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ABSTRACT

Nonlinear Aeroelastic Analysis of High Aspect-Ratio Wings

Using the Method of Numerical Continuation. (May 2006)

Chetan Nichkawde, B.Tech., Indian Institute of Technology Bombay;

M.Tech., Indian Institute of Technology Bombay

Chair of Advisory Committee: Dr. Thomas W. Strganac

This research explores the impact of kinematic structural nonlinearities on the

dynamics of a highly deformable cantilevered wing. Two different theoretical formula-

tions are presented and analysed for nonlinear behavior. The first formulation, which

is more conventional, assumes zero equilibrias and structural nonlinearities occur as

terms up to third order in the Taylor series expansion of structural nonlinearities.

In the second approach, no prior assumption about equilibria states of the wing is

made. Kinematic nonlinearities due to curvature and inertia were retained in their

exact form. Thus, the former becomes a special case of the latter. This nonlinear for-

mulation permits the analysis of dynamics about nonzero trims. Nonzero trim states

are computed as a system parameter is varied using a continuation software tool. The

stability characteristics of these trim states are also ascertained. Various bifurcation

points of the system are determined. Limit-cycle oscillations are also investigated for

and are characterized in terms of amplitude of vibration. The research in particular

examines the impact of in-plane degree of freedom on the stability of nonzero trim

states. The effect of variation of system parameters such as stiffness ratio, aspect

ratio and root angle of attack is also studied. The method of direct eigenanalysis of

nonzero equilibria is novel and new for an aeroelastic system.
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NOMENCLATURE

AR aspect ratio

D stiffness

e cg offset from elastic axis

g acceleration due to gravity

I moment of inertia

L wing semispan

m mass per length

M0 body mass

q dynamic pressure

V freestream velocity

Vy vertical velocity

v out-of-plane displacement

w in-plane displacement

α0 root angle of attack

βη in-plane stiffness ratio

βφ torsion stiffness ratio

ω angular velocity

φ torsion displacement

ψ z-rotation Euler angle

ρ bending curvature

θ y-rotation Euler angle

Subscripts

η about η axis

ξ about ξ axis

ζ about ζ axis
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CHAPTER I

INTRODUCTION

Performance requirements of future air vehicles, such as endurance, autonomous be-

havior, mobility, payload requirements, and vehicle size, drive designs that well exceed

our present capabilities to accurately analyze the behavior of candidate systems. Even

existing air vehicles (and pilot performance) are limited by nonlinear behavior that

are not understood and which are subjects of current research investigations. The

development of new Uninhabited Air Vehicles (UAVs) will require improved under-

standing of large-amplitude nonlinear interactions, flow physics, and nonlinear and

multi-functional structures. Existing analysis and design tools are not suited for anal-

ysis of new classes of future aircraft such as SensorCraft UAVs depicted in Fig. 1.

The fundamental science issues associated with managing nonlinear aeroelastic effects

have not been fully explored in configurations of this scale (200+ feet wingspans with

aspect ratios greater than 30). Active wing technologies, such as those explored in the

Active Aeroelastic Wing (AAW) program, utilize pronounced twisting and bending

to achieve desired aerodynamic loads. For high-aspect ratio wings, major benefits of

such active wing technology are shape optimization for lightweight design to improve

payload capacity and gust load alleviation.

In recent years, studies of nonlinear fluid-structure interactions have been moti-

vated by evidence that there are adverse aeroelastic responses attributed to system

nonlinearities. For example, limit-cycle oscillations (LCOs) occur in nonlinear aeroe-

lastic systems and remain a persistent problem on fighter aircraft with store config-

urations. Nonlinear phenomena such as LCOs have been observed as reported by

The journal model is IEEE Transactions on Automatic Control.



2

Fig. 1. Design and performance analysis requirements of new UAV concepts exceed

current capabilities

Bunton and Denegri[1], and Denegri[2]. Such LCOs are unacceptable since aircraft

performance, aircraft certification, mission capability, and human factor issues such as

pilot fatigue are adversely affected. Research has improved the understanding of LCO

responses that limit vehicle and pilot performance, and such research efforts are rel-

evant to understanding behavior of new air vehicle concepts, including high altitude,

long endurance UAVs. Kim and Strganac[3] studied LCOs of a cantilever wing with

three possible nonlinearities, including aerodynamic, structural, and store-induced

nonlinearities. When these three nonlinearities were combined, LCOs were observed

at speeds below the flutter velocity. The presence of subcritical LCOs was dominated

by the structural nonlinearity, yet the aerodynamic and store nonlinearities change the

characteristic of the nonlinear responses. Kim, Nichkawde and Strganac[4] did bifur-

cation studies of wing-with-store configuration. The stiffness ratio between in-plane

and out-of-plane bending motion was found to be a critical parameter governing non-

linear dynamics. More recently, Beran, Strganac, Kim and Nichkawde[5] presented

preliminary studies on an approach to couple nonlinear structural and aerodynamic

methods to examine LCOs in the transonic flow regime.
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Fig. 2. Subcritical Hopf-type bifurcations yield LCO states for V < VFlutter

This research examines the impact of geometric structural nonlinearities on the

dynamics of high aspect ratio flexible wing using a combination numerical continua-

tion tool and time domain simulations. The aerodynamic loads is represented by a

quasi-steady aerodynamic model. The nonlinear analyses considers the vast parame-

ter space. Various bifurcation characteristics, unique to the aeroelastic system, have

been identified as illustrated in Fig. 2. These include both subcritical and supercriti-

cal bifurcations, the nature of which must be examined in detail. The former case is

of significant interest because flight test experiences indicate the presence of subcriti-

cal Hopf-type bifurcations, in which limit cycle oscillations below the classical flutter

boundary. In addition, subcritical bifurcations depend upon the system disturbance,

and have a hysteresis between onset and recovery speeds. This sub-flutter behavior

cannot be studied with linear methods that are common to today approaches.

A brief outline of the thesis is as follows. In chapter II of the thesis, a nonlinear

structural formulation for bending-bending-torsion dynamics of the wing is presented.

This formulation has been derived from the work of Crespo Da Silva[6]. The kine-
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matic nonlinearities are expressed as Taylor series expansion about zero equilibria and

terms up to third order is retained. The formulation is similar to one used by Kim

et al[7]. A continuation tool is applied to this formulation and the effect structural

nonlinearities on the bifurcation characteristics is investigated. The third chapter

presents a set of geometrically exact nonlinear formulation of cantilever wing. How-

ever, here no prior assumption about equilibria state of the wing is made. Thus, no

Taylor series expansion is performed and the nonlinearities are retained in their exact

form. Thus, this model permits examination of nonzero equilibria states and their

stability characteristics. Parametric studies is performed using a continuation tool.

The fourth and last chapter concludes this thesis by summarizing the findings of this

research.
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CHAPTER II

FORMULATION I: BENDING-BENDING-TORSION DYNAMICS ABOUT ZERO

EQUILIBRIA

This chapter presents the equations of motion for bending-bending-torsion dynamics

of cantilevered wing. The solution procedure is elaborated in detail. The model

equations assumes zero equilibria. The ordinary differential equations obtained via

Galerkin procedure are coded in AUTO2000, which is a continuation and bifurcation

software. Bifurcation analysis is performed. Term by term sensitivity of structural

nonlinearities is done. Bifurcation analysis also reveals possible internal resonance for

the aeroelastic system.

A. Equations of Motion

The nonlinear equations of motion for a cantilever wing are derived from the equa-

tions of motion for flexural-flexural-torsional vibrations. The formulation follows

an approach developed by Crespo da Silva[6] but includes mass imbalances. The

equations contain structural coupling terms and include both quadratic and cubic

nonlinearities due to curvature and inertia. Longitudinal extension is not permitted;

thus, the equations are derived with an inextensionality constraints along the span.

A beam segment of length s is shown in Fig. 3. The axes (x, y, z) are assumed

to be fixed in the inertial frame, while (ξ, η, ζ) are taken to be the principal axes of

the beam cross-section at position s. This axes system is arbitrarily oriented in space

with respect to the inertial axes system. The orientation of the (ξ, η, ζ) system with

respect to the (x, y, z) frame is described by the set of 3-2-1 Euler angles ψ(s, t), θ(s, t)

and φ(s, t). The beam is assumed to be inextensional lengthwise. This constraint can
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Fig. 3. Wing showing local and global coordinate system

be expressed mathematically:

(1 + u′)2 + v′2 + w′2 = 1 (2.1)

The above constraint, although artificial, is a valid approximation if the extensional

stiffness of the wing is large.

The governing equations for bending-bending-torsion dynamics of a cantilevered

wing with associated boundary conditions were derived by Crespo da Silva et al [6].

