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ABSTRACT

Data centers, clusters, and grids have historically supported High-Performance Comput-

ing (HPC) applications. Due to the high capital and operational expenditures associated

with such infrastructures, we have witnessed consistent efforts to run HPC applications in

the cloud in the recent past. The potential advantages of this shift include higher scal-

ability and lower costs. If, on the one hand, app instantiation – through customized

Virtual Machines (VMs) – is a well-studied issue, on the other, the network still rep-

resents a significant bottleneck. When switching HPC applications to be executed on the

cloud, we lose control of where VMs will be positioned and of the paths that will be tra-

versed for processes to communicate with one another. To bridge this gap, we present

Janus, a framework for dynamic, just-in-time path provisioning in cloud infrastructures.

By leveraging emerging software-defined networking principles, the framework allows

for an HPC application, once deployed, to have interprocess communication paths con-

figured upon usage based on least-used network links (instead of resorting to shortest,

pre-computed paths). Janus is fully configurable to cope with different operating param-

eters and communication strategies, providing a rich ecosystem for application execution

speed up. Through an extensive experimental evaluation, we provide evidence that the

proposed framework can lead to significant gains regarding runtime. Moreover, we show

what one can expect in terms of system overheads, providing essential insights on how

better benefiting from Janus.

Keywords: HPC applications. Cloud Infrastructures. Link Usage-Aware Path Provision-

ing. Framework.



RESUMO

Data centers, clusters e grid têm historicamente suporte para aplicações de computação

de alto desempenho (HPC). Devido aos altos gastos de capital e operacionais associados

a essas infraestruturas, presenciamos esforços consistentes para executar aplicações HPC

na nuvem, recentemente. As vantagens potenciais dessa mudança incluem maior escala-

bilidade e baixos custos de manutenção. Se, por um lado, a instanciação de aplicações

- por meio de máquinas virtuais (VMs) personalizadas - é um problema muito estudado,

por outro, a rede ainda representa um gargalo significativo. Ao alternar as aplicações HPC

para serem executados na nuvem, perdemos o controle de onde as VMs serão posiciona-

das e dos caminhos que serão percorridos para que os processos se comuniquem entre si.

Para preencher essa lacuna, apresentamos Janus, uma estrutura para provisionamento de

caminho dinâmico e just-in-time em infraestruturas de nuvem. Aproveitando os princípios

de rede definidos por software emergentes, a estrutura permite que uma aplicação HPC,

uma vez inicializada, tenha caminhos de comunicação entre processos configurados com

base na utilização dos links de rede menos congestionados (em vez de recorrer a caminhos

pré-computados mais curtos). Janus é totalmente configurável para lidar com diferentes

parâmetros operacionais e estratégias de comunicação, fornecendo um rico ecossistema

para acelerar a execução das aplicações. Por meio de uma extensa avaliação experimental,

fornecemos evidências de que o framework proposto pode levar a ganhos significativos

em relação ao tempo de execução. Além disso, mostramos o que se pode esperar em ter-

mos de sobrecarga do sistema, fornecendo insights essenciais sobre como obter melhor

proveito do Janus.

Palavras-chave: Aplicações HPC, Infraestruturas de Nuvem, Provisionamento de cami-

nho baseado em uso de link, Framework.
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1 INTRODUCTION

Handling massive amounts of data is commonplace for most modern scientific,

engineering, and business applications. As these applications need to target big data-

related challenges, while delivering expected results promptly, they frequently pose large

computing power requirements. In this context, High-Performance Computing (HPC)

becomes a key factor for speeding up data processing. To this end, HPC solutions have

traditionally taken advantage of cluster, grid and data center infrastructures for running

applications having those computing power requirements (GUPTA et al., 2016). More

recently, we have witnessed consistent efforts to run HPC applications in the cloud. The

pay-per-use cost model makes cloud computing a promising environment for HPC, which

can be provided with instant availability and flexible scaling of resources (i.e., elasticity).

Although the allocation of virtual machines in the cloud (for HPC application exe-

cution) has been extensively studied, the inter-process communication rates still represent

the main performance bottleneck (LI; ZHANG; LUO, 2017). In addition to the possibil-

ity of virtual machines to be deployed physically far from each other into the cloud, the

provisioned paths are typically static and based on shortest paths (potentially traversing

congested, high delay links). The dynamic nature of communication patterns observed

in most HPC applications makes these limitations even more prominent. In summary,

subjecting HPC flows to high network latencies is still one of the leading open research

challenges that cloud environments have to cope with to be able to offer a suitable infras-

tructure for HPC.

Previous studies (EVANGELINOS; HILL, 2008; GUPTA et al., 2016; NETTO

et al., 2018b; ROLOFF et al., 2017; WALKER, 2008; WITTE et al., 2020; KOTAS;

NAUGHTON; IMAM, 2018) have assessed the feasibility of using public clouds for

HPC. Their findings suggest that clouds were not designed for running tightly coupled

HPC applications. The main limitation is the poor network performance resulting from

I/O virtualization overhead, processor sharing, and usage of commodity interconnection

technologies. Lee et al. (LEE et al., 2016) and Faizian et al. (FAIZIAN et al., 2017) have

identified limitations of network technologies used by cloud infrastructures, namely the

use of simplistic routing schemes, which may result in degraded communication perfor-

mance. To overcome this limitation, they have proposed routing mechanisms that avoid

congested paths, which however are computed priorly to the execution of an HPC appli-

cation and therefore can cope neither with network traffic fluctuation nor with varying
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communication patterns.

In this thesis, we proposed Janus, a framework for dynamic, just-in-time path pro-

visioning in cloud infrastructures aiming to speedup HPC applications. It systematically

(re)program paths to avoid congested links and reduce runtime, given an application’s

current communication patterns. To this end, we devised an approach that continuously

monitors network link conditions to find the least used path between nodes. In addition

to the framework, another equally important contribution is the formalization of a Link

Usage-Aware Routing (LUAR) strategy, which plays a crucial role in reducing end-to-end

communication delays. We also contributed by providing: (i) a detailed discussion on the

state-of-the-art literature about the usage of SDN as an enabler of cloud infrastructures to

execute HPC applications; (ii) a description of our prototypical proof-of-concept imple-

mentation; and (iii) a detailed experimental evaluation of LUAR’s efficacy and efficiency.

In addition to confirming LUAR’s benefits over traditional path provisioning, we exten-

sively discuss different aspects that influence higher speed up gains (providing insights

for users and researchers interested in further improving the proposed approach).

The remainder of the thesis is organized as follows. In chapter II, we cover the

foundations for building our proposal and some of the most prominent related work. In

chapter III, we describe the overarching conceptual solution and its main components. In

chapter IV, we explain Janus proof-of-concept implementation. In chapter V, we present

the evaluation and discuss the obtained results. In chapter VI, we conclude the thesis with

some final remarks and prospective directions for future research.
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2 BACKGROUND AND STATE OF THE ART

In this chapter, we provide the fundamentals of cloud computing, discussing the

main definitions of the term, the different types of service classifications, and their forms

of availability. Network solutions for cloud computing will also be presented, focusing on

topologies, routing strategies, and technologies. Afterwards, we review the fundamentals

of SDN and OpenFlow, controllers, and OpenFlow switches. Finally, we present the

most prominent approaches using SDN to design new routing/forwarding strategies in the

context of HPC.

2.1 Cloud Computing

Cloud computing may be considered one of the largest transformations in technol-

ogy, heavily adopted by all kinds of users. In the early to mid-2010s, as companies started

moving their workloads off-premise, it has changed the nature of how organizations work.

Today, the area is evolved; serverless computing provides the ability to outsource software

code to automatically run remotely and at scale, with resource efficiency and cost reduc-

tion. Connectivity to the cloud is now ubiquitous, to the point that almost any business can

connect its existing infrastructure to the cloud, being able to run any type of application.

The fundamental idea of cloud computing is the access and management of infor-

mation regardless of place or platform. In this way, cloud computing makes it possible

to use data storage and computing power, which can be shared through a computational

infrastructure and quickly escalated due to new demands, with minimal management ef-

fort or interaction of the service provider. In 2011, the National Institute of Standards and

Technology (NIST) defined several cloud computing characteristics (MELL; GRANCE

et al., 2011). It is composed of five essential characteristics, three service models, and

four deployment models, briefly described next. Additionally, we describe a few modern

deployment models.

Essential Characteristics. Cloud computing has five essential characteristics:

on-demand self-service, broad network access, resource pooling, rapid elasticity or ex-

pansion, and measured service. The on-demand self-service means that a consumer must

be able to automatically allocate computational resources without human interaction, such

as server time and network storage. Implementing user self-service allows customers to

access the services they want quickly. This is one of the most attractive cloud features
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as users get the resources they need very quick and easy, as opposed to what happens in

traditional environments, in which requests often take days to be fulfilled, causing delays

in projects and initiatives.

Broad network access is another feature, where capabilities are available over the

network and accessed through standard mechanisms that promote use by heterogeneous

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).

This ubiquitous availability of services means that resources are available in any part of

the world as long as there is an Internet connection. For example, an executive based

in Brazil can perform his/her roles during business travel, accessing his/her company’s

online resources hosted in the United States via the Internet connection in China.

The third characteristic is resource pooling. The service provider’s computational

resources are organized to serve multiple consumers, with both physical and virtual re-

sources dynamically arranged according to consumer demand. There must be a sense of

location independence. So, the consumer does not have exact control of where the re-

sources used are located. Still, it must be possible to specify that location at a high level

of abstraction (e.g., country, federation unit, or data center).

Rapid elasticity is the ability to elastically allocate and release resources. To the

consumer, the capabilities available for provisioning often appear unlimited and can be

appropriated in any quantity at any time. So, a research lab executing a few HPC applica-

tions will be able to handle an unexpected load of hundreds of HPC applications without

worrying about the need to purchase new servers to support these seasonal executions.

The last essential characteristic is measured service. Cloud systems provide mech-

anisms to measure resource usage through an appropriate metric system. These mea-

surements are paramount to control and optimize cloud resources automatically. Typical

measurements are data storage, computing power processing, bandwidth, and active user

accounts. These measurements can also be reported, providing the provider and consumer

transparency to the total utilized service. For example, in this work, we use such mea-

surement capabilities to make better decisions regarding the network paths to be taken by

packets (i.e., less congested ones) exchanged by HPC application processes.

Service Models. NIST (MELL; GRANCE et al., 2011) also defines three ser-

vice models for cloud computing, as one can observe in Figure 2.1. The first of these is

Software as a Service (SaaS), sometimes referred to as on-demand software, which can

provide consumers with the use of applications in the cloud infrastructure. These appli-

cations are accessible to many customers through an interface such as a web browser or a
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specific program. The consumer has no control over the cloud infrastructure management

(servers, operating systems, storage, network, or individual application capabilities, ex-

cept limited application configuration options). Examples of this type of model are busi-

ness applications such as accounting, management, enterprise resource planning, content,

and service management software. This model has been extensively incorporated into the

strategy of the largest software companies on the market.

