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ABSTRACT 

Development of Environmental and Oceanographic Real-time Assessment System for 

the Near-shore Environment. (May 2005) 

Temitope O. Ojo, B.Sc., University of Ife; 

M.Eng., Texas A&M University 

Chair of Advisory Committee: Dr. James S. Bonner 
 
 
 

The coupling of real-time measurements and numerical models will be important 

in overcoming the challenges in environmental and oceanographic assessments in 

surface waters. Continuous monitoring will take advantage of current state-of-the-art in 

sensor development, remote sensing technology. The numerical modeling tools available 

exist in many different forms and varying levels of complexity from depth integrated 

one-dimensional (1-D) models to full three-dimensional (3-D) models. Common to all 

are the constraints and forcing required in driving the models. These include 

hydrodynamic and barometric information, which are relatively difficult to obtain given 

the time scale of the bio-chemical and physical processes governing the fate and 

transport of the constituents of interest. 

This study is focused on the development of a framework that couples real-time 

measurements and numerical simulation for tracking constituents in surface waters. 

The parameterization of the mixing and turbulent diffusion impacts the formulation of 

the constituent-transport governing equations to the extent that the numerical model is 
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being driven by near real-time observations of hydrodynamic data and the consequent 

evaluation of model coefficients. The effects of shear-augmented diffusion processes in 

shallow embayment and near-shore waters are investigated in order to develop 

algorithms for obtaining a shear diffusion coefficient, Ke from shear-current 

measurements and turbulent diffusion-coefficient, Kz measured by the auto-correlation 

function, Rτ of the velocity time-series.  

Typically, the diffusion coefficients are measured through tracer experiments as 

determined by the time rate of change of the variance of a growing patch (K = ½ dσ2 /dt), 

which introduces the concept of diffusion length-scale (or time-scale). In this study, the 

dye-tracer experiment was used, not so much in the context of evaluation of a diffusion 

coefficient, but within a modeling framework to validate a numerical scheme driven by 

real-time hydrodynamic observations. Overall, the effect of shear-currents in shallow 

wind-driven estuaries is studied using a prototype bay typical of the Texas Gulf-coast. A 

numerical model was developed and used in testing these hypotheses through a series of 

dye-tracer experiments under varying meteorological conditions.  
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CHAPTER I 

INTRODUCTION 

Statement of Purpose 

For emergency response in situations involving oil or contaminant spill in surface 

waters, one of the tools that can be used for monitoring and tracking constituent 

trajectory and spatial extent is a constituent transport model. These modeling tools exist 

in many different forms and varying levels of complexity but even the simplest models 

still require a certain skill level usually beyond that of the first responder. Most 

operational models require input for forcing information, which, generally will not be 

available given the small window of opportunity and the time scale of the physical-

chemical processes governing the fate and transport of the constituents of interest.  

Another challenge when it comes to monitoring of water quality parameters and 

environmental indicators in surface waters has to do with the spatial extent and dynamics 

involved. Continuous monitoring from fixed platforms provides high temporal but low 

spatial resolution while mobile platforms on the other side of the spectrum provide 

medium to high spatial and relatively low temporal resolution. There being a practical 

limit to the number of such units that can be deployed to improve on resolution, satellite 

based monitoring can be used to provide medium to high temporal and spatial resolution 

but suffers limitation in terms of sensors that can potentially be deployed. As we attempt  

to draw inference over the spatial extent for the domain of interest from information 

                                                 
  This dissertation follows the style and format of Estuarine, Coastal and Shelf Science. 
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available from a finite number of fixed sampling stations, we fall back on spatial 

smoothing techniques such as Kriging, Objective Analysis, and Delaunay Tesselation 

among others. 

Alternatively, the coupling of real-time measurements and numerical models will 

be important in overcoming these challenges in environmental and oceanographic 

assessments in surface waters. Model output in terms of trajectory and spatial 

distribution of the constituents of interest (temperature, salinity, fluorescence etc.) take 

into account the dynamics involved being forced or constrained by the surface current 

data, leading to a reduced transport model with an extremely simplified input 

requirement. Output was presented as animated sequences and viewable over the 

Internet through the implementation of a webserver. Instrumentation design and 

development, data telemetry and other special hardware and software tools required for 

performing field experiments that ultimately form parts of this decision support tool are 

described. 

 

Background 

 The coastal zone as defined by the International Geosphere Biosphere Program 

(IGBP) in its Land Ocean Interactions in the Costal Zone (LOICZ) initiative 

encompasses the entire region from the 200 m bathymetric seaward contour and 200 m 

elevation inland contour. This would include all estuaries and bays, a very important part 

of the marine ecosystem, which also supports human activities such as recreation, 

transportation and industry. Some of these different structures being juxtaposed, there is 
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a resultant increase in demand being placed on this major socioeconomic structure. 

Going by the above definition, the coastal zone occupies 18% of the global surface, and 

is inhabited by 60% of the human population, supplying 90% of the world’s fishery, an 

area that accounts for 8% of the ocean surface, and acts as a sink for 75-90% of 

suspended river load and associated pollutants (Cracknell, 1999).  

 The rate of anthropogenic driven change is much higher in the coastal zone with 

90% of land-based pollution (including sewage, nutrients and toxic pollutants) remaining 

in the coastal zone (Pernetta and Milliman, 1995). Against this backdrop, protecting and 

sustaining this delicate balance is imperative leading to the development of a number of 

water quality and contaminant transport models for monitoring and management. Water 

quality models are important in carrying out environmental and oceanographic 

assessments in bays and estuaries going by the spatial extent of this water bodies. Direct 

monitoring of water quality parameters over the observational domain is constrained in 

terms of spatial resolution by the number of sampling points from finite set of fixed 

stations. Mobile sensing platforms on the other hand provide better spatial resolution but 

limited coverage requiring a priori knowledge of the gradients. One strategy for 

overcoming these limitations would involve using a combination of fixed and mobile 

observational platforms coupled with numerical modeling as implemented in a 

constituent transport model forming an adaptive sampling framework. 

 Transport and water quality models are often based on coupled sets of Navier-

Stokes and advection-diffusion equations. Numerical solution of the Navier-Stokes 

equations, which provide the hydrodynamic information within this modeling 
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framework, is generally the most intensive in terms of computation and data required for 

model input. The characterization of the turbulent flow field is predicated on a number 

of turbulent closure schemes used in some ocean and general circulation models (Mellor 

and Yamada, 1982). Whereas, many water quality models exist and several operational 

ocean circulation models that have been developed, these schemes are difficult to 

implement. If we factor in the variability and uncertainties inherent in the boundary and 

initial conditions, these coupled models suffer serious limitations for rapid, real-time 

field deployments as required for instance, during emergency response efforts. 

Furthermore, accuracy in model predictions depend on how well the overall scheme has 

been calibrated an exercise that is expensive, time consuming and depends on 

availability of field data for validation.   

 This study seeks to address the issue of model complexity through a modified 

modeling framework resulting in a simplified constituent transport model. Through this 

research, a system was developed that employs direct observations of hydrodynamic 

data (currents in two spatial dimensions) to drive a constituent transport model. 

Effectively decoupling the hydrodynamic module from the advection-diffusion module, 

it would serve to increase model accuracy as well as capture most of the information that 

attends the variability encountered in the environment. Algorithms were developed that 

allow real-time calibration of the resulting albeit simplified, constituent transport and 

water quality model using direct observations of hydrodynamic data. Inputs into the 

resulting transport model were surface current measurements and should enhance field 

deployments for near real-time constituent tracking and water quality monitoring. 
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Furthermore, it will become possible to characterize estuaries and shallow embayment 

over different temporal scales without having recourse to expensive and time-consuming 

model recalibration.  

The project was predicated on recent developments in measurement and data 

communications technology for mapping surface currents in coastal environments: 

deriving current profiles in the water column, in situ instruments for obtaining real-time 

environmental and oceanographic measurements, availability of radio-based wireless 

data telemetry options as well as web-interfaces for delivering model output in form of 

visualizations.     

 

Research Objectives 

There are three parts to this implementation and these are outlined here as a set of 

objectives: 

• Part 1 – This is a theoretical development and investigative phase. In the first 

instance, spatial interpolation techniques such as Objective Analysis and Kriging 

as well as temporal data resampling were applied to the surface current 

measurements compensating for dropouts in data acquisition while improving the 

data set prior to incorporation into a transport model. The filtering of Acoustic 

Doppler Current Profiler (ADCP) datasets was also performed following spectral 

analyses of the raw data. The theory of turbulent diffusion and shear-augmented 

turbulent diffusion was developed within the concept of using real-time 

hydrodynamic data and spatially distributed dynamic coefficients in a transport 
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model. Algorithms were developed for evaluating diffusion coefficients from 

velocity measurements that would be applied to a simplified constituent transport 

model (Csanady, 1980).  

• Part 2 – This is a field-based experimental phase to validate the algorithms 

developed in Part 1. This part of the study involved a series of dye-tracer that 

were conducted in Corpus Christi Bay to validate the algorithms developed in 

Part 1 and involved the development of instrumentation, data acquisition systems 

and real-time data visualization tools. These were deployed on a shallow-draft 

geo-referenced vessel equipped with a suite of instruments mounted on an 

undulating tow-body and capable of real-time telemetry to a shore-based unit.  

• Part 3 – The third part is an applications development phase. A data-driven 

constituent transport model was implemented which incorporates hydrodynamic 

measurements and dynamic spatially distributed transport coefficients. The tools 

developed which includes the numerical scheme, data acquisition systems, 

wireless data telemetry and data analyses/visualization tools were tested within 

the framework of decision support systems for environmental and oceanographic 

assessments with particular application to emergency response activities in 

nearshore and coastal environments.   

  The various modules implemented in this three-part project are summarized. 

Front-end development:  

• Estimation of Dispersion Coefficients in non-Homogeneous Flow Fields with 

Application to Transport Modeling  
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o Instrumentation, data acquisition and processing units provide real-time 

hydrodynamic data (velocity, current profile) and data pre-processing. 

o Numerical algorithm and model development:  

• Incorporation of HF Radar Surface Current Data into Plume Tracking Model 

(PTM) 

o Hydrodynamic data assimilation, feeding pre-processed data into a 

numerical algorithm (coefficients module) that provides dynamic model 

coefficients. 

• Dye-tracer Study to Validate Algorithms Developed 

o Perform validation studies through conservative tracer experiments. 

Perform system validation and readiness exercises prior to field 

deployment.   

• Constituent Transport Modeling Using Direct Observations of Hydrodynamic 

Data  

o Develop constituent tracking system and application.  

Back-end development: 

• Adaptive Sampling through Coupled Real-time Data Acquisition and Numerical 

Modeling 

o Computing infrastructure development, data acquisition, wireless data 

telemetry, provision of environmental monitoring quantities in real-time 

on webserver, data post-processing, transmission and archival.  
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• Multi-parameter Instrument Array and Control System (MPIACS): A Software 

Interface Implementation of Real-time Data Acquisition and Visualization for 

Environmental Monitoring  

o Incorporation of real-time data visualization in a geo-referenced mobile 

instrument-sensing platform. 

o Rapid deployment real-time system 

 

Methods and Materials 

Determination of Transport Model Coefficients from Direct Observations  

Many water quality and contaminant transport models are based on advection-

diffusion numerical models (Fletcher, 1991a) giving rise to a set of parabolic partial 

differential equations (PDEs). The PDEs involve dispersion coefficients, which are 

typically assumed constant in space and time. However, dispersion experiments 

conducted in the Ribble Estuary by Burton et al. (Burton et al., 1995) clearly reveals that 

this is erroneous and other studies have shown that these coefficients have a spatial-

temporal variability affected by tidal action (Riddle and Lewis, 2000). If this spatial-

temporal variability is taken into account, we can expect a significant effect on 

predictions from numerical models as shown through model sensitivity analysis 

(Tchobanoglous and Schroeder, 1985). Okubo conducted a series of experiments in 

several bodies of water and developed a set of oceanic diffusion diagrams that gives 

length scale dependent dispersion coefficients in line with the well-known 4/3rds power 

law (Okubo, 1971).  Although these diagrams were developed from studies conducted in 
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the open oceans, they continue to be used within the modeling community for smaller 

water bodies. List et al. were able to establish temporal variability of dispersion 

coefficients using a set of drogues, (essentially Langrangian drifters) with global 

positioning (List et al., 1990) but the limitation of this approach lies in the restriction in 

terms of spatial extent since there is a limit to the number of drifters that can be deployed 

and tracked simultaneously.  

The inclusion of coefficients into water quality and contaminant transport models 

derived from direct observation of surface current measurements will allow for the use 

of spatially and temporally variable coefficients and serve to improve model accuracy 

while providing near real-time hydrodynamic input into the numerical model. This 

parametric accuracy however should be distinguished from numerical accuracy 

stemming from truncation errors associated with discretization of the governing 

equations. The spatially distributed, time-dependent dispersion coefficients needed for 

the resulting transport equation are obtained from the spatially distributed observations 

of velocity over time while the dispersion coefficients are obtained through a numerical 

algorithm. From the literature, we find range of values for dispersion coefficients in bays 

and estuaries are of the order of 105 - 106 cm2/s (Okubo 1971) while some theoretically 

and empirically determined expressions for obtaining dispersion coefficients (also from 

the literature) are given in Table 1.1 below. The list is by no means exhaustive and is 

presented here as a sampling of expressions relating dispersion to velocity (or time) and 

other theoretical and empirical relations can be found in the literature. It is noteworthy 

that quite a few of these are extensions of Taylor’s work. In this study, a numerical 
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approach will be used with discretized near real-time observation of current data as input 

within the computational domain. No attempt was made to establish analytical forms for 

dispersion coefficients dependent on velocity measurements other than as described 

through the autocorrelation function.   

 

Table 1.1.  Mathematical expressions for longitudinal dispersion coefficients. 

Dispersion 
Coefficient 

Terms Application Source 

6/563
H

RnUD T=  D = dispersion 
coefficient, m2/s 
n = Manning 
roughness 
UT = maximum tidal 
velocity 
RH = hydraulic radius 

Tidal rivers and 
estuaries 

(Harleman, 1964; 
Tchobanoglous and 
Schroeder, 1985) 

875.0610 RND −=  D = dispersion 
coefficient, m2/s 
NR = Reynolds number 
 

Channel flow (Davies, 1972; 
Tchobanoglous and 
Schroeder, 1985) 

D = (const)G1/3l4/3 D = dispersion 
coefficient, m2/s 
G = average rate of 
energy dissipation per 
unit mass, m2/s3 

l = mean eddy size 

Turbulent mixing, 
rivers, estuaries 

(Batchelor, 1950; 
Ippen, 1966) 

[ ] 2/12UlD L=  
D = dispersion 
coefficient, m2/s  
lL = Langrangian 
length scale, m 
U = velocity, m/s  

Turbulent diffusion (Fischer et al., 1979; 
Taylor, 1921) 

 

 

Diffusion Coefficients in Surface Waters 

Diffusion processes in surface waters govern the distribution of constituents 

within the water body. These constituents range from naturally occurring material such 

as salinity, temperature, phytoplankton, and sediment through temperature heat and other 
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anthropogenic material from industrial and recreational activities. A concentration 

profile of these constituents can be developed through numerical models that rely on 

coefficients, which capture the physical phenomena that lead to spreading and 

movement collectively termed transport coefficients. The coefficients may be 

determined through: i) the evaluation of the temporal variation of the currents 

(magnitude and direction); ii) the evaluation of the spatial variation of the velocity field; 

iii) the evaluation of the first and second moments of concentration distribution of a 

constituent and iv) inverse problem based on the advection-diffusion equation. The first 

two methods are based on Taylor's analysis of pipe flow (Taylor, 1954) and extended to 

other fluid flow regimes by Elder in his work on flow through open channels (Elder, 

1958).  

At the molecular scale, the process of diffusion is characterized by a molecular 

diffusion coefficient that depends on the degree of randomness or level of "agitation" 

within the fluid as indicated by fluid temperature. Analogous to this on a larger scale, 

turbulent diffusion is characterized by turbulent diffusion coefficient dependent on the 

degree of randomness or turbulence intensity measured by the currents driving the 

process. The extension of Taylor's pioneering work in this field have shown that 

turbulent diffusion in the presence of a shear structure within the current field results in a 

shear-augmented diffusion process, which becomes the dominant process after an 

initialization period determined by a characteristic vertical mixing time, tc.  

 Through a series of studies conducted by Csanady in the Great Lakes (Csanady, 

1966), the observation was made that there exists a variation in the dispersion of 
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constituents within a fluid body with the observed spreading more pronounced under 

certain conditions than would have been expected. The growth of a diffusing cloud 

would appear to be higher than could be explained if based on turbulence alone. 

Compounding these seemingly inconsistent observations is the fact that a weak vertical 

turbulent eddy diffusivity in the vertical appears to favor increased rate of lateral 

dispersion leading to the concept of shear augmented turbulent diffusion.     

Shear diffusion becomes especially important within the coastal ocean and near-

shore environments, involving the interplay between vertical turbulent diffusion and 

shear currents. The existence of complex shear current structures coupled with rapid 

variation in magnitude and direction of currents will be typical of shallow wind-driven 

bays and estuaries. Shear diffusion can be described as first or second stage depending 

on the type of shear currents encountered by fluid elements in the flow field and as noted 

by Elliot (Elliot et al., 1997), lateral shear is more likely to lead to first stage diffusion 

while vertical shear is more likely to lead to second stage diffusion. In shallow bays and 

estuaries and far enough away from vertical boundaries, lateral shear will be less 

significant in relation to the contribution to dispersion compared to vertical shear. 

Researchers including Bowden (Bowden, 1965) and Csanady (Csanady, 1966) have put 

forward expressions for determining the apparent diffusivity, Ka following on Taylor's 

work. Some of these expressions are presented in this paper for reference. In the case of 

lateral shear, the apparent diffusivity, Ka exhibits an inverse dependence on turbulent 

diffusivity, Kd (vertical or horizontal) while in the case of vertical shear the dependence 

is linear. Turbulent diffusivity itself can be evaluated through the auto-correlation 
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function, Rτ of the fluctuating velocity time series based on Taylor's statistical treatment 

of diffusion as a random process (Taylor, 1920). Overall, mixing by diffusion is based 

on the interaction between a turbulent velocity field and the shear current structure 

generated by wind stress or tidal action. 

Following Okubo & Carter (Okubo and Carter, 1966), Elliot (Elliot et al., 1997) 

developed expressions for shear diffusion from which the time for complete vertical 

mixing to occur and consequently, the relative importance of the two interacting 

processes can be estimated. During first stage shear diffusion, the time to complete 

vertical mixing tc has an inverse relation to shear current, Si after which the distribution 

of the constituent of interest (as measured through the concentration profile of a 

diffusing dye patch) is then governed by second stage diffusion. In each case in the 

presence of shear currents, turbulent diffusivity will become negligible compared to the 

apparent diffusivity due to shear. The overall effect is that turbulent diffusion in shallow 

wind-driven estuaries is augmented significantly by the shearing action. The role of 

vertical turbulence in shear diffusion is examined in conjunction with vertical shear in a 

shallow wind-driven estuary. Conditions under which shear diffusion come into play are 

discussed, leading to the numerical evaluation of the effective diffusivity within a shear 

current structure. A method of obtaining effective diffusivity from direct observation of 

currents was developed against the backdrop of constituent transport modeling within 

the prototype body of water, Corpus Christi Bay, TX. Estimates are provided for the 

initialization period, which has an inverse relation to the vertical turbulent diffusivity, 

Kz. The Lagrangian correlation function, Rτ of the velocity time-series was used in a 
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numerical evaluation of the turbulent eddy diffusivity, which in turn was used in the 

numerical evaluation of an effective diffusivity based on the shear current. In this study 

conducted in a shallow wind-driven bay, the shear diffusion process was found to be 

dominant over turbulent diffusion under certain conditions. The three-dimensional (3-D) 

current measurements were made with a fast response current profiling instrument 

simultaneous with dye-tracer experiments conducted at Corpus Christi Bay, TX between 

the summer and winter months of 2003.  

       

Transport Model Development and Algorithm Selection 

The scheme reduces the model equations to a single set of parabolic PDEs by 

replacing the usual hydrodynamic module in a coupled transport model with near real-

time velocity data obtained by direct observation from HF Radar equipment. This 

approach effectively uncouples the hydrodynamic module from the transport module. 

Not only were we able to resolve numerically imposed constraints due to environmental 

and hydrodynamic conditions; the physical constraints imposed by bathymetry, 

geomorphology, and shoreline geometry are better captured using real-time 

measurements. This led to the development of a data-driven constituent transport model 

that is reduced in terms of complexity and easy to deploy regardless of the physical and 

geomorphologic conditions encountered. The transport model provides a concentration 

profile (Ci) within the domain of interest for the ith constituent of interest.  

Typically, these schemes are solved numerically as a coupled PDE set and for the 

larger, more complicated models using parallel or distributed processing which becomes 
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increasingly expensive with increasing model complexity (Fletcher, 1991). The diffusion 

coefficients are obtained either from tracer studies, or from diffusion diagrams or 

turbulence closure schemes.  

In this implementation, the governing equations were uncoupled by using direct 

hydrodynamic data input from the HF radar, and as a result reducing the model to a 

single PDE set.  Model coefficients (u, v, w and Kx, Ky, Kz) to be used in solution of the 

resulting transport equation were obtained from current data using the algorithm 

described in the preceding section and incorporated into the discretized form of the 

governing equation. Finally, model error analyses were performed to determine the 

effect of using dynamic, tidally averaged and ensemble-averaged coefficients. Given the 

fact that this study focuses on developing a simplified and integrated system for 

environmental monitoring and emergency response, this part of the research involved the 

selection and not so much the development of a PDE solver routine that in combination 

with the scheme outlined above forms the modeling framework. Noting that many 

schemes exist for the numerical solution of PDEs including several implicit and explicit 

finite differencing schemes, finite element analysis, finite volume, spectral methods etc. 

and is an active area of ongoing research in Computational Fluid Dynamics (Fletcher, 

1991).       

 

Tracer-study for System Evaluation and Model Validation 

This part of the research was focused on system validation and integration. A 

towed-array of instruments consisting of conductivity, depth, temperature, fluorescence 
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(CDT-F) sensors, GPS and vessel navigation subsystem was deployed in Corpus Christi 

Bay and a series of tracer experiments were conducted to validate the algorithms and test 

the capability of the system to provide near real-time environmental monitoring data. 

The entire suite would be integrated into a rapid deployment constituent tracking and 

monitoring system, which will be available for conducting studies within bays and 

estuaries, as well as for emergency response efforts such as oil or contaminant spills in 

coastal environments.  

The tracer study was conducted as a one-time effort using a geo-referenced 

towed instrument array. The towed array of sensors sampled the domain using in situ 

sensors for tracking the constituent of interest, which for the tracer study was 

Rhodamine WT dye. Information and data from this study was analyzed using the 

method of moments to evaluate the diffusion coefficients at selected locations within the 

bay and comparing the results with those obtained from using velocity measurements. 

 

Modeling Framework and System Block Diagram 

The overall scheme is presented in the form of a block diagram in Figure 1.1 

below. Grayed out modules indicate parts of a conventional transport model that were 

not included in this modeling framework but would be included within typical coupled 

models. In the implementation of this project, equipment and tools used in this study 

were developed as a combination of hardware and software solutions. 
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Data Acquisition 
• HF Radar 
• LISST 
• LIDAR 

Model Coefficients 
• Velocity 
• Dispersion  

Transport Model 
• 3-D Nowcasting 
• Single PDE 

Data Visualization

Model Validation 
• Computational 

Steering 

Indicators 
• Real-time Data 

Model Calibration 

Hydrodynamic Model

 

Figure 1.1. System block diagram.  

 

Trajectory Tracking and Vessel Guidance System 

A "Trajectory Tracking and Vessel Guidance System" was developed based on 

the improved now-cast/forecast methods enumerated earlier. This essentially is a 

software interface module that was developed and used for the sampling exercise to 

guide the tracer studies and model validation efforts. The system comprised a shipboard 

user interface showing color-coded tracklines corresponding to detected levels of 

constituents in the water body.   

 

Integrated Sensor Interface, Data Acquisition and Computing Network  

A mobile sensing platform equipped with in situ fluorescence and CTD sensors 

mounted on a towed body, with Global Positioning System (GPS) was used as the 

sensing platform. An instrumentation hardware and software interface was developed 
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and in conjunction with the Trajectory Tracking and Vessel Guidance System described 

in preceding section, formed an integrated data acquisition, visualization and telemetry 

unit that was used in an adaptive sampling scheme to facilitate and guide data 

acquisition exercises with improved resolution and coverage.  

 

Site Description  

 The site is located within Corpus Christi Bay which is in the Texas Gulf of 

Mexico about 200 miles south west of Houston, TX (Figure 1.2). Being part of a system 

of bays that has Corpus Christi Bay as the main bay, there are four embayments 

connected within the system namely Oso Bay in the southwest, Nueces Bay in the 

northwest, Upper Laguna Madre in the south and Redfish Bay in the northeast. A 

shipping channel that is ~15 m deep runs east to west along the northernmost half of the 

bay and an intra-coastal waterway runs north to south. It is bounded on the east by 

Mustang and North Padre Islands and on the west by the city of Corpus Christi.  

The deepest of the four, it has relatively uniform bathymetry throughout (~3 m) 

with a correspondingly low tidal range (± 0.5 m) as is characteristic of most of the bays 

in Texas. The bay is approximately 500 sq. km with the channel opening into the Gulf at 

the Northeastern end through Aransas Pass as the main form of exchange with the Gulf 

system and under the influence of the tides, the residual currents are therefore 

predominantly along the east-west coordinate axis with a counterclockwise circulation 

pattern along the shoreline. Being in a semi-arid location with freshwater inflow from 

Nueces River and Oso Creek, the system with a drainage area of ~49,700 sq. km  
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Figure 1.2. Top; map of Corpus Christi Bay in the Texas Gulf of Mexico. Approximate location for 
each study is indicated (■ – Study 0828_1 and 1007; ◘ -- Study 0820_2). Bottom; bathymetry of the 

study area. 
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receives a daily average freshwater flow of ~34 m3/s and has an average salinity of 22 

psu which can be as high as 33 psu. This bay, which can be classified as wind-driven is 

predominantly under the influence of winds blowing from a southeasterly direction 

while winds called "Northers" blow from the northerly direction sometimes during the 

winter months. 