The possibility of mass offset was not taken into account[6]. The linear contribution

due to the presence of mass offset was added to the equation by Kim[7]. Thus,

the equations of motion for in-plane bending (w), out-of-plane (v), and torsion (φ)
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response are

mẅ − Iηẅ
′′ +Dηw

IV = G′
w + qbCA

mv̈ −meφ̈− Iζ v̈
′′ +Dζv

IV = G′
v + qbCN

Iξφ̈−mev̈ −Dξφ
′′ = Gφ + qb2CM (2.2)

In the above equations, linear terms are written on the left-hand side and the cor-

responding nonlinear terms are simply expressed by G′
w, G′

v, and Gφ. CA and CN

are axial and normal aerodynamic force coefficients and CM is the aerodynamic mo-

ment coefficient about the elastic axis. Quasi-steady aerodynamic formulation is used

to obtain aerodynamic forces. The nonlinear structural terms are expanded with a

Taylor series expansion about the static undeformed wing configuration. Terms up

to third order are retained in the final expression. Higher order nonlinearities are

neglected assuming they would have negligible effect on the system dynamics. The

nonlinear components are defined as

G′
w = {Dξ (φ′ + v′′w′) v′′ −

[
(Dη −Dζ)

(
φv′′ + φ2w′′

)]′
−w′

(
Dζv

′′2 +Dηw
′′2
)
− Iξ

(
φ̇+ v̇′w′

)
v̇′ −

[
(Iη − Iζ)

(
φv̇′ + φ2ẇ

)]•
+w′

(
Iζ v̇

′2 + Iηẇ
′2
)

+ λw′}′ (2.3)

G′
v = {−Dξ (φ′ + v′′w′)w′′ −

[
(Dη −Dζ)

(
φ2v′′ − φw′′ − v′w′w′′

)]′
−v′

(
Dζv

′′2 +Dηw
′′2
)

+ Iξ
(
φ̇+ v̇′w′

)
ẇ′ +

[
(Iη − Iζ)

(
φ2v̇′ − φẇ′ − v′w′ẇ′

)]•
+v′

(
Iζ v̇

′2 + Iηẇ
′2
)

+ λv′ + w′qb2CM}′ (2.4)

Gφ = Dξ(w
′v′′)′ − (Dη −Dζ)

[
(v′′2 − w′′2)φ− v′′w′′

]
−Iξ(w′v̇′)• + (Iη − Iζ)

[
(v̇′2 − ẇ′2)φ− v̇′ẇ′

]
(2.5)
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The reader is referred to Crespo da Silva et al[6] for details of the development of

above nonlinear expressions. The λ in Eqs. (2.3) and (2.4) is the Lagrange multiplier

used to append the constraint given by Eq. (3.5) to the Lagrangian and hence needs

to be eliminated. In addition to the above three nonlinear components, the nonlinear

expression relating u motion to v, w, φ and the Lagrange multiplier λ is given by

G′
u = {Dξφ

′(w′′v′ − v′′w′)− v′[(Dη −Dζ)φw
′′]′ − w′[(Dη −Dζ)φv

′′]′

+Dζv
′v′′′ +Dηw

′w′′′ − Iξφ̇(ẇ′v′ − v̇′w′)

+(Iη − Iζ)[(ẇ
′φ)• + (v̇′φ)•w′]− Iζ v̈

′v′ − Iηẅ
′w′

+λ(1 + u′)− v′w′qb2CM}′ = mü− qbCu (2.6)

Above is the governing equation for u-dynamics which is constrained by Eq. (3.5). Cu

in the above equation is the aerodynamic force coefficient in the u-direction. Equa-

tion (2.6) together with the boundary condition Gu(L, t) = 0 and the inextensionality

constraint given by Eq. (3.5) can be used to eliminate λ from from the expressions for

G′
w and G′

v. Only a second order expression for λ is required as nonlinear terms up

to only third order are being retained. Thus, integrating Eq. 2.6 from L to x yields

∫ x

L
G′
udx =

∫ x

L
(mü− qbCu)dx (2.7)

The inextensionality constraint is approximated as

u′ = −1

2
(v′2 + w′2)

or u = −1

2

∫ x

0
(v′2 + w′2)dx̂ (2.8)

Thus, after eliminating u from Eq. (3.28) by using Eq. (2.8)

Gu(y, t) = Gu(L, t)−
∫ x

L

(
1

2
m
[∫ y

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx (2.9)
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From the natural boundary conditions[6],

Gu(L, t) = 0 (2.10)

Thus,

Gu(y, t) = −
∫ x

L

(
1

2
m
[∫ y

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx (2.11)

Substituting the expression for Gu and retaining terms up to second order, the ex-

pression for λ is obtained as follows

λ = −Dζv
′v′′′ −Dηw

′w′′′ + Iζ v̈
′v′ + Iηẅ

′w′ + v′w′qb2CM

−
∫ x

L

(
1

2
m
[∫ x

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx (2.12)

It can be shown that λ is the force tangent to the neutral axis necessary to maintain

the inextensionality constraint [8]. Substituting the expression for λ in to Eqs. (2.3)

and (2.4), the nonlinear structural contribution can be expressed as

G′
w = {Dξ (φ′ + v′′w′) v′′ −

[
(Dη −Dζ)

(
φv′′ + φ2w′′

)]′
−w′

(
Dζv

′′2 +Dηw
′′2
)
− Iξ

(
φ̇+ v̇′w′

)
v̇′ −

[
(Iη − Iζ)

(
φv̇′ + φ2ẇ

)]•
+w′

(
Iζ v̇

′2 + Iηẇ
′2
)
− w′(Dζv

′v′′′ +Dηw
′w′′′) + w′(Iζ v̈

′v′ + Iηẅ
′w′)

−w′
[∫ x

L

(
1

2
m
[∫ x

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx
]

+ v′w′w′qb2CM}′(2.13)

G′
v = {−Dξ (φ′ + v′′w′)w′′ −

[
(Dη −Dζ)

(
φ2v′′ − φw′′ − v′w′w′′

)]′
−v′

(
Dζv

′′2 +Dηw
′′2
)

+ Iξ
(
φ̇+ v̇′w′

)
ẇ′ +

[
(Iη − Iζ)

(
φ2v̇′ − φẇ′ − v′w′ẇ′

)]•
+v′

(
Iζ v̇

′2 + Iηẇ
′2
)
− v′(Dζv

′v′′′ +Dηw
′w′′′) + v′(Iζ v̈

′v′ + Iηẅ
′w′)

−v′
[∫ x

L

(
1

2
m
[∫ x

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx
]

+w′v′v′qb2CM + w′qb2CM}′ (2.14)
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It is of value to examine the nondimensional version of these equations. The

x co-ordinate is non-dimensionalized by the wing length, L and nondimensional co-

ordinate s is defined as follows s = x
L
. Thus, the spatial derivative can expressed as

follows

∂

∂xk
=

1

Lk
∂

∂sk
, k ∈ N

The parameter L can be expressed in terms of the aspect ratio (AR) of the wing as

L = AR×b, where b is the semichord of the wing. In order to get nondimensionalized

equations, the dependent variables v, w, φ, and the independent variable t, are made

dimensionless by introducing the characteristic length, b, and the characteristic time,√
mb4

Dφ
. The characteristic time adopted in this study is inversely proportional to

the system’s natural frequency. The dependent variables and system parameters are

written in nondimensional form as follows

v∗ =
v

b
, w∗ =

w

b
, e∗ =

e

b
, t∗ = t

√
Dφ

mb4
, I∗ζ =

Iζ
mb2

,

I∗φ =
Iφ
mb2

, I∗η =
Iη
mb2

, βφ =
Dφ

Dζ

, βη =
Dη

Dζ

, µ∗ =
πρb2

m
,

V ∗ =
V√

Dφ/mb2
, AR =

L

b

Now, the nonlinear equations of motion for a cantilever wing can be rewritten in

nondimensional form as follows. To simplify the notation in the following analysis,

the ‘*’ superscript is omitted. Letting the prime denote the nondimensional spatial

derivative and dot non-dimensional time derivative, the equation of motion can be

expressed as

mẅ − Iη
AR2

ẅ′′ +
1

βφ

βη
AR4

uIV = G′
w + qbCA

mv̈ −meφ̈− Iζ
AR2

v̈′′ +
1

βφ

1

AR4
wIV = G′

v + qbCN
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Iφφ̈−mev̈ − 1

AR2
φ′′ = Gφ + qb2CM (2.15)

where

G′
w =

1

AR
{ 1

AR2

(
1

AR
φ′ +

1

AR3
v′′w′

)
v′′ − 1

AR3

[
(
βη
βφ
− 1

βφ
)
(
φv′′ + φ2w′′

)]′

− 1

AR5
w′
(

1

βφ
v′′2 +

βη
βφ
w′′2

)
− 1

AR
Iξ

(
φ̇+

1

AR2
v̇′w′

)
v̇′

− 1

AR

[
(Iη − Iζ)

(
φv̇′ + φ2ẇ′

)]•
+

1

AR3
w′
(
Iζ v̇

′2 + Iηẇ
′2
)

− 1

AR5
w′(

1

βφ
v′v′′′ +

βη
βφ
w′w′′′) +

1

AR3
w′(Iζ v̈

′v′ + Iηẅ
′w′)

