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Abstract

Background: Surgical theater (ST) operations planning is a key subject in the healthcare management literature,
particularly the scheduling of procedures in operating rooms (ORs). The OR scheduling problem is usually
approached using mathematical modeling and made available to ST managers through dedicated software.
Regardless of the large body of knowledge on the subject, OR scheduling models rarely consider the integration of
OR downstream and upstream facilities and resources or validate their propositions in real life, rather using
simulated scenarios. We propose a heuristic to sequence surgeries that considers both upstream and downstream
resources required to perform them, such as surgical kits, post anesthesia care unit (PACU) beds, and surgical teams
(surgeons, nurses and anesthetists).

Methods: Using hybrid flow shop (HFS) techniques and the break-in-moment (BIM) concept, the goal is to find a
sequence that maximizes the number of procedures assigned to the ORs while minimizing the variance of intervals
between surgeries’ completions, smoothing the demand for downstream resources such as PACU beds and OR
sanitizing teams. There are five steps to the proposed heuristic: listing of priorities, local scheduling, global
scheduling, feasibility check and identification of best scheduling.

Results: Our propositions were validated in a high complexity tertiary University hospital in two ways: first, applying
the heuristic to historical data from five typical ST days and comparing the performance of our proposed
sequences to the ones actually implemented; second, pilot testing the heuristic during ten days in the ORs,
allowing a full rotation of surgical specialties. Results displayed an average increase of 37.2% in OR occupancy,
allowing an average increase of 4.5 in the number of surgeries performed daily, and reducing the variance of
intervals between surgeries’ completions by 55.5%. A more uniform distribution of patients’ arrivals at the PACU
was also observed.

Conclusions: Our proposed heuristic is particularly useful to plan the operation of STs in which resources are
constrained, a situation that is common in hospital from developing countries. Our propositions were validated
through a pilot implementation in a large hospital, contributing to the scarce literature on actual OR scheduling
implementation.
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Background

Hospitals are widely acknowledged as complex systems
particularly in terms of management, with the surgical
theater (ST) playing an important role, demanding a large
portion of hospital resources and directly influencing pa-
tients” flows [1, 2]. Several negative impacts may result
from a poor ST management; most notably large queues
of patients waiting for procedures, delays and cancelling
of surgeries [3], and excessive working hours [4]. To avoid
them, ST managers are challenged to synchronize the use
of shared resources, such as operating rooms (ORs), surgi-
cal kits, post anesthesia care unit (PACU) beds, and surgi-
cal teams (surgeons, nurses and anesthetists) [5-7].

Block scheduling (BS) is an approach used to manage
STs in many hospitals; e.g. [1, 5]. In BS, the availability
of ORs is divided in time blocks, which are assigned to
surgical specialties. The assignment is cyclic, varying ac-
cording to demand and planning strategy. BS manage-
ment is implemented in two main phases: (i) Master
Surgery Scheduling (MSS) and (ii) Surgical Case Sequen-
cing (SCS). Phase (i) is devoted to capacity planning, in
which surgical specialties are assigned to one or more
ORs considering a cycle (e.g. week or month). The ob-
jective is to define a surgery timetable to be used in a
predefined planning horizon such that the weekly num-
ber of surgeries performed is maximized and waiting pe-
riods are minimized [8]. Phase (ii) is devoted to surgery
scheduling in the time blocks considering the expected
availability of PACU and inward beds as well as conflicts
in the use of shared resources; e.g. surgical trays and
equipment [9]. In this phase, surgeries are scheduled
considering planning horizons varying from 24 to 48 h.
Our work focuses on the second phase, being directed to
the scheduling of elective surgeries.

