is a finite length module.

C. The Hilbert Polynomial of Cr(∆̂b)

We begin this section with the second corollary of Lemma 6 which gives a formula for

HP (H1(R/J [∂∆])). Next, we look at the values of the Hilbert polynomials of the

terms in this formula. Finally, we state the result and conclude with an example.

Corollary 2. HP (H1(R/J [∂∆])) =
∑

τ∈(∂∆)
1

HP (R/J (τ)) −
∑

v∈(∂∆)
0

HP (R/J (v))

This is a key result because the Hilbert polynomials of R/J (τ) and R/J (v) are

known. First, by definition, J (τ) = Ir+1
τ , where Iτ is a principal ideal generated by

a linear polynomial. Thus, HP (R/J (τ)) = HP (R) − HP (R(−r − 1)) =
(

t+2
2

)
−

(
t+2−r−1

2

)
= (r + 1)t − 1

2
(r2 − r) + 1. Second, Schenck and Stillman in [13], found a

free resolution for R/J (v), which gives a formula for HP (R/J (v)).

Lemma 7. Suppose J (v) is assumed to have the form 〈(x+a1y)
r+1, . . . , (x+any)

r+1〉

with ai 6= aj if i 6= j. Let α(v) = b r+1
n−1

c, s1(v) = (n − 1)α(v) + n − r − 2, and

s2(v) = r + 1 − (n− 1)α(v) then

HP (R/J (v)) =
(

t+2
2

)
− n

(
t+2−r−1

2

)
+ s1(v)

(
t+2−r−1−α(v)

2

)

+ s2(v)
(

t+2−r−2−α(v)
2

)

(Note, there is a typo when defining s2 in Theorem 3.1 of [13], the second + should

be a −. Nonetheless, the proof is correct.)

Now, we combine the results in this section with those in the previous sections

to obtain a formula for comparing the Hilbert polynomials of splines that satisfy

boundary conditions with splines having no restrictions on the boundary.
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Theorem 2. Let r ≥ 0 be an integer and R = R[x, y, z]. If ∆ is a connected finite

planar simplicial complex, then

HP (Cr(∆̂b)) = HP (Cr(∆̂)) −
∑

τ∈(∂∆)1

HP (R/J (τ)) +
∑

v∈(∂∆)0

HP (R/J (v))

Example 5. Below, we give a simplicial complex ∆ (Fig. 4) and Table II which

contains various r values demonstrating Theorem 2:

Fig. 4. A simplicial complex ∆ to demonstrate Theorem 2.

Table II. The values of Theorem 2 for the complex in Fig. 4.

r HP (Cr(∆̂b)) HP (Cr(∆̂))
∑

τ∈(∂∆)1

HP (R/J (τ))
∑

v∈(∂∆)0

HP (R/J (v))

0 4t2 − 3t+ 1 4t2 + 3t+ 1 6t+ 6 6

1 4t2 − 18t+ 19 4t2 − 6t+ 7 12t+ 6 18

2 4t2 − 33t+ 66 4t2 − 15t+ 26 18t 40

3 4t2 − 48t+ 140 4t2 − 24t+ 58 24t− 12 70

4 4t2 − 63t+ 243 4t2 − 33t+ 103 30t− 30 110

The obvious key fact here is that we were able to observe what properties the

homology modules H0(R/J [∂∆]), H0(R/J [∆b]), and H1(R/J [∆b]) satisfy. In par-

ticular, they are all finite length modules. The other important fact here is that the

homology module H1(R/J [∂∆]) is not finite length. However, by Corollary 2, we are

able to compute its Hilbert polynomial.
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CHAPTER IV

ANALYSIS OF SUBDIVIDING POLYGONAL REGIONS OF THE PLANE

A. Introduction

One of the reasons people find splines to be interesting is because of the wide variety

of domains on which they may be defined. Consequently, with this variety, the types

of questions asked about splines may seem repetitious. However, some questions

deserve to be answered regardless of what type of domain the splines are defined

on. For example, given any region ∆ where splines exist, it is desirable to know

the dimensions of the vector spaces Cr
k(∆) for k � 0. In the case when ∆ is a

triangulation, the following theorem by Alfeld and Schumaker answers this question:

Theorem 3. Let ∆ be a planar simplicial complex. If k � 0, then

dimR C
r
k(∆) =

(
k + 2

2

)
+

(
k − r + 1

2

)
f 0

1 − (

(
k + 2

2

)
−

(
r + 2

2

)
)f 0

0 + σ

where σ =
∑
σi and σi = 1

2
((1 − n(vi))α(vi)

2 + (2r − n(vi) + 3)α(vi)). In particular,

this bound is attained for k ≥ 3r + 1.