− 1

AR2
w′
[∫ s

1

(
1

2
m
[∫ s

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx
]

+
1

AR3
v′w′w′qb2CM}′

G′
v =

1

AR
{− 1

AR2

(
1

AR
φ′ +

1

AR3
v′′w′

)
w′′

− 1

AR

[
(
βη
βφ
− 1

βφ
)
(

1

AR2
φ2v′′ − 1

AR2
φw′′ − 1

AR4
v′w′w′′

)]′

− 1

AR5
v′
(

1

βφ
v′′2 +

βη
βφ
w′′2

)
+

1

AR
Iξ

(
φ̇+

1

AR2
v̇′w′

)
ẇ′

+
[
(Iη − Iζ)

(
1

AR
φ2v̇′ − 1

AR
φẇ′ − 1

AR3
v′w′ẇ′

)]•
+

1

AR3
v′
(
Iζ v̇

′2 + Iηẇ
′2
)

− 1

AR5
v′(

1

βφ
v′v′′′ +

βη
βφ
w′w′′′) +

1

AR3
v′(Iζ v̈

′v′ + Iηẅ
′w′)

− 1

AR2
v′
[∫ s

1

(
1

2
m
[∫ s

0
(v′2 + w′2)dx̂

]••
+ qbCu

)
dx
]

+
1

AR3
w′v′v′qb2CM +

1

AR
w′qb2CM}′

Gφ =
1

AR4
(w′v′′)′ − 1

AR4
(
βη
βφ
− 1

βφ
)
[
(v′′2 − w′′2)φ− v′′w′′

]
− 1

AR2
Iξ(w

′v̇′)• +
1

AR2
(Iη − Iζ)

[
(v̇′2 − ẇ′2)φ− v̇′ẇ′

]
In this form, the effect of AR and β on the equations of motion is evident. A few

important observations are made about these equations. First, in-plane motion is

included. This assumption is required for high aspect-ratio vehicles. Second, the
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right-hand side of the equations contains the nonlinear terms (including the aerody-

namic terms). We note that dynamics of interest for the nonlinear system become

evident for certain classes of the stiffness ratio βη and aspect ratio, AR = span/chord.

These nonlinearities may be classified into 3 sets: (a) geometric stiffening effects due

to large structural deformations, (b) damping-induced nonlinearities due to motion;

and, (c) aerodynamic nonlinearities as captured in N , A and MEA. Third, the pa-

rameter space is vast, requiring the need for sensitivity and bifurcation analysis.

B. Solution Procedure

The solution is assumed to be separable in space and time. The variables are expressed

in series form as follows:

w(x, t) =
∞∑
i=1

Wi(x)wi(t), (2.16)

v(x, t) =
∞∑
j=1

Vj(x)vj(t), (2.17)

φ(x, t) =
∞∑
k=1

Ak(x)φk(t) (2.18)

where wi(t), vj(t) and φk(t) represent the generalized (modal) coordinate of the sys-

tem. In these expressions, the capitalized terms, Wi, Vj and Ak represent the shape

functions derived from a vibrating, nonrotating uniform cantilever beam, and they

are defined as follows:

Wi(x) = Fi(x) = cosh(
βix

L
)− cos(

βix

L
)− σi

[
sinh(

βix

L
)− sin(

βix

L
)

]

Vj(x) = Fj(x) = cosh(
βjx

L
)− cos(

βjx

L
)− σj

[
sinh(

βjx

L
)− sin(

βjx

L
)

]

Ak(x) =
√

2 sin(
γkx

L
) (2.19)
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The Fi(s), Fj(s) and Ak(s) are mode shapes or shape functions for in-plane, out-of-

plane bending and torsion motion respectively. Here, βi is a root of the characteristic

equation for pure bending,

1 + cos(β) cosh(β) = 0 (2.20)

and σi is defined as

σi =
cosh(βi) + cos(βi)

sinh(βi) + sin(βi)
(2.21)

and γk is a root of the characteristic equation for pure torsion motion sin(2γk) = 0.

By using the Galerkin method, the corresponding ordinary differential equations

(ODEs) can be obtained from the above partial differential equations (PDEs). The

procedure is applied to obtain linear mass, damping and stiffness matrices. These

matrices are time invariant. Thus, they are computed only once.

Let l, m and n be number of in-plane, out-of-plane and torsion modes respectively

used in the solution. The elements of the linear mass matrix are computed as follows

Mi,j =
∫ L

0
Wi(x)

(
mWj(x)− IηW

′′
j (x)

)
dx 1 ≤ i ≤ l, 1 ≤ j ≤ l

Ml+i,l+j =
∫ L

0
Vi(x)

(
mVj(x)− IζV

′′
j (x)

)
dx 1 ≤ i ≤ m, 1 ≤ j ≤ m,

Ml+i,l+m+j = −me
∫ L

0
Vi(x)Aj(x)dx 1 ≤ i ≤ m, 1 ≤ j ≤ n

Ml+m+i,l+j = −me
∫ L

0
Ai(x)Vj(x)dx 1 ≤ i ≤ n, 1 ≤ j ≤ m

Ml+m+i,l+m+j = Iξ

∫ L

0
Ai(x)Aj(x)dx 1 ≤ i ≤ n, 1 ≤ j ≤ n (2.22)

The subscript denote the row and column position within the matrix. The elements

of mass matrix not listed in Eq. 2.22 are zero. The elements of the linear stiffness

matrix are computed as follows:

Ki,j = Dη

∫ L

0
Wi(x)W

′′′′
j (x)dx 1 ≤ i ≤ l, 1 ≤ j ≤ l
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Kl+i,l+j = Dζ

∫ L

0
Vi(x)V

′′′′
j j(x)dx 1 ≤ i ≤ m, 1 ≤ j ≤ m

Kl+m+i,l+m+j = −Dξ

∫ L

0
Ai(x)A

′′
j (x)dx 1 ≤ i ≤ n, 1 ≤ j ≤ n (2.23)

Again, the elements of stiffness matrix not listed in Eq. 2.23 are zero. The linear

damping matrix is zero.

These matrices can be used to determine the natural frequencies and damping

for the structural system. These frequencies and damping are however modified by

deformation and rate dependent aerodynamic loads. The nonlinear components of

the PDEs are separated into inertia and non-inertia type of term. Any term which

involves double time derivative is inertia term. For example, a nonlinear inertia term

in the out-of-plane bending equation is {v′Iζ v̈′v′}′.

The nonlinear inertia terms are expressed as the nonlinear mass matrix [MNL]

multiplied by the vector of accelerations. However, unlike the linear case the nonlinear

mass matrix, [MNL], is a function of states and thus time dependent. Therefore,

[MNL] is computed at every time step. The nonlinear stiffness and damping terms

are expressed as nonlinear forcing vector FNL. After separating the nonlinear inertia

terms, the presence of a prime in all of the terms is exploited to simplify the integration

procedure. To illustrate the procedure, the nonlinear component for the ith in-plane

bending equations is obtained as follows by application of Galerkin method

Gi
w =

∫ L

0
Wi(x)G

′
w(x, t)dx

Note, that the G′
w in the above equation does not contain the nonlinear inertia terms

shown in Eq. (2.13). Integrating this equation by parts

Gi
w =

[
(Wi(L)Gw(L, t)−Wi(0)Gw(0, t))−

∫ L

0
W ′
i (x)Gw(x, t)dx

]
(2.24)
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This approach simplifies the expansion of the nonlinear terms. All nonlinear compo-

nents are obtained in similar manner. However, Gφ does not possess spatial deriva-

tive; hence, there is no need follow this approach to obtain the nonlinear stiffness and

damping components of the torsion equation. The ODEs obtained are expressed in

matrix form as:

[ML]


ẅ
v̈

φ̈

+ [CL]


ẇ
v̇

φ̇

+ [KL]


w
v
φ

 = [MNL]


ẅ
v̈

φ̈

+ FNL + FA (2.25)

where FNL is the vector of the structural nonlinear terms excluding the inertia terms.

FA is the vector of aerodynamic forces and moments obtained after the application

of the Galerkin procedure to the physical loads. This procedure interpolates the

aerodynamic loads between the modal degrees of freedom. Equation (2.25) is re-

arranged as follows


ẅ
v̈

φ̈

 = ([ML]− [MNL])−1 ×

− [CL]


ẇ
v̇

φ̇

− [KL]


w
v
φ

+ FNL + FA

 (2.26)

The vectors w, v and φ in Eq. (2.25) and Eq. (2.26) represent in-plane, out-of-plane

and torsion modal coordinates, and given as follows

w =



w1

w2

.

.

wl



, v =



v1

v2

.

.

vm



, φ =



φ1

φ2

.

.