 
 
Meteorological and Experimental Conditions 

Three field experiments conducted on the dates indicated in Table 1.2 below with 

individual identification and at the locations (also indicated in Figure 1.2). The 

experimental and meteorological conditions encountered during the experiments are 

summarized in Table 1.2 and depicted graphically in Figures 1.3 and 1.4 showing the 

wind pattern and oceanographic conditions respectively.    

 

Table 1.2. Summary of experimental and meteorological conditions. 

ID Location 
Date Time  

(UTC) 
Tide Wind 

0828_1 2747.937N, 
9721.451W 

Aug. 28, '03 15:44 7 kn, SE 

0828_2 2743.571N, 
9718.297W 

Aug. 28, '03 21:20 High water, ebb 14 kn, SE 

1007 2747.937N, 
9721.451W 

Oct. 07, '03 14:34 High water, flood 4-12 kn, NE 
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Figure 1.3. Wind speed measurements over a 24 hour period taken during the experiments. Top panel; 
experiment 0828_2. Bottom panel; experiment 1007. Wind strength is comparable during the two 

experiments reported but conditions during experiment 1007 is highly variable. 
 
 
 
 

 
Figure 1.4. Water level (height above MLLW (─ solid line) and surface current measurements (-. 

dashed line) covering the duration of the experiments. 
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CHAPTER II 

A RAPID DEPLOYMENT INTEGRATED ENVIRONMENTAL AND 

OCEANOGRAPHIC ASSESSMENT SYSTEM (IEOAS) FOR COASTAL WATERS: 

DESIGN CONCEPTS AND FIELD IMPLEMENTATION 

Overview 

Emergency response and spill monitoring in coastal and near shore environments 

is enhanced with the availability and use of real-time environmental data coupled with 

numerical simulation in an adaptive sampling framework. Invariably the various 

modules often exist on different computing platforms and a common thread is needed to 

achieve an integrated system suitable for application in spill or emergency response 

situations. In emergency response operations, information sharing between on-scene 

command and incident command is often required to facilitate decision-making. 

Wireless (802.11b) data networks coupled with use of concepts from distributed 

computing, can bridge the gap between data acquisition and data availability, thereby 

reducing the inherent latency within the system.  

This in the context of environmental monitoring consists of a distributed file 

system (DFS), remote application services (RAS), network management and wireless 

data telemetry for wide area network services (WAN). This study focuses on the 

implementation of an integrated rapid response environmental assessment system 

combining in situ monitoring, real-time telemetry and direct numerical simulation (DNS) 

with web-based data access and visualization of oceanographic and environmental 
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parameters. The viability of the system was demonstrated in mock-spill exercises and 

details are presented.  

 

Introduction 

Monitoring of water quality parameters and environmental indicators in surface 

waters poses a challenge due to the spatial extent and dynamics involved. Design of 

sampling transects for routine monitoring involves a combination of science and 

experience but for real-time monitoring of episodic events, a priori design of sampling 

transects is impractical. The ability to observe spatially distributed time series have been 

made possible with the development of sensors deployed on remote platforms such as 

satellites, aircrafts as well as on mobile and fixed sensing platforms. The coverage of 

these datasets can be extensive, but limited in spatial or temporal resolution. In situ 

sensor deployments from remote platforms (fixed or mobile) are increasingly being used 

for data acquisition in environmental and oceanographic assessments; data that has to be 

made available in near real-time to the stakeholder (stakeholders including the public, 

the scientific community, resource managers and planners, etc.).  

For instance, in emergency response operations, information sharing between on-

scene command and incident command is often required to facilitate decision-making. 

Wireless (802.11b) data networks coupled with relational database management systems 

(RDBMS) can bridge the gap between data acquisition and data availability. These real-

time measurements can be assimilated into numerical models either to fill in gaps in data 

or to improve on the spatial and temporal resolution of observations from sensing 



24 

 

 
 

 

platforms. These would include instrument measurements (such as surface currents, 

wind speed and direction, temperature), model predictions (fate and transport) and 

forensics. 

This paper describes an optimized scheme that was developed to guide the 

monitoring of constituents of interest by coupling a real-time data acquisition routine 

with a numerical model and web-based data visualization. The numerical model is 

driven by near real-time measurements of spatially distributed coefficients leading to 

algorithms for estimating the temporal and spatial characteristics of an evolving 

constituent within the body of water. Model output in terms of trajectory and spatial 

distribution of the constituents of interest take into account the dynamics involved. A 

user interface provides real-time correlative visualization between the model output and 

intensity of the measured variables provided by the deployed instruments mounted on a 

geo-referenced mobile sensing platform to guide the data acquisition and sampling 

efforts.   

 

Background 

There is increasing national and global interest in field programs for the 

evaluation of dispersant use in nearshore waters and some regulatory agencies have 

opted to use a “spill of opportunity” for data gathering. Our program has helped in 

determining the direction of research in this area and we have been involved in 

coordinating such efforts (Ojo et al., 2003a) while providing the enabling infrastructure. 

Our group has deployed real-time in situ sensor instruments on fixed platforms in 
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targeted locations in Corpus Christi Bay to monitor important baseline parameters, such 

as hydrocarbon contaminant concentrations, nutrient levels, particle size distribution and 

characterization. In addition we have added sensor arrays to a geo-referenced boat that 

provide valuable information for emergency response planning activities in surface 

waters. The sensor-arrayed geo-referenced boat provide valuable real-time data that can 

be transmitted to a shore-based the Incident Command Center to aid the response 

decision-making process. 

With the realization of the need for bridging between different computing 

platforms and exchange of information in real-time, the Open Software Foundation 

(OSF) developed the Distributed Computing Environment (DCE) (Hashimoto et al., 

1996), which is comparable in certain respects to the Common Object Request Broker 

Architecture (CORBA, Object Management Group) (Vinoski, 1997). The growth of the 

Internet and development of the Transport Control Protocol/Internet Protocol (TCP/IP) 

opened up a completely new frontier in the area of distributed computing. Coupled with 

the development of wireless communications, ship-to-shore data telemetry for 

environmental monitoring and emergency response can be realized in a cost-effective 

manner using commercial off-the shelf (COTS) products. Figure 2.1 shows the 

architecture of the DCE, which makes it possible to have legacy code and proprietary 

applications in a collaborative environment running on different computing platforms, 

the Distributed File System (DFS) being a key component within the DCE framework.  
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 Distributed Applications 

DCE Extended Services 

Network Management Event Service Distributed File Service 

DCE Executive 

Directory Services Distributed Time Service Security Service 

Remote Procedure Call 

Threads Service 

Operating System and Network Service 
 

Figure 2.1. DCE architecture (Brando, 1995). 

 

Near Term Objectives and Project Scope 

The objectives of this study are summarized below: 

• Develop data acquisition (DAQ) systems including hardware and software to 

guide sampling efforts from mobile and remote sensing platforms in surface 

waters particularly when responding to episodic events.  

• Develop algorithms for real-time data acquisition, data analyses, post processing 

and visualization. 

• Deploy DAQ unit with selected instruments including but not limited to current 

meters, particle size analyzers, fluorometers, and current meters.  

• Integrate wireless data telemetry for data transmission based on 802.11b 

protocol.  
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• Implement a web server for data synthesis, making data and graphics available 

on the web in near real-time. 

To facilitate the decision making process, integrated datasets from sensors and a 

numerical model operating in near real-time is to be made available for visualization in 

real-time via the World Wide Web (www) through the implementation of a web server 

with user selectable input for sensor selection and determination of coefficients needed 

to drive a numerical model. High-level data synthesis is to be facilitated through 

conformity to the widely accepted format, the Network Common Data Form, NetCDF 

(Rew and Davis, 1990).  

 

Design Concept 

For environmental sampling, increasing use is being made of in situ sensors 

mounted either on fixed or mobile sensing platforms (Austin et al., 2002; Schofield et 

al., 2002; Volpe and Esser, 2002; Wiebe et al., 2002), typically communicating with data 

acquisition (DAQ) units using the RS232 data transmission protocol. For our purpose, an 

array of sensors mounted on a tow-body capable of performing undulating profiles 

through the water column was used within the context of response to episodic events and 

mapping of surface waters for environmental parameters. The multiple subsurface 

instruments were interfaced with the shipboard DAQ computer using TCP/IP, thereby 

overcoming the limitations inherent in RS232 communications with respect to distance 

while at the same time multiplexing the data into a single stream. High data throughput, 
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reliable connectivity and seamless integration into existing data networks were some of 

the conceptual design considerations.  

The Transmission Control Protocol/Internet Protocol (TCP/IP) serves as a 

common thread to weave these platforms and modules into an integrated computing 

system. A ship-based local area network (LAN) was established using a submersible 

device server that links in situ sensors to an onboard computer. The onboard computer 

performs the role of a data post-processor and communications server, linking the field 

sampling station with the other modules and transferring data to Incident Command. A 

wide area network (WAN) based on wireless broadband communications facilitates the 

ship-to-shore link.  

Motivation to use a 10BaseT Wireless Ethernet connection for the WAN 

includes: easy and convenient drive mounting, restoration of dropped network 

connection with minimal intervention (self-healing network), and high bi-directional 

data throughput. Various options available for achieving the data telemetry link include 

wire lines, leased lines, dial-up, satellite links, microwave links and radio Frequency 

(RF) spread spectrum. In this study, the RF spread spectrum technology was found to be 

the most cost-effective, offering the advantages of continuous data transmission, 

moderate throughput, ease of operation, and adequate link lengths. The dial-up option 

was also found to be viable but lacks the bandwidth and required ease of operation.  
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Environmental Monitoring in Surface Waters 

This sub-section provides a synopsis of environmental monitoring to highlight 

the challenges especially as it relates to the decision-making process in response to 

episodic events and emergency response efforts. 

 

1) Sampling 

i. Grab sampling: This method falls within the classification of ex situ sampling 

and is mostly suited for off-line processing. Samples collected are analyzed in a shore-

based or onboard laboratory (Volpe and Esser, 2002). Onboard analytical laboratories 

are expensive and especially for smaller craft, they are often impractical. In light of 

these, collected samples may have to be sent off to a land based laboratory which 

somewhat affects the decision making process. Grab sampling methods are most suited 

for routine monitoring where immediate analytical results are not required or where the 

analytical method exclusively calls for wet-chemistry. The spatial-temporal resolution 

with these methods is extremely limited. 

ii. Flow-through sampling: This method also falls within the category of ex situ 

sampling and is essentially a variant of grab sampling. The water samples are pumped to 

the surface where they are analyzed by using the same methods applicable to grab 

sampling. They may also be used in conjunction with some of the sensors used for in situ 

sampling (Hanson, 2000) whenever immediate results are desirable. The drawback with 

flow-through methods are the effects of the fluid-flow on the sample and the need to 
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allow for fluid flow-rates and tubing lengths when determining the exact sample location 

for geo-referencing purposes.  

iii. In situ sampling: In situ sampling makes use of submersible sensors for real-

time or off-line processing of environmental or oceanographic measurements. It 

eliminates some of the problems inherent in flow-through methods as outlined in the 

previous sub-section. It is especially suited for real-time processing and facilitates the 

decision-making process by reducing the latency in data availability when compared 

with off-line processing. 

A combination of ex situ and in situ sampling may be necessary whenever data 

validation is called for. In this case, the results of laboratory analyses are used in 

validating the data returned by the submersible sensors and for QA/QC. 

 

2) Data Acquisition  

In situ instruments can be operated in batch-processing mode in which case, 

onboard or computer-based data loggers are used, as is the case with long-term 

autonomous deployments. Real-time data acquisition through vendor-supplied software 

may not be practical especially when interfacing more than one instrument to the DAQ 

unit. For real-time monitoring, data pre-processing is usually performed with embedded 

routines in instrument microprocessors or by using external routines on a remote 

computer. Post-processing may be necessary for the purpose of applying correction 

factors or some other instrument specific routines to the raw data in order to make the 
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data representative of the parameter being measured e.g. to go from raw digitized data to 

engineering units. 

In building instrument arrays, there are advantages to be derived from using 

commercial-off-the-shelf (COTS) products. In some cases, the end-user chooses to 

develop instrument arrays from the ground up. Instrument developers often provide 

software to facilitate real-time data acquisition but the use of instrument specific 

software interface may become impractical when deploying instrument arrays using 

instruments from multiple vendors. In such cases, it will be necessary to have knowledge 

of low-level commands specific to each instrument in the proposed suite of instruments 

in order to facilitate the implementation of an integrated interface for real-time 

applications. In developing such an integrated interface, working with instrument 

developers may is essential for accessing any low-level instrument control routines and 

other instrument specific data pre-processing schemes.    

Developments in sensor technology over the past decade have led to availability 

of in situ instrumentation for oceanographic and environmental measurements. These 

range from sensors for basic water quality measurements e.g. Conductivity, 

Temperature, Depth, (CTD) sensors to more specialized sensors such as particle size 

analyzers (Agrawal and Pottsmith, 2000), imaging devices, current profilers (Ocker, 

2002), nutrient analyzers (Hanson, 2000) etc. These could be deployed by themselves or 

as part of an instrument array. For geo-spatial data representation, one vital piece of 

instrumentation is the Global Positioning System (GPS) that provides the location and 

time stamp for each data point returned from the submersible sensors. The in situ 
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instrument array as used in this study was built from COTS devices although the option 

of building instruments from the ground up was explored. The instruments used here are 

highly specialized and have been proven in the field, finding wide acceptance within the 

user community (particle size analyzers, multi-spectral fluorometers, CTD sensors, 

current meters). These were interfaced to a common DAQ system by accessing their 

low-level operating modes.  

 

3) Real-time Visualization  

To take full advantage of real-time data acquisition, real-time data visualization 

becomes imperative. This could be in form of a time-series or geo-spatial datasets, 

vector mapping, contour plots, and animations or a combination of these. Figure 2.2 

presents the data flow structure for implementing the real-time data visualization within 

this framework. 

 

 
 Instrument Array 

Data Acquisition 

Data Pre-processing

Data Transmission 

Data Post-processing

Data Archiving 

Data Visualization  

Figure 2.2. Representation of data flow for real-time data acquisition and visualization. 
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4) Correlative Data Visualization  

To glean information from environmental measurements that may not be so 

apparent from single parameter measurements, correlative data visualization may be 

used between analogous multi-parameter datasets returned by single or multiple 

instruments (Treinish and Goettsche, 1991). For example, dissolved oxygen (DO) levels 

may be visually correlated with high fluorescence measurements to infer information 

regarding phytoplankton production which can raise or lower DO. 

 

 

 

 
Figure 2.3. System block diagram for IEOAS. 
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Figure 2.4. Schematic diagram of IDACC and submersible multi-port instrument interface. 
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System Description 

Integrated Data Acquisition Communications and Control (IDACC) Unit  

A block diagram representation of the IEOAS presented in the preceding sections 

is given in Figure 2.3. For the shipboard data acquisition unit, an Integrated Data 

Acquisition Communications and Control (IDACC) unit was developed as well as a 

submersible multi-port instrument interface. A schematic representation of the IDACC 

and submersible instrument interface is provided in the Figure 2.4.  

As the main hardware component for data acquisition, IDACC (Figure 2.5) 

comprises a 15" single board flat panel industrial computer (PANEL 1150-370, Axiom 

Technology Company, Ltd.) mounted in a NEMA 4X sealed moisture-proof vented 

enclosure (Hammond Mfg., Inc.). The unit was built as a portable self-contained unit for 

easy transportation and fast onsite hookup and runs on regular AC power. Incorporating 

an AC/DC power converter, it provides a data acquisition interface to the sub-surface 

instruments and acts as a communications server for ship-to-shore data telemetry 

through a software application that was developed in-house. The IDACC interfaces with 

a sub-surface multi-port  instrument interface, a differential global positioning system, 

DGPS (Furuno GP37), a 16-port RS232/4-port USB module(Edgeport/416, Inside Out 

Networks, Inc.) and a 5-port Ethernet switch (EtherTRAK from Sixnet, Inc.). Power 

from a 375 W AC-DC power converter (PFC375, Power-One, Inc.) mounted in the 

IDACC enclosure is fed through a power distribution box providing 5, 10, 12 and 24 

VDC supply. The 24 VDC output is sent through a winch/slip-ring assembly, down the 

sea-cable to the tow-body and the submersible device server, which in turn distributes 
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power to the sub-surface sensors. The voltage drop at full load between the deck and 

subsurface units is ~2 V. 

 

 
Figure 2.5.Top, inset; submersible multi-port device server. Bottom; IDACC comprising GPS unit, 

industrial computer in NEMA 4X enclosure, NEMA keyboard, power distribution and 4-port network 
interface. The main unit, which houses the electronics tilts up into operating position, supported by gas 

springs. 
 

The sea cable comprises stranded twisted pair wire for both TCP/IP data 

communications as well as power supply. Data telemetry is facilitated by the 5-port 

network interface, connecting the IDACC to the subsurface device for data acquisition 

and sending of command signals via TC/IP to the sensors mounted on the tow vehicle. 

The network interface provides WAN connectivity by wireless telemetry through a radio 

link to shore-based network thereby ensuring real-time data accessibility for decision 

makers and stakeholders. In addition, IDACC allows for local data archiving on the local 
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hard drive through the software module, the Multi-Parameter Instrument Array and 

Control System (MPIACS). Built for rapid deployment, IDACC is portable, completely 

sealed and moisture proof. It can be deployed on the open deck of a boat, if cabin space 

is at a premium and requires just three quick connections; AC main power supply, DC 

power and data link to the subsurface device server and antenna connection for the GPS 

unit. A single power switch activates the entire system, booting up the main computer 

and the subsurface units.  

For portability and transportability, the entire assembly comprising the IDACC 

and its ancillary modules (keyboard, GPS, power distribution) are mounted in a custom 

ATA shipping case (Hardigg Cases, Inc.). The case is a molded plastic grab-and-roll 

wheeled case with pressure equalizing valve allowing the assembly to be transported on 

aircrafts. The IDACC main module is a hinged assembly supported by gas-springs 

allowing the unit to be folded down and packed up for transportation. For on-site 

deployment, the top of the shipping case is simply removed, the IDACC main unit 

swings up into the open position and the connections made to the respective ports. The 

unit is powered up and made ready for data acquisition. In mounting the IDACC inside 

the shipping case, a set of rubber mounts was used for vibration isolation to protect the 

sensitive electronics from exposure to excessive vibration. Figures 2.5 and 2.6 show the 

IDACC interfaced to the tow-body through the submersible multi-port instrument 

interface.    
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Submersible Multi-Port Instrument Interface 

The subsurface electronics are mounted on the end cap of a sealed housing made 

from PVC and includes power and data interface comprising of five sealed underwater 

connectors for power and data connection to the IDACC and up to four instruments 

mounted on the tow-body. This four-port subsurface unit acts as a power distribution and 

data communications unit. It comprises a multi-port serial RS232 device server (Digi 

PortServer TS, Digi International, Inc.) and a DC-DC power converter (BQ2540-7R, 

Power-One, Inc.), which acts as a power conditioner, receives DC supply in the range 

15-36 VDC from the IDACC and distributes 15±0.07 VDC to as many as four different 

sensors simultaneously.  

 

 
Figure 2.6. IDACC and tow-body with instrumentation and submersible multi-port device server 

undergoing bench tests. 
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To provide the data link between multiple in situ sensors and the shipboard 

IDACC unit, the device server was used to provide a multiplexed RS-232 serial 

instrument interface. This uses the TCP/IP protocol and addressing to implement virtual 

COM ports between the sensors mounted on the tow-body and the IDACC, the data 

being sent over twisted pair through the sea-cable. Access to the electronics is easy as 

the end-cap screws on to the main housing, the entire electronics and wiring being 

mounted on the end-cap. Driver files are required on the host PC to access the virtual 

COM ports on the device server, which includes a web interface for diagnostics, 

configuration and monitoring. The tow-body (Acrobat, Seasciences, Inc.) is an open 

frame undulating unit used to deploy the in situ instrument package. It can maintain 

either constant depth/elevation or undulating flight paths. It can be either controlled by a 

shipboard computer or manually controlled. 

 

The Multi-Parameter Instrument Array and Control System: MPIACS 

"The Multi-Parameter Instrument Array and Control System", MPIACS (Figure 

2.7) is a software interface that provides real-time data visualization of up to six different 

parameters measured by single or multiple instruments simultaneously. These 

parameters could be concentration measurements from fluorometers, particle size 

analyzers, salinity, temperature etc.  For each parameter, the percentage of the parameter 

(measured value relative to a pre-set peak value) generates a color trace corresponding to 

the horizontal travel of the instrument array through the water. This gives a visual 

indication of the spatial distribution of intensity of the constituent of interest or sampled 
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parameter. Since not all constituents of interest in environmental sampling lend 

themselves to visual contact, MPIACS was developed as a tool that provides 

instantaneous visual feedback to operators during environmental monitoring in surface 

waters. The interface is user-friendly allowing for quick configuration and minimal 

intervention from the operator. This tool has been used successfully in several 

deployments in simulated emergency spill response, routine bay profiling as well as dye-

tracer experiments.  

As a real-time environmental monitoring tool, the visual feedback aids the data 

acquisition process by providing immediate identification of "hot" and "cold" spots 

within the water body for the constituents of interest through measurements from 

submersible sensors. Each data point is location and time stamped through the IDACC's 

integrated GPS unit. The data stream is archived on the local hard drive in plain ASCII 

text, tab delimited file format for off-line processing. By allowing for correlative data 

visualization, MPIACS aids the data acquisition effort in an Adaptive Sampling 

framework (Stein and Ettema, 2003) by removing the "guess-work" inherent in 

environmental monitoring especially relating to constituents of interest that do not 

provide visual identification or if sampling was being performed during periods of low-

visibility conditions. This visual reference will aid or guide data acquisition efforts and 

may be implemented in. Each color-coded trace is geo-referenced and displayed against 

a map outline of the study area by combining the instrument data stream with the GPS 

unit time and location information.  
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Figure 2.7. The MPIACS software interface. Lower right panel is a zoomed in portion of one of the 6 
data visualization panes from the main instrument panel. 

 

MPIACS was implemented in a modular form to facilitate expandability as well as 

flexibility to accommodate a wide variety of instruments. The modules comprise: Data 

Acquisition, Instrument Control, Data Post-processing, Data Visualization and Data 

Archiving. Unlike other data visualization programs that are written for off-line data 

visualization (He and Hamblin, 2000), the MPIACS prototype was developed with the 

objective of providing real-time data visualization while the data acquisition vessel is 

underway. A version of MPIACS was also developed, that operates in "playback" mode 

and suitable for off-line data visualization. 

The GPS unit operates in three modes and can be set to auto-select between GPS, 

DGPS (differential GPS) or WAAS (wide area augmentation system) modes, depending 

on service availability. The accuracy of the GPS varies with the mode:  DGPS mode 

(accuracy is within 1 m or 3 ft), WAAS mode (5 m or 15 ft), or GPS mode (10 m or 30 

ft). Sampling rate of the instrument array will be governed primarily by the acquisition 
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rate from the GPS unit (fixed at 1 Hz) since all data points are geo-referenced. Travel 

speed of the sensing platform is governed by the tow-body and would typically average 

5 knots and given this set of conditions, a spatial sampling resolution of ~3 m (9 ft) 

would be expected.  Actual spatial resolution would vary depending on the operational 

mode of the GPS unit.  

 

Ship-to-Shore Wireless Telemetry 

For the ship-to-shore data telemetry, various options were explored including 

cellular, satellite, leased line links and the most cost effective option, using un-licensed 

radio links in the 2.4 GHz frequency range was decided upon. This link provides 

broadband 10BaseT wireless Ethernet transmission up to a theoretical throughput limit 

of 11 Mbps and distance limit of 24 km. The design considerations are presented in this 

section specifically addressing frequency, throughput, antenna type and mounting (with 

or without directional tracking). Detailed design issues for the radio link are given in this 

section. A number of hardware vendors were considered during the selection process 

looking at criteria such as ruggedness, ease of configuration, range, throughput and 

expandability. Hardware from two vendors were on the eventual shortlist for this project 

and the SpeedLAN 9000 series wireless routers supplied by Wavewireless, Inc. was 

chosen.  The components making up the wireless units consist of a router, junction box, 

Ethernet interface and a signal amplifier. In selecting the antenna type and height, a link 

budget analysis was performed.     



43 

 

 
 

 

For the shore end of the point-to-point link, a 2.4 GHz, 14-dBi sectoral antenna 

(Til-Tek, Inc.) with variable horizontal beamwidth between 60º and 160º and vertical 

beamwidth of ±10º was used. The ship-based radio was configured as base-station for 

the network and for this purpose a 15-dBi omni-directional antenna (HG2415U-PRO, 

HyperLink Technologies, Inc.) with a vertical beamwidth of ±27º, providing 360º 

horizontal beamwidth was used. The omni-directional antenna was selected for the 

mobile platform in order to ensure a constant link regardless of the ships heading. Other 

options considered for the base-station were: 1) collocation of radios using multiple 

sectoral antennas to increase horizontal coverage and 2) directional antenna with a 

tracking device to re-orientate the antenna and compensate for movement of the 

platform. The omni-directional antenna provided the best option for our present purposes 

being easier to implement and more cost effective.  