For the rest of this chapter, let � be a connected polygonal region of the plane.

We will be focusing on the dimensions of the vector spaces Cr
k(�) for k � 0. The

ultimate goal is to find a formula for these dimensions similar to the one given by

Alfeld and Schumaker in the simplicial complex case. In this dissertation, we begin

the search for such a formula by finding bounds for these dimensions. To obtain

these bounds, we will be subdividing � to form a simplicial complex ∆, and we will

be using homological machinery to relate the spline modules Cr(�̂) and Cr(∆̂).

At this point, there are two questions to. The first question is, ”Why do we want

to find a simplicial subdivision ∆ of �?” It turns out that the answer to this question
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gives the upper bounds for the dimensions of the vector spaces Cr
k(�). In particular,

if � is a polygonal region of the plane and ∆ is any subdivision of �, then there is an

obvious inclusion Cr(�̂) ↪→ Cr(∆̂). Therefore, we know dimR C
r
k(∆) ≥ dimR C

r
k(�)

for any integer r ≥ 0 and sufficiently large k. The second question is, ”How should

we subdivide the region �?” Well, we will add only edges to � to form a simplicial

complex (triangulation) ∆ (Fig. 5).

Fig. 5. A polygonal region and one of its simplicial subdivisions.

It is important to note that ∆ will not be unique. In fact, for a given polygonal

region �, there will be several ways to produce a simplicial complex ∆. However, we

must add the same number of edges to � to get each ∆. Consequently, every such

subdivision ∆ will have the same number of triangles, f2(∆), and the same number

of interior edges, f 0
1 (∆). For example, if � is a polygon with n-sides (Fig. 6), then

we must add n− 3 edges to � to obtain a simplicial complex ∆ which will have n− 2

triangles.
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σ

0

1 2

3 4

σ
1

σ
2

σ
3

Fig. 6. For a pentagon, σ, we must add 2 edges to obtain a triangulation with three

triangles σ1, σ2, and σ3.

B. The Short Exact Sequence 0 → P → R/J [∆] → Q → 0

For the rest of this chapter, we will be focusing on finding the lower bounds for the

dimensions of the vector spaces Cr
k(�). In this section, we will be introducing the

short exact sequence of chain complexes that will yield the long exact sequence in

homology which relates Cr(�̂) and Cr(∆̂).

Let σ be an n-sided polygon (2-face) in the polygonal region �. Label the vertices

of σ with 1, . . . , n in the counter-clockwise direction beginning with the left-uppermost

vertex (Fig. 7). Consider the map d2 : Rf2(
�

) →
⊕

τ ∈(
�

)0
1

R/J (τ) which sends σ to

the sum of its boundary edges. In particular, if ab denotes the edge connecting the

vertices a and b, then d2(σ) = 12 + 23 + . . .+ (n− 1)n+ n1.

Moreover, if ∂1 is the usual (relative) simplicial boundary operator, then it is

easy to verify that ∂1 ◦ d2 = 0. Thus, we have the following chain complex P of

R-modules on (�)0 whose top homology module is Cr(�̂):

P : Rf2(
�

) d2→
⊕

τ ∈(
�

)0
1

R/J (τ)
∂1→

⊕

v ∈(
�

)0
0

R/J (v)
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1

2

3

4σ

Fig. 7. For the quadrilateral σ, d2(σ) = 12 + 23 + 34 + 41.

Again, let σ be an n-sided polygon of the polygonal region � and suppose σ

gets subdivided into the triangles σ1, . . . , σn−2 of ∆. Consider the map θ : Rf2(
�

) →

Rf2(∆) which sends σ to the sum
n−2∑
i=1

σi. For example, let the following (Fig. 8) be a

subdivision of the quadrilateral σ in Fig. 7,

1

2

3

4

σ
1

σ
2

Fig. 8. A subdivided quadrilateral.

then θ(σ) = σ1 + σ2.

In the example above, it is easily checked that i(d2(σ)) = ∂2(θ(σ)) where i is

an inclusion map and ∂2 : Rf2(∆) →
⊕

τ ∈(∆)0
1

R/J (τ) is the usual (relative) simplicial

boundary map. It turns out that this is true for any polygon. Hence, we know the

following is a commutative diagram:
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Rf2(
�

)

θ

��

d2//
⊕

τ∈(
�

)0
1

R/J (τ)

� _

i
��

Rf2(∆)
∂2//

⊕
τ∈(∆)0

1

R/J (τ)

From this, we conclude that given a polygonally subdivided region � of the

plane and a subdivision ∆ of � obtained by adding only edges, there is a short exact

sequence of chain complexes:

P : Rf2(
�

)

