
SHARING SEMI-HETEROGENEOUS SINGLE-USER EDITORS FOR

REAL-TIME GROUP EDITING

A Thesis

by

JIAJUN LU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2005

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4270901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SHARING SEMI-HETEROGENEOUS SINGLE-USER EDITORS FOR

REAL-TIME GROUP EDITING

A Thesis

by

JIAJUN LU

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Du Li
(Chair of Committee)

Frank Shipman, III
(Member)

Susan Pedersen
(Member)

Valerie E. Taylor
(Head of Department)

May 2005

Major Subject: Computer Science

iii

ABSTRACT

Sharing Semi-heterogeneous Single-user Editors for

Real-time Group Editing. (May 2005)

Jiajun Lu, B.S., Fudan University

Chair of Advisory Committee: Dr. Du Li

A new approach is proposed to transparently share familiar single-user editors

without modifying their source code. This approach tweaks a classic diff algorithm

to derive edit scripts between document states. Concurrent edit scripts are merged

to synchronize states of coauthoring sites. Our concept-proving prototype currently

works with familiar, heterogeneous text editors such as GVim and WinEdt that can

be adapted to support two basic interfaces, GetState and SetState. The adaption

is less expensive and more robust than recent approaches such as ICT and CoWord,

which must understand and translate editing operations at the operating system level.

Experimental data show that our approach is able to provide sufficient performance

for near-realtime group editing.

iv

To my wife Fei Wu, my mother Aifeng Chen and the memory of my father Jiulian Lu

v

ACKNOWLEDGMENTS

I would like to thank my advisor and committee chair, Dr. Du Li, for continuous

guidance. Without his help, this thesis would have never been completed. I am grate-

ful to the members of my committee, Dr. Frank Shipman and Dr. Susan Pedersen,

for their valuable suggestions on this thesis. I also wish to thank my collaborators

and friends, Rui Li and Yi Yang, for help with miscellaneous technical questions. I

would like specially thank my wife Fei for her unconditional love and support through

the years.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation and Related Works 3

B. Approach Overview . 4

C. Outline of the Thesis . 7

II BACKGROUND . 8

A. Group Editing . 8

B. Application Sharing . 10

1. Generic application sharing environment 11

2. Component-replacement approach 12

3. Transparent adaptation 12

4. Summary . 13

C. The O(ND) Diff Algorithm 13

D. Operational Transformation 16

III ICT2 AGENT . 18

IV DIFFING AND MERGING . 20

A. Deriving Edit Script . 20

B. Merge Edit Scripts . 23

C. Applying Edit Script . 25

V AWARENESS AND COORDINATION 28

A. Synchronization Report . 28

B. Progress Report . 30

VI ADAPTING SINGLE-USER EDITORS 34

A. Adapting Editors without APIs 34

B. Restoring Local Caret Position 36

C. Some Performance Issues 38

VII CONCLUSIONS . 42

A. Main Contribution . 42

vii

Page

B. Limitation . 43

C. Future Work . 44

REFERENCES . 45

VITA . 51

viii

LIST OF FIGURES

FIGURE Page

1 Basic ideas of ICT2 . 5

2 Sharing familiar single-user editors for group editing 6

3 Centralized & replicated application sharing architecture 11

4 An edit graph . 14

5 Operational Transformation(OT) . 17

6 The adapter and the agent together facilitate collaboration 18

7 Performance of character- and word-level diffing in the worst case

(D = 2N) . 21

8 Worst-case word-level diffing (D = 2N) 22

9 Diffing on a 10-page paper (N = 2 ∗ 16752 words) under various

change percentages (2D

N
∗ 100%). 22

10 Different sync reports at different sites 29

11 Providing approximate awareness information of local and remote

progress . 31

1

CHAPTER I

INTRODUCTION

Many people write together as part of their day-to-day routines[1, 2]. Artifacts of

group editing include source code, software documentation, research papers, music

scores[3], and online encyclopedia (e.g., http://www.wikipedia.org). Hence there is

a huge, potential market if usable group editors are available. This has long been

confirmed by the continuing research interests on group editors[4, 5, 6, 7, 8] since the

beginning of the Computer Supported Cooperative Work(CSCW) field.

Despite these efforts, however, analyses and studies repetitively show that spe-

cialized group editors have been underused[2, 9]. Most of people still use single-user

editors for group writing today. The main reasons, as argued in [9, 10], include that

group editors generally are not as powerful as familiar single-user text editors or word

processors, and that people may not want to learn new user interfaces. Grudin[9]

suggests that a more promising way is to build collaboration features into accepted

productivity tools. Along this line, two research groups recently explored how to

transparently adapt existing single-user editors for group editing without modifying

their source code[7, 10].

While these designs are plausible, much progress can still be made in two direc-

tions: One is how to transparently adapt single-user editors and the other how to share

heterogeneous editors. The rich variety of available text editors[11] and word proces-

sors [12] testifies that people have different preferences. Allowing for heterogeneity

in group editing increases flexibility and potentially group productivity. Although it

is not uncommon today that many people are familiar with several products and can

The journal model is IEEE Transactions on Automatic Control.

2

possibly use the same editor for group editing, this does not automatically solve the

problem of transparently adapting single-user editors.

In this thesis, a novel approach is proposed to transparently adapting familiar

single-user editors for group editing. The editors in question could be homogeneous

but are also allowed to be heterogeneous. It uses a slightly modified version of the diff

algorithm[13] to derive edit scripts between document states. Concurrent edit scripts

are merged at synchronization time. Our approach only assumes two basic interfaces,

GetState and SetState, to capture editor state before diffing and reset the editor

state after merging respectively. Synchronization can be triggered automatically or

initiated manually in group editing.

Text editors and word processors serve different editing purposes and user com-

munities. For example, source code and system configuration files are generally edited

with text editors. As another example, in academic coauthoring, while many con-

ferences and journals provide Word templates, many others to our knowledge only

provide Latex templates. Supposedly not many people want to use word processors

instead of text editors to edit Latex-style documents. Our approach only address

how single-user editors (text editors and word processors) are adapted to support

group editing. Although it is possible that a group of coauthors use word processors

and text editors to edit the same document, translation of different formatting styles

(e.g., between Latex and Word) is out of the scope. In this sense, editors in question

are only semi-heterogeneous: the content is considered more important than the user

interfaces and formattings provided in specific editors.

3

A. Motivation and Related Works

Recent word processors come with built-in collaboration features. For example, Mi-

crosoft Word provides features for synchronous and asynchronous group editing. It al-

lows users to set up online meetings to work in real time. However, synchronous work

is largely enabled by NetMeeting, an application sharing technology that enforces

a strict what-you-see-is-what-I-see(WYSIWIS) type of collaboration[14], which may

result in low system performance and low group productivity in many situations[15].

Microsoft Word also allows users to track and review changes, add comments, com-

pare and merge documents. However, these asynchronous group editing features may

only be used with other Microsoft Word users. Differences in word processors or even

versions may cause problems in group writing[2].

Placeless Documents project[16] implements mechanisms for document-centered

collaboration. It intercepts document-level events, e.g., open and close, and uses these

events to drive high-level workflows. Hence specific editors that are invoked to edit

documents are not relevant. That is, heterogeneous single-user editors can be used to

edit the same document. However, it only supports asynchronous group editing and

is complementary to this work.

Our previous work, Intelligent Collaborative Transparency or ICT[10], pioneers

the research of transparently adapt familiar, heterogeneous single-user applications

for cooperative work. However, it assumes that keyboard and mouse events can be

correctly understood and translated into abstract operations. Then the abstract op-

erations obtained at one site are translated at other sites into events that achieve

equivalent editing effects. Due to the tremendous difficulties in understanding appli-

cation behavior at the operating system level, current prototype of ICT only allows

for very limited functionality.