Figure 2.1 – Service models for cloud computing.

Platform as a Service (PaaS) defines the ability to provide the deployment in

the cloud infrastructure of content developed by the customer himself or applications

created using programming languages, libraries, services, and tools supported by the

provider. The consumer still has no control over the management of the cloud infras-

tructure (servers, storage, operating systems, or network) but has control over how the

application is implemented and, possibly, the application’s hosting environment’s config-

uration settings. PaaS offerings make it easy to deploy applications without the cost and

complexity of acquiring and managing the underlying hardware, software, and hosting

provisioning features, providing the facilities needed to support the full lifecycle of build-

ing and delivering web applications, in addition to services available entirely from the

Internet.

Finally, the definition of Infrastructure as a Service (IaaS) is the ability to pro-

vide consumers with the possibility of handling processing, storage, network, and other

fundamental computing resources. The infrastructure is delivered to consumers on de-

mand while being fully managed by the service provider. Consumers now have control

over all the operating system’s functionalities, storage, and application distribution. They

may also have limited access to network components, for example, firewalls. As we will

present and describe ahead, our proposed solution best fits this particular service model.
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It provides the operator with mechanisms to choose an appropriate packet forwarding

strategy to speed up HPC applications.

Deployment Models. In addition to the service models, NIST (MELL; GRANCE

et al., 2011) also defined models for the deployment of clouds: public cloud, private

cloud, community cloud, and hybrid cloud. Public clouds have their infrastructure avail-

able to the general public, making it possible for any user to know where the service is

located and access it. A public cloud can be owned, managed, and operated by a com-

pany, an educational institution, or a government organization. Conversely, in private

cloud models, the cloud infrastructure is used exclusively by an organization, which can

be a local or remote cloud, and it can be managed by the company itself or by third parties.

This model adopts policies for access to services. The techniques used to provide such

features can be at the level of network management, service provider configurations, and

authentication and authorization.

Another interesting model is the community cloud. In this deployment model, sev-

eral organizations share a cloud with common interests and have similar security, policy,

and flexibility requirements. This type of model can exist locally or remotely and is usu-

ally administered by a company in the community or third parties. An example of this is

the clouds maintained by government public services.

The hybrid cloud model comprises two or more distinct clouds – private, commu-

nity, or public – which remain as individual entities but are interconnected by a standard-

ized or proprietary technology that enables data and application portability. This model

offers the benefits of multiple deployment models and allows one cloud to extend either

capacity or a cloud service’s capability by aggregation, integration, or customization with

another cloud service. A use case for this type of model is one where IT organizations

use public cloud computing resources to meet seasonal capacity needs that can not be

delivered by the private cloud.

In the last few years, other models have been discussed, such as Big Data cloud

and HPC cloud. Initially, the need to transfer large amounts of data to the cloud, and

data security, hampered the cloud adoption for big data. However, as data originates in

the cloud and with the advent of bare-metal servers, the cloud has become a solution for

use cases including geospatial analysis and business analytics (YANG et al., 2017). HPC

cloud refers to the use of cloud computing infrastructure and services to execute high-

performance computing (HPC) applications (NETTO et al., 2018a). These applications

need considerable computing power and memory and are traditionally executed on clus-
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ters. However, since 2016 a couple of companies started to provide cloud infrastructure

capable of running such applications (e.g., R-HPC, Amazon Web Services, Gomput, and

Penguin Computing).

2.2 Network Solutions for Cloud Computing

Cloud Computing performance depends heavily on networking. Any limitations

or failures of the networking infrastructure (e.g., inside and between data center domains)

can seriously impair the support of data-intensive and high-performance cloud applica-

tions (MOURA; HUTCHISON, 2016). Consequently, the deployment of Cloud Comput-

ing solutions in distributed data centers, concurrently with the universal users’ access to

the Internet, is challenging the research and standardization communities to modify ex-

isting network functionalities. The need for these network changes is fueled by emerging

Cloud Computing usage scenarios with dynamic load, data mobility, addressing/routing

based on data alternatively to IP destination, heterogeneous resources, federation, and

energy-efficiency. This section describes the topologies, routing strategies, and technolo-

gies that make cloud computing possible.

Topologies. In the following paragraphs, we present an overview of the main

topologies used on data centers. The topology is a representation of how switches, routers,

and servers are connected. Typically, a topology is a set of forwarding devices and servers

represented by a node, and the links connecting nodes are the edges.

Figure 2.2 shows a canonical three-tiered multi-rooted tree-like physical topol-

ogy. Data centers such as Oktopus (BALLANI et al., 2011) and used by universities

(BENSON; AKELLA; MALTZ, 2010) have been implementing this topology. The Core

is composed of routers that interconnect switches in the Aggregation layer. The Aggre-

gation layer has devices connecting the Core and Top-of-Rack (ToR) components. The

Access layer is composed of ToR switches connecting servers mounted on every rack. In

this type of topology, the components are organized to increase redundancy. Each ToR

switch is typically connected to multiple Aggregation switches and every Aggregation

switch to various Core switches. A three-tiered network is commonly implemented in

data centers with more than 8,000 servers (AL-FARES; LOUKISSAS; VAHDAT, 2008).

Providers employ this topology to reduce costs and increase resource utilization,

helping them achieve economies of scale. However, it has many drawbacks, such as

limited bisection bandwidth constrains server-to-server capacity [(CURTIS et al., 2012),
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Figure 2.2 – A canonical three-tiered tree-like datacenter network topology.

(CURTIS; KESHAV; LOPEZ-ORTIZ, 2010)], and multiple paths are poorly exploited.

For example, just one single path is used within a layer-2 domain by spanning tree proto-

col. Novel network architectures have been proposed to solve these limitations; they can

be organized into three classes (POPA et al., 2010): switch-oriented, hybrid switch/server,

and server only topologies.

Switch-oriented topologies use commodity switches to perform routing functions

and use a clos-based design. A Clos network (CLOS, 1953) has multiple layers of

switches, where each switch in a given layer is fully connected to all switches in the

upper and lower layers providing path diversity and low bandwidth degradation in case of

failures. Two distinct proposals follow the Clos design (Figure 2.3): VL2 (GREENBERG

et al., 2009) and Fat-Tree (AL-FARES; LOUKISSAS; VAHDAT, 2008). VL2 provides

multiple uniform paths between servers and is used in large-scale data centers. Fat-Tree,

in turn, is organized in a tree-like structure. These architectures offer a high capacity. The

downside is the increase in wiring costs caused by the number of links.

Hybrid switch/server topologies shift complexity from network devices to servers.

This means that servers perform routing while fixed numbers of hosts are interconnected

through mini-switches. One benefit of this approach is the innovation allowed as hosts

are more straightforwardly customizable than commodity switches. Other benefits are

fault-tolerance and richer connectivity. Figure 2.4 shows DCell (GUO et al., 2008) and

BCube (GUO et al., 2009), which are two topology examples and can arguably scale up

to millions of servers.

DCell is a recursively-built structure that forms a fully-connected graph using only
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Figure 2.3 – Clos-based topologies.

commodity switches (instead of high-end switches of traditional DCNs (datacenter net-

works)). Similarly, BCube is a recursively-built structure that is easy to design and up-

grade. Additionally, BCube provides low latency, and in case of link or switch failure, it

has low degradation of bandwidth. BCube clusters (a set of servers interconnected by a

switch) are interconnected by commodity switches in a hypercube-based topology.

Figure 2.4 – Hybrid switch/server topologies.

Notwithstanding the benefits, DCell and BCube require many NIC ports at end-

hosts, causing overhead at servers and increasing wiring costs. In particular, DCell results

in multiple non-uniform paths between hosts, and typically level-0 links are more utilized

than other links (creating bottlenecks). Opposed to that, BCube provides multiple uniform

paths but uses more switches and links than DCell (GUO et al., 2008).

Server only topology is composed exclusively of servers that perform all network

functions. CamCube (ABU-LIBDEH et al., 2010) is an example of such architecture. It is

inspired by Content Addressable Network (CAN) (RATNASAMY et al., 2001) overlays

and uses a 3D Torus topology with k servers along each axis. Figure 2.5 shows a 3-ary

CamCube topology with a total of 27 servers. Some positive aspects of this topology

are the following: i) it provides robust fault-tolerance guarantees, ii) improves innovation
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with key-based server-to-server routing, and iii) allows each application to define specific

routing techniques.

Figure 2.5 – Example of 3-ary CamCube topology.

As one can observe, there are effective options for data center topologies, and they

differ regarding operation goals. In general, providers are profit-driven: they choose the

topology focusing on the lowest cost, even if it cannot achieve all properties desired for a

data center network running heterogeneous applications from distinct tenants.

Routing Strategies. Data center networks have different requirements when com-

pared to traditional enterprise networks. Instead of a handful of paths between hosts and

predictable communication patterns observed on conventional enterprise networks, DCNs

require many available paths to achieve horizontal scaling of hosts with unpredictable

traffic matrices [(AL-FARES; LOUKISSAS; VAHDAT, 2008) and (GREENBERG et al.,

2009)]. Due to this requirement, data center topologies usually present path diversity.

This means that it is possible to connect servers (hosts) through multiple paths in the

network. Furthermore, many cloud applications (e.g., simple web search or complex

MapReduce) require substantial bandwidth (AL-FARES et al., 2010). Therefore, rout-

ing protocols play an essential role in enabling the network to deliver high bandwidth by

exploring all possible topology paths. In fact, our work explores how to use such path

diversity to maximize the usage of all possible links between hosts (and minimize the

chances to select congested ones). Next, we present different routing approaches.

Equal-Cost MultiPath (ECMP) (HOPPS et al., 2000) aims to utilize all possible

paths with the same cost through uniformly spreading traffic among paths using flow
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hashing. The routing protocol calculates these paths. However, the static flow-to-path

mapping implemented by ECMP does not take flow size and network utilization into

account (RADHAKRISHNAN et al., 2013). As a downside, this may result in degrading

overall network performance (AL-FARES et al., 2010).

Hedera allows dynamic flow scheduling for general multi-rooted trees with exten-

sive path diversity. Hedera seeks to maximize network utilization with a low scheduling

overhead of active flows. This approach uses a central OpenFlow controller (MCKEOWN

et al., 2008) with a network global view making it possible to obtain flow statistics, com-

pute new routes, and install the new paths on the devices. With the information collected

from switches, Hedera considers the flow-to-path mapping as an optimization problem

and uses a simulated annealing metaheuristic to efficiently look for feasible solutions

close to the optimal one in the search space.

Port-Switching based Source Routing (PSSR) (GUO et al., 2010) is proposed for

the SecondNet architecture with arbitrary topologies and commodity switches. This ap-

proach uses source routing. Thus, every node in the network needs to know the complete

path to reach a given destination. As the data center is administered by a single entity

(i.e., the intra-cloud topology is known in advance), it represents the path as a sequence

of output ports in switches. Then, it is stored in the packet header. As servers may have

multiple neighbors connected via a single physical port (e.g., in DCell and BCube topolo-

gies), PSSR introduces the use of virtual ports.