θ

��

d2 //
⊕

τ∈(
�

)0
1

R/J (τ)

� _

i

��

∂1 //
⊕

v ∈(
�

)0
0

R/J (v)

OO

��

R/J [∆] : Rf2(∆)

����

∂2 //
⊕

τ∈(∆)0
1

R/J (τ)

����

∂1 //
⊕

v ∈(∆)0
0

R/J (v)

��
Q : Rf2(∆)−f2(

�
)

q //
⊕

τ∈(∆)0
1
−(

�
)0
1

R/J (τ) // 0

where Q is the quotient chain complex and q is defined so that the lower left square

commutes. Therefore, we have the following long exact sequence in homology:

0 → Cr(�̂) → Cr(∆̂) → H2(Q) → H1(P) → H1(R/J [∆]) → H1(Q) →

H0(P) → H0(R/J [∆]) → 0

The next step will be to determine what properties the homology modules of P and

Q satisfy.

C. The Homology Modules of P and Q

Recall, by Lemma 2, we know that the zeroth homology module of R/J [∆] is zero
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and the first homology module of R/J [∆] is of finite length. Now, we examine some

of the other homology modules in the long exact sequence from the previous section.

The goal will be to determine what properties these homology modules satisfy. In

particular, we will show that H0(P) is identically zero and that H1(Q) is a module of

finite length. Moreover, we will observe that there is a nice formula for computing the

Hilbert polynomial of H2(Q). Combined with the fact that the Hilbert polynomial

of Cr(∆̂) is known, this gives a lower bound for the Hilbert polynomial of Cr(�̂).

Lemma 8. The homology module H0(P) is zero.

Proof. Let v be any vertex of � and let S be the set of paths in � which connect v

to the boundary of �. Define the distance from the vertex v to the boundary of �,

denoted d(v, ∂�), to be the minimum length of the paths in S where the length of a

path in S is given by the number of edges in the path.

Suppose v1 is any vertex of � satisfying d(v, ∂�) = 1. If the edge between v1

and the boundary of � is τ1, then we know that the map R/J (τ1)
∂1→ R/J (v1) is

surjective. Thus, no homology can be supported on the vertices that are distance 1

from the boundary.

Next, let v2 be any vertex of � satisfying d(v2, ∂�) = 2. Suppose the following

path of length 2 (Fig. 9) connects v2 to the boundary of �:

v
2

v
1

v
0

τ
1

τ
2

Fig. 9. A path of length 2 connecting v2 to ∂�.

In R/J (v2)⊕R/J (v1), we know that the image of τ1 (w.r.t. the ∂1 operator) is
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(0, 1) and the image of τ2 is (1,−1). Moreover, we know that (1,−1) is equivalent to

(1, 0) modulo the image of τ1. So, we conclude that the map R/J (τ2)⊕R/J (τ1)
∂1→

R/J (v2)⊕R/J (v1) is surjective. That is, no homology is supported on the vertices

which are distance 2 from the boundary of �.

Finally, we can repeat this process to conclude that none of the vertices in � can

support any homology. Hence, H0(P) = 0.

Corollary 3. The module H1(Q) has finite length.

Proof. We conclude from Lemma 8 that the module H1(R/J [∆]) surjects onto the

module H1(Q) in the long exact sequence. Moreover, Lemma 2 says H1(R/J [∆]) is

a finite length module. Hence, H1(Q) must also be a finite length module.

Lemma 9. HP (H2(Q)) = (f2(∆)−f2(�))
(

t+2
2

)
− (f 0

1 (∆)−f 0
1 (�))(

(
t+2
2

)
−

(
t+2−r−1

2

)
)

Proof. The chain complex Q has the following form:

Q : Rf2(∆)−f2(
�

) q
→

⊕

τ∈(∆)0
1
−(

�
)0
1

R/J (τ) → 0

Consequently, H0(Q) = 0 and we have the following exact sequence:

0 → H2(Q) → Rf2(∆)−f2(
�

) q
→

⊕

τ∈(∆)0
1
−(

�
)0
1

R/J (τ) → H1(Q) → 0

Now, by Corollary 3 and the previously discussed properties of the Hilbert polynomial,

we obtain the following equality:

HP (H2(Q)) = (f2(∆) − f2(�))HP (R) − (f 0
1 (∆) − f 0

1 (�))HP (R(−r − 1))
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D. A Lower Bound for dimRC
r
k(�)

In this section, we will produce the lower bounds for the dimensions of the vector

spaces Cr
k(�). Note, these lower bounds will be given in terms of the dimensions of

the vector spaces Cr
k(∆) as well as geometrical data of both � and ∆.