 

1) Link Budget Analysis  

In designing the radio link, a number of factors have to be considered such as 

coverage, throughput, terrain, Fresnel zone, antenna characteristics (vertical/horizontal 

beamwidth, radiative power, polarization, propagation pattern etc.) and frequency. The 

link budget analysis is necessary to determine the available transmitted power which 

must be greater than the receive threshold for the receiver plus some margin. If the link 

is determined to be feasible, a reliability check is then performed to determine the 

uptime of the link, which is affected by environmental factors such as curvature of the 

earth, obstructions between the sites and Fresnel Zone clearance.  
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Generally, a line of sight (LOS) is required between the sites, and the earth's 

curvature is not usually taken into account for link lengths shorter than 10 km. The 

general formula for performing link budget analysis is provided below and for this 

project, it was determined that a link length of 16 km (10 mi) was sufficient to provide 

coverage. Figure 2.8 shows a profile of Corpus Christi Bay and the expected coverage, 

which is directly related to the horizontal beam width of the antenna and in turn is 

derived from the antenna radiation pattern. 

 

   Afree = 32.45 + 20log10(d) + 20log10(f)    (2.1) 

RSLfree = (PTX + GANT) - Lloss – Afree    (2.2) 

Thermal fade margin (dB) = RSLfree – RTL    (2.3) 

Thermal fade margin must be a positive value and a value ~10 dB is considered good for 

a feasible link where: 

d (km) is the distance between the stations (link length) 

f (MHz) is the frequency 

Afree is free space attenuation (dB) 

RSLfree is free space receive signal level 

PTX is transmitter power (dBm) 

GANT  sum of antenna gain for both transmit/receive 

Lloss is the sum of all transmission losses (lines, connectors etc.) 

RTL is receiver threshold level based on a minimum Bit Error Rate (BER) 
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Figure 2.8. Map of coverage area. 
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Implementation 

The novel scheme in this implementation is the ability of a shore-based Incident 

Command Center or stakeholder to observe in near real-time, data stream from a mobile 

sensing platform. In addition to data streaming, post-processed data available for display 

in near real-time through a web server was also investigated. The web server allows the 

user to run remote applications, which accepts the data stream as input. In this 

implementation, we were looking at DNS of constituents in surface waters, driven by 

data from radar surface current measurements, coupled with output from the mobile 

platform in an adaptive sampling framework (Thompson and Seber, 1996). Central to 

this is the Multi-parameter Instrument Array and Control System, MPIACS described in 

this section. 

 

Data Acquisition Module 

The Data Acquisition module consists of a drop down selector menu and 6 slider 

controls. The user selects the study area from the drop-down menu and a geo-referenced 

map outline of the study area is displayed in all the six panels. The expected maximum 

levels for each parameter to be measured are set using the six-slider controls. Based on 

these maximum values and a minimum value of zero, a simple algorithm is then used to 

scale the color-coded trace that is displayed on screen in the corresponding panel for 

each parameter. 
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Instrument Control Module 

The Instrument Control module provides data communications with the 

instruments and consists of a set of 6 drop down selector menu. As many as 6 

instruments can be interfaced through this module and depending on the instruments 

selected, a communications (COM) port is opened for data acquisition. Instrument 

specific settings are hard-coded in this implementation, but future enhancements will 

include a dialog box, which will allow the user to set or change instrument 

communication parameters such as baud rate, flow control etc. Once the individual 

instruments have been associated with a COM port, the "Connect" button at the bottom 

of the main panel is used to initiate communications and control with the instruments. 

The two buttons labeled "Start" and "Stop" are then used to begin the data 

acquisition after all the required settings have been made. With the "Start" button, 

instrument data are parsed into variables corresponding to the parameter of interest. Each 

line of data from each instrument is location and time stamped through the GPS data, 

representing a sample point within the study area. This process is continuous and only 

terminates when the operator presses on the "Stop" button. 

 

Data Post-Processing Module 

Some instruments return raw data that need to be post-processed in order to 

obtain the actual measurements for a particular parameter. Instrument specific 

algorithms are used to convert the raw data for example, from calibration curves, or 
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other mathematical routines. Correction factors that may be needed are also included in 

these instrument modules. Following post-processing, the final instrument data are 

 

 

Figure 2.9. Data acquisition module with slider controls for setting instrument levels and drop down 
menu for selecting study area. 

 
 

 

archived in plain ASCII tab delimited format. The instrument specific algorithms are 

individual modules that are called up depending on whether the instrument is included in 

the instrument array and connected using the Instrument Control module discussed 

above. It may be necessary in future enhancements, to come up with a database of such 
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instruments or users would have to write their own routines to accommodate sensors 

applicable to their deployment. The MPIACS user interface implementation is shown in 

Figure 2.9 comprising the individual modules described above. 

 

Data Visualization Module 

For each parameter, a percentage number variable (measured value against a pre-

set peak value) generates a color trace corresponding with the horizontal travel of the 

instrument array through the water, giving a visual indication of the spatial distribution 

of relative intensity for the constituent of interest or sampled parameter. Each 

parameter's colored trace can be displayed in one of the six respective panels with the 

panels being expandable by a mouse click (for touch-screens, by touching) on any one of 

the six available panes. The expanded screen has infinite zoom levels and the operator 

can zoom in to any level of detail. The user returns to the main screen through the click 

of a button on the bottom of the expanded screen.  

 

Data Archiving Module 

This implementation of MPIACS includes a data archiving routine which allows 

for off-line analyses of the acquired data. The data files are time and location stamped 

and one data file is generated for each sensor in plain ASCII text, tab delimited format. 

This data format can be read into most spreadsheet or word-processing applications. 

Each data file contains metadata to allow sharing of data through the Internet and 

assuring quality of the data.   
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Results 

Operational Tests 

Prior to field deployment, two series of operational tests were performed for the 

IEOAS viz. bench tests and field tests, which were designed to test the individual 

modules as well as the entire system to identify parts that were in need of refinement or 

fine tuning. For instance, the field tests allowed independent assessment of the radio link 

for availability, bandwidth, throughput, reliability and range. The IEOAS could be 

implemented in two or three operational modes, in the final analysis, the choice would 

be dictated by such factors as reliability, interoperability, ease of use and rapid 

deployment. Most, if not all, background processes should be transparent to the user and 

requiring little user intervention allowing the operator to focus attention on the main 

tasks.  

One particularly interesting mode of operation is that which allows direct 

streaming of data from the sensor array to the shore-based computer over a WAN with 

the instruments appearing to be directly connected to the shore-based computer through 

virtual COM ports provided by the device server to which the sensors are connected. 

This was made possible by TCP/IP addressing. The ship-based computer would then be 

freed up from the task of data post-processing and visualization and could be dedicated 

to other services such as navigation, communications and data archiving. 

Information exchange takes place within the IEOAS through several means, 

paying particular attention to the native data format on the individual computers (remote 

or shore-based) and sensors within the network. Common data formats include ASCII 
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text files, streaming binary data, several flavors of image file formats (png, gif, jpeg 

etc.). The type of information made available in this implementation includes 

hydrodynamic, meteorological (wind speed, ambient temperature, weather forecasts), 

oceanographic (water temperature, salinity etc.), output from DNS and environmental 

measurements (concentration profiles). The data types are presented below. 

• Directory Synchronization Process (DSP) 

• Remote Access Process (RAP) 

• Hydrodynamic data 

• Trajectory predictions 

• Meteorological information 

• Forensics 

• Navigational information (important for safety and post-cruise audits) 

• Sampling transects 

Partly, the software requirements consist of components that are integral to the 

computer operating system such as TCP/IP and Internet services and some third party 

products were used to bridge between the Integrated Data Acquisition Communications 

and Control (IDACC) unit and the various distributed services.    

 

Bench Tests 

The testing phase was implemented in stages, starting with the bench tests. The 

objective of the bench test was to run the distributed processes in real-time from the 

IDACC prior to field-testing and this allowed us to test the IEOAS while factoring out 
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performance issues related to the wireless telemetry part of the scheme (link reliability, 

quality, throughput, bandwidth). Bench tests include starting and stopping of remote 

applications and services, file management, data exchange and archiving.  To facilitate 

the bench testing, the services listed in Table 2.1 implemented with each service running 

off a different computer at different locations within the IEOAS domain. 

 

Table 2.1. Services implemented for IEOAS bench test. 

Service Description Purpose 

Hydrodynamics 
 

Surface current measurements from radar Near real-time data driven 
constituent transport model 
 

Transport Model Prediction of concentration profile of 
constituent, driven by real-time data 

Provide visual indication of 
trajectory and extent of plume 
 

Meteorological Weather and other environmental 
variables (air/water temperature, tide etc.) 

Provide information to vessel 
during sampling exercises 
 

Data Acquisition Environmental and oceanographic data 
from sensors 

Provide actual measurements of  
constituent concentration and 
other environmental and 
oceanographic variables 

   

 

For the bench test, the IDACC running the data acquisition service was 

connected to one end of a wireless radio link. Through the device server, the instruments 

were connected to the IDACC and with the GPS set in simulation mode, data acquisition 

was simulated using the MPIACS software application (Ojo et al., 2003b). This 

represents the part of the IEOAS on the geo-referenced mobile sensing platform. 

Another computer running the transport model was connected to the other end of the 
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radio link, representing the onshore end of the IEOAS. From the IDACC, the transport 

model was remotely executed using remote access process (RAP) as indicated in the 

preceding sections. 

Through a combination of the RAP and the directory synchronizing process 

(DSP), the IEOAS allowed the implementation of a data-driven near real-time 

constituent transport model using surface current measurements from radar as input (Ojo 

and Bonner, 2002). Output from the model was made available to the rest of the IEOAS 

in near real-time using the directory synchronizing process and a web server 

implementation based on Apache (Thau, 1996). Remote applications service was 

provided using third party software (NetSupport Manager, © Productive Computer 

Insight, Ltd.). NetSupport Manager allowed a central command and control computer to 

implement file transfer between the distributed computers, broadcasting text and voice 

messages across the network, as well as running applications directly on remote 

computers.   

Once a network connection had been established using TCP/IP via Ethernet, 

information exchange was facilitated in real-time through transferring of files using by 

Synchromagic (© GeloSoft, Inc.) based on DSP. The synchronizing process polls the 

remote or source directory at pre-defined intervals, triggered by a timer. The specified 

directory on the client computer is updated based on time-stamp, file size, and other file 

attributes that could be queried for file management normally set by the operating 

system. It is essential though for time-stamp query that the clocks on the various IEOAS 

components be synchronized. Once the files have been updated, the process initiates the 
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execution of the particular service for which the files or information are designated. For 

this bench test, the transport model requires updated surface current vector files, which 

are generated hourly by radar. The DSP updates the files for the transport modeling 

service at the end of which a model simulation run is triggered using the updated 

hydrodynamic data as input, while the IDACC continues to monitor all services at pre-

defined intervals defined by the operator.  

 

Field Test  

The field test was designed to verify the radio telemetry link in terms of range, 

reliability, uptime, link quality, bandwidth and throughput under operational conditions. 

To achieve maximum coverage within the prototype bay (Corpus Christi Bay) it was 

determined that a 16 km (10 mi) link would be sufficient. The shore-based router was 

setup to use a 14-dBi sectoral antenna with a horizontal beam-width of 120º while the 

mobile sensing platform had a router setup with a 15-dBi omni-directional antenna with 

a 27º vertical beam-width mounted on a retractable mast. It was determined that this 

setup would maintain a good link under operational conditions including pitch, roll, and 

yaw as well as direction and speed changes of the vessel. Due to logistics, the test could 

not be performed at Corpus Christi Bay and so Lake Somerville in Central Texas about 

200 km inland was selected. Lake Somerville is a man-made lake with a longitudinal 

extent of ~16 km (10 mi) which is ~100% of the maximum coverage expected at the 

prototype bay.  
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The link was setup with a fixed antenna height of 9 m (~30 ft) for the shore-

based unit and variable height up to a maximum of 12 m (~40 ft) for the omni-

directional antenna. The sectoral antenna had a 5º mechanical up-tilt to maintain line-of-

sight LOS with the omni-directional. The antenna on the boat was mounted on a 

telescoping mast to allow for variable height and to ensure that the antenna could be 

brought down whenever the headroom requirements change such as passing under a 

bridge or in case of severe whether conditions.  

During the link test, parameters were monitored and a maximum link of ~13 km 

(8 mi) at a maximum throughput of 11 Mbps was achieved. The link reliability was 

determined by monitoring for drops in the link during vessel movement and by how 

much the throughput changed depending on vessel heading.  

 

Field Deployment 

To date, three scheduled drills have been conducted; Galveston Bay, July 2002, 

Corpus Christi Bay, September 2002, Galveston Bay, May 2003. MPIACS allowed for 

real-time visualization of five parameters measured by three instruments. These include 

rhodamine and fluorescein concentrations from a multi-spectral fluorescence sensor 

(SAFire by WETLabs, Inc.), salinity and temperature from a CTD sensor (FastCAT by 

Sea-Bird Electronics) and total particle volume concentration from a particle size 

analyzer (LISST100 by Sequoia). The data was geo-referenced through a marine GPS 

unit (Furuno model GP-37).   
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Figure 2.10. Typical output from IEOAS; contaminant plume trajectory simulation with current vectors 
overlay, concentration profile, and concentration-time plot. 
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In addition to these exercises, scientific experiments were also conducted with the 

system deployed during a series of dye-tracer experiments conducted in Corpus Christi 

Bay with the objective of validating numerical schemes developed for constituent 

transport and fate in surface waters. 

Raw data was locally archived on the main computer by generating an ASCII 

text file for each sensor as well as the GPS unit. The data set was sent at pre-determined 

intervals by telemetry through a ship-to-shore wide area network (WAN). A shore-based 

computer at the Incident Command Center had a version of the MPIACS running on it 

and retraced the instrument color-coded tracklines in near-realtime. With a zero data 

dropout from the instrument array, the Incident Command computer was able to 

regenerate the tracklines without user intervention. A series of dye-tracer experiments 

were also conducted between summer and fall of 2003 including a profile of Corpus 

Christi Bay in July of 2003. Typical output and visualization screens from parts of the 

system are shown in Figure 2.10.  

 

Discussion 

Successfully designed and built a multi-sensor, multi-parameter rapid 

deployment instrument array for environmental and oceanographic assessments in 

surface waters using commercial-off-the-shelf (COTS) items. Central to the IEOAS is 

the IDACC, which provides the link between sub-surface instruments and onshore post-

processing and archival services. The wireless telemetry link as tested provided a cost-

effective implementation of Ethernet connectivity in a mobile marine environment. 
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Although designed for land-based connections, the routers were adapted and used in 

developing a portable easily deployable network for environmental monitoring. The 

results from field trials combined with the results from the bench tests show that the 

technology holds promise for environmental monitoring and emergency response in the 

marine environment.  

The advantages of the IEOAS within the framework of environmental 

monitoring are summarized in this section. 

• IEOAS is cost-effective built entirely using COTS devices and lends itself to 

rapid deployment in emergency response mode.  

• Existing infrastructure can be interfaced directly with very little modification. 

New services can continue to run in their native format.    

• Upgrades or changes can be made to one part of the system without 

reconfiguring the whole system. The system can be expanded without regard to 

memory or data storage capacity. Each service being independently optimized 

contributes resources into the pool including but not limited to memory, storage, 

CPU and data processing. 

• Broadband connectivity gives the ability to transmit large sets of data with 

information exchange taking place over the network using TCP/IP (such as live 

video feeds or large image files) to shore-based units making information 

available to stakeholders in near real-time. 

The system comprising both hardware and software modules have been deployed 

in Corpus Christi Bay and Galveston Bay, Texas for mock oil-spill response exercises 
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and used in a series of dye-tracer experiments in the summer and fall of 2003. The 

system can be readily deployed by a 3-man crew within a half-hour time frame on the 

mobile platform and it lends itself to transportability. The prototype unit particularly the 

IDACC is somewhat bulky and can be reduced in size and weight by specifying custom-

built enclosures. Future enhancements would include an NMEA 2.0 interface to an 

autopilot unit, which accepts input from a waypoints module in the software interface for 

a full implementation of the adaptive sampling scheme. 
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CHAPTER III 

STUDIES ON TURBULENT DIFFUSION PROCESSES AND EVALUATION OF 

DIFFUSIVITY VALUES FROM HYDRODYNAMIC OBSERVATIONS IN CORPUS 

CHRISTI BAY 

Overview 

Turbulent diffusion can be characterized by diffusion coefficients or turbulent 

diffusivity, Ki (i = x, y, z) dependent on the degree of randomness or turbulence intensity 

of the process measured through the velocity of the fluid particles. This study is an 

extension of Taylor's work to environmental field applications using the three-

dimensional (3-D) currents field observed with a fast response current profiling 

instrument, as part of a series of diffusion experiments for Corpus Christi Bay, TX. The 

Lagrangian correlation function, Rτ of the velocity time-series was used in the numerical 

evaluation of turbulent diffusivity values based on the observed current. The numerically 

determined diffusivity values were found to be in the range (~102-104 cm2/s) and in close 

agreement with those determined from observed concentration profiles of conservative 

tracer as well as those obtained using oceanic diffusion diagrams. Surface currents were 

obtained with HF Radar equipment deployed over the study area from which the 

horizontal velocity gradients were determined to be ~10-4 s-1. These low horizontal 

gradients allow for the generation of velocity time series from an ADCP mounted on a 

moving platform within the spatial scale of the experiment, which is of the order of 1000 

m.  
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Introduction 

Diffusion processes in surface waters are important as they govern the overall 

concentration distribution of constituents within the water body. These constituents 

range from naturally occurring material such as salinity, temperature, phytoplankton, and 

sediments through temperature, heat and other anthropogenic material from industrial 

and recreational activities. A concentration profile of these constituents can be 

developed through numerical models that rely on coefficients, which capture the 

physical phenomena that lead to spreading and movement, collectively termed transport 

coefficients. The coefficients may be determined through:  

i) The evaluation of the temporal variation of the currents;  

ii) The evaluation of the spatial variation of the velocity field;  

iii) The evaluation of the first and second moments of concentration 

distribution of a constituent and,  

iv) Inverse problem based on the advection-diffusion equation.  

The first two methods are based on Taylor's work on the analysis of fluid flow through 

pipes (Taylor, 1954) and extended to other fluid flow regimes by Elder in his work on 

flow through open channels (Elder, 1958). There have been very few applications in the 

open waters typical of bays, estuaries and the coastal ocean but an example of the 

adaptation of this method to the open ocean was in a study conducted at the 106-Mile 

ocean disposal site (Paul et al., 1989). The authors are aware that this is the first attempt 

to directly apply this method in shallow waters using measurements taken with an 
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Acoustic Doppler Current Profiler (ADCP) within an Eulerian framework to evaluate 

turbulent diffusivities.  

 Turbulent diffusion in surface waters is analogous to molecular diffusion as a 

stochastic process (Taylor, 1920) and a coefficient of turbulent diffusivity or eddy 

diffusivity can be developed which will be found to be several orders of magnitude 

higher than molecular diffusivity values. In addition, constituent transport in the 

turbulent regime can be modeled as Fickian diffusion with constant coefficients, 

conditionally dependent on a Lagrangian time scale of turbulence. 

This study is aimed at extending this concept into the area of environmental field 

applications with emphasis on the nearshore environment. The objectives of this study 

are: (1) to examine the error associated with the development of velocity time series 

from a spatial series generated from a moving platform; (2) to evaluate from the 

resulting currents, the time scale of the turbulent process and subsequently determine the 

eddy diffusivity for Corpus Christi Bay within an Eulerian framework. These diffusivity 

values will be compared with those obtained from dye-tracer concentration profiles as 

well as in the literature; (3) to develop a numerical scheme for the evaluation of 

turbulent diffusivity from observations of the 3-D current profile that can be applied at 

different spatial and temporal scales.  

Part of our research focus is to develop an integrated system for environmental 

monitoring efforts within Corpus Christi Bay in particular and the Texas Gulf of Mexico 

region in general. The overall objective is to be able to completely characterize the area 

in terms of physical, bio-chemical, environmental and oceanographic parameters using 
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current state-of-the-art in in situ sensors and remote sensing. Currently, a system of High 

Frequency (HF) Radar has been deployed around the Texas Gulf of Mexico covering 

areas around Corpus Christi, Matagorda and Galveston Bay providing real-time surface 

current measurements (Kelly et al., 2004) and efforts are underway to expand the 

capability for response to episodic events (Kelly et al., 2002; Ojo and Bonner, 2002; Ojo 

et al., 2003a).  

A system of fixed and mobile platforms complement the radar system using in 

situ instrumentation, which provide environmental measurements from within the study 

area, variables that can be assimilated into numerical schemes operating in a predictive 

mode (Ojo et al., 2003b; Ojo et al., 2003c) within the framework of environmental and 

oceanographic assessments. The integrated scheme combining these real-time 

measurements with numerical transport modeling (Sterling et al., 2004a; Sterling et al., 

2004b) needs to be effectively characterized and parameterized (Ernest et al., 1991; Lee 

et al., 2000) in order to be fully operational. This work is important for the 

parameterization under different meteorological, oceanographic and geomorphologic 

regimes, of the diffusive component of the resulting constituent transport model and the 

methodology for achieving this objective was developed through this study. 

     

Turbulent Diffusivity 

A method of obtaining turbulent diffusivity values from the direct observation of 

currents in surface waters was developed as part of this study against the backdrop of 
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constituent transport modeling within a body of water, by relating the statistical process 

of diffusion to a diffusion coefficient, K given below: 
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where σ2 is the variance of a cloud of diffusing particles, τ is a lag time between 

successive observations of the velocity, u of a fluid particle and 2'u  is the mean-square 

of the velocity fluctuation of fluid particles in random motion and relates to the degree of 

randomness or turbulence intensity. Taylor adopted a Lagrangian correlation coefficient, 

R of the form LTe /τ−  from which an expression for K can be derived using (3.1a) where 

TL is the integral time scale of diffusion. For times when τ » TL, it follows that the 

diffusing cloud grows at a constant rate with diffusivity given by:  
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The time, TL, which can be determined from the area under the R curve, is 

regarded as the 'persistence time' of the particle velocities after which the particles have 
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lost all memory of their initial velocities. With respect to a set of coordinate axes and in 

terms of the respective time scale, Ti, 
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for i = x, y, z corresponding to the coordinate axes. The quantity )(' tui is the ith 

component measured at time t, of the Lagrangian velocity fluctuation around a 

supposedly steady mean velocity, )(tui  of a tagged particle experiencing turbulence in a 

fluid, and τ [0 ∞] is a lag time for the ensemble of velocity measurements.  

This introduces the following concepts: 

a) Turbulence intensity given by 2'
iu ;  

b) Characteristic velocity given by 2'
iu , the rms of the velocity fluctuations 

and 

c) Gustiness given by ii uu 2'    

the overbar indicating an ensemble mean of realizations ui of the velocity components 

over a period of time, with Ri(0) = 1.0 and Ri(∞) = 0. This implies that Ri is bounded and 

at large enough times, there is an asymptotic convergence of turbulent diffusivity values 
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following which the diffusive component of the transport model can be modeled as a 

Fickian diffusion process. Several models have been proposed for Ri by researchers to 

describe specific flow regimes (Frenkiel, 1953) including the simple exponential form 

used by Taylor in his classical work on turbulence. This allows for the integral in (3.2) to 

be performed leading to the evaluation of Ki if the mean of the flow velocity, ui is 

known. In oscillating flows commonly experienced in tidal or wind-driven bays and 

estuaries, ui can be evaluated using a running average over a suitably large number of 

ensembles.  

Certain requirements for Ri(τ) are imperative in order to find analytical forms for 

Ki but in complex flow regimes typical of bays and estuaries within temporal scales of 

the order of minutes and spatial scales of the order of a few thousand meters, the 

difficulty lies with finding the Lagrangian values in equation (3.2) from the Eulerian 

statistics that current meter measurements would typically return. In the work of Paul et 

al., long-term current meter readings were used in estimation of the dispersion of waste 

sludge under high- and low-turbulence conditions on a spatial scale of the order of 100 

km and temporal scales of the order of 100 days.  

By obtaining the probability distribution of the velocity measurements along 

independent coordinate axes, the variance-covariance property of the distribution was 

used based on the assumption that the averaged mass-distribution of a constituent would 

be described as a multiple of the velocity distribution. In related work, (O'Connor et al., 

1985) the turbulent process in open waters was categorized using three broad 

classifications viz. small, intermediate and large. 



67 

 

 

• Small Scale -- temporal scale < 24 h, spatial scale between 0-10 km. 

• Intermediate Scale -- temporal scale between 1-100 days, spatial scale between 

10-300 km. 

• Large Scale -- Temporal scale > 100 days, encompassing the ocean basin. 

This study is restricted to small-scale processes where tidal and inertial motions are 

considered advective and the velocity fluctuations about the tidal mean are responsible 

for diffusion or turbulent mixing. This is in contrast to intermediate and large-scale 

processes where the tidal and inertial currents will be considered diffusive. This scale 

dependence of the turbulent diffusion process was compiled into a set of oceanic 

diffusion diagrams (Okubo, 1971) based on data obtained for the open ocean, which may 

not find much applicability within the coastal and nearshore environments. In light of 

this, similar diffusion diagrams are needed specifically for the coastal ocean but data on 

the diffusive process within these areas will have to be developed. 

A series of dye experiments conducted in the Baltic (Schott, 1978) using a set of 

vector-averaging current meters (VACM) extended previous studies in meteorological 

applications (Hay and Pasquill, 1959) to the oceanographic field. These two studies 

investigated the relationship between the Lagrangian and Eulerian statistics through a 

scaling of the time axis for Ri(τ). The relation equivalent to (3.2) is: 
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The empirical coefficient β serves the purpose of preserving the shape of the 

autocorrelation and ranges in value between 1-4. A value of ~4 was found to give 

adequate results for meteorological applications with no specific prescription for 

oceanographic applications. It is hypothesized here that the value of β is dependent on 

the method by which the currents field is measured, which in turn is determined by the 

type of instrumentation.   

