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ABSTRACT  

The Development of an Index for the Proximal Upper Extremity. (May 2005)  

Erin Kurusz Walline, B.S., Texas A&M University;  

M.S., Texas A&M University  

Chair of Advisory Committee: Dr. J. Steven Moore  

Analysis techniques specific to the proximal upper extremity have historically 

been overlooked in the field of ergonomics.  This research effort provides a methodology 

that will allow the ergonomics practitioner to analyze a job and predict whether or not 

that job exposes workers to increased risk of proximal upper extremity disorders. 

Literature from the fields of physiology, biomechanics, and epidemiology was 

assimilated in order to understand the theories of pathogenesis of disorders in the rotator 

cuff and to identify the risk factors associated with proximal upper extremity disorders. A 

retrospective epidemiological study was conducted to identify job task variables that may 

contribute to the occurrence of proximal upper extremity disorders.  Two proximal upper 

extremity constructs were proposed: a fatigue-based model and a compressive load-based 

model.  The constructs incorporated lessons learned from the literature and results from 

the epidemiological study.  Validation of the models was performed using data from the 

epidemiological study.  It was determined that the fatigue-based model was a good 

predictor of proximal upper extremity disorders.  
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CHAPTER I 

INTRODUCTION° 

An enduring problem in occupational medicine is the occurrence of upper 

extremity injuries and disorders.  Proximal upper extremity (PUE) disorders are 

particularly important because of the impact on a person’s work capabilities and quality 

of life.  Work that would normally be performed primarily using the distal upper 

extremity (DUE) could be hindered by PUE problems if the tasks involved reaching or 

the use of a heavy tool that could create a static load on the shoulder.  PUE conditions 

may not necessarily occur in the context of work.  The reported prevalence of PUE 

disorders ranged from 13% to 37% in cadaver populations, while self-reported PUE 

symptoms ranged from 6% to 34% in the general population (Keyes 1935; Wilson 1943; 

DePalma et al. 1950; Harmon 1958; Cotton and Rideout 1964; Westerling and Jonsson 

1980; Takala et al 1982; Anderson 1984; Cunningham and Kelsey 1984; Bergenudd et al 

1988; Van der Windt et al 1995).  Bilateral rotator cuff tendon ruptures have been 

observed in cadaver studies 50% to 87% of the time (Wilson 1943; Wilson and Duff 

1943; Cotton and Rideout 1964; Petersson 1983).  The PUE might include the 

scapulothoracic (SC), acromioclavicular (AC), and glenohumeral (GH) joints.  This 

research will encompass only disorders of the glenohumeral joint, excluding the 

trapezius. 

The impact of PUE disorders and injuries is extensive.  In an account of the 

frequency, impact and cost of upper extremity injuries in the working population, Kelsey 

(1997) reported that the shoulder and upper arm have an estimated average annual 

incidence of 650,000 sprain or strain injuries that result in a visit to a health care 

practitioner or restricted activity, leading to approximately 1,450,000 days lost from 

work and 2,387,000 restricted activity days.  According to data from the U.S. Bureau of 

Labor and Statistics (BLS), in the year 2001 the rate of shoulder injuries and illnesses 

per 10,000 full-time workers was 9.7 (BLS, 2001).   

                                                 
° This dissertation follows the style and format of Ergonomics. 
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BLS data also indicated that greater than 90,000 shoulder or upper arm injury 

and illness cases were reported across all private industry in 2001, with a reported 12 

median days away from work (BLS, 2001).  

One of the objectives of this research effort is to develop a methodology that will 

allow an ergonomics practitioner to analyze a job and predict whether or not that job 

exposes workers performing it to an increased risk of PUE disorders.  That is, a baseline 

risk for PUE disorders exists in the adult population, but there is a need to develop a 

methodology to determine whether a person’s occupation increases their risk.  Another 

objective is assimilation of the research literature involving the PUE.  Fields of research, 

such as physiology, biomechanics, and epidemiology all contain relevant information 

and authors range from medical doctors, ergonomists, industrial engineers, or other 

health care practitioners, to name a few.  There has not yet been a concerted effort by 

any of the aforementioned fields to incorporate much, if any, research from related 

fields.  This has led to a disjointed, but progressively growing body of knowledge on the 

PUE disorders and the implications of work-relatedness.  In fact, the assimilation of the 

tremendous bodies of work in these fields has been a crucial step in the methodology 

development process; lengthy, but necessary.  It is hoped that this particular research 

effort will provide a foundation for subsequent studies and other research efforts 

involving the PUE. 

The spectrum of PUE disorders ranges from degeneration in the form of calcific 

deposits; collagen fascicle separation or rigidity; tendon or bursa thickening or 

disorganization; and increased proliferation of blood vessels (vascularized granulation 

tissue); to partial or full rotator cuff tears, sometimes accompanied by torn muscle fibers 

or bone fragment loss.  Though opinions regarding clinical signs of PUE degeneration 

and disorders are not usually debated, theories of the pathogenesis of PUE disorders vary 

in the medical community.  Some purport that rotator cuff tendon degeneration is caused 

by gradual wear and tear, while others believe that a mechanical source perpetrates the 

degeneration.  Both theories will be discussed and evaluated.   
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Proximal Upper Extremity Anatomy and Function 

Nixon and DiStefano (1975) provided a clear synopsis of the anatomy of the 

shoulder joint.  The superior portion of the shoulder joint consists of the coracoacromial 

arch and directly below, the subacromial bursa.  Continuing inferiorly, the supraspinatus 

tendon lies beneath the bursa.  The inferior portion of the supraspinatus tendon is 

bordered by a synovial cavity and the head of the humerus.  The infraspinatus and teres 

minor tendons pass through the same region as the supraspinatus tendon, and all tend to 

fuse together, forming a large posterior musculotendinous surface area.  The tendon of 

the subscapularis inserts on the anterior portion of the joint.   

Inman et al (1944) investigated the function of the shoulder joint.  The authors 

noted that use of the term “shoulder joint” is misleading since four joints contribute 

simultaneously to the movement at the shoulder: the sternoclavicular, acromioclavicular, 

glenohumeral, and scapulothoracic joints.  Scapulohumeral muscle groups were defined 

as those passing from the scapula to the humerus, and included the supraspinatus, 

infraspinatus, teres minor, subscapularis, deltoid, and teres major.  The authors found 

that in the first 30° to 60° of upper arm elevation, the scapula seeks stability in relation 

to the humerus.  In this early phase of elevation, (termed “the setting phase”), the 

scapula may remain fixed or move medially or laterally.  Movement in the setting phase 

is individual and unpredictable.  Elevation beyond the setting phase is approximately a 

2:1 ratio of humeral to scapular motion; for example, for every 15° of upper arm 

elevation, the glenohumeral joint contributes 10° and the rotation of the scapula 

contributes 5°.  Other researchers have corroborated the approximate ratio of humeral to 

scapular motion (Reid 1969, Doody et al 1970, Lucas 1973), though a 3:2 ratio has also 

been proposed (Freedman and Munro 1966).   

Inman et al. generated a curve representing the force requirements for elevation 

of the arm between 30° and 180°.  The peak elevation force requirements occurred at 90° 

and fell to zero at 180° of elevation, which is the vertical arm position above the head.  

The resultant force (representing the active force in the form of downward pull of the 

infraspinatus muscle and the passive resistance of pressure and friction) peaks at 60°, 
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and after 90°, rapidly falls to zero at 135°.  Using intramuscular wire EMG, the authors 

showed that the activity in the supraspinatus peaked between 100° - 110° abduction and 

90° flexion.  Other investigators concurred with these ranges of peak supraspinatus 

activity (Reid 1969, Lucas 1973).  Other primary muscles of the rotator cuff demonstrate 

peak activity at elevation angles greater than 120° (Inman et al 1944, Reid 1969).   

Pathogenesis of Tendon Disorders in the Rotator Cuff 

Pathogenesis of Tendon Rupture 

Various investigators have performed studies on human and animal cadaver 

muscle-tendon-bone systems.  Though these efforts were not necessarily specific to the 

PUE, the lessons learned apply to any muscle-tendon-bone system.  The most common 

cause of subcutaneous tendon rupture is compression, though tension may also preface 

rupture (McMaster 1933).  Mechanical stress or strain, such as lateral pressure, does not 

necessarily injure a tendon (McMaster 1933, Macnab 1973).  When a tendon does 

rupture, it ruptures at the site of induced injury or compressive load (McMaster 1933, 

Macnab 1973), regardless of load rate (Welsh and Macnab 1971).  An analogy can be 

found in the anatomical placement of the supraspinatus tendon over the head of the 

humerus.  The humerus displaces the tendon laterally and increases stress at the point of 

insertion, which is the most common rupture site.  Lindblom (1939) demonstrated that 

strain applied at right angles to the tendon insertion could produce a rupture in the 

tendon tissue. 

If a defect (such as a small tear) was introduced in the tendon, elongation of the 

tendon would widen the defect until the width of the tendon at the site of the defect was 

about half its normal dimension; rupture would occur at the site of the enlarged defect 

(Macnab 1973, Welsh and Macnab 1971).  Rupture occurred at much lower loads at sites 

with degeneration present in comparison to sites without degeneration (Macnab 1973).  

Rate of tendon load does not affect rupture site; however, the more rapid the loading, the 

stronger the tendon-bone junction because the tendon is stiffer under more rapid load 
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(Welsh and Macnab 1971).  To make a work analogy, lifting or moving a heavy load 

happens more effectively with an abrupt exertion rather than expending the same amount 

of energy over a longer time period.   

Clinical Observations on Proximal Upper Extremity Disorder Etiology 

The Relationship between Degeneration and Rupture 

With rare exception (Codman 1938, Lindblom 1939), investigators have reported 

that degeneration occurs prior to non-acute rotator cuff tendon rupture (Meyer 1937, 

Howard 1941, Wilson and Duff 1943, DePalma et al. 1950, Coventry 1953, Harmon 

1958, Moseley and Goldie 1963, Owen 1969, Petersson 1983, Uhthoff and Sarkar 1990).  

Rotator cuff tendon rupture has been frequently found to be bilateral (Wilson 1943, 

Wilson and Duff 1943, Cotton and Rideout 1964, Petersson 1983), suggesting that 

rupture is not necessarily use-related, and implying that degeneration precedes rupture.  

Rupture of the supraspinatus tendon typically occurs as a transverse tear (indicating 

traumatic rupture) in the tendon fibers within a half inch from the point of insertion 

(Wilson 1943).   

Additional usage factors or individual risk factors may explain asymmetric 

rupture. Wilson and Duff (1943) noted that among autopsy specimens, in every instance 

of unilateral full rupture, the circumference of the arm at the level of the biceps belly 

was at least one centimeter larger on the rupture side compared to the other side, 

indicating that rupture occurred on the dominant arm.  Owen (1969) postulated that any 

activity requiring repetitive arm abduction, especially with internal arm rotation, may 

accelerate the degenerative process.  Other investigators have also postulated the 

relevance of repetitive arm abduction or flexion with or without rotation (Meyer 1937, 

Bywaters 1979, Petersson and Gentz 1983). 

Wilson and Duff (1943) also observed that once adult age was reached, the 

length of the supraspinatus tendon did not increase with age progression, and noted that 

a normal supraspinatus tendon is about 2.25 centimeters long.  However, Petersson 

(1984) found that the length of the supraspinatus tendon increased with age, as did 
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tendons that had undergone a tear.  The number of arterioles in the tendons of the 

shoulder joint was found to decrease with age, and their presence was rare in normal 

tendon material after the age of forty years.  Increased levels of degenerative changes 

were found with increased age, and the magnitude of degenerative changes was observed 

to be greater among those specimens with a work history of heavy manual labor.  Other 

investigators have also found increased degeneration with advanced age (DePalma et al. 

1950, Owen 1969, Bywaters 1979, Petersson 1983, Uhthoff and Sarkar 1990).  Howard 

(1941) purported that an ischemic tendon loses no length, yet diminishes in diameter.  

Howard theorized that endothelial cells bathe the tendon in plasma, thus maintaining 

tendon lubrication and pliability, while neglecting nourishment and metabolic waste 

removal that a non-ischemic system would provide.  Wilson (1943) noted that if the tear 

occurs on the joint side, tendon lengthening occurs, whereas if the tear occurs on the side 

of the subacromial bursa, tendon fiber fibrillation (spontaneously occurring fiber 

contractions) occurs.  Wilson believed that rupture of a healthy tendon does not occur 

and that only a degenerated tendon would rupture with force.   

Effects of Avascularity in the Rotator Cuff 

Vascularity is essential for repair of damaged soft tissues.  Peacock (1957) 

demonstrated the importance of blood supply with regard to surgical tendon repair.  The 

tendon receives blood from arteries expressly for the tendon from muscular and osseous 

vessels.  As an additional source, longitudinal intratendinous vessels are present.  When 

just one of the three blood sources for the tendon is inhibited or occluded, blood flow 

within the tendon is minimal or nonexistent.  Niepel and Sitaj (1979) concluded that a 

working muscle appropriates most of the blood at the expense of the tendon and enthesis 

(the anatomical insertion of tendon and ligament into bone).  The tendon, however, is a 

resilient structure.  Rupture does not occur without duress.  McMaster (1933) 

demonstrated that when blood supply to the tendon was arrested, stress led to tendon 

rupture. When blood supply was unobstructed, the tendon did not rupture under load.  

External pressure on a blood vessel causes a reduction in the diameter of the vessel and a 



 

 

7

decrease in blood flow, the relationship between which is not necessarily linear; factors 

such as tension, edema, or other factors may influence the relationship (Ashton 1975). 

In certain regions of the tendons in the rotator cuff, areas of relative avascularity 

are present.  An avascular region is one in which blood flow is compromised or 

nonexistent.  Several authors have documented the presence of these avascular regions in 

the rotator cuff (Codman 1937, Lindblom 1939, Moseley and Goldie 1963, Rothman and 

Parke 1965, Rathbun and Macnab 1970, Macnab 1973).  In an investigation to evaluate 

the importance of vascularity in the rotator cuff with regard to the occurrence of calcium 

deposits and ruptures, Moseley and Goldie (1963) attempted to identify whether a 

change in vascularity could explain the pathological changes that predispose a tendon to 

rupture.  The authors sought to study the pattern of vascularity in the “critical zone,” 

located one centimeter medial to the insertion of the supraspinatus tendon.  The critical 

zone was characterized as a region with tendencies to develop calcium deposits and 

comprise ruptures.  In addition, the critical zone contained anastomoses (irregular 

spacing) between vessels originating from the bone at the point of insertion, and the 

longitudinal vessels evolving from the muscle.    

Moseley and Goldie (1963) found no differences in vascular patterns between 

genders or among ages.  Other authors have also concluded that vascular patterns are not 

altered with progressing age (Senior 1924, Trueta and Harrison 1953, Rathbun and 

Macnab 1970).  However, though the vascular patterns of the rotator cuff did not vary 

among ages, the vessels appeared thinner in older cadavers, which may explain why, 

clinically, degenerative changes are more frequently seen with advancing age.   

The results from Moseley and Goldie (1963) also confirmed an obstruction of the 

vessels penetrating the supraspinatus tendon from the humeral head.  The vessels that 

emerge from the humeral head fan out and end abruptly in the tendon, leaving a zone 

devoid of filled vessels.  The authors concluded that the critical zone, or, the area prone 

to degenerative changes, is not less vascularized than other parts of the rotator cuff.  That 

is, vessels in the critical zone are not fewer in number or smaller in diameter, but 

because of the anastomotic network of osseous and tendinous vessels, flow throughout 
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the critical zone may be inhibited.  Similar results were obtained regarding the zone of 

avascularity by other investigators (Rothman and Parke 1965, Rathbun and Macnab 

1970).   

Rathbun and Macnab (1970) described rotator cuff tendons as flat, with vessels 

coursing longitudinally through the length of the tendon, with the exception of a few 

vertical vessels.  They theorized that the longitudinal nature of the rotator cuff vessels 

makes them susceptible to pressure from the humeral head.  To investigate that theory, 

infusions were performed in cadaver shoulders with the arm passively abducted, thus 

relaxing the supraspinatus tendon.  The results demonstrated almost completely filled 

vessels throughout the tendon to the point of insertion, which indicated that the level of 

tension in the tendon is central to blood flow.  The supraspinatus tendon has to pass over 

the swell of the head of the humerus in order to arrive at its insertion point.  The constant 

pressure from the humeral head while the arm is adducted with neutral rotation (resting 

position of arm) may “wring out” the vessels in that area.   

Rathbun and Macnab (1970) noted that the zone of relative avascularity in the 

supraspinatus tendon is the most prominent location of breakdowns including tendinitis, 

calcification, and spontaneous ruptures.  It was concluded that the avascular zone 

precedes degeneration, and is not a result of it.  The authors acquiesced that decreased 

blood supply may not be the sole cause of degenerative changes.  As degeneration in the 

tendons advances, the tendon attenuates and becomes more avascular.  In all instances of 

tendon rupture in this study, the majority of the tendon proximal to the rupture was 

avascular and showed degenerative changes. 