Theorem 4. If � is a connected polygonal region of R2 and ∆ is a simplicial sub-

division of � obtained by adding only edges to �, then the following inequality holds

when k is sufficiently large:

dimRC
r
k(�) ≥ dimR C

r
k(∆) − (f2(∆) − f2(�))

(
k+2
2

)

+ (f 0
1 (∆) − f 0

1 (�))(
(

k+2
2

)
−

(
k+2−r−1

2

)
)

Proof. Recall, we have the following long exact sequence in homology:

0 → Cr(�̂) → Cr(∆̂) → H2(Q) → H1(P) → H1(R/J [∆]) → H1(Q) →

H0(P) → H0(R/J [∆]) → 0

Now, by applying the lemmas and corollaries describing the homology modules

in this sequence and by using the properties of the Hilbert polynomial, we clearly

have the following equality:

HP (Cr(�̂)) = HP (Cr(∆̂)) −HP (H2(Q)) +HP (H1(P))

Using this equality, the desired inequality follows immediately.

Example 6. Below, we give a polygonal region � along with a simplicial subdivision

∆ of � (Fig. 10) and Table III which contains various r values demonstrating Theorem

4:
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Fig. 10. A polygonal region and one of its simplicial subdivisions.

Table III. The values of Theorem 4 for the complexes in Fig. 10.

r dimRC
r
k(�) dimR C

r
k(∆) −(f2(∆) − f2(�))

(
k+2
2

) (f 0
1 (∆) − f 0

1 (�)) ∗

(
(

k+2
2

)
−

(
k+2−r−1

2

)
)

0 k2 + 2k + 1 2k2 + 3k + 1 −k2 − 3k − 2 2k + 2

1 k2 + k + 1 2k2 + 1 −k2 − 3k − 2 4k + 2

2 k2 + 2 2k2 − 3k + 4 −k2 − 3k − 2 6k

3 k2 − k + 4 2k2 − 6k + 10 −k2 − 3k − 2 8k − 4

4 k2 − 2k + 7 2k2 − 9k + 19 −k2 − 3k − 2 10k − 10

The salient fact here is the module H2(Q) is not of finite length. However, by

Lemma 9, we are able to compute its Hilbert polynomial. Moreover, the proof of

Theorem 4 suggests there may be a way to obtain a formula for the dimensions of the

vector spaces Cr
k(�). To follow this suggestion, we will need to examine the homology

module H1(P) to see if we can compute its Hilbert polynomial.
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CHAPTER V

SUMMARY AND FUTURE QUESTIONS

In this dissertation, we studied spaces of piecewise polynomial functions (splines) of a

prescribed order of smoothness on a triangulated (or polygonally subdivided) region

∆ of R2. By embedding ∆ into R3, and forming the cone ∆̂ of ∆, we were able

to ask questions about splines in terms of questions about graded modules over the

polynomial ring R[x, y, z]. Thus, we were able to apply methods from homological

and commutative algebra.

Following the earlier approaches of Billera and Rose as well as Schenck and

Stillman, we used a chain complex of modules where the spline space Cr(∆̂) appears as

the top homology module. Then, by using previous results about the other homology

modules in this complex, we were able to answer new questions involving Cr(∆̂).

We began by gluing two planar simplicial complexes ∆1 and ∆2 in a manner

so that ∆1 ∩ ∆2 and ∆ = ∆1 ∪ ∆2 were also planar simplicial complexes. By using

a well-known and powerful homological algebra tool, we showed there is a natural

relationship among the dimensions of the corresponding spline spaces. In particular,

we used Mayer-Vietoris to show for sufficiently large k, the following equality holds:

dimR C
r(∆̂)k = dimRC

r(∆̂1)k + dimR C
r(∆̂2)k − dimR C

r(∆̂1 ∩ ∆2)k

Next, given a planar simplicial complex ∆, we studied splines that are globally

defined Cr functions across the interior of ∆ and which vanish on the boundary of

∆. The space of all such splines on ∆ we denoted Cr(∆̂b). By defining two chain

complexes, R/J [∆b] and R/J [∂∆], and analyzing their homology modules, we were
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able to obtain the following result:

HP (Cr(∆̂b)) = HP (Cr(∆̂)) −
∑

τ∈(∂∆)1

HP (R/J(τ)) +
∑

v∈(∂∆)0

HP (R/J(v))

where, on the right-hand side of the equality, τ is a boundary edge, v is a boundary

vertex, and each term has a known computation.

Finally, we considered splines defined on a polygonally subdivided region � of

R2. By adding only edges to �, we were able to obtain a simplicial subdivision ∆.