4

The CoWord project[7] adapts Microsoft Word(as well as other Microsoft and

StarOffice productivity tools) into realtime group editors. Heterogeneity issues are

not addressed. These productivity tools generally provide APIs for third parties

to develop add-on features. CoWord uses these APIs to help formalize application

behavior and its approach is thus much easier than ICT. Nevertheless, it still needs to

understand and translate the keyboard/mouse events into APIs, which is still difficult.

As a result, CoWord has to disable many user interface features and has difficulties

in making timely responses to version upgrades of Word.

By comparison, our approach resembles Placeless Documents in terms of document-

centered collaboration but differs in the capability of supporting realtime group edit-

ing. It is more light-weight and robust than the approaches taken by ICT and CoWord

in the amount of work to adapt single-user applications. It also differs CoWord in

terms of supporting heterogenous editors. This approach only assumes two simple

interfaces, GetState and SetState. Most text editors and word processors to our

knowledge can be easily adapted to support these interfaces.

Since this new approach still needs to formalize application knowledge in some

way, it can be considered the second generation of intelligent collaboration trans-

parency (ICT2). However, differently from the original ICT, ICT2 does not attempt

to intercept and understand the operating system level events. Instead, it uses an

adapted version of the diff algorithm [13] to derive the edit script between document

states.

B. Approach Overview

The basic idea of ICT2 is to use a diff algorithm to analyze the edit operations instead

of capturing all of operations. As shown in Figure 1, suppose two users edit a shared

5

document from the state S0. One user uses GVim, the other uses WinEdt. The

shared document replicated on each site.

GVim WinEdt

S0

S1 S2

Last sync state

D1=S1-S0 D2=S2-S0

D3 = D1 + D2

S3 = S0 + D3New sync state

D3 = D1 + D2

GetState

Diff

MergeScripts

SetStateS3 S3

ApplyScript

Fig. 1. Basic ideas of ICT2

They work in parallel and reach two different states, S1 and S2, respectively.

When a sync is initiated, we obtain the new editor state through the GetState inter-

face and compute the edit script by diffing at each site. Suppose the two edit scripts

are D1 = S1− S0 and D2 = S2−S0. After exchanging edit scripts between each site,

we merge D1 and D2 to into D3, and apply D3 to the last sync state S0, which results

in S3. Then we call the SetState interface at both sites to set the editors to S3, which

integrates the concurrent changes made at both sites.

Based on this idea, ICT2 system is designed as shown in Figure 2. A group

editing session consists of a session manager and a number of clients. Each client

runs an agent and an adapter, which collectively provide interfaces for the user to

share his/her familiar single-user editor for group editing.

Initially only one client is active. The user edits a document alone using a

familiar single-user editor. When other users need to edit the document, they contact

6

Session

Manager

Network Client

Client

Client

Client

user1

user2

user3

user4

user3

Single-user Editor

Agent Adapter

Fig. 2. Sharing familiar single-user editors for group editing

the first client, which launches the session manager. The session manager provides

document and session management services such that coauthors can register and log

on[17]. Then the shared document is replicated at other sites and loaded into the

local single-user editors.

The adapter at each site adapts a single-user editor. It provides two simple

interfaces between the agent and the editor, GetState and SetState, for the agent

to get and set the editor state, respectively. In our concept-proving prototype, we

have adapted GVim and WinEdt, two popular single-user text editors. We choose

these two editors mainly for two reasons: First, these two editors are “typical” in

that GVim provides APIs while WinEdt does not. We will be able to demonstrate

the generality of our approach, whether or not the editors provide APIs. Second, we

ourselves are familiar with them and use them for coauthoring papers all the time. We

are motivated to use and improve our own system and there is no disparity between

work and benefit.

The agents at all sites collaborate to implement synchronization and awareness

7

control. Each agent interacts with the local single-user editor through the adapter,

provides awareness information to the user, accepts commands from the user, and

communicates with other agents in the same session.

Since the agent is a separate process external to the single-user editor, it does not

change the editor’s behavior or user interface. The user’s experience with the editor

remains the same most of the time: he uses a familiar user interface and focuses on

his own part of the work. At the same time he is notified of his coauthors’ status and

progress through a separate user interface. He is somewhat “disturbed” only when

synchronization occurs and coordination becomes necessary.

C. Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter II, I will first intro-

duce the background related to ICT2. Then I will describe the agent of ICT2 and

how it works. After that, I will present how edit scripts are derived and merged in

Chapter IV. Particularly, I will show that the classic diff algorithm[13] can be slightly

adapted to provide sufficient performance for realtime group editing in most practical

situations, and discuss how the merged editing sequences are applied to the document

and presented to the users. In Chapter V, I will show two awareness mechanisms,

synchronization report and progress report, supported by ICT2 to enhance user co-

operation. Next, I will present how to adapt single-user editors to support GetState

and SetState interfaces in Chpater VI. Finally, Chapter VII summarizes the main

contributions and the limitation, and then points to the future direction of research.

8

CHAPTER II

BACKGROUND

The booming of computer information and communication technology promotes co-

operation between people to the success of most organizations. With the aid of

computers, cooperation could be much easier than before. Computer supported co-

operative work(CSCW) is a research field on design, introduction, and use of tech-

nologies which affect groups, organizations, communities, and societies[18]. CSCW

focuses on building groupware technologies as well as their psychological, social, and

organizational effects[19]. Typical CSCW applications include E-mail, Web publish-

ing, video conferencing, electronic calendars, workflow system, and knowledge sharing

system[19].

ICT2 implements a realtime group editing system which allows multiple users

to work on the same document. It is based on application sharing technology, which

adapts single-user application into group environment. ICT2 uses an adapted version

of the classic diff algorithm[13] to analyze the editing operations, and applies the idea

of operational transformation(OT) algorithm[20] for concurrency control.

In the following sections, I will give the background information about group

editors, application sharing systems, the diff algorithm, and OT.

A. Group Editing

Group editing is a classic research topic in CSCW. Many researchers use group editing

system as models and research vehicles of a wide range of collaborative systems[5, 6].

Challenging issues in group editing range from the technical to the social. Technical

issues include system design and concurrency control algorithms. Social issues include

how people write together[1, 2]

9

Generally, group editing systems can be categorized into asynchronous systems

where coauthors are separated by relatively long periods, and synchronous systems

where coauthors interact simultaneously or are separated by short periods of time[19].

Asynchronous group editing systems provide support for users to control, com-

municate, and track changes. E-Mail, Wiki, and Concurrent Versioning System(CVS)

fall into this category.

Synchronous group editing systems allow users to edit the same document at the

same time. They don’t enforce users to take turns to edit documents. In the last

decades, the research of CSCW has been focusing on synchronous group editing, which

is represented by Grove[21] and Reduce[22]. They replicate the shared document at

all cooperating sites and allow any editing operations to execute on any part of

the document at any time. As a result, group editors can often achieve high local

responsive and concurrency.

However, Grove and Reduce, those specific realtime group editors lag behind

well-accepted single-user editors in features and compatibility. For example, there’s

no realtime group editors with competitive editing features as Microsoft Word or

GVim. As group features are often used less frequently than features supporting

individual activities[23], it discourages many users by forcing them to learn new user

interfaces for sporadic tasks. Therefore, a more plausible way is thus to incorporate

single-user editors with groupware features[19].

The approach to adding groupware features to single-user applications falls into

two categories, collaboration-awareness and collaboration-transparency. The former

requires access to proprietary source code, which in practice may be impossible to

acquire. Thus, collaboration transparency, also called application sharing[24], appears

a more promising alternative in many situations.

10

B. Application Sharing

Application sharing systems could adapt single-user applications into collaborative

systems. Due to the increasing demand of collaboration technologies, sharing mature

and popular single-user systems naturally becomes an important method in building

collaborative systems. From the late 1960’s through the late 1990’s, many application

sharing prototypes and products have been developed, such as NLS[25], MMConf[23],

XTV[26], and Flexible JAMM[15], as well as successful commercial application shar-

ing products such as Microsoft Netmeeting and SunForum.