Several authors propose surgery scheduling models
aimed at improving the performance of STs [2, 10, 11].
In general, they search for the maximum assignment of
surgeries to ORs without compromising service quality
indicators. Specific objectives include maximization of
patient throughput [12], and minimization of ST costs
[13], waiting times of patients and surgical teams [14],
makespan [15], deferral and postponement [16, 17],
underutilization and overutilization of ORs, inward, in-
tensive care unit (ICU) and PACU [18]. Mathematical
approaches for the ST scheduling problem are also di-
verse; however, analysis of scenarios through stochastic
programming [19], the use of simulation [20] and math-
ematical programming (linear, integer and mixed) [21]
are predominant in the current literature. Regarding the
scope of proposed models, articles may be divided into
those that consider only the OR [22] and those that in-
clude available resources (e.g. surgical instruments and
equipment) and supporting areas (e.g. PACU and ICU)
in the modeling [18].
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Regardless of the large body of literature on SCS [2, 6,
8, 11], some research gaps appear as opportunities. Few
studies propose SCS models that include all resources
involved in the operation of STs; i.e. models that con-
sider the integration of the OR downstream and up-
stream facilities and resources [4, 11]. In addition, the
majority of studies validated their propositions using
simulated data or simplified ST instances. Complete im-
plementation of SCS models in highly complex STs,
reporting drawbacks and required assumptions and sim-
plifications, are still missing in the literature. Real case
applications of SCS in complex scenarios are key to de-
termine the applicability of theoretical propositions, and
are an important contribution to the state-of-the-art on
the subject [23].

We aim at bridging those gaps in the literature by pro-
posing a heuristic for surgery scheduling that takes into
account the availability of ORs, materials required to
perform the procedure, and PACU beds. The heuristic is
grounded on the concept of Break-in-Moments (BIMs —
time moments when surgeries are completed in an ST)
[24] to maximize the number of surgeries performed
while minimizing the variance of intervals between sur-
geries’ completions. Validation of our proposed heuristic
is performed twofold: (i) comparing our suggested se-
quence of surgeries to past sequencing available in the
database of a large University hospital, and (ii) through a
10-day pilot run at the ST of that same hospital, in
which all relevant aspects of the practical implementa-
tion of our SCS heuristic are discussed.

Methods

The problem of sequencing surgeries and synchronizing
the use of resources in an ST is similar to what is known
in several areas as the hybrid flow shop (HES) [25]
scheduling problem. HFS is used in production systems
in which products or tasks are processed in more than
one stage, such that in at least one of the stages there
are machines operating in parallel. At each stage there is
at least one machine that performs part of the process-
ing required towards the final product. Each machine is
able to handle one product/task at a time, and each
product/task is processed by only one machine at each
stage. Translating the HFS to an ST, each task (surgery)
is assigned to a single machine (OR) belonging to a
group of parallel machines in stage 1, and to a single
machine (PACU bed) from a group of parallel machines
in stage 2 [4]. There is a known processing time for each
task as well as additional resources, which must be taken
into account when generating the final schedule.

Database
The database used in this study was made available by
Hospital de Clinicas de Porto Alegre (HCPA), a high
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complexity tertiary University hospital located in the
south of Brazil. There are 843 inward beds at HCPA,
and a total of 32,000 patients are hospitalized yearly.
HCPA’s ST is comprised of 15 ORs (one of which is
dedicated to emergency surgeries) and performs average
11,680 surgeries per year. HCPA’s Ethical Committee
has approved the study and authors have complied with
the recommendations of the Declaration of Helsinki.

The database contained historical information on 71,
175 surgeries performed between 2009 and 2014, cover-
ing 2681 different procedures. All procedures were
mapped regarding surgical kits (instruments, wrapped
and sterilized, needed to perform the procedure) and
equipment demanded, and times related to them;
namely: mean and standard-deviation of the occupancy
time in the OR, and mean and standard-deviation of
length-of-stay in the PACU. Information on procedures’
times were not directly available in the database, which
carried the following temporal marks for each surgery
entry: T, — patient is retrieved; T, — patient is prepared;
T3 — patient enters the OR; T, — patient is anesthetized;
Ts — surgery starts; Tg — surgery ends; T, — patient
leaves the OR; T — patients enters PACU; Ty — patient
leaves PACU. OR occupancy time was defined as the dif-
ference between T, and Tj; length-of-stay in the PACU
was defined as the difference between Tg and Tg. Table 1
presents a partial view of the time information for the 5
most frequently performed procedures.