φn



(2.27)
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The indices l, m and n in Eq. (2.27) are the number of in-plane, out-of-plane and

torsion modes, respectively, used in the solution. Defining the state vector as follows

X = {w1, w2, ..., wl, v1, v2, ..., vm, φ1, φ2, ..., φn,

ẇ1, ẇ2, ..., ẇl, v̇1, v̇2, ..., v̇m, φ̇1, φ̇2, ..., φ̇n} (2.28)

the equations of motion are represented in state-space form as

{
Ẋ
}
=



ẇ
v̇

φ̇

([ML]− [MNL])−1×

−[CL]


ẇ
v̇

φ̇

− [KL]


w
v
φ

+FNL + FA




(2.29)

A Runge-Kutta algorithm [9] is used for time integration of Eq. (2.29). It is now

easy to see the need for explicit separation of nonlinear inertia terms and construction

of nonlinear mass matrix [MNL]. This separation allows the equations to be expressed

in state-space required by the Runge-Kutta algorithm.

C. Validation of Code

Figure 4 shows linear structural dynamic response for heavy Goland wing. Only one

mode for each degree of freedom was used. The time period for out-of-plane bending

oscillation of the first mode is given by:

T 1
v = 2π

(
L

β1

)2√
m

Dζ

= 0.5027 (2.30)

The time period for first torsion mode is given by:

T 1
φ = 2π

(
L

π/2

)√
Iξ
Dξ

= 4L

√
Iξ
Dξ

= 0.2596 (2.31)

As seen in Fig. 4, the time period for steady state oscillation matches with theoretical

time period given by Eq. 2.30 and Eq. 2.31. Figure 5 compares the result produced
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(a) Out-of-plane steady state re-
sponse

(b) Torsion steady state response

Fig. 4. Verification of code: Out-of-plane and torsion free response of heavy Goland

wing illustrating matching time period of motion

for a test case with the current code with that given in [5]. The simulation plot

is for heavy Goland wing [5] with linear structure and aerodynamics. The result is

in agreement with that given in Ref. [5]. Figure 6 provides further verification. It

shows the system response at 210 ft/sec which 30 ft/sec excess of flutter velocity. The

left view shows transient response immediately following initial displacement. The

right view shows steady state oscillations. The transient response and steady state

amplitudes compare extremely well with Ref. [5]. All the above results verify that

the algorithm has been properly implemented.

D. Evaluation of System Dynamics

For the purposes of addressing term sensitivity in the structural equations, a quasi-

steady approach is used to compute the aerodynamic loads. The authors use the

software tool, AUTO[10], for continuation and bifurcation analyses of the nonlinear

ordinary differential equations. AUTO automates the computation of solutions of this
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(a) Result with current code (b) Result with Kim and Beran[5]
code

Fig. 5. Validation of code: V=100 ft/sec, heavy Goland wing with linear structure and

linear aerodynamics; initial condition: (v, φ, v̇, φ̇) = (0.05, 0.03, 0, 0)

parameter-dependent system of equations. The system possesses multiple solutions,

and it is valuable to compute the set of solutions and search for those solutions with

specific desirable properties as a system parameter is varied. This solution set forms

a bifurcation diagram, i.e., a smooth curve (or surface) representing the solution for

the varying system parameter. Tools such as AUTO2000 facilitate parametric studies

and minimize time consuming numerical simulations. The computation of such bi-

furcation diagrams and associated singularities is captured within the domain of the

numerical continuation algorithm [11, 12]. AUTO has the capability to compute peri-

odic solutions such as the limit cycle oscillations discussed in this paper. In addition,

the program determines the stability of the steady state solutions. AUTO permits a

two-parameter continuation solution of Hopf and other bifurcation points. A detailed

description on the features of software can be found in the AUTO Manual[13].

The equations of motion must be presented in state space form and a known

solution must be provided as an initial point. Continuation solutions are conducted
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(b) Steady state oscillation

Fig. 6. Time response of heavy Goland wing at V=210 ft/sec; initial condition:

(v, φ, v̇, φ̇) = (0.05, 0.03, 0, 0)

starting at this known solution, and all of the equilibrium points are computed au-

tomatically as a system parameter is varied. In this process, the critical value of

parameters of interest at which bifurcation occurs is also computed. For our com-

putations, the freestream velocity is varied. The flutter point is detected as a Hopf

bifurcation.

Term by term analysis of the nonlinear terms in the Eqs. (2.15) reveal that

the dynamics of the system are governed by the parameter βη, which is defined as

the ratio of stiffness between the in-plane and out-of-plane bending modes. We are

interested in the effect of βη as the system exhibits dramatically different dynamics.

Thus, results from two representative values of are βη are compared.

For high values of (e.g., βη > 10), the coupling between in-plane and out-of-

plane bending response is not significant and the nonlinear stiffness terms dominate

the system dynamics. Such a case is representative of conventional aircraft configura-

tions. Most of the nonlinear inertia and damping terms have little or no influence on
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Table I. Baseline values of the parameters for NATA wing

Parameter Value

Semichord, b 0.1350 m (0.443 ft)

Wing semispan, L 1.200 m (3.94 ft)

mass density, m 1.973 kg/m (0.041 slug/ft)

Out-of-plane bending stiffness, Dζ 476.9 Nm2 (1154.72 lb ft2)

In-plane bending stiffness, Dη 20980 Nm2 (50799 lb ft2)

Torsional stiffness, Dξ 3.988 Nm2 (9.656 lb ft2)

Pitch inertia, Iξ 0.0527 kg m (0.0116 slug ft)

the bifurcation characteristics of the system. However, this behavior is significantly

different for low values of βη. At low values of (e.g., βη < 10), most nonlinear terms

influence the system dynamics.

The influence of each term on the bifurcation characteristics of the system is

investigated by comparing the bifurcation characteristics of the original system with

the characteristics of the system with specific nonlinear terms removed. Alternatively,

each nonlinear term is added one by one and its influence on the bifurcation charac-

teristics is studied. The baseline values of system parameters are provided in Table I.

The parameters are based upon a modified version of the physical properties of the

Nonlinear Aeroelastic Test Apparatus (NATA). For this case, βη = 44.0.

The (βη − 1)v′′2φ term in the torsion equation is the primary source for sub-

critical bifurcation behavior. This behavior is illustrated in Fig. 5 which compares

the bifurcation characteristics of the full nonlinear system with the system that has

the term (βη − 1)v′′2φ removed. In these diagrams, stable branches (limit cycles, at-

tractors, equilibria, etc) are shown with solid lines; unstable branches are shown by
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Fig. 7. Comparison of bifurcation diagrams with (βη − 1)v′′2φ retained(left view) and

removed(right view)

dashed lines; and, bifurcation points are shown by the symbol (square). If the term

is removed, a supercritical stable LCO branch, instead of a subcritical unstable LCO

branch, emanates from the Hopf bifurcation point. Thus, the subcritical bifurcation

exhibited by certain aircraft wing configurations is caused by the cubic stiffness term

coupling out-of-plane bending and torsion motion.

The quadratic coupling terms between in-plane and other wing bending modes

significantly affect the amplitude of LCO. Figure 6 shows the bifurcation diagram

with terms represented by the quadratic terms removed. A substantial reduction

in LCO amplitude is observed. It is noted that most of the nonlinear wing inertia

terms are small compared to the nonlinear stiffness terms. Likewise, the nonlinear

damping terms are small compared to the nonlinear stiffness terms. The bifurcation

characteristics shown in Fig. 5 are unaffected when these nonlinear terms are removed.

Consequently, the nonlinear equations may be simplified for certain cases, but the

response depends upon βη and AR.

The system dynamics are examined at lower values of βη. In the following analysis

βη = 2; all other parameters are as stated in Table 1. For this lower value of βη, the
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Fig. 8. Bifurcation diagram with term (βη − 1)(v′′φ)′′ and (βη − 1)(v′′w′′) removed

in-plane and out-of-plane stiffnesses are similar; consequently, the system exhibits

significantly different dynamics than the previous case. The nonlinear inertia and

damping terms which had no influence at higher βη now contribute to the response.

For the two stiffness ratio cases, βη = 2 and 44, the bifurcation characteristics of the

system with all nonlinear terms retained are compared in Fig. 7.

Figure 8 shows the bifurcation characteristics for βη = 2 with the integral term

removed. The amplitudes of both stable and unstable limit cycles are different from

that seen in Fig. 7. Unlike the previous case, the cubic integral terms greatly affect

the dynamics of the system.
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Fig. 9. Bifurcation diagram for system with βη = 2 (left view) and βη = 44 (right

view); all nonlinear terms retained

E. Internal Resonance

This section discusses possible large amplitude in-plane motion via an internal res-

onance mechanism. Internal resonance occurs as a result of nonlinearities present

in the system. It leads to exchange of energy between system modes [14]. Inter-

nal resonance exists when the linear natural frequencies of system are commensu-

rable, or nearly so, and the nonlinearities of the system provide a source of cou-

pling. External forcing is available from the flowfield. Commensurability is defined

by m1ω1 +m2ω2 + ...+mnωn ≈ 0, where mn can be a positive or negative integer and

ωn are the natural frequencies of the system. Although an integer natural frequency

ratio does not guarantee internal resonance, it does form a necessary condition[15].