Macnab (1973) postulated that degenerative changes originating in the 

supraspinatus tendon may spread to other, well-vascularized tendons throughout the 

shoulder capsule, producing capsulitis.  Under the assumption that initial degeneration is 

due to cell death because of avascularity, an experiment was constructed to trace the 

histological changes that lead to capsulitis.  From experiments with rabbit tendons 

simulating the supraspinatus tendon passing over the humeral head, it was noted that 

areas of disorganization in the center of the tendon were surrounded by healthy fibers.  
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The healthy area contained a large amount of round cells.  It was unknown whether the 

presence of the cells were a result of response to the degeneration or whether cell 

presence was a histological change that occurred due to imminent tendon breakdown.  

To investigate this observation, an avascular tendon fragment was implanted into a 

healthy rabbit tendon.  The avascular portion was subsequently surrounded by round 

cells in the healthy sections.  Testing indicated that the round cells were from the 

lymphatic system, which suggested an immune response.  When the respective lymph 

node was removed and an avascular tendon fragment was implanted, no round cell 

infiltration was observed, and the implanted tendon assimilated without evoking distress. 

Macnab (1973) extended the research on rotator cuff vascularity by 

experimentally introducing interference with blood supply to the tendons.  An attempt 

was made to correlate histological changes with clinical diagnoses associated with 

rotator cuff tendinitis.  In a normal tendon, the characteristic pattern of collagen fascicles 

is wavy, which Macnab postulated is a trait that probably supports elasticity of the 

tendon.  Tenocytes (flat tapered cells sparingly distributed among collagen fibrils) are 

ordinarily spaced evenly throughout the fascicle network.  When collagen fascicles 

separate, which is an early sign of degeneration, the tenocytes move into the broader 

spaces and become plumper.   As degenerative changes progress, the collagen fascicles 

continue to separate and eventually fragment, disallowing straightforward reconstitution 

of their natural arrangement.   

Macnab (1973) performed an experiment with a rabbit tendon which 

demonstrated the effects of avascularity on collagen fascicle structure.  The Achilles 

tendon of a rabbit was modified such that blood flow was extinguished.  Similar 

histological changes were observed: collagen fascicles separated, tenocytes subsided into 

larger interfascicular spaces, and fragmentation of the collagen fascicles commenced.  

Thus, complete lack of blood flow through the rabbit tendon produced similar 

histological changes to those seen in rotator cuff degeneration.  An experiment was 

constructed to reproduce the partially compromised blood flow in the supraspinatus 

tendon as it passes over the humeral head by positioning a plastic mound under the 
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rabbit tendon.  Histological changes that occurred in the rabbit tendon were sequentially 

equal to the pattern of changes that occurred in the rotator cuff tendons of human 

cadavers.  Disorganization began in the center of the tendon and eventually reached the 

outer portions of the tendon.  A similar pattern of disorganization was also seen by 

Cotton and Rideout (1964).  This observation was evidence against the speculation that 

mechanical friction of the supraspinatus tendon against the coracoacromial ligament is 

the cause of degenerative changes, since changes under an impingement supposition 

would begin superficially and move inward.  In fact, Macnab asserted that the 

supraspinatus tendon does not impinge against the coracoacromial ligament unless the 

tendon is already partially torn and buckles at the site of the tear upon abduction.  As 

will be discussed, proponents of the mechanical impingement theory would disagree. 

In view of the evidence from experimental studies, Macnab (1973) constructed a 

hypothesis.  The anatomical disposition of the supraspinatus tendon creates a zone of 

relative avascularity near the tendon’s insertion point.  Cells in the tendon rely on blood 

supply for survival.  As age progresses, diffusion of blood through the zone of relative 

avascularity may become more difficult and sections of the tendon may die.  

Inflammation of the tendon (tendinitis) may occur because of cell death, and is 

potentially followed by inflammation of the bursa (bursitis) or calcium deposition in the 

bursa (calcific bursitis) or tendon. 

Mechanical Impingement 

Neer (1972) agreed with the proposition that the supraspinatus tendon, and at 

times, the anterior portion of the infraspinatus tendon and the long head of the biceps 

tendon, were the primary sites of degenerative tendinitis and rupture, but claimed that 

enough emphasis was not placed on the fact that those structures are located anterior to 

the acromion.   Elevation (abduction or flexion) of the arm while internally or externally 

rotated impinges the critical zone of the supraspinatus tendon under the anterior 

acromion process.  The impingement occurs at an elevation of approximately 80° 

elevation of the arm.  Below 80° of elevation, the greater tuberosity of the humeral head 
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is not in immediate contact with the acromion process or the coracoacromial ligament.  

Above 80° of elevation, the humeral head is transferred down and away from the 

acromion and the coracoacromial ligament, eradicating any contact stress.   

Through surgical response to decompress the rotator cuff from impingement and 

repair tears in the rotator cuff, Neer (1983) substantiated evidence for his impingement 

postulates.  Neer judged impingement, rather than circulatory impairment, to be 

responsible for 95% of rotator cuff tears, and believed impingement to occur in three 

progressive stages.  Stage I included edema and hemorrhage, and was thought to result 

from excessive overhead work.  Stage II, thickening of the bursa or tendinitis, was 

thought to be a result of multiple episodes of mechanical inflammation.  Stage III 

included tendon rupture and bone spurs, which were postulated to be the result of 

continued impingement wear.  Possible bone changes included a slight prominence on 

the greater tuberosity at the supraspinatus tendon insertion point or a traction spur on the 

anterior acromion inside the coracoacromial ligament.  Neer noted that Stage III 

impingement occurred almost exclusively in patients over forty years of age.   

Neer acknowledged that trauma, though it has the potential to enlarge a tear, 

rarely appears to be the principal cause of the tear.  Approximately 50% of Neer’s 

patients had no recollection of a specific injury that caused their rotator cuff tear.  In 

those patients who did recall an injury, the majority recalled a history of intermittent 

shoulder pain prior to the injury, which Neer claimed was evidence that impingement 

wear preceded the tear.  Several other authors reported the possibility of mechanical 

impingement playing a role in rotator cuff tendon disorders (Martin 1940, Wilson 1943, 

Simmonds 1949, DePalma et al. 1950, Cotton and Rideout 1964, Booth and Marvel 

1975, Simon 1975, Bywaters 1979, Petersson and Gentz 1983, Uhthoff and Sarkar 1990, 

Bigliani et al 1991, Fu et al 1991). 

Anatomical differences among people may also explain why some experience 

rotator cuff tears and others do not.  Neer proposed that variations in the shape and slope 

of the acromion may explain a person’s susceptibility to impingement problems.  An 

acromion with a pronounced anterior edge on its undersurface, as well as a lesser slope 
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would predispose a person to impingement problems.  Other investigators have also 

proposed that anatomical abnormalities may affect the potential for impingement of the 

rotator cuff tendons (Uhthoff and Sarkar 1990, Bigliani et al 1991). 

The research conducted by Neer generated a differing theory of supraspinatus 

tendon disorder pathogenesis.  Elevation of the arm through approximately 80° 

abduction or flexion impinges the supraspinatus tendon under the anterior acromion 

process.  Bone spurs were said to be a Stage III manifestation of this mechanical contact 

stress; however, it was noted that spurs were found primarily in patients over 40 years 

old.  By his own theory, a person could manifest Stage III symptoms based on the 

occurrence of the mechanical impingement process (elevation of the arm through 80°), 

regardless of age.  The importance of abnormal acromion size or shape was noted as a 

possible effector of supraspinatus tendon impingement. 

Summary  

There were several lessons learned from the research on the pathogenesis of 

tendon rupture.  The tendon is resistant to rupture through tensile loading, but is 

susceptible via compressive loading (non-parallel strain).  Rupture did not occur when 

blood flow was unobstructed.  Tendon rupture will occur at a defect or at a site of 

compression; however, in the absence of a defect or compression site, rupture will occur 

at the point of insertion.  A more rapid load rate is protective if no defect is present.  

Once a defect such as a small tear is present, it can promulgate freely through the 

tendon, especially under a high load rate.   

Investigations on rotator cuff degeneration and rupture in cadaver populations 

provided valuable insights into the behavior of the tendons under duress. It is widely 

accepted that degeneration occurs prior to rupture, and that both tendon degeneration and 

tendon rupture are more frequently found with advancing age.  Additionally, the number 

of arterioles (small blood vessels) in the tendons of the rotator cuff diminishes with age; 

as they diminish in number, so does blood supply to the region.  Because of this, there is 

a natural increase in ischemia with advancing age.  Tendon degeneration begins 
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internally and moves outward.  Degeneration is often accompanied by proliferation of 

blood vessels around the degenerated regions, perhaps as a response to heal the 

offending tissue.  Tendons with degeneration present will rupture at lower loads than 

healthy tendons, as degeneration has been demonstrated to weaken the tendon.   

The experimental studies of vascularity in the rotator cuff generated several key 

findings.  Avascular zones are the most frequent sites of tendinitis, calcification, and 

rupture.  There exists a zone of avascularity near the insertion of the supraspinatus 

tendon where blood vessels exist but are not sufficiently filled, in part because of 

irregularly-spaced vessels.  A partially abducted arm, which relaxes the supraspinatus 

tendon, allows for better fill of the vessels.  This demonstrates that tension is 

proportional to blood flow.  The longitudinal vessels in the supraspinatus tendon are 

particularly susceptible to pressure.  Older specimens demonstrated less blood flow 

through the same network of vessels compared to younger specimens.  Decreased blood 

supply leads to an increase in degeneration, which begins centrally in the tendon and 

moves outward.  Increased external tendon pressure decreases blood vessel diameter, 

hence decreasing perfusion, which is particularly perilous in avascular areas.   

Researchers have also suggested that supraspinatus tendon impingement may 

occur via the coracoacromial arch, the acromion itself, abnormal subacromial bursa 

growth, or abnormal bone spurs or shape, and can be aggravated by calcium deposits and 

tendon tension.  Accumulated degeneration in the rotator cuff tendons in conjunction 

with some form of compressive load could produce a more probable rupture site.  

 If peak load plays a role in the development of proximal upper extremity 

disorders, it may, in part, explain why disorders of the supraspinatus tendon are more 

common than other rotator cuff tendon disorders; that is, tasks that require work with the 

arms elevated greater than 120° are not as customary as those that require lesser 

elevation angles.  
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CHAPTER II 

EXPERIMENTAL RESEARCH ON THE PROXIMAL UPPER EXTREMITY 

General Muscle Fatigue Principles 

Research conducted by Rohmert (1960, 1962) on static muscular activity resulted 

in concepts that have been referenced numerous times across many bodies of literature 

since its initial publication.  Rohmert maintained that tiring static muscular work begins 

with holding forces greater than 15% MVC, which he called the endurance limit (EL).  

Greater reduction in maximum strength occurred with greater duration of static muscular 

work above the EL.  An increased reduction in maximum strength occurred with 

previous heavy work above the EL.  No differences were found with different muscle 

groups or between workers.  Recovery was dependent on the degree of fatigue; that is, 

regaining the equivalent decrease in maximum strength took the same amount of 

recovery time.  Rohmert (1973) later asserted that fatigue and recovery are periodic 

processes in every living organism.  As such, fatigue should not be considered a harmful 

process, because, while inorganic material fatigue (as in deterioration of material due to 

periodic mechanical stress) is irreversible, biological fatigue is reversible.  Rohmert 

emphasized that the definitions of fatigue and recovery should be dependent on each 

other.  He defined fatigue in the following way: “Reduction of the functional capacity of 

an organ or of the organism as a result of action; fatigue is eliminated by recovery, 

fatigue and recovery being understood as time processes.  The state caused by tiring can 

be measured as a degree of fatigue.  Fatigue increases the degree of fatigue, recovery 

reduces it.”   

Jonsson (1978) challenged Rohmert’s postulated endurance limit, below which 

static loads could theoretically be maintained.  Instead, Jonsson recommended limits of 

acceptable muscular load based on studies of muscular endurance during constrained 

static and dynamic work.  For constrained work with a duration of one hour or more, the 

author recommended: (1) that static load should not exceed 2% MVC, and must not 

exceed 5% MVC, (2) that the median load level should not exceed 10% MVC, and must 
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not exceed 14% MVC, and (3) that the peak load should not exceed 50% MVC, and 

must not exceed 70% MVC.  Jorgensen et al (1988) also concluded that indefinite 

endurance times below 15 - 20% MVC could not be maintained without a disruption in 

the homeostasis of the working muscles.  Study results demonstrated that muscle fatigue 

may occur with one-hour sustained isometric contractions at 5 – 10% MVC. 

Use of Electromyography or Ratings of Perceived Exertion as Predictors of Force 

The relationships between subjective, objective, and physiological aspects of 

fatigue were evaluated in some studies from which a few key insights could be gleaned 

(Lloyd et al 1970, Cooper et al 1979, Dul et al 1991, Grant et al 1994).  Physiological 

signs of fatigue have been shown to occur prior to a person’s endurance limit or feelings 

of pain (Lloyd et al 1970, Kadefors et al 1978).  High correlation exists between 

perceived exertion and produced force, regardless of whether force is high or low; that 

is, a linear relationship between perception of exertion and force exists (Cooper et al 

1979, Oberg et al 1994).  Correlation exists between ratings of perceived exertion (RPE) 

and muscle fatigue (Dul et al 1991).  Both RPE and readings of electromyography 

(EMG) are similarly related to muscle force, though RPE is a somewhat better predictor 

of force in complex tasks, while EMG more accurately represents force in static tasks or 

at lower contraction levels (Lind and Petrofsky 1979, Grant et al 1994).  Other 

investigators have found (under isometric static conditions) that intramuscular pressure 

(IMP) and EMG are both good estimators of muscular force (Korner et al 1984). 

Other researchers evaluated the reliability of electromyography as a 

representation of force.  Some have found that the relationship between EMG and force 

is linear (Bouisset and Goubel 1973).  Others have suggested that the relationship is 

approximately linear at lower percent maximum voluntary contractions (%MVCs), then 

becomes exponential at higher %MVCs (Antti 1977).  Some have found a curved 

relationship at lower %MVCs and an approximately linear relationship at higher 

%MVCs (Woods and Bigland-Ritchie 1983).  Physiological factors such as 

intramuscular pressure, joint angle, the number or rate of muscle motor units firing, or 
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the organization of motor units have been theorized to affect the relationship (Bouisset 

and Goubel 1973, Woods and Bigland-Ritchie 1983, Korner et al 1984, Jarvholm et al 

1988a, Jarvholm et al 1988b, Westgaard 1988, Jarvholm et al 1991a, Jarvholm et al 

1991b, Solomonow et al 1991).  

Upper Arm Elevation and Its Impact on Proximal Upper Extremity Muscle Behavior 

Results from experimental studies provide evidence for overhead work as a cause 

of proximal upper extremity muscle fatigue, a suggested predictor of subsequent PUE 

symptoms and disorders.  Signs of muscle fatigue in the trapezius and supraspinatus 

increased when arm abduction angle increased from 45° to 90° (Herberts et al 1980).  

Signs of supraspinatus fatigue occurred within 15 seconds after arm flexion and 

abduction to 90°; additionally, signs of trapezius fatigue were present within 60 seconds 

of abduction at 90° (Hagberg 1981a).  Time to fatigue was shorter when performing 

contractions at 90° compared to 0° flexion (Kahn and Monod 1984).  Signs of fatigue in 

the infraspinatus and trapezius increased when arm flexion and abduction changed from 

45° to 90°, though the same increase in signs of fatigue was not seen in the supraspinatus 

(Sigholm et al 1984).  Jarvholm et al (1988b) demonstrated that supraspinatus blood 

flow was impeded at 90° upper arm flexion and even more so in abduction, with or 

without a hand load.  Supraspinatus activity increased when performing dynamic work at 

90° elevation compared to static hold at 90° (Sporrong et al 1998).  Postural tremor in 

the PUE and total body residual discomfort increased during overhead work (Wiker et al 

1989).  Work by Garg et al (1999) showed that maximum acceptable frequency was 

lower, arm down time was greater, and ratings of perceived exertion, fatigue, and pain 

were greater with flexion angle at 90° and 120° compared to 60°; additionally, the 

weakest arm postures were 90° and 120° flexion, compared to 0°, 30°, 60°, and 150° 

upper arm flexion. 

Results from experimental studies have suggested that work with the upper arm 

elevated lower than overhead also generates proximal upper extremity fatigue.  Signs of 

increased localized muscle fatigue in the supraspinatus were found for 45° abduction 
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compared to 0° abduction (Herberts et al 1980).  Increased activity in the infraspinatus, 

trapezius, and supraspinatus was found in 45° elevation compared to 0° elevation 

(Sigholm et al 1984).  Jarvholm et al (1988b) demonstrated that blood flow in the 

supraspinatus was impeded even at low to moderate levels of abduction with or without 

a hand load; additionally, during low to moderate levels of flexion, supraspinatus blood 

flow was impeded with a hand load of two kilograms.  
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CHAPTER III 

EPIDEMIOLOGY OF THE PROXIMAL UPPER EXTREMITY 

Difficulties with Nosology, Choice of Health Outcome, and Exposure Assessment 

Aside from physician-diagnosed disorders, the epidemiological literature 

contains numerous terms to describe proximal upper extremity problems, such as 

occupational cervicobrachial disorder, shoulder impingement syndrome, shoulder girdle 

pain, and a variety of shoulder symptoms, including pain, complaints, stiffness, fatigue, 

or tenderness.  These examples are only a sampling of the terms used to depict disorders 

and symptoms in that region.  Some terms found in the literature imply that an etiology 

of the disorder is known without having established that connection.  For example, use 

of the terms ‘occupational cervicobrachial disorder’ or ‘work-related cumulative trauma 

disorder’ both imply that the disorder is inherently related to work.  In addition, use of 

the word ‘cumulative’ implies that the disorder gradually accumulates over time, when 

gradual onset may not be the pathogenesis. 