Bowden-Fairbairn deployed two fast response current meters that were capable 

of responding to fluctuations with a period of ~2 s (Bowden and Fairbairn, 1952) in the 

Mersey Estuary (Great Britain) from which they were able to directly obtain the values 

of Ri(τ). Bowden and Howe used the same approach within the same study area but 

using an electromagnetic flowmeter that could sample fluctuations with periods ~1 s 

(Bowden and Howe, 1963). By comparison, the VACM used by Schott averaged 

currents over a period of 112 s and it is possible, with the higher sampling frequency 

used by Bowden et al. for the direct application of (3.2) which is equivalent to setting β 

= 1 in equation (3.3). 

Our approach is similar to that used by Bowden et al. using a fast response 

current profiler and direct numerical analysis of the velocity time series for the 

evaluation of Ri(τ) through discretized forms of equations (3.1) and (3.2). The current 

profiler employed was capable of sampling with a period ~0.5 s returning measurements 

that allowed for the direct application of (3.2).  
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Noting that linear growth is a necessary but not a sufficient condition for 

equation (3.2) to be applicable within the context of the governing equations of transport 

(Fischer et al., 1979) an integral length scale li could be defined as follows: 

 

   22'2
iii Tul =       (3.4) 

 

 This length scale then is the distance that a fluid particle must traverse before it 

loses memory of its initial velocity. This establishes scale-dependence for turbulent 

diffusion, which ranges from microseconds for Brownian motion through 0.1 s for 

laboratory-scale turbulence to 100 s for atmospheric applications. This is important in 

the sense that the process of turbulent diffusion can be characterized by a length scale 

that depends on a characteristic velocity and a time-scale which in turn depends on the 

asymptotic property of the velocity autocorrelation function. Stated differently, 
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and for Ki = constant 
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 If 2
iL  represents the size of the diffusing cloud of particles along a particular 

coordinate axis, then the turbulent diffusion process can be modeled as Fickian diffusion 

with a constant diffusivity, Ki in the regime where the cloud size is much larger than the 

length scale of the turbulence i.e.:  

 

      2
iL  » 22 il      (3.7) 

 

Methods and Materials 

The study was conducted as part of a series of dye-tracer experiments conducted 

within Corpus Christi Bay through the summer and winter of 2003. The analyses given 

in the preceding sections were applied to Corpus Christi Bay for the characterization of 

the turbulent diffusion process using the velocity autocorrelation derived from 3-D 

current measurements.  

This section reviews some analytical forms of the autocorrelation function and 

examines the errors that may result from the development of a velocity time series using 

an ADCP mounted on a moving platform. The generation of velocity autocorrelation, 

and subsequently the evaluation of turbulent diffusivity using the velocity history of 

fluid elements are described. The condition for the application of Fickian diffusion 

dependent on Ti was determined for the selected bay, presented in the form of a vertical 

profile of the Ki values.  

Summary of the three studies conducted are given below. For reference purposes 

identification numbers have been assigned to each study. Two studies were conducted on 
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August 28, 2003 at two different locations and at different times within the tidal cycle. A 

third study was conducted on October 7, 2003 at the first location but at a time within 

the tidal cycle different from the time of the first study conducted at that location. This 

experimental design was for the purpose of elucidating information relating to the 

hypothesis on spatial-temporal variability of diffusivity values due to the coupling 

between meteorological conditions and oceanographic forcing within the study area. 

Table 1.2 gives a summary of the study sites, experimental and meteorological 

conditions. 

 

Review of Analytical Models of Velocity Autocorrelation Function, ACF 

If the turbulence is a stationary stochastic process with no organized flow 

structures (which will be typical of wind-driven shallow bays and estuaries), then Ri(τ) 

should be independent of time, and be an even function whose integral given by (3.2) is 

bounded and well defined (as τ → ∞). The behavior and suitability of four different 

analytical models of Ri(τ) are summarized in Table 3.1 and serves as backdrop for the 

numerical approach used in this study especially in reference to the time-scale from 

which the turbulent eddy diffusivity can be derived. Four models have been selected in 

this study. The basic exponential form put forward by Taylor (T), two sets F1 and F2 

(Frenkiel, 1953) and the fourth, ATG (Altinsoy and Tugrul, 2002).    
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Table 3.1. Various models proposed for the analytical evaluation of RL. T -- Taylor (1921); F1 and F2 -- 
Frenkiel (1953); ATG -- Altinsoy and Tuğrul (2002). 

Computed TL Model TL = 10 TL = 100 
T 

(Taylor) ⎥⎦
⎤

⎢⎣
⎡−=

L
L TR ττ exp)(  

10.00 99.99 

F1 
(Frenkiel) ⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−=

LL
L TTR 2cos2exp)( τττ  

9.92 99.16 

F2 
(Frenkiel) ⎥⎦

⎤
⎢⎣
⎡−= 2

2

4exp)(
L

L TR πττ  
10.00 100.00 

ATG 
(Altinsoy 
& Tugrul) 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−= 2

2
2

2

2cos8exp)(
LL

L TTR τπττ  
9.99 99.96 

 

 

Figure 3.1 and Table 3.1 present the forms for the autocorrelation function. 

Figure 3.1a shows each of the four models (T, F1, F2, ATG) of RL(τ) with TL = 10 s 

while Figure 3.1b is the same plot but with TL = 100 s. Note that from (3.2) and (3.4), TL 

is the area under each curve and the numerically computed values are given for each of 

the models in Table 3.1. These models will subsequently be compared with the 

numerically computed Ri values from direct observations of current fluctuations. Note 

that the first model prescribed by Taylor and the second one from Frenkiel appear to be 

more suitable whereas the first model by Frenkiel and that proposed by Altinsoy and 

Tuğrul appear to produce undesirable negative effects. A more in-depth study of the 

behavior of Ri(τ) for all four models was carried out (Manomaiphiboon and Russell, 

2003) against certain prescribed requirements (Pope, 2000) for turbulent flows.   
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Figure 3.1. Analytical forms of Ri(τ) proposed by several researchers for Tc = 10 (upper panel) and Tc = 
100 (lower panel) . —●— T;  —*— F1; —■— F2; —◊— ATG. 
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Figure 3.2.  Illustration of sampling scheme and spatial series of current measurements generated from 
ADCP mounted on a moving platform. 
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1−∆ nx  being the separation between sample points P1 and Pn within the sampling domain 

where 
1Pu  and 

nPu  are the measurements taken at the respective points, the time tn-1 (= 

n.Ts), being the time the nth sample was obtained given that Ts is the instrument 

dependent sample period. Equation (3.9) could be written as follows: 

 

 ϑ+=
nPP uu

1
     (3.10) 

 

where ϑ  ( ∑ −∆⋅=
n

nxS
1

1 ) is an error term associated with the sampling scheme and 

derives from the spatial displacement of the instrument platform from point P1. Hence, at 

sample point P1 the time series of measurements is given by the spatial series of velocity 

measurements that includes an error term in addition to the instrument error. Equation 

(3.10) is rewritten for point P1 as a time series dependent on ADCP measurements 

( adcpu ) as follows: 

 

 ϑ+= adcputu )(     (3.11) 

 

Let Nn Xx =∆ −1  (XN being the position of sample point Pn in relative coordinates to point 

P1, N = 0,1,…,n-1) then, 

 



76 

 

 

 XnXx
N

N

n

n ⋅==∆ ∑∑ −
01

1    (3.12) 

 

X  is the average displacement of the instrument platform relative to P1 after n samples. 

equation (3.11) then becomes: 

 

 XSnutu adcp ⋅⋅+=)(     (3.13) 

 

For transects made up of monotonically increasing set of sampling points, 

( ) 212 sN TnXX ⋅−⋅== α (α  being the travel speed of the moving platform). The 

time series representation from the spatial series would therefore appear to increase in 

error as the square of the number of samples with the error given by 

 

 ( ) 21 sTSnn ⋅⋅−⋅= αϑ    (3.14) 

 

By creating a running average of the n samples, the time series at point P1 becomes:  

 

 XSutu adcp ⋅+=)(     (3.15) 

 

and the associated error is given by ( ) 21 sTSn ⋅⋅−⋅= αϑ , a linear dependence on the 

number of samples.  
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Instrumentation and Data Acquisition  

3-D current profiles of the bay were obtained using a fast response 1200 kHz 

broadband workhorse Acoustic Doppler Current Profiler, ADCP (RD Instruments, Inc., 

San Diego, CA, USA) installed on a rigid mount on the bow of a 10 m small-watercraft. 

Additional instrumentation was mounted on a separate tow-body capable of undulating 

through the water column while simultaneously performing horizontal profiling. These 

were comprised of a SAFIRE multi-spectral fluorometer (WET Labs, Inc., Philomath, 

OR, USA) for obtaining the concentration distribution of the dye, a CTD (conductivity-

temperature-depth) sensor for basic water parameters (Sea-Bird Electronics, Inc., 

Bellevue, WA, USA), and a LISST-100 (Laser In situ Scattering and Transmissometry, 

type 100) particle size analyzer for particle size distribution measurements (Sequoia 

Scientific, Inc., Bellevue, WA, USA).   

 Data logging was carried out on-board the craft with an integrated data 

acquisition (DAQ) computer incorporating a GPS unit. The bottom-tracking capability 

of the ADCP allowed for absolute current measurements to be taken on a moving 

platform by taking into account the velocity of the moving platform and was set to 

sample at a rate of 2.5 Hz. The current profiles were obtained within a 300-500 m radius 

dictated by the spatial extent of the dye patch and velocity time series were generated 

over a period between 120-150 minutes. The profile was well localized both temporally 

and spatially enough to filter out horizontal variations in current structure and the effects 

of tides.  
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Surface currents and horizontal shear were obtained from HF Radar (SeasondeTM 

by CODAR Ocean Sensors, Inc.) operated as part of our coastal environmental field 

facility and permanently deployed in Corpus Christi Bay. It operates on the principle of 

Bragg Scattering of high frequency (HF) electromagnetic waves incident on surface 

waves (Barrick et al., 1977). The Doppler shift between transmitted and returning waves 

provides a measure of the speed of the surface wave with the transmitted and reflected 

waves also providing a means of georeferencing the resulting currents over the entire 

spatial domain. The Seasonde has a spatial resolution of about 1km with a range of 50-

70 km allowing for horizontal surface current mapping over the domain of observation. 

 

Data Analysis 

Data post-processing and analysis were performed with the Signal Processing 

Toolbox in MATLAB® and a set of routines that were developed in our laboratory. The 

ADCP collects bottom-tracking data simultaneous with the current measurements and 

this was used in compensating for the motion of the instrument platform as well as 

subsequent referencing to geographic coordinates. Spectral analysis was subsequently 

performed on the velocity time-series using Welch periodogram method to get the 

frequency signature of the ADCP data. Following this, a low-pass filter was applied to 

the velocity signal, the size of the filter determined based upon the observed frequency 

spectrum. Application of the filter serves to remove systemic noise from the observed 

signal, thereby isolating the current fluctuations. 
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For each coordinate axis, the result was an N x 30 matrix of velocities in 30 

equally spaced vertical bins through the water column with N, the size of the samples 

dependent on the duration of the exercise and instrument sampling rate. These were 

numerically analyzed using the cross-correlation function in the signal processing 

toolbox with different values of lag τ (in seconds) to obtain the velocity autocorrelation 

Ri(τ) in three absolute coordinate axes x, y, z respectively. A suitable value of τ was 

found by inspecting the properties of Ri(τ) for convergence and non-negativity as 

discussed in preceding section. The Ri(τ) values were then used in the numerical 

evaluation of Ti and turbulent diffusivity values, Ki (i = x, y, z) using (3.2), the numerical 

integration performed using the trapezoidal method.  

The horizontal shear structure was obtained from the velocity gradients using the 

2-D currents from HF radar. The currents were resolved into components along each of 

the x,y-coordinate axis following which the shear structure was determined. The 

resulting shear structure was subsequently used in equation (3.15) along with the 

velocity series from ADCP to evaluate the error associated with generating velocity time 

series from a moving platform.    

 

Site Description 

 The study sites for the field data acquisition were located within Corpus 

Christi Bay as described in Chapter I and illustrated in Figure 1.2 while Table 1.2 

summarizes the meteorological and oceanographic conditions that are depicted 

graphically in Figures 1.3 and 1.4 respectively. 



80 

 

 

Results 

The results of numerically evaluating turbulent diffusivity from direct 

observations of the 3-D currents field are presented in this section. The findings are 

compared with previous work using similar numerical approach and those using 

analytical techniques. From the three studies, velocity time-series measurements were 

obtained during each exercise along with fluorescence and CTD data.  

 

Velocity Time Series from a Moving Platform – Error Analysis 

Within the sampling domain the horizontal velocity gradient, S were derived 

from data obtained through surface current mapping using high frequency (HF) radar 

deployed over the study area by our research staff. S has a maximum value ~ 6x10-4 s-1 

occurring along the x-coordinate direction and these gradients are represented in the 

contour plot of Figure 3.3 derived for the instance when the gradients were at a 

maximum. As would be expected for surface waters, these gradients are relatively low 

with the highest values occurring around the shoreline and around regions of high flow.  

Given transects made up of n = 1 to 100 samples with Ts = 0.39 s, and α = 2.2 

m/s, and using the maximum value of S the error associated with the sampling scheme 

will have the values represented in Figure 3.4. From the foregoing analyses for a 

monotonically increasing transect set although averaging reduces the error significantly, 

it appears that there can still an unacceptable amount of error in the resultant time series 

of velocities generated from a moving platform (Figure 3.4).  
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Figure 3.3. Horizontal velocity gradients from surface current mapping of the study area at the instant 
when gradients were at a maximum. The shear structure was determined from HF radar surface current 
mapping. Approximate location of the 2 study sites is indicated. These sites are in the region marked by 

very weak horizontal shear. 
 

 

 
Figure 3.4. Errors resulting from velocity time series generated from spatial series evaluated against 
number of samples in series. The error increases as the square of number of samples for monotically 

increasing transect design while the relationship is linear based on a running average of the transect set. 
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For instance, averaging over 1000 samples produces an error of ~25 cm/s while 

averaging over 100 samples would produce an error of ~2.5 cm/s, a 10-fold reduction. 

Hence, for these types of transect design, the number of samples would have to be kept 

small enough to achieve acceptable error levels.  

 Another type of transect design like the one used in this study, which is not 

monotonically increasing but made up of a normally distributed set of points is 

examined. The normal probability plots for this (typical) distribution of sampling points 

within the domain (Figure 3.5) reveals the characteristics of the distribution in 

comparison with a plot (straight line in the figure) from the ideal normal distribution. As 

seen from the plot, the distribution exhibits linearity between the 1st and 3rd quartiles 

indicating that the distribution is indeed normal. The mean (50th percentile) of the 

sampling points (in relative coordinates) X  = 0 cm and the standard deviation falls 

within the range 250-350 m. 

  The fact that this distribution is normal is largely due to the large number of 

samples taken, a condition that must be met in order for a distribution to exhibit 

characteristics of a normal distribution. One may be tempted to then apply equation 

(3.13) directly for generating the time series since the zero mean X  effectively 

eliminates the sampling error. Equation (3.15), which is a running average of the spatial 

series however allows for using fewer number of sample points and is the preferred 

method for error reduction as there is no direct dependence on the number of samples 

when compared to equation (3.13). There is of course an indirect dependence on the 

number of samples even with the application of equation (3.15) noting that fewer sample 
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points imply a departure from a normal distribution. It can be argued though that X  

would still be small enough (~0 cm) such that in combination with the low value of the 

horizontal gradient S therefore, effectively eliminates the sampling error.  

 

 

 

 

Figure 3.5. Top panel; distribution of sampling points in relative coordinates in both east-west (blue) 
and north south (red) directions. Bottom; normal probability plot. Left is for east-west and right is for 

the north-south distribution of (relative coordinates) of the sampling points plotted in blue. The red line 
is the straight-line plot from the ideal normal distribution.   

 

-1000 -500 0 500 1000
0

50

100

150

200

250

300

350

400

Relative coordinates (meters)

D
en

si
ty

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

-0.4 -0.2 0 0.2 0.4
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997

Relative coordinates (east-west) x 1000 m

Pr
ob

ab
ili

ty

Normal Probability Plot

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997

Relative coordinates (north-south) x 1000 m

Pr
ob

ab
ili

ty

Normal Probability Plot



84 

 

 

It is imperative to note that filtering the spatial series eliminates instrument errors 

as well but the number of samples required for the running average and hence the filter 

size is increased to accommodate the additional error inherent in the sampling scheme. 

For comparison, whereas 10 samples may have been adequate to reduce instrument error 

by one-third, this number of samples will not be sufficient to produce a distribution that 

approximates a normal distribution. Increasing this sample size to 100 would produce a 

better approximation resulting in a 10-fold reduction in instrument error while at the 

same time reducing the error due to the sampling scheme.  

A time series can therefore be produced from a spatial series by careful design of 

the sampling transects and subsequent application of a suitable filter to the spatial series. 

The transect should not be composed of monotonically increasing sampling points and 

ideally the distribution of sampling points should approximate a normal distribution with 

the mean (in relative coordinates) approaching zero. Typical time series of the horizontal 

and vertical velocity components ui (i = x, y, z) corresponding to the East-West, North-

South, Up-Down coordinate axes are shown in Figure 3.6.  In Figure 3.7 typical results 

from the numerical computations of the autocorrelation function are presented along 

with the analytical model of the autocorrelation function F2. 
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Velocity Time Series 

 

 

 
Figure 3.6. Top, typical time series of velocity fluctuations along x, y, z coordinate axes respectively; 

middle, corresponding depth profile of average velocity variance; bottom, corresponding velocity 
distribution function.  

0 1000 2000 3000
-30

-20

-10

0

10

20

30

Time (s)

Ve
lo

ci
ty

 (c
m

/s
)

Vel. u
Vel. v
Vel. w

u 

v 

w 

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Velocity Variance (cm2/s2)

D
ep

th
 (c

m
)

Var. w
Var. v
Var. w

-40 -20 0 20 40
0

50

100

150

200

250

300

350

400

Di
st

rib
ut

io
n 

Fu
nc

tio
n

Velocity (cm/s)

Vel. u
Vel. v
Vel. w



86 

 

 

Autocorrelation Function 

 

 
 
 

Figure 3.7. From top to bottom, Lagrangian (scaled) velocity autocorrelation function derived from 
velocity time series along x, y, coordinate axes respectively (similar for the z-axes). 
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Figure 3.8. From top to bottom; depth profile of turbulent diffusivity for each of the three studies. 
Top, study 0828_1; middle, study 0828_2; bottom, study 1007. Open circle (—○—), x-coordinate; 

diamond (----◊---), y-coordinate; open squares (---□---), z-coordinate.  
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Figure 3.9. Typical frequency spectrum of velocity time series up to the Nyquist frequency. Identified 
~3 s period events (corresponding to ~ 10 ensembles) used in sizing low-pass filter for noise and error 

reduction.  
 
 

 
Figure 3.10. Observed dye patch from study 0828_2, 6202 s after instantaneous release. Outlined (- - -) 
is the 68% numerical estimate of spread within 2σ based on computed turbulent parameters (Kx = 1.03 x 

104, Ky = 0.33 x 104).  
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Computed diffusivities are shown in Figure 3.8 while the power spectrum of a 

typical velocity time series is shown in Figure 3.9, the main events identified with a 

period of ~3 s (close to the observed wave pattern) corresponding to ~10 ensembles 

based on a sampling period of 0.39 s. It is imperative to note that the error reduction 

resulting from averaging of the time-series using a low-pass filter with a window size 

corresponding to 10 ensembles is about one-third. In Figure 3.10, the estimates of the 

spatial extent of a cloud in turbulent diffusion are compared to actual observations of the 

spread of a given dye patch. 

 

Autocorrelation Function 

For each study and each coordinate axes, the autocorrelation, Ri was computed 

from the velocity time series using (3.2). These numerically computed values (Figure 

3.7) when compared with the analytical models T, F1, F2 and ATG discussed earlier and 

represented in Figure 3.1 (models from Taylor, Frenkiel, Altinsoy et al.) were found to 

be in conformity with that prescribed using the analytical model F2. Care must be taken 

however in applying this close to the boundaries as it was observed that at certain depth 

cells particularly the bottom layers, the values of Ri became negative which would be 

seen as a direct violation of its properties as previously outlined. For the most part, Ri 

was bounded, asymptotically decreasing as prescribed and the results compare with 

those obtained by Bowden using similar numerical methods.    
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Scale of Turbulent Diffusion  

 The time and length scales of turbulence were computed using the integral in 

(3.2) and the expression in (3.4) respectively. The numerically computed values of the 

time scale, Ti and the mean and maximum length scale, li for the various depth cells and 

coordinate axes are presented in Table 3.2. Generally, the values of Ti were determined 

to fall within the range 5-84 s but between the depth cells, the values were found to fall 

within a relatively narrow range, suggestive of the fact that the turbulence structure does 

not vary significantly with depth. The length scales on the other hand range in value 

from 0-680 cm. There is significant difference in values between the East-West (mean, 

205-337 cm), the North-South (mean, 157-245 cm) and the vertical (mean, 35-184 cm) 

directions. 

 

Turbulent Diffusivity 

 From the dependence of turbulent diffusivity on the turbulence intensity and the 

time scale of diffusion in equation (3.2), the diffusivities along each of the three 

coordinate axes were computed and the results are displayed in Figure 3.8 showing the 

depth profile of the numerically computed turbulent diffusivity values for each 

coordinate axis. The maximum diffusivity is 1.03 x 104 cm2s-1 while the mean turbulent 

diffusivity is ~0.4 x 104 cm2s-1 for the East-West (i.e. 'x') coordinate axis. For the North-

South (i.e. 'y') coordinate axis the maximum value was 0.41 x 104 cm2s-1, about one 

order of magnitude less than the values for the East-West axis, while the mean value was 

~0.20 x 104 cm2s-1.
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Table 3.2. Summary of turbulent diffusivity results for all three studies conducted. 

 Time Scale of Diffusion, Ti 
 (seconds) 

Length Scale, li 
(cm) 

Turbulent Diffusivity  
 (x 104 cm2s-1) 

 

 Mean Max. Std. Dev. Mean Max. Std. Dev. Mean Max. Std. Dev.  

Study 0828_1 
Coordinate axis 

          

x 25 47 8 284 680 106 0.32 0.98 0.16  

y 27 42 9 245 380 94 0.23 0.41 0.10  

z 71 84 10 184 260 52 0.05 0.08 0.02  

Study 0828_2     
Coordinate axis           

x 28 42 8 337 640 116 0.4 1.03 0.18  

y 24 37 8 224 353 77 0.21 0.33 0.08  

z 27 40 7 50 79 15 0.01 0.02 0.00  

Study 1007     
Coordinate axis           

x 21 34 9 205 387 116 0.22 0.45 0.14  

y 19 31 7 157 284 75 0.14 0.35 0.08  

z 23 40 8 35 73 18 0.01 0.01 0.00  

 Mean and maximum values of the diffusivity, integral time and length scales computed during each study for each of the three coordinate 
axes, x, y,z. 
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Similarly, the maximum vertical turbulent diffusivity was 0.08 x 104 cm2s-1, about two 

orders of magnitude less than the corresponding values along the x-coordinate and one 

order of magnitude less than the values along the y-coordinate directions respectively. 

These values are summarized in Table 3.2 and compares in value to those obatained 

from data for different bodies of water taken from the literature (Murthy, 1975; Riddle 

and Lewis, 2000; Ward, 1985).  

 

Discussion 

 The results of this study are important in the light of episodic events in shallow 

embayments and the diffusive effects of turbulence occurring within the first few hours 

following a pulse discharge. Ward had conducted horizontal dye-diffusion experiments 

under geomorphologic conditions similar to the ones reported in this paper and although 

no data was reported specifically for Corpus Christi Bay (except the Upper Laguna 

Madre), the results obtained for horizontal diffusivity values are comparable. Also the 

values reported by Riddle and Lewis for bodies of water similar in depth to Corpus 

Christi Bay show comparable vertical diffusivities to the figures reported in this study. It 

is pertinent to note that the mean value of the turbulent length scale (~3 m) is 

comparable to the average depth of the bay. This is to be expected as the size of the 

turbulent eddies would be limited by the existence of a boundary either physical or 

virtual, virtual boundaries which may be due to stratification within the water column.       

Through this study, the dependence of the turbulence process on the degree of 

randomness as measured through the intensity of turbulence, akin to the dependence of 
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molecular diffusivity on the temperature of the bulk fluid, was examined for Corpus 

Christi Bay. A numerical algorithm was developed for evaluating diffusivity values from 

direct observations of the 3-D currents field and these values were comparable with 

those obtained through dye-tracer experiments as well as those obtained from oceanic 

diffusion diagrams. The study was deliberately limited in terms of spatial and temporal 

scales in order to filter out the gross effects of tidal and inertial motion on the diffusion 

process. Future studies will allow the extension of this concept to the entire bay 

premised on the availability of surface current mapping data to coincide with the 

turbulent processes that drive constituent transport on the scale of days to months.  

Using the maximum values of turbulent diffusivities, an estimate of the spatial 

extent of a diffusing clouds over a given period or diffusion time of ~6000 s was 

obtained assuming 2σι (68% of distribution) as representative of the spread of the cloud 

along each coordinate axis. The estimated horizontal spatial extent for study 0828_1 was 

220 m and 142 m in the x, y-direction respectively, giving an aspect ratio of 1.6 for the 

diffusing patch. For study 0828_2, the corresponding values were 226 m and 128 m 

respectively with an aspect ratio of 1.8 while the values for study 1007 were found to be 

149 m and 132 m respectively with aspect ratio of 1.1. These values for a cloud in 

turbulent diffusion was compared to actual observations of a given dye patch obtained 

during the different studies and presented in Figure 3.10 for study 0828_2. The time and 

length scales of turbulent diffusion were found to be within the range expected of 

oceanographic processes being ~100 s and ~10 m respectively.   
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For study 1007, although the turbulent diffusivity values (hence the computed 

spatial extent) were much lower than the values from the other two experiments, actual 

dye patch observations were much higher indicative of onset of shear diffusion. This 

shear diffusive process has been observed in pipe and channel flows by several 

researchers (Csanady, 1966; Elder, 1958; Elliot, 1986; Taylor, 1954). Figures 1.3 and 1.4 

presents the meteorological and hydrodynamic conditions obtained for the duration of 

the experiment, noting the difference in meteorological conditions prevailing during the 

various experiments, particularly the wind pattern during experiment 1007 showing 

much variability in direction. This may have been a contributory factor to this shear-

effect among other factors, which include water column stability.       