Nayfeh and Balachandran [16] describe that a 2:1 internal resonance may occur when

quadratic nonlinearities are present, and 3:1 internal resonance may occur when cubic

nonlinearities are present.

As a test case, the heavy Goland wing (HGW) is used with parameters shown in

Table II. The aspect ratio (AR) of the HGW is 6.67. Figure 10 shows the bifurcation

diagram for the HGW with the wing length, L, as the free parameter. The velocity is
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Table II. Baseline values of the parameters for the heavy Goland wing[17]

Parameter Value

Semichord, b 0.914 m (3 ft)

Wing semispan, L 6.096 m (20 ft)

mass per unit span, m 538.57 kg/m (11.249 slug/ft)

Out-of-plane bending stiffness, Dζ 9.772× 106 Nm2 (23.647× 106 lb ft2)

In-plane bending stiffness, Dη 9.772× 108 Nm2 (23.647× 106 lb ft2)

Torsional stiffness, Dξ 9.871× 105 Nm2 (2.3899× 106 lb ft2)

Pitch inertia, Iξ 111.955 kg m (25.17 slug ft)

Elastic axis, 0.6096 m (2 ft) from LE

Centroidal axis 0.792 m (2.6 ft) from LE

maintained at 140 ft/sec and the wing length is varied between 10 feet and 100 feet

(AR > 30). The torsion angle equilibrias and periodic solutions are indicated. Three

Hopf bifurcations are encountered. Stable limit cycle oscillation (LCO) response

occurs for approximately 10 < L < 20 ft. The wing is stable without LCO for 20 <

L < 40 ft. Then, stable LCO response occurs for L > 40 ft.

Figure 11 shows the in-plane bending periodic solutions for various wing lengths

for a velocity of 108 ft/sec. A sharp increase in the in-plane response amplitude is

observed beyond the third Hopf bifurcation associated with a critical wing length.

Numerical simulations at this critical length are shown in Fig. 12 which clearly il-

lustrates the exchange in energy between the in-plane and out-of-plane modes. The

in-plane amplitude is greater than the out-of-plane amplitude. Furthermore, at this

velocity, there is a 2:1 frequency ratio between in-plane and torsion responses. This

behavior is attributed to internal resonance between in-plane and torsion motion.
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The locus of the third Hopf bifurcation in Velocity-Length (V -L) parameter space

can be obtained by a two-parameter numerical continuation method [13]. Such a locus

is illustrated in Fig. 13. The system will exhibit LCO in the region above the curve and

would have stable dynamics in the region below the curve. The critical region where

the system can exhibit internal resonance has been boxed. The wing length at which

the resonance phenomenon occurs is dependent on freestream velocity. Moreover, the

freestream velocity need to be above a threshold value. Thus, for values below this

threshold value no internal resonance is seen. This value is found to be V=108 ft/sec

for the system under consideration.

Figure 14 shows bifurcation diagram with L as the parameter at free-stream

velocity of 107 ft/sec. Unlike the previous case no resonance is seen. The Velocity-

Length resonance pair has been plotted in Fig. 15. With increasing velocity, the

critical length value decreases first and then gradually increases.
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Fig. 10. Bifurcation diagram with L as parameter

Fig. 11. Bifurcation diagram at V = 108 ft/sec illustrating internal resonance
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Fig. 12. Simulation illustrating internal resonance (heavy Goland wing, V = 108

ft/sec, L = 38 ft and βη = 44)

Fig. 13. Locus of Hopf bifurcation in V -L parameter space
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Fig. 14. Bifurcation diagram at V = 107 ft/sec showing absence of resonance

Fig. 15. Velocity-Length internal resonance pair
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CHAPTER III

FORMULATION II: THREE DIMENSIONAL MOTION ABOUT NONZERO

EQUILIBRIA

A limiting feature of all of the studies in the previous chapter is the Taylor series

expansion of structural nonlinearities about a particular equilibria which was zero

undeformed equilibria. The structural nonlinearities occur as the second and higher

order terms in a series expansion. Nonlinear terms of order four and higher have

been neglected in all of the above work. This approach assumes that terms become

negligible as one moves to higher order. Thus, there is an implicit assumption here

that the values of the nonlinear terms are much less than the linear terms. It is

also assumed that the nonlinear terms would have diminishing values with increasing

exponent. However, for very large deformations the vice-versa holds true. Thus,

analysis with all of the above formulations must be limited to ”moderately” large

deformation about zero equilibria. The use of the term word ”moderate” is qualitative

here. The domain of deformation for which the analysis would be valid depends on the

magnitude of the nonlinear terms which must have diminishing value with increasing

exponent to justify the neglect of higher order terms. Most importantly, the Taylor

series expansion is always performed about a point and the nonlinear expression would

be different if the same series expansion is performed about a non-zero equilibria. The

trim shape of the wing calculated using these equations would be erroneous because

the formulation to begin with assumes zero trim. Thus, a set of exact full nonlinear

expressions without resorting to polynomial Taylor expansion needs to used in the

analysis.

The configuration space and flight regimes of such vehicles is vast involving nu-

merous design parameters such as aspect ratio, structural stiffness, weight etc. De-
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termination of nonlinear trim states and their stability is thus a challenge that must

addressed with in an efficient manner. Also, the structural vibration mode can signifi-

cantly couple with rigid body vehicle modes. Patil and Hodges[18] have reported that

the structural mode under certain conditions can destabilize the Phugoid mode of air-

craft longitudinal dynamics. They used an intrinsic formulation for the beam where

the primary variables are forces and moments on the vehicle. The displacements and

rotations are obtained through intrinsic kinematic equations. The formulation has a

relatively simpler form compared to that presented here, but the displacement and

rotations must be obtained by using additional kinematic relations which complicates

the formulation. Mathematically, both formulations are equivalent and geometrically

exact. However, the method that is presented in this paper also renders the capability

to predict and characterize LCOs in addition to vehicle trim states. The traditional

flutter point may be significantly altered due to large wing deformations and changes

in angle of attack[19]. Thus, there is a need to examine the vast design space for

static and dynamic stability characteristics of the system.

Numerical continuation methods offer a robust and efficient solution to the above

mentioned need. The method permits direct eigenanalyis of the system without re-

sorting to explicit linearization. Thus, the nonlinear trim states and their stability

can be evaluated in a continuous manner as a system parameter is varied using the

exact nonlinear expressions. Also, the method can be used to examine the presence

of LCOs. In such a situation, the dynamic characteristic of the system is dependent

on initial condition[20]. This continuation and bifurcation analysis must be supple-

mented by time domain simulations for which an additional tool must be developed.

Thus, in this chapter nonzero trim states of a flexible wing is examined using the

method of numerical continuation. A nonlinear formulation for a cantilevered beam

is used to model three dimensional motion of a wing. The kinematic nonlinearities
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due to curvature and inertia are retained in their exact form. The nonzero trims and

their stability are determined as a system parameter is varied. Various bifurcation

points of the system are determined. Limit-cycle oscillatons are also investigated for

and are characterised in terms of amplitude of vibration. This chapter in particular

examines the impact of in-plane degree of freedom on the stability of nonzero trim

states. The effect of variation of system parameters such as stiffness ratio, aspect

ratio and root angle of attack is also studied.

A. Physical Model

A beam segment of length s is shown in Fig. 3. The axes (x, y, z) are assumed to

be fixed in the inertial frame, while (ξ, η, ζ) are taken to be the principal axes of the

beam cross-section at position s. This axes system is arbitrarily oriented in space with

respect to the inertial axes system. The orientation of the (ξ, η, ζ) system with respect

to the (x, y, z) frame is described by the set of 3-2-1 Euler angles ψ(s, t), θ(s, t) and

φ(s, t). By letting a prime denote partial differentiation with respect to space and

the over dot denote partial differentiation with respect to time, the angular velocity

of the (ξ, η, ζ) system with respect to (x, y, z) system can written as:

ω(s, t) = (φ̇− ψ̇ sin θ)ξ̂ + (ψ̇ cos θ sinφ+ θ̇ cosφ)η̂ + (ψ̇ cos θ cosφ− θ̇ sinφ)ζ̂

= ωξ ξ̂ + ωηη̂ + ωζ ζ̂ (3.1)

Love’s kinetic analogy [21] is used to give a relationship between bending curvature

and Euler angles. Simply, dots in the equation are replaced by primes:

C(s, t) = (φ′ − ψ′ sin θ)ξ̂ + (ψ′ cos θ sinφ+ θ′ cosφ)η̂ + (ψ′ cos θ cosφ− θ′ sinφ)ζ̂

= Cξ ξ̂ + Cηη̂ + Cζ ζ̂ (3.2)
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The Euler angles are related to displacement variables u, v and w as shown in Fig. 3

by the following relations:

ψ = tan−1

(
v′

1 + u′

)
(3.3)

θ = tan−1

 −w′√
(1 + u′)2 + v′2

 (3.4)

The third Euler angle φ is an independent degree of freedom. The beam is assumed

to be inextensional lengthwise. This constraint can be expressed mathematically by

the following relation:

(1 + u′)2 + v′2 + w′2 = 1 (3.5)

The kinetic energy of the system is given by

T =
1

2
m(u̇2 + v̇2 + ẇ2) +

1

2
(Iξω

2
ξ + Iηω

2
η + Iζω

2
ζ ) (3.6)

where

m(x) =
∫ ∫

A
ρ(η, ζ, x)dA

is the mass per unit length of the beam and

Iη(x) =
∫ ∫

A
ζ2ρ(η, ζ, x)dA

Iζ(x) =
∫ ∫

A
η2ρ(η, ζ, x)dA

Iξ = Iη + Iζ

are specific mass moment of inertias. The quantity ρ(η, ζ, x) is the material density

and A is the area of the cross section. The strain energy is given by

U =
1

2

(
DξC

2
ξ +DηC

2
η +DζC

2
ζ

)
(3.7)
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Dξ(x) and Dη(x) are bending stiffnesses while Dζ(x) is the torsional stiffness. In

general, these quantities are functions of x.