In general, application sharing systems adopt either a centralized architecture

or a replicated architecture, as shown in Figure 3. In a centralized system, there is

only one shared single-user application running on a central server site. The display,

or graphical output, is broadcasted to collaborative client sites, and a floor control

mechanism[23] is provided for users to take turns to interact with the shared single-

user applications which cannot handle simultaneous input. However, floor control

becomes a sequential bottleneck of collaborative works. In a replicated system, the

application and its environment are replicated at each client site, and executed lo-

cally. Only input events are propagated to other sites. Broadcasting graphical events

requires more network bandwidth than propagating input events[15, 27]. Since local

inputs can be executed locally without network transportation, a replicated system

could also achieve higher local response, than a centralized system. So a replicated

system has more potential in supporting concurrent cooperative work, especially over

the Internet.

The methodologies to build application sharing system are divided into three cat-

egories, generic application sharing environment, component-replacement approach,

and transparent adaptation approach[7].

11

Single-user Application

Collaborative Control

Client

(screen, keyboard,

mouse, misc.)

Client

(screen, keyboard,

mouse, misc.)

Client

(screen, keyboard,

mouse, misc.)

Display

events

Control

events

Single-user Application

Collaborative Control

Client

(screen, keyboard,

mouse, misc.)

Client

(screen, keyboard,

mouse, misc.)

Client

(screen, keyboard,

mouse, misc.)

Display

events

Control

events

Coordination Server

(Optional)

Application

Application

Application

Operational

events

Centralized Architecture Replicated Architecture

Fig. 3. Centralized & replicated application sharing architecture

1. Generic application sharing environment

Generic application sharing systems use a centralized architecture where only one

copy of the application is running. The representatives are XTV[26], Microsoft Net-

meeting and SunForum. Users collaborate in a manner of strict WYSIWIS(What

You See Is What I See[28]), where users see the exactly same view of the shared

application. Floor control mechanism is provided to enforce users to take turns to

use the application. Only one user who has the floor can control the application at

any instant of time.

The intrinsic attributes, as strict WYSIWIS, sequential problem, and slow local

response of centralized systems are too restrictive to some collaborative tasks. Many

researchers have criticized that those attributes are the main disadvantage of this

kind of system[10, 15].

12

2. Component-replacement approach

Flexible JAMM[15] replaces single-user versions of Java graphic components with the

multi-user versions to share single-user applications. Normally, graphic Java appli-

cations are built upon Java SWing and AWT. They are responsible for screen draw-

ing, user input reception, and most of the user interface controls. Flexible JAMM

replaces those components in Java Runtime with components integrated with collab-

orative features. In this approach, selected Java applications to be shared could be

automatically adapted into multi-user environment.

Flexible JAMM is based on a replicated architecture, which supports relaxed

WYSIWIS, concurrent work, and fast local response. Awareness mechanisms which

are only found in traditional specialized groupware applications, such as multi-user

scrollbars and radar views, are introduced into application sharing systems for the

first time. Late-joining or accommodation of late comers joining to a session which

has already started, is supported by direct state transfer, given the whole application

state can be serialized and recovered at new sites. Replaceable components including

system resources such as files, sockets, and random number generators are provided

to support sharing system resources and network connectivity.

However, Flexible JAMM only supports a class of Java based applications. This

requirement for single-user applications to be adapted into this system is too con-

straining. Most off-the-shelf single-user applications cannot meet this requirement.

3. Transparent adaptation

The Transparent Adaption(TA) approach attempts to explore application semantics

at some level[7, 10]. It uses applications’ and operating systems’ API(Application

Programming Interface) to intercept user interactions. These interactions will be

13

translated into abstract operations so that they can be handled by collaboration

mechanisms such as OT. It shares single-user applications in a transparent way, i.e.,

without modifying the source code.

Since the system understands application semantics at some level, it could pro-

vide additional session management, awareness control, and other collaborative fea-

tures in a flexible way. It is able to easily combine with a replicated architecture to

achieve relaxed WYSIWIS, concurrent work, and fast local response[10].

CoWord, ICT and ICT2 fall into this category, which use TA approach to share

existing applications.

4. Summary

Application sharing systems allow sharing single-user application in a transparent

way, without modification of the source code. They support synchronous collabo-

ration. Replicated application sharing systems support relaxed WYSIWIS, concur-

rent work, and fast local response. Transparent Adaption uses application semantic

knowledge and optimistic concurrency control to achieve coordination and consis-

tency, which is very suitable to build synchronous(realtime) group editors.

C. The O(ND) Diff Algorithm

Dynamic programming is one of the earliest algorithms to solve the longest common

subsequence problem. It takes O(N2) time and space to find the optimal solution.

The algorithm by Euene W. Myers[13] takes only O(ND) time and O(N) space to get

the optimal solution, where N is the sum of the length of two sequences and D is the

edit distance between these two sequences. Generally, D is relatively small when the

two given sequences are similar. Then the algorithm shows O(N) time complexity.

14

Fig. 4. An edit graph

The idea of this algorithm is to use an edit graph to represent the common

subsequence of two sequences. Figure 4 is an example which is adapted from [13].

Each diagonal corresponds to the same characters from those two given sequences at

corresponding positions. The horizontal and vertical paths are in correspondence with

the deletion or insertion edit scripts. Then the problem of finding a longest common

subsequence is equivalent to the problem to find the path from (0, 0) to (M, N) with

minimal number of non-diagonal edges.

“Let a D-path be a path starting at (0, 0) that has exactly D non-diagonal edges.

Number the diagonals in the grid of edit graph vertices so that diagonal k consists of

the points (x, y) for which x−y = k.”[13] Then the path from (0, 0) to (M, N) is also

a D-path and the value of D is between 0 and M +N . If two sequences are identical,

then D could be 0. Otherwise, we can always find a path with M horizontal paths,

N vertical paths and 0 diagonals from (0, 0) to (M, N).

In addition, we could find out that a D − path always ends on the diagonal

15

within range −D,−D + 2, . . . , D − 2, D. And we can always get to know the furthest

reach of D-path by extending D − 1-path by greedy approach in constant time[13].

Algorithm 1 shows the basic idea.

Algorithm 1 Basic idea of the algorithm

1: for D ← 0 to M + N do

2: for k ← −D to D in steps of 2 do

3: Find the endpoint of the furthest reaching D-path in diagonal k.

4: if (N, M) is the endpoint then

5: The D-path is an optimal solution.

6: Stop

7: end if

8: end for

9: end for

The algorithm takes at most O((M + N)D) time. The two FOR loops are only

repeated at most (D+1)(D+2)/2 times. STEP 3 takes at most O((M +N)D) time

to traverse the diagonals in the graph. Then the total time of the algorithm is only

O((M + N)D).

For example, if two given sequences are identical, the FOR loops will be only

executed only once. We could extend the 0-path furthest to (M, M) by M steps. The

worst case is that the two given sequences are totally different. Then the algorithm

has to take O((M + N)2) time.

In ICT2, the diff algorithm is adapted to derive edit scripts or operations between

the old synchronized state and the new concurrent document state. I will explore more

issues on this algorithm in Chapter IV.

16

D. Operational Transformation

Operational transformation(OT) is a technique for concurrency control, it is widely

used in group editors[20]. It was originally developed in specialized group editors

such as Grove[21] and Reduce[22] for unconstrained cooperative editing of shared

documents. To achieve high responsiveness in the Internet environment, group editors

use replicated architecture, in which shared document is replicated at the local storage

of each participating site. Updates are performed at local sites first, then propagated

to remote sites. Local operations are always executed immediately, while remote

operations that are concurrent to locally executed operations are transformed before

execution. With OT algorithm, users can edit any part of the same document replica

at the same time. During editing, users are not forced to take turns, or constrained

to a particular part of the document.

As a convention in group editors, the shared (textual) document is modeled as

a linear string. Significant editing operations include insert(S, P) and delete(S, P),

which insert and delete a string S at position P , respectively. P (O) denotes the

position in operation O.