Then, we were able to use ∆ to find the following bounds for the dimensions of the

vector spaces Cr
k(�):

dimR C
r
k(∆) ≥ dimRC

r
k(�) ≥ dimRC

r
k(∆) − (f2(∆) − f2(�))

(
k+2
2

)

+ (f 0
1 (∆) − f 0

1 (�))(
(

k+2
2

)
−

(
k+2−r−1

2)

)
)

While working on this dissertation, there have been several questions that have

arisen as possible future research directions. Some are similar to the questions which

have been answered in this dissertation and some are inspired by research done by

others.

The first possible direction involves gluing simplicial complexes. Let ∆1 and

∆2 be two-dimensional simplicial complexes glued along ∆1 ∩ ∆2 to form the two-

dimensional complex ∆ = ∆1 ∪ ∆2. In Chapter II, we obtained a nice relationship

among the spline modules when ∆1 ∩ ∆2 is also two-dimensional. It would be inter-

esting to consider the case when ∆1 ∩ ∆2 is one-dimensional, and to consider similar

cases in higher dimensions.

The second direction combines gluing simplicial complexes with putting bound-

ary constraints on the splines. Again, let ∆1 and ∆2 be two-dimensional simplicial

complexes glued along ∆1∩∆2 to form the two-dimensional complex ∆ = ∆1∪∆2. It

would be nice to obtain results involving the splines which vanish on the boundary of



32

these regions when ∆1 ∩∆2 is two-dimensional or even one-dimensional. It would be

interesting to see how including boundary constraints will change the previous results

and techniques. Again, it is natural to consider cases in higher dimensions.

The next direction involves subdividing the simplicial complexes. Given a sim-

plicial complex ∆, let ∆D be a subdivision of ∆. There is a clear way of seeing that

Cr(∆̂) ↪→ Cr(∆̂D). What is the structure of this map? Also, is there is a map in the

reverse direction and what structure does it have?

Another possible direction is to relate Cr+1(∆̂) and Cr(∆̂) for a given simplicial

complex ∆. There is a clear inclusion Cr+1(∆̂) ↪→ Cr(∆̂). Also, there is a way to

map Cr(∆̂) into Cr+1(∆̂). It would be nice to obtain some results relating these two

maps and modules.

The next direction would be to study the freeness of Cr(∆̂b). In [14], Schenck

and Stillman showed that Cr(∆̂) is free iff H1(R/J) = 0. Are there conditions which

determine when the module Cr(∆̂b) is free?

A final direction involves the bounds for the dimensions of the vector spaces

Cr
k(�) when � is a polygonally subdivided region of R2. It would be interesting to

develop a strategy to improve the already existing bounds that were found in Chapter

IV of this dissertation. Also, it would be very satisfying to discover a method for ob-

taining an exact formula for these dimensions. In the case where ∆ is a triangulation,

such a formula has been discovered by Alfeld and Schumaker in [1].
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APPENDIX A

DOCUMENTATION AND CODE

The SplineCode package is primarily designed to build the matrix, introduced by

Billera and Rose in [4], associated to the space of splines on a given region. We then

use the matrix to find the spline space itself and its Hilbert polynomial.

Example 7. Let ∆ be the planar simplicial complex (Fig. 11) given below:

0

1 2

3 4 5

Fig. 11. A sample triangulation.

SplineCode expects three things as input: a list of the triangles, a matrix of

vertex locations, and the desired order of smoothness. In Fig. 11, the vertices have

been labeled, and there are four triangles. The triangles are denoted by the following

list:

T = {{0, 1, 2}, {1, 3, 4}, {1, 4, 2}, {2, 4, 5}}

The vertex locations are given in a matrix whose ith column contains the coordinates

of the ith vertex. Suppose the vertices are given by the following matrix (which was

used to generate the Matlab Fig. 11):
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V =

[
0 −1 1 −2 0 2

2 0 0 −2 −2 −2

]

The command to build the matrix is getmat, which expects the three parameters

above. The output will be the matrix. After calling getmat, we will be able to ask

Macaulay2 questions about the matrix.

i1 : load "SplineCode"

--loaded SplineCode

i2 : T = {{0,1,2},{1,3,4},{1,4,2},{2,4,5}}

o2 = {{0, 1, 2}, {1, 3, 4}, {1, 4, 2}, {2, 4, 5}}

o2 : List

i3 : V = transpose matrix{{0,2},{-1,0},{1,0},{-2,-2},{0,-2},{2,-2}}**R

o3 = | 0 -1 1 -2 0 2 |

| 2 0 0 -2 -2 -2 |

2 6

o3 : Matrix R <--- R

i4 : getmat (T,V,0)