The beam may be subjected to distributed loads applied along the span. Let the

virtual work of these loads be written as

δW = Quδu+Qvδv +Qwδw +Qφδφ

where Qu, Qv, Qw and Qφ denote the generalized forces associated with virtual dis-

placements δu, δv, δw and δφ respectively. The extended Hamilton’s principle [22] is

used to derive the governing equations of motion. The principle requires:

δI = δ
∫ t2

t1

∫ L

0

{
(T − U) +

λ

2

[
1− (1 + u′)2 − v′2 − w′2

]}

+
∫ t2

t1

∫ L

0
(Quδu+Qvδv +Qwδw +Qφδφ) = 0 (3.8)

By taking the variations in Eq. (3.8) and integrating by parts, the following differential

equations of motion are obtained

mü−Qu =

[
Aψ

∂ψ

∂u′
+ Aθ

∂θ

∂u′
+ λ(1 + u′)

]′
= G′

u (3.9)

mv̈ −Qv =

[
Aψ

∂ψ

∂v′
+ Aθ

∂θ

∂v′
+ λv′

]′
= G′

v (3.10)

mẅ −Qw =

[
Aψ

∂ψ

∂w′ + Aθ
∂θ

∂w′ + λw′
]′

= G′
w (3.11)

Aφ = Qφ (3.12)

In the above equations, Aψ, Aθ and Aφ are defined as follows

Aψ =

[
∂(T − U)

∂ψ′

]′
+

[
∂(T − U)

∂ψ̇

]•
− ∂(T − U)

∂ψ

= {DξCξ sin θ − (DηCη sinφ+DζCζ cosφ) cos θ}′
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+ [(Iηωη sinφ+ Iζωζ cosφ) cos θ − Iξωξ sin θ]• (3.13)

Aθ =

[
∂(T − U)

∂θ′

]′
+

[
∂(T − U)

∂θ̇

]•
− ∂(T − U)

∂θ

= (DζCζ sinφ−DηCη cosφ)′ − (DηCη sinφ+DζCζ cosφ)ψ′ sin θ

−DξCξψ
′ cos θ − (Iζωζ sinφ− Iηωη cosφ)•

+ (Iηωη sinφ+ Iζωζ cosφ) ψ̇ sin θ + Iξωξψ̇ cos θ (3.14)

Aφ =

[
∂(T − U)

∂φ′

]′
+

[
∂(T − U)

∂φ̇

]•
− ∂(T − U)

∂φ

= (Dη −Dζ)CηCζ −DξC
′
ξ − (Iη − Iζ)ωηωζ + Iξω̇ξ (3.15)

These exact nonlinear expressions have been derived by modifying those equations

presented in Ref. [23]. Boundary conditions obtained from terms that were integrated

by parts in Eq. (3.8) are as follows:

{DξCξδφ+Guδu+Gvδv +Gwδw −Huδu
′ −Hvδv

′ −Hwδw
′}x=Lx=0 = 0 (3.16)

where

Hα =

[
∂(T − U)

∂ψ′

]
∂ψ

∂α′
+

[
∂(T − U)

∂θ′

]
∂θ

∂α′
(α = u, v, w) (3.17)

The expression for ∂ψ/∂α′ and ∂θ/∂α′(α = u, v, w) in Eqs. (3.9), (3.10) and (3.11)

are given as

∂ψ

∂u′
=
−v′ cos2 ψ

(1 + u′)2
= −sinψ

cos θ
(3.18)

∂ψ

∂v′
=

cos2 ψ

1 + u′
=

cosψ

cos θ
(3.19)

∂ψ

∂w′ = 0 (3.20)
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∂θ

∂u′
=

w′(1 + u′) cos2 θ

[(1 + u′)2 + v′2]3/2
= − sin θ cosψ (3.21)

∂θ

∂v′
=

v′w′ cos2 θ

[(1 + u′)2 + v′2]3/2
= − sin θ sinψ (3.22)

∂θ

∂w′ =
cos2 θ

[(1 + u′)2 + v′2]1/2
= − cos θ (3.23)

The expressions for ψ̇, ψ′, θ̇ and θ′ are given as:

ψ̇ = (v̇′ cosψ − u̇′ sinψ) sec θ (3.24)

ψ′ = (v′′ cosψ − u′′ sinψ) sec θ (3.25)

θ̇ = −ẇ′ sec θ (3.26)

θ′ = −w′′ sec θ (3.27)

where

u′ = cos θ cosψ − 1

u′′ = −v
′v′′ + w′w′′

1 + u′

u̇′ = −v
′v̇′ + w′ẇ′

1 + u′

Using Eqs. (3.24)-(3.27) and their derivatives, the expressions for Cξ, Cη, Cζ , C
′
ξ, C

′
η, C

′
ζ

in Eqs. (3.13), (3.14) and (3.15) are obtained. Equation (3.9) together with the bound-

ary condition Gu(L, t) = 0 and the inextensionality constraint given by Eq. (3.5) is

used to eliminate λ from the expressions for G′
w and G′

v. Thus, integrating Eq. (3.9)
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from L to x yields

∫ x

L
G′
udx =

∫ x

L
(mü−Qu)dx

or Gu(x, t) =
∫ x

L
(mü−Qu)dx (3.28)

The Lagrange multiplier, λ, is obtained from Eq. (3.28) as follows:

λ =
1

1 + u′

[∫ x

L
(mü−Qu)dx− Aψ

∂ψ

∂u′
− Aθ

∂θ

∂u′

]
(3.29)

Substituting the expression for λ given by Eq. (3.29) in Eqs. (3.10) and (3.11), and

using the following simplifications

∂ψ

∂v′
− v′

1 + u′
∂ψ

∂u′
=

1

cos θ cosψ

∂θ

∂v′
− v′

1 + u′
∂θ

∂u′
= 0

∂ψ

∂w′ −
w′

1 + u′
∂ψ

∂u′
= − sin θ sinψ

cos2 θ cosψ

∂θ

∂w′ −
w′

1 + u′
∂θ

∂u′
= − 1

cos θ
(3.30)

the expressions for Gv and Gw become

Gv =
Aψ

cos θ cosψ
+

v′

1 + u′

[∫ x

L
(mü−Qu)dx

]
(3.31)

Gw = −Aψ sin θ sinψ

cos2 θ cosψ
− Aθ

cos θ
+

w′

1 + u′

[∫ x

L
(mü−Qu)dx

]
(3.32)

Thus, the governing nonlinear equations for bending-bending-torsion dynamics

of a cantilever beam are expressed as:

mv̈ =

{
Aψ

cos θ cosψ
+

v′

1 + u′

[∫ x

L
(mü−Qu)dx

]}′
+Qv

mẅ =

{
−Aψ sin θ sinψ

cos2 θ cosψ
− Aθ

cos θ
+

w′

1 + u′

[∫ x

L
(mü−Qu)dx

]}′
+Qw

Aφ = Qφ (3.33)
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1. Aerodynamics

The load for an airfoil section is given by the quasi-steady aerodynamics as follows,

FA = πρb2V φ̇+ ρV 2bCLα
(
αeff − c3α

3
eff

)
(3.34)

M = −πρb2V b
(

1

2
− a

)
φ̇+ ρV 2b2Cmα

(
αeff − c3α

3
eff

)
(3.35)

where FA is the aerodynamic force perpendicular to freestream velocity on the airfoil

section and M is the aerodynamic moment. A drag is to lift ratio of 0.019 is assumed

for the airfoil. A nonlinear parameter c3describes the stall nonlinearity. As shown in