Bounded Congestion Multicast Scheduling (BCMS) (GUO; DUAN; YANG, 2013)

intends to achieve bounded congestion and high network utilization in Fat-trees. It can re-

duce traffic by using multicast, thus minimizing performance interference and increasing

application throughput (LI et al., 2013). BCMS utilizes OpenFlow to collect incoming

flows’ bandwidth demands. It then monitors network load, computes routing paths for

each flow, and configure switches. Despite the advantages of a dynamic approach, BCMS

relies on a centralized controller. So, this solution might not scale in environments under

highly dynamic traffic patterns such as the cloud.

Similar to BCMS, Code-Oriented explicit multicast (COXcast) (JIA, 2013) also

focuses on routing application flows through the use of multicasting techniques, trying

to improve network resource sharing and reducing traffic. COXcast uses source routing,

so all information regarding destinations are added to the packet header. More specifi-

cally, the forwarding information is encoded into an identifier in the packet header and,

at each network device, is resolved into an output port bitmap by a node-specific key.
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COXcast can support many multicast groups, but it adds some overhead since all routing

information is stored in the packet.

Interconnection Technologies. Data center networks are complex environments

that need to employ technologies to guarantee low communication latency and high through-

put requirements. Amongst existing layer-2 technologies, Infiniband Architecture (IBA)

and Gigabit Ethernet are the most used interconnect families used on supercomputers

listed on the top500 (SUPERCOMPUTER, 2020). Each technology gets a portion of

31.0%, and 50.8%, respectively.

Infiniband (PFISTER, 2001) is an industry-standard specification that defines an

architecture to interconnect servers, communication infrastructure equipment, storage,

and embedded systems. It was developed by the InfiniBandSM Trade Association (IBTA)

to provide the levels of availability, performance, reliability, and scalability required for

present and future server systems. It provides significantly better performance levels than

those that can be achieved with bus-oriented I/O structures. Three fundamental charac-

teristics improve IBA over busses. First, all data transfer is bidirectional point-to-point,

not bussed. This avoids arbitration issues, provides fault isolation, and allows scaling to a

large size by using switched networks. Each link can support multiple transport services

for reliability and multiple virtual communication channels. Second, commands and data

are transferred between hosts and devices not as memory operations but as messages.

Third, IBA defines a layered hardware protocol (physical, link, network, transport) and a

software layer to manage the initialization and the communication between devices.

InfiniBand offers a bandwidth of up to 50 Gbps for a single link at version HDR

(High Dynamic Range). TCP/IP communications are mapped to the IBA transport ser-

vices through IP over Infiniband (IPoIB) drivers provided by the operating system. Data-

gram is the default operational mode of IPoIB, as described in RFC 4391 (CHU; KASHYAP,

2006). The minimum MTU allowed is 2,044 bytes, while the maximum is 4,096 bytes.

In turn, the Connected mode is described in RFC 4755 (KASHYAP, 2006) and offers a

connection-oriented service with a maximum MTU of 2GB. The usage of large MTUs

can lead to significant performance gains, especially for large data transfers.

Gigabit Ethernet is the term applied to transmitting Ethernet frames at a rate of a

gigabit per second. The most common variant 1000BASE-T is defined on the standard

IEEE 802.3ab (IEEE. . . , 1999). It came into use in 1999 and has replaced Fast Ether-

net in wired local networks due to its significant speed improvement over Fast Ethernet

and its use of cables and devices that are broadly available, cost-effective, and similar to
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preceding standards.

The recently rebranded Ethernet Technology Consortium (ETC), previously known

as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet spec-

ification during 2020 and an expanded scope aimed at satisfying the requirements of

performance-critical networks necessary for applications in high-performance comput-

ing, enterprise datacenters, and machine learning. The move brings the organization be-

yond its roots in 25 and 50 Gigabit Ethernet and a step closer to the Terabit Ethernet era,

propelled by tremendous data demands that dictate ever-faster communications.

ETC made available the 800GBASE-R specification for 800 Gigabit Ethernet

(GbE), which implements a new media access control (MAC) and Physical Coding Sub-

layer (PCS). The specification is based on two sets of existing 400 GbE logic from the

IEEE 802.3bs pattern (giving a total of 32 x 25-Gbps PCS lanes), redefined so data can be

distributed across eight 106 Gbps physical lanes. By reusing the PCS, standard forward

error correction (FEC) is achieved, supporting compatibility with existing physical layer

specifications.

2.3 Software-Defined Networking

Although the SDN paradigm was conceived relatively recently, the idea of pro-

grammable networks was imagined much longer ago, around the mid-1990s (CALVERT,

2006). The growing ubiquity of the Internet and the growth of a more diverse array of

applications led to the necessity of developing and testing new protocols in realistic net-

work scenarios. Motivated by this need, researchers began to investigate ways to open up

network control and make networks more easily programmable.

Active networking was the first significant novel approach to network programma-

bility. The fundamental concept behind it was the presence of a network programming

interface. This interface enabled developers to access resources on individual network

nodes and program specific functions on them. Through this programmability, active

networking aimed to keep the network core simple and lower innovation barriers.

Eventually, active networking failed to reach widespread adoption. Feamster et

al. (FEAMSTER; REXFORD; ZEGURA, 2014) argue that this failure may have been

due to “the lack of an immediately compelling problem or a clear path to deployment”.

Despite this, active networking was a milestone for subsequent efforts to achieve network

programmability and related concepts such as network virtualization.
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Fundamentals of SDN and OpenFlow. Software-Defined Networking laid out

on the concept of active networking but trying to solve a narrower and more streamlined

set of problems. The main idea was to split the planes to address routing and configuration

management issues. On the one hand, the control plane is responsible for making routing

decisions based on network policies. On the other hand, the data plane follows the control

plane decisions and simply forwards traffic. It enables centralized network intelligence

while abstracting low-level network infrastructure information.

Figure 2.6 presents an overview of the components present in an SDN architec-

ture. The application plane consists of applications implementing services provided to

users/devices through the network. These applications interact with the SDN controller

through APIs (the Northbound Interface). The ideal scenario for the Northbound Interface

is that a standard is established, allowing independence on the programming language and

the controller used. However, this has not yet been defined, and each controller specifies

its own API.

The control plane concentrates the “intelligence” of the software-defined network.

It offers a centralized control logically (which does not necessarily imply the existence

of a single physical controller). This layer provides abstractions, essential services, and

APIs for developers. This means that a developer no longer needs to know all the de-

tails of packet transmission to define a network policy, facilitating its development, and

decreasing the chance of errors.

Figure 2.6 – Overview of the OpenFlow architecture.
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The Southbound Interface is the bridge between the control and data planes. This

interface is also an API. Through it, SDN controllers can communicate the application

requirements to the network, reprogramming the equipment to perform numerous func-

tions, such as flow control, firewall, intrusion detection systems (IDS), and routing. This

reprogramming is carried out by adding or removing rules from the flow tables, described

in detail ahead. All communication that passes through this layer uses a secure commu-

nication channel.

The OpenFlow protocol is the most notable and widely adopted implementation

of the SDN paradigm. It specifies an open and well-defined communication protocol

between network devices and the control plane, independent of the equipment vendor.

Moreover, it requires network devices to fulfill specific requisites (e.g., set of operations

they must be able to perform on incoming packets). The OpenFlow protocol has contin-

uously developed since conceived in 2008 (MCKEOWN et al., 2008), with at least five

major versions released since then.

OpenFlow networks may optionally employ multiple controllers simultaneously

to improve reliability, allowing the switch to continue to operate in OpenFlow mode if a

controller or controller connection fails. In this case, while the control plane remains log-

ically centralized, it is physically distributed among several controllers. These controllers

coordinate the management of the switch amongst themselves to help synchronize con-

troller handoffs.

OpenFlow Controllers. The controller has a global view of the whole network,

including data of the topology, interfaces, statistics, and events. Network administrators

can use this information to develop high-level algorithmic solutions for network man-

agement, enabling dynamic, automated network control applications. These applications

communicate directly with the controller, taking advantage of the high-level information

provided to make better network management decisions. The controller configures for-

warding devices in the network, ensuring that they behave as defined by the application.

Switch-controller communication happens following a well-defined protocol. Through

the utilization of this protocol, the controller can send messages to interact with forward-

ing devices. The most common messages are related to requesting the addition, removal,

and modification of flow rules. It is also possible to request network statistics, such as

device ports and data flow information, which may be crucial for decision-making.

The OpenFlow Logical Switch and OpenFlow controllers are connected by the in-

terface OpenFlow channel. Through this interface, the controller configures and manages
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the switch. It also receives events from the switch and sends packets out to the switch.

The control channel of the switch may support only a single OpenFlow channel with a sin-

gle controller or may support multiple OpenFlow channels enabling various controllers to

share the management of the forwarding device. Independent of the setup, all OpenFlow

channel messages must be formatted according to the OpenFlow switch protocol.

Taking into consideration the standardized switch-controller communication pro-

tocol, multiple OpenFlow controllers implementations can be found. These implementa-

tions allows developers to use different programming languages such as Python (e.g., POX

and Ryu) or Java (e.g., Beacon and Floodlight). Also, it is possible to encounter imple-

mentations providing different set of features such as enabling the federation of multiple

controllers (e.g., Flowvisor (SHERWOOD et al., 2009)) or providing capabilities for net-

work virtualization (e.g., (NASCIMENTO et al., 2011) and OpenVirteX (AL-SHABIBI

et al., 2014)).

As one of the widely used controllers, Ryu is an open SDN controller designed to

increase the network’s agility by making it simple to both manage and adapt how traffic

is handled. The Ryu controller provides software components with well-defined appli-

cation programming interfaces (API), making it easy for developers to create new net-

work management and control applications. Examples of APIs provided by Ryu are:

Open vSwitch Database Management Protocol (OVSDB), NETCONF, XFlow (Netflow

and Sflow) and other third-party protocols. This component based approach helps or-

ganizations customize deployments to meet their specific needs; developers can quickly

and easily modify existing components or implement their own to ensure the underlying

network can meet their applications’ changing demands.

Figure 2.7 – Main components of an OpenFlow switch.
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OpenFlow Switches. Unlike traditional network paradigms, SDN-enabled net-

work devices are limited to two simple operations, processing and data forwarding. An

incoming packet is treated depending on how the controller programs a forwarding device.

OpenFlow employs the concept of “traffic flows” to classify and treat network packets,

allowing varying degrees of granularity. Each flow has some matching fields and at least

one action. Matching fields distinguish among different network flows and typically rep-

resent packet header fields, such as source and destination addresses and transport ports.