Other authors have lamented the plethora of nomenclature describing PUE 

disorders.  Anderson (1984), in a discussion of rheumatology of the shoulder, purported 

that painful arc syndrome may occur simultaneously with tension neck, the combination 

of which has been described numerous, synonymous ways in the literature, including 

cervicobrachial syndrome, neck and upper limb disorders, neck-shoulder problems, 

repetitive strain syndrome, or shoulder girdle pain.  Wallace and Buckle (1987) reviewed 

the ergonomic aspects of neck and upper limb disorders.  They, too, acknowledged the 

overabundance of designations in the literature that classify neck and upper limb 

complaints, the fallacies of most epidemiological studies in defining neck and upper 

limb symptoms or disorders, and the dearth of problems related to occupational exposure 

measurements.  Hadler (1989) was bolder in his account of the number of superfluous 

terms describing PUE illness: he claimed they were “…littering the contemporary 

lexicon.”   
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Some authors provided valuable insight on the approach to evaluating the impact 

of epidemiological studies.  Hadler (1977) argued that the literature supporting the 

assumption that regional musculoskeletal disease is use-associated is almost entirely 

anecdotal. He noted that usage must be involved with degenerative joint disease since 

morbidity is, in part, defined by the impairment.  Hadler emphasized the importance of 

identifying a usage pattern that contributes to specific clinical syndromes, and 

encouraged investigators to remember that diseases of individuals are under study, not 

diseases of industries.  Hadler ended with a reminder that results from a particular study 

cannot be relevant to any group but the one under study.  He suggested that valuable, 

reliable pieces of information can be gleaned from properly designed studies, and only 

then can the hypotheses be scrutinized.  Sommerich et al (1993) presented a 

comprehensive review of the literature regarding soft tissue disorders of the shoulder.  

The authors also lamented the lack of well-defined diagnoses, the accepted grouping of 

shoulder or shoulder-neck disorders with different or unclear etiologies, and the 

deficiency of longitudinal cohort studies in the epidemiological literature.  They 

implored future researchers to provide clear case definitions and either objective or 

comparable exposure definitions.    

Health outcomes in the epidemiological literature are often established using 

subjective outcomes obtained from health questionnaire data, instead of being physician-

diagnosed disorders.  Health outcomes in many epidemiological studies lack clinical or 

anatomic specificity.  The PUE is frequently analyzed together with the neck, and 

sometimes the distal upper extremity (DUE), making it difficult to elicit information 

specific to the PUE.  The health outcome is sometimes considered in conjunction with an 

onset stipulation, latent period, or other constraint, making comparisons among studies 

complicated.  Non-specific exposure assessment methods have historically been 

employed.  For example, job title, rather than objective measures of exposure, has often 

been used as a measure of exposure.  Additionally, exposure measures for the DUE have 

been used to describe exposure in the PUE.  Regardless of the inconsistencies in the 

epidemiological literature regarding the PUE, it is certainly not without merit.  As long 
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as study limitations are acknowledged, results from these studies can illuminate potential 

risk factors for the development of PUE disorders. 

Personal Risk Factors 

The Impact of Age 

While results from pathology studies were primarily concordant with regard to 

the relationship between advanced age, degeneration, and subsequent development of 

proximal upper extremity disorders, epidemiological studies that evaluated age as a risk 

factor for proximal upper extremity subjective and objective health outcomes produced 

conflicting evidence.  Some studies reported more subjective shoulder symptoms, pain, 

or fatigue with advanced age (Dimberg et al 1985, Kamwendo et al 1991, Ignatius et al 

1993, Niedhammer et al 1998).  Other studies found no relationship with age and the 

presence or development of subjective shoulder symptoms (Knave et al 1985, Chang et 

al 1987, Jeyaratnam et al 1989, Flodmark and Aase 1992, Westgaard and Jansen 1992, 

Hoekstra et al 1994, Schibye et al 1995).   

Studies with objective measures as health outcomes were similarly divided. 

Higher age was associated with outcomes including degenerative tendinitis, physician-

diagnosed “shoulder disorders” and “shoulder complaints,” and soft-tissue shoulder 

conditions (Bjelle et al 1979, Kvarnstrom 1983, English et al 1995, Van der Windt et al 

1995).  Other studies reported no relationship between advanced age and diagnosed 

shoulder disorders (Luopajarvi et al 1979, Bjelle et al 1981, McCormack et al 1990, 

Hales et al 1994, Frost and Anderson 1999).  In those studies where evidence of 

association between age and shoulder symptoms or disorders was found, the impact was 

maximal between approximately 40 to 65 years of age. 

The Impact of Gender 

In the same way that PUE pathology studies were not in agreement regarding the 

effect of gender, it was unclear the impact gender had on proximal upper extremity 

symptoms and disorders in epidemiological studies.  Female gender was a potential risk 
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factor for subjective PUE health outcomes in some epidemiological studies (Dimberg et 

al 1985, Knave et al 1985, Skov et al 1996).  Other studies found no relationship 

between gender and subjective health outcome (Chang et al 1987, Bergenudd et al 1988, 

Hoekstra et al 1994, Nordander et al 1999).  When the health outcome was objectively-

determined, gender was more often not an influence (McCormack et al 1990, Hales et al 

1994, Frost and Anderson 1999).  However, some studies did find female gender as a 

risk factor for objectively-determined PUE disorders (Kvarnstrom 1983, Nordander et al 

1999).  The relationship between gender and proximal upper extremity symptoms and 

disorders remains unclear. 

The Impact of Duration of Employment 

The epidemiological literature contained a few studies that found an association 

between longer duration of employment and proximal upper extremity disorders 

(Kilbom et al 1986, Stenlund et al 1992, Andersen and Gaardboe 1993b).  However, 

studies less often showed a relationship between PUE symptoms and longer duration of 

employment (Kamwendo et al 1991, Andersen and Gaardboe 1993a).  Years of 

experience provided a protective effect from disorders in some studies (Kadefors et al 

1976, Herberts and Kadefors 1976, Frost and Anderson 1999).  Many studies found no 

relationship between duration of employment and shoulder symptoms or disorders 

(Chang et al 1987, Jeyaratnam et al 1989, McCormack et al 1990, Milerad and Ekenvall 

1990, Chiang et al 1993, Stenlund et al 1993, Hales et al 1994, Hoekstra et al 1994, 

Schibye et al 1995, Lundberg et al 1999).  The role of duration of employment as it 

affects PUE disorders or symptoms is unclear.  The relationship, if any, is likely job and 

task-dependent and would not be expected to be fully explained only by duration of 

employment. 

The Impact of Strength 

Few studies have evaluated the role of shoulder strength as a predictor for 

shoulder symptoms or disorders, and the results are conflicting.  Some epidemiological 
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evidence exists for lesser proximal upper extremity muscle strength as a predictor of 

shoulder symptoms or disorders (Bjelle et al 1987, Kilbom 1988).  Other studies have 

demonstrated no evidence that a relationship between strength and PUE symptoms or 

disorders exists (Kilbom 1988, Takala and Viikari-Juntura 1991).   

Job Risk Factors 

The Impact of Postural Activity and Load 

Epidemiological evidence for overhead work as a risk factor for PUE symptoms 

and disorders has been found, especially with increasing duration of time spent working 

overhead.  Symptoms and disorders associated with overhead work in epidemiological 

studies include supraspinatus fatigue, shoulder stiffness, tenderness, or pain, 

supraspinatus tendinitis, degenerative rotator cuff tendinitis, and more communal 

classifications such as musculoskeletal disorders of the shoulder or simply, shoulder 

disorders (Herberts and Kadefors 1976, Kadefors et al 1976, Bjelle et al 1979, 

Sakakibara et al 1987, Sakakibara et al 1995, Welch et al 1995, Hughes et al 1997, 

Punnett et al 2000).   

Additional epidemiological evidence has been presented supporting upper arm 

elevation (flexion or abduction) as a risk factor for proximal upper extremity symptoms 

and disorders.  The evidence increases with duration and frequency of time spent 

working with elevated arms.  Specific elevation sectors associated with increased risk 

were elevation greater than 30°, 45°, and 60° compared to smaller angles or sectors, 

depending on the study.  Some evidence contrary to upper arm elevation as a risk factor 

was presented (Fine et al 1986, Bjelle et al 1987); however, the majority of studies 

suggested a positive relationship (Bjelle et al 1981, Dimberg et al 1985, Kilbom et al 

1986, Milerad and Ekenvall 1990, English et al 1995, Hughes et al 1997, Frost and 

Anderson 1999, Punnett et al 2000).   

Some epidemiological evidence has been found supporting increased repetitive 

upper arm activity or increased speed of work as risk factors for PUE symptoms and 

disorders (Luopajarvi et al 1979, Wiker et al 1989, Lo et al 1990, Ekberg et al 1994, 
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Punnett et al 2000).  One study reported a negative association between shoulder 

symptoms and repetitive arm elevations, though in this study, degree of elevation was 

not distinguished (Kilbom et al 1986).  Additionally, some evidence has been found 

supporting greater load on the PUE as a risk factor for PUE symptoms or disorders 

(Stenlund et al 1992, Niedhammer et al 1998).  Other studies have found no evidence 

supporting increased load on the PUE as a risk factor for symptoms or disorders 

(Stenlund et al 1993, Punnett et al 2000). Measures of muscle load after repetitive upper 

arm elevations indicated fatigue in muscles of the PUE, particularly with increased hand 

load (Hagberg 1981b) and with the presence of pre-existing pain (Larsson et al 1999).  

Measures or definitions of repetition and load are often dependent on each other, 

and vary widely across studies.  Even so, some conclusions can be drawn.  The 

epidemiological evidence suggests that repetition is a possible risk factor for PUE 

disorders, especially when a painful condition is already present; however, the evidence 

is less clear regarding PUE symptoms.  The epidemiological evidence supporting load as 

a risk factor for neck/shoulder or PUE-specific symptoms and disorders is less apparent. 

The Impact of Vibration 

Some epidemiological evidence has been found supporting the presence or 

estimated hours of vibration as a risk factor for proximal upper extremity symptoms or 

disorders (Dimberg et al 1985, Stenlund et al 1992, Stenlund et al 1993).  Other studies 

have not found support for such a relationship (Burdorf and Monster 1991).  The number 

of studies evaluating vibration as a risk factor is small and conclusions are difficult to 

draw. 

Epidemiological Study Reviews 

Other major reviews of the epidemiological literature regarding shoulder 

disorders have been conducted.  Conclusions from these reviews were generally 

concordant with the current review of epidemiological and PUE disorder pathology 

literature.  Over the course of comparing data from different occupations, Hagberg and 
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Wegman (1987) concluded that highly repetitive shoulder muscle contractions, static 

contractions, and work at shoulder level were hazardous exposure factors.  In a large-

scale initiative to identify workplace factors that contribute to musculoskeletal disorders, 

contributors evaluated four classically-touted ergonomic risk factors (Bernard et al 

1997).  They found evidence of a positive relationship between repeated or sustained 

shoulder flexion/abduction postures greater than 60° and shoulder musculoskeletal 

disorders.  Limited evidence of positive association was found for highly repetitive work 

and shoulder musculoskeletal disorders.  Insufficient evidence of association was found 

between force and shoulder musculoskeletal disorders.  Insufficient evidence was found 

between vibration and shoulder musculoskeletal disorders.   Conclusions were based on 

a limited number of studies that met a set of evaluation criteria. 
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CHAPTER IV 

ASSESSMENT TECHNIQUES FOR THE PROXIMAL UPPER EXTREMITY 

Though several authors have implored for the consistent measurement of study 

variables and the development of better ergonomics assessment tools, there are currently 

none with demonstrated ability to identify jobs which are associated with increased risk 

of proximal upper extremity disorders.  Many approaches to risk assessment have been 

suggested, which range from guidelines and checklists, task analysis techniques, and 

posture analysis techniques, to indirect approaches such as fatigue analysis, use of 

psychophysical tables, and body part discomfort surveys.  On some level, the 

subsequently discussed approaches have merit in the principles behind them.  Some map 

more closely to the theories of pathogenesis of PUE disorders than others.  Many of the 

job analysis techniques available are not necessarily specific to the proximal upper 

extremity. 

Some researchers have provided suggestions on how to begin assessment tool 

development or have defined task variables and risk factors of interest.  Rohmert (1962) 

clarified the use of the terms ‘stress’ and ‘strain.’  Stress was defined as the sum of all 

work parameters that influence a person, and included any demands placed on the body.  

Strain was defined as a function dependent equally on stress factors and individual 

capacities.  The measures of stress and strain were defined as time-dependent and work-

level dependent; therefore, it was proposed that intensity and duration of work must be 

considered when evaluating a job.  Westgaard (1999) discussed Rohmert’s force-fatigue 

curve (Rohmert 1960) and asserted that workers can develop musculoskeletal disorders 

at considerably lower levels than those suggested by the curve as safe.  In agreement 

with Rohmert (1962), Westgaard noted that physical workload is dependant on level, 

force variation pattern, and duration. 

Hagberg (1992) maintained that the field of ergonomics is new to epidemiology, 

thus most ergonomists have little practice in epidemiological study design.  Hagberg 

purported that one of the problems with ergonomics compared to, for example, industrial 

hygiene, is the difficulty of exposure definition, measurement, and evaluation, which 
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was also noted by Bjelle (1989) and Stock (1991).  A unifying definition of exposure 

would make studies more comparable.  He recommended using posture as defined by the 

American Academy of Orthopaedic Surgeons (1965), which presented definitions of 

neutral and non-neutral positions of joints.  Hagberg opposed the use of job title alone as 

an exposure variable.  He noted that a few studies went further and developed exposure 

variables that described the jobs in terms of posture, motion, or work organization, yet 

usually only one of the descriptors ended up being emphasized as a benchmark of 

exposure.  Hagberg additionally noted that exposure is often assessed by questionnaire, 

which further confounds analysis.  He clarified dose definition as the amount of physical 

stress in the musculoskeletal system and suggested that use of biomechanical 

computation, electromyography, or perceived exertion would provide a measure of dose.  

Hagberg reemphasized that exposure and dose categorization should have some basis in 

work physiology.  He stressed avoiding the arbitrary choice of threshold levels.  Use of 

an exposure profile, rather than a single estimate of exposure for risk assessment, was 

recommended.  He advocated presentation of exposure and exposure categories such that 

preventative measures could be suggested.  Lastly, Hagberg reminded readers that the 

presence of any force or repetition is not necessarily dangerous, as they can be used to 

build muscular strength and endurance and are a necessary part of daily activities. 

Armstrong et al (1993) proposed an abstract model for work-related neck and 

upper limb musculoskeletal disorders.  The authors noted the importance of 

distinguishing between “occupational disease” and “work-related disease.”  They 

suggested that use of the word “occupational” should only imply a direct cause and 

effect mechanism, while the term “work-related” should imply that work is a 

contributing factor to a multifactorial cause.  Unfortunately, that distinction had been 

largely ignored among the plethora of epidemiological studies to date and subsequent to 

publication.  They, too, remarked upon the wide variation in case definitions and 

methodology in the epidemiological literature.  The authors provided a dose-response 

model structure.  The proposed model contained four “state variables:” (1) exposure: 

external factors that produce internal dose, such as work requirements, (2) dose: factors 



 

 

27

that alter the internal state of the individual (can be mechanical, physiological, or 

psychological), (3) capacity: ability to resist destabilization from dose, and (4) response: 

changes that occur in an individual, such as shape of tissue. 

Use of self-reported exposure data has problems with relevance and repeatability 

as demonstrated by Wiktorin et al (1993).  The authors showed that self-reported 

exposure in a questionnaire regarding elements of manual materials handling was too 

crude when tested beyond a dichotomous level.  Even at a dichotomous level, agreement 

was dependent on the question and was not always good.  Use of questionnaire results as 

the basis for establishing exposure and health outcome is a common risk assessment 

technique in epidemiological studies.  As such, results from epidemiological studies 

should be evaluated critically. 

Guidelines and Checklists 

Noting the presence of one or more generic risk factors has historically been used 

as a quick job assessment or in some cases, justification for declaring a job to be 

‘unsafe.’  The risk factors most frequently cited in relation to the proximal upper 

extremity include repetitiveness, forcefulness, awkward posture, and vibration.  The 

predictive validity of using stand-alone generic risk factors without clarifying parameters 

to assess risk of PUE disorders has not been established.  Armstrong et al. (1986) 

discussed job evaluation with respect to generic work risk factors.  The authors noted 

that the presence of a generic risk factor does not imply that an injury will occur; 

however, it was postulated that in conjunction with a history of injuries, the nature of the 

job may play a role in the injury process.  Additionally, generic risk factor presence is 

not in concordance with proposed theories of pathogenesis of PUE disorders. 