A matrix My was created carrying information on surgi-
cal kits and equipment (column entries) required to per-
form procedures (row entries). Each cell (i, j) informed
whether resource j was needed to perform procedure i,
being assigned values 1 (yes) or 0 (no). Based on historical
information from the sterilization unit, a processing time
of 180 min was assumed to sterilize any surgical kit.
Analogously, the time needed to clean any OR after a sur-
gery was set to 20 min. An end-of-shift slack of 20 min
was also considered to account for unforeseen events that
could delay surgeries scheduled for the next shift.

Proposed heuristic

The heuristic proposed in this paper was programmed
in MATLAB R2012b as a two-stage problem. In stage 1
surgeries are assigned to ORs; in stage 2 the availability

Table 1 Five most frequently performed procedures at HCPA
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of surgical kits and PACU beds is verified. Scheduling in
stage 1 must consider the availability results in stage 2.
The problem’s combinatorial nature makes it mathemat-
ically complex and potentially NP-hard [24]. With that
in mind, the proposed heuristic is based on assumptions
and restrictions that reduce its mathematical complexity
and enables the determination of an optimal solution
within reasonable computing time; they are:

i. Once started, a surgery cannot be interrupted;

ii. ORs, surgical kits and equipment are ready to use
(sanitized/sterilized) at the beginning of each shift;

iii. ORs and equipment are sanitized immediately after
surgery completion, and PACU beds immediately
after patients are discharged or moved to ward beds;

iv. Surgeries must start and finish in the same shift,
except for ORs in which the same surgical team will
operate in the next shift;

v. Elective surgeries are assigned to the morning and
afternoon shifts;

vi. Priorities assigned by surgical teams must always be
respected;

vii. PACU patients occupy beds for one or more shifts;
and

viii.It is not possible to perform surgeries from different
specialties in a given shift in the same OR.

The occupation of ORs and PACU beds and the use of
surgical kits and equipment at different time instants is
informed in three matrices (M;, My, M3). The OR occu-
pation matrix (M;) is organized such that the list the
ORs available for surgery assignment in the ST are pre-
sented in the rows and the time instants of a shift, in mi-
nutes (e.g. 360 columns for a 6-h shift), in the columns.
The other two matrices follow the same structure, with
PACU beds (M) and surgical kits and equipment (M3)
replacing ORs in the rows.

Our proposed scheduling heuristic is implemented in
two stages and five main steps: (i) listing of priorities; (ii)
local scheduling; (iii) global scheduling; (iv) feasibility check;
(v) identification of best scheduling. Stage 1 is comprised of
steps (i) to (iii); remaining steps integrate stage 2. The flow
chart in Fig. 1 supports the description of the heuristic pre-
sented next.

Specialties Procedure N° of records APD SDPD ARD SDRD
Digestive tract Laparoscopic cholecystectomy 2265 136 41 298 192
Urology J double catheter placement 1827 77 29 372 272
Orthopedics / Traumatology Hip Arthroplasty 838 201 45 390 215
Digestive tract Exploratory laparotomy 816 145 54 538 348
Urology Transurethral resection of the prostate 748 101 29 304 145

APD average procedure duration, SDPD standard deviation of procedure duration, ARD average recovery duration, SDRD standard deviation of recovery duration
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Fig. 1 Flowchart with steps of the proposed heuristic

In step (i) priority surgeries are identified for each OR
and shift. Surgeries are considered priority whenever in-
dicated by the surgical teams. Otherwise, we prioritize
surgeries to be performed on hospitalized patients, min-
imizing the no-show probability. When more than one
patient is hospitalized, we prioritize those to be submit-
ted to surgeries with shorter estimated durations, since
they tend to present shorter PACU lengths-of-stay. At
HCPA, elective surgeries are not performed in the night
shift; thus, prioritizing shorter surgeries will push longer

procedures to the end of the morning and afternoon
shifts, allowing patients to stay at the PACU overnight
and optimizing its night occupancy. In addition, starting
the morning shift with shorter procedures promotes
early PACU occupancy, reducing its morning idleness.
At the end of step (i), OR; (i=1,...,1) will have a list of
surgeries to be performed on a given day. Besides the
operational benefits derived from including such restric-
tions, they promote a significant reduction in the prob-
lem’s mathematical complexity. That allows us to apply
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a method that explores all possible scheduling solutions
in search of the optimum, something that would not be
feasible in an NP-hard problem.