 

Conclusion 

 The ability to characterize diffusion processes from hydrodynamic information is 

important as it can be applied to different bodies of water especially when viewed 

against the backdrop of the logistical challenge and expense associated with conducting 

dye-tracer experiments. As was determined from this study, the process of diffusion in 

surface waters particularly wind-driven bays such as described is not always shear-

dominant but depending on prevailing conditions, may be dominated by pure turbulence. 

This is significant against the backdrop of general and ocean circulation models that 

employ turbulence closure schemes premised on the assumption of shear-diffusion. The 

algorithm developed was calibrated against observed spread of a dye patch, which will 

allow for the inclusion of diffusivity values within the framework of a data-driven 
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transport model using direct hydrodynamic observations. This capability forms a logical 

extension of existing oceanographic instrumentation to environmental assessments and 

precludes the application of turbulence closure schemes that base estimates of diffusivity 

on the assumption of prevailing shear.  

Although this study does not answer all the questions regarding the enigma of 

turbulence, observations from these set of experiments contributes to the data on 

diffusion processes available for coastal and nearshore environments with emphasis on 

Corpus Christi Bay, data that is usually not found through the use of available oceanic 

diffusion diagrams. Considering that current profilers of the type used in this study are 

readily available, more experiments of this type can be conducted in a cost effective 

manner and this study establishes the methodology for such experiments with a view to 

better characterize the diffusive process within the study area. Additionally, future work 

will investigate the shear-diffusion process for Corpus Christi Bay with a view to 

developing similar algorithm necessary for evaluation of shear-diffusivity values from 

observed hydrodynamic data. These algorithms will be applied within a data-driven 

transport model in a related part of this study and which forms part of the ongoing 

development process within our laboratory.     
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CHAPTER IV 

OBSERVATIONS OF SHEAR-AUGMENTED DIFFUSION PROCESSES AND 

EVALUATION OF EFFECTIVE DIFFUSIVITY FROM CURRENT 

MEASUREMENTS IN CORPUS CHRISTI BAY 

Overview 

Studies on the process of diffusion in fluids have shown that in the presence of a 

shear structure within the currents field, the observed spreading of a marked fluid can be 

augmented significantly. Shear-diffusion becomes the dominant diffusion process after a 

time Tn, the initialization time has elapsed. For vertical shear, a characteristic vertical 

mixing time, Tc having an inverse relation to the vertical turbulent diffusivity, Kz 

governs this initialization time.   

This study focuses on the observation of shear-augmented diffusion process in a 

shallow wind-driven body of water leading up to the development of numerical 

algorithms for obtaining an effective diffusivity, Ke from shear-current measurements at 

spatial scales ~1000 m. This was part of a series of dye-tracer experiments conducted in 

Corpus Christi Bay, Texas. Numerical estimates are provided for Tc using the value of 

Kz determined from the temporal current fluctuations based on the Lagrangian 

correlation function, Rτ of the velocity time-series. It was found that in the presence of 

shear-current structure, Ke values obtained along two orthogonal directions were ~104 

and 105 cm2/s respectively, about 10-20 times higher than estimates obtained based on 
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turbulence alone and confirmed through visual observations and numerical estimates of 

the size of the diffusing dye cloud.  

 

Introduction 

 This is the second part of a series of studies in support of ongoing efforts within 

our research group aimed at developing an integrated environmental and oceanographic 

assessment system for monitoring the coastal environment. The scheme combines real-

time measurements from fixed and mobile platforms with data-driven numerical 

transport modeling and it is imperative that the coefficients required within this 

framework be quantifiable from direct observations of hydrodynamic data. In the first 

part of these related studies on mixing processes within the bay, the authors examined 

the role of turbulent diffusion with a view to develop a numerical scheme for the 

evaluation of coefficients required to drive a transport model using direct observations of 

water currents.   

Constituent transport and water quality models are often employed in 

environmental studies in order to derive the time evolution and concentration profile of 

constituents of interest. The underlying advective-diffusive numerical models rely on 

coefficients that are used in characterizing the physical phenomena that lead to the 

evolution of the concentration with time of constituents of interest in surface waters. 

Collectively termed transport coefficients, there exists essentially two components viz. 

the advective component and the diffusive component. A number of different methods 
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can be applied to determine the diffusive component and four of these, from the 

literature are outlined:  

• Method I – This method is based upon the temporal variation of the magnitude 

and direction of currents;  

• Method II – This method is based upon the spatial variation of the currents field; 

• Method III -- Using the first and second moments of the distribution of the 

concentration profile over time of a diffusing cloud, typically a dye patch; 

• Method IV – An inverse solution of the governing transport equation of 

advection and diffusion, similar to Method III in that it requires the concentration 

profile of a diffusing substance over time. 

Methods I and II, following on Taylor's analysis (Taylor, 1954) has been extended to 

other fluid flow regimes such as flow through open channels (Elder, 1958). Method I 

was applied to surface waters in the first part of this study by using direct observations 

of the currents field returned by an Acoustic Doppler Current Profiler (ADCP) and a 

numerical scheme (Ojo et al., 2004c).  

Through a series of studies conducted by Csanady in the Great Lakes (Csanady, 

1966), the observation was made that there exists a marked variation in the observed 

diffusion of constituents within a fluid body, the spreading being more pronounced 

under certain conditions than would have been expected. In other words, the growth of a 

diffusing cloud would appear to be much higher than expected if one were to consider 

only turbulence. Compounding these seemingly inconsistent observations is the fact that 

weak vertical turbulence appears to favor an increased rate of horizontal spreading 
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hence, the concept of shear-augmented diffusion similar to that observed by Taylor and 

Elder in pipe and channel flow respectively.     

Shear diffusion involving the interplay between vertical turbulent diffusion and 

shear-currents become especially important within the coastal and near-shore 

environments (for instance in shallow wind-driven bays and estuaries) where the 

existence of complex shear current structures coupled with rapid variation in magnitude 

and direction of currents will be typical. Two different stages of shear diffusion have 

been identified namely first and second stage depending on the type of shear currents 

encountered by fluid elements in the flow field or whether boundaries (physical or 

virtual) have been encountered. In a general sense, lateral shear will be more likely to 

lead to first stage diffusion while vertical shear will be more likely to lead to second 

stage diffusion (Elliot et al., 1997). Particularly for shallow bays and estuaries, far away 

from vertical boundaries, lateral shear will therefore be less significant in terms of the 

contribution to shear diffusion when compared to vertical shear.  

 

1. Line 
Source 

u(z) 

Kz 

x 

z 

2. Stretching 3. Mixing

C.G. C.G. C.G. 

4. Apparent 
diffusion  

 
Figure 4.1. This is a depiction of the effect of a vertical shear current on a line source leading up to 

shear diffusion. 1. The line source is introduced. 2. The line source is displaced under the influence of 
the velocity (linear) profile, shifting the center of mass. 3. Next, vertical (turbulent) mixing 

redistributes the constituent as shown. 4. The overall effect is the apparent diffusion of a line source 
into a plane under the combined effect of a vertical shear current and vertical mixing. 
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During the first stage of diffusion, Ke will have a linear dependence on turbulent 

diffusivity, Kd (vertical or horizontal) and during the second stage, say for vertical shear, 

there exists an inverse dependence on vertical turbulent diffusivity, Kz. Turbulent 

diffusivity itself can be evaluated either by Methods I, III or IV. Method I uses the auto-

correlation function, Rτ of the fluctuating velocity time series and is based on Taylor's 

statistical treatment of diffusion as a random process (Taylor, 1920).  

 Researchers (Bowden, 1965; Csanady, 1966) have put forward expressions for 

determining the effective diffusivity, Ke following on Taylor's work and based on 

Method II. Following on previous work done in this area (Okubo and Carter, 1966), 

Elliot developed expressions for Kd from which the time taken to complete vertical 

mixing or the characteristic mixing time, Tc can be determined (Elliot et al., 1997). From 

observation, it was determined that in the presence of shear currents, the direct 

contribution by turbulence to the overall diffusivity value becomes negligible when 

compared to the contribution from shear. In light of this, the process of turbulent 

diffusion in shallow wind-driven bays and estuaries can be augmented significantly by 

the shearing action of a spatially varying currents field as depicted in Figure 4.1.  

The objectives of this study are: (i) to examine the role of vertical turbulence 

with respect to shear diffusion in conjunction with vertical shear in a shallow wind-

driven bay; (ii) determine conditions under which shear diffusion becomes significant; 

(iii) develop a scheme for the numerical evaluation of the effective diffusivity.  

This study was based on the observations in a wind-driven bay, Corpus Christi 

Bay, Texas where the ADCP was used to elucidate information on the shear current 
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structure within the bay. Predicated on recent developments in surface current 

measurements and the availability of current profilers, the numerical scheme developed 

which was used in evaluating effective diffusivity values is important within the 

framework of constituent transport and water quality models with specific application to 

the nearshore and coastal environment (Ernest et al., 1991; Sterling et al., 2004a; 

Sterling et al., 2004b).      

      

Background Theory 

 The phenomenon manifesting as shear-augmented diffusion, first observed and 

published in the mid-part of the last century (Taylor, 1954), has been extended by other 

researchers to different flow regimes in both natural and engineered systems. The 

concept of an effective diffusivity is introduced within the framework of diffusive 

transport processes. Shear-augmented diffusion can be modeled as Fickian diffusion 

with constant coefficients, conditionally dependent on the time to complete vertical 

mixing (Taylor, 1953). 

 

Shear-Augmented Diffusion and Effective Diffusivity 

 Following the work of Taylor on laminar and turbulent flow through pipes, the 

subject of research spanning the successive years has been the extension of this work to 

natural systems as is the focus of this paper. Under the effects of lateral or vertical shear 

currents structure and turbulence, a dye patch will spread at a rate that has been observed 

to be much higher than could be attributed to turbulence only. In a shallow wind-driven 
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bay, the velocity gradients that produce shear will be more pronounced in the vertical 

than in the lateral (horizontal) plane, except near the shore or close to land boundaries. 

Estimates on the value of horizontal shear (Elliot, 1986; Ojo et al., 2004c) indicates up to 

six orders of magnitude difference between these velocity gradients (vertical and 

horizontal) in coastal waters, which in subsequent analysis, will be an important factor 

especially as it relates to the onset of second-stage shear diffusion in a shallow 

embayment.  

Analogous to the Lagrangian time-scale of turbulence (a statistical property), the 

condition for the application of the Fickian diffusion model in shear-diffusion is the 

initialization time, Tc. However, unlike the treatment of turbulent diffusion, Taylor's 

starting point for the analysis of shear-diffusion was not statistical. Rather the advection-

diffusion equation incorporating knowledge of the shear structure in pipe flow was used 

in deriving analytical forms for the shear diffusivity, Ke and subsequently establishing 

the basis for its application through certain prescriptions. The premise was to write a 

constituent transport equation in terms of cross-sectional averages of the variables in the 

governing equation resting on the following assumptions: 

a) The concentration distribution is at steady-state relative to a plane moving 

at the mean speed of the flow; 

b) The flux through the boundaries is zero; 

c) The effect of advection in the longitudinal direction is late to appear 

relative to that due to the cross-sectional variation of velocity. 
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For clarity, let us begin by writing a simplified form of the transport equation 

(the final result can be extended to three-dimensions), which considers advection in the 

horizontal, and mixing by diffusion within the water column   
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where S = solute concentration as time t, u is the velocity relative to a moving plane in 

the x-direction, Kz is the turbulent diffusivity in the z-direction.  

In Elder's treatment for flow through a channel, the solution to equation (4.1) 

given the boundary and initial conditions stated in (a)-(c) above results in an expression 

for effective longitudinal shear diffusivity, Kx (along the x-coordinate axis) of the form: 
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   ),()(),( ' tzututzu +=      (4.2b) 

 

where h is the cross-sectional depth, ζ = z/h, )(tu  is the cross-sectional  mean (depth 

average) of the velocity, and ),(' tzu  is the deviation from the cross-sectional mean. The 

parameter n takes the value n = 0 for a two-dimensional channel while n = 1 corresponds 
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to Taylor's treatment of flow through a pipe. Hence, for two-dimensional flow the 

expression for Kx becomes, 
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Bowden simplified this further by taking a functional form of both the velocity 

profile and vertical eddy diffusivity along the cross section given by, 
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u = maximum value of velocity, and K = maximum value of vertical eddy diffusivity 

taken at the surface. From (4.3) and (4.4) the result is,  
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with the overbar indicating depth averaging. Using several analytic forms of the velocity 

and vertical diffusivity profiles together with further simplifications and assumptions, 

Bowden presented different expressions for Kx. One of such assumptions in reference 

to ( )ζF , and applied to the case of wind drift in shallow water was that Kz (= K) 

remained constant over the entire depth an assumption that will be found to be valid for 

a shallow bay typified by the one considered in this study. For practical purposes, it is 

desirable to have an expression of the form 

 

    ( )K
uhK x

22
Ω=      (4.6) 

 

and following Bowden's analysis, Riddle and Lewis  were able to derive expressions of 

this form for Kx by carrying out a parametric fit between Ω-1 (the shear parameter) and a 

coefficient β obtained from a power law general expression for shear-current (Riddle and 

Lewis, 2000). Considering the variability and complexity of the shear current 

encountered in natural systems, it may be difficult to represent the depth profile of the 

current by typical analytical expressions necessary for performing the integral in 

equation (4.3). There is therefore a limitation when considering the applicability of 

equations (4.5) and (4.6) to natural systems such as bays or estuaries. Fischer developed 

a method for performing this analysis through the introduction of dimensionless 

quantities into equation (4.3) leading to a general form for Kx as in equation (4.6) 

(Fischer et al., 1979): 
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where I is a dimensionless integral having dependence on dimensionless quantities 

2''" uuu = , zzz KKK =' , hzz =' , the overbar again indicating cross-sectional 

averages. This reveals the rather interesting inverse dependence of shear diffusion on 

vertical turbulent diffusivity and the mean-square, Si of the deviation of the velocity 

from the cross-sectional average. The form of equation (4.7) was used in this study by 

numerically integrating the discretized data set obtained from the various current 

measurements. 

This is conditional though considering the steady-state condition as prescribed 

for the cross-sectional concentration distribution relative to a moving frame i.e. the 

solute concentration is well mixed vertically. For this condition to apply, there is 

consideration of the initialization time, Tn proportional to a characteristic time scale, Tc 

and is given by, 
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The quantities 2'u , zK  are the characteristic velocity and characteristic turbulent 

diffusivity respectively. Different values have been suggested for the constant of 

proportionality in equation (4.8), the dimensionless time, Ψ by several researchers who 

have studied diffusion processes in both natural and engineered systems as summarized 

in Table 4.1.  

 

Table 4.1. Typical values proposed for the value of dimensionless time, Ψ based on different shear current  
structures.  

 
Proponent Dimensionless Time, ψ 
Chatwin (1972) 1.0 

Fischer (1968) 0.4 

Sayre (1969) 0.5 

Okubo and Carter 1/π2 (≈ 0.1) 

Yasuda (1984) 0.5 

 

 

This implies another form of (4.7) that can be written as follows: 

 

     ITuK cx .2'=       (4.9) 

 



 

 

108

where the dimensionless integral, I quantifies the structure of the shear as well as its 

variability, and by analogy to Ω in equation (4.6), I can be described as a shear 

coefficient. Typical values of I suggested for rivers and estuaries (Fischer, 1973) fall 

within a very narrow range from 0.06 to 0.15 and for practical applications, a suggested 

value of 0.1 would suffice. The implication of (4.8) and (4.9) is that for times t ≥ Tn, the 

size of the diffusing cloud measured by its variance grows at a constant rate and the 

process can be modeled as Fickian diffusion with constant diffusivities.    

Similar expression can be found for effective diffusivity, Ky in the orthogonal y-

direction, hence the general expression in two dimensions: 
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for i = x, y and 
2''"

iii uuu =  being derived from the respective horizontal components 

of the current along the respective x, y coordinate axes.   

Although the preceding analyses would apply in the case of lateral shear (first 

stage diffusion) as well, this study was limited to the case of vertical shear on the 

premise of the study area being within a shallow body of water, far enough away from 

land boundaries against the backdrop of Elliot's findings. In other words, the assumption 

was made that the process of shear diffusion proceeded as second-stage diffusion after a 
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time t ≥ Tn that will be determined as part of this study. An effective diffusivity along the 

x,y-coordinate axis, Ki computed on the basis of equation (4.10) with dependence on the 

vertical turbulent diffusivity, Kz and vertical shear current (collectively embodied in the 

quantity Ii) as well as Tc will apply.  

 

Method 

 The preceding analyses were applied to a shallow wind-driven bay by 

examination of shear-augmentation of the diffusion process using vertical turbulent 

diffusivity evaluated from the velocity autocorrelation, the dataset being derived from 

3D current measurements. The condition for the application of Fickian diffusion 

dependent on the initialization time was determined for the selected bay as well as the 

characteristic time and the value of the dimensionless time. 

Current measurements of the area in 3D were obtained using a fast response 

Acoustic Doppler Current Profiler, ADCP (RD Instruments, Inc., San Diego, CA). The 

ADCP was installed on a rigid mount on the bow of a small craft that also had a towed 

instrument array used for obtaining horizontal profiles of the concentration distribution 

of the dye along with CTD and particle size distribution measurements. The current 

profiles were obtained within a 300-500 m radius dictated by the spatial extent of the dye 

patch over a period between 0-150 minutes following dye application. The profile was 

well localized both temporally and spatially enough to filter out horizontal variations in 

current structure and the effects of tides, an important factor in emphasizing the 

turbulence and vertical shear structure within the scale of the experiment. 
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Summary of the three studies conducted are given Table 1.2. For reference, 

identification numbers have been assigned to each study. Two studies were conducted at 

two different locations on August 28, 2003 at two different times in the tidal cycle (study 

0828_1 and 0828_2). Studies 0828_1 and 1007 were conducted at location 2747.937N, 

9721.451W on two different dates (August 28 and October 7, 2003) and at different 

times in the tidal cycle. With this experimental design, information can be obtained as to 

the existence of a spatial-temporal variability of diffusivity values due to the coupling 

between meteorological conditions and oceanographic forcing within the study area.  

 

Site Description 

 Located within Corpus Christi Bay in the Texas Gulf of Mexico about 200 miles 

south west of Houston, TX (Figure 1.2) the study area is part of a system of bays. 

Comprising of four interconnected embayments namely Oso Bay in the southwest, 

Nueces Bay in the northwest, Upper Laguna Madre in the south and Redfish Bay in the 

northeast, Corpus Christi Bay is the main bay within the system. Along the northernmost 

half of the bay, a shipping channel that is ~15 m deep runs east to west while an intra-

coastal waterway runs north to south.  

The deepest of the four, it is bounded on the east by Mustang and North Padre 

Islands and on the west by the city of Corpus Christi. Other characteristics of the bay 

are: 

Size:    Approximately 500 sq. km 

Bathymetry:   Relatively uniform, ~3 m  
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Tidal Range:   Relatively low, ± 0.5 m 

Residual currents:  Predominantly along the east-west coordinate axis; 

counterclockwise circulation, tidally driven. 

Main forcing:  Winds from a southeasterly direction. "Northers" from the 

northerly direction during the winter months. 

Drainage area:  ~49,700 sq. km, daily average freshwater flow of ~34 

m3/s. 

Average salinity:  22 psu and as high as 33 psu.       

 
Instrumentation 

The ADCP was a 1200 kHz broadband workhorse that was installed in a bottom-

tracking, downward-looking configuration on the bow of a 27 ft. watercraft as part of an 

instrument array for environmental measurements that included a CTD, a fluorometer 

and particle size distribution analyzer. The other instruments were mounted on a tow-

body capable of performing undulating profiles throughout the water column. Data 

logging from the instruments were carried out on-board the craft with an integrated data 

acquisition (DAQ) computer incorporating a GPS unit.  

 The ADCP was equipped with bottom-tracking capability that allowed absolute 

current measurements to be taken on a moving platform by compensating for the 

velocity of the moving platform. A time series of the horizontal and vertical velocity 

components ui (i = x, y, z) corresponding to the East-West, North-South, Up-Down 

coordinate axes were returned in layers or bins spaced equally at 0.1 m apart throughout 
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the water column. Given the bathymetry of the study area as shown in Figure 2 with 

depth ~3-4 m, the maximum number of bins used in this study was thirty taking into 

account 0.25 m blanking zone for the instrument. Three dye-tracer studies were carried 

out between the summer and winter months of 2003 within Corpus Christi Bay during 

which ~20000 current samples were obtained during each exercise along with 

fluorescence and CTD data. Analysis of the data from ADCP current measurements used 

in this study is described below.  

 

Data Analysis 

 With the ADCP set for single pings at 2.5 Hz sampling rate, data post-processing 

which includes spectral analysis and low-pass filtering was performed on the ensemble 

of velocity measurements to generate the velocity time-series having acceptable error 

levels. Along with the bottom-tracking data, ship movement was compensated for and 

the current measurements referenced to the geographic coordinate axes. For each 

coordinate axis, a matrix (N x 30) of velocities (where N, the size of the samples depends 

on the duration of the exercise and sampling rate, 30 being the number of horizontal 

layers or bins in the water column at 0.1 m apart) was analyzed.  

The velocity autocorrelation Ri(τ) was first obtained and then applied in the 

numerical evaluation of vertical turbulent diffusivity, Kz based on Method I that is 

described in the first part of this series of studies as mentioned before. Following this, 

numerical evaluation of the dimensionless integral, Ii given in equation (4.10) was 

subsequently performed using these results along with the value of Tc determined from 
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equation (4.8) leading to values for shear diffusivity, Ki (i = x, y). All data post-

processing and analysis were performed with a set of MATLAB® based routines 

developed in our laboratory for this study as part of the integrated scheme for 

environmental and oceanographic assessments. The derivation of equation (4.3) and the 

discretization for the numerical scheme following from the derivation of equation (4.7) 

is presented below. 
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Figure 4.2. Illustration of fluid element under the influence of vertical current shear. 
 

 

Figure 4.2 illustrates this process in a simplified form and finally by comparing the two 

expressions for mass flux, 
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Results 

 The results of numerically evaluating shear diffusivity from direct observations 

of the 3-D currents field are presented in this section. The values determined for I from 

this study were compared with Fisher's. Using the computed values of Ki, estimates were 

made of the size of an evolving dye patch and compared with the observed spatial 

distribution of the evolving dye patch reconstructed using the fluorescence 

measurements that were taken during the study.   

 

Characteristic Velocity Distribution, Dimensionless Integral and Initialization Time  

Figures 4.3-4.5 show typical shear-current vertical (depth) profiles of the velocity 

components along the respective coordinate axis as well as vector plots of the currents 

field from each of the three studies at selected times. The statistics of the sampling 

distributions of characteristic velocities are presented in Figure 4.6 for each of the three 

studies while the density distribution functions are displayed in Figure 4.7. These 

distributions are seen to be normal with a narrow spread (some noticeable outliers in the 

data), the East-West characteristic velocities showing a mean of ~40-50 cm/s while the 

North-South characteristic velocities show a mean of ~20 cm/s.  
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Figure 4.3. Study 0828_1. Top-left panel -- E-W shear current profile at 0.3 m depth intervals; top right 
panel – N-S shear current profile at 0.3 m depth intervals; bottom panel – compass plot of velocity 

vectors. 
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Figure 4.4. Study 0828_2. Top-left panel -- E-W shear current profile at 0.3 m depth intervals; top right 

panel – N-S shear current profile at 0.3 m depth intervals; bottom panel – compass plot of velocity 
vectors. 
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Figure 4.5. Study 1007. Top-left panel -- E-W shear current profile at 0.3 m depth intervals; top right 

panel – N-S shear current profile at 0.3 m depth intervals; bottom panel – compass plot of velocity 
vectors. 
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Study 0828_1 

Study 0828_2 

Study 1007 

Figure 4.6. Statistical summary of characteristic velocities. Top -- study 0828_1; middle -- study 
0828_2; bottom -- study 1007. Open circle, --o-- outliers within dataset. 
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Study 0828_1 
 

 

Study 0828_2 

 

Study 1007 

Figure 4.7. Density distribution function of characteristic velocity computed from shear-current. Top – 
study 0828_1; middle – study 0828_2; bottom – study 1007 (-○- east-west; -◊- north-south).
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Table 4.2. Summary of shear diffusivity results for all three studies conducted. Mean and maximum values of the dimensionless integral, initialization 
time and shear diffusivity are given for each of the coordinate axes, x, y.  

 
 Dimensionless Integral, I Initialization Time, 

Tn  (seconds) 
Characteristic Velocity, 

2'u  (cm/s) 

Characteristic 
Diffusivity, zK  

(cm2/s) 

Shear 
Diffusivity, Kie 
x 105 (cm2/s) 

 Mean Max. Std. 
Dev. 

Ψ = 0.1 Ψ = 0.4 Mean Max. Std. 
Dev. 

  

Study 0828_1           
 East-West 0.12 0.22 0.03 41.65 123.93 12.76 3.67 

 North-South 0.12 0.22 0.03 
177 709 

18.24 42.18 5.10 
50 

0.70 

           
Study 0828_2           
 East-West 0.11 0.24 0.04 47.52 101.06 12.15 2.15 

 North-South 0.11 0.24 0.04 
85 342 

20.84 42.60 5.15 
104 

0.41 

           
Study 1007           
 East-West 0.12 0.19 0.02 38.60 94.85 11.74 2.09 

 North-South 0.12 0.21 0.02 
114 456 

17.50 49.27 4.96 
76 

0.43 
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The quantities from equation (4.10) used in the computation of shear diffusivities 

(dimensionless integral, I and initialization time, Tn) are presented in Table 4.2 along 

with the statistics on the distribution of the characteristic velocity. The numerically 

determined values for I were found to have a mean that was  ~0.12 and a range of 0.06-

0.24 and these figures were found to be in agreement with the values recommended by 

Fisher as previously stated. The Tn values were determined using Ψ values of 0.1 and 0.4 

giving a lower bound of 85 s and upper bound of 709 s. These values for Tn implies that 

the constituent of interest, in this case a pulse discharge of tracer at the surface would 

become fully mixed into the water column within minutes following application. 