Actions define the operations that can be performed on packets depending on the de-

scribed match flow. In addition to forwarding packets through specific network interfaces

on a switch, actions can be used to manipulate packet header fields (e.g., changing the

source or destination IP). Tables 2.1 and 2.2 lists all matching fields and actions available

in the latest publicly available version of the OpenFlow protocol (1.5.1).

Figure 2.7 depicts the main elements within each OpenFlow device. Switches

store into the flow tables the information regarding flow matching fields and actions.

When a new packet is received, it is processed by a flow table; the packet is matched

against flow entries of the flow table to select a flow entry. If a match is found, the de-

vice executes the operations defined in the “actions” field. If a table-miss happens, the

behavior on a table miss depends on the table configuration. It may communicate with

the controller to determine which action should be performed. Actions specified in flow

tables may direct packets for further processing in a different flow table or group actions

(stored in the group table). OpenFlow switches also track individual and aggregate statis-

tics regarding traffic that traversed them. The meter table is used to measure packet rates

and implement QoS (Quality of Service)-related operations such as rate-limiting.

Table 2.3 contains the basic set of OpenFlow stat fields. Each flow table of the

switch must support these fields. Optional stat fields must be included in the stats struc-

ture, but they need to be supported by the flow table. This set of fields enables measuring

traffic on the network, building algorithms to take advantage of such information. Janus

is one example that uses these measures to understand what device interfaces are under-

utilized to route new data to them.

Flow tables are often distributed between two different types of memory, namely

TCAM (Ternary Content-Addressable Memory) and RAM (Random-Access Memory).

On the one hand, TCAMs are highly suited for flow table operations, as they allow paral-

lel lookups with very high performance. However, it comes with a price, as they are 400x

more expensive (LIAO, 2012) and consume 100x more power (SPITZNAGEL; TAYLOR;
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Table 2.1 – OpenFlow matching fields.
Field Description

IN_PORT Switch input port.
IN_PHY_PORT Switch physical input port.

METADATA Metadata passed between tables.
ETH_DST Ethernet destination address.
ETH_SRC Ethernet source address.

ETH_TYPE Ethernet frame type.
VLAN_VID VLAN id.
VLAN_PCP VLAN priority.

IP_DSCP IP DSCP (6 bits in ToS field).
IP_ECN IP ECN (2 bits in ToS field).

IP_PROTO IP protocol.
IPV4_SRC IPv4 source address.
IPV4_DST IPv4 destination address.
TCP_SRC TCP source port.
TCP_DST TCP destination port.
UDP_SRC UDP source port.
UDP_DST UDP destination port.
SCTP_SRC SCTP source port.
SCTP_DST SCTP destination port.

ICMPV4_TYPE ICMP type.
ICMPV4_CODE ICMP code.

ARP_OP ARP opcode.
ARP_SPA ARP source IPv4 address.
ARP_TPA ARP target IPv4 address.
ARP_SHA ARP source hardware address.
ARP_THA ARP target hardware address.
IPV6_SRC IPv6 source address.
IPV6_DST IPv6 destination address.

IPV6_FLABEL IPv6 Flow Label
ICMPV6_TYPE ICMPv6 type.
ICMPV6_CODE ICMPv6 code.

IPV6_ND_TARGET Target address for ND.
IPV6_ND_SLL Source link-layer for ND.
IPV6_ND_TLL Target link-layer for ND.
MPLS_LABEL MPLS label.

MPLS_TC MPLS TC.
MPLS_BOS MPLS BoS bit.
PBB_ISID PBB I-SID.

TUNNEL_ID Logical Port Metadata.
IPV6_EXTHDR IPv6 Extension Header pseudo-field

PBB_UCA PBB UCA header field.
TCP_FLAGS TCP flags.

ACTSET_OUTPUT Output port from action set metadata.
PACKET_TYPE Packet type value.

TURNER, 2003) per megabit than RAM. On the other hand, RAM offers limited perfor-

mance as lookups must be performed sequentially. Therefore, the TCAM area tends to be
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Table 2.2 – OpenFlow actions.
Field Description

OUTPUT Output to switch port.
COPY_TTL_OUT Copy TTL "outwards" – from next-to-outermost to outermost

COPY_TTL_IN Copy TTL "inwards" – from outermost to next-to-outermost
SET_MPLS_TTL MPLS TTL
DEC_MPLS_TTL Decrement MPLS TTL

PUSH_VLAN Push a new VLAN tag
POP_VLAN Pop the outer VLAN tag

PUSH_MPLS Push a new MPLS tag
POP_MPLS Pop the outer MPLS tag

SET_QUEUE Set queue id when outputting to a port
GROUP Apply group.

SET_NW_TTL IP TTL.
DEC_NW_TTL Decrement IP TTL.

SET_FIELD Set a header field using OXM TLV format.
PUSH_PBB Push a new PBB service tag (I-TAG)
POP_PBB Pop the outer PBB service tag (I-TAG)

COPY_FIELD Copy value between header and register.
METER Apply meter (rate limiter)

Table 2.3 – OpenFlow stats.
Field Description

DURATION Time flow entry has been alive.
IDLE_TIME Time flow entry has been idle.

FLOW_COUNT Number of aggregated flow entries.
PACKET_COUNT Number of packets matched by a flow entry.

BYTE_COUNT Number of bytes matched by a flow entry.

extremely limited in OpenFlow switches, adding to the necessity of adequately managing

flow tables and keeping track of table occupation.

After presenting an overview of Software-Defined Networking, we now proceed

to a review of the related work. This review includes a discussion on the employment of

SDN as a platform to enable efficient communication, especially in the context of HPC.

2.4 Related Work

The Software-Defined Network (SDN) paradigm has been providing the means to

design new packet routing/forwarding strategies to diverse types of computer networks

(e.g., internet service providers, corporate, and data center networks). SDN is a promis-

ing enabling paradigm in this context for two main reasons. First, it decouples the control

and data planes, shifting network decisions to a centralized entity. Second, it provides a

network’s global view, making it easier to devise innovative control mechanisms. We start
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this section with a brief overview of how SDN has been explored to design novel rout-

ing/forwarding mechanisms (for different purposes). After this introduction, we review

existing strategies to optimize cloud networks for HPC, including how SDN is boosting

new methods for efficient data transmission in this field.

2.4.1 SDN as Enabler of New Routing Schemes.

Bera et al. (BERA; MISRA; OBAIDAT, 2019) propose Mobi-Flow, a solution

designed to maximize the overall performance of a software-defined access network. It

resorts to dynamic SDN path reprogramming as end-users move around a determined

environment. The authors show that the proposed scheme, based on a greedy approach,

helps minimize the associated costs in data delivery by nearly 40% compared to Open

Shortest Path First (OSPF). Guillen et al. (GUILLEN et al., 2018) propose a solution to

efficiently use the network infrastructure in the context of a distributed storage system

by employing an SDN-based multipath routing mechanism. Preliminary results show

that, by applying the proposal, the overall throughput increases by almost four times in

“long flows” and around 30% in the case of “short flows” while resource usage remains

balanced. As another illustrative example, Guan et al. (GUAN et al., 2018) introduce

an overlay approach seeking to improve transmission quality for Internet applications

requiring stringent QoS guarantees.

2.4.2 Optimizing the Cloud Network for HPC.

Several feasibility studies about using public clouds for HPC point out the network

communication overheads as a significant barrier. Other investigations propose strategies

to reduce these overheads. Two classes of solutions stand out: those resorting to topolo-

gies that attempt to maximize connectivity between nodes and those that explore resource

and/or network management. Given the nature of our proposed approach, next, we revisit

work on the general problem of executing HPC applications in the cloud and recent pro-

posals that apply varying management tactics for efficient inter-process communication

paths.

Lightweight Virtualization. Gupta et al. (GUPTA et al., 2016) investigate net-

work bottlenecks in commercial cloud infrastructures and propose new mechanisms to
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improve the performance experienced by HPC applications. Essentially, they employ

lightweight virtualization and grant Virtual Machines (VMs) native access to physical

network interfaces. Despite the overhead reduction in average turnaround time (up to 2x)

and throughput (up to 6x), the authors recognize that their proposal may not be enough

to improve the performance of HPC applications. Similarly, Ramakrishnan et al. (RA-

MAKRISHNAN et al., 2012) claim that virtualization of network resources accounts for

the main performance issue, being responsible for at least 60% delay and throughput

degradation if compared with typical local cluster and supercomputer options.

Efficient Packet Scheduling. Tokmakov et al. (TOKMAKOV et al., 2019) intro-

duce a novel traffic management algorithm that combines Rate-limited Strict Priority and

Deficit Round-Robin for latency-aware (and fair) scheduling. It was designed to improve

link utilization and prioritize ultra-low latency flows (e.g., of HPC and edge comput-

ing applications) in Ethernet-based setups. However, round delays can negatively result

from the algorithm as queues are served in a Round-Robin fashion. Similarly, Hauser et

al. (HAUSER; PALANIVEL, 2017) propose a dynamic network scheduler for cloud data

centers. Based on polled network statistics, it orchestrates bandwidth limitation mecha-

nisms to prevent network congestion and unfair bandwidth utilization.

Custom SDN-based InfiniBand/Dragonfly Networks. Mauch et al. (MAUCH;

KUNZE; HILLENBRAND, 2013) introduce an approach to use InfiniBand in a private

virtualized environment. It allows for an individual network configuration to operate with

QoS mechanisms. Similarly, Alsmadi et al. (Alsmadi; Khamaiseh; Xu, 2016) propose

a method for logically slicing the network and isolating applications from one another.

While the former is based on a complex architecture that requires interfacing with several

APIs and protocols to configure the network, the latter cannot handle path reallocation in

case of a switch or link failure. Moreover, both proposals deploy static paths that cannot

change during application execution.

Motivated by the fact that InfiniBand is increasingly available in commercial clouds,

Zahid et al. (Zahid et al., 2018) implement an InfiniBand setup that, based on a feedback

control and optimization loop, can adjust its operating parameters. It enables an HPC

network to dynamically adapt to varying traffic patterns, resource availability, and work-

load distribution while conforming to service provider-defined policies. Lee et al. (LEE et

al., 2016) address one of InfiniBand central weakness for HPC, namely the employment

of simple routing schemes such as destination-mod-k routing. The authors propose an

enhancement to the technology, incorporating OpenFlow-style SDN capability to provi-
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sion uncongested paths. While the proposal is a cornerstone towards the employment of

programmable networks to speed up HPC applications in the cloud, it fails by requiring

routes to be determined before the execution of an application. It, therefore, wastes a

valuable opportunity to adapt the network to meet fluctuating application communication

demands.

Along the same lines as the work by Lee et al., Faizian et al. (FAIZIAN et al.,

2017) include SDN-related functionality to Dragonfly networks and propose a set of rout-

ing schemes to achieve the performance required by HPC applications. One limitation of

this work is the lack of a mechanism for accurate traffic demand estimation, making it

difficult to make optimal global decisions. Another limitation is that even when several

paths are available, only two (i.e., a primary and a backup) are considered for forward-

ing a packet. A final shortcoming is that these paths are provisioned upon application

instantiation and cannot change.