OT is a complex method. Its basic idea can be described as the following simple

text editing scenario shown in Figure 5:

Two users are working on a shared document “abc” which is replicated at two

sites. They generate two concurrent operations O1 = insert(“x”, 1) and O2 =

delete(“c”, 2) at each site respectively. On site 1, suppose the operations are exe-

cuted by the order of O1 and O2. After O1 is executed, the document at site 1 is

changed “axbc” since O1 insert character “x” at position 1 which is between charac-

ter “a” and “b”. The following execution of O2 will incorrectly delete character “b”

instead of “c” since “b” is at position 2 now. Hence, to delete the correct character

17

)2,"("2 cdeleteO =

Site 1 Site 2

)1,"("1 xinsertO =

"" abc

"" axbc

"" axc

"" ab

"" axb

Fig. 5. Operational Transformation(OT)

“c”, O2 must be transformed to O
′

2
= delete(“c”, 3) before execution. P (O

′

2
) equals

to P (O2) + 1 because of the insertion of one character “x” by O1.

The basic idea of OT algorithm is to transform(adjust) the positions of edit-

ing operations according to the previous executed concurrent operations in order to

achieve the correct effect and a consistent document state[21]. In this thesis, ICT2

uses the idea of OT algorithm to transform concurrent edit scripts to maintain the

consistency of the replicated document at each site.

18

CHAPTER III

ICT2 AGENT

The agent system is the primary component of ICT2. As shown in Figure 6, an

agent is composed of five modules: controller, diff & merge, awareness control, user

interface, and communication.

Adapter (implements GetState & SetState)

Controller

Diff & Merge

Engine

UI

Awareness

Control

Communication Module

Network

Agent

Fig. 6. The adapter and the agent together facilitate collaboration

The controller decides when to get the current state of the editor and when to

reset the editor to a new synchronized state. It communicates with the user through

the user interface module and communicates with agents at other sites through the

communication module. It calls the diff & merge module to derive the local state

changes and compute the new synchronized state. It also monitors keyboard and

mouse events of the editor to detect local user activities.

The diff & merge engine implements three functions: First, it implements a

simple diff algorithm tweaked from Myers’s diff algorithm [13] for deriving a shortest

19

edit script between two documents. Second, it decides how to merge two given edit

scripts. Third, it applies a given edit script to a given document state.

The awareness control module collects the local user’s information such as where

is the users current caret position and which regions of the document were changed.

It also collects awareness information about other users such as who are present, who

did what and where[29]. In ICT2 system, much awareness information is eventually

derived by calling the diff algorithm.

The user interface module implements three types of interfaces: It allows the user

to control which document to edit, who are the coauthors, and when to synchronize.

It provides interfaces for the user to configure the system, e.g., how often diffing is

invoked to compute awareness information, and whether synchronization is automatic

or manual. It also presents awareness information to the user.

The communication module provides network communication functions for other

modules. The communication between clients is peer to peer connection. Each client

connects to other clients directly, but not through session manager server. This kind of

design can improve the network communication performance since there is no central

server to act as a bottleneck.

20

CHAPTER IV

DIFFING AND MERGING

Previous approaches such as ICT[10] and CoWord[7] adapt single-user editors by

translating their window events into editing operations. The thrust of this approach

is to make the adapting of single-user editors more robust with reduced engineering

costs. The core idea is to derive the editing operations by diffing between document

states instead of translating them from keyboard and mouse events. Then concurrent

edit scripts are merged and applied to get a new synchronized state. I will explain

how this idea works in the following sections.

A. Deriving Edit Script

The well-known diff algorithm of Myers [13] is tweaked for deriving a shortest edit

script between two document states. Suppose S0 is an earlier state and S1 the current

state. Analogous to established conventions in group editors [20], document states

are represented as linear strings and the edit script for transforming S0 to S1 is a

sequence of insertions and deletions.

The time complexity of the diffing algorithm is O(ND), where N is the sum of

the lengths of S0 and S1, and D is the size of the minimum edit script for S0 and S1.

In general the algorithm performs well in typical applications where the edit distance

(as characterized by parameter D) are small. Its worst-case complexity is O(N2),

which only happens when S0 and S1 are totally different and thus D is equal to 2N .

We implemented ICT2 and the diffing algorithm in Microsoft .NET. The follow-

ing experiments were run on an Intel Pentium-4 1.7 GHz PC with 512M RAM.

The original algorithm assumes general sequences and computes the edit script at

the character level. For the purposes of supporting human-oriented document writing,

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500

T
im

e
(s

ec
on

ds
)

Length of Document (words)

char level
word level

Fig. 7. Performance of character- and word-level diffing in the worst case (D = 2N)

many heuristics can be explored for even better performance. For example, if we

derive the edit script at the word level, there is a significant performance improvement.

Suppose the average length of words is 6 characters. As shown in Figure 7, in the

worst case, it takes about 1 second to compute a word-level edit script between two

2500-word documents, while it takes about 73 seconds to compute a character-level

edit script between the same documents.

As shown in Figure 8, the word-level diffing time is about 5 seconds when the

document length is 5,000 words, and less than 19 seconds when it grows to 10,000

words.

To understand how sensitive the diffing time is to the amount of differences, we

ran a third experiment on a 10-page CSCW’04 paper [30] with over 16,000 words. As

shown in Figure 9, it takes about 0.5 second to locate 10% random changes, which

means over 1,600 string-wise insert/delete operations. Note these operations are at

different positions for, otherwise, they would have been combined. Suppose a quick

22

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

Length of document (words)

Fig. 8. Worst-case word-level diffing (D = 2N)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Percentage of random changes to document (%)

Fig. 9. Diffing on a 10-page paper (N = 2 ∗ 16752 words) under various change per-

centages (2D
N
∗ 100%).

23

user can make 20 string-wise changes per minute. Then it takes about 1.5-4 hours of

work for the user to generate 10-30% changes to a document of 10 pages, which can

be located in less than 3 seconds.

In fact, even real time group editing does not mean to synchronize every single

operation. As discussed in [31], there are performance problems such as screen flickers

when synchronization is too frequent. Hence real time group editors including Reduce

and CoWord allow the users to control the timing and granularity of synchronization.

Most main conferences to our knowledge require papers be no more than 8-10

pages. When synchronization happens at a reasonable pace, say every 5 minutes or

100 operations, the diffing time will be bound within 80-100 milliseconds requirement

of interactive applications [32].

We hypothesize that in most group writing practices users will neither want

to synchronize their document replicas on every editing operation nor want to wait

until the documents are completely different. Sync at every 10-30% changes would

be more reasonable and typical. Therefore diffing can be tweaked to provide near

realtime performance for practical group writing tasks.

B. Merge Edit Scripts

Edit scripts output from the diff algorithm are composed by operations in the forms

of INS(S, P) and DEL(P1, P2), the former to insert string S at position P and

the latter to delete characters inclusively from position P1 to P2. All the position

parameters are relative to the original document. For instance, let the last sync state

be a string “abcde” and the current state be “abxc”. Assume the first character has

the position value 0. The edit script will be ”INS(“x”,2) and DEL(3, 4).

Let function P (O) denote the effect position of operation O. We define that

24

P (INS(S, P)) = P and P (DEL(P1, P2)) = P1. Operations in an edit script are

ordered ascedingly by their effect positions relative to the last sync state. If a INS

and a DEL have the same effect position, the INS is sorted before the DEL.

The process to merge two edit scripts is similar to the classic merge-sort algorithm

which merge two sorted arrays. It is approximately described by Algorithm 2.

The output sequence Q is initially empty. The algorithm scans the two input

sequences Q1 and Q2 from left to right and add one operation into Q at a time. Note

the position parameters of all operations in Q1,Q2, and Q are defined relative to the

last sync state and are ordered ascendingly. The merging time is linear to the total

length of Q1 and Q2. That is, its time complexity is O(D), which is dominated by

the diffing time complexity O(ND).

The positions of two operations from two edit scripts may overlap due to concur-

rency. For instance, two users may delete the same character at the same position.