In step (ii) all possible orderings (i.e. sequencing) of
surgeries listed for OR; and not prioritized in step (i) are
enumerated; the procedure is repeated for i=1 to I. At
this point, resources and PACU bed availabilities are not
yet considered. Each sequencing obtained for OR; is de-
noted a local sequencing and represented by LS), such
that /=1, ..., L. At the end of this step, a list of non-
redundant LSs will be available for each OR. Figure 2
presents an example of LS considering an OR operating
two 6-h (720 min) shifts with a list of 5 surgeries sched-
uled for that day (A, B, C, D, and E). Surgeries B and C
are exactly the same procedures performed by the same
team. The surgical team requested surgery A to be the
first one performed and surgery E to be the last;
remaining surgeries are iteratively assigned to remaining
available time slots. There are four possible LSs in this
example (LS}, where i denotes the OR and / the local se-
quencing number): LS}, LS}, LS} and LS. Next, dupli-
cated LSs (i.e. those in which the same two procedures
are performed on the same day in the same OR) are
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identified and treated as a single LS. In the example, LS}
and LSj, and LS} and LS} are duplicated. The final list of
LSs in the example has only two sequences. At the end
of step (ii), all ORs will have a list of LSs.

In step (iii) all LSs are exhaustively combined to obtain
a list of global sequencings (GSs). Each GS,, g=1, ..., G,
is comprised of a set of I LSs. For example, in an ST
with /=2 (OR; and OR,) each GS will be comprised of
two LSs. If we assume each OR with two non-redundant
LSs (LS}, LSy, LS? and LS3) there will be a total of four
possible GSs; namely: GS; — LS} and LS?; GS, — LS} and
LS3; GS3 — LS} and LS?; and GS, — LS} and LS3. At the
end of step (iii) a list of G GSs will become available.

In step (iv) GSs listed in the previous step are submit-
ted to a feasibility check. For that, we start by using
matrix M to list materials needed in surgical procedures
listed in the GSs; then, matrices M;, M, and Mj are
filled out as follows. Each GS contains one LS for each
OR. Select the first GS from the list and go to time =1
in M;. Starting with the first OR (i = 1), verify whether:
(i) there is any surgery to be scheduled in the queue of
surgeries available for that OR [if so, that surgery will be
submitted to checks (ii) to (vi)]; (ii) the OR is idle at

(o] [ 1 [ e | | D | E
40 min 80 min 80 min 160 min 240 min
! ! !
280 min ! 100 min T !
OR 1 A < > < ;l E ;
L i i i
0 40 60 340 360 460 700 720
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| | | | |
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i | | i
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P i j
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Fig. 2 Example of local sequencing
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current time #; (iii) the surgery fits in the interval avail-
able at the OR; (v) the surgical kit and equipment for
the surgery is available at current time f and (vi) a
PACU bed will be available at the minute the surgery
ends.

In case of having a negative answer to any of the above
questions, no surgery is assigned to the first OR at £=1
and we perform the feasibility check for the next OR at
t=1 and carry on, until the last OR is analyzed. Other-
wise, the first surgery in queue is assigned to the OR; in
matrix M, starting at £ =1 and lasting for the number of
minutes corresponding to the mean duration of the sur-
gery added of the time required to sanitize the OR once
the surgery is finished. Additionally, in matrix M, the
patient is assigned to a bed at the PACU with stay start-
ing at the minute the surgery ends, as noted in M, and
lasting for the number of minutes corresponding to the
mean length-of-stay for that type of surgery at the
PACU. Finally, in matrix Mj; it is informed the length of
time during which the surgical kit and equipment will
be used in the surgery, added of the time required for
sterilization, starting at £=1. The surgery assigned to
OR; is removed from its queue and the next surgery be-
comes the first in queue.