Summary. SDN has been investigated for different purposes on network manage-

ment. Specifically for HPC scenarios, recent studies employ lightweight virtualization,

latency-sensitive flow prioritization, and path provisioning to increase the efficiency of

inter-process communications. Although a few proposals advance in path provisioning

methods, they still do not take full advantage of the functionality provided by software-

defined networks and are static. This thesis proposes Janus, a framework that contributes

to dynamically selecting and provisioning the least used paths during application runtime.
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3 THE PROPOSED PATH PROVISIONING APPROACH

As a relevant research step further in comparison with the related work, we pro-

pose a framework based on SDN for just-in-time path selection and provisioning in cloud

infrastructures. Janus continuously monitors the network conditions and, given the cur-

rent communication patterns of an HPC application, systematically (re)programs paths to

avoid congested links and reduce end-to-end delays. The proposed approach is comple-

mentary to the VM placement and instantiation process, which we assume will be taken

care of by a third party resource management system such as OpenStack (SEFRAOUI;

AISSAOUI; ELEULDJ, 2012) or OpenNebula (MILOJIČIĆ; LLORENTE; MONTERO,

2011).

Figure 3.1 introduces the basis of our solution, highlighting its main conceptual

components and their interactions. In the following sections, we describe them in detail,

starting with (i) the SDN-based Path Provisioning Controller, then (ii) illustrating a work-

ing example, and finally (iii) presenting the accompanying proposed routing strategy.

Figure 3.1 – Components of the proposed solution and their interactions.
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3.1 SDN-based Path Provisioning Controller

The SDN-based Path Provisioning Controller consists of six components: Link

Monitor, Topology Manager, Event Manager, Path Orchestrator, Forwarding Strategist,

and Path Provisioner. Next we summarize the role of each of these components.

Link Monitor. This component plays a vital role in periodically gathering traffic

statistics from the forwarding devices. Assuming the infrastructure is OpenFlow-enabled,

this information can be obtained via OFPPortStatsRequest requests. The infras-



35

tructure operator must tune the frequency of this process. Highly frequent requests favor

accuracy while sparsed ones favor low intrusiveness. After each round of information

collection, the Link Monitor calculates the amount of traffic that traversed each link and

derives its average utilization. This information is calculated according to Equation 3.1

and sent to the Topology Manager component.

LkUsagei(t, t− 1) = LkCapacityi −
tx_bytes(t)− tx_bytes(t− 1)

∆(t, t− 1)
(3.1)

Topology Manager. It maintains updated information about the topology of the

cloud network infrastructure in the form of an annotated graph. Forwarding devices (e.g.,

OpenFlow switches) are abstracted as vertices while physical links are represented as

edges. The average utilization of each link, measured by the Link Monitor, is used to

denote the edge weight. The reader should keep in mind that (i) the representation of the

topology might be updated in response to changes in the infrastructure (e.g., due to a link

failure – event OFPErrorMsg) and (ii) the weights are updated regularly in response to

periodic link usage measurements carried out by the Link Monitor.

Event Manager. Whenever a new flow starts between two processes of an HPC

application or a previously existing one remained idle for a long time, there will be no path

provisioned in the network to route its packets. The forwarding device that is closer to the

source host then triggers an event (OFPPacketIn) that is received by the Event Manager

component. This component intermediates communication with the Path Orchestrator for

a path selection procedure.

Path Orchestrator. The orchestrator, as the name implies, coordinates the process

of path selection and provisioning. The component reacts to both changes in the physical

topology (informed by the Topology Manager) and events of the type OFPPacketIn (re-

ported by the Event Manager). It consumes (updated) information made available by these

components, invokes the Forwarding Strategist for the determination of a path and resorts

to the Path Provisioner for its deployment. The Path Orchestrator is also responsible for

interfacing with the human network operator (e.g, to receive configuration commands and

send him/her notifications about the path provisioning process).

Forwarding Strategist. The Forwarding Strategist can implement different ap-

proaches for determining a path between a source and a destination (HPC application)

process. It uses an updated view of the annotated graph and location information of the

processes to be “interconnected”. The problem addressed by this component is then of

a graph-based path finding one. As a proof of concept, in this thesis, we propose a Link
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Usage-Aware Routing strategy, which favors shortest and uncongested paths. It is de-

scribed in detail in Section 3.3.

Path Provisioner. This component is responsible for performing the actual de-

ployment of end-to-end paths on the network infrastructure. This process unfolds in the

invocation of a coordinated set of OFPFlowMod commands to install forwarding rules on

the devices that (are calculated to) compose the paths. The duration of these rules is de-

termined by the operator, who can favor either path freshness/efficiency or stability/reuse.

3.2 A Working Example

To illustrate how the described components interact, we introduce now a working

example. Initially, recall that the Link Monitor is expected to be continuously monitor-

ing the traffic to consolidate statistics from the cloud network infrastructure (Flow 1 in

Figure 3.1). The gathered information (tx_bytes) is sent to and stored by the Topology

Manager (Flow 2).

The process of deploying an HPC application consists of (i) instantiating and con-

figuring the VMs (with any off-the-shelf resource management system), as well as (ii)

requesting our proposed SDN-based Path Provisioning Controller (via the Path Orches-

trator component) to manage the path provisioning process (Flow 3). Should the third-

party resource management system expose an API that can be used to control the resource

provisioning life-cycle, then it is possible to integrate (i) and (ii) to have the whole ap-

plication deployment/execution process dealt with by the SDN-based Path Provisioning

Controller (3 and 4).

Consider the situation in which an HPC application has been deployed and that

the process running on node A needs to communicate with the process on node B (5).

When the first packet from A reaches its closest forwarding device (s in the figure), the

device will not know how to route it further and will send an OFPPacketIn event to the

Event Manager (6). This component will then pass the event to the Path Orchestrator (7).

At this point, the Path Orchestrator consults the Topology Manager to receive

updated information about the current topology and the utilization of the links (8). Next,

it invokes the Forwarding Strategist to determine an optimized route to connect processes

running on A and B (9). Finally, it requests the Path Provisioner (10) to deploy the

forwarding rules on the network devices (11). From this moment on, the packet that

triggered the event is reintroduced by the controller into the network, and the remaining
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flow packets will be transmitted through the configured route.

The process above is executed for each new application communication flow (or

when the physical topology changes). To avoid frequent communications with (and inter-

ventions from) the external controller, the operator can resort to two system parametriza-

tion options. The first is setting up a higher value for the idle_timeout associated

with the flow rules configured on the forwarding devices. The consequence will be that

provisioned paths will be kept active for more extended periods (assuming that short inter-

process no communication periods will be succeeded by new message exchanges). The

second option is proactively provisioning paths for which there exists a single possible

route, or that will be undoubtedly necessary along the execution of a whole application

(e.g., master/worker communication channels). An in-depth analysis of the additional

performance gains (i.e., in application runtime) reached with these configuration options

are out of the scope of this work and are left as future work.

3.3 Link Usage-Aware Routing (LUAR)

In this section, we propose and formalize our strategy – called Link Usage-Aware

Routing (LUAR) – designed to efficiently compute the best path from a source to a des-

tination point in a cloud network topology. LUAR is one of the possible approaches to

be implemented by the Forwarding Strategist. It considers the best path to be the short-

est, least utilized, currently available path. In the future, we plan to investigate other

algorithms and approaches to this task.

Algorithm 1 shows the pseudo-code of LUAR. The algorithm has five input pa-

rameters: a set V of nodes in the topology graph; a vector of adjacency lists E, where

E(v) lists the nodes connected to node v; a link utilization matrix U , where U(v, u) indi-

cates the utilization of the link that connects node v to u; and the source and destination

nodes s and t. The algorithm can be logically divided into two blocks. Next, we detail

each block.

The first block (Lines 1–12) is an adaptation of the Breadth-First Search (BFS)

algorithm extended to record, for every node, its possible predecessors in any of the short-

est paths starting from the source. The algorithm maintains two main data structures in

Block 1, Predecessors and Seen, that indicate, respectively, the possible predecessors for

each node v and the first level in which they were seen during the search. These struc-

tures are initialized with nil values for every node in the graph (Line 2). In Line 3, we



38

Algorithm 1 Compute the shortest, least utilized, currently available path from source s
to destination t.
Require: V,E, U, s, t

1: . Block 1: Generate predecessor tree for the graph starting from node s.
2: Predecessors(v)← nil,∀v ∈ V ; Seen(v)← nil,∀v ∈ V
3: Predecessors(s)← EMPTYARRAYLIST(); Seen(s)← 0

4: N ← QUEUE([s])

5: while N 6= ∅ do
6: v ← POP(N)

7: for u ∈ E(v) do
8: if Seen(u) = nil then
9: Predecessors(u)← ARRAYLIST([v])

10: PUSH(N, u)

11: Seen(u)← Seen(v) + 1

12: else if Seen(u) = Seen(v) + 1 then APPEND(Predecessors(u), v)

13: . Block 2: Compose the shortest paths and find the least utilized one.
14: W ←ARRAYLIST([(t, 0, 0)]); ρbest ← nil; aubest ←∞
15: while LENGTH(W ) > 0 do
16: v, i, au←LAST(W )
17: if v = s and au < aumin then
18: ρbest ← REVERSED(LIST({FIRSTITEM(w): w ∈ W}))
19: aubest ← au

20: if i < LENGTH(Predecessors(v)) then
21: APPEND(W , (Predecessors(v)i, 0, au+ U(Predecessors(v)i, v)))
22: else
23: REMOVELAST(W )
24: if LENGTH(W ) > 0 then
25: SECONDITEM(LAST(W ))← SECONDITEM(LAST(W )) +1

Ensure: ρbest

set Predecessors(s) of source node s to an empty list (since it has no predecessors) and

Seen(s) to level 0 (since the search will start from it). The algorithm also maintains an

auxiliary variable N , which is a queue of nodes to explore, initialized to contain only the

source node s (Line 4).

Lines 5–12 contain the main repeat loop of Block 1. Every iteration of the out-

ermost loop represents the exploration of a level in the graph. Each iteration starts by

removing an element from N and assigning it to variable s (Line 6). The algorithm then

checks, for each adjacent node u ∈ E(v) (Line 7), if it has not been visited (Line 8).
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In the positive case, the Predecessor(u) is initialized to a list containing only the node

currently being explored (i.e., v; Line 9), u is added to the set N of nodes to explore in

the next level (Line 10) and is also marked as to have been seen in next level Seen(v) + 1

(Line 11). Otherwise, LUAR checks if node u has already been seen in the next level

(Line 12), in which case it simply appends v to the list of predecessors of u. This proce-

dure is repeated until all nodes in the graph have been visited, i.e., no item is added to N

during an outermost iteration (Line 5). In the end of Block 1, data structure Predecessors

has been populated with the predecessors of all nodes in the shortest paths starting from

node s.