Hence two edit scripts may both contain operation say DEL(3, 3). Then the effect

positions of O1 and O2 tie. In this case, we will only keep one DEL(3, 3) in the final

result. We use the following rules to deal with the overlapping situation.

1. If two DEL operations overlap, keep the union of these operations in Q. For

example, DEL(5, 9) and DEL(6, 10) are merged as DEL(5, 10).

2. If two INS operations overlap,(i.e., with the same effect position), add them

into Q in the order of their site IDs.

3. If a INS operation overlap with a DEL operation, split the DEL and add

the three resulted operations into Q in order. For instance, DEL(4, 10) and

INS(S, 5) are merged as DEL(4, 5), INS(S, 5) and DEL(6, 10).

25

C. Applying Edit Script

As shown in Figure 1, after we merge two concurrent edit scripts into a new script

Q, we apply Q to the last sync state S0. This is accomplished as Algorithm 3.

In this algorithm, i indicates the current processing position in S0. The text

before i has been processed. Function S(O) denotes the string parameter of operation

O, S[x, y] denotes the substring of S from position x to y, P (O) denotes the position

of O, and Pend(O) denotes the end position of O which is only applicable to DEL.

The algorithm checks through every operation O in the input edit script Q. If

O inserts at current position, we append the inserted text to S1. If the operation is

DEL, we simply skip the text in S0 by increasing pointer i. If O inserts at a later

position, meaning that the text between i and P (O) is unchanged, we simply append

it to the new state S1. Similarly, if Q is empty, we append the rest of S0 to S1.

Apparently, the time complexity of Algorithm 3 is O(|Q|).

It is possible that several INS oeprations in Q have the same position. They

are sorted in Q in the order of their site IDs by Algorithm 2. Hence we just need to

apply them by their order in Q, as above.

26

Algorithm 2 Merge two edit scripts

1: procedure MergeScripts(Q1,Q2) :Q

2: while not end of Q1 and Q2 do

3: get current operation O1 from Q1

4: get current operation O2 from Q2

5: compare O1 and O2

6: if P (O1) < P (O2) then

7: append O1 to Q, and move Q1 pointer

8: else if P (O2) < P (O1) then

9: append O2 to Q, and move Q2 pointer

10: else if overlapping then

11: //omitted

12: end if

13: end while

14: if not end of either Q1 or Q2 then

15: append all its remaining operations into Q

16: end if

17: return Q

18: end procedure

27

Algorithm 3 Apply edit script to last sync state

1: procedure ApplyScript(Q,S0) :S1

2: i← 0

3: S1 ← ∅

4: while Q is not empty do

5: remove the first operation O from Q

6: if O is INS then

7: if P (O) = i then

8: append S(O) to S1

9: else if P (O) > i then

10: append S0[i, P (O1)− 1] to S1

11: end if

12: end if

13: if O is DEL then

14: i← Pend(O) + 1

15: end if

16: end while

17: append S0[i, |S0| − 1] to S1

18: return S1

19: end procedure

28

CHAPTER V

AWARENESS AND COORDINATION

Mutual awareness of each others status and progress is a basis for collaborators to

coordinate their activities[33]. ICT2 provides two useful awareness mechanisms. One

is the synchronization report which, at synchronization time, shows how the remote

site changed the document. The other is the progress report which, before synchro-

nization time, indicates the approximate editing activities (progress) at the remote

site. In our system, these awareness mechanisms are deliberately not coupled into

the single-user editor interfaces, an “unobtrusive yet accessible” design[19].

A. Synchronization Report

At synchronization time, remote changes are merged with local changes and the re-

sulted edit script is applied to the last sync state. At the system level, it is straight-

forward to just set the editors to the new sync state at each site. However, we feel it

sometimes necessary for the users to make sense what have been changed (inserted

and deleted) by the other sites since last sync. This is achieved by a sync report di-

alog. Additionally we implemented user interfaces for the users to configure whether

or not they want the sync report displayed automatically at sync time. They may

also click a button to browse the sync report when necessary.

Internally the sync report is represented in the standard Rich Text Format (RTF).

RTF is a file format by Microsoft for cross-platform document interchange which most

text processing programs are able to process. We use different colors to show oper-

ations performed by different users. New inserted texts are underlined and deleted

texts are stroke out. As shown in Figure 10, the sync report at each site only shows

the changes made by the other user(s).

29

Fig. 10. Different sync reports at different sites

30

For instance, suppose the last synchronized content is “abcdef”. User A changes

the document to “abxycd” by deleting “ef” and user B concurrently changes the

document to “abef” by inserting “xy” and deleting “ef”. While user B concurrently

changes the document to “abef” by deleting “cd”. The new synchronized content is

“abxy”. The sync report to user A will be like “abxycd”, while the sync report to

user B will be like “abxyef”.

To implement this reporting feature, Algorithm 2 and 3 are slightly extended to

include and process some additional information in the merged edit script such that

operations from different sites are distinguished. For example, suppose that we have

DEL(5, 9) from site 1 and DEL(6, 10) from site 2. Then in the merged edit script,

there are three annotated operations: DEL1(5, 5), DEL1,2(6, 9) and DEL2(10, 10) to

indicate that site 1 deleted the character at position 5, site 2 deleted the character

at position 10, and both sites deleted the text ranging from position 6 to 9. When

applying this script, all the three operations are executed. However, in the sync

reports, only the effect of DEL2(10, 10) is displayed at site 1, and only the effect of

DEL1(5, 5) is shown at site 2.

The sync report dialog is implemented in a custom interface. It is possible

to integrate the dialog into the editor interfaces if the editors in question provide

appropriate APIs. Anyway the existence of the dialog does not impair the principles

of collaboration transparency, i.e., adding groupware features to legacy applications

without modifying source code[15].

B. Progress Report

As shown in Figure 11, to help the users make more informed sync decisions, we

implemented a simple progress report dialog that displays the following awareness

31

information: how much editing have the local and remote users made since last sync,

where relative to the last sync state are those changes made, when did last sync

happen, where was the remote user’s position, how recent is the local knowledge of

the remote site? This information is updated at user-configured intervals. Similar to

the sync report, the progress report is external to the single-user editors being used.

Where remote

operations are

Where local

operations are

Where the

remote caret is

Fig. 11. Providing approximate awareness information of local and remote progress

At each site, we use one chart to visualize the local progress and one for remote

progress. In each chart, the first ten columns each represent a ten percent area of the

shared document, from 0%-10% to 90%-100 relative to the last sync state. The last

two columns, in a different color, represent operations performed in content that was

newly appended to the last sync state. In each column, the higher the block stack,

the larger volume of operations have been performed in the corresponding area of

32

the document. The triangle above the remote chart indicates the remote user’s caret

position to the system’s most recent knowledge.

Figure 11 shows the progress reports of two collaborating users. One is logged

in as Max and the other John. It is clear from the figure that Max only changed the

first 30% of the document, while John changed the last 30% of the document and

also added some new content.

The progress information of each user is obtained by diffing between the cur-

rent state of the editor and the last sync state. On one hand, up-to-the-moment

information is necessary for the users to make quality sync decisions and coordinate

effectively. On the other hand, since this awareness information is acquired while the

user is possibly working, frequent diffing may distract the user. A balance must be

sought between awareness, which affects group productivity, and system performance,

which affects individual productivity. Similar design considerations are confirmed in

[34].

We address this tradeoff at the following two levels. At the first level, invocation

of the diff algorithm to derive awareness information can be configured to occur at

the paragraph (line, sentence, word) level. The diffing experiments as described in

last section showed that diffing at the word level is significantly faster than diffing at

the character level. This trend should continue as diffing occurs at coarser granules.

Due to labor division that is common in most group writing practices[1, 2], people

rarely need to edit the same paragraph at the same time. Awareness at the paragraph

level, although somewhat coarse-grained, should be able to serve the need of most

practical situations and pay off in terms of much improved system performance.