Upon completing the checking at ¢ = T for all ORs, all
information on the current GS will be available in matri-
ces M;, M, and M3, and step (iv) is repeated for the next
GS. At the end of this step a set of matrices M;, M, and
M; will be available for each GS. Note that it is possible
that a GS contains ORs to which only few surgeries
listed in the ORs’ LSs have been assigned due to feasibil-
ity constraints. In that case, the GS is likely to display a
small total number of assigned surgeries and will be pe-
nalized in the next step of the method.
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In step (v) the best feasible GS is identified. For that,
the set of GSs analyzed in step (iv) is ordered, from the
GS presenting the largest number of assigned surgeries
to the one with the smallest number. Then for the sub-
set of GSs with largest number of assigned surgeries, cal-
culate their respective BII variances. The best GS will be
the one with the maximum number of assigned surgeries
and the smallest BII variance. Note that a small BII vari-
ance will lead to a scheduling in which surgeries are
likely to end at even-distanced intervals across the ORs.
That is a desirable situation for a number of reasons: (i)
promotes a better use of OR sanitization teams, minim-
izing waiting times; (ii) gives time to move equipment
across ORs; and (iii) avoids demand peaks at the PACU
and at the sterilization unit.

The calculation of a GS’ BII variance relies on the
identification of its BIMs, as exemplified in Fig. 3 for the
case of a ST with two ORs. The first BIM is defined as
the start of the shift; remaining BIMs correspond to time
periods in which surgeries are completed and patients
are ready to be transported to the PACU. A BII is the
interval between two consecutive BIMs; the variance of
the Blls is given by the variance operator for the sample
of BlIs.

Results

The proposed method was validated (i) comparing past
scheduling of surgeries available in the database of
HCPA with the scheduling proposed by our method (re-
ferred to as test), and (ii) running a 10-day pilot at
HCPA’s ST (referred to as pilot) where surgical teams
were invited to perform the surgeries following the se-
quence proposed by our heuristic. In both cases we con-
sidered 12 ORs (one OR is used exclusively for

BIM 1 BIM 3 BIM 5 BIM 7
| | | I
i i i i
ORI S B e B s &
BIM 1 BIM 2 BIM 4 BIM 6
I I I I
| | | |
OR 2 S:1 % Ss.50 % S>.120 % ‘
| BII, | BII, | BII, | BII, | BII, | BII, |
% Sanitization
OR: operating room; BIM: break-in-moment; BII: break-in-interval.

Fig. 3 Determination of Blls for an ST with two ORs
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emergency procedures and other two were under reno-
vation) and 15 surgical specialties; namely: General, Oral
and Maxillofacial, Cardiac surgery, Digestive System,
Pediatrics, Plastic, Thoracic, Vascular, Proctology,
Gynecology, Mastology, Neurosurgery, Orthopedics,
Oto-Rhino, and Urology.

Test

The test was carried out using data from six typical days
chosen by ST managers: 04/20/2015 (Monday), 04/23/
2015 (Thursday), 05/04/2015 (Monday), 05/05/2015
(Tuesday), 05/08/2015 (Friday), and 05/12/2015 (Tues-
day). We compared three scenarios: (i) the empirical
schedule (ES) planned by each specialty’s surgical team;
(ii) the actual schedule (AS) comprised of planned sur-
geries which were actually performed; and (iii) the
scheduling obtained for the same group of surgeries
considered in AS by our method, referred to as proposed
schedule (PS). ES was exclusively based on expert opin-
ion (i.e. surgical teams’ experience and preferences), with
procedures’ durations determined by surgeons and not
checked a priori for feasibility in terms of surgical kits
and equipment needed, or PACU availability. PS corre-
sponded to the GS with smallest BII variance among
those with largest number of assigned surgeries. OR and
PACU occupancies were used to compare the perform-
ance of each scenario.

