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ABSTRACT

Multi-DOF Precision Positioning Methodology

Using Two-Axis Hall-Effect Sensors. (May 2005)

Yusuke Kawato, B.Eng., Keio University

Chair of Advisory Committee: Dr. Won-jong Kim

A novel sensing methodology using two-axis Hall-effect sensors is proposed, where

the absolute positioning of a device atop any magnet matrix is possible. This methodology

has the capability of micrometer-order positioning resolution as well as unrestricted trans-

lational and rotational range in planar 3-DOF (degree-of-freedom) motions, with potential

capability of measuring all 6-DOF motions. This research presents the methodology and

preliminary experimental results of 3-DOF planar motion measurements atop a Halbach

magnet matrix using two sets of two-axis Hall-effect sensors. Analysis of the Halbach

magnet matrix is presented to understand the generated magnetic field. The algorithm

uses the Gaussian least squares differential correction (GLSDC) algorithm to estimate the

relative position and orientation from the Hall-effect sensor measurements. A recursive

discrete-time Kalman filter (DKF) is used in combination with the GLSDC to obtain op-

timal estimates of position and orientation, as well as additional estimates of velocity and

angular velocity, which we can use to design a multivariable controller.

The sensor and its algorithm is implemented to a magnetic levitation (maglev) stage

positioned atop a Halbach magnet matrix. Preliminary experimental results show its posi-

tion resolution capability of less than 10 µm and capable of sensing large rotations. Con-

trollers were designed to close the control loop for the three planar degrees of freedom

motion using the GLSDC outputs at a sampling frequency of 800 Hz on a Pentek 4284 dig-

ital signal processor (DSP). Calibration was done by comparing the laser interferometers’
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and the GLSDC’s outputs to improve the positioning accuracy.
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CHAPTER I

INTRODUCTION

For high-precision positioning of any device such as wafer steppers, magnetic-suspension

stages, surface motors, and long-range scanning stages, conventional methods use laser

interferometers, optical sensors, or capacitance gauges [1–4]. These sensors have high

resolution and low positioning noise, allowing sub-nanometer position measurements. The

non-contact nature of these sensors is suitable in magnetic-levitation (maglev) applications.

This chapter presents the conventional sensing techniques for precision positioning

and methods of measuring magnetic fields. Prior art of magnet matrices is explained, which

will be utilized in our proposed sensing methodology.

A. Prior Art

Some conventional sensors which are used for precision positioning are described in this

section. In general, such sensors can be categorized as analog and digital sensors. Digital

sensors have a fixed resolution depending on the pulse width or the frequency of the re-

ceived signal. Some examples are laser interferometers and encoders. Analog sensors do

not have a fixed resolution due to sensor signal noise, and can be said to have infinite reso-

lution, but there is a limitation due to linearity, noise, and quantization. Some examples of

analog sensors are capacitance gauges, linear variable differential transformers (LVDTs),

and potentiometers.

Another way to classify sensors is whether they give absolute or relative position mea-

surements. Absolute position measurements tell us the position regardless of where the

initial position is, and will give the same output at all times for that position. Some exam-

The journal model is IEEE Transactions on Automatic Control.
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ples are potentiometers and LVDTs. On the other hand, relative position measurements tell

us the position with respect to some position, usually the initial position. Some examples

are incremental encoders and laser interferometers. These absolute position sensors count

‘pulses’ of signals, and hence each time it is reset, the number of counts is reset.

1. High-Precision Position-Sensing Techniques

Interferometry is a technique that uses the wavelength of light as the unit of measure-

ment [5]. By counting the number of wavelengths of the light using the receiver, an inter-

ferometer system measures the change in distance. A detailed explanation can be found

in [5]. Note that laser interferometers are digital sensors with relative position sensors.

An example of a laser-interferometer setup is shown in Figure 1. This is the setup cur-

rently in use for the ATP (Advanced Technology Program) maglev stage presented in [2],

and consists of three laser interferometers and receivers manufactured by Agilent Technolo-

gies1. With the three readings from the sensors, an algorithm solving geometric relations is

implemented to estimate the position and orientation of the platen in the XY plane (X,Y, θz).

The laser receiver is connected to the laser axis board, which is mounted on the VMEbus.

The setup is capable of resolution up to 0.6 nm at velocities up to 500 mm/s.

An advantage of using laser interferometers is the large measurement range for trans-

lational motion. As long as there is nothing interfering the laser beam and there is a mirror

fixed to the object which reflects the laser beam, high-resolution measurements can be

obtained.

One major downside of the use of laser interferometers is the limitation in rotation.

Since the laser beam reflected off the mirror must reflect into the laser receiver, even small

rotations on the order of a few milliradians can cause the laser beam to stray off the re-

1Agilent Technologies, Inc. 395 Page Mill Rd. Palo Alto, CA 94306
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ceiver, which causes the platen to become unstable. In a practical sense, this becomes more

problematic when applying large (a few millimeters) step inputs because this can gener-

ate a responsive jerk of the platen, which may cause the platen to rotate enough to cause

instability.

Capacitance gauges are another alternative for precision positioning. Capacitance

gauges measure the capacitance between two plates, one being the probe and the other

being the object to be measured. Measurements utilizing capacitance require three basic

components [6]:

• A probe that uses changes in capacitance to sense changes in distance to the target

• Driver electronics to convert these changes in capacitance into voltage changes

• A device to indicate and/or record the resulting voltage change

The capacitance between two plates is determined by three things [6]:

• Size of the plates – Capacitance increases as the plate size increases.

• Gap size – Capacitance decreases as the gap increases.

• Material between the plates (the dielectric) – Dielectric material will cause the ca-

pacitance to increase or decrease depending on the material.

An example of the use of capacitance gauges is in the MRI (Major Research Instru-

mentation) maglev stage presented in [7], which is a maglev stage with 6-DOF positioning

capabilities. Capacitance gauges are used to detect the vertical (Z), roll (θx), and pitch

(θy) motions. The levitated part (namely, the platen) is fabricated out of aluminum, which

provides a flat surface with large area. The setup uses ADE2 2810 probe and 3800 OEM

gauging module, which has 1.3-nm resolution with 0.02% linearity.

2ADE Technologies, 1525 McCandless Drive, Milpitas, CA 95035
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Although these sensors have a very small resolution, they have downsides in cost,