o4 = | 1 0 -1 0 2y 0 0 |

| 0 -1 1 0 0 2x+y+2z 0 |

| 0 0 -1 1 0 0 2x-y-2z |

3 7

o4 : Matrix R <--- R

The Macaulay2 command ker will give us the kernel of our matrix (i.e. the spline

module C0(∆̂)) and the command hilbertPolynomial will give us the Hilbert polyno-

mial of the module:

i5 : ker o4
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o5 = image | 1 -2y 0 2x-y-2z |

| 1 0 2x+y+2z 2x-y-2z |

| 1 0 0 2x-y-2z |

| 1 0 0 0 |

| 0 1 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

7

o5 : R-module, submodule of R

i6 : hilbertPolynomial o5

o6 = - 3*P + 4*P

1 2

o6 : ProjectiveHilbertPolynomial

i7 : exit

Note, Macaulay2 gives the Hilbert polynomial in terms of projective spaces. So, we

read Pn as
(

n+t

t

)
. Thus, in Example 7, HP (C0(∆̂)) = 2t2 + 3t+ 1.

Finally, if the user is strictly interested in finding the Hilbert polynomial of

Cr(∆̂), then use the same input as before and the command HPCr, which combines

the previous steps.

i1 : load "SplineCode"

--loaded SplineCode

i2 : T = {{0,1,2},{1,3,4},{1,4,2},{2,4,5}}

o2 = {{0, 1, 2}, {1, 3, 4}, {1, 4, 2}, {2, 4, 5}}

o2 : List

i3 : V = transpose matrix{{0,2},{-1,0},{1,0},{-2,-2},{0,-2},{2,-2}}**R
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o3 = | 0 -1 1 -2 0 2 |

| 2 0 0 -2 -2 -2 |

2 6

o3 : Matrix R <--- R

i4 : HPCr (T,V,0)

- 3*P + 4*P

1 2

i5 : exit

Example 8. In this example, we again use the triangulation ∆ from Fig. 11. How-

ever, this time we will be considering splines which vanish on the boundary of ∆.

Using the same input as before and the command ngetmat, we can create a matrix

which is similar to the Billera-Rose matrix. We can then find the spline module C0(∆̂)

and its Hilbert polynomial exactly as we did before with the ker and hilbertPolyno-

mial commands or we can use the HPCrb command which combines the steps.

i1 : load "SplineCode"

--loaded SplineCode

i2 : T = {{0,1,2},{1,3,4},{1,4,2},{2,4,5}}

o2 = {{0, 1, 2}, {1, 3, 4}, {1, 4, 2}, {2, 4, 5}}

o2 : List

i3 : V = transpose matrix{{0,2},{-1,0},{1,0},{-2,-2},{0,-2},{2,-2}}**R

o3 = | 0 -1 1 -2 0 2 |

| 2 0 0 -2 -2 -2 |

2 6

o3 : Matrix R <--- R

i4 : HPCrb (T,V,0)
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6*P - 9*P + 4*P

0 1 2

Finally, the command compare will actually provide the user with the Hilbert

polynomials of Cr(∆̂) and Cr(∆̂b) simultaneously.

i5 : compare (T,V,0)

- 3*P + 4*P

1 2

6*P - 9*P + 4*P

0 1 2

i6 : exit

Example 9. Below, we are given a simplicial complex ∆ (Fig. 12), which was built by

gluing two planar simplicial complexes ∆1 and ∆2 along a planar simplicial complex

∆1 ∩ ∆2. In this example, we want to observe that the equality in Theorem 1 holds

for various orders of smoothness.

0

1 2 3

4

5 6 7

8

Fig. 12. The resulting simplicial complex ∆ after gluing ∆1 and ∆2.

SplineCode now expects four pieces of input: a list of the triangles for both ∆1

and ∆2, a matrix of vertex locations for ∆, and the desired order of smoothness. We

then use the command MV to test the equality.
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i1 : load "SplineCode"

--loaded SplineCode

i2 : T1 = {{0,1,2},{0,2,3},{1,4,2},{2,4,3},{3,4,7}}

o2 = {{0, 1, 2}, {0, 2, 3}, {1, 4, 2}, {2, 4, 3}, {3, 4, 7}}

o2 : List

i3 : T2 = {{1,4,2},{1,5,4},{2,4,3},{3,4,7},{4,5,6},{4,6,7},{5,8,6},

{6,8,7}}

o3 = {{1, 4, 2}, {1, 5, 4}, {2, 4, 3}, {3, 4, 7}, {4, 5, 6},

{4, 6, 7}, {5, 8, 6}, {6, 8, 7}}

o3 : List

i4 : V1 = transpose

matrix{{0,2},{-1,1},{0,1},{1,1},{0,0},{-1,-1},{0,-1},{1,-1},{0,-2}}**R

o4 = | 0 -1 0 1 0 -1 0 1 0 |

| 2 1 1 1 0 -1 -1 -1 -2 |

2 9

o4 : Matrix R <--- R

i5 : MV (T1,T2,V1,0)

o5 = true

i6 : MV (T1,T2,V1,1)

o6 = true

i7 : MV (T1,T2,V1,3)

o7 = true

i8 : MV (T1,T2,V1,6)

o8 = true

i9 : exit
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Example 10. In this last example, we will be given a polygonal region � (Fig. 13),

and we will need to calculate its Hilbert polynomial in order to compare the dimen-

sions of the vector spaces Cr
k(�) for k � 0 with those for its simplicial subdivision

∆.