Table 2 presents information on three performance
criteria for each scenario: OR occupancy, number of sur-
geries assigned to ORs, and BII variance. Table 3 pre-
sents the results of paired sample ¢-tests run on pairs of
scenarios for each performance criterion. In general, PS
performed better than ES and AS over all criteria. Con-
sidering the average OR occupancy, PS promoted a 99%-
significant improvement of 37.2% over AS. Analyzing
the average number of procedures assigned to ORs, PS
and ES displayed the same result (17.5 surgeries) which
was 99%-significantly larger than the actual average
number of surgeries performed in the ORs (AS) by 4.5
surgeries. Considering the average BII variance, PS and
ES presented a value 95%-significantly smaller than AS,
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Table 3 Results of paired sample t-tests

Scenarios t statistic p-value Conclusion
OR occupancy
ES-AS 19.09 < 001 ES>AS
PS-ES 531 < 001 PS>ES
PS-AS 1291 < 001 PS> AS
Number of surgeries
ES-AS 532 < 001 ES>AS
PS-ES 0.00 050 PS=ES
PS-AS 8.00 < 001 PS> AS
BIl Variance
ES-AS -2.10 0.045 ES<AS
PS-ES -0.82 022 PS=ES
PS-AS -2.54 0.026 PS <AS

while no significant difference was found between PS
and ES.

In addition to the three performance criteria above, we
also evaluated the impact of our proposed schedule on
PACU bed occupancy. Figure 4 presents the Gantt chart
obtained comparing occupancies under AS and PS for
one of the days simulated (05/08/2015). PS promotes
earlier occupancy of PACU beds and a more uniform ar-
rival of patients to the unit. The number of PACU beds
required under PS is 8, one less than the number required
under AS, since it promotes a turnover in PACU before
the end of the second shift. These results reflect the bene-
fits of choosing a GS with smaller BII variance and were
observed on all other days tested. Figure 5 displays a com-
parison between actual schedule (AS) and proposed
schedule (PS) with respect to patients’ arrivals at the
PACU during shift quartiles (comprised of 90-min inter-
vals), observed during six test days. It is visible that occu-
pancy peaks present in AS were smoothed out in PS.

Pilot

A pilot of the proposed method was run during ten
working days at HCPA’s ST, from 07/20/2016 to 07/31/
2016. It takes 2 weeks (i.e. ten working days) for all

Table 2 Average occupation, number of procedures and variance of Blls

Date Average occupation Number of procedures Variance of Blls

ES AS PS I ES AS PS I ES AS PS I
04/20/2015 88.9% 66.7% 98.8% 48.1% 18 13 17 4 589.0 4752 486.2 -11.1
04/23/2015 95.0% 77.2% 99.4% 28.8% 23 15 21 6 3214 2473 2294 18.0
05/04/2015 96.4% 76.2% 99.7% 30.8% 15 10 16 6 3412 25354 1093.2 1442.2
05/05/2015 89.6% 74.5% 95.2% 27.8% 15 12 15 3 4040.1 46144 20883 2526.1
05/08/2015 90.7% 70.6% 98.9% 40.1% 16 12 17 5 7971 13793 7634 615.9
05/12/2015 82.5% 62.3% 94.3% 51.4% 18 16 19 3 10654 27419 6775 2064.4
Average 90.5% 71.2% 97.7% 37.2% 17.5 13.0 17.5 45 1192.4 1998.9 889.7 1109.2

AS actual schedule, ES empirical schedule, PS proposed schedule, / improvement (AS - PS)
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surgical specialties to rotate at the ST, since some spe-
cialties operate fortnightly. During the pilot, surgical
teams from all specialties informed the surgeries to be
performed on the next day by handing their ES to the
team of researchers at 17 h0O of the previous day. Proce-
dures in the specialties’ ES were rescheduled using our
heuristic, and the proposed optimized schedules (PS)
were informed back to the surgical teams.