At the next level, we allow the users to negotiate and configure how often the

awareness information is updated. Specifically, we define two system parameters for

controlling the triggering of updates. One is the sampling timer. The user can set the

33

time interval between two consecutive updates, say every 30 minutes. This ensures

that awareness information is provided periodically. The other is driven by window

events. The agent keeps simple statistics of the amount of keyboard and mouse events

the user generated on the editor window since last sync, which indicates how active

the user has been changing the document. The user can configure the system such

that diffing is called say every 500 events. This ensures a timely report of progress if

a user makes a lot of changes in a short time before the current interval ends. The

periodic sampling may still serve a good purpose of providing presence awareness

even if a user is not active for some time.

34

CHAPTER VI

ADAPTING SINGLE-USER EDITORS

Now we have discussed how to synchronize the states of single-user editors and how

to coordinate synchronization. In this chapter, we shall address the fundamental

problem of how to transparently adapt single-user editors to provide the two required

interfaces: GetState and SetState.

In a group editing environment with heterogeneous editors, we are not inter-

ested in how users press keys and buttons to generate editing operations, as in a

homogeneous system like CoWord[7]. Hence an interesting state of an editor in our

system only includes its content (string) and the current caret position. Many pop-

ular single-user editors provide APIs for third parties to implement add-on features,

such as GVim, Emacs and MSWord. For example, the CoWord project builds on the

COM-based APIs provided in Word to implement group editing[7]. Obviously, for

editors in which APIs are available, it will be trivial to implement GetState/SetState

and performance will not be a problem.

In the following I will explore how to adapt editors without APIs, such as WinEdt,

to support the GetState/SetState interfaces and how to solve the performance prob-

lems that may ensue. The same techniques equally apply to editors with APIs and

can be implemented on these editors where generality is the goal to pursue.

A. Adapting Editors without APIs

The adaption is accomplished through simulating select/copy/paste events on the ed-

itor and access the clipboard. Mechanisms for achieving these are generally provided

in modern window-based platforms such as Microsoft Windows and X Window. This

approach has been tested on popular single-user editors including GVim, MSWord,

35

WinEdt, Notepad, and EditPlus.

For example, on MS Windows platforms, GetClipboard and SetClipboard are

APIs for reading and writing the clipboard, respectively. Most single-user editors

support keyboard shortcuts: CTRL+A for selecting all content of the editor, CTRL+

C for copying selected text to the clipboard, CTRL + V for pasting the clipboard

content to current caret position, CTRL+SHIFT +HOME for selecting the editor

content from the beginning to current caret position, CTRL + SHIFT + END for

selecting the editor content from current caret position to the end, CTRL + HOME

for setting the caret position to the beginning, and so forth.

Hence the basic idea is to simulate keyboard events on an editor such that the

agent can get and set the editor state via the clipboard. For example, suppose we want

to set the content of WinEdt to “abcd”. We can first set the clipboard to “abcd”, then

simulate CTRL+A on WinEdt to select all its content, and then simulate CTRL+V

on WinEdt to replace its content to “abcd”.

Algorithm 4 Get state by simulating window events

1: procedure GetState :S,P

2: simulate CTRL + SHIFT + HOME

3: simulate CTRL + C

4: S1 ← GetClipboard()

5: simulate CTRL + SHIFT + END

6: simulate CTRL + C

7: S2 ← GetClipboard()

8: P ← Length(S1)

9: S ← S1 + S2

10: return (S,P)

11: end procedure

36

Algorithm 5 Set State by simulating window events

1: procedure SetState(S,P)

2: S1 ← S[0, P − 1]

3: S2 ← S[P, |S| − 1]

4: simulate CTRL + A

5: SetClipboard(S2)

6: simulate CTRL + V

7: simulate CTRL + HOME

8: SetClipboard(S1)

9: simulate CTRL + V

10: end procedure

As shown in Algorithm 4 and 5 , the GetState and SetState interfaces are im-

plemented by simulating window events. To get the state (S, P) of an editor, we first

copy its content up to the caret position into string S1, and then copy its content after

the caret position into string S2. Thus the content of the editor is S1 + S2, and the

caret position is the length of string S1. To set an editor’s content to a given string S

and its caret position to a given P , we first replace its content by the substring after

the caret position, S2 = S[P, |S| − 1], and then insert the substring before the caret

position, S1 = S[0, P − 1], to the beginning of S2. As a result, the editor content is

set to S = S1 + S2 and the caret is set between S1 and S2.

B. Restoring Local Caret Position

The caret position returned from GetState is used for awareness. As shown in Fig-

ure 11, we can indicate to the local user where the remote caret position was last time

GetState was called. However, when synchronization occurs, the local caret position

37

could be lost after calling MergeScripts and ApplyScript. Hence we must be able to

compute the local caret position before SetState is called.

Caret is a mark used by an editor to indicate where something is to be inserted

into its text content. After sync, the local caret position may be dislocated due

to the merging of remote operations. For instance, as in Figure 1, suppose last

sync state S0 is “abcd”. The two concurrent states are S1 = “abcxyd” and S2 =

“azbcd”. Suppose the caret position in state S1 is C1 = 5, which is between ‘y’

and ‘d’. The three edit scripts are D1 = {INS(“xy”, 3)}, D2 = {INS(“z”, 1)} and

D3 = {INS(“z”, 1), INS(“xy”, 3)}. After sync, the new state is S3 = “azbcxyd”.

The caret position in S3 should also be between ‘y’ and ‘d’, which is C3 = 6.

To compute the new caret position, first, we compute the local caret position C0

relative to state S0. In the above example, since C1 = 5, we know C0 = 3. However, if

C1 is 3 or 4, we will also get the same result of C0 = 3. This is because of a new string

“xy” that was not present in S0. Hence we introduce a parameter δ to distinguish

these positions relative to the new string “xy”. When C1 is 3, 4 or 5, the value of

C0 = 3 and the value of δ should be 0, 1 or 2, respectively.

Second, when calling algorithm ApplyScript, we compute the local caret position

C3 relative to state S3, from parameters C0, δ and D3. This is rather straightforward:

Initially we set C3 to C0 and use operations in D3 to adjust C3. Because all operations

in D3 are sorted ascendingly by their positions, we can easily trace which operations

increment or decrement C3. The final value of C3 simply adds δ. In the above

example, we first get C3 = 4 due to operation INS(“z”, 1). Then it is adjusted to 4,

5, or 6 by adding the corresponding value of δ (0, 1, or 2) into C3.

The unit of operation may be different from the unit of character position. For

example, we do diff algorithm on word level, and the position parameter of operation

is also based on word. But the caret position is based on character. Others may

38

Algorithm 6 Compute the old position and δ

1: procedure ComputeOldPos(S0,D1,C1) :pos,δ

2: C0 ← 0

3: pos← 0, δ ← 0

4: while C0 < C1 do

5: apply D1 to S0 like Algorithm 3

6: adjust C0 and pos accordingly

7: end while

8: δ ← Length(LastOperation)− (C0 − C1)

9: return (pos,δ)

10: end procedure

do diff algorithm on other levels, e.g., sentence level, to achieve higher performance.

Parameter δ can also distinguish the positions relative to word, sentence or other

higher levels. And, we use another pos parameter to represent the local caret position

relative to state S0 based on operation level.

Algorithm 6 shows the general method to compute the old position pos of S0 and

δ based on the above idea:

pos is the old caret position based on operation level. C0 and C1 are both based

on character level. For the second step, we use the same idea, but with pos instead

of C0, to compute new position pos′ which is also based on operation level. Then we

can calculate C3 by pos′ and δ.

C. Some Performance Issues

As shown in Figure 1, for simplicity, we only consider two sites in our concept-proving

prototype. Due to the way states are synchronized, we can safely consider that all

39

operations in D1 are concurrent with all operations in D2. Hence we do not need

consistency control algorithms as sophisticated as those in [20, 30]. This approach

slightly constrains synchronization to achieve simplicity and efficiency in consistency

control. A similar tradeoff has been confirmed in the previous work[35]. As a result,

the above described algorithms for merging edit scripts and computing the new caret

position take only linear time.