 

Shear Diffusivity 

The numerically computed diffusivity values were ~2-4 x 105 cm2/s along the x-

coordinate direction and ~4-7 x 104 cm2/s along the y-coordinate direction. In all the 

studies, the E-W shear-diffusivity was found to be about one order of magnitude higher 

than the N-S diffusivities. These values are in line with the observation of the evolution 

of the dye-patch and within order of magnitude estimates of the diffusivities from 

concentration profiles of the diffusing dye-patch. Using the numerical estimates of the 

diffusivities, the variance 2
iσ (i =x, y) and standard deviation, σi, (i =x, y) of the dye-

patch over the duration of the experiments were obtained, taking 68% of the dye to be 

within 2σi, (σι
2 = 2Kiet) leading to a size estimate of ~500-600 m along the x-coordinate 

axis and ~200-300 m along the y-coordinate axis.  
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Comparing these size estimates with actual observations of a diffusing cloud, we 

find close agreement within the limits of uncertainties associated with mass-balance 

computations in such natural systems. Confounding this is the relatively high 

background fluorescence in the body of water and the lower detection limit of the 

fluorescence-measuring instrument, which implies that such size estimates based on 

fluorescence measurements tend to be lower than actual. In fact, other researchers have 

noted these uncertainties and Okubo suggested that 50-75% accuracy would be 

acceptable for most experiments involving dye releases (Okubo, 1971). The numerical 

size estimates taken within ± σI, or  68% of the diffusing cloud was close to 100% of the 

size estimates from the actual dye release in study 1007. One could also infer that these 

numerical estimates give the lower bound of the spatial extent of the plume (~200 m 

along the y-coordinate axis and ~500 m along the x-coordinate axis). Similar estimates of 

the spatial extent using turbulent diffusivity values were found to be 3-5 times lower. 

This suggests therefore by the order of magnitude difference in the estimated 

values of diffusivity that shear diffusivity dominated over turbulent diffusivity within the 

study area for experiment 1007 and that the diffusive process can be characterized by 

shear diffusivity values obtained from the numerical scheme as described earlier. Figure 

4.8 presents the above results in graphical form, outlining numerical size estimates of a 

diffusing cloud based on turbulence and shear against the actual dye patch size several 

minutes after release. 
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Figure 4.8. Top; observed dye patch, 5557 s after instantaneous release. Outlined (- - -) is the 68% 

numerical estimate of spread with 2σ based on shear (Kx = 2.09 x 105, Ky = 0.43 x 105). Bottom; same 
dye patch outlined open circles (-o-) is the 68% numerical estimate of spread with 2σ based on 

turbulence and open squares, the 99% numerical estimate also based on turbulence (Kx = 1.69 x 104, Ky 
= 0.30 x 104). The estimates based on turbulence presents an underestimation of the concentration 

distribution. 
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The explanation for the shearing effect being observed in one study and not in 

others may be found in the different meteorological and oceanographic conditions 

(Figures 1.3 and 1.4) encountered in study 1007 compared to study 0828_1 and 0828_2. 

Noting that the wind pattern observed during study 1007 as being highly variable in 

direction, this might have contributed to the shearing effect being more pronounced in 

this particular experiment compared to the other two.  

 

Discussion 

The onset of shear-augmented diffusion was determined for the study area and 

found to be influenced by the variability with depth and time of the magnitude and 

direction of the current as well as the vertical turbulent diffusivity. Algorithms were 

developed for characterizing the diffusive processes and for the evaluation of diffusivity 

values using the 3D currents field that was obtained with a vessel-mount ADCP. In the 

initial stages following the introduction of a constituent into the bay (on the order of 

seconds) and for times less than Tn, the diffusion process will be governed by turbulence. 

Following this, and for times greater than Tn (which is of the order of minutes, 

depending on the bathymetry, turbulence intensity and shear structure of the currents 

field), the diffusion process will be governed by vertical shear. 

 It is imperative to note that the initialization time could be influenced by the 

existence of a virtual boundary or diffusion floor within the water column such as a 

thermocline or pycnocline. In other words, the argument relating this study to shallow 

bays could be extended to deeper bodies of water if there is evidence to support the 
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existence of a diffusion floor. The diffusion floor effectively limits the further vertical 

transport of the constituent and ultimately affects the time for complete vertical mixing 

or initialization time, Tn. In addition, water column stability will be an issue as it affects 

the eventual mixing, on which the mechanism of shear-augmentation of the diffusion 

process depends (Bowden, 1965; Okubo and Carter, 1966). 

Using the numerical estimates of shear diffusivities, the estimated variance and 

therefore the spatial extent of a plume over a given time period were obtained. The 

results obtained from the numerical analyses of direct observation of currents were 

compared with observations of a dye-patch from the tracer experiments and the 

estimated spatial extent of a diffusing cloud undergoing shear diffusion was ~3-5 times 

higher than for turbulent diffusion. This is in close agreement with actual observations of 

the dye plume in study 1007 being ~3 times greater in size than the size observed from 

study 0828_1 and 0828_2 suggesting that shear diffusion was the dominant process in 

study 1007.     

Although the analyses in this paper indicate that shear diffusion would prevail in 

all three studies, this was not confirmed for studies 0828_1 and 0828_2. The presence of 

a reversing flow during the early part of the ebb cycle as indicated by the flow structures 

in Figures 4.3 and 4.4 taken from study 0828_1 and 0828_2 respectively may have 

resulted in a negation of the shearing effect with respect to the diffusion process. When 

one compares the flow structure in Figure 4.5 taken during the fully developed flood 

cycle of study 1007, a clearly defined boundary layer can be observed at about the 1 m 

depth-mark without any reverse flows. This combined effect of having a clearly defined 
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boundary layer without any reversed flows may have resulted in an augmentation of the 

diffusion process as observed in study 1007 but not observed in the other two studies 

conducted even though the preceding analyses indicate shear augmentation for all three 

studies. In addition, we believe that the highly variable wind pattern observed during 

study 1007 (Figure 1.3) contributed to the shear structure of the currents within the water 

column, in contrast to what was observed during studies 0828_1 and 0828_2. 

Thus the application of rigorous analytical techniques to the characterization of 

shear diffusion processes in natural systems such as the one described in this study will 

be predicated on the fulfillment of conditions beyond those prescribed earlier. Recall a 

sufficiently low Tn relative to the vertical extent of the water column and vertical 

turbulent diffusivity Kz in the presence of a shear current structure. This study indicates 

that even where Tn is sufficiently low (which will be true for shallow bodies of water or 

for deeper waters having a diffusion floor due to stratification) the shear current may not 

always lead to diffusion augmentation. Particularly in bays and estuaries where flow 

reversal and stratification is common, it will be necessary to be able to qualify or 

categorize those prevailing conditions when in concert with Tn and the shear coefficient, 

I produce shear diffusion in natural systems as observed in study 1007. It is worthy of 

note that inherent in the application of turbulence closure schemes common to some well 

known ocean and general circulation models, is the assumption of shear turbulence and 

as has been demonstrated through these set of experiments, this may not always hold.   

Noting that the diffusion process was enhanced up to 10-20 times and if one were 

to attribute this to and increase in turbulence, this would require a 3-5 times increase in 
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the level of the velocity fluctuations going by the relation of turbulent diffusivity to the 

variance of the velocity field. The meteorological conditions and geomorphology of the 

study area did not vary to the extent of being able to justify this level of increase in 

turbulence leading to the conclusion that shear-current structure rather than increasing 

turbulence produced the diffusion augmentation in this shallow body of water observed 

in study 1007. 

 

Future Work 

 The ability to be able to characterize diffusion processes from hydrodynamic 

information is important as it can be applied to different bodies of water especially when 

viewed against the backdrop of the logistical challenge and expense associated with 

conducting dye-tracer experiments. Given the state of the art in currents measurements 

in surface waters, this ability will form a logical extension of existing instrumentation 

for oceanographic and environmental assessments.  

In order to be able to apply this comprehensively, the effect of water column 

stability will have to be examined in order to develop conditions for which the shear 

augmentation of the diffusion process will prevail subject to Tn and I. This will result in 

a classification similar to the development of atmospheric stability classes for the 

application of the Pasquill-Gifford (Pasquill, 1962) dispersion model in meteorological 

and air quality applications.            
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CHAPTER V 

DIFFUSION AND MIXING EXPERIMENTS IN CORPUS CHRISTI BAY, TX:  DYE-

TRACER STUDY TO DETERMINE DIFFUSIVITY VALUES 

Overview 

A series of dye tracer experiments were conducted within Corpus Christi Bay, 

TX to determine horizontal diffusivity values, Ki (i = x, y along the East-West and 

North-South, coordinate axes respectively) from the observed concentration profiles of a 

diffusing patch of Rhodamine WT dye. These dye-tracer studies covering horizontal 

length scales between 10-1000 m (with corresponding time scales of ~104 s) were 

conducted for validating a numerical scheme developed for evaluating diffusion 

coefficients from turbulent characteristics of the currents field in surface waters. In one 

of the studies, the diffusion process in this shallow wind-driven bay was enhanced by the 

vertical shear current structure resulting in diffusivity values that were 10-20 times 

greater than estimated based on turbulence. In general, the East-West diffusivities were 

found to be ~104-105 cm2/s, an order of magnitude higher than the North-South 

diffusivities which were found to be ~103-104 cm2/s. These results will be useful within 

the framework of constituent transport modeling and contributes to available data on 

diffusion processes within the coastal and near-shore environments. 
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Introduction 

The coupling of physical, chemical and biological processes in natural systems as 

captured in the governing equations of fate and transport in conjunction with system 

hydrodynamics is important in describing the evolution of constituents over space and 

time. Development of a concentration profile of constituents of interest can be achieved 

through the solution of these governing equations predicated on the parameterization of 

the diffusive component expressed as the diffusion coefficient or diffusivity. Diffusivity 

values on the horizontal plane exist for length scales of 1-100 km in the open and coastal 

oceans as well as lakes (Murthy, 1970; Stummel, 1949). Such data have been compiled 

into oceanic diffusion diagrams (Okubo, 1971) but limited data exist at smaller scales 

particularly in the near-shore environment covering length scales in the range 10-1000 m 

and corresponding time scales on the order of minutes to hours. Tracer experiments have 

traditionally been the accepted method of obtaining diffusivity values in surface waters 

(Elliot et al., 1997; Okubo, 1971; Riddle and Lewis, 2000) but these are logistically 

challenging to conduct as well as being so time consuming. 

A numerical scheme was developed in our laboratory for computing diffusivity 

values from hydrodynamic observations (Ojo and Bonner, 2002; Ojo et al., 2004c) and 

the primary objective of this dye-study is to validate this scheme. This scheme depends 

on the evaluation of the turbulence and shear structure of the flow field in surface waters 

and by conducting a series of dye tracer experiments simultaneously with current 

measurements in a prototype bay, an independent determination of diffusion coefficients 

was made and then compared with the numerically determined values. Validation of the 
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numerical scheme will allow for a logical extension of existing instrumentation to 

elucidating information regarding physical processes that drive transport phenomena in 

surface waters, given the current state of the art in current measurements (Kelly et al., 

2002; Kelly et al., 2003). The second objective is to determine the effect of variable 

geomorphology and meteorological conditions on diffusivity values and the third 

objective is contributing to the available data on the diffusive process and particularly 

those for Corpus Christi Bay, Texas. 

This work is important in light of ongoing efforts within our research laboratory 

to develop an Integrated Environmental and Oceanographic Assessment System 

(IEOAS) for the nearshore environment (Ojo and Bonner, 2004). The scheme couples 

real-time oceanographic observations with a numerical model (Ernest et al., 1991; Lee et 

al., 2000; Sterling et al., 2004a; Sterling et al., 2004b) to facilitate complete spatial-

temporal characterization of surface waters with emphasis on bays and estuaries.   

 

Methods and Materials 

Site selection within the study area as well as timing of the experiments was to 

facilitate the establishment of varying experimental conditions in order to determine 

whether there exists a spatial-temporal variation in diffusivity values with respect to 

meteorological and geomorphologic variation. Several testing and preliminary runs were 

performed within Corpus Christi Bay as part of the data acquisition equipment 

development process, prior to the actual series of dye releases. Three dye releases were 

subsequently carried out for the actual studies during which known amounts of 
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Rhodamine WT dye were released at different locations and at different times in the tidal 

cycle.  

The dye patch was followed for the duration of the experiment and repeatedly 

sampled for fluorescence at a rate of ~1 Hz. Subsequent data processing allowed 

reconstruction of the concentration profile from which the computations described in the 

Methods section were performed. Simultaneous readings of the 3-D currents field were 

obtained with the ADCP. The instrumentation as well as data acquisition software and 

hardware are described in this section. Also described is the method of data analysis 

(pre-processing and post-processing). 

 

Study Site 

The study sites for the field data acquisition were located within Corpus Christi 

Bay as described in Chapter I with the bathymetry as shown in Figure 1.2 which also 

shows the approximate locations of the two study sites. The Texas A&M University – 

Corpus Christi operates and maintains environmental and meteorological stations at 

these locations (Kelly et al., 2004; Kelly et al., 2003) and these stations were sited 

because of their proximity to identifiable flux points within the bay. Instruments and 

sensors on these platforms provided complimentary data during these experiments as 

well as a visual reference for the origin of the dye application. Each one of the three 

studies have been assigned a reference number as indicated in Table 5.1 which also 

presents information relating to the actual dye release. During studies 0828_1 and 



134 

 

 

0828_2, 1000 g of 20% dye were released on each occasion while 4000 g of 20% dye 

was released during study 1007. 

 

Table 5.1. Experimental and meteorological conditions for dye diffusion experiment. 

ID Location Date Time 
(UTC) 

Duration 
(mins) 

Sal. 
(psu) 

Water 
Temp. 

(ºC) 

Tide Wind 

0828_1 2747.937N, 
9721.451W 

Aug. 
28, '03  

15:44 138 33 30 High 
water, 

ebb 

7 kn, 
SE 

0828_2 2743.571N, 
9718.297W 

Aug. 
28, '03 

21:20 104 32 30 High 
water, 

ebb 

14 kn, 
SE 

1007 2747.937N, 
9721.451W 

Oct. 
07, '03 

14:34 145 25 26 High 
water, 
flood 

4-12 kn, 
NE 

 

 

Instrumentation 

The diffusing dye patch during each experimental run was monitored over a 

period using a towed instrument array consisting of a fluorometer (SAFIRE from WET 

Labs, Inc., Philomath, OR, USA), a CTD sensor (FastCat from Sea-Bird Electronics, 

Inc., Bellevue, WA, USA) and a particle size analyzer (LISST-100 from Sequoia 

Scientific, Inc., Bellevue, WA, USA). These instruments formed part of a suite of 

oceanographic and environmental sensors that also included an Acoustic Doppler 

Current Profiler (ADCP from RD Instruments, Inc., San Diego, CA, USA). Fluorescence 

measurements were obtained with the SAFIRE, a combination spectrophotometer and 

spectrofluorometer exciting the target at six discrete wavelengths while sensing discrete 

levels of 6 absorptive and 16 emission (fluorescence) wavelengths. Instrument 
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calibration established excitation/emission wavelengths for Rhodamine WT dye at 

487/620 nm for this instrument and a working range of 100-1500 ppb corresponding to 

~650-32000 raw counts of fluorescence.  

The instrument array was towed at a constant depth of ~1 m below the water 

surface, the depth being maintaned by the control system of the undulating tow body, a 

Seasciences Acrobat (Seasciences, Inc. USA) tow body. Calibration parameters were 

applied to the raw fluorescence counts by the data acquisition computer for conversion 

to concentration units. In addition to the fluorometric data, salinity and temperature 

measurements were obtained with the FastCat while current measurements were 

obtained with the ADCP throughout the duration of each of the experiments. The 

duration of the experiments were determined by the instrument detection limits and the 

extent of the dye plume that can be sampled at the towing speed of the instrument 

platform.       

 

Data Acquisition 

Fluorescence and auxiliary measurements from the subsurface instruments was 

facilitated through a software interface developed in our laboratory for conducting 

environmental and oceanographic assessments in surface waters (Ojo et al., 2003b; Ojo 

et al., 2002). The Multi-Parameter Instrument Array and Control System, MPIACS 

software interface provided real-time data visualization of fluorescence, salinity, 

temperature and volume concentration of particulates simultaneously by geo-referencing 

the instrument raw data through a data acquisition GPS unit. Visual indications of the 
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spatial distribution and the intensity for each constituent of interest or sampled parameter 

guided the sampling efforts through color-coded tracklines representing low to high 

levels of concentration.  

The spatial resolution achievable was dependent on the data rate of the GPS 

employed (typically 1 Hz) and the travel speed of the tow body (~3 m/s). The GPS unit 

was run in the auto-selection mode during this exercise, allowing the unit to operate in 

GPS, DGPS (dynamic GPS) or WAAS (wide area augmentation system) mode, 

depending on service availability. The accuracy of the GPS varies with the mode:  DGPS 

mode (accuracy is within 1 m), WAAS mode (5 m), or GPS mode (10 m). Under this set 

of conditions, a spatial sampling resolution of ~3-10 m was achieved.  

 

Data Analyses 

The coefficients required in the advection-diffusion equation of transport can be 

obtained from studies using passive tracers such as fluorescent dyes for short time scale 

studies or radioactive gases for longer time scales on the order of weeks (Clark et al., 

1996; Ledwell, 1991). Any one of two well-established methods can be used for 

analyzing the concentration data in order to deduce the required coefficients. First is the 

method of moments using statistical regression analyses and the second method 

essentially is an inverse formulation of the underlying equations using optimization 

schemes. Both methods rely on data obtained from the observed concentration profile of 

a diffusing cloud of tracer. In this study, fluorometric measurements were obtained from 

a diffusion dye patch of Rhodamine WT on time scales ~104 s, which corresponds to the 
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early stages of the diffusion process. Following is a review of two of the commonly used 

methods in dye-tracer studies and provides a background for selecting the most 

appropriate method for achieving the stated objectives.  

 
Method A 

With this method, complete homogeneity within the patch is assumed and the 

approach is to consider the variance in orthogonal directions separately also assuming 

the diffusive processes along those directions to be acting independently from each 

other. The diffusivity values are then computed from the time rate of change of the 

variance. This requires the evaluation of the diffusing cloud at successive time intervals. 

One may choose to simplify the analysis by assuming a radially symmetric patch for 

which an equivalent radius is obtained and then computing the variance based on the 

equivalent radius. A two-dimensional (2-D) concentration profile from the observed 

fluorescence data will be sufficient in computing the horizontal diffusivity values or 

even an evaluation of the centerline concentration along each axis will be adequate.  

In general, a power-law relationship exists between the variance, Si
2 of a 

diffusing cloud and the diffusion time, t the elapsed time since release (Murthy, 1975)  

 

 m
i atS =2  (5.1) 
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The values of a and m are obtained from a log-log plot of the time evolution of observed 

variance of the diffusing dye patch from which, assuming homogeneity in the 

concentration distribution within the patch, 

 

 
dt

dSK i
i

2

2
1

=  (5.2) 

 

 )11(21

2
)( m
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m

ii SamSK −
=  (5.3a) 

 

 p
iii qSSK =)(  (5.3b) 

 

for i = x, y corresponding to the x, y coordinate axes, mamq
1

)2(=  and )11(2 mp −= . 

From lake studies, Murthy determined that the value of m lies between two and three and 

for practical purposes, models of diffusion based on equation (5.3b) and different values 

of m can be developed as summarized in Table 5.2. Equations (5.3a), (5.3b) express the 

dependence of diffusivity, Ki on the length-scale of diffusion, Li generally taken as 3Si 

and the following expressions relate properties needed for the evaluation of Ki to the 

concentration profile c(x,y,z,t): 

 

∫ ∫ ∫
∞

∞−

= dxdydztzyxcM o ),,,(  (5.4) 
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Table 5.2. Diffusion models prescribed on the basis of parameter m. 

Diffusion Properties m p 
Law Parameter Model 

1 0 K = constant  Fickian 
2 1 qLK =   Linear length scale 
3 4/3 3431 LK ε=   Inertial sub-range 
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Equations (5.4) - (5.6) represent the zeroth, first and second moments 

corresponding to the total mass, the center of mass and the variance of the diffusing dye 

patch respectively. These are used along with equation (5.3) in obtaining the effective 

diffusivity along the respective coordinate axes. For a two-dimensional dye patch the 
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equivalent variance, Sr
2 of a radially symmetric patch can be found using equation (5.7a) 

while the equivalent variance, Sxy
2 of an elongated patch is given by equation (5.7b),  

 

yxr SSS 22 =      (5.7a) 

 

 222
yxxy SSS +=  (5.7b) 

 

Given the analytical solution of the advection-diffusion equation (with constant 

diffusivities values, Kx, Ky, Kz) in three dimensions relating the concentration profile c(x 

,y ,z ,t) from an instantaneous point discharge Mo,  
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the concentration at the center-of-mass of the dye cloud can be obtained from, 
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where at time, t the center-of-mass of the dye cloud traveling with velocity, v(ux, uy, uz)  

will be located at coordinates (xo, yo, zo) relative to the origin of the point discharge. The 
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expression in (5.9) is of the form at-3/2 having a straight line fit on a log-log plot of 

observed peak concentration against time provided Kx, Ky, Kz are constants. An estimate 

of the velocity, v can therefore be obtained from the displacement of the center-of-mass 

of the diffusing cloud relative to the origin over successive time intervals.  

 

Method B 

This method is based on the governing equation of transport. Written for a single 

conservative substance and using 2-D depth integrated concentration observations from 

fluorescence,  
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where over the depth range z = [0, h], ∫=
h

dztzyxcc
0

),,,( is the depth integrated 

concentration profile assuming homogeneity in the vertical and ux, uy are the horizontal 

velocity components of the currents field. Using a forward time, central space (FTCS) 

finite difference approximation on a spatial [j x k] -temporal [x n] grid, equation (5.10) 

above can be written as a discretized algebraic equation (DAE). The localized values for 

ux, ux, Kx and Ky will be taken as constant in this representation.  

 



142 

 

 

 

2
1,,1,

2
,1,,1

1,1,,1,1
1

,

22
22

y
ccc

K
x

ccc
K

y
cc

u
x
cc

u
t

c

n
kj

n
kj

n
kj

y

n
kj

n
kj

n
kj

x

n
kj

n
kj

y

n
kj

n
kj

x

n
kj

∆

+−
+

∆

+−
+

∆

−
−

∆

−
−=

∆

∆

+−−+

−+−+
+

 (5.11) 

 

Equation (5.11) can be written in matrix form as follows: 
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 r = SC  (5.12b) 

 

r is evaluated as the time rate of change of concentration at a node (j, k) on the spatial 

grid having a concentration, cj,k at time-step n; S is a matrix of coefficients and C, a 

matrix of concentration differentials evaluated at surrounding node points. This 

formulation of an unsteady advection-diffusion transport with appropriate boundary-

conditions (B.C.) and forward-stepping with time has a truncation error of O(∆t, ∆x2, 

∆y2) the time-step, ∆t and B.C. being selected appropriately.  

The matrix in (5.12) can be inverted in order to evaluate the coefficient matrix, S 

from observed concentration matrix, C in a least-squares sense, ∆t being determined by 

the time interval between observations.  
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 S = rC-1   (5.13)   

 

Using optimization techniques, both the diffusivity values and velocity field can be 

obtained and if the velocity field is known, diffusivity values alone will be obtained. 

Since the objective of this study is the validation of a numerical scheme developed for 

the evaluation of diffusivity from the velocity field, Method A is the preferred method as 

it allows the determination of characteristics of the evolving dye-patch for comparison 

with existing data on the process of diffusion viz. center of mass, variance, and diffusion 

length scale.     

Primary data used in this study consisted of the geo-referenced fluorescence 

measurements representing concentration distribution of the Rhodamine dye. The 

concentration profiles were accurately reconstructed for the diffusing patch of dye at 

successive time intervals using the time and location stamp from each data point. The 

observed fluorescence measurements in raw counts were first converted to actual 

concentration (in ppb) by applying predetermined calibration parameters for the 

fluorometer. These concentration values were corrected for background fluorescence, 

which can be relatively high in Texas waters (Ward, 1985). Objective analysis was 

subsequently performed on these converted, background corrected measurements to 

obtain 2-D concentration profiles of the dye over uniform grid spacing at successive time 

intervals. Finally the expressions in equations (5.4) – (5.6) were applied to the uniformly 

gridded datasets, producing the variance, Si
2 (i = x, y) from which plots of Si

2 against 
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time were generated leading to the computation of diffusivity, Ki (i = x, y) from using 

equation (5.2).  

 

Results  

Results from two of the dye-tracer experiments conducted are presented in this 

section. The time series of the dye concentrations returned by the fluorometer for studies 

0828_2 and 1007 are shown in Figure 5.1 while the peak concentrations against time 

using log-log plots as expressed in equation (5.9) are shown in Figure 5.2. Reconstructed 

dye-tracer patches (at successive time intervals) and a log-log plot of the variance 

against diffusion time are shown in a series of isopleths in Figure 5.3 and Figure 5.4 

respectively from study 0828_2. Similarly, for study 1007, reconstructed dye-tracer 

patches are shown in Figure 5.5 while the log-log plot of the variance against diffusion 

time is shown in Figure 5.6. The computed variance at different diffusion times and the 

characteristics of the diffusing patch are summarized in Table 5.3. From the log-log 

plots, (Figures 5.4 and 5.6) a trend line was fitted through the actual data points with 

subsequent application of equation (5.2) for the evaluation of Ki.    
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Figure 5.1. Time series of concentration. Solid line (-); observed concentration; dashed line (--) 

exponential fit to observed data; open circle (o) peak concentration (approx. center of mass). Top, study 
0828_2; bottom, study 1007. 