Table 4 shows the results of the pilot. The average OR
occupancy during the pilot was 78.19%, with average
28.5 surgeries performed each day, and average BII vari-
ance of 369.54. Regarding the number of surgeries,
29.12% of the ORs had a single surgery scheduled on a
given 6-h shift and 30.81% of the ORs had two surgeries
scheduled on a shift. Since we assumed that longer pro-
cedures would be scheduled last in the shift (unless
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Fig. 5 Distribution of PACU arrivals in shift quartiles under AS and PS
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Table 4 Results of the pilot test

Date Occupation  Number of procedures  Variance of BIMs
07/20/2016  83.90% 30 356.23
07/21/2016  77.72% 30 35574
07/22/2016  72.36% 29 22451
07/23/2016  75.04% 26 421.88
07/24/2016  83.85% 23 1108.54
07/27/2016  8042% 33 245.03
07/28/2016  81.26% 31 265.15
07/29/2016  74.11% 27 271.28
07/30/2016  77.32% 27 138.63
07/31/2016  75.93% 29 30845
Average 78.19% 28.50 369.54

otherwise specified by the surgical team), ORs with two
surgeries per shift potentially display only one possible
LS. With that, the complete enumeration process to de-
termine the scheduling was run in 40.07% of the ORs
presenting shifts with three or more surgeries scheduled.

During the pilot, the day with smallest number of sur-
geries generated 24 GSs, and the computational time re-
quired to run our heuristic was 0.04 min. The day with
the largest number of surgeries generated 165,888 GSs,
demanding a computational time of 6.9 h. The median
number of SGs was 4608, which required a computa-
tional time of 11.52 min.

Discussion

According to the literature [24], surgery scheduling in
large STs potentially leads to NP-hard combinatorial
problems. However, our pilot test shows otherwise, since
several surgical specialties are characterized by having
long duration procedures (e.g. cardiovascular and neuro-
logical), which enable the assignment of a single surgery
per shift (the problem exists even in cases of consecutive
shifts occupied by the same specialty in the OR, since a
change in the surgical team is expected). In the pilot,
around 60% of specialties operated one or two surgeries
per shift; as a consequence, a small number of GSs were
generated when testing different assignment of surgeries
to ORs, and the general scheduling problem could be
solved by complete enumeration of GSs.

A key enabler of a feasible surgery scheduling is a good
estimate of procedures’ duration [11, 14]. A common ap-
proach in STs is to ask surgical teams to estimate the dur-
ation of the time blocks required to perform surgeries
[26]. Such estimates take into consideration the procedure
to be performed, the patient’s health condition and the
team’s expertise [26]. A study by Laskin et al. [27] shows
that surgeons estimate correctly the duration of surgeries
in approximately 26% of the cases, super estimate in 32%
of the cases and sub estimate in 42% of the cases.
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An alternative approach uses information gathered
from electronic health records (EHR). Models based on
EHR estimates perform better than those based on sur-
geons’ opinion [28]. For this reason, in our study we
mined a database of surgeries performed between 2009
and 2014, and calculated the mean and standard-
deviation (SD) of the duration of each procedure. Our
proposed schedules considered surgeries with an esti-
mated duration of mean + 1SD; this criterion was satis-
factory during the pilot, during which no surgery
occupied more than its estimated duration.

The pilot study was subjectively evaluated by the ST
supporting staff, leading to the following observations.
First, given that the BIMs of scheduled surgeries turned
out be uniformly distributed, instruments and surgical
trays to be sterilized arrive at the sterilization unit in a
more balanced pace, allowing a close to optimal work-
load balance in the work shifts. Second, teams respon-
sible for OR sanitization pointed out that the uniformly
distributed times between surgeries’ completions not
only allowed a better workforce scheduling, but also re-
duced the waiting time for the next surgery to take place
in each OR. In HCPA there were only 2 sanitization
teams and typically, nearly 20 min were required to pre-
pare each OR for the next surgery. In case three ORs
simultaneously had their surgeries concluded, one of
them would have to wait 20 min until having its sanitiza-
tion process started (i.e. that OR would have to wait 40
min until ready for the next surgery). Finally, the nursing
staff reported having more time to prepare patients to
enter ORs and move them after surgery to the PACU,
minimizing queues.

The BIM concept was developed by van Essen et al.
[24] with the objective of reducing waiting times of
emergency surgeries. For that, the authors tested several
heuristics aimed at minimizing the maximum distance
between two consecutive BIMs. Using this strategy, the
interval between surgeries became more evenly distrib-
uted along the day allowing emergency surgeries to be
more quickly assigned to ORs. We based our method in
their proposition; however, our objective was to
minimize peaks in hospital resources’ demands and in
patients’ arrivals at the PACU. We also proposed a new
criterion to better distribute the interval between surger-
ies: the minimization of BII variance.