Winkel and Westgaard (1992) generated guidelines for the occupational safety 

practitioner regarding enhanced worker safety and productivity.  The authors suggested 

that an approach to job analysis should contain a description of physical exposure, 

including estimates of exposure levels, repetitiveness, and durations.  The authors noted 

the importance of recording the pattern of activity and rest.  They defined a course of 
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action based on the exposure level of the work task: (1) “low” exposure level: good 

workstation design according to ergonomics texts, (2) “medium” exposure level: work 

with elevated shoulders or arms, or a deviated neck; tool contribution to the 

biomechanical load negligible compared to body weight contribution, and (3) “high” 

exposure level: large force exertion in the shoulder-neck region, such as when using 

heavy tools with arms deviated from the vertical position.  The authors recommended 

durations for each task exposure level, discussed modifying duration factors (such as 

monotonous work tasks, poor psychosocial environments, or lack of breaks or alternative 

tasks), and discussed jobs with multiple levels of exposure. 

The State of Washington proposed an Ergonomics Rule (Washington State 

Department of Labor and Industries, 2000) which was established to assist businesses in 

identifying “caution zone” jobs based on the presence of certain work conditions.  If 

those work conditions are present, a work-related musculoskeletal disorder (WMSD) 

hazard is considered present. The conditions must then be eliminated or reduced to the 

degree technologically or economically feasible.  The rule contains postural conditions 

for the shoulder, neck, back, and knee, conditions based on hand force estimates, 

repetition conditions, repeated hand impact conditions, lifting conditions, and vibration 

conditions.  For the shoulder, working with the hand(s) above the head or working with 

the elbow(s) above shoulder level for greater than four hours duration are considered risk 

factors.  Additionally, raising the hand(s) above the head or raising the elbow(s) above 

the shoulder more than once per minute for greater than four hours duration are also 

considered risk factors.  No evidence of predictive validity has been established using 

the Washington State Ergonomics Rule. 

Task Analysis Techniques   

Anderson (1971) lamented the fact that rheumatic disease lacks standardization 

in the epidemiological literature, and proposed a job analysis technique based on job task 

descriptions rather than simply job titles.  The classification system was called BAHLPS 

(Back, Arms, Hands, Legs, Posture, and Site).  A job is classified into one of five grades 
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for three aspects of a job: (1) individual grades for the back, arms, hands, and legs 

(Grade I: no effort – Grade V: maximum effort sustained for long periods), (2) posture 

(Grade I: mainly sitting or standing in one position – Grade V: walking long distances), 

and (3) site (Grade I: office or heated workshop with only occasional outdoor work – 

Grade V: outdoors all weathers).  A validation effort indicated that among 164 workers 

with grade I or II (“light”) on all four body part assessments, 44% had rheumatic 

complaints, while among 462 workers graded IV or V (“heavy”), 43% had rheumatic 

complaints.  Validation results were inconclusive, though the author reported no effect 

of site conditions.  The BAHLPS technique lacks PUE specificity. 

Wangenheim et al (1986) introduced a “person-adjusted” ergonomic method for 

systematic force analysis.  The method involves evaluating representative work cycles 

via videotape and coding the postural, force, vibrational, and static loads at freeze-

framed portions of the videotape with the help of guidelines.  The method divides the 

body into fourteen “functional units.”  For each unit, the observer can choose, from a 

series of pictures, a pose that most closely represents the actual posture of the given unit.  

Poses are separated into “normal,” “comfort zone,” or “extreme,” based on an 

experiment where subjects rated discomfort on a Borg scale.  Force load is described in 

values from 0 to 10.  Force for each pose was estimated using anthropometric data and 

biomechanical analysis.  If measured force is not possible, force ratings can be used as a 

substitute.  Vibration is measured both with subjective assessments of vibration and 

knowledge of actual tools handled.  Static load is recorded based on results from 

experiments of endurance time at different load levels.  Work analysis is organized via a 

computer program.  Based on evaluation of the methodology in small-scale industrial 

experiments, the authors purported its usefulness in reducing ergonomic load, though no 

validation was reported.  Though the method provides a framework for force 

measurement when objective measures are unavailable, the method lacks specificity and 

does not provide any measure of risk of PUE injury. 

Drury (1987) developed a method to evaluate the “repetitive motion injury 

potential” of a job.  He rightly acknowledged that any system should be model based, 
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rather than descriptive.  When evaluating repetition, force, frequency, or posture, Drury 

proposed that ‘less’ is always better.  After obtaining body angles based on observation, 

angles are categorized into zones of exposure, which are mathematically divided sectors 

based on range-of-motion data.  For the shoulder, measured body angles include outward 

rotation, inward rotation, abduction, adduction, flexion, and extension.  Zone 0 (“no 

exposure”) is neutral + 10% of range, Zone 1 (“low exposure”) is + 10% to + 25% of 

range, Zone 2 (“moderate exposure”) is + 25% to + 50% of range, and Zone 3 (“severe 

exposure”) is greater than + 50% of range. The frequency of “daily damaging motions” 

can be tabulated, based on the frequency of occurrence in each zone.  Drury also 

recommended using body part discomfort surveys in conjunction with task analysis.  

Analyses should be performed before and after interventions.  Predictive validity of this 

technique was not reported.   

Kilbom (1994) suggested guidelines for repetitive work of the upper extremity.  

Repetitive was defined as “…the performance of similar work cycles, again and again.”  

It was clarified that the output of repetitive work is similar from one cycle to the next 

and that cycles should resemble each other with regard to time and force exertion 

pattern.  For the purposes of the guideline, Kilbom characterized ‘repetitive’ work as 

either: (1) a work cycle less than thirty seconds, or (2) when one fundamental work cycle 

constituted greater than 50% of the total cycle, independent of cycle time, which aligned 

with work by Silverstein et al (1986).  To adjust for physiological and biomechanical 

demands, Kilbom suggested repetitive work be further classified as either: (1) 

intermittent static (external movement minor), or (2) dynamic (external movement easily 

distinguishable).  Kilbom’s guideline also required work duration to be at least sixty 

minutes in order to be considered repetitive.  Once a task has been declared repetitive, 

four additional descriptors should be employed: (1) time (frequency of specific 

movements, duration of work cycle and cycle elements, duration of intermittent static 

contractions, exposure time over the course of a day), (2) subjective force (high or low), 

(3) dichotomized posture (neutral/small or moderate/extreme), and (4) dichotomized 

speed (static/slow or fast).  Kilbom suggested gathering data on disorder rates via 



 

 

31

questionnaire, worker’s compensation claims, OSHA injury/illness records, or clinical 

exams, and emphasized that disorders should be clarified as either tendon or muscle 

disorders and defined by upper extremity segment.  Kilbom proposed that tasks with 

dynamic shoulder movements greater than 2.5 per minute and dynamic upper arm/elbow 

movements greater than 10 per minute were high risk tasks.  Modifying factors that 

would elevate the risk level to “very high” were presented: high external force, high 

speed, high static load, extreme posture, lack of training, high demands on output, 

monotony, lack of control, and long duration of repetitive work.  Though Kilbom 

suggested a validation methodology, no validating data was presented.  This technique 

lacks PUE specificity. 

Buchholz et al (1996) presented a job analysis technique called PATH (Posture, 

Activity, Tools, and Handling) which is based on work-sampling, for industries with 

irregular or non-repetitive work.  Originally developed for use in the construction 

industry, PATH is a task-based analysis methodology that involves: (1) identifying a job 

site, (2) performing a site review to describe operations and tasks, (3) interviewing 

workers, (4) collecting data such as tool weights and materials handled, (5) task 

sampling, and (6) documentation via videotape and photographs.  One of the coded data 

elements is posture, with sectors modified from Karhu’s work (1977 and 1981).  PATH 

maintained Karhu’s three original upper limb categories: (1) ‘neutral’ (both elbows 

below shoulder height), (2) ‘one arm raised’ (one elbow above shoulder height), and (3) 

‘two arms raised’ (both elbows above shoulder height).  In addition to coding posture, 

PATH requires coding of fundamental task activities, tool use, grasp type, and load 

handled (ascertained either via direct measurement of tool/object weight or indirectly via 

standard construction material data).  Frequencies of postures, activities, and loads are 

also recorded.  The authors noted that partial validity of the PATH method was assessed 

by comparing PATH trunk posture codes to results from a real-time, computer-aided job 

posture analysis method developed by Keyserling (1986).  They found the PATH 

method to “…be reasonably valid and reliable.”  The PATH method lacks PUE 

specificity. 
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Colombini (1998) introduced an observational method for classifying repetitive 

movements of the upper limbs.  The author recommended describing the work by 

breaking it into tasks, cycles, and technical actions, while noting any recovery time that 

occurred.  Repetitiveness was defined as “the presence of events (cycles/technical 

actions) that are repeated in time, always the same.”  It was emphasized that frequency, 

rather than repetitiveness defined via cycle time, may be a better predictor of disorders 

because it is possible that shorter cycles may not have frequent activities, while longer 

cycles may have a higher frequency of activities.  A posture scoring system was 

recommended for each upper limb joint (shoulder, elbow, and wrist) that accounted for 

duration of cycle time spent within specific angular sectors, variation of posture, and 

time spent within extreme ranges of motion.  Score modifying factors were also 

suggested, such as use of vibrating tools or exposure to cold.  Additionally, based on the 

presence or absence of recovery periods in a repetitive work day, each hour of the day 

was classified as “risk-free” or “at-risk” (work:rest ratio between 5:1 – 6:1, “risk-free”; 

ratio between 7:1 – 10:1, risk level=0.5; ratio greater than 10:1, “at-risk”).  Predictive 

validity of the technique was not reported.   

Hignett and McAtamney (2000) developed Rapid Entire Body Assessment 

(REBA) to assist practitioners in evaluating postures in workplaces with irregular or 

unpredictable activities.  Regions of the body were divided into angular sectors and a 

scoring system was developed.  Within the scoring system, individual scores based on 

postural location can be obtained for the trunk, neck, legs, upper arm, lower arm, and 

wrist, with modifying factors incorporated if necessary.  Scores from the trunk, neck, 

and legs are combined (“Score A”), modified by the presence of force.  Scores from the 

upper arm, lower arm, and wrist are combined (“Score B”), modified by the degree of 

coupling.  “Score C” incorporates “Score A” and “Score B,” which is additionally 

modified by an “activity score,” and includes other modifiers such as repetition and 

static work.  Based on this final score, five action categories were suggested, from 

“negligible” to “very high.”  Upper arm sector point values included: (1) -20° to 20° 

extension/flexion, (2) less than -20° extension and 20° and 45° flexion, (3) flexion 
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between 45° and 90°, and (4) greater than 90° flexion.  The upper arm score was 

modified if abduction or rotation was present or if the shoulder was raised (shoulder 

shrug).  Since REBA combines exposure scoring for the proximal and distal upper 

extremity, the tool lacks PUE specificity.  Predictive validity of this technique has not 

been established. 

Bloswick and Villnave (2000) presented a method of estimating shoulder 

moment using tables based on gender and arm posture.  The authors proposed using the 

ratio of the shoulder moment required by the task (calculated using a provided 

worksheet) and the gender-specific maximum strength in that posture.  They 

acknowledged that no generally accepted limits for shoulder moment exist, but proposed 

that a ratio less than 0.5 would not be a hazard for most workers unless high frequency 

was present and that a ratio greater than 1.0 would present a hazard for most workers.  

Predictive validity of this method has not been reported. 

Postural Analysis Techniques 

Priel (1974) proposed a numerical definition of posture under the assumption that 

the body can be divided into fourteen parts (two hands, two forearms, two arms, two 

thighs, two legs, two feet, one trunk, and one head).  The author proposed use of the 

“Posturegram,” a form for recording posture data based on observation in three planes: 

transverse, frontal, and sagittal.  Limb movements were split into numbered angular 

sectors, with positive or negative deviations noted.  The Posturegram was meant to be 

used as a tool to describe postural characteristics of a job rather than provide any 

evidence of disorder risk. 

Work by Karhu et al (1977, 1981) has long been employed as a source for 

evaluating postural demands in the workplace.  The authors developed the Ovako 

Working Posture Analysing System (OWAS), which is based on work sampling.  It is a 

method of whole-body classification of the back, upper limb, and lower limb postures.  

Each body segment is assigned a number code, based on a chart of figures maintaining 

different positions; thus, each whole-body posture can be represented by a three-digit 
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code and jobs can be subsequently prioritized for change.  The back has four code 

choices, the upper limb has three, and the lower limb has seven.  For the upper limb, 

Code 1 is used when both arms are at or below shoulder level, Code 2 is when one limb 

is at or above shoulder level, and Code 3 is when both limbs are above shoulder level.  

After the three-digit code is established, postures are further classified into one of four 

whole-body priority classifications, called “operative classes.”  No mention of an 

algorithm to determine which three-digit posture codes fall into which operative classes 

was presented, though generally speaking, smaller body region codes were considered to 

be more optimal.   

Kant et al (1990) evaluated a group of mechanics using the OWAS system.  The 

authors indicated that placement in a certain action category is based on both the OWAS 

code and the percentage of the working day spent working within that code.  The authors 

were able to identify job tasks which fell into the highest operative class and propose 

load-reducing postures to replace the original postures. Chaffin et al (1999) presented the 

schematic for OWAS action categories, based on both the position of the specific body 

region and the percentage of time spent within that position.  Four action categories were 

discussed, including: acceptable, slightly harmful, distinctly harmful, and extremely 

harmful.  For the shoulder region, spending greater than 80% of time with both elbows 

above shoulder level or greater than 90% of time with one elbow above shoulder level 

was considered “distinctly harmful.”  Spending between 30% - 79% of time with both 

elbows above shoulder level or 40% - 89% of time with one elbow above shoulder level 

was classified as “slightly harmful.”  The remaining possible percentages were 

considered “acceptable.”  Predictive validity for the OWAS technique has not been 

established. 

Corlett et al (1979) developed a method for recording whole-body postures, 

which required making ten marks on a chart, representing deviations from standard 

positions in various body regions.  The technique was developed primarily to identify 

the presence of awkward postures, though it does not account for duration of time 
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holding a particular posture or recovery time.  Validation of this tool has not been 

established. 

In a report on an investigation of cumulative trauma disorders in a poultry 

processing plant, Armstrong et al (1982) presented a system for describing joint position.  

Though the bulk of the system was intended for analysis of the distal upper extremity, 

the authors added shoulder posture descriptors, which were defined about three axes.  

Extension and flexion were divided into 45° sectors, with “neutral” defined as 0° - 45° 

flexion, and with all extension angles grouped together.  Adduction and abduction, 

referenced from the transverse plane, were also divided into 45° sectors, with all 

adduction angles grouped together and “neutral” defined as 0° - 45° abduction.  Lateral 

and medial rotation were divided into 45° sectors, with all lateral rotation grouped 

together and 0° - 45° medial rotation defined as “neutral.”  No explanation for the choice 

of shoulder sector divisions was given.  However, Armstrong (1986) asserted that the 

reasoning behind the division of joint range of motion into sectors was because it is not 

usually possible to reproduce angle measurements to the exact degree, especially when 

secondary analyses are performed, such as videotape analysis.  The authors were correct 

that angular degree of posture cannot be measured explicitly from secondary sources; 

however, sector divisions should not be arbitrary. 

Keyserling (1986a & 1986b) discussed a methodology to analyze postures of the 

trunk and upper limb.  Keyserling described a computer-aided postural analysis system 

that allowed for changes in posture sectors (time within and frequency between) to be 

tracked by hitting a key.  The system generates a posture profile for a job, identifying the 

frequencies of sectors in each body region, the minimum, maximum, mean, standard 

deviation, and total time spent within each sector, and the percentage of the job cycle in 

each sector.  The system also generates a graph which demonstrates task analysis and 

postural activity of the body regions on a common time scale.  Upper limb posture 

sectors included “neutral” (flexion/abduction less than or equal to 45°), “mild” 

(flexion/abduction greater than 45°, but less than or equal to 90°), and “severe” 

(flexion/abduction greater than 90°).  Keyserling emphasized a sequence for postural job 
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analysis, which included: (1) videotape job at worksite and sketch workstation, (2) 

develop sequential task description, (3) computer-aided posture analysis, (4) posture 

profile posture graph, (5) identify causes of postural stress, and (6) redesign job.  

Validation of this technique has not been established. 

Genaidy et al (1993) developed a schematic for a postural stress analysis system 

to evaluate stresses in an industrial environment.  The described methodology was 

confusing, but the authors concluded that the multipliers developed to weigh the impact 

of various body movements were valid.  The system relies on visual perception to 

classify working posture from videotapes.  Validation of this method has not been 

established. 