Block 2 (Lines 13–25) is a modified version of the non-recursive Depth-First

Search (DFS) algorithm. The search is started from the destination node t and targets

source node s (i.e., a reverse search) and the Predecessors data structure (populated in

Block 1) is used instead of the original adjacency list. Along with the search, LUAR

records the path being traversed and its aggregate utilization. The path is recorded using

an array list W of triples (v, i, aucur), where v is a node, i is index of the next predecessor

to explore for v, and au is the current aggregate utilization in the path ending on node

v. Block 2 maintains two auxiliary variables (Line 14): the best path ρbest found in the

search (initialized as nil); and the aggregate utilization aubest of this best path (initialized

as∞).

Lines 15–25 contain the main loop of Block 2. Each iteration starts by loading

the last triple from W into variables v, i, and au (Line 16). Line 17 checks whether

the current node v is the source node s and the current aggregate path utilization au

is smaller than the best known value aubest. In case both conditions are true, LUAR

builds the current path by creating a list from the nodes listed in W , which are the first

items of each triple (Line 18), and updates the best known path ρbest to be it. Line 19

also updates the minimum known aggregate utilization aubest to be the current one au.

Regardless of the previous conditions, if there is predecessors that should still be explored

for node v (Line 20), a new triple is added toW containing the next predecessor of v to be

explored and adding up the utilization from the predecessor to v to the current aggregate

utilization (Lines 21). Otherwise, LUAR removes the last triple from W , and if W does

not become empty, it increments by one the index of the next predecessor to explore from

the last triple. This process is repeated until all of the shortest paths from source node s

to destination node t have been analyzed. At the end of the algorithm, variable ρbest is

returned and indicates the shortest, least utilized, currently available path.
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The worst-case complexity of LUAR is given byO(n+m), where n is the number

of nodes and m refers to the number of links in the topology, since both of the adapted

algorithms (BFS and DFS) have complexity O(n +m) and are executed sequentially in

our algorithm. Therefore, LUAR runs in polynomial linear time to the number of devices

and links in the network and is suited to quickly compute the best path to route traffic

from two processes of an HPC application.
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4 PROOF-OF-CONCEPT IMPLEMENTATION OF JANUS

Next, we briefly describe our prototype implementation. The presentation is guided

by the architectural view depicted in Figure 3.1 and focuses on how the components of

the proposed approach are materialized in our implementation using the RYU platform

version 4.3 and OpenFlow version 1.3. First, we present the Link Monitor and Topology

Manager implementation (Section 4.1). Next, we explain the Forwarding Strategist (Sec-

tion 4.2). Finally, we detail the implementation of the Path Orchestrator together with the

Event Manager and Path Provisioner (Section 4.3).

4.1 Link Monitor and Topology Manager Components

The Link Monitor and Topology Manager mentioned in Section 3.1 are part of

a single Python-based procedure deployed on top of RYU at the external controller side

and are implemented as two distinct functions. The monitor continuously polls the SDN-

based network devices for link traffic statistics. The manager asynchronously collects,

processes, and consolidates the statistic events received.

After system initialization, the procedure abstracted in Algorithm 2 is invoked and

starts to poll the network. It receives as input an array list with all available forwarding

devices in the topology (sw), where each sw is an OpenFlow switch, and an interval

variable determining the period between statistic requests (in seconds). We clarify to

the reader that the interval parameter is expected to be configured earlier by a human

operator (in his/her previous interactions with the Path Provisioner component, whose

implementation is explained ahead). While the network is up and running, each sw on

the array list is visited (Line 2) every interval seconds (Line 5). Lines 3 and 4 generate a

PortStatsRequest() to the current switch s, which in OpenFlow is carried out through an

OFPPortStatsRequest message.

Algorithm 2 Switch Statistic Polling

Require: ARRAYLIST(sw), interval

1: while True do
2: for s ∈ ARRAYLIST(sw) do
3: req ← PortStatsRequest()

4: s.SENDMSG(req)

5: Sleep(interval)
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Each switch asynchronously responds with an EventOFPPortStatsReply

event (to the port statistic request), and it triggers the procedure formalized in Algo-

rithm 3. It has three input parameters. The first is a link utilization matrix U , where

U(v, u) indicates the link between the source node (v) and destination node (u). Each

matrix cell contains two attributes: the current utilization of the link (stat) and the lo-

cal output port number (port) to reach u (from v). The second parameter E is a vector

of adjacency lists, where E(v) lists the nodes connected to v. The last parameter is the

PortStatsReplyEvent, containing the current statistics for each port of a switch. Line 1

parses and temporarily stores in S the switch identification, ports, and statistics for each

Port (from the JSON-encoded event). In Lines 2–3, n is assigned the number of ports

(contained in S), v is assigned as the source node (S.id), and a Port variable is initial-

ized with 0. Each Port, parsed from S, is then visited (Line 4), and the corresponding

traffic statistic captured by the event is stored in variable NewStat (Line 5). Lines 6–7

search the correct pair of nodes v and u to update the traffic information. The previous link

weight is then retrieved from the matrix U and assigned to variable PrevStat. Next, func-

tion TrafficAmount calculates the exchanged bytes between the current (NewStat)

and the previous observation (PrevStat) and assigns the result in U(v, u) (Line 9). We

call the reader’s attention that bidirectional links are modeled as two unidirectional links

(one in each direction), whose loads are calculated independently.

Algorithm 3 Topology Statistic Consolidation.
Require: U, E, PortStatsReplyEvent

1: S ← parser(PortStatsReplyEvent)
2: n← PortCount(S)
3: v ← S.id; Port← {0}
4: while Port <= n− 1 do
5: NewStat← S.stat[Port]

6: for u ∈ E(v) do
7: if U(v, u).port == S.port[Port] then
8: PrevStat← U(v, u).stat

9: U(v, u).stat← TRAFFICAMOUNT(NewStat, PrevStat)

10: Port← Port+ 1



43

4.2 Forwarding Strategist Component

The Forwarding Strategist is also implemented using Python, and its pseudo-code

is illustrated in Algorithm 4. To perform a path selection, the Forwarding Strategist re-

quires as inputs six parameters, namely: V (set of nodes in the topology graph), E, U ,

source and destination IPs (s, t) where the HPC processes wishing to communicate are lo-

cated, and selected strategy (strategy). The component executes a switch case-like struc-

ture (Lines 1-2) to invoke the operator-chosen path computation procedure to run (i.e.,

LUAR and shortest path in the algorithm). Note that the approach can be extended to

support other path selection tactics, in which case the procedure shown needs to be up-

dated. Depending on the strategy invoked, the path computation procedure parameters

are different (e.g., Shortest Path does not utilize statistics to select a path, see Lines 3 and

5). However, the outcome is always a path, ρbest, in the format of an array comprised of

3-tuples (hop, in_port, out_port), where hop is a forwarding device in the selected path,

in_port is the packet’s incoming port, and out_port is the outgoing port.

Algorithm 4 Forwarding strategist.
Require: V,E, U, s, t, strategy

1: switch strategy do
2: case LUAR
3: ρbest ← COMPUTELUAR(V,E, U, s, t)

4: case ShortesPath
5: ρbest ← SHORTESTPATH(V,E, s, t)

...
Ensure: ρbest

4.3 Event Manager, Path Orchestrator, and Path Provisioner Components

Components Event Manager, Path Orchestrator, and Path Provisioner are imple-

mented through some functions in a single Python procedure. Algorithm 5 formalizes the

pseudo-code organizing the main actions executed, in a coordinated way, by these compo-

nents. Block 1 (Lines 2–4) is responsible for handling the receipt of a Packet_In event

and parsing it. Block 2 (Lines 6–10) coordinates and invokes actions from other com-

ponents to determine a path. Block 3 (Line 12) ultimately installs the SDN/OpenFlow

forwarding rules (to provision the previously determined path) on the network devices.
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Path Configuration and Deployment. When the Event Manager receives a new

Packet_In event, it triggers the execution of Algorithm 5. In addition to the event, the

algorithm receives as input two parameters: idle_timeout, responsible for determining

the amount of time a path is expected to be kept active (after no further packets for the

flow are observed), and strategy, informing the approach to be used to select a path. In

Block 1, the event is parsed into a structure ev. We use the Ryu packet library to help with

this task. Then, the source (s) and destination (t) nodes, i.e., the endpoints of the new path

to be provisioned, are picked (from ev). Block two starts by retrieving V , E, and U (de-

scribed earlier) from the Topology Manager (Lines 6–8). In Line 9, the algorithm invokes

the Forwarding Strategist passing as parameters V , E, U , s, t, and strategy. It will then

wait for the component to return a Path. Line 10 translates the high-level representa-

tion of the current Path into flow rules to be sent to the switches. Finally, in Block 3,

Line 12, the algorithm calls function ADDFLOW with variables Flow and idle_timeout

as parameters. This function will iterate through the OpenFlow switches composing the

determined path and, through the execution of the ofp_flow_mod primitive, install the

new forwarding rules.

Algorithm 5 Path Configuration and Deployment
Require: PacketInEvent, idle_timeout, strategy

1: . Block 1: Receive and parses packet-in event.
2: ev ← PARSER(PacketInEvent)

3: s← ev.SourceNode

4: t← ev.DestinationNode

5: . Block 2: Orchestrate components to select the best available path.
6: V ← RETRIEVENODES()

7: E ← RETRIEVEADJACENTNODES()

8: U ← RETRIEVEUTILIZATIONMATRIX()

9: Path← FORWARDINGSTRATEGIST(V,E, U, s, t, strategy)

10: Flow ← TRANSLATETONETWORKPRIMITIVES(Path)

11: . Block 3: Install rules in the forwarding devices.
12: ADDFLOW(Flow, idle_timeout)

General System Configuration and Access. To configure the controller’s ex-

pected behavior and then execute an application, a human operator must interact with the

provisioning controller and carry out the following steps. First, he/she must determine the

operation parameters mentioned throughout this section. Second, he/she must specify the

hosts that will be available to execute the Message Passing Interface (MPI) applications.
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This process can be performed manually or through the previous interaction of our system

with a third party resource management system (not prototype in this work). With this

setup up and running, it is possible to start the Ryu Controller (and, in the case of our

experimental design, also Mininet). Then, to deploy an MPI application, it is possible to

access one or more of the available hosts defined, through SSH (Secure Shell), upload

and initiate the application.

We highlight that all artifacts described above are available for download and use

at GitHub (https://github.com/gpretto/janus-framework).
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5 EVALUATION

In this chapter, we evaluate the proposed framework aiming at assessing appli-

cation execution speedup and costs under varying conditions. We start by detailing the

experimental setup. Next, we characterize the workloads employed. Finally, we present

and discuss the results obtained with the SDN-based path provisioning controller (with

LUAR).

5.1 Experimental Setup

We implemented the cloud infrastructure with Mininet (LANTZ; HELLER; MCK-

EOWN, 2010). Hosts were instantiated as full-fledged lightweight Linux VM instances.