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

1400

1600

1800

Time (seconds)

C
on

ce
nt

ra
tio

n 
(p

pb
)

Peak Values
Exponetial Fit
Observed Conc.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

Time (seconds)

C
on

ce
nt

ra
tio

n 
(p

pb
)

Peak Values
Exponential Fit
Observed Conc.



146 

 

 

 

 
Figure 5.2. Time series of fluorescence values from tracer experiments. Temporally localized peaks 

show the declining maximum concentration values during each leg of the several crossing made 
through the dye patch. 2nd order exponential (--*--) curve-fit through the localized peaks. 
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Figure 5.3. Contour plots of reconstructed dye concentration profile at successive time intervals from study 0828_2. The current structure from ADCP 

measurements is shown upper left.
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Figure 5.4. Top panel; centerline concentration distribution from study 0828_2. Bottom; variance time 

plots from concentration profile (S2
x – east-west, S2

y – north-south). Regression line fitted to observed data 
with r2 = 0.94 and 0.87 respectively.
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Figure 5.5. Contour plots of reconstructed dye concentration profile at successive time intervals from study 1007. The current structure from ADCP 

measurements is shown upper left.
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Figure 5.6. Top panel; centerline concentration distribution from study 1007. Bottom; variance time plots 
from concentration profile (S2

x – east-west, S2
y – north-south). Regression line fitted to observed data with 

r2 = 0.97 and 0.94 respectively.
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Table 5.3. Summary of dye patch characteristics.  

Computed Diffusivity 
x 104 (cm2/s) 

Dye Patch 
 

S2
r 

(cm2) x 106 
C.G. 

Diffusion 
Time  (s) 

S2
x (cm2) x 106 

 
S2

y (cm2) x 106 

Kx Ky 

 Lat. Lon. 
318 6.75 9.69 16.44 27.7248 -97.3065 
2297 59.05 12.90 71.95 27.7253 -97.3062 
4726 87.42 23.39 110.81 27.7253 -97.3056 
4992 130.09 29.20 159.29 27.7251 -97.3059 
6202 154.52 42.82 

1.2 0.25 

197.34 27.7251 -97.3057 
Variance Si , at successive time intervals used in the evaluation diffusivity Ki; study 0828_2 

 
 
 
 

Computed Diffusivity 
x 104 (cm2/s) 

Dye Patch 
 

S2
r 

(cm2) x 106 
C.G. 

Diffusion 
Time  (s) 

S2
x (cm2) x 106 S2

y (cm2) x 106 

Kx Ky 

 Lat. Lon. 
4 37.45 55.04 92.49 27.7998 -97.3538 

740 167.93 110.78 278.71 27.7996 -97.3556 
1227 167.22 119.99 287.21 27.7998 -97.3554 
1836 234.92 126.87 361.79 27.7996 -97.3560 
2436 503.45 145.60 649.05 27.7987 -97.3567 
3688 607.62 195.82 803.44 27.7988 -97.3560 
5557 892.35 350.71 

8.0 2.4 

1243.06 27.7989 -97.3573 
Variance S2

i , at successive time intervals used in the evaluation diffusivity Ki; study 1007 
  



152 

 

 

The contour plots in Figures 5.3 and 5.5 were reconstructed from the individual 

transects through the evolving dye patch. The profiles indicate a northeasterly trajectory 

for the diffusing dye cloud during study 0828_2 and a southwesterly trajectory can be 

deduced from study 1007. The contour plots indicate the lack of homogeneity within the 

dye patches, which may be due to the entrainment of clear water from repeated crossings 

made by the survey boat. In some cases, bifurcation of the dye patch may result but 

generally, recovery would occur after a short period. 

In Figure 5.2, the plot of peak concentration against time was fitted to a power 

law plot logarithmic scale. A straight line "best-fit" through the points with slope of –3/2 

is suggestive, according to equation (5.11) of constant diffusivities and one would expect 

to observe linear growth of the variance of a diffusing cloud with time. The diffusivity 

values so computed using the method of moments as outlined here were found to be 

~103 cm2/s (r2 = 0.87) in the north-south direction and ~104 cm2/s (r2 = 0.94) in the east-

west direction for study 0828_2. These figures were found to be approximately 10 times 

higher during study 1007 (r2 = 0.94 and 0.97 respectively) but in general, the growth of 

the dye patch measured by the change in variance over time was indeed found to be 

linear within the time scale of the experiment during both studies. This would suggest 

that the diffusion process follows a Fickian model with constant diffusivities.  

 

Discussion 

The dye diffusion experiments described in this paper are part of a study aimed at 

elucidating information on diffusion coefficients in surface waters from hydrodynamic 
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measurements. Ancillary data provided during the experiments as environmental and 

oceanographic variables are presented in Figures 1.3 and 1.4 including wind speed, 

water level and current measurements. In separate but related studies, a set of numerical 

schemes had been developed for calculating diffusion coefficients based on Taylor's 

analyses on turbulent and shear flow in pipes and extended to surface waters but these 

schemes needed to be validated. These dye tracer experiments were conducted at 

different locations within Corpus Christi Bay and at different times during the tidal cycle 

and designed to determine the differences in the diffusion process that may result from 

variability in geomorphological and meteorological conditions. 

The diffusivities derived from these tracer experiments, when compared with 

those obtained using numerical methods and current measurements taken with the 

ADCP, were found to be in close agreement. Two different diffusion regimes were 

identified from these experiments, one due to turbulence and the other attributable to 

shear current. In the presence of vertical shear current structure, the process of 

turbulence is significantly augmented and the entire diffusion process becomes 

dominated by shear. This shear-augmentation was observed during study 1007 with the 

computed diffusivities being approximately one order of magnitude higher along each of 

the coordinate axes compared with corresponding values determined from the other two 

studies. This same phenomenon, as observed by other researchers from experiments 

conducted in different bodies of water has implications regarding the value of the 

diffusion coefficient being dependent on prevailing meteorological and oceanographic 

conditions.  
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In Figure 5.7, the results of these dye-tracer experiments were compared with 

those obtained by other researchers who had conducted similar experiments in various 

bodies of water. The plot is a log-log plot of variance against time of an equivalent 

symmetrical patch represented in equation (5.7a). Okubo's data was fitted to an 

expression of the form 

 

34.22 011.0 tSr =      (5.14) 
 

 
Figure 5.7. Comparison between results of experiments conducted in Corpus Christi Bay and those 

obtained by Murthy in Lake Ontario and Elliot from coastal waters around Ireland. Okubo's data 
were from numerous studies conducted from around the world. Fickian diffusion is also presented for 

comparison. 
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As shown in Figure 5.7, this underestimates the size of a diffusing cloud at 

smaller time scales and overestimates the cloud size at longer time scales. The data 

obtained by Murthy from studies conducted in Lake Ontario, although outside of the 

temporal scale of the experiments conducted for Corpus Christi Bay, generally follows 

the same trend in terms of the growth of the cloud. Elliot's data taken from Donegal 

Harbour in Ireland, a near-shore environment with water depth similar to Corpus Christi 

Bay shows very good agreement with the data obtained during study 0828_2. Murthy's 

data was fitted to an expression of the form 

 

  3
42 4.2 tSr =       (5.15) 

 

while Elliot's data was fitted to an expression of the form 

 

  5
42 65.7 tSr =       (5.16) 

 

Data from studies 0828_2 and 1007 was fitted to an expression of the form 

 

  4
32 tSr ∝       (5.17) 

 

the constant of proportionality being 5.4 and 6.1 for study 0828_2 and 1007 respectively. 

In general, most of the data tend toward the Fickian form ( tSr ∝2 ) with linear growth 
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rate as represented in Figure 5.7, particularly in those early stages of diffusion and at a 

temporal scale of ~72 hours.  

Through these experiments, diffusivity values were determined for Corpus 

Christi Bay on a temporal scale of 0-2 hours and a corresponding length scale of 10-

1000 m hours following an instantaneous discharge of a conservative neutrally buoyant 

material. Ward's experiments within the vicinity of this water body, although in a 

shallower part of the bay but on the same temporal scale, showed similar results. The 

diffusion coefficients he reported were lower than the ones presented in this study but 

demonstrated similar trends. Thus, this study contributes to existing data on diffusion 

processes within Corpus Christi Bay and provides supporting data for numerical 

methods developed for analyzing diffusion coefficients. 

In conducting these experiments, the entrainment of unmarked fluid due to 

numerous crossings of the survey vessel might have contributed to the lack of 

homogeneity within the dye patch. As the diffusion process progressed, the accuracy of 

the fluorescence measurements decreased especially against the backdrop of the high 

background fluorescence encountered and the detection limit of the instrument. 

Although this had a bearing on the duration of the experiments, the temporal scale of 

these experiments coincide with the period of sharp gradients following a pulse 

discharge and may be very important from an ecological standpoint. The data obtained 

sheds light on the applicability of numerical methods developed for obtaining 

diffusivities from current measurements viz. the development of operational numerical 

models for ecological monitoring and emergency response activities. The stability of the 
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water column as it affects persistence of turbulence and the onset of shear diffusion is 

generally assumed for the application of turbulence closure schemes in operational 

circulation models and with the observation made here that shear does not always 

prevail, may lead to under-prediction of the concentration values for constituents of 

interest.         

This has been a limitation for many of the circulation and transport models that 

employ the so-called turbulence closure schemes for evaluation of diffusivities in that 

not enough data exist combining concentration profiles and current measurements. More 

experiments of the type described here will be required in order to assemble this type of 

information. With this study and the related numerical schemes developed and reported 

elsewhere, we have demonstrated the usefulness of 3D current measurements beyond 

that of oceanographic and/or hydrographic surveys. The tools developed as a result of 

this study will be very useful within the context of environmental monitoring, allowing 

the extension of existing or development of new instruments on the basis of these 

numerical schemes, into applications such as environmental assessments, spill 

monitoring, emergency response and the likes.  

 

Future Work 

It will be necessary to determine the conditions under which shear diffusion 

dominates over turbulence. The collection of available data on variance with time for 

various water bodies in the nearshore environment for the generation of a diffusion 

diagram similar to Okubo's oceanic diffusion diagrams is useful as a first approximation 
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in predicting diffusion but has limited application. This makes the method of elucidating 

diffusivities from current measurements particularly attractive since these measurements 

are routinely made during oceanographic and hydrographic surveys. It is recommended 

that experiments such as the one described here that combines dye tracer measurements 

with current data under different meteorological conditions be conducted with a view to 

developing nomograms that can be applied within the framework of operational 

numerical schemes for environmental and oceanographic assessments. These charts will 

be similar to those prescribed for application in the Pasquill-Gifford (Pasquill, 1962) 

atmospheric dispersion plume model. 
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CHAPTER VI 

SIMULATION OF CONSTITUENT TRANSPORT USING A REDUCED 3D 

CONSTITUENT TRANSPORT MODEL (CTM) DRIVEN BY HF RADAR: MODEL 

APPLICATION AND ERROR ANALYSIS 

 
Overview 

 This chapter discusses a numerical method of estimating diffusion coefficients in 

anisotropic flow fields and examines, through model error analysis, the effects of using 

spatially variable coefficients on model predictions. A data-driven constituent transport 

model (CTM), which relies on surface current measurements from High Frequency (HF) 

Radar and can be applied within the context of real-time monitoring, nowcasting and 

emergency response was developed. Error analyses was performed by determining 

normalized model errors with varying cell Reynolds number, Re = f(u,K,∆x) from 0.15-

100. Two instantaneous releases were modeled, the model being initialized at two 

different locations within the domain and there was a marked difference in the predicted 

spatial extent of the conservative material, this difference being attributable to the spatial 

variation in diffusivities within the study area. A scheme that allows for the evaluation of 

the diffusivities (a measure of spread) was developed and incorporated into a data-driven 

CTM, which was then applied (within the framework of constituent tracking) to Corpus 

Christi Bay in the Texas Gulf of Mexico region. 
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Introduction 

 Mixing processes (turbulence and shear) in surface waters are important as they 

govern the overall distribution of constituents within the domain of interest, constituents 

including biogenic and anthropogenic materials. In conjunction with sampling and 

measurements, constituent transport modeling (CTM) can be a valuable tool for 

environmental assessments, forming the bedrock of most water quality and pollutant 

tracking applications in surface waters. A number of these models have been developed 

for various applications covering a wide range of spatial and temporal scales. These 

mechanistic models are based on the solution of coupled sets of partial differential 

equations (PDEs) comprising two distinct modules viz. hydrodynamic and transport 

modules. The hydrodynamic module is a set of PDEs, the well-known Navier-Stokes 

equations based on momentum conservation while the transport module is a set of 

advection-diffusion-reaction PDEs based on mass conservation laws. 

The resulting governing equations of transport can be treated with a Fickian 

diffusive component provided the scale of the phenomenon is larger than the 

characteristic scale (time or length) of the diffusion process. This derives from the 

material balance in turbulent flow within an elemental fluid volume accounting for the 

turbulent fluctuations in the currents field as well as the constituent of interest. The 

resultant rate of change of solute concentration for conservative materials consists of two 

additive parts, the advective flux and the diffusive flux. This argument although 

developed within the context of turbulence can be extended to include other effects that 

are known to influence diffusive processes such as current shear (Bowden and Howe, 
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1963; Elliot, 1986). Since the turbulent field in bays exhibits anisotropy, one would 

expect to find the diffusive process characterized by the diffusivity values also 

exhibiting spatial-temporal variability (Ojo and Bonner, 2002). 

From the foregoing, two sets of coefficients are required in the governing 

equation of transport; the advection coefficients (velocity) and diffusion coefficients. 

The former being provided either through direct observations or through direct 

numerical simulation (DNS) as outlined above while the latter can be estimated using 

any one of the four methods outlined below, the first three having been applied in a 

series of related studies within Corpus Christi Bay (Ojo et al., 2004a; Ojo et al., 2004b, 

c): 

a) From the evaluation of the temporal variation of the magnitude and 

direction of currents (Paul et al., 1989; Taylor, 1920, 1954);  

b) Based on the evaluation of the spatial variation of the velocity field 

(Csanady, 1980 (reprinted); Elder, 1958; Taylor, 1953);  

c) Evaluation of the first and second moments of concentration distribution 

of a diffusing cloud (Murthy, 1975; Okubo, 1971);  

d) Inverse problem based on the governing equation of advection-diffusion 

(Ernest et al., 1991; Lam et al., 1983). 

Considering the spatial extent typical of bays and estuaries, the incorporation of 

velocity information into a transport model defaults to the DNS method, which couples 

the hydrodynamic module to the transport module. Although a number of turbulence-

closure schemes have been developed, there are still uncertainties inherent in their 
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application especially within shallow wind-driven bodies of water typical of Texas bays. 

Following recent advances in surface current measurements using HF radar (Kelly et al., 

2002; Kelly et al., 2003), it is possible to incorporate near real-time direct measurements 

of hydrodynamic data into constituent transport and water quality models. By extension, 

the diffusion coefficients can be derived from the velocity time-series and this method 

was applied in this study in a data-driven schema, the diffusivities evaluated based on 

the statistical properties of the turbulent flow field. Since the radar provides surface 

currents within the domain of interest, the 3D velocity field for the domain of interest 

was derived through the inclusion of Acoustic Doppler Current Profiler (ADCP) 

measurements.  

The objectives of this study are: 

• Estimate diffusion coefficients based on direct observations of hydrodynamic 

data on spatial scales ~30 km and temporal scales covering several tidal cycles. 

• Incorporate direct hydrodynamic observations and derived turbulent diffusivities 

into a simplified CTM.  

• Examine through model error analysis:  

a. The effects on model predictions resulting from errors associated with current 

measurements. 

b. The results of using spatially averaged values of diffusion coefficients 

typically obtained from diffusion diagrams or tracer experiments vs. using 

spatially distributed values obtained through current measurements as 

outlined above. 
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• Apply the resulting simplified data-driven CTM to near real-time constituent 

tracking in Corpus Christi Bay, Texas.  

This is important within the framework of spatial characterization of bays and 

estuaries as well as response to episodic events in surface waters and is part of ongoing 

research within our laboratory. This effort is aimed at developing an operational 

environmental and oceanographic assessment system, combining numerical modeling 

(Ernest et al., 1991; Lee et al., 2000; Sterling et al., 2004a; Sterling et al., 2004b) with 

real-time measurements (Ojo and Bonner, 2004; Ojo et al., 2003c). 

 

Background Theory 

The generalized form of the governing equations that form a coupled set for a 

CTM is given below where u, v, w are the component velocities, Nx, Ny, Nz are eddy 

viscosities, Kx, Ky, Kz are diffusivities along each of the coordinate axis, g is the 

gravitational constant, ρ is the fluid density, Ri is the source/sink term and Ci the 

concentration of the ith constituent. 
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Model Coefficients for Simplified CTM  

Numerical solutions to these equations can be obtained using any one of a variety 

of computational techniques (Fletcher, 1991). A simplified set of these equations 

obtained by uncoupling the momentum equations are given by:  
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(rate = advective flux + diffusive flux ± source/sink) 

 

where the subscript i denotes the i-th constituent of interest. In the application of 

equation (6.2) for the simplified CTM, two sets of coefficients are required; one set for 

the advective flux (coefficients obtained by direct measurements), and the other set for 

diffusive flux obtained through the auto-correlation functions (ACF) of the velocity time 

series. The velocity data required for the numerical solution of the resulting advection-

diffusion equations are obtained from direct observations of surface current 

measurements. This includes the components of velocity in the x-coordinate direction 

(east-west) and y-coordinate direction (north-south) u, v from HF radar and for a full 3D 

implementation, the vertical component, w in the z-coordinate direction obtained from 

ADCP measurements. 
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It has been shown (Batchelor, 1953) that turbulent diffusion in a flow field is 

related to the autocorrelation function (ACF), Ri of the velocity time series u(x,y,z,t). 

Following the work of Taylor (Taylor, 1920, 1953), these coefficients are defined as 

follows: 
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0 < R < 1 for 0 < τ < ∞ 

For a fluid in a turbulent flow, the turbulent velocity field is represented by the time 

series

 

)()()( ' tututu iii +=  and Ri is the autocorrelation function of the velocity time 

series, the overbar indicating averaged values over the ensemble of samples and Ti is the 

characteristic time scale of the process. While several analytical models have been put 

forward from statistical hydromechanics (e.g. Gaussian, Markov etc.), it is possible to 

obtain numerical estimates for Ri and this method was used in this study. The values for 

Ri were obtained directly from the discretized current measurements following which a 

numerical integration on Ri was performed to obtain the diffusion coefficient Ki. The 
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above scheme discussed elsewhere in a related study was implemented in MATLABTM, 

a high-level engineering and scientific programming language.  

 

Model Error Analysis 

Two sources of error are identified in the implementation of a typical CTM. 

Discretization errors or truncation errors are associated with numerically approximating 

the differencing. The other source of errors is inherent in the application of model 

coefficients. Two forms of truncation error typically introduced through the 

discretization are termed as numerical dissipation (artificial diffusion) and numerical 

dispersion. The latter manifests as a spatial lead or lag while the latter produces a 

reduction in the concentration levels relative to the analytical results. Both are dependent 

on the even and odd higher-order spatial derivative approximations respectively and 

varies with the cell Reynolds number, Re = ui∆x/Ki (i = x, y, z) where Ki represents the 

respective diffusivities and ui the respective velocities along the coordinate axes.  

The truncation errors can be quantified by comparing model results with the 

closed-form, which for a pulse discharge of mass Mo, is given by equation (6.4) below.  
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A forward time, centered space (FTCS) finite difference approximation on a spatial [i x j 

x k] -temporal [x n] grid for equation (6.2) results in a set of discretized algebraic 

equations (DAE).   
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Equation (6.5) can be written in matrix form as follows: 
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This can be written as a set of ordinary differential equations (ODE) by partial 

discretization writing the LHS as a total derivative (dc/dt = r) in terms of spatial 

differential approximations on the RHS. 
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 r = SC   (6.7) 

 

 where r is evaluated as the time rate of change of concentration at a node (i, j, k) on the 

spatial grid having a concentration, ci,j,k at time-step n; S is a matrix of coefficients and 

C, a matrix of concentration differentials evaluated at surrounding node points. This 

method-of-lines formulation of an unsteady advection-diffusion transport with 

appropriate boundary-conditions (B.C.) and forward-stepping in time has a truncation 

error of O(∆x2, ∆y2, ∆z2) the initial and boundary conditions being specified 

appropriately.  

 Since equation (6.4) is only valid for constant coefficients, solution of equation 

(6.7) will be analyzed with constant coefficients for comparison against the closed-form. 

Although Ruan et al. (Ruan et al., 1999) proposed a generalized scheme that allows for 

spatially distributed coefficients to be used in the evaluation of the numerical accuracy, 

for the purpose of error analysis in this study, the localized values for ux, uy, uz, Kx, Ky, 

and Kz will be taken as constant. The accuracy check on the discretization can be 

performed using the spatially aggregated root-mean-square error, RSME as follows: 
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where N is the number of nodes in the computational grid. The RSME compares the 

numerical solution with the analytical. Since the latter has no discretization errors 

associated with it, the RSME should therefore give a relative indication of the amount of 

numerical dispersion and dissipation inherent in the discretization. Having quantified the 

accuracy of the numerical solution, the overall uncertainties in model predictions 

associated with the model coefficients resulting from errors associated with velocity 

measurements and errors associated with estimation of diffusion coefficients can be 

established. 

   

Methods and Materials 

  This study focuses on intermediate scale mixing processes falling within the 

temporal scale of 3-10 days or length scale ~10 km. The categorized scale of mixing 

processes in open waters is as shown below: 

• Small Scale -- temporal scale < 24 h, spatial scale between 0-10 km. 

• Intermediate Scale -- temporal scale between 1-100 days, spatial scale between 

10-300 km. 

• Large Scale -- Temporal scale > 100 days, encompassing the ocean basin. 

The study area covers a horizontal scale ~25 x 25 km and a vertical scale ~4 m.  

Two scenarios were modeled comprising of an instantaneous discharge at two different 

locations. In both scenarios, the model was initialized with the same concentration of 

material at the same time within the tidal cycle and the diffusing cloud was then 

"tracked" over the course of several tidal cycles. 
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Surface Current Measurements and Vertical Velocity Profile 

 Surface current required as hydrodynamic input into the model was obtained 

from HF radar measurements. The SeasondeTM HF Radar equipment manufactured by 

CODAR Ocean Sensors, which is operated as part of a coastal observatory network 

maintained by our research group (Kelly et al., 2004) has a range up to 25 km at a grid 

resolution of 1000 m.  Operating on the principle of Bragg Scattering of high frequency 

(HF) electromagnetic waves incident on surface waves (Barrick et al., 1977), it 

continuously measures surface currents at 1-hour intervals over the entire study area. 

Spatial interpolation schemes and temporal filtering routines were written and applied 

for data pre-processing to account for dropouts and to allow the velocity measurements 

to be in step with the requirements of the numerical scheme used in evaluation of 

dispersion coefficients.   

The model grid resolution was set at 1000 m in the horizontal and 1 m in the 

vertical. Hourly surface current measurements were incorporated directly into the model 

providing the advective flux coefficients. The same dataset was then used in obtaining 

the diffusive flux coefficients using the autocorrelation function, Ri of the velocity time 

series. The method and algorithm for estimating the autocorrelation functions are 

discussed in the next section. Vertical current profiles were obtained using a boat 

mounted downward looking ADCP during a series of dye-tracer experiments from which 

a first-order polynomial was found to provide suitable approximation to the vertical 

profile of current. The linear velocity profile was applied for a 3D implementation of the 
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computational scheme. This profile was assumed invariant over the computational 

domain.   

 

Turbulent Diffusivity 

 Turbulent diffusivity defined in terms of the time variation of the velocity 

autocorrelation function following Taylor's analysis was used by List et.al in a set of 

experiments to evaluate diffusion coefficients from velocity time series using 

Langrangian drifters (List, 1990). Prior to this Okubo had developed a set of oceanic 

diffusion diagrams based on tracer experiments in surface waters and established a 

4/3rds power law between turbulent diffusion coefficients and a diffusion length scale. 

O'Connor et al. performed assessments in the 106-mile region, a waste disposal site off 

the coast of New Jersey basing their analysis on the relationship between spatial variance 

and variance of the velocity field (O'Connor et al., 1985). The dispersion estimates were 

obtained from the variance-covariance matrix of the velocity time series through a 

scaling dependence.   

In this study, the approach was to numerically analyze the velocity time-series 

for the evaluation of the time scale of the diffusion process, Ti through the numerically 

determined autocorrelation function, Ri. Since the scale of the analyses was of the order 

of several days, the tidal variations in velocity was treated as turbulent fluctuations 

relative to a mean de-tided velocity, ūi (i = x, y, z) along the orthogonal coordinate axes. 

The preprocessed velocity time series was used in conjunction with equation (6.3) to 

derive the spatially distributed diffusion coefficients. The discretized form of this 
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equation was used in a numerical scheme in deriving the diffusion coefficients at each 

node within the computational domain.  

 

Modeling Framework 

Since the reduced or simplified model used in this study incorporated direct 

observations of velocity and diffusion coefficients, the resulting partial differential 

equation (PDE) was solved in a time-stepping routine using a PDE solver based on the 

method-of-lines. The velocity coefficients on the surface, which coincides with the top 

horizontal plane, were provided by radar while sub-surface currents on each of the 

remaining four horizontal planes were obtained from a linear representation of current 

profiles from ADCP. 