Wiktorin et al (1995) presented an observational method for recording postures at 

work called HARBO, which stands for “hands relative to the body.”  The method was 

developed on the assumption that the position of the hands is related to the postural 

demands on the shoulder, neck, and low back.  The body is divided into three sectors: 

hands above shoulder level, hands between shoulder and knuckle level, and hands below 

knuckle level.  The duration of five work postures are recorded: (1) standing or walking 

with hand(s) above shoulder level, (2) standing or walking with hands between shoulder 

and knuckle level, used to describe “fixed” postures (carrying greater than 50 N also 

falls in this category), (3) standing or walking with hands not fixed between shoulder 

and knuckle level, as when work is performed that does not require the use of two hands, 

such as making a telephone call (carrying less than 50 N falls in this category), (4) 

standing or walking with hands below knuckle level (also includes stooping, kneeling, 

and squatting), and (5) sitting.  A computer program was developed to track posture 

changes and durations, requiring only occasional keying by the observer.  Though small 

scale inter-rater and inter-method studies were executed with fairly reliable outcomes, no 

attempt was made to correlate posture data with injury-illness data. 
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Other Assessment Methods 

Snook and Ciriello (1991) published a series of tables containing maximum 

acceptable weights and forces across genders and percentiles of the population.  The 

tables were based on a compilation of results from several psychophysical studies.  

Tasks included lifting in the upper arm range.  Data was provided for dynamic lifting, 

lowering, pushing, pulling, and carrying categorized by variables such as vertical travel 

distance and frequency of task.  Though the tables were not developed to specifically 

assess risk of upper extremity disorders, the information provides insight into the 

interaction between task, load, and posture.  The maximum acceptable limits may have 

been limited by the shoulder. 

The two-dimensional static strength prediction model (2DSSP), as developed by 

Chaffin and associates at The University of Michigan, and described in the 1999 

Occupational Biomechanics text, predicts the proportion of a population that would be 

capable of performing a specific lift, push, or pull.  The percentage capable is separated 

by joint, including the elbow, shoulder, L5/S1, hip, knee, and ankle.  Such a tool can be 

useful in evaluating a job with repeated or consistent tasks.   

Rodgers (1987) described a technique for scheduling repetitive tasks and 

recovery time.  The technique is based on the physiologic mechanisms behind repetitive 

motion injuries.  Rodgers referred to work by Rohmert (1973) and Lind and McNichol 

(1967), who demonstrated that muscle circulation is related to the varying levels of 

muscle effort; that is, the higher percent maximum voluntary contraction (%MVC), the 

more circulation is compromised and the time to fatigue decreases.  Additionally, 

Rodgers pointed out that the recovery time needed for muscle effort greater than 70% 

MVC is larger than the time to hold that effort.  The author theorized that circulation to 

the tendons and tendon sheaths may be similarly compromised by increased muscle 

effort.  Rodgers presented data modified from Rohmert (1973), and constructed a graph 

of work time versus required recovery time, in a format easily applied to work analyses.  

If cycle time is known, and work time can be measured, then an acceptable effort level 

can be determined.  Conversely, if the effort level is known, and work time can be 
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measured, the graph indicates the shortest cycle time that can be performed without 

fatigue.  Additionally, if the cycle time is known and effort level has been estimated, the 

maximum allowable work time can be predicted from the graph.  Rodgers cautioned that 

the work/recovery graph should only be used to characterize work demands and to 

provide insight into jobs with possible increased risk of muscle fatigue. 

Rodgers (1988) discussed techniques to evaluate job demands and determine 

worker capacity from the perspective of the occupational physician.  The author referred 

to work by Rohmert (1973) and the Eastman Kodak Company (1986), who determined 

the intensity/duration relationships for static muscle effort and aerobic work.  To 

characterize work capacity, the author suggested the following process: (1) define active 

muscle groups, (2) rate the effort intensity, (3) measure the time of continuous effort, (4) 

measure the recovery time between efforts, and (5) determine the percent duration of 

muscle effort over the workday.  Effort intensity should be expressed as a percentage of 

the maximum strength for a particular posture.   

Rodgers presented a method for screening jobs where musculoskeletal problems 

have historically occurred so that job changes or accommodations can be made.  Three 

factors must be quantified: (1) effort intensity (heavy, moderate, light), (2) time of 

continuous muscle effort (< 6, 6 – 20, > 20 seconds), and (3) repetition frequency (< 1, 1 

– 5, > 5 cycles per minute).  The categories were based on physiological data suggested 

by Rohmert (1973) to avoid muscle fatigue.  The three factors are rated for each muscle 

group, giving three-digit priority ratings so that the most limiting aspects of the job can 

be identified.  Rodgers provided a priority-for-change schematic based on expected level 

of fatigue after five minutes of continuous work, with moderate, high, and very high 

classifications, and noted that any combination not appearing in the schematic should be 

considered low priority.  In Rodgers’ method, the upper extremity muscle groups 

included neck/shoulders, arms/elbows, and wrists/hands/fingers. 

Rodgers (1992) further clarified the effort intensity factor.  For the shoulders, 

“heavy” effort intensity included exerting forces or holding weight with arms away from 

body or overhead, “moderate” effort intensity included arms away from the body 
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without support or working overhead, while “light” effort intensity included arms 

slightly away from the sides or extended with some support.  Rodgers additionally noted 

that continuous effort time and frequency of efforts should be recorded separately for 

each level of effort intensity, and that even very brief recovery times should be recorded. 
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CHAPTER V 

RETROSPECTIVE EPIDEMIOLOGICAL STUDY IN A POULTRY 

PROCESSING PLANT 

The purpose of this study was to identify task variables that may influence the 

occurrence of proximal upper extremity disorders by analyzing jobs at a poultry 

processing plant.  Comparisons of PUE morbidity to measured task variables were made 

to determine the relationship between exposure and occurrence.  A secondary purpose 

was to compare the hazard classification based on two models of PUE disorder 

pathogenesis to the observed morbidity of the poultry processing jobs. The study results 

will contribute to a practical hazard evaluation process for the PUE. 

Methods 

Exposure Assessment 

Archived videotapes of workers in the poultry processing industry were available 

for evaluation.  A total of twenty-six autonomous jobs were present in the archive.  The 

left and right sides of the body were considered separately, providing fifty-two jobs-by-

sides for analysis.  A portion of each job, representative of the job’s duties and 

containing at least one full job cycle, was digitized for more detailed analysis.  For some 

jobs, more than one worker was videotaped performing the job.  In those instances, data 

was collected for each individual worker and subsequent analyses were performed on the 

data averages.  Several task variables were collected from the digitized video.  The 

presence or absence of some task variables was observed, while other task variables 

were estimated from paused video screen shots captured every 0.5 seconds.   Table I 

contains each task variable, its biological significance, assessment method, and 

measurement characterization. 

The presence or absence of ballistic motion was observed.  Ballistic motion was 

defined as a rapid increase in proximal upper extremity linear or angular velocity, 

followed by an abrupt deceleration.  If ballistic motion was present, the frequency of 
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ballistic motions per minute was calculated.  It is believed that rapid activation of muscle 

motor units may lead to localized muscle fatigue (LMF), while repeated activation 

accelerates the LMF process.  Additionally, high tensile loads are expected because 

ballistic exertions usually involve an element of eccentric muscle activation, and 

eccentric exertion produces the highest levels of tensile load in a muscle-tendon unit. 

Presence or absence of applied hand force was observed.  Applied hand force 

was defined as a deliberate action to initiate movement of an object using the hand, and 

was further characterized as either toward or away from the body.  A job might contain 

applied hand forces both toward and away from the body.  If applied hand force was 

present, the frequency of total applied hand forces per minute was calculated, as well as 

separately considering the frequency of applied hand forces toward and away from the 

body.  It is believed that force applied by the upper extremity causes an increase in 

tensile load, which increases intramuscular pressure (IMP) and can lead to LMF.  

Applied force away from the body primarily affects the anterior deltoid, pectoralis major 

and minor, and the triceps, while applied force towards the body primarily affects the 

posterior deltoid, biceps, and scapular stabilizers.   

Upper arm elevation was defined as the flexion, abduction, or extension angle 

between the humerus and the torso.  Upper arm elevation angle, along with included 

elbow angle, were estimated from screen shots taken every 0.5 seconds from the 

digitized video by marking the shoulder, elbow, and wrist centers of rotation, connecting 

the centers of rotation, and manually measuring the subsequent angles.  Upper arm 

elevation angle measurements when the torso was observed to be not upright were 

adjusted by drawing an additional line from the shoulder center of rotation down along 

the torso and measuring from that line rather than the perpendicular line that would have 

defined an upright torso. The presence of an object in the hand was observed, and the 

weight of the object, if present, was estimated based on evaluating similar poultry 

processing tools.  It is believed that intrinsic tensile and compressive loads are affected 

by differing upper extremity postures and by the addition of a hand load.
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Table I.     Summary of the Task Variables, Their Biological Significance, Method of Assessment, and Rating Scheme 

Task Variable Biological Significance Assessment Rating Scheme 

Ballistic Motion Rapid activation of muscle motor units may lead to 
very high tensile loads and possibly localized 
muscle fatigue (LMF).  Also, high tensile loads are 
expected because ballistic exertions usually involve 
an element of eccentric muscle activation, and 
eccentric exertion produces the highest levels of 
tensile load in a muscle-tendon unit 

Observed Y=Ballistic Motion Present                         
N=Ballistic Motion Absent 

Frequency of Ballistic 
Motion 

Repeated ballistic motion accelerates tensile 
loading and LMF process. 

Measured Ballistic Motions/minute 

Applied Hand Force Y=Applied Hand Force Present                            
N=Applied Hand Force Absent 

Applied Force Away 
from Body 

Y=Applied Force Away from Body Present                 
N=Applied Force Away from Body Absent 

Applied Force 
Toward Body 

Increase in tensile load with applied force causes 
increase in intramuscular pressure, which leads to 
LMF. 

Observed 

Y=Applied Force Toward Body Present  N=Applied 
Force Toward Body Absent 

Frequency of Applied 
Force 

Applied Forces per minute 

Frequency of 
Applied Forces 
Away from Body 

Applied Forces Away from Body per minute 

Frequency of 
Applied Forces 
Toward Body 

Repeated applied force accelerates LMF process. Measured 

Applied Forces Toward Body per minute 

Cycle time Time Measurements Explains the temporal pattern of upper extremity 
exertions. 

Measured 

% Duration of Time Spent with Non-Neutral Upper 
Arm Posture 
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Task Variable Biological Significance Assessment Rating Scheme 

% Duration of Time Upper Arm Angle Spent in 30 
degree sectors (0-180 degrees) 

% Duration of Time Upper Arm Angle Spent in 60 
degree sectors (0-180 degrees) 

% Duration of Time Included Elbow Angle Spent in 
30 degree sectors (0-180 degrees) 

 

% Duration of Time Included Elbow Angle Spent in 
45 degree sectors (0-180 degrees) 

**specific to the mechanical impingement 
theory of the pathogenesis of shoulder disorders 

% Duration of Time Upper Arm Angle Spent at or 
near 80 degrees elevation (Flexion or Abduction) 

% Duration of Time Upper Arm Angle was Positive 
(Flexion or Abduction) 

 

  

 

% Duration of Time Upper Arm Angle was Negative 
(Extension) 

Upper Extremity 
Posture   

Intrinsic tensile and compressive loads are affected 
by varying upper extremity postures. 

Estimated Upper Arm Angle (every 0.5 second) 

Minimum Upper Arm Elevation (Flexion, Abduction, 
or Extension) 

Upper Arm Angle 

 
Measured 

Maximum Upper Arm Elevation (Flexion, 
Abduction, or Extension) 
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Task Variable Biological Significance Assessment Rating Scheme 

 Mean Upper Arm Elevation (Flexion, Abduction, or 
Extension) 

Median Upper Arm Elevation (Flexion, Abduction, 
or Extension) 

 

 

Frequency of Non-Neutral Upper Arm Posture per 
minute 

 

 
**specific to the mechanical impingement 

theory of the pathogenesis of shoulder disorders   

Frequency Upper Arm Elevated through 80 
degrees Abduction or Flexion per minute 

Estimated Included Elbow Angle (every 0.5 second) 

Minimum Included Elbow Angle 
Maximum Included Elbow Angle 
Mean Included Elbow Angle 

Included Elbow 
Angle 

Measured 

Median Included Elbow Angle 
Presence of Upper 
Arm Angle 
Extension   

Observed 
Y=Upper Arm Extension Present                     
N=Upper Arm Extension Absent 

Shoulder Moment Mean Shoulder Moment for a 50th Percentile Male 

Moment Due to Arm 
Weight Only 

Maximum Shoulder Moment for a 50th Percentile 
Male 

Mean Shoulder Moment for a 50th Percentile 
Female 

Moment Due to Arm 
Weight + Object 
Weight 

Represents muscle strength required to maintain 
upper arm posture.  Intrinsic loads will vary as 
moment changes due to upper arm posture.  
Extrinsic load (object) modifies shoulder moment. 

Measured 

Maximum Shoulder Moment for a 50th Percentile 
Female 
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It was assumed that the upper arm elevation angles and included elbow angles 

measured every 0.5 seconds throughout the job cycle were representative of all the 

postures that would occur during the job.  The angles were characterized by their 

minimum, maximum, mean, and median values.  Presence of upper arm extension was 

observed. 

The upper arm elevation angle and included elbow angle data was stratified into 

angular sectors.  The percent duration of time spent within each sector was determined 

using job cycle time as the denominator.  Two different sector schemes were explored 

for both upper arm elevation angle and included elbow angle.  Sector divisions of 30 

degree and 60 degree increments were investigated for upper arm elevation angles 

between 0° and 180°.  Upper arm elevation angles less than 0° (extension) were 

grouped into one sector.  Sector divisions of 30 degree and 45 degree increments were 

explored for included elbow angles greater than 90° up to 180°.  Included elbow angles 

between 0° and 90° were considered one sector.  Figures 1 and 2 illustrate the initially 

explored upper arm elevation and included elbow angle sector division schemes, 

respectively.  

A secondary stratification of the upper arm elevation angle data was explored 

where all “neutral” elevation angles were grouped in one sector.  Non-neutral was 

defined as upper arm elevation angle greater than approximately 15°, or, humeral 

elevation great enough to impact the moment at the shoulder.  That is, at an upper arm 

elevation angle of approximately 15°, the associated shoulder moment rapidly begins 

to increase (peaking at 90° elevation).  The percent duration of time spent in neutral 

upper arm posture was calculated using job cycle time as the denominator.  The 

frequency of non-neutral upper arm posture per minute was recorded, represented by 

the number of times the humerus moved in and out of a neutral position.  As an 

extension of choosing the definition of neutral upper arm posture to be less than or 

equal to 15°, another angular sector was defined to include angles greater than 15° but 

less than or equal to 60° (Figure 3).  Sector stratification helps explain the pattern of 

upper extremity exertions over the course of a job cycle. 
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Figure 1.     Upper Arm Elevation Sectors 

Figure 2.     Included Elbow Angle Sectors  
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Figure 3.     Additional Upper Arm Elevation Sector 

The mechanical impingement pathogenesis theory of shoulder disorders 

presupposes that when the arm passes through approximately 80° abduction or flexion, 

mechanical impingement of the supraspinatus tendon on the underside of the acromion 

process occurs, causing contact stress.  In order to explore the impingement theory, 

special consideration was given to both the duration of time the shoulder elevation 

angle remained between 80° to 100° and the frequency with which the arm passed 

through that angular range.  Hence, a variable representing percent duration of time 

spent around 80° flexion or abduction was established, as well as a variable that 

accounted for the frequency the arm passed through that range. 

An estimate of the force acting on the shoulder is a valuable resource for 

understanding the impact of an upper extremity posture on muscular load and 

subsequent LMF.  Upper extremity segment lengths, segment weights, and location of 

the center of masses of the segments were determined for a 50th percentile male and 

female based on tabled values (Dempster 1955, Webb Associates 1978).  Forearm and 

hand segments were considered one segment, while the upper arm segment was 

separate.  In order to calculate shoulder moment, reactive forces at the elbow and 

shoulder had to be determined.  Reactive forces at any joint represent both the 

magnitude of tensile forces in ligaments and muscles that hold the joint together and 

any shearing or compressive forces acting on surfaces that contact the joint.  However, 
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rotational motion must also be considered.  The upper extremity segments and load 

weight, if any, act at a distance away from the supporting shoulder reactive force; thus, 

a moment at the shoulder is created.  Moment is equal to the sum of the forces times 

their respective perpendicular distances from the lines of action to the point or axis of 

rotation, and is adjusted for angular offset using the sine function.  Figure 4 identifies 

the moment equation variables and coordinate system.  The shoulder moment equation 

is: 

MS = -(cos θS)[(SCMUA)(WUA) + (SE)(FE′)] - ME′ 

ME = -(cos θE)[(ECMFH)(WFH) + (ECMH)(WLOAD)] 

where, 

MS = shoulder moment 

ME = elbow moment  

SCMUA = distance from the shoulder to the center of mass of the upper arm 

segment 

SE = distance from the shoulder to the elbow 

ECMFH = distance from the elbow to the center of mass of the forearm-hand 

segment 

ECMH = distance from the elbow to the center of mass of the load in the hand 

WUA = weight of upper arm segment 

WFH = weight of forearm-hand segment 

WLOAD = weight of hand load 

FE = force at the elbow 

θS = shoulder angle offset 

θE = elbow angle offset 

 

A moment represents the strength required of specific muscle actions to 

maintain posture or impart motion.  The moment at the shoulder is greatest when the 

upper arm is horizontal (90°) and biomechanically negligible at 0° and 180°.   
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A shoulder moment was calculated for each available set of upper arm elevation 

angle and included elbow angle data.  Values for upper extremity segment lengths, 

segment weights, and location of the center of masses of the segments were determined 

for a 50th percentile male and female from a set of tabled values.  Shoulder moment 

was determined both with and without consideration of object weight, if any.  Since 

shoulder moment represents the strength required to maintain upper extremity posture, 

it is believed that moment is a good representation of the impact of the combination of 

posture and load.   