0 1

2

3 4

5

0 1

2

3 4

5

Fig. 13. A polygonal region � and its simplicial subdivision ∆.

SplineCode again expects three inputs: a list of the maximal simplices, a matrix

of vertex locations, and the desired order of smoothness. We use the command

getmatpoly to find the matrix associated to the spline space for the region. We then

use the commands ker and hilbertPolynomial to find the Hilbert polynomial of the

spline module. Again, we have the option of using a single command HPCrpoly which

combines the previous steps.

i1 : load "SplineCode"

--loaded SplineCode

i2 : P = {{0,2,3},{0,3,4,1},{3,5,4}}

o2 = {{0, 2, 3}, {0, 3, 4, 1}, {3, 5, 4}}

o2 : List

i3 : VP = transpose matrix{{0,2},{2,2},{-1,1},{0,0},{2,0},{1,-1}}**R
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o3 = | 0 2 -1 0 2 1 |

| 2 2 1 0 0 -1 |

2 6

o3 : Matrix R <--- R

i4 : HPCrpoly (P,VP,0)

- 2*P + 3*P

1 2

i5 : exit

Finally, we close by providing the code for the SplineCode package.

diag = (f) ->(R = ring f;

map(R^{(rank target f):1}, R^(rank target f),

(i,j) -> if i== j then f_(i,0) else 0))

--Takes an n by 1 matrix

--returns a diagonal matrix

remdups = (L)->(T = sort L;

Out1 = {};

t=#L-1;

scan(t, i->if T#i==T#(i+1)

then Out1 = append(Out1, T#i));

Out1)

--Takes a list, possibly with duplicate (but only doubled) entries

--returns the entries which appear twice TH 02/05

remsings = (L)->(T = sort L;
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Out2 = {};

t=#L-1;

scan(t, i->if (T#i=!=T#(i+1) and T#i=!=T#(i-1))

then Out2 = append(Out2, T#i));

if T#t =!=T#(t-1) then Out2=append(Out2, T#t);

Out2)

--Takes a list, possibly with duplicate (but only doubled) entries.

--returns the entries which appear once TH 06/05

bdpoly=(L)->(M=append(L, L#0);

N=apply(#L, i->{M#i, M#(i+1)});

N)

--Takes a polygon L

--returns the edges of L TH 01/06

edges = (D) ->(E = flatten apply(D, i->subsets(i,2)))

--Takes a list of triples(triangles),

--returns all doubles(edges) appearing in triples(triangles)

--possibly with multiplicity TH 02/05

edgespoly = (D) ->(E = flatten apply(D, i->bdpoly(i)))

--Takes a list of polygons

--returns all doubles(edges) appearing in polygons,

--possibly with multiplicity TH 01/06

bdry2 = (L) ->(E=apply(edges(L), i->sort i);



44

intedges = remdups(E); --list of interior edges

bdedges=remsings(E); --list of boundary edges

apply(intedges, j->(apply(L, k -> getcolumn(j,k)))))

--Takes an oriented simplicial complex L

-- returns the matrix of the boundary 2 map for relative homology

--(i.e. mod boundary) TH 02/05

nbdry2 = (L) ->(E=unique apply(edges(L), i->sort i);

apply(E, j->(apply(L, k -> getcolumn(j,k)))))

--Takes an oriented simplicial complex L

--returns the matrix of the boundary 2 map for simplicial homology

--(i.e. boundary included) TH 06/05

bdry2poly = (L) ->(E=apply(edgespoly(L), i->sort i);

intedges = remdups(E); --list of interior edges

bdedges=remsings(E); --list of boundary edges

apply(intedges, j->(apply(L, k ->

getcolumnpoly(j,k)))))

--Takes an oriented polygonal region L

-- return the matrix of the "boundary 2" map for relative homology

--(i.e. mod boundary). TH 01/06

getcolumn = (L1,L2)->(s=subsets(L2,2);

result = 0;

scan(3, l-> if L1==s#l then result =(-1)^l

else if L1==sort(s#l)
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then result = (-1)^(l+1));

result)