However, there are performance issues in the adaption approach that must be

addressed. The first is related to selection. If the length of selection is 0, Windows

Clipboard will keep its current content when we simulate CTRL + C to copy the

selection. For example, suppose the content of an editor is “abcd” and the caret

position is 4 which is after character ‘d’. In procedure GetState of Algorithm 4, S1

will be “abcd” after step 4. However, step 5 will select nothing and hence step 6 will

not change Windows Clipboard. Then after step 7, S2 is also “abcd”. To solve this

problem, before each selection, we reset the Clipboard to a special string. Then we do

the copy simulation. If the content of Clipboard turns out different, the new content

is the selection. Otherwise, the selection and the Clipboard content are empty.

The second problem is user input interference. While the agent is performing

synchronization, the user may not notice this and continue with editing. The user

input may change the selection or change the focus, which interferes the routines of

Get/SetState and may cause the wrong result. To solve this problem, we use Windows

hook techniques to block user input while performing Get/SetState. A hook is a

mechanism by which a piece of user-defined code is planted into the target application.

It can be used to intercept the system events before they reach the application. With

this technique, we catch keyboard and mouse events before they reach the editor

while Get/SetState is underway. Only events simulated by Get/SetState are allowed

to go through.

40

The third problem is screen flickers that may be caused by the simulated se-

lect/copy/paste events in Get/SetState calls. To reduce the interferences to the user,

we use the mask window mechanism.The idea is that before entering GetState or Set-

State, we create an opaque mask window on top of the editor, whose size is exactly

the same as the size of the editor. The mask window displays the current image of the

editor so that the user will not notice the simulated operations. The mask window is

hidden after the Get/SetState operation is completed. Then the interaction continues

as normal.

Techniques to mitigate the second and third problems may temporarily render

the user unable to input for a short period of time say a few hundred milliseconds.

Given the good performance of the synchronization algorithms, the duration will be

too short to disrupt the editing task. Interferences could happen when Get/SetState

is called at sync time and when GetState is called for collecting awareness information.

On one hand, the users are more often than not prepared psychologically to tolerate

some delays during sync time, especially if it is the users who initiate the sync process.

Additional information could be displayed so that the users are made aware of the

progress of sync. On the other hand, when GetState is called for awareness purposes,

information such as the caret position and the edit script does not need to be as

accurate as that used for sync. Hence diffing at the paragraph level often suffices.

The execution of GetState can be made even less obtrusive, e.g., by scheduling it in

periods when the user is not actively editing.

In practice, although awareness is the basis for coordination, human collaboration

is rarely confined to any provided CSCW system. People often have alternative

channels, such as online chat and email, to get aware of each other’s status and

progress and to decide when to synchronize. Although group editors can ease the sync

process, they are usually used together with other tools, e.g., chat and audio/ video[6].

41

These tools can often help the users to communicate awareness information, negotiate

writing processes and roles, and resolve conflicts and semantic inconsistencies. Our

system allows the users to configure the progress report, which can even be disabled

in the case that all the above techniques fail to provide desirable performance.

42

CHAPTER VII

CONCLUSIONS

This thesis presents a novel approach to adapting familiar single-user editors for

group editing. It only needs to adapt the editors to support two simple interfaces,

GetState and SetState. This is accomplished either by the editor-provided APIs or by

simulating window events. Based on these two interfaces, a classic diff algorithm[13]

is tweaked to derive edit scripts between editor states. Concurrent edit scripts are

merged to synchronize editor states at cooperating sites. Awareness mechanisms are

implemented for the users to make sense of each others progress and make informed

sync decisions. Experiments show that our approach is able to provide near-realtime

performance for most practical group editing tasks.

A. Main Contribution

The main contributions of this approach include low engineering cost and allowing

for heterogeneity.

The presented technology contrasts sharply with recent approaches to sharing

single-user editors for realtime group editing, such as ICT[10] and CoWord[7]. We

do not need to understand and translate editing operations at the operating system

level. Hence the development and perfective maintenance costs are significantly less.

Moreover, since our approach relies on the differences between document states in-

stead of the actual editing operations that cause the differences, we do not impose any

constraint on specific editors and editing commands the users can use. As a result,

editors are allowed to be heterogeneous and there is no need to disable features in the

familiar user interfaces. The number of single-user editors grows rapidly. Low engi-

neering cost makes it possible for group editors to catch up with single-user editors.

43

It makes group editing by sharing existing single-user editors a reality.

This approach allows shared single-user editors to be heterogeneous. That means

coauthors could use their familiar single-user editors to edit documents together. Due

to the variety of editors, it is not desirable to constrain that all the users be familiar

with one editor. Allowing for heterogeneity reduces the learning cost, elevates the

utilization of group editing system, and then improves the productivity of group.

In addition, ICT2 uses an agent-based system architecture. It does not force

the users to use use an unacquainted environment with group features which is less

frequently used. Since the agent is a separated and independent software application

to single-user editors, it does not change any single-user editor’s behavior or user

interface. Users’ experience on editors is totally same as before. Users can still focus

on document editing with their familiar single-user editors.

B. Limitation

The down side of this approach is that it is only able to implement near-real time

group editing due to performance problems of diffing. However, we hypothesize that

the tradeoffs are reasonable for group writing: the users may prefer a system with

certain constraints on synchronization to one that disables many interface features of

their familiar single-user editors or word processors. If near-real time synchronization

is sufficient for most situations, it justifies to trade certain level of flexibility for

significantly lowered engineering costs and near-unconstained use of familiar editors.

Our prototype currently supports text editors such as GVim and WinEdt. The

system (or more specifically, the diff algorithm) does not interpret the content of the

document. Word processors can be used in the system as long as their content can be

accessed as text. This may not necessarily cause a disaster in group writing. Given

44

that the content often carries more weight and is more difficult to produce than the

formattings, the final content can always be formatted, e.g., in Word or Latex, in a

later phase of the group writing project. It has been confirmed in previous studies

that many group writing projects are carried out in phases[1, 2].

C. Future Work

The system has been prototyped on Windows XP over the past year. The specific

techniques discussed have been proved over the past three years to be generally feasible

on many popular text editors and word processors as well as Windows and Linux

platforms. As a proof of concept, the prototype system is simplified such that only

two users can use GVim and WinEdt to edit the same document at the same time.

Some constraints are imposed, e.g., user inputs are disabled during sync time, to avoid

interferences. However, these constraints are temporary in our current prototype

rather than inherent in the technology itself. They will be relaxed in future work

after we extend the synchronization algorithms.

Today a plethora of tree- and XML-based diff algorithms are available in the

literature, e.g., [36, 37]. The existence of these algorithms suggests that it is possible

to support structured documents and more sophisticated editors in our system. Due

to the treatment of structures and extra operations, these algorithms as they are may

appear less efficient than the text-based diff algorithm of [13]. However, as revealed in

our experience, many domain-specific semantics and techniques can often be exploited

to tweak these algorithms for sufficient performance in CSCW. For example, in general

minimality of the edit script can be traded off for significantly reduced execution

time[36]. We plan to explore this direction in future work.

45

REFERENCES

[1] I. R. Posner and R. M. Baecker, “How people write together,” in Proceedings of

IEEE HICSS’92 Conference, Koloa, Hawaii, 1992, pp. 127–138.

[2] S. Noel and J.-M. Robert, “Empirical study on collaborative writing: What do

co-authors do, use, and like,” Journal of Computer Supported Cooperative Work,

vol. 13, pp. 63–89, 2004.

[3] P. Bellini, P. Nesi, and M. B. Spinu, “Cooperative visual manipulation of music

notation,” ACM Transactions on Computer-Human Interaction, vol. 9, no. 3,

pp. 194–237, Sept. 2002.

[4] R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby, “The user-centered

iterative design of collaborative writing software,” in CHI ’93: Proceedings of the

SIGCHI conference on Human factors in computing systems, Amsterdam, The

Netherlands, Apr. 1993, pp. 399–405.