Among several aspects that characterize works with
surgery scheduling propositions, three are noteworthy:
(i) scheduling objective, (ii) resources and supporting
areas considered, and (iii) scheduling validation. The ob-
jective of reducing resource demand peaks is known in
the literature as leveling of resources, being already cov-
ered by other studies on surgery scheduling. Most au-
thors aim at analyzing the impact of a given schedule on
the use of resources within ORs, on patient waiting
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times, nursing staff workload and PACU bed occupancy
[8, 11]. Marcon and Dexter [29], for example, used
discrete event simulation to analyze the impact of
assigning long or short surgeries first in the ORs on pa-
tients’ waiting times and arrival pattern at the PACU.

Due to the fact that an ST requires services and re-
sources from different hospital areas the literature is di-
verse regarding scope and constraints considered in
surgery scheduling models. Some authors focus on the im-
pacts of scheduling on the surgery itself and on patients,
disregarding resources’ availability [30, 31]. For example,
Denton et al. [31] proposed and evaluated heuristics
aimed at sequencing surgeries in light of uncertainties re-
lated to the length of surgeries. Heuristics were based on
pairwise interchange, that takes advantage of lower
bounds on the optimal solution, and on the use of mean
and variance of surgery durations to select a sequence. Re-
sults indicated that assigning longer procedures at the
start of shifts may significantly compromise OR perform-
ance measures. Other authors propose the integration of
OR downstream and upstream facilities in the scheduling
model; while some analyze variables related to PACU bed
and resources availability, and the capacity of supporting
areas individually [32, 33], others aimed at considering
those variables simultaneously to best reproduce the oper-
ation of an ST [4, 13]. However, a reduced number of
studies proposed scheduling models taking into account
the availability of resources such as surgical kits, equip-
ment and personnel in STs with limited resources.

Regarding the validation of scheduling models, the ma-
jority of studies analyze results obtained running the pro-
posed model on historical or simulated data. The
validation of models through simulation is relevant, allow-
ing a controlled sensitivity analysis and highlighting im-
portant model characteristics; it does not guarantee
however that the proposed models will be feasible in prac-
tice. Although evolving in recent years (e.g., [34]) scarce
are the works reporting practical implementation of sur-
gery scheduling models [11]. There are some reasons for
that, most notably reaching an agreement with surgical
teams regarding the proposed sequencing of procedures
and managing unforeseen events that may occur in ORs.

In summary, we proposed a surgery scheduling heuris-
tic that takes into account the availability of resources
(surgical trays and equipment) and PACU beds to gener-
ate feasible schedules. Such heuristic is particularly use-
ful to plan the operation of STs in which resources are
constrained, a situation that is common in hospital from
developing countries.

Conclusions

To the best of our knowledge, this is the first study that
proposes a surgery sequencing heuristic aimed at min-
imizing peaks in the use of ST resources, both upstream
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and downstream, searching for schedules that maximize
the number of surgeries assigned to ORs while minimiz-
ing the BII variance. With this approach, it is possible to
increase ST capacity with the same amount of resources
(personnel and equipment). Based on simulated results,
the proposed schedule performed better than the actual
and empirical schedules over all criteria considered.
Based on the pilot, we observed an increase in occu-
pancy if compared to the actual schedule in the test.
Our proposed heuristic considers actual restrictions that
characterize large STs, which increases its potential use,
and was validated through a pilot implementation in a
large Brazilian hospital, contributing to the scarce litera-
ture on actual OR scheduling implementation.

The method was tested in a surgical theater whose op-
erational restrictions allowed us to find the optimum
scheduling by exhaustively exploring all feasible se-
quences. Not validating the heuristic in NP-hard in-
stances is a limitation of the study. As future study, we
envision an expanded heuristic that will include ambula-
tory procedures that share the same material resources
in the scheduling. In addition, future studies should
adapt our proposition to be used in surgical theaters
with larger number of ORs, replacing the complete enu-
meration strategy by a suitable optimization heuristic.
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