 

Figure 4.     Moment Coordinate System 

Morbidity Assessment 

After completion of the exposure assessment, injury and illness data records in 

the form of OSHA 200 logs were reviewed retrospectively over three years (from 1996 

to 1998).   The OSHA data bordered the time period the videotaping was originally 

conducted (1998).  Recorded data included location, side, and type of disorder.  Any 

occurrence of a shoulder or upper arm entry was recorded separately as an injury or an 
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illness based on OSHA 200 log classification.  Injuries were recorded in the logs as 

sprains or strains.  Illnesses were reported as “repetitive motion disorders” of a 

specified body part in column 7f of the log.  A job was considered ‘positive’ if at least 

one shoulder or upper arm injury or illness was reported in these OSHA logs.  A job 

was considered ‘negative’ if no shoulder or upper arm injuries or illnesses were 

reported for that job in these OSHA logs.  A person with a bilateral condition would be 

represented as having two separate disorders. 

Results 

Morbidity Data and Selection of Health Outcome 

Fifty-two jobs (by-side) were available for analysis. Thirty-eight (73.1%) of the 

jobs were positive for shoulder or upper arm injury or illness.  Three (5.8% of all jobs) 

were positive for shoulder or upper arm injury only (no illnesses).  Nineteen (36.5% of 

all jobs) were positive for shoulder or upper arm illness only (no injuries).  Sixteen 

(30.8% of all jobs) were positive for both shoulder or upper arm injury and illness.  

Fourteen (26.9% of all jobs) were negative for either shoulder or upper arm injury or 

illness.   Figure 5 provides a graphical view of the health outcome distribution in the 

data set.  

Comparisons of exposure data to morbidity were performed using only jobs 

positive for shoulder or upper arm illness. The 19 positive jobs were compared to the 

14 negative jobs for all exposure variables. This route of analysis was pursued for a 

few reasons.  The base rate of positive jobs was 73% when positive was defined as 

injury or illness.  Such a large positive rate could impact the analyses and conceal 

potential associations.  Additionally, there were concerns that entries recorded as 

injuries were not considered equivalent to those recorded as illnesses in the OSHA 

logs.  Jobs that were positive for shoulder or upper arm injury were described in the 

OSHA logs as being a “strain/sprain,” which does not correspond with the current 

research effort of modeling to predict risk of proximal upper extremity disorders.  
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Additionally, it was decided to remove those jobs that were positive for both injury and 

illness records, since the potential presence of job elements that contributed to risk of 

injury might bias those job elements that contributed to illness.   

 

 

Figure 5.     Health Outcome Distribution 

In other words, it is expected that the pathologies of proximal upper extremity 

injury and illness are different.  Shoulder or upper arm injuries may be linked to 

overexertion and might be better predicted using existing biomechanical or 

physiological tools related to manual materials handling.  A job may contain elements 

that contribute to both injury and illness pathology, or either health outcome separately.  

It was thought that the most informative approach would be to evaluate only the jobs 

that had health outcomes that most closely aligned with the research effort.  Hence, 

results using jobs defined as positive only for shoulder or upper arm illness would 

provide additional insight into model variable selection and model structure.  It may be 

that injuries, as recorded in the OSHA logs, are traumatic in nature, while illnesses are 

non-traumatic conditions.  
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Exposure Data 

For the most part, the exposure variables had good representation among the 

analyzed jobs.  Tables II, III, and IV contain the exposure variables, the number of jobs 

in which each variable was present and absent, and the mean and range of the task 

variable values among those jobs in which it was present.  All upper arm elevation 

angles were well represented with the exception of upper arm elevation angles greater 

than 90° to less than or equal to 120°, as well as angles greater than 120° to less than or 

equal to 150°, in which ranges, only one of the analyzed jobs contained data for each 

respective variable.  Additionally, there were no analyzed jobs that contained data in 

the upper arm elevation angle range of greater than 150° to less than or equal to 180°.  

The number of jobs in which the upper arm elevation angle passed through 

approximately 80° was 16 of 33.  All included elbow angle ranges were well 

represented in the analyzed jobs.  Ballistic motion was present in 8 of the 33 jobs.  

Applied force of any kind was well-represented in the analyzed jobs (26 of 33 jobs), 

though applied force away from the body was present in only 9 of the 33 jobs.  Applied 

force towards the body was present in 19 of 33 jobs.   

Table II.     Upper Arm Elevation Angle Exposure Data Summary 

 Number of Jobs Among Jobs with Variable 
Present UA=Upper Arm 

Elevation Angle Present  Absent  Mean  Range 
UA < 15° 28  5  37.1%  2.8 - 100% 

15° < UA < 60° 32  1  65.2%  17.4 - 100% 
60° < UA < 120° 15  18  11.7%  1.1 - 39.4% 

120° < UA < 
180° 1  32  0.7%  N/A 

0° < UA < 30° 33  0  57.7%  14.3 - 100% 
30° < UA < 60° 29  4  22.4%  1.4 - 57.9% 
60° < UA < 90° 15  18  11.7%  1.1 - 39.4% 

90° < UA < 120° 1  32  0.6%  N/A 
120° < UA < 

150° 1  32  0.7%  N/A 
150° < UA < 

180° 0  33  N/A  N/A 
UA at/near 80° 16  17  10.6%  1.0 - 37.7% 
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Table III.     Included Elbow Angle Exposure Data Summary 

 Number of Jobs Among Jobs with 
Variable Present 

EA=Elbow Angle 
Present  Absent  Mean  Range 

EA < 90° 26  7  26.6%  1.3 - 53.4% 
90° < EA < 135° 30  3  38.9%  6.1 - 100% 
135° < EA < 180° 32  1  45.2%  5 - 100% 
90° < EA < 120° 29  4  30.4%  5.6 - 71.4% 
120° < EA < 150° 33  0  32.1%  5.3 - 87.0% 
150° < EA < 180° 31  2  22.2%  2.7 - 88.9% 

 

Table IV.     Task Variable Exposure Data Summary 

 
 

Number of Jobs Frequency Among Jobs 
with Variable Present 

 Present  Absent  Mean  Range 

Ballistic Motion 8  25  19.5/min  
5 to 34 per 

minute 
Applied Force: 

Any 
26  7  21.6/min  3 to 57 per 

minute 
Applied Force: 

Away from 
Body 

9  24  23.0/min  2 to 57 per 
minute 

Applied Force: 
Toward Body 

19  14  18.7/min  3 to 34 per 
minute 

Pass through 
80° UA 

Elevation 
16  17  14.8/min  2 to 36 per 

minute 

 

Statistical Methods and Results 

All measured, observed, and estimated exposure variables were compared to 

shoulder and upper arm illness morbidity data from the OSHA logs.  Statistical 

analyses were performed on the selected data using SPSS® software on a personal 

computer.  Student t-test for use with normally-distributed data was used for comparing 

the means of the continuous exposure variable data to the morbidity classification. Chi 
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square test for independence was used to determine the relationship between 

categorical exposure variables and morbidity classification.  The intent of the analyses 

was to look at variables that may influence the pathology of proximal upper extremity 

disorders.  Given that goal and the small sample size of the data set (limited power), it 

was decided to examine differences in mean values with less emphasis on p-values.   

Categorical Data Univariate Analyses 

Tables V, VI, VII, and VIII show the distribution of the categorical exposure 

variables according to morbidity classification and the associated chi-squared value and 

odds ratio.  The data suggested that the presence of applied force towards the body, as 

well as the presence of applied force in general may impact PUE morbidity (p < 0.001).  

The odds ratio for a job with the presence of applied force towards the body was 19.56 

(CI: 3.31 – 115.37). 

 

Table V.     Morbidity Contingency Table for the Presence of Applied Force Towards the Body 

  Morbidity Classification 

  
No 

Injury/Illness  Illness Only 

  1    0  
1 16  3 

Presence of Applied 
Force Towards 

Body 0 3  11 
     

 Chi-Sq:  0   

 
Fisher's 
Exact:  0   

 
OR: 19.56  

CI: (3.31 to 
115.37) 

 

The odds ratio for a job with the presence of any applied force (towards or 

away from the body) was 13.5 (CI: 1.39 – 131.32).    
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Table VI.     Morbidity Contingency Table for the Presence of Any Applied Force 

  
Morbidity Classification 

  
No 

Injury/Illness  Illness Only 
  1    0  

1 18 8  Presence of Any 
Applied Force 0 1 6  

   
 Chi-Sq:  0.009  
 Fisher's Exact:  0.026  

 OR: 13.5
CI: (1.39 to 
131.32) 

 

 

There were no significant differences between positive and negative jobs for 

either the presence of applied force away from the body or the presence of ballistic 

motion. 

 

Table VII.     Morbidity Contingency Table for the Presence of Applied Force Away from the Body 

  Morbidity Classification 

  
No 

Injury/Illness
 

Illness Only 
  1    0  

1 4 5  
Presence of 

Applied Force 
Away From Body 0 15 9  

    
 Chi-Sq:  0.35   

 
Fisher's 
Exact:  0.442  

 

 OR: 0.48
 CI: (.10 to 

2.27) 
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Table VIII.     Morbidity Contingency Table for the Presence of Ballistic Motion 

  Morbidity Classification 

  
No 

Injury/Illness 
 Illness 

Only 
   1    0  

1 6 2  Presence of 
Ballistic Motion 0 13 12  

     
 Chi-Sq:  0.252   

 
Fisher's 
Exact:  0.416

 
 

 OR: 2.77
 CI: (.47 to 

16.46) 
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Continuous Data Univariate Analyses 

The data suggested that the number of ballistic motions per minute, the number 

of applied forces towards the body per minute, the mean and median upper arm 

elevation angle, the percentage of time the upper arm was elevated between 60° to 90° 

and 60° to 120°, and the mean shoulder moment may be related to PUE illness 

morbidity.  Univariate comparisons for the continuous exposure variables according to 

morbidity classification (positive or negative) are presented in Table IX.   The number 

of ballistic motions per minute was higher for positive jobs compared to negative jobs 

(6.6 vs. 2.2; p=0.20).  The number of applied forces towards the body per minute was 

greater for positive jobs compared to negative jobs (15.2 vs. 4.7; p=0.01).  The mean 

and median upper arm elevation angle over the course of the job cycle were higher for 

positive jobs compared to negative jobs (24.1° vs. 18.8°; p=0.14) and (21.7° vs. 17.0°; 

p=0.17), respectively.  The percentage of time the upper arm was elevated between 60° 

to 90° was higher for positive jobs compared to negative jobs (7.7% vs. 2.1%; p=0.08).  

A similar relationship was found for the percentage of time the upper arm was elevated 

between 60° to 120°; however, the data set contained no negative jobs where time was 

spent with the upper arm elevated above 90°, and an almost negligible percentage of 

time was spent between 90° to 120° in the positive jobs available.  The mean shoulder 

moment (based on data for a 50th percentile male) was greater for positive jobs 

compared to negative jobs (5.8 Nm vs. 5.3 Nm; p=0.20).  There were no other 

significant differences between positive and negative jobs for any of the other 

continuous exposure variables.  
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Table IX.     Exposure Variables According to Morbidity Classification 

Exposure Variable 
"Positive" 

(n=19) Mean
Std. Dev.  

"Negative" 

(n=14) Mean
Std. Dev.  p-value 

Frequency Variables       

Ballistic Motions per Minute 6.6 11.3  2.2 5.8  0.20 
Applied Forces per Minute 19.2 11.3  14.1 17.0  0.31 
Applied Forces Away from Body per Minute 4.0 11.3  9.4 16.9  0.28 
Applied Forces Toward Body per Minute 15.2 11.2  4.7 9.9  0.01 
Non-Neutral (UA > 15°) Upper Arm Posture per 
Minute 20.1 6.4  21.3 12.8  0.71 

Upper Arm Elevated through 80° per Minute 7.8 10.3  6.2 9.5  0.65 
        

Upper Extremity Posture Measurements        
Minimum Upper Arm Elevation Angle -10.2 5.2  -8.0 4.0  0.44 
Maximum Upper Arm Elevation Angle 56.8 25.1  47.5 16.7  0.24 
Mean Upper Arm Elevation Angle 24.1 11.0  18.8 8.5  0.14 
Median Upper Arm Elevation Angle 21.7 10.7  17.0 8.1  0.17 
Minimum Included Elbow Angle 81.2 27.9  89.6 35.5  0.45 
Maximum Included Elbow Angle 170.1 11.2  169.1 14.0  0.82 
Mean Included Elbow Angle 125.8 19.8  130.4 23.3  0.55 
Median Included Elbow Angle 124.8 21.2  128.3 24.6  0.67 

        
Upper Arm Time Measurements        

% Duration of Time Spent in Neutral Upper Arm 
Posture (UA < 15°) 29.4 29.1  34.2 23.1  0.61 

% Duration of Time Spent in Upper Arm Posture 
(15° < UA < 60°) 62.9 28.2  63.9 23.2  0.93 

% Duration of Time Spent in Upper Arm Posture 
(0° < UA < 30°) 53.8 22.3  63.0 20.1  0.23 
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Exposure Variable 
"Positive" 

(n=19) Mean
Std. Dev.  

"Negative" 

(n=14) Mean
Std. Dev.  p-value 

% Duration of Time Spent in Upper Arm Posture 
(30° < UA < 60°) 20.3 15.9  18.9 17.3  0.81 

% Duration of Time Spent in Upper Arm Posture 
(60° < UA < 90°) 7.7 10.6  2.1 4.4  0.08 

% Duration of Time Spent in Upper Arm Posture 
(90° < UA < 120°) 3.2E-02 0.1  0.0 0.0  0.40 

% Duration of Time Spent in Upper Arm Posture 
(120° < UA < 150°) 3.7E-02 0.2  0.0 0.0  0.40 

% Duration of Time Spent in Upper Arm Posture 
(150° < UA < 180°) 0.0 0.0  0.0 0.0  N/A 

% Duration of Time Spent in Upper Arm Posture 
(0° < UA < 60°) 74.1 24.2  81.9 15.8  0.31 

% Duration of Time Spent in Upper Arm Posture 
(60° < UA < 120°) 7.7 10.6  2.1 4.4  0.08 

% Duration of Time Spent in Upper Arm Posture 
(120° < UA < 180°) 3.7E-02 0.2  0.0 0.0  0.40 

% Duration of Time Upper Arm Angle at or near 
80° Elevation 5.9 9.4  4.0 6.7  0.52 

% Duration of Time Upper Arm Angle less than 
0° Elevation (Extension) 18.2 24.9  16.0 17.0  0.78 

        
Included Elbow Angle Time Measurements       

% Duration of Time Spent in Included Elbow 
Angle Posture (0° < EA < 90°) 23.9 19.2  17.0 17.1  0.29 

% Duration of Time Spent in Included Elbow 
Angle Posture (90° < EA < 120°) 26.4 12.9  27.1 21.9  0.91 

% Duration of Time Spent in Included Elbow 
Angle Posture (120° < EA < 150°) 33.3 20.2  30.6 15.8  0.68 
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Exposure Variable 
"Positive" 

(n=19) Mean
Std. Dev.  

"Negative" 

(n=14) Mean
Std. Dev.  p-value 

% Duration of Time Spent in Included Elbow 
Angle Posture (150° < EA < 180°) 17.5 14.9  25.4 27.9  0.30 

% Duration of Time Spent in Included Elbow 
Angle Posture (90° < EA < 135°) 33.2 17.4  38.3 27.5  0.52 

% Duration of Time Spent in Included Elbow 
Angle Posture (135° < EA < 180°) 43.1 27.9  44.7 34.3  0.88 

        
Shoulder Moment Measurements        
        

Mean Shoulder Moment (for a 50th Percentile 
Male) [Nm] 5.8 1.1  5.3 1.0  0.20 

Mean Shoulder Moment (for a 50th Percentile 
Female) [Nm] 4.6 0.9  4.2 0.7  0.20 

Maximum Shoulder Moment (for a 50th 
Percentile Male) [Nm] 8.7 1.9  8.3 1.3  0.53 

Maximum Shoulder Moment (for a 50th 
Percentile Female) [Nm] 6.8 1.5  6.5 1.0  0.53 
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Multivariate Logistic Regression Analysis 

A multivariate logistic regression was performed with all continuous and 

categorical variables found to be influential in the univariate analyses.  Variables were 

entered into the model using backward conditional stepwise selection.  A variable was 

removed from the model if the probability of its score statistic was greater than 0.20.  