--Takes an edge L1 and a triangle L2

-- returns +1, -1 or 0 depending on orientation

--of edge in bdry of L2 TH 02/05

getcolumnpoly = (L1,L2)->(s=bdpoly(L2);

result = 0;

scan(#s, l-> if L1==s#l then result =1

else if L1==sort(s#l) then result = -1);

result)

--Takes an edge L1 and a polygon L2

--returns +1, -1 or 0 depending on orientation

--of edge in bdry of L2 TH 01/06

edgemat = (Elist,Vlocs)->(apply(Elist, i-> det matrix

{{1,(submatrix(Vlocs, ,{i#0}))_(0,0),(submatrix(Vlocs, ,

{i#0}))_(1,0)},

{1,(submatrix(Vlocs, ,{i#1}))_(0,0),(submatrix(Vlocs, ,

{i#1}))_(1,0)},

{z,x,y}}))

--Takes an edge list and the vertex locations

--returns the matrix with equations of the

--linear forms containing the edges TH 02/05

getmat = (L,V,r)->((matrix bdry2(L)**R)|(diag transpose
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matrix{edgemat(intedges,V)})^(r+1))

--Takes the triangles, vertex locations and integer r

--returns the associated Billera-Rose matrix for finding

--C^r(Delta), when Delta is a triangulation TH 02/05

ngetmat = (L,V,r)->((matrix nbdry2(L)**R)|(diag transpose

matrix{edgemat(E,V)})^(r+1))

--Takes the triangles, vertex locations and integer r

--returns the associated Billera-Rose-like matrix for finding

--C^r(Delta_b), when Delta is a triangulation TH 06/05

getmatpoly = (L,V,r)->((matrix bdry2poly(L)**R)|(diag transpose

matrix{edgemat(intedges,V)})^(r+1))

--Takes the polygons, vertex locations and integer r

--returns the associated Billera-Rose matrix for finding

--C^r(Delta), when Delta is a polygonal region TH 01/06

MV = (L1,L2,V,r)->(U = keys (tally (L1|L2));

Int = remdups (L1|L2);

UU=getmat(U, V,r);

II =getmat(Int,V,r);

LL1 =getmat(L1,V,r);

LL2 =getmat(L2,V,r);

h1=hilbertPolynomial ker LL1;

h2=hilbertPolynomial ker LL2;

hI=hilbertPolynomial ker II;
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hU=hilbertPolynomial ker UU;

(h1+h2)==(hU+hI))

--Takes the triangle list of two simplices that are to be glued,

--a single vertex location matrix for the union, and an integer r

--returns a true/false after checking the Hilbert Polynomial

--equation found for glued simplicial complexes

--when the intersection is two-dimensional TH 02/05

compare = (L,V,r)->(L1 = getmat(L,V,r);

L2 = ngetmat(L,V,r);

print hilbertPolynomial ker L1;

print hilbertPolynomial ker L2)

--Takes the triangle list, vertex location matrix, and integer r

--returns the Hilbert Polynomial for C^r(Delta)

--as well as the Hilbert Polynomial for C^r(Delta_b) TH 06/05

HPvert = (m,n)->(H=QQ[k,r,t];

a=floor((n+1)/(m-1));

b=(m-1)*a+m-n-2;

c=n+1-(m-1)*a;

(1/2)*(t+2)*(t+1)-m*(1/2)*(t-n+1)*(t-n)

+c*(1/2)*(t-n-a)*(t-n-a-1)+b*(1/2)*(t-n-a+1)*(t-n-a))

--Takes k = distinct slopes @ v and integer r

--returns HP(R/J(v)) TH 06/05

HPedge = (m,n)->(1/2)*(m+2)*(m+1)-(1/2)*(m-n+1)*(m-n)



48

--Takes dimension k and integer smoothness r

--returns HP(R/J(tau)) TH 06/05

HPCr = (L,V,r)->(L3 = getmat(L,V,r);

print hilbertPolynomial ker L3)

--Takes the triangles, vertex locations and integer r

--returns the Hilbert Polynomial of C^r(Delta)

--when Delta is a triangulation TH 02/05

HPCrb = (L,V,r)->(L4 = ngetmat(L,V,r);

print hilbertPolynomial ker L4)

--Takes the triangles, vertex locations and integer r

--returns the Hilbert Polynomial of C^r(Delta_b)

--when Delta is a triangulation TH06/05

HPCrpoly = (L,V,r)->(L3 = getmatpoly(L,V,r);

print hilbertPolynomial ker L3)

--Takes the polygons, vertex locations and integer r

--returns the Hilbert Polynomial of C^r(Delta)

--when Delta is a polygonal region TH 01/06
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