The network infrastructure comprised Open vSwitch version 2.0.2 switches (that support

OpenFlow version 1.3) and links of 1 Gbps. The SDN-based Path Provisioning Controller

was executed as an application on top of Ryu (RYU, 2019). This experimental environ-

ment was deployed on two nodes, each with 2 x 2.0 GHz Intel Xeon E5-2640 v2 Ivy

Bridge (Q3’13) processors, with 64 GB DDR3 RAM and running Debian 4.19. One node

was responsible for running the end-hosts, while the other executed the SDN Controller.

The right-most side of Figure 3.1 illustrates a simplified version of the cloud net-

work topology used in the experiments. It is a fat-tree that, as usual, is organized in three

hierarchical layers: Edge, Aggregation, and Core. In our topology, 32 hosts (h1 . . . h32)

were attached to 8 edge switches. In the Aggregation layer, we instantiated 8 switches,

while in the Core, 4 (totaling 20: s1 . . . s20). The switches in the Edge and Aggregation

layer were organized in 4 PoDs (Points of Delivery).

Throughout the evaluation, two distinct scenarios were considered: one named

Sparse, meaning the VMs were spread across multiple PoDs, and one entitled Dense,

in which the VMs allocated to execute an HPC application were randomly provisioned

within the same PoD. The workloads to which the experiments were submitted are de-

scribed in the next section (5.2). We compared the results obtained using LUAR with

those observed with a more traditional forwarding strategy, namely Shortest Path. The

primary metric employed for the comparison was application runtime. To adequately un-

derstand the trade-offs between application efficiency and network programming costs,

we examined different idle timeout values for forwarding rules. Each experiment was

repeated 30 times. Results have a confidence level of 90%.
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5.2 Workloads

Regarding the HPC application used to carry out the experiments, we employed

the NAS Parallel Benchmarks (NPB) version 3.3 (BAILEY, 2011). The benchmarks are

designed to support the performance evaluation of HPC infrastructures and systems. They

are derived from computational fluid dynamics and consist of five kernels and three com-

pact applications. We chose NPB because, in addition to encompassing a wide range of

HPC application profiles, it is a reference, extensively employed for high-performance

computing evaluation in the literature.

We selected six representative NPB applications, whose communication patterns

are illustrated in Figure 5.1 (considering their instantiation with four nodes). Thick edges

denote intensive communication demands, while thin ones represent the opposite. Ob-

serve that in BT all nodes exchange data with one another, but at low amounts. Similarly

to BT, in EP data exchange is also low, but not all nodes communicate directly (e.g., 2

and 3 in the example). CG communications form a string-style pattern, where most of the

communications happen in a chain (e.g., node 1 with 2, 2 with 3, 3 with 4). The LU and

MG applications take the form of a ring-based topology, with massive information ex-

change. Finally, SP comprises an initial data distribution step, followed by data-intensive

communication between half of the process pairs.

Figure 5.1 – Communication patterns of six NPB applications.

According to recent data center measurements (GUO et al., 2017), a large por-

tion of data center traffic is carried by a small fraction of long-lived, voluminous flows

(called elephant flows). Similarly, Joy et al. (Joy; Nayak, 2015) report that nine out of ten



48

flows transfer less than 1 MB of data (mice flows), while 90% percent of the total bytes

transferred belongs to flows larger than 100 MB (i.e., elephant).

In line with the studies mentioned above, we emulated a realistic traffic workload

composed of mice and elephant flows. Each experiment had a duration of 15 minutes

and was composed of two states: warmup (1 − 3 minutes) and steady (4 − 15 minutes)

states. During warmup, the number of ongoing background flows increased gradually un-

til reaching the desired level of resource competition. During the steady-state, to maintain

the expected overall concurrence level, a new background flow was started whenever an

existing flow ended. To create such a new flow, we randomly selected a pair of producer

and consumer processes, and determined its duration to be of up to 4 minutes (respecting

the proportion of 9/10 mice and 1/10 elephant flows). It was also during the steady-

state that we instantiated the HPC application, i.e., one of the NAS benchmarks shown in

Figure 5.1, complying with either the Sparse or Dense scenario.

5.3 Results

In this section, we report the results obtained with our mechanism, comparing

them with measurements performed using a standard path-provisioning algorithm. Fo-

cusing on the primary evaluation metric, i.e., HPC application speed up, we examine how

it is impacted by varying controller intervention and flow rule reprogramming frequencies

(in an attempt to determine an optimal operation point for the proposed solution).

Application Execution Speed Up. We first present and discuss the results ob-

tained, starting with the Sparse scenario, followed by the Dense one. Figure 5.2 sum-

marizes the application performance when the VMs (and, as a consequence, the HPC

application processes) are spread across multiple PoDs. Notice that larger applications

tend to take more advantage of our proposed approach. The application runtime observed

for BT, LU, and SP is, on average, 41.86 seconds lower (12.71% speedup) than what is

achieved with Shortest Path. The gains of LUAR for CG, EP, and MG are more modest,

being less than 3-second runtime improvement.

Another important angle from which to analyze the results is the performance

gains as a function of the concurrency level. The higher the cloud network’s contention,

the higher the advantage and value of employing LUAR. On average, it outperforms

Shortest Path by 1.65% in (5.2a – no concurrence), 6.12% in (5.2b), 10.70% in (5.2c),

and 17.94% in (5.2d – 75% concurrence). Taking both the size of an application and the
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Figure 5.2 – Application performance observed for the Sparse scenario.
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level of concurrence into consideration simultaneously, we observe that the shortest appli-

cation, MG, exhibits a nearly constant 4.2% runtime improvement with LUAR (against

Shortest Path) regardless of concurrency level. Conversely, the largest application, SP,

presents consistently increasing gains of 0.86% (5.2a), 9.08% (5.2b), 18.62% (5.2c), and

27.01% (5.2d).

We move now to the scenario in which the VMs (and the HPC application pro-

cesses) are allocated on hosts of a single PoD. This scenario is expected to be more com-

mon but with fewer opportunities to speedup application performance through just-in-

time traffic-aware path provisioning. Figure 5.3 shows the results. Despite the reduction

of path diversity on the network edge for the Dense scenario, LUAR beats its counter-

parts. For example, SP executes 17.90% faster than when using Shortest Path under the

condition of 50% concurrency. Other applications are too short-lived to take full advan-

tage of LUAR but still run faster. This is the case of CG, which took 79.71 seconds to

complete with Shortest Path and 75.09 seconds with LUAR (6.15% faster).

Finally, it is worth analyzing the performance observed comparing both scenarios.

Similarly to what is seen for the Sparse setup, Shortest Path performs consistently worse

in the Dense scenario, i.e., for all applications and concurrency levels, than LUAR. On
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Figure 5.3 – Application performance observed for the Dense scenario.
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average, our gains range from 1.68% to 15.52% for the Dense scenario (and from 1.65%

to 17.94% for the Sparse one). These results underscore that deciding paths dynamically

and with accurate knowledge of network traffic has the potential to allow better routing

decisions.

Detailed Quantitative Analysis. We dived into each NAS application’s behavior

in previous experiments to understand why some applications take better advantage of

the mechanism than others. For this analysis, we correlated application speed up, the

volume of traffic exchanged between node instances, and communication patterns. Table

5.1 summarizes this information for the Sparse – 75% concurrence scenario, Figure 5.2d.

The remaining investigations in this section focus on this scenario only because: (i) it is

the one where a solution such as LUAR is highly demanded, (ii) the results for the other

scenarios follow similar trends, and (iii) to avoid unnecessary plots.

On the one hand, some applications (MG, EP, and CG) execute in less than 90

seconds and exchange less than 150 MB of data. On the other hand, other applications,

such as LU, BT, and SP, have runtime higher than 200 seconds and more than 480 MB

of data exchanged between nodes. Comparing these two groups, we observe that appli-

cation speedup for the second group is, on average, of 1.24X using our approach (against
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Table 5.1 – Relationship among application speedup, data volume exchanged, and
communication patterns for the Sparse – 75% concurrence scenario.

NAS Application
Runtime (s)

Speedup Volume (MB) Comm. Pattern
S-Path LUAR

MG 23.82 22.47 1.06X 103.34 Ring
EP 82.51 73.50 1.12X 0.01 All
CG 88.83 81.24 1.09X 137.27 Chain
LU 354.15 283.03 1.25X 491.80 Ring
BT 432.89 352.11 1.22X 976.96 All
SP 499.35 393.13 1.27X 1707.81 All

the Shortest Path). For the first group, characterized by applications that consume fewer

network resources, the speedup is, on average, of 1.09X. Thus, one can conclude that

network-resource intensive applications, i.e., the ones for which the amount of data ex-

changed is high, will benefit the most from our approach.

Figure 5.4 – Number of interruptions to the the external SDN controller as a function of varying
rule timeout values for the Sparse – 75% concurrence scenario.
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Controller Interventions and Execution Delay. We measured the interruptions

from the forwarding devices to the external controller during application execution as

a function of varying idle timeout values for rule expiration. Figure 5.4 shows the re-

sults obtained for the Sparse – 75% concurrence scenario. In the graphs, programming

interruptions denote the communication with the controller for the first path provision’s
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decision/procedure. In turn, reprogramming interruptions mean subsequent path provi-

sioning decisions (performed after each timeout and link load reassessment). Note that as

the idle timeout value increases, the network’s programmability level decreases. The av-

erage number of path reprogramming actions considering timeouts of 10, 30, 60 seconds,

and non-expiring rules (∞) are, respectively, 185.66, 59.66, 21.33, and 0.

The analysis of the number of interruptions and the results reported in Table 5.1 al-

lows us to suggest that long-duration applications achieve high speedups in part because

they do use more extensively the functionality of path reprogramming. More specifi-

cally, these applications’ processes have a higher probability of using uncongested links

to communicate. Conversely, short-lived applications tend to select paths (which may be

congested) and do not have time enough to switch to more convenient ones. As an illus-

trative example from Figure 5.4, scenario 5.4a, while CG redefines forwarding paths 50

times (speedup of 1.09X), SP performs 432 path changes (speedup of 1.27X).

Using the previous results as a starting point for a more in-depth analysis, we also

assessed the impact of using different idle timeout values (for forwarding rule expiration)

on application runtime. Figure 5.5 shows the results for the Sparse – 75% concurrence

scenario. Similarly to the results shown in Figure 5.2, and as a general remark, LUAR

exhibits considerable gains against Shortest Path across all scenarios. On average, the

former outperforms the latter by 17.94% in (5.5a), 15.02% in (5.5b), 9.71% in (5.5c), and

6.71% in (5.5d). A second important observation from Figure 5.5 is that the shorter the

idle timeout value, the faster the execution time of each NAS application. For example,

LU executes in 299.54 seconds in (5.5d), and gradually decreases its execution time to

297.30 seconds in (5.5c), 284.91 seconds in (5.5b), and 283.03 seconds in (5.5a). This

observation complements our previous conclusion regarding application length and the

importance of network programmability for execution acceleration.