The finite difference 3D computational domain is shown in Figure 6.1 and it 

covers a spatial extent of 25x25 km on a structured base-grid with 1000 m resolution in 

the horizontal and 1 m resolution in the vertical plane. The PDE solver VLUGR-3 (Blom 

and Verwer, 1996), a 3-dimensional vectorizable adaptive grid finite difference scheme 

accommodates irregular boundaries and the computational grid was made to conform 

approximately to the outline of the study area. The grid was generated interactively 

through a graphical interface that allowed for masking of land areas. Five horizontal 

planes were generated in this implementation having 2030 nodes on the base grid. The 

solver's adaptive grid scheme allows for on-the-fly grid refinement requiring automatic 

adjustment to the computational time-step within sections of the computational domain 
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where sharp gradients may result especially at the start of the simulation and at the 

boundaries.  

 

 
 Depth (m) 

 
Figure 6.1. Top panel; finite difference computational grid. Bottom pane; bathymetry of the study area, 

relatively shallow and flat at ~4 m.  
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Transport Model 
• PDE solver 
• 3-D concentration 

profile  

Grid generation 
• 3-D computational grid 
• Boundary setup

Diffusion coefficients 
from current 
measurements 

• D(x,y,z,t) 

Surface current (HF 
Radar) 

• u(x,y,z,t) 

Data pre-processing 
• Spatial interpolation 
• Temporal smoothing 

Data Visualization

Data post-processing 

Data archive 

 
Figure 6.2. Framework for data driven transport model.  

 
 

Output from the model simulation was written to individual ASCII files every 

hour for the duration of the computer experiment while MATLAB® based data 

visualization and analyses routines were applied for data post-processing. Figure 6.2 

presents this modeling framework. In each of the simulation runs, initial conditions were 

established by applying a pulse discharge of material with an initial concentration, Co = 

0.5 ppt at the node on the computational grid corresponding to the coordinates of the two 

locations used in this study, the material been uniformly mixed to a depth of 1 m. The 

model simulation was run until maximum concentration dropped below the 1 ppb level 

and a concentration profile was generated hourly. Neumann (no flux across boundaries) 

boundary conditions ( 0/ =∂∂ xC ) were set for boundary planes corresponding to the 

bottom and all sidewalls except at the boundary corresponding to the inlet of the 
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shipping channel where Dirichlet (fixed concentration) boundary conditions (C = const.) 

was established.    

 

Model Error Analysis 

The purpose of the error analysis was to verify the effect of inaccuracies in the 

model predictions resulting from the discretization of the governing equations. For this 

part of the study, uniform coefficients (velocity and diffusion) were initially used in the 

model in order to compare the model results against the analytical solution.  

It is imperative that the solver should introduce very little artificial diffusion 

(which may swamp out physical diffusion) and should accurately locate the center of 

mass of the concentration profile. In this study, the method of moments was applied to 

determine the spatial location and extent of the diffusing cloud and therefore the amount 

of artificial diffusion and numerical dissipation introduced by the model for various 

values of Re. The first moment of the concentration profile given in equation (6.10) 

locates the center of mass while the second moment given in equation (6.11) evaluates 

the variance (a measure of dispersion). These values for the center of mass and variance 

computed from the numerical scheme were compared with those from the exact solution 

following which the estimate of the error was determined from using equation (6.8).         
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Having established the numerical accuracy of the model, spatially varying 

coefficients were applied in the advection-diffusion model. The scheme used for 

generating these coefficients was described earlier. The computational domain was 

initially divided into a 26x26x5 grid and a level-4 grid refinement specified for the 

solver. Each level of grid refinement results in halving of the grid spacing in the areas 

where sharp gradients were found to occur during computation. Two scenarios were 

modeled in this study with the same amount of instantaneous tracer release.   

 

Results 

First, the results of the accuracy check are presented in Tables 6.1-6.3 using 

spatially uniform coefficients (velocity and dispersion) in both the analytical solution 

and numerical solution, and then the results of the two model scenarios are presented. 
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Table 6.1. Variance and spatial location estimates of a dye patch from an instantaneous point discharge for different values of Re (constant velocities). 

Distance of center of mass 
relative to origin, (m) 

Computed variance, 
(m2) 

Cell Reynolds 
Number, 

Re 

Velocity,
(cm/s) 

Diffusion 
Coefficient, 

(cm2/s) 

 

x-coordinate y-coordinate x-dir y-dir x-dir y-dir u v Kx Ky 
Actual 540 1620 1.08 x 104 1.08 x 105 100 30 10 30 1 x 104 1 x 105 
Numeric 273 914 2.78 x 105 9.11 x 105       
Actual 540 1620 1.08 x 105 1.08 x 106 10 3 10 30 1 x 105 1 x 106 
Numeric 323 1380 3.25 x 105 1.35 x 106       
Actual 540 1620 1.08 x 106 1.08 x 107 1 0.3 10 30 1 x 106 1 x 107 
Numeric 534 1595 1.07 x 106 1.06 x 107       

Grid Res = 1000 x 1000 x 1; Number of nodes = 4056; Time elapsed = 3 x 1800 s 
 
 
 

Distance of center of mass 
relative to origin, (m) 

Computed variance, 
(m2) 

Cell Reynolds 
Number, 

Re 

Velocity,
(cm/s) 

Diffusion 
Coefficient, 

(cm2/s) 

 

x-coordinate y-coordinate x-dir y-dir x-dir y-dir u v Kx Ky 
Actual 346 1037 6.91 x 103 6.91 x 104 50 15 10 30 1 x 104 1 x 105 
Numeric 180 646 9.23 x 104 3.13 x 105       
Actual 346 1037 6.91 x 104 6.91 x 105 5 1.5 10 30 1 x 105 1 x 106 
Numeric 244 1034 1.22 x 105 6.86 x 105       
Actual 346 1037 6.91 x 105 6.91 x 106 0.5 0.15 10 30 1 x 106 1 x 107 
Numeric 343 1020 6.85 x 105 6.80 x 106       

Grid Res = 500 x 500 x 1; Number of nodes = 15606; Time elapsed = 3 x 1152 s (6 x 900 s) 
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Table 6.2. Variance and spatial location estimates of a dye patch from an instantaneous point discharge for different values of Re (constant 
diffusivities). 

 
Distance of center of mass 

relative to origin, (m) 
Computed variance, 

(m2) 
Cell Reynolds 

Number, 
Re 

Velocity,
(cm/s) 

Diffusion 
Coefficient, 

(cm2/s) 

 

x-coordinate y-coordinate x-dir y-dir x-dir y-dir u v Kx Ky 
Actual 360 1080 7.20 x 105 7.20 x 106 1.0 0.3 10 30 1 x 106 1 x 107 
Numeric 316 966 6.30 x 105 6.44 x 106       
Actual 720 2160 7.20 x 105 7.20 x 106 2.0 0.6 20 60 1 x 106 1 x 107 
Numeric 558 1863 1.53 x 106 7.14 x 106       
Actual 1080 3240 7.20 x 105 7.20 x 106 3.0 0.9 30 90 1 x 106 1 x 107 
Numeric 799 2887 7.86 x 105 6.22 x 106       

Grid Res = 1000 x 1000 x 1; Number of nodes = 15606; Time elapsed = 4 x 900 =3600 s. 
 
 
 
 

Distance of center of mass 
relative to origin, (m) 

Computed variance, 
(m2) 

Cell Reynolds 
Number, 

Re 

Velocity,
(cm/s) 

Diffusion 
Coefficient, 

(cm2/s) 

 

x-coordinate y-coordinate x-dir y-dir x-dir y-dir u v Kx Ky 
Actual 360 1080 7.20 x 105 7.20 x 106 0.5 0.15 10 30 1 x 106 1 x 107 
Numeric 318 963 6.33 x 105 6.40 x 106       
Actual 720 2160 7.20 x 105 7.20 x 106 1.0 0.3 20 60 1 x 106 1 x 107 
Numeric 633 1926 6.25 x 105 6.32 x 106       
Actual 1080 3240 7.20 x 105 7.20 x 106 1.5 0.45 30 90 1 x 106 1 x 107 
Numeric 953 2893 6.18 x 105 6.19 x 106       

Grid Res = 500 x 500 x 1; Number of nodes = 15606; Time elapsed = 4 x 900 =3600 s. 
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Table 6.3. Normalized error from numerical estimates of variance and spatial location in comparison with exact solution for different values of Re.  

 
Normalized error; variable dispersion, constant velocities 

 
Normalized error; constant dispersion,  variable velocities 

Error 
 

Error Cell Reynolds 
number, Re 

Variance 
estimates 

Spatial location  

Cell Reynolds 
number, Re 

Variance estimates Spatial location  

100 -24.7 0.49 1 0.13 0.12 
10 -2.01 0.40 2 -1.13 0.23 
1 9.26 x 10-3 1.11 x 10-2 3 -9.17 x 10-2 0.26 

50 -12.4 0.48 x 10-1 0.3 0.12 0.12 
5 -0.77 2.95 x 10-1 0.6 0.13 0.12 

0.5 8.68 x 10-3 8.67 x 10-3 0.9 0.14 0.12 
30 -7.44 4.36 x 10-1 0.5 0.11 0.11 
3 -0.25 1.48 x 10-1 1.0 8.33 x 10-3 0.14 

0.3 1.85 x 10-2 1.54 x 10-2 1.5 0.14 0.11 
15 -3.53 0.38 0.15 0.11 0.11 
0.5 7.24 x 10-3 2.89 x 10-3 0.3 0.12 0.11 

0.15 1.59 x 10-2 1.64 x 10-2 0.45 0.14 0.11 
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Turbulent Diffusivity 

The velocity time series used for the eventual computer experiments were 

obtained over a 10-day period between 1700 hrs on 03/17/03 and 1800 hrs on 03/27/03 

for each of the coordinate axes on the horizontal plane. These surface current 

measurements represented in Figure 6.3 (as a time series at a location within the 

computational domain) and as current vectors in Figure 6.4 (at four successive times 

over the entire domain) were combined with a linear velocity profile in the vertical 

coordinate direction to obtain a 3D velocity field for the simulation run. The de-tided 

time series is shown by the broken lines in Figure 6.3 revealing the tidal variations in 

velocity on the given temporal scale (~10 days) as turbulent fluctuations, a necessary 

condition for evaluating diffusivity values in accordance with equation (6.3). 

Following the application of equations (6.3), the distribution density function for 

diffusivity is shown in Figure 6.5 while the spatially distributed diffusivity values 

obtained are shown in Figure 6.6. The diffusivity values are seen to fall within the range 

8.62± 4.98 x 105 cm2/s in the x-coordinate direction and 1.01±0.58 x 106 cm2/s in the y-

coordinate.  
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Figure 6.3. Typical velocity time series from surface current measurements at one location in the 

computational grid, shown as a time series (solid line) and the de-tided signal (dotted line) for east-west 
(top panel) and north-south (lower panel) coordinate axes. 
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Figure 6.4. From top left to bottom right, the spatial distribution of current vector, colored arrows scaled by current magnitude (cm/s) at successive 
times: time t = 60, 120, 180 and 240 hrs. 
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Figure 6.5. Distribution density for turbulent diffusivity along the coordinate axes. 
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Figure 6.6. Spatial distribution of turbulent diffusivity; top panel, diffusivity Kx in x-direction (modal 
value = 2.1 x 104 cm2/s; bottom panel, diffusivity Ky in y-direction (modal value = 4.0 x 104 cm2/s). 
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Error Analyses 

Figures 6.7 and 6.8 indicates that the error in the spread of the plume increases 

with increasing Re (the largest errors occurring at Re > 2) associated with changing 

diffusivity values, going up to as much as a 25-fold difference in variance estimates at 

Re = 100. Very little effect on variance estimates due to changing velocity values can be 

observed even at Re > 2. It is therefore apparent (from the data represented in Figures 

6.7 and 6.8, which is also presented in Tables 6.1-6.3) that order of magnitude errors in 

diffusivity makes the numerical scheme more error prone. Since diffusivities can be off 

by at least one order of magnitude and going by the spatial distribution of diffusivity, it 

becomes imperative that the model predictions will be significantly affected from the 

wrongful application of diffusivity values, less so directly from current measurements. 

Given the distribution of diffusivity values as shown in Figure 6.5, the target for 

the model error analysis was ~1 x 104 -105 cm2/s. The model was run for comparison 

with the analytical solution using values within the target range as well as values of 

diffusivity in the range 1 x 105- 106 cm2/s. These concentration profiles are shown in 

Figure 6.9 in comparison with the analytical form. The agreement between the numerical 

results and the exact solution is quite good indicating that the model does not appear to 

introduce any significant amount of numerical dissipation and dispersion with the base 

grid of 1000 x 1000 x 1 m and computational time step of 1 s. 
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Figure 6.7. Normalized error from model simulation for spatial location of plume with varying Re;      
-●-, constant diffusivity, varying velocity; -■-, varying diffusivity, constant velocity.  

 
 
 
 

 
Figure 6.8. Normalized error from model simulation for variance of concentration distribution with 
varying Re; -●-, constant diffusivity, varying velocity; -■-, varying diffusivity, constant velocity. 
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Figure 6.9. Plot of peak concentration against time; top panel, Kx = 1 x 104, Ky = 1 x 105; bottom 
panel, Kx = 1 x 105, Ky = 1 x 106. Solid line, exact solution, open circle, results from model simulation. 
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Model Results 

 Results from the two scenarios modeled results indicate the difference, 

particularly in the variance estimates obtained after 90 hours of tracking an 

instantaneous pulse discharge. The difference in variance of the concentration profile 

along each of the coordinate axis can be seen in Figure 6.10, the slope of the variance-

time plots being remarkably different, a direct consequence of the differences in 

diffusivities with respect to location. Concentration profiles are displayed in Figure 6.11, 

a plot of peak concentration vs. time. The difference in peak values particularly between 

5 and 25 hours following the introduction of the conservative, neutrally buoyant material 

into the body of water can be observed. Therefore, we observe differences in both spatial 

extent as well as peak concentration values of the diffusing material, differences that can 

be readily attributed to the spatial variation in observed diffusivities, the mixing process 

being stronger in some parts of the bay compared to others. 

In addition, the diffusing material would be seen to grow at a faster rate in one 

scenario compared to the other, the computed variance in the y-coordinate direction 

being remarkably different between the two scenarios modeled. In both scenarios, the 

growth along the y-coordinate direction was higher than the growth along the x-

coordinate direction. This observation would not have manifested had the simulation 

employed spatially uniform diffusivities, which would be the case if diffusivity values 

were obtained using diffusion diagrams or if they were based in results from tracer 

experiments. 
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Figure 6.10. Plot of variance of concentration for pulse discharge initialized at two different locations 

within the computational domain. The difference in variance attributable to the difference in diffusivity 
values dependent on spatial location.  
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Figure 6.11. Top panel; peak concentration vs. time for scenario 1 (-●-) and scenario 2 (-■-). Bottom 
left panel; vertical profile from run #1. Bottom right panel; vertical profile from run #2. 
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Whereas a number of turbulence closure schemes exist, which might capture the 

dynamics of the water body in terms of the mixing coefficients, these schemes are 

difficult to implement and lack sufficient data to support their applicability. The scheme 

presented here is relatively simple and has been validated with data from a related study 

combining current measurements with data from the evolution of a dye patch (Ojo et al., 

2004a).  

Tables 6.4 and 6.5 summarize the results displayed in Figures 6.10 and 6.11. 

Concentration profiles of the material at six successive times for each of the two 

scenarios are displayed in Figures 6.12 and 6.13 showing the evolution of the material 

with time with the currents overlayed. This model output is also produced as an 

animated sequence over the entire 90-hour period in *avi format viewable in Windows 

Media Player™. From the vertical profiles of the peak concentration presented in Figure 

6.11, it can be observed that in this shallow body of water the conservative neutrally 

buoyant constituent becomes fully mixed into the water column about 12 hours 

following release. It is instructive to note that the profile is similar to what one would 

obtain from an elevated source release in atmospheric applications. 
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Table 6.4. Peak concentration at successive time intervals for modeled scenarios.  

Time Elapsed (hours) Peak Concentration (ppb) 
 Scenario 1 Scenario 2 

1 12100 12100 
5 6750 5780 

10 3510 2470 
15 1820 1110 
20 926 537 
25 468 295 
30 273 167 
35 162 96 
50 29 19 

 
 
 
 

Table 6.5. Variance-time summary for modeled scenarios. 

 Scenario 1 Scenario 2 
Elapsed 

Time (hours) 
Variance in x-

direction (cm2/s x 
106) 

Variance in y-
direction (cm2/s x 

106) 

Variance in x-
direction (cm2/s x 

106) 

Variance in y-
direction (cm2/s x 

106) 
1 - - - - 

10 0.56 0.43 0.50 1.17 
20 0.94 1.18 0.69 1.53 
30 0.90 2.23 0.79 2.21 
40 0.68 3.53 0.74 2.28 
50 0.95 4.78 0.77 2.90 
60 1.25 5.76 1.27 3.68 
70 1.84 6.25 1.87 4.80 
80 2.43 6.58 3.09 4.43 
90 3.03 6.94 4.00 5.37 
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t = 12 hrs t = 24 hrs t = 36 hrs 

t = 48 hrs t = 60 hrs t = 84 hrs 
 

Figure 6.12. Evolution of diffusing conservative material over three tidal cycles; run #1. The arrows representing the current vectors are colored for 
relative strength from blue to red on a scale of 0-150 cm/s. 
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t = 12 hrs t = 24 hrs t = 36 hrs 

t = 48 hrs t = 60 hrs t = 84 hrs 
 
 

Figure 6.13. Evolution of diffusing conservative material over three tidal cycles; run #2. The arrows representing the current vectors are colored for 
relative strength from blue to red on a scale of 0-150 cm/s.
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Discussion 

 The computer experiments performed in the study show that by taking into 

account the heterogeneous nature of the turbulent field in a bay with the geomorphology 

of Corpus Christi Bay, better accuracy could be achieved in the results of model 

predictions. Using surface current measurements from HF radar, we developed a 

simplified model for 3D constituent transport and plume trajectory tracking driven by 

direct hydrodynamic observations with spatially distributed diffusivities applied within 

the model framework. The accuracy of the model predictions was subsequently tested 

against analytical solutions and two instantaneous applications of conservative material 

were successfully modeled using this simplified CTM.  

 Traditionally the diffusivities, Kx, Ky, Kz would be taken to be constant over the 

domain of interest, and these coefficients being determined from tracer experiments or 

taken from diffusion diagrams may not adequately account for the anisotropic 

characteristic observed in this study. Although models that couple hydrodynamic 

modules and employing turbulence closure schemes may capture this property of the 

turbulent field, they are difficult to implement and deploy within the context of 

emergency response. A paradigm shift for transport modeling in surface waters through 

this simplified data-driven model is proposed. The advective flux coefficients (u, v, w) 

are obtained directly from radar while the diffusive flux coefficients (Kx, Ky, Kz) are 

obtained through the resulting velocity time series. Although as seen from the results 

that model error in terms of peak concentration and spatial location may not be so 

significant (Figures 6.7-6.11), the error in terms of spatial extent may be significant. The 
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ramification from a response perspective is that the worst performing model might be 

able to locate an evolving patch but be considerably impacted in its ability to determine 

where or when it makes landfall. In light of the allocation of resources for 

countermeasures viz. Emergency Response and Homeland Security, an operational real-

time environmental and oceanographic assessments system in surface waters provides a 

very valuable tool and it becomes very important to be able to reduce uncertainties 

inherent in the parameterization of the associated numerical models. The data-driven 

scheme developed here which was applied to Corpus Christi Bay would afford us this 

capability.   

In this study, we employed a 26x26x5 uniform grid for the 3D transport model. 

Since data from HF Radar is essentially 2D, we used a linear (vertical) velocity profile to 

obtain currents along the remaining horizontal planes below the surface although, the 

vertical component of velocity, w as well as Kz were assumed to be uniform. Using this 

scheme, we were able to 1) decouple hydrodynamics from the overall transport within 

the modeling framework and 2) capture the dynamics of the transport and mixing 

process inherent in both advection and turbulent diffusion. This simplified model results 

in improved accuracy for predicting concentration profiles of constituents of interest, 

and would provide for better tracking of plumes in surface waters. Model calibration 

would be performed on-the-fly and the implication for modelers, responders as well as 

decision makers is a near real-time contaminant transport and monitoring system that 

can be deployed rapidly in any body of water where surface current mapping can be 

applied. 
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Some general comments about the behavior of the patch are given here. In both 

runs, the release occurred towards the end of the ebb tide and about the beginning of 

flood. The patch would be observed to orient itself in an east-west direction after a few 

hours into the run and at approximately 24 hours following release, begins to orient itself 

in a north-south direction eventually becoming elongated in this direction. The patch did 

not exit the computational domain during both runs but during run #1, it makes contact 

at the southernmost edge with land after approximately 48 hours while it begins to move 

towards the Laguna Madre located on the eastern boundary. In run #2, contact was made 

with land on the northernmost tip of the patch after approximately 60 hours, while 

moving towards the shipping channel entrance. In both runs, the constituent impacts the 

bottom long before it makes contact with any land boundaries and in this shallow bay, 

this may be the most important consideration especially if one were interested in the 

effect of a pollutant on the benthos. This of course would be influenced by other factors 

including the properties of the constituent of interest and its interactions with other 

constituents within the water column hence the result obtained here for a conservative 

neutrally buoyant material may be of an extreme nature. 

 

Future Work 

As can be seen in the current mapping created by HF radar, there remains work 

to be done in ensuring that gaps are removed from the dataset particularly with respect to 

the spatial coverage. One way of doing this is to develop data assimilation techniques or 

spatial interpolation techniques that would allow for a better representation of the 
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surface currents during those times that the dataset from radar may suffer degradation. In 

this study, simple spatial interpolation methods were used and may not be robust enough 

but would suffice within this conceptual framework. An operational model will need to 

consider these limitations in addition to the need to couple bio-geochemical interactions, 

which is the subject of ongoing research within our laboratory.  

 

Conclusion 

The modeling framework presented here addresses the physical and 

hydrodynamic component of the transport phenomena in surface waters. The model 

developed is simple to deploy and easy to configure and would be very useful for 

emergency response activities as it takes actual hydrodynamic observations as input 

thereby capturing the variability that is characteristic of shallow wind-driven bays in 

particular, Corpus Christi Bay, TX. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

These studies provide new insight into the turbulent and shear diffusion 

processes within a wind-driven bay such as Corpus Christi Bay and methods were 

developed that allows for the evaluation of coefficients that characterize the diffusion 

process for use within a constituent transport scheme. This will extend the use of 

instruments and sensors developed for current measurements in surface waters into other 

areas such as response to episodic events or even routine environmental and 

oceanographic assessments. The scheme couples real-time measurements with a 

computational model, which takes as input current measurements in a data-driven 

implementation of constituent transport modeling. The scheme includes hardware and 

software tools and in conjunction with the simplified transport model, provides a rapid 

deployment emergency response tool for nearshore and coastal environments. 

During emergency response situations in coastal environments especially relating 

to clean-up operations, search and rescue, we often rely on visual tracking of the plume 

in terms of location and extent or even debris scatter. This is usually achieved through 

aerial reconnaissance, a method that becomes severely impaired under conditions of 

poor visibility such as nighttime operations, bad weather among others. In addition, 

some constituents of interest do not lend themselves readily to such visual techniques. 

To enable emergency operations under such conditions, enhanced surface 

reconnaissance is proposed for constituent tracking which will be operable even under 
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poor visibility conditions. Using a geo-referenced mobile instrument and sensing 

platform equipped with real-time data visualization tools developed for characterizing 

and mapping bays, estuaries and coastal environments.  

This will be centered on the numerical scheme generating plume trajectory and 

extent coupled with real-time measurements employing correlative visualization 

between disparate data sets as an interpretative tool. The mobile platform equipped with 

wireless data telemetry will form a node within a data network that includes a shore-

based data archival, post-processing and visualization system. The overall system can be 

implemented within an Incident Command System (ICS) structure during emergency 

response efforts and has been independently assessed through simulated spill exercises 

within Corpus Christi and Galveston Bay as to efficacy.  

Augmented by vessel navigation and guidance system, this tool will be available 

for monitoring water quality parameters within the sensitive marine ecosystems such as 

bays and estuaries and has been used for dye tracer experiments and routine 

oceanographic and environmental assessments within Corpus Christi Bay. The system 

developed in this research project is important as it will enhance the ICS in emergency 

response situations in nearshore and coastal environments by providing a near real-time 

contaminant plume tracking system. Several oceanographic and environmental data 

processing and visualization schemes were developed as part of this project. These are 

listed below in Table 7.1 and the routines are accessible through the companion disk. 
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Algorithms and Software Modules Developed 

 
Table 7.1. Listing of routines developed and their respective applications. 

Module Components 
Grid Generator 
 

Number Plot 
Points Extractor 
Grid Trim (Vertical and Horizontal) 
 

Current Measurements 
 

Spectral Analysis 
Filtering 
Spatial Interpolation and Regridding 
 

Diffusion Coefficients Generator Autocorrelation Function 
Length/Time scale of diffusion 
Diffusion Coefficients (lateral, longitudinal and 
vertical) 
 

Numerical Model  Finite difference, adaptive grid 
 

Computing Infrastructure IDACC 
Submersible device server 
MPIACS 
Web server 
Data telemetry, broadband wireless Ethernet 
 

Visualization Plume Tracker 
Animation Generator 
Contouring Scheme 
Vector Plots 
 

Tracker Geo-referenced instrument platform 
Waypoints Generator 

 

 

Future Work 

Work performed here is a prototype and needs to be fully implemented within the 

framework of Emergency Response and Homeland Security. Future work will include 

developing the computing infrastructure for distributed applications with real-time 

information exchange. A web-based unified interface will be required that can be used 

by operators to run the individual modules that make up the IEOAS tied as a node into 
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the extended computing network for central administration and maintenance. Also it will 

be necessary to ensure that the mobile instrument platform is equipped with an autopilot 

which accepts as input, the NMEA 2.0 sentences from the plume tracking module for 

vessel guidance and navigation. Finally to integrate and deploy the numerical model in 

the field incorporating particle aggregation kinetics developed as part of our research 

efforts. 
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