The final logistic model for predicting recorded illness included two variables: (1) the 

presence of applied force towards the body (x1) and (2) the percentage of time the 

upper arm was elevated between 60° and 120° (x2).   The logistic model was:  

logit (π) = α + β1x1 + β2x2 

logit (π) = - 1.725 + 2.877x1 + 0.122x2 

The estimated odds ratio (eβ) for x1 was 17.769 (95% CI: 2.771 to 113.955); 

that is, the odds of a job having a recorded illness in the PUE increase multiplicatively 

by approximately 17.8 when applied force towards the body is present.  The estimated 

odds ratio for x2 was 1.129 (95% CI: 0.938 to 1.360); that is, the odds of having a 

recorded illness in the PUE increase multiplicatively by approximately 1.1 for every 

unit increase in the percentage of time spent in the upper arm elevation range between 

60° and 120°.  (To clarify further; for example, if a job contained an additional 15% of 

time in the range of 60° to 120° upper arm elevation, the estimated odds of having a 

recorded illness in the PUE would be e0.122* 15 or e1.83 = 6.2.) 

The Hosmer-Lemeshow goodness-of-fit test generated a value of χ2=1.738 

(p=0.884), which indicated that the model has no significant lack of fit.  Nagerkerke’s 

R2 for the model was 0.518, indicating that approximately 52% of the variation in 

recorded illness could be explained by the model.  The classification table of observed 

versus predicted illness can be found in Table X.  
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Table X.     Classification Table of Observed and Predicted Illness 

   
  

Predicted 
Recorded Illness 

Percentage 
Correct 

   1 0   
1 16 3 84.2% Observed 

Recorded 
Illness 0 4 10 71.4% 

    
Overall 

Percentage: 78.8% 
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CHAPTER VI 

PROXIMAL UPPER EXTREMITY MODEL DEVELOPMENT 

Causation of any symptom or disorder is dependent on the contribution of 

personal, occupational, non-occupational, and psychosocial factors.  All factors are 

central to understanding the complete picture; however, this research endeavor focused 

on the contribution of work.  Hence, the subsequently discussed proposed models to 

predict risk of proximal upper extremity disorders are based on measurable 

occupational factors only.  Through research on physiology, biomechanics, and 

epidemiology of the PUE, support for model decisions was found.  Such research 

background is highly relevant.   

The proposed model constructs are based on the principles of physiology and 

biomechanics, and were influenced by epidemiological literature, published 

experimental observations, and a small-scale, retrospective epidemiological study in a 

poultry processing plant.  Early research consisted of a review of the PUE medical 

literature, encompassing disciplines such as rheumatology, surgery, and pathology.  

Because of the interest in predicting rotator cuff disorders, disorder pathology must be 

understood; hence, proposed models of pathogenesis were derived from the medical 

literature.  Once theories of pathogenesis were established, the next step was to look at 

what external activities fit in with the models of pathogenesis.  That is, it was necessary 

to determine what biomechanical or physiological stresses occur internally when 

specific external activities take place.  Activities performed long enough or frequently 

enough might potentially lead to degeneration and initiate the disorder process.   

The PUE models have been developed to predict rotator cuff disorders such as 

tendinitis or tears (partial or complete) in the supraspinatus muscle-tendon unit.  The 

models will not necessarily predict problems such as shoulder myalgia, strains or 

sprains, or nerve disorders.  Stress is composed of physical, environmental, and mental 

factors.  Stress evaluated in conjunction with individual characteristics provides a good 

construct to model strain, the physiological response to stress.  According to Moore 

and Garg (personal communication), it is possible to describe physiological stress 
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using an index.  For some particular form of stress (I), the index can be defined as the 

ratio of the duration of time I is present, weighted by the magnitude of I, divided by the 

duration of time I is not present (recovery time) within a job cycle:  Index  =  ( I ⋅∆ti ) / 

( T - Σ∆ti), where T = cycle time and Σ∆ti = time that I is present. 

Each index contains variables that represent stress in order to predict strain, as 

the purpose of the models was to evaluate the job task contribution to physiological 

strain.  Each proposed strain construct is represented by an index.  Though desirable in 

a comprehensive evaluation of a person’s risk for PUE disorders, the contribution of 

individual characteristics such as age, gender, strength capacity, presence of bone 

anomalies, history of PUE symptoms or disorders, and medical status and history, have 

not been modeled, nor have psychosocial or non-occupational factors.   

Although most physicians are in good agreement regarding what symptoms and 

physical signs constitute rotator cuff disease, there is some disagreement about the 

pathogenesis of disorders.  To fully explore this divergence of opinion, it was decided 

to model two theories of pathogenesis, which have been discussed in an earlier chapter: 

(1) the model of fatigue and (2) the model of impingement.   

Model of Fatigue 

Muscle or tendon fatigue can be caused by muscle-activated tension, intra-

muscular pressure, impaired blood flow, or static load on the muscle-tendon unit.  

Increased tension magnitude will increase fatigue in the muscle-tendon unit.  Similarly, 

increased duration of tension will increase fatigue in the muscle-tendon unit.  Ischemia 

leads to muscle fatigue which is transmitted to the tendon.  Fatigue, or its 

accumulation, can be decreased or prevented by introducing recovery periods.  An 

increase in duration or frequency of recovery periods tends to decrease muscle-tendon 

unit fatigue.   

Several external activities contribute to the level of PUE muscle-tendon unit 

tension, including upper arm elevation, an open included elbow angle, arm and object 

weight, applied force, ballistic motion, speed of work, precision demands, and steady 
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activation of low-threshold motor units.  A subset of these activities, including upper 

arm elevation, included elbow angle, arm weight, and object weight contribute to static 

shoulder moment.  Shoulder moment is proportional to PUE muscle-tendon unit 

tension.  Although the model variables chosen to represent PUE fatigue are not 

inclusive of every possible occupational influence, they are valid from a physiological 

and biomechanical perspective and have been identified in the literature as: (1) possible 

effectors of PUE disorders, or (2) as influential in psychophysical or experimental 

studies involving the PUE.  Additionally, the chosen fatigue model variables have 

demonstrated some statistical influence when comparing poultry processing jobs with 

and without record of PUE illness.  

From a high-level perspective, the model has been developed in the form of an 

index where magnitude and duration of PUE tension is leveraged against recovery 

time; this is then modified by an applied force penalty and a hand load penalty.  The 

variable chosen to represent intensity magnitude is based on prescribed upper arm 

elevation sectors. 

Let proximal upper extremity fatigue be represented by Ψ.  Intensity (I) has 

been defined as the magnitude of tension over time, represented as Ψ=
0
∫
T 

I dt .  Let Ii 

represent the intensity multiplier associated with the ith intensity level.  Let %∆ti 

represent the percentage of cycle time spent within the ith intensity level.  The 

percentage of cycle time spent in recovery is represented by %∆tR.  An additional ten 

percent was added to the denominator to account for recovery time not represented by 

upper arm posture, as well as to keep the index from going to infinity when no 

recovery based on upper arm posture is present.  Let AF represent the multiplier 

associated with applied force and let L represent the multiplier associated with the hand 

load. 

The proposed fatigue-based PUE Strain Index is: 

( ) LAFttI R

i

ii ⋅⋅+∆⎟
⎠

⎞
⎜
⎝

⎛
∆⋅= ∑Ψ ][ %10%% /

1
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Intensity Multipliers 

The proposed intensity sector divisions and associated multipliers are displayed 

in Table XI.  It is to be noted that the verbal anchors used in the description of these 

sectors are anchors only; that is, they should not be used in isolation to infer associated 

risk of PUE disorder.  Rationalization for the sector divisions will follow.  A recovery 

sector, (I1), represents the percentage of time the upper arm elevation angle is less than 

or equal to 15°.  The next sector, (I2), is a moderate level of intensity; it represents the 

percentage of time the upper arm elevation angle is greater than 15° but less than or 

equal to 60°.  The next sector, (I3), corresponds to a greater level of intensity; it 

represents the percentage of time the upper arm elevation angle is greater than 60° but 

less than or equal to 120°.  The remaining sector, (I4), is also a moderate level of 

intensity; it represents the percentage of time the upper arm elevation angle is greater 

than or equal to 120° but less than 180°.   

 

Table XI.     Intensity Multipliers 

Intensity Sector Multiplier 

I1: UA < 15° 0.0 

I2: 15° < UA < 60° 1.5 

I3: 60° < UA < 120° 3.0 

I4: UA > 120° 1.5 
 

note: UA=upper arm elevation angle 
 

 

Results from experimental studies and shoulder biomechanics support the 

proposed intensity sectors.  Upper arm elevation is important because it impacts 

shoulder moment.  Shoulder moment peaks at 90° upper arm elevation and is ‘zero’ at 



 

 

67

either extreme of upper arm elevation (0° and 180°).  In concordance with this, the 

intensity multiplier is greatest in the range where shoulder moment is greatest.  

Sigholm et al (1984) saw an increase in supraspinatus fatigue at 45° compared to 0° 

upper arm elevation; a similar increase in supraspinatus fatigue was seen at 90° 

compared to 45° upper arm flexion (relationally, an elevation angle in the I2 sector is 

more fatiguing than in the I1 sector; likewise, an elevation angle in the I3 sector is more 

fatiguing than in the I2 sector).  Herberts et al (1980) found an increase in supraspinatus 

fatigue at 90° compared to 45° upper arm abduction (relationally, an elevation angle in 

the I3 sector is more fatiguing than in the I2 sector).  Garg et al (1999) found that the 

maximum acceptable frequency of lift was higher (greater work capacity) for 60° upper 

arm flexion versus 90° or 120° flexion (relationally, greater work capacity exists in the 

I2 sector compared to the I3 sector).  Additionally, the authors found that arm down 

time (rest time) was greater when the upper arm was repeatedly flexed to 90° or 120° 

compared to 60° (relationally, greater rest time is required for work in the I3 sector 

compared to the I2 sector).  For lift and hold conditions, maximum voluntary 

contraction was greatest at 0° upper arm flexion, followed by 30°, 60°, and 150° 

flexion, and was smallest at 90° and 120° flexion (relationally, the greatest strength 

was seen in the I1 sector followed by the I2 and I4 sectors, while the lowest strength was 

found in the I3 sector).  The authors found a similar relationship for hold only 

conditions.  It was determined that mean endurance time decreased with an increase in 

upper arm flexion angle from 30° to 120°, then increased at 150° flexion (relationally, 

endurance time is shortest in the I3 sector, and respectively greater in the I2 and I4 

sectors).  Subjects in the Garg et al study generated greater ratings of perceived 

exertion, fatigue, and pain at 90° and 120° upper arm flexion compared to 60° flexion 

(relationally, subjective ratings of exertion, fatigue, and pain were higher in the I3 

sector compared to the I2 sector).   

Other studies have demonstrated that the onset of muscle fatigue occurs quickly 

within the range of 60° to 120° upper arm elevation.  Hagberg et al (1981a) saw the 



 

 

68

occurrence of supraspinatus fatigue in less than fifteen seconds when the upper arm 

was flexed or abducted to 90°.  Kahn and Monod (1984) found signs of PUE fatigue 

occurred more quickly at 90° compared to 0° upper arm elevation.   

Blood flow impedance, or resistance to flow, has been demonstrated in the 

range of 60° to 120° upper arm elevation.  Jarvholm et al (1988b) found impedance in 

the supraspinatus at 90° upper arm flexion and abduction with no additional hand load.  

Addition of a hand load generated even greater impedance.  Jarvholm et al (1991b) 

studied the effect of arm support on supraspinatus impedance for a welding simulation 

that required 60° upper arm flexion and a 3.0 [lb] tool.  It was found that even with arm 

supports, the supraspinatus blood flow was impeded.  Blood flow impedance has been 

demonstrated at upper arm elevation angles less than 60° and greater than 120°.  

Jarvholm et al (1988b) found impedance in the supraspinatus at 30° upper arm 

abduction, as well as at 135° abduction, though comparatively, lesser impedance was 

found at 90° abduction. 

In addition to the support from experimental studies, evidence was found in 

multivariate logistic regression analysis.  The percentage of time spent with the upper 

arm elevation angle between 60° to 120° was found to contribute to the prediction of 

recorded illness (p < 0.2). 

Applied Force Multipliers 

The proposed applied force multipliers, seen in Table XII, were determined 

based on whether the force was applied towards or away from the body and whether 

the force was a ballistic one. Univariate statistical analyses identified that applied force 

in general and applied force towards the body were associated with recorded illness.  

However, multivariate logistic regression (with all univariate variables that were 

statistically significant entered) demonstrated that only applied force towards the body 

was a contributor to the prediction of recorded illness (p < 0.01).  Preliminary 

univariate analyses indicated that the number of ballistic motions per minute may play 

a role in morbidity classification.   
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Table XII.     Applied Force Multipliers 

Applied Force 
Multipliers 

> 50% 
Towards Body 

< 50% 
Towards Body 

> 50% Ballistic 2.0 1.25 

< 50% Ballistic 1.5 1.0 

 

 

Load Multipliers 

The hand load multipliers, seen in Table XIII, are both task duration and load 

dependent.  The load multipliers and categories were generated primarily from research 

by Garg et al (1999).  The authors showed that a 4 [lb] tool weight generated 

significantly higher ratings of perceived exertion, fatigue, and pain than a 2 [lb] or 1 

[lb] weight, regardless of duration held.  Subjects estimated they could not perform 

work for greater than two hours in 90° or 120° flexion when hand tool weight was 

greater than or equal to 2 [lb].  In contrast, subjects estimated they could perform work 

for eight hours with a 1 [lb] hand weight.  The multiplier separation based on 

percentage of time spent holding a load was chosen as 25% because two hours is 25% 

of an eight hour workday.   

Other research supports the load multiplier divisions as well.  Jarvholm et al 

(1988b) found that an increase in 2 [kg] (4.4 [lb]) of hand weight generated increases in 

supraspinatus blood flow impedance throughout all levels of upper arm elevation.  The 

value needed to equate the impedance in mmHg found at 30° abduction without a hand 

load (81 mmHg) with the impedance found at 30° abduction with a 2 [kg] hand load 

(138 mmHg) was calculated to be 1.7 (almost twice the measured impedance).  
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Table XIII.     Load Multipliers 

Hand Load 
Multipliers 

> 25% Task 
Duration 

< 25% Task 
Duration 

L < 2 [lb] 1.0 1.0 

2 < L < 4 [lb] 1.5 1.0 

L > 4 [lb] 2.0 1.25 

note: L = Load 
 

Using the Fatigue Model 

Use of the fatigue model may be best demonstrated with an example: A worker 

spends 25% of his time with an upper arm elevation angle less than or equal to 15°, 

65% of the time with the arm between 15° and 60°, and 10% of the time between 60° 

and 120°.  Less than half of the applied forces are towards the body, but greater than 

half are ballistic in nature.  The worker holds a tool that weighs 2.5 [lb] when 

performing tasks that occur less than 10% of the time.  An index can be calculated 

using the fatigue-based model: 

Ψ = {[(0.0)(0.25) + (1.5)(0.65) + (3.0)(0.10)]/(0.25 + 0.10)}(1.25)(1.0) = 4.5 

 

Validation of the Fatigue Model Using Epidemiological Data 

Among positive job categories, the Fatigue Model scores ranged from 0 to 

41.85 with a mean of 10.45.  The negative job scores ranged from 0.53 to 15, with a 

mean of 4.71.  The distribution of positive and negative jobs among index scores is 

shown in Figure 6.  Inspection of the distribution suggests that a score near 4.0 best 

discriminates between negative and positive jobs.  In addition to visually noting the 

score that differentiates a negative and positive job, a logistic regression was performed 
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with the fatigue index score as the independent variable and recorded illness as the 

dependent variable:   

logit (π) = α + βx 

logit (π) = -0.337 + 0.093x 

The model demonstrated that fatigue index score was a good predictor of 

recorded illness (p=0.118).  The value at which either outcome (positive or negative 

job) has a 50% chance of occurring (the median effective level) is at x = -α/β.  The 

median effective level for this regression equation is x = - [(-0.337)/0.093] = 3.6.  This 

value is compatible with the index score determined as a separator based on the 

histogram of fatigue index score distribution. 

Based on the aforementioned evaluations, an index value of 4.0 was chosen as 

the threshold for determining whether a job was considered “hazardous” (greater than 

or equal to 4.0) or “safe” (less than 4.0).  A “hazardous” job represents a job that is 

predicted to have an adverse effect in the PUE for the workers performing the job.  In 

contrast, a “safe” job represents one which is not predicted to adversely affect workers 

performing the job.   