While the dynamism of path provisioning plays an essential role for application

speed up, shorter timeout values lead to a high number of interruptions, which impact

overheads (namely communication with the external controller, as well as path recalcu-

lation and provision). Table 5.2 shows the correlation between application runtime, con-

troller interventions, and communication/processing overheads for the LU application.

As an example, consider the case in which the timeout value is set up to 10 seconds. The

time spent with the mentioned overheads was 6.54 seconds, which represents 2.26% of

the total application execution time (283.03 seconds). Even with such overheads, the LU

application executed 5.83% faster than the case in which the flow rules are programmed
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Figure 5.5 – Application performance as a function of varying rule timeout values for the Sparse
– 75% concurrence scenario.
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only once (∞ – fourth row of the table).

Table 5.2 – Communication and processing overheads for the LU application incurred by the
interruptions to the the external SDN controller.

Timeout (s) Runtime (s) Interruptions Overheads (s) % Overheads
10 283.03 218 6.54 2.26 %
30 284.91 76 2.50 0.88 %
60 297.30 38 1.10 0.37 %
∞ 299.54 10 0.31 0.10 %

Reducing the timeout values indefinitely is not the ideal strategy to take, as the

gains in application speed up are increasingly neutralized by the associated overheads (as

shown in Table 5.2). Figure 5.6 compares the runtime observed for SP and LU considering

distinct idle timeout values. The Shortest Path is used as a baseline. The results obtained

in Figures 5.6a and 5.6b confirm that our approach contributes to decreasing application

runtime as we reduce the idle timeout values. However, they also suggest that the cost-

benefit is higher using LUAR with 30 seconds for the idle timeout. In both situations,

5.6a and 5.6b, when comparing LUAR with idle timeouts set to 30 and 10 seconds, we

observe a marginal reduction of application runtime of 0.63 (SP) and 1.88 seconds (LU),

at the price of, on average, 2.82X additional reprogramming actions.
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Figure 5.6 – Optimal operation point for application speed up observed for the Sparse – 75%
concurrence scenario.
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6 CONCLUSION

In this thesis, we proposed Janus, a framework for dynamic path provisioning in

cloud network infrastructures. It keeps track of link utilization and deploys shortest, least

utilized paths to “interconnect” the processes of a running HPC application. The work

unfolds into four main research contributions: (i) an SDN-centric path provisioning archi-

tecture, (ii) a link usage-aware routing strategy, (iii) a fully functional proof-of-concept

implementation, and (iv) an in-depth experimental evaluation attesting the framework’s

efficacy and efficiency.

The results show that the proposed solution has the potential to speed up HPC

Applications. LUAR performs particularly well under challenging yet ordinary circum-

stances such as when VMs are dispersed across the infrastructure, and the network ex-

hibits some degree of contention. Large applications with a high degree of communica-

tion between its processes – the norm in high-performance computing – have the potential

to benefit the most. For example, LU and SP experiment an average of 13.51% runtime

speedup (considering all analyzed factors). Under network contention (i.e., 75%), the

gains are, on average, 15.68%, and the best results are as high as 27.01%. To achieve

these results, our approach needs to be executed for the first packet of a new flow between

two application processes, demanding negligible communication delays with the external

SDN controller (less than a dozen milliseconds).

Another critical aspect is properly tunning the idle timeout values for rule ex-

piration. As a general observation, LUAR achieves a higher speed up as idle timeout

decreases. However, reducing the timeout values indefinitely must be avoided as there

is an inflection point in which path reprogramming times may surpass application speed

up margins. For example, in our experiments, the best cost-benefit is achieved using

LUAR with 30 seconds for the idle timeout. Under this parameterization, SP and LU re-

duce runtime by a factor of 0.4%, at the price of 2.82X additional reprogramming actions

(compared to the scenario with 10 seconds for the idle timeout).

As future work, we intend to evaluate the effectiveness of the proposed approach

to accelerate heavier, real HPC applications being weather forecasting a potential can-

didate. We also plan improvements to the proposed mechanism that may lead to even

higher application runtime speedups. Examples include pre-provisioning paths leverag-

ing potentially known (or expected) application communication patterns and determining

the optimal period for flow rules to remain active.
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APÊNDICE A – RESUMO EXPANDIDO EM PORTUGUÊS

Aplicações modernas nas áreas da ciência, engenharia e indústria precisam fre-

quentemente lidar com uma quantidade enorme de dados. Essas aplicações precisam re-

solver desafios relacionados a cenários com grandes volumes de dados, ao mesmo tempo

que entregam rapidamente os resultados esperados. Sendo assim, essas aplicações exigem

um alto poder computacional e, para isso, a Computação de Alto Desempenho (HPC)

torna-se um fator chave para acelerar o processamento de dados. Com o objetivo de aten-

der a esses requisitos computacionais, aplicações de HPC têm tradicionalmente empre-

gado infraestruturas de clusters, grids e data centers (GUPTA et al., 2016). No entanto,

recentemente testemunhamos esforços consistentes para a execução de aplicações HPC

na nuvem. Essas iniciativas tentam aproveitar características da computação em nuvem

como dimensionamento flexível de recursos (elasticidade), disponibilidade instantânea e

(comparativo) baixo custo.

Embora a alocação de máquinas virtuais na nuvem (para execução de aplicações

HPC) tenha sido amplamente estudada, as taxas de comunicação entre processos ainda

representam o principal gargalo de desempenho (LI; ZHANG; LUO, 2017). Além da

possibilidade de as máquinas virtuais serem instanciadas fisicamente distantes umas das

outras na nuvem, os caminhos provisionados são normalmente estáticos e mais curtos

(potencialmente atravessando links congestionados e de alto atraso). A natureza dinâmica

dos padrões de comunicação observados na maioria das aplicações HPC torna essas lim-

itações ainda mais proeminentes (relevantes). Resumindo, submeter fluxos de HPC a

altas latências de rede ainda é um dos principais desafios em aberto, que os ambientes de

nuvem precisam enfrentar para oferecer uma infraestrutura adequada para HPC.

Estudos anteriores (EVANGELINOS; HILL, 2008; GUPTA et al., 2016; NETTO

et al., 2018b; ROLOFF et al., 2017; WALKER, 2008; WITTE et al., 2020; KOTAS;

NAUGHTON; IMAM, 2018) avaliaram a viabilidade do uso de nuvens públicas para

HPC. Suas descobertas sugerem que as nuvens não foram projetadas para executar apli-

cações HPC fortemente acopladas. A principal limitação é o baixo desempenho da rede,

resultante da sobrecarga de virtualização de I/O, compartilhamento de processador e uso

de tecnologias de interconexão de propósito geral. Lee et al. (LEE et al., 2016) e Faizian

et al. (FAIZIAN et al., 2017) identificaram limitações das tecnologias de rede utilizadas

por infraestruturas em nuvem, chamadas de esquemas de encaminhamento simplistas, o

que pode resultar na degradação do desempenho de comunicação. Para superar essa limi-
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tação, eles propuseram mecanismos de roteamento que evitam caminhos congestionados.

No entanto, tais caminhos são calculados antes da execução de uma aplicação HPC e,

portanto, não lidam com a flutuação do tráfego de rede ou com padrões de comunicação

variáveis.

Nesta dissertação, propomos Janus, um framework para provisionamento dinâmico

de caminhos just-in-time em infraestruturas em nuvem, com o objetivo de acelerar apli-

cações HPC. Ele sistematicamente (re)programa caminhos para evitar links congestiona-

mentos e reduzir o tempo de execução, dados os padrões de comunicação atuais de uma

aplicação. Para esse fim, desenvolvemos uma abordagem que monitora continuamente as

condições dos links de rede para encontrar o caminho menos utilizado entre os nós. Além

do framework, outra contribuição igualmente importante é a formalização da estratégia

Link Usage-Aware Routing (LUAR), que desempenha um papel crucial na redução de

atrasos de comunicação fim a fim. Também contribuímos fornecendo: (i) uma discussão

detalhada sobre o estado da arte da literatura acerca do uso de SDNs como um facilitador

de infraestruturas em nuvem para executar aplicações HPC; (ii) uma descrição de nossa

implementação de prova de conceito prototípica; e (iii) uma avaliação experimental detal-

hada da eficácia e eficiência do LUAR. Além de confirmar os benefícios do LUAR sobre

o provisionamento de caminho tradicional, discutimos extensivamente os diferentes as-

pectos que influenciam os ganhos de maior velocidade (fornecendo insights para usuários

e pesquisadores interessados em melhorar a abordagem proposta).

Os resultados mostram que a solução proposta tem potencial para agilizar a exe-

cução das aplicações HPC. O LUAR tem um desempenho particularmente bom em cir-

cunstâncias desafiadoras, mas comuns, como quando as VMs estão dispersas pela in-

fraestrutura e a rede exibe algum grau de contenção. Aplicações grandes com alto grau

de comunicação entre seus processos – a norma na computação de alto desempenho –

têm o potencial de se beneficiar ao máximo. Por exemplo, LU e SP experimentam uma

média de 13,51% de aceleração do tempo de execução (considerando todos os fatores

analisados). Sob contenção de rede (i.e., 75%), os ganhos são, em média, de 15,68%, e os

melhores resultados chegam a 27,01%. Para alcançar esses resultados, nossa abordagem

precisa ser executada para o primeiro pacote de um novo fluxo entre dois processos da

aplicação, adicionando atrasos de comunicação negligenciáveis com o controlador SDN

externo (menos de uma dúzia de milissegundos).

Outro aspecto importante é o ajuste adequado do tempo limite de inatividade para

expiração de regras OpenFlow. Como observação geral, LUAR atinge uma velocidade
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mais alta à medida que o tempo limite de inatividade diminui. No entanto, deve-se evitar

reduzir os valores de timeout indefinidamente, pois há um ponto de inflexão a partir do

qual os tempos de reprogramação dos caminhos podem ultrapassar as margens de acel-

eração da aplicação. Por exemplo, em nossos experimentos, o melhor custo-benefício

é obtido usando LUAR com 30 segundos para o tempo limite de inatividade. Sob esta

parametrização, SP e LU reduzem o tempo de execução por um fator de 0,4%, mas com

uma redução de 65% nas ações de reprogramação (em comparação com o cenário com 10

segundos para o tempo limite de inatividade).

No futuro, pretendemos avaliar a eficácia da abordagem proposta para acelerar

aplicações HPC reais, sendo aplicações na área de previsão do tempo candidatas poten-

ciais. Também planejamos melhorias no mecanismo proposto, que podem levar a aceler-

ações ainda maiores de tempos de execução de aplicações. Exemplos incluem a definição

de caminhos pré-provisionados que potencializem padrões de comunicação de aplicações

conhecidos (ou esperados) e a determinação do período ideal para que as regras de fluxo

permaneçam ativas.
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