[5] P. Dewan, R. Choudhary, and H. Shen, “An editing-based characterization of

the design space of collaborative applications,” Journal of Organizational Com-

puting, vol. 4, no. 3, pp. 219–240, 1994.

[6] C. A. Ellis, S. J. Gibbs, and G. L. Rein, “Groupware: Some issues and experi-

ences,” Communications of the ACM, vol. 34, no. 1, pp. 38–58, Jan. 1991.

[7] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-user appli-

cations for multi-user collaboration: The CoWord approach,” in Proceedings of

ACM 2004 Conference on Computer Supported Cooperative Work, Chicago, Nov.

2004, pp. 162–171.

46

[8] D. Li and R. Li, “Ensuring content and intention consistency in real-time group

editors,” in ICDCS ’04: Proceedings of the 24th International Conference on

Distributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004, pp. 748–

755.

[9] J. Grudin, “Groupware and social dynamics: Eight challenges for developers,”

Communications of the ACM, vol. 37, no. 1, pp. 92–105, 1994.

[10] D. Li and R. Li, “Transparent sharing and interoperation of heterogeneous single-

user applications,” in CSCW ’02: Proceedings of the 2002 ACM conference on

Computer supported cooperative work, New Orleans, Nov. 2002, pp. 246–255.

[11] Wikipedia, “Text editor from wikipedia,” Web, 2005, http://en.wikipedia.org/

wiki/Text editor.

[12] ——, “Word processor from wikipedia,” Web, 2005, http://en.wikipedia.org/

wiki/Word processor.

[13] E. W. Myers, “An O(ND) difference algorithm and its variations,” Algorithmica,

vol. 1, pp. 251–266, 1986.

[14] M. Stefik, G. Foster, D. Bobrow, K. Kahn, S. Lanning, and L. Suchman, “Beyond

the chalkboard: Computer support for collaboration and problem solving in

meetings,” Communications of the ACM, vol. 1, no. 1, pp. 32–47, 1987.

[15] J. B. Begole, M. B. Rosson, and C. A. Shaffer, “Flexible collaboration trans-

parency: Supporting worker independence in replicated application-sharing sys-

tems,” ACM Transactions on Computer-Human Interaction, vol. 6, no. 2, pp.

95–132, June 1999.

47

[16] A. LaMarca, W. K. Edwards, P. Dourish, J. Lamping, I. Smith, and J. Thornton,

“Taking the work out of workflow: Mechanisms for document-centered collabo-

ration,” in Proceedings of the Sixth European Conference on Computer-Supported

Cooperative Work (ECSCW’99), Copenhagen, Denmark, Sept. 1999, pp. 1–20.

[17] W. K. Edwards, “Session management for collaborative applications,” in CSCW

’94: Proceedings of the 1994 ACM conference on Computer supported cooperative

work, Chapel Hill, NC, Oct. 1994, pp. 323–330.

[18] L. J. Bannon and K. Schmidt, “CSCW: Four characters in search of a context,”

in Proceedings of the First European Conference on Computer Supported Coop-

erative Work, London, 1989, pp. 12–15.

[19] J. Grudin, “Computer-supported cooperative work: History and focus,” IEEE

Computer, vol. 27, no. 5, pp. 19–26, May 1994.

[20] C. Sun and C. Ellis, “Operational transformation in real-time group editors:

Issues, algorithms, and achievements,” in CSCW ’98: Proceedings of the 1998

ACM conference on Computer supported cooperative work, Seattle, Dec. 1998,

pp. 59–68.

[21] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in

ACM SIGMOD’89 Proceedings, Portland Oregon, 1989, pp. 399–407.

[22] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence,

causality-preservation, and intention-preservation in real-time cooperative edit-

ing systems,” ACM Transactions on Computer-Human Interaction, vol. 5, no. 1,

pp. 63–108, Mar. 1998.

[23] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson, “MMConf:

48

An infrastructure for building shared multimedia applications,” in Proceedings

of ACM CSCW’90 Conference on Computer-Supported Cooperative Work, Los

Angeles, California, 1990, pp. 329–342.

[24] J. C. Lauwers and K. A. Lantz, “Collaboration awareness in support of collab-

oration transparency: Requirements for the next generation of shared window

systems,” in CHI ’90: Proceedings of the SIGCHI conference on Human factors

in computing systems, Seattle, 1990, pp. 303–311.

[25] D. Engelbart and W. English, “A research center for augmenting human intel-

lect,” in Proceedings of Fall Joint Computing Conference, vol. 33, no. 1, San

Francisco, 1968, pp. 395–410.

[26] H. Abdel-Wahab and M. Feit, “XTV: A framework for sharing x window clients in

remote synchronous collaboration,” in Proceedings of IEEE Tricomm ’91, Chapel

Hill, NC, Apr. 1991, pp. 159–167.

[27] G. Chung and P. Dewan, “Flexible support for application sharing architecture,”

in Proceedings of European CSCW Conference, Bonn, Germany, Sept. 2001, pp.

99–118.

[28] M. Stefik, D. Bobrow, G. Foster, S. Lanning, and D. Tatar, “WYSIWIS revised:

Early experiences with multiuser interfaces,” ACM Transactions on Office In-

formation Systems, vol. 5, no. 2, pp. 147–167, Apr. 1987.

[29] C. Gutwin and S. Greenberg, “A descriptive framework of workspace awareness

for realtime groupware,” Computer Supported Cooperative Work, The Journal of

Collaborative Computing, vol. 11, no. 1-2, pp. 411–446, 2002.

[30] D. Li and R. Li, “Preserving operation effects relation in group editors,” in

49

CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported

cooperative work, Chicago, Nov. 2004.

[31] D. Li, C. Sun, L. Zhou, and R. R. Muntz, “Operation propagation in real-

time group editors,” IEEE Multimedia Special Issue on Multimedia Computer

Supported Cooperative Work, vol. 7, no. 4, pp. 55–61, 2000.

[32] B. Shneiderman, “Response time and display rate in human performance with

computers,” ACM Computing Surveys, vol. 16, no. 3, pp. 265–285, Sept. 1984.

[33] P. Dourish and V. Bellotti, “Awareness and coordination in shared workspaces,”

in CSCW ’92: Proceedings of the 1992 ACM conference on Computer-supported

cooperative work, Toronto, Canada, Nov. 1992, pp. 107–114.

[34] C. Gutwin and S. Greenberg, “Design for individuals, design for groups: Tradeoff

between power and workspace awareness,” in CSCW ’98: Proceedings of the

1998 ACM conference on Computer supported cooperative work, Seattle, 1998,

pp. 207–216.

[35] R. Li, D. Li, and C. Sun, “A time interval based consistency control algorithm

for interactive groupware applications,” in IEEE International Conference on

Parallel and Distributed Systems (ICPADS), Los Angeles, July 2004, pp. 429–

436.

[36] G. Cobéna, S. Abiteboul, and A. Marian, “Detecting changes in XML docu-

ments,” in ICDE ’02: Proceedings of the 18th International Conference on Data

Engineering (ICDE’02), San Jose, 2002, p. 41.

[37] Y. Wang, D. J. DeWitt, and J.-Y. Cai, “X-Diff: An effective change detection

50

algorithm for xml documents,” in 19th International Conference on Data Engi-

neering, Bangalore, India, Mar. 2003, pp. 519–530.

51

VITA

Jiajun Lu was born in Shanghai, China. He received his Bachelor of Science

degree in computer science from Fudan University in China, July of 2001. After that

he joined Microsoft(Shanghai) as a developer support engineer focusing on libraries

and tools of software development. He enrolled in Texas A&M University in College

Station in September of 2003. As a research assistant, his main research topic was

real-time collaboration. He received his Master of Science degree from Texas A&M

University in May, 2005.

His permanent address is: Jiajun Lu, 3751 Zhongshan North Road, APT 14-1605,

Shanghai, China, 200062.

The typist for this thesis was Jiajun Lu.