Eq. (3.34), the stall nonlinearity is expressed by cubic terms. The effective angle of

attack αeff is defined as follows

αeff = α0 + φ− v̇ + Vy
V

+
b

V

(
1

2
− a

)
φ̇ (3.36)

where α0 is the root angle of attack and the coefficient c3 is defined as follows,

c3 = 0.00034189
(

180

π

)3

/CLα (3.37)

where CLα = 2π. The lift and the drag vector and for each airfoil section can be

resolved in the global (x, y, z) co-ordinate system as shown in Fig. 16. Thus,
Qu

Qv

Qw

 =


0

FA cosα0 + 0.019FA sinα0

−FA sinα0 + 0.019FA cosα0


(3.38)
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Table III. Baseline values of the parameters for the extended heavy Goland wing

Parameter Value

Semichord, b 0.914 m (3 ft)

Wing semispan, L 30.48 m (100 ft)

mass per unit span, m 538.57 kg/m (11.249 slug/ft)

Out-of-plane bending stiffness, Dζ 9.772× 106 Nm2 (23.647× 106 lb ft2)

In-plane bending stiffness, Dη 1.4072× 109 Nm2 (34.052× 108 lb ft2)

Torsional stiffness, Dξ 9.871× 105 Nm2 (2.3899× 106 lb ft2)

Pitch inertia, Iξ 111.955 kg m (25.17 slug ft)

Elastic axis, 0.6096 m (2 ft) from leading edge

Centroidal axis 0.792 m (2.6 ft) from leading edge

B. Dynamics about Nonzero Equilibria

The solution procedure is same as that elaborated in chapter II. A balance of total

lift and weight is assumed. This constraint can be expressed mathematically as

ρ(V 2
∞ + V 2

y )bCLαα0L = mgL+M0g

α0 =
(mL+M0)g

ρ(V 2
∞ + V 2

y )bCLαL

The balance of pitching moment is also assumed and is generally attained through

tail and elevator which have not been modeled in this analysis.

The extended heavy Goland wing with parameters shown in Table III has been

used as the baseline configuration. The wing semi-span of original heavy Goland

wing[17] has been changed to 100 feet resulting in an aspect ratio of approximately 33

for a cantilevered semispan wing. Figure 17 shows the out-of-plane modal coordinate
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equilibrias and limit cycles as the freestream velocity is varied. The spanwise location

of this response is approximately at midspan. The thin solid line represents stable

equilibria. The thin broken line represents unstable equilibria. The thick solid line

represents the amplitude of stable LCOs. This notation is followed for all results

presented here.

The wing in the left view of Fig. 17 has a root angle of attack of zero. The

system loses stability at a velocity of approximately 60 ft/sec. This is a typical

flutter velocity of uniform cantilevered wing with static equilibria of zero. A Hopf

bifurcation (represented by a cross symbol) occurs at this velocity. LCOs originate

at Hopf bifurcations. For velocities greater than this velocity, the system undergoes

LCOs with amplitudes shown in Fig. 17. If the trim condition is such that α0 = 2.8◦,

the system characteristics changes. As expected, the static deformed shape of the

wing varies as the freestream velocity is varied. The out-of-plane modal coordinate

has been shown in Fig. 17. The static deformation increases with increasing freestream

velocity. The dynamic instability occurs at a velocity higher than the case with zero

equilibria. The result in Fig. 17 is corroborated by numerical simulation. Figure 18

shows system response for the two different root angles of attack under consideration

at a freestream velocity, V = 70 ft/sec. This velocity is higher than flutter velocity

(VF = 60 ft/sec) for the α0 = 0◦ case. As shown in the bifurcation diagrams, the

system settles into LCOs for α0 = 0◦. The amplitude of oscillation is consistent with

Fig. 17(a). However, with α0 = 2.8◦, the wing undergoes a static deformation as

seen in Fig. 18(b). The value of the non-zero deformation is again consistent with

Fig. 17(b).
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1. Stiffness Ratio Effect

The locus of Hopf bifurcation in Fig. 17 is extended to V -βη parameter space by two

parameter continuation method. This loci of bifurcation are illustrated in Fig. 19. As

the stiffness ratio, βη is decreased the stability threshold velocity decreases gradually.

The boundary shifts upward for increasing value of α0. There is a sharp increase in

threshold velocity for values of βη < 20. Thus, the stiffness ratio cast an important

influence on the stability threshold for nonzero equilibrias. Figure 20 compares bi-

furcation diagram for two different values of βη. The left view shows in-plane modal

response for βη = 25 and the right view shows the same for βη = 144. The flutter

velocity for βη = 25 is approximately 25% lower than that for βη = 144. Also, the

amplitude of LCO for βη = 25 is higher than that for βη = 144.

Figure 21 shows the locus of eigenvalues as the velocity is varied for the two

values of βη. The Jacobian matrix is generated by the continuation tool at each point

of the bifurcation diagram in Fig. 20 by performing a linearization about the nonlin-

ear equilibria. The eigenvalues shown in Fig. 21 are extracted from these Jacobian

matrices. The stability of the system requires all the eigenvalues to be located in

the left half complex plane. A Hopf bifurcation occurs whenever a complex pair of

eigenvalues crosses the imaginary axis. The eigenvalues associated with the in-plane,

out-of-plane and torsion modes have been identified. The instability for βη = 144 is

associated with the torsion mode; however, the instability for βη = 25 is associated

with the in-plane mode. Thus, modeling of the in-plane degree of freedom is impor-

tant to characterize the dynamic stability of the system, specially at lower values of

stiffness ratios. This point is further illustrated by Fig. 22 which compares bifurca-

tion diagrams for two different systems. The left view shows characteristics of system

with a linear structure model. The in-plane degree of freedom has been excluded here.
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Table IV. Subcritical bifurcation

βη AR Subcritical

2 33 Yes

4 33 No

4 40 Yes

2 40 Yes

2 27 No

1.5 27 No

1.2 27 Yes

The right view shows the bifurcation characteristics of the system with all structural

nonlinearities, including those due to in-plane degree of freedom. The locus of eigen-

values for this system has been shown in Fig. 21(a). The dynamic instability for the

linear system occurs at a velocity higher than the system with nonlinear structural

model. The instability is associated with the torsion mode unlike the former system.

Thus, the exclusion of in-plane motion in the modeling can result in over prediction

of the system’s stability boundary.

2. Subcritical Hopf Bifurcation

Subcritical bifurcations are of particular interest. LCO states may exist for velocities

lower than the conventional flutter velocity. The dynamics of the system within a

range of velocity below flutter velocity is governed by the size of the initial condition.

For sufficiently large enough initial conditions, the system becomes entrained in LCOs.

Stable dynamics are exhibited for small initial conditions. Once the system is trapped

in an LCO, the velocity must be decreased to a value much lower than flutter velocity
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to recover.

We showed in our earlier research[20] that the structural nonlinearity plays a role

in inducing subcritical bifurcations. Here in, our work explores this phenomenon fur-

ther with an attempt to ascertain the effect of various system parameters in inducing

subcritical bifurcations. Figure 23 compares bifurcation diagrams of the out-of-plane

modal responses for different stiffness ratios. Bifurcation diagrams for three different

stiffness ratio is illustrated. Although an increase in flutter velocity is seen with a

decrease in stiffness ratio, this behavior is offset by the subcritical LCO branch. Fig-

ure 24 shows the bifurcation diagram with in-plane modal responce. The amplitude

of in-plane subcritical LCOs tend to increase with decreasing stiffness ratio. Thus,

in-plane degree of freedom becomes increasingly important for lower stiffness ratio.

Simulation results confirm the subcritical nature of the system. Figure 25 and 26

shows the results of simulations for two different initial condition for a system with

subcritical characteristics. Stable dynamics are seen for low initial conditions and

LCO is seen for large initial condition. Table IV summarizes the bifurcations char-

acteristics of system for several combinations of aspect ratio and stiffness ratios. It

can be deduced that the system tends to become subcritical with decreasing stiffness

ratio and increasing aspect ratio. The influence of aspect ratio is illustrated in Fig. 27.