The formulas for measures of predictive validity, as well as a generic 

contingency table are provided in Figure 7.  The contingency table for the fatigue 

model is presented in Table XIV.  Eighteen (55%) jobs were predicted to be 

“hazardous,” while fifteen (45%) were predicted to be “safe.”  The index scores for the 

“hazardous” jobs ranged from 4.4 to 41.9, with a mean of 13.2.  The index scores for 

the “safe” jobs ranged from 0 to 3.5, with a mean of 1.8.  Of the 18 jobs predicted to be 

“hazardous,” 14 were true positives (predicted to be “hazardous” when they were 

positive), while 4 were false positives (predicted to be “hazardous” when they were 

negative).  Of the 15 jobs predicted to be “safe,” 10 were true negatives (predicted to 

be “safe” when they negative), while 5 were false negatives (predicted to be “safe” 

when they were positive).  
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Figure 6.     Fatigue Model Job Distribution 

 

a b 
c d 

 
OR=ad/bc 

 

Sensitivity: a/(a+c)  
Specificity: d/(b+d)  
Positive Predictive Value: 
a/(a+b) 
Negative Predictive Value: 
d/(c+d) 
note: OR=odds ratio 

 

Figure 7.     General Contingency Table 



 

 

73

Table XIV.     Morbidity Contingency Table for Fatigue Model Prediction 

Fatigue Construct Morbidity Classification 

  Positive Negative 
   1   0  
Hazardous 1 14 4
Safe 0 5 10
    
 OR=7   
Haz/Pos 14 True + 
Haz/Neg 4 False - 
Saf/Pos 5 False + 
Saf/Neg 10 True - 
OR =7 (p = .014)  
Sensitvity: 14/(14+5)=0.74 
Specificity: 10/(4+10)=0.71 
Positive Predictive Value: 14/(14+4)=0.78 
Negative Predictive Value: 10/(10+5)=0.67 

 

One of the four jobs that were falsely predicted to be “hazardous” had a fatigue 

index value of 4.6, which is close to the threshold between “hazardous” and “safe.”  

For this job, approximately 95% of the time was spent with the upper arm elevated less 

than or equal to 60° (35.5% of the time was spent with the arm elevated less than or 

equal to 15°, while 59.4% of the time was spent in the range greater than 15° but less 

than or equal to 60°).  The other three jobs that were falsely predicted to be 

“hazardous” had index values between 11 and 15.  For these three jobs, 95% to 100% 

of the upper arm activity was spent in the range of greater than 15° but less than or 

equal to 60°, leaving a recovery time deficit.  This lack of defined recovery time 

contributed to their classification as “hazardous.”  It might be that the penalty for the 

second Intensity sector (upper arm elevation greater than 15° to less than or equal to 

60°) is too high.  In 3 of the 5 jobs that were falsely predicted to be “safe,” greater than 

two-thirds of the cycle time was spent with upper arm elevation angle less than or 

equal to 15° (recovery sector).  For the remaining 2 jobs, about 40% to 60% of the 

cycle time was spent with upper arm elevation angle less than or equal to 15°. 
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The predictive validity of the Fatigue-Based PUE Index was represented by 

sensitivity, specificity, positive predictive value, and negative predictive value.  

Sensitivity, (a measure of the probability of correctly identifying a case), for the fatigue 

model was 0.74.  Specificity, (a measure of the probability of correctly identifying a 

non-case), was 0.71.  Positive predictive value was 0.78.  Negative predictive value 

was 0.67.  The odds ratio was 7.0 (95% CI: 1.49, 32.82; p=0.014).  That is, the odds 

that a “hazardous” job was a true positive were 7.0 times the odds that a “safe” job 

would be classified as a true positive.  

Model of Compressive Load 

Some factors may produce or contribute to a compressive load in the PUE.  The 

supraspinatus tendon and other rotator cuff tendons may become impinged under the 

coracoacromial ligament or the underside of the acromion.  The subacromial bursa may 

become impinged similarly.  Additionally, adduction with neutral rotation may 

compress the underside of the supraspinatus tendon; however, medical reports of 

degeneration on the underside of the supraspinatus tendon are rare.  Thus, the 

contribution of adduction with neutral rotation will not be considered in the model of 

compressive load.  

Measurable external activities can contribute to impingement of the 

supraspinatus tendon or subacromial bursa, including the frequency the upper arm 

passes through approximately 80° of elevation and the duration of time the upper arm 

spends in that approximate region (between 80° to 100° elevation).  Those external 

activities have been identified in the literature as potentially influential in the 

development of PUE disorders.  

Model Elements 

From a high-level perspective, the model has been developed in the form of an 

index where frequency and duration of compressive load is leveraged against recovery 

time.  Let Φ represent the PUE compressive load index.  Let IC represent the intensity, 
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or frequency of compressive load and ∆tC represent the duration of compressive load 

(number of times upper arm passes through approximately 80° and the duration of time 

spent around 80°, respectively).  Recovery time is represented by (T - ∆tC) (percentage 

of time not spent around 80° of upper arm elevation). 

The proposed compressive load-based PUE Strain Index is: 

 

Φ = (IC • ∆ tC) / (T - ∆tC) 

 

Using the Compressive Load Model 

Model usage may be best demonstrated with an example: A worker elevates his 

upper arm through the arc of 80° five times over the course of a 0.9 minute job cycle.  

He holds his arm at approximately 80° for 0.4 minutes of the job cycle, hence his 

recovery time is 0.5 minutes for the job cycle.  An index can be calculated using the 

compressive load-based model: 

Φ = [(5)(0.4)]/(0.5) = 4 

 

Validation of the Compressive Load Model Using Epidemiological Data 

Among positive job categories, the Compressive Load-Based PUE Index scores 

ranged from 0 to 2.42 with a mean of 0.32.  The negative job scores ranged from 0 to 

1.49, with a mean of 0.21.  The distribution of positive and negative jobs among 

compressive load index scores is shown in Figure 8.  Visual assessment of the 

distribution failed to reveal any logical cutoff that clearly delineates between positive 

and negative jobs.  However, a logistic model may provide rational justification for a 

cutoff.  A logistic regression was executed with the compressive load index score as 

the independent variable and recorded illness as the dependent variable: 

logit (π) = α + βx 

logit (π) = 0.188 + 0.447x 
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Figure 8.     Compressive Load Model Job Distribution 

 

The model did not demonstrate that compressive load index score was a good 

predictor of recorded illness (p=0.554).  No conclusions could be drawn regarding a 

median effective level that could serve as a delineator for negative and positive jobs. 

 The compressive load index value of 0.5 was arbitrarily chosen as the 

threshold for determining whether a job was considered “hazardous” (greater than or 

equal to 0.5) or “safe” (less than 0.5).  A “hazardous” job represents a job that is 

predicted to have an adverse effect in the PUE for the workers performing the job.  In 

contrast, a “safe” job represents one which is not predicted to adversely affect workers 

performing the job.  The contingency table for the compressive load model is presented 

in Table XV.  Seven (21%) jobs were predicted to be “hazardous,” while twenty-six 
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(79%) were predicted to be “safe.”  The index scores for the “hazardous” jobs ranged 

from 0.54 to 2.42, with a mean of 1.08.  The index scores for the “safe” jobs ranged 

from 0 to 0.48, with a mean of 0.06.  Of the 7 jobs predicted to be “hazardous,” 5 were 

true positives (predicted to be “hazardous” when they were positive), while 2 were 

false positives (predicted to be “hazardous” when they were negative).  Of the 26 jobs 

predicted to be “safe,” 12 were true negatives (predicted to be “safe” when they were 

negative), while 14 were false negatives (predicted to be “safe” when they were 

positive).  No consistent explanation for the misclassification could be determined.   

 

Table XV.     Morbidity Contingency Table for Compressive Load Model Prediction 

Compressive 
Load 

Construct 
 Morbidity Classification 

  Positive Negative 
   1   0 
Hazardous 1 5 14
Safe 0 2 12
    
OR=2.1 (p = 0.410)  
Haz/Pos 5 True + 
Haz/Neg 14 False - 
Saf/Pos 2 False + 
Saf/Neg 12 True - 
   
Sensitvity: 5/(5+2)=0.71 
Specificity: 12/(14+12)=0.46 
Positive Predictive Value: 5/(5+14)=0.26 
Negative Predictive Value: 12/(2+12)=0.86 

 

 

The predictive validity of the compressive load index was represented by 

sensitivity, specificity, positive predictive value, and negative predictive value.  

Sensitivity for the compressive load-based model was 0.26, while specificity was 0.86.  

Positive predictive value was 0.71.  Negative predictive value was 0.46.  In other 

words, this model was pretty good at classifying a job as “hazardous” when it was 

positive; however, it was not a good predictor of safe jobs.  In fact, more positive jobs 
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were predicted as “safe” than negative jobs.  No significant odds ratio was determined 

(OR=2.1, p=0.410).   

A description of the exposure data and its relationship to job morbidity and 

predicted risk is relevant.  Table XVI summarizes the task variable values across jobs, 

morbidity, and predicted risk using both the Fatigue and Compressive Load models.
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9

Table XVI.     Exposure Data, Morbidity, and Predicted Risk 

           

 Percentage of Time Upper Arm (UA) Elevation in Sector 
Applied 
Force 

Applied 
Force 

Towards 
the Body 

Applied 
Force 
Away 

from the 
Body 

Ballistic 
Motion  Morbidity 

Fatigue Index 
Score Fatigue Index 

Classification 

Fatigue 
Index 

Classificati
on 

Compressive 
Load Index 

Score 

Compressive 
Load Index 

Classification 

Compressive 
Load Index 

Classification 

Job UA < 15° 
15° < UA 

< 60° 
60° < UA < 

120° UA > 120° UA ~80° 
Frequency 
[per min] 

Frequency 
[per min] 

Frequency 
[per min] 

Frequency 
[per min] 

Frequency 
UA Pass 
through 

80° 

Load 
Weight 

[lb] 
1=Positive; 
0=Negative 

1=Hazardous; 
0=Safe 

X=False 
Positive 

X=False 
Negative 

1=Hazardous; 
0=Safe 

X=False 
Positive 

X=False 
Negative 

1 35.2 64.8 0.0 0.0 0.0 13 13 0 0 0 < 2 0 0   0   
2 68.2 31.8 0.0 0.0 0.0 0 0 0 0 0 < 2 0 0   0   
3 16.7 83.3 0.0 0.0 0.0 8 8 0 0 0 < 2 1 1   0  X 
4 35.5 59.4 5.2 0.0 6.5 24 24 0 12 12 < 2 0 1 X  0   
5 0.0 100.0 0.0 0.0 0.0 12 12 0 0 0 < 2 1 1   0  X 
6 100.0 0.0 0.0 0.0 13.8 0 0 0 0 21 < 2 1 0  X 1   
7 82.6 17.4 0.0 0.0 0.0 30 30 0 0 0 < 2 1 0  X 0  X 
8 0.0 60.7 39.4 0.0 37.7 14 14 0 14 14 < 2 1 1   1   
9 66.7 30.3 3.0 0.0 8.2 29 0 29 0 22 < 2 1 0  X 1   

10 40.0 60.0 0.0 0.0 1.0 0 0 0 0 4 < 2 0 0   0   
11 27.6 58.1 14.4 0.0 23.0 57 0 57 19 19 < 2 0 0   1 X  
12 18.7 70.1 11.1 0.0 0.0 42 0 42 34 0 < 2 1 1   0  X 
13 8.4 85.1 6.7 0.0 5.0 24 24 0 24 12 < 2 1 1   0  X 
14 39.5 48.3 12.2 0.0 11.0 24 24 0 24 36 < 2 1 1   1   
15 0.0 100.0 0.0 0.0 0.0 29 29 0 24 0 < 2 1 1   0  X 
16 12.5 58.3 29.2 0.0 17.0 34 34 0 5 19 < 2 1 1   1   
17 58.4 29.1 12.5 0.0 0.0 15 15 0 0 0 < 2 1 0  X 0  X 
18 33.2 66.8 0.0 0.0 0.0 0 0 0 0 0 < 2 0 0   0   
19 23.2 75.8 1.1 0.0 11.0 0 0 0 0 22 < 2 0 0   1 X  
20 17.2 73.0 9.8 0.0 4.8 16 16 0 0 9 < 2 1 1   0  X 
21 43.9 48.0 7.5 0.7 3.5 18 18 0 0 6 < 2 1 0  X 0  X 
22 29.9 60.5 9.7 0.0 11.0 5 3 2 0 9 < 2 1 1   0  X 
23 13.9 86.1 0.0 0.0 0.0 6 6 0 0 0 < 2 1 1   0  X 
24 24.1 75.9 0.0 0.0 1.0 7 4 3 0 2 < 2 1 1   0  X 
25 31.8 59.1 9.1 0.0 8.7 26 0 26 0 26 < 2 0 0   0   
26 0.0 94.7 5.3 0.0 0.0 26 26 0 0 0 < 2 1 1   0  X 
27 26.4 73.6 0.0 0.0 0.0 26 26 0 0 0 < 2 1 1   0  X 
28 0.0 100.0 0.0 0.0 0.0 0 0 0 0 0 < 2 0 1 X  0   
29 71.4 28.6 0.0 0.0 0.0 0 0 0 0 0 < 2 0 0   0   
30 2.8 97.2 0.0 0.0 5.8 3 0 3 0 3 < 2 0 1 X  0   
31 36.1 63.9 0.0 0.0 0.0 23 0 23 0 0 < 2 0 0   0   
32 5.2 94.8 0.0 0.0 0.0 29 29 0 0 0 < 2 0 1 X  0   
33 69.1 30.9 0.0 0.0 0.0 22 0 22 0 0 < 2 0 0   0   
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CHAPTER VII 

DISCUSSION AND CONCLUSION 

In this small-scale epidemiological effort, the fatigue index proved to be a good 

predictor of recorded illness in the PUE; that is, it appears to fit the data better than the 

compressive load index.  Limitations in the predictive ability of the fatigue index may 

be due to an incomplete understanding of the pathogenesis of PUE disorders.  That is 

not to say that the compressive load index should be discarded or is useless.  In a larger 

data set with more job variation and more specific instances of frequent overhead work, 

the compressive load index or a similar effort might be an improved predictor.  One 

must also consider the health outcome definition; that is, a different health outcome 

definition, such as recorded injuries, might better align with the compressive load 

theory of pathogenesis.  In fact, as an exploratory effort, the three injury-only jobs were 

compared with the fourteen non-injury or illness jobs.  Two variables: (1) the 

frequency the arm passed through 80° upper arm elevation and (2) the duration of time 

spent around approximately 80°, showed a suggestion of a relationship to recorded 

injury in univariate analyses (compared to the significance levels achieved when 

comparing recorded illnesses to no injury/illness).  However, because of the extremely 

small sample size, this vein of effort was not pursued further.  An alternate perspective 

would be to consider only bilateral disorders, or a non-dichotomous health outcome, 

such as specific disorders (if such medical records were available for analysis), 

incidence rates, or prevalence rates.   

Future data sets would ideally include one or more industries with many more 

jobs, a larger variation in the upper arm pattern of postural activity, and a greater 

variation in work-rest cycles.  The impact of speed of work, vibration, and ambient 

temperature should also be considered if such information were available.  If the 

method were to be evaluated prospectively, data on the presence of PUE pain at study 

onset would be important and ratings of perceived exertion could provide a quantitative 
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measure of force.  It could be determined whether the current applied force and load 

multiplier sets sufficiently explained the impact of force and load. 

The PUE index is a work-in-progress with limitations.  It depends on 

quantitative measurement of task variables, and is job-specific, not person-specific.  

Exclusion of some potential influential factors is, of course, a limitation of the model.  

However, since many contributing factors are not easily measurable or are subjective 

by definition, the reluctance to apply them is warranted.  It is true that some factors are 

likely relevant to the development of proximal upper extremity problems, such as a 

person’s age or the presence of bone spurs or other anatomical anomalies and rarities.  

It is also true that non-occupational factors could play a significant role in the 

pathogenesis of PUE disorders.  Non-occupational interests with PUE patterns of 

postural activity similar to, or with greater duration than at work, almost assuredly 

would affect a person’s disposition for PUE disorders, yet non-work activities are not 

feasibly or consistently measurable.  A questionnaire that elicits whether a certain non-

work activity is present or absent, or even a general inquiry such as whether the 

responder regularly has leisure hobbies, provide limited added value to an objective 

measure of stress on the body.  No evidence of consistent agreement has been 

established that personal factors such as history of illness, obesity, smoking, or diabetes 

are relevant to the pathogenesis of PUE disorders.  Similarly, evidence of psychosocial 

contributions to PUE disorders is contradictory.  Even if an accepted consensus was 

determined regarding psychosocial influences, the health outcome definitions often 

chosen in such studies could questionably be applied to this proposed model.  

Nonetheless, future research efforts should endeavor to include measurable factors 

apart from occupational demands.  Test-retest repeatability and inter- or intra-rater 

reliability have not yet been evaluated.  Though no multiple-task jobs were present in 

the epidemiological portion of the research, the method does provide the opportunity to 

evaluate a job with multiple tasks.   

It may be that age-related degeneration in the proximal upper extremity is the 

primary contributor to the development of a PUE disorder or injury.  A person’s 
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medical history and work history could play a significant role in how much of a 

disorder can be explained by occupational tasks.  This research effort has added to the 

body of knowledge on the effect occupational tasks have on the development of PUE 

disorders. 
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