For a given stiffness ratio, the system goes from supercritical to subcritical with an

increase in aspect ratio.
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Fig. 16. Airfoil section showing the lift resolved in (x, y, z) coordinate system

(a) α0 = 0.0◦ (b) α0 = 2.8◦

Fig. 17. Bifurcation diagram with V as the parameter showing the out-of-plane bend-

ing modal coordinate for the heavy Goland wing with L=100, βη = 144 for

two different root angles of attack, α0
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(a) α0 = 0.0◦ (b) α0 = 2.8◦

Fig. 18. Simulation result at V=70 ft/s for two different root angles of attack
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Fig. 19. Locus of Hopf bifurcation in V -βη parameter space for various values of α0
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(a) βη = 25 (b) βη = 144

Fig. 20. Bifurcation diagram with V as the parameter showing the in-plane bending

modal coordinate for the heavy Goland wing with L=100, α0 = 2.8◦ for two

different stiffness ratios, βη

(a) βη = 25 (b) βη = 144

Fig. 21. Locus of eigenvalues for different values of stiffness ratio
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(a) Linear structure without in-plane
degree of freedom

(b) Nonlinear structure with in-plane
degree of freedom included

Fig. 22. Comparison of bifurcation diagrams with V as the parameter showing the

out-of-plane bending modal coordinate for the heavy Goland wing with

βη = 25, L = 100 and α0 = 2.8◦

(a) βη = 1.5 (b) βη = 2 (c) βη = 4

Fig. 23. Comparison of bifurcation diagrams with V as the parameter showing the

out-of-plane bending modal coordinate for the heavy Goland wing with

L = 100 and α0 = 5.6◦
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(a) βη = 1.5 (b) βη = 2 (c) βη = 4

Fig. 24. Comparison of bifurcation diagrams with V as the parameter showing the

in-plane bending modal coordinate for the heavy Goland wing with L = 100

and α0 = 5.6◦

(a) (w0, v0, φ0, ẇ0, v̇0, φ̇0)=(0, 28, 0.08, 0, 0, 0) (b) (w0, v0, φ0, ẇ0, v̇0, φ̇0)=(2, 28, 0.08, 0, 0, 0)

Fig. 25. Out-of-plane bending response and two different initial conditions for V = 140

ft/sec, βη = 25, L = 100 feet and α0 = 2.8◦
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(a) (w0, v0, φ0, ẇ0, v̇0, φ̇0)=(0, 28, 0.08, 0, 0, 0) (b) (w0, v0, φ0, ẇ0, v̇0, φ̇0)=(2, 28, 0.08, 0, 0, 0)

Fig. 26. In-plane bending response and two different initial conditions for V = 140

ft/sec, βη = 25, L = 100 feet and α0 = 2.8◦

(a) AR = 33 (b) AR = 40

Fig. 27. Comparison of bifurcation diagrams with V as the parameter showing the

out-of-plane bending modal coordinate with βη = 4 and α0 = 2.8◦
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CHAPTER IV

CONCLUSIONS

Two different nonlinear formulations for bending-bending-torsion dynamics of can-

tilevered wing was presented. The first formulation considers large amplitude vi-

bration of a wing about zero undeformed equilibria. This formulation was used to

investigate the effects of structural nonlinearities on the bifurcation characteristics

of the system. A two is to one type internal resonance leading to large amplitude

in-plane motion was demonstrated using this model. Later, a physical model which

did not have limitation of zero equilibria was presented. Dynamics about nonzero

trim states was investigated for using this model. Kinematic nonlinearities due to

curvature and inertia was retained in their exact form. This nonlinear formulation

permitted the analysis of dynamics about nonzero trims as the model does not require

apriori assumption about the static trim shape of the wing. A continuation algorithm

applied to this formulation facilitated the computation of nonzero trims as a system

parameter was varied. This represents direct method for eigenanalysis of aeroelastic

system. The method automated the computation of trim states and their stability.

The parameter space related to design was investigated for stability characteristics.

Stiffness ratio and aspect ratio were found to be the two most important parame-

ter affecting the design. The in-plane degree of freedom begins to participate in the

dynamics instability phenomenon at low stiffness ratios. Eigenanalysis revealed that

the instability at low stiffness ratio configuration is related to in-plane mode. Thus,

the modeling of in-plane degree of freedom is necessitated for low stiffness ratio con-

figuration. Low stiffness ratio configuration also rendered the system more prone to

subcritical LCOs. In general, subcritical bifurcation was found to be more likely for

low stiffness ratio and high aspect ratio configurations.
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APPENDIX A

MODELING OF A FLEXIBLE WING WITH LONGITUDINAL RIGID BODY

DEGREE OF FREEDOM

Equations of motions of flying flexible wing with rigid body pitch and plunge degree

of freedom is derived in this appendix. These equations would be useful for future

research involving analysis of nonlinear coupling between flexible body modes and

longitudinal flight dynamics modes. Structural coupling terms between rigid body

and flexible body term is retained upto second order. The angular velocity of any

point on the cantilevered wing is given by:

−→ω = Mrot ×−→ω B +−→ω s (A.1)

where

−→ω B = α̇x̂

−→ω s = (φ̇− ψ̇ sin θ)ξ̂ + (ψ̇ cos θ sinφ+ θ̇ cosφ)η̂ + (ψ̇ cos θ cosφ− θ̇ sinφ)ζ̂

and

Mrot(s, t) =

 cos (θ) cos (ψ) cos (θ) sin (ψ) − sin (θ)

− cos (φ) sin (ψ) + sin (φ) sin (θ) cos (ψ) cos (φ) cos (ψ) + sin (φ) sin (θ) sin (ψ) sin (φ) cos (θ)

sin (φ) sin (ψ) + cos (φ) sin (θ) cos (ψ) − sin (φ) cos (ψ) + cos (φ) sin (θ) sin (ψ) cos (φ) cos (θ)


Retaining terms upto second order in α,

−→ω = (φ̇− ψ̇ sin θ + α̇)ξ̂ + (ψ̇ cos θ sinφ+ θ̇ cosφ− ψα̇)η̂

+(ψ̇ cos θ cosφ− θ̇ sinφ+ θα̇)ζ̂

= (ωξ + α̇)ξ̂ + (ωη − α̇ψ)η̂ + (ωζ + α̇θ)ζ̂ (A.2)

The velocity vector in (x, y, z) coordinate system is given as:

−→
V = u̇x̂+ (v̇ + V∞ sinα+ Vy cosα)ŷ + (ẇ + V∞ cosα− Vy sinα)ẑ
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The total kinetic energy of the system is given by

Ttot =
∫ L

0

(
1

2
m(u̇2 + (v̇ + V∞ sinα+ Vy cosα)2 + (ẇ + V∞ cosα− Vy sinα)2

)
dx

+
∫ L

0

1

2

(
Iξ(ωξ + α̇)2 + Iη(ωη − α̇ψ)2 + Iζ(ωζ + α̇θ)2

)
dx (A.3)

Vy and V∞ are rigid body velocities in y and z directions respectively. V∞ is the

freestream velocity and is assumed to be constant in straight and level flight. Vy is

the perturbation in freestream velocity in vertical y direction. The potential energy

for the system is given by Eq. (3.7). The rigid body plunge motion equation is given

by:

D

Dt

(
∂Ttot
∂Vy

)
=

∫ L

0
FAdx−mLg

mL(V̇y) = −
∫ L

0
m (v̈ cosα− ẅ sinα) dx

+
∫ L

0
mα̇ (v̇ sinα+ ẇ cosα) dx+

∫ L

0
FAdx−mLg (A.4)

The rigid body pitch degree of freedom equation is obtained as:[
∂(Ttot − U)

∂α̇

]•
− ∂(Ttot − U)

∂α
=
∫ L

0
M cos(θ) cos(ψ)dx

Thus, the equation of motion is given by:

∫ L

0
Iξ(α̈+ φ̈)dx =

∫ L

0
mẇ (V∞ sinα+ Vy cosα) dx

−
∫ L

0
mv̇ (V∞ cosα− Vy sinα) dx

+
∫ L

0

(
(Iξ − Iζ)(θψ̈ + θ̇ψ̇) + Iη(θ̈ψ + θ̇ψ̇)

)
dx

+
∫ L

0
M cos(θ) cos(ψ)dx (A.5)

Aφ, Aθ and Aψ are now given as:

Aψ = {DξCξ sin θ − (DηCη sinφ+DζCζ cosφ) cos θ}′
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+ [(Iηωη sinφ+ Iζωζ cosφ) cos θ − Iξωξ sin θ]•

−(Iξ − Iζ)(α̈θ + α̇θ̇) + Iηα̇θ̇

Aθ = (DζCζ sinφ−DηCη cosφ)′

− (DηCη sinφ+DζCζ cosφ)ψ′ sin θ −DξCξψ
′ cos θ

− (Iζωζ sinφ− Iηωη cosφ)• + (Iηωη sinφ+ Iζωζ cosφ) ψ̇ sin θ

+Iξωξψ̇ cos θ + (Iξ − Iζ)α̇ψ̇ − Iη(α̈ψ + 2α̇ψ̇)

Aφ = (Dη −Dζ)CηCζ −DξC
′
ξ − (Iη − Iζ)ωηωζ + Iξω̇ξ + Iξα̈

The structural equations of motions are given as:

m
(
v̈ + V̇y cosα− Vyα̇ sinα+ V∞α̇ cosα

)
=

{
Aψ

cos θ cosψ
+

v′

1 + u′

[∫ x

L
(mü−Qu)dx

]}′
+Qv −mg (A.6)

m
(
ẅ − V̇y sinα− Vyα̇ cosα− V∞α̇ sinα

)
=

{
−Aψ sin θ sinψ

cos2 θ cosψ
− Aθ

cos θ
+

w′

1 + u′

[∫ x

L
(mü−Qu)dx

]}′
+Qw (A.7)

Aφ = M (A.8)

Equations (A.4) and (A.5) togethar with Eqs. (A.6), (A.7) and (A.8) are the coupled

equations of motion for a flexible wing with longitudinal rigid body degree of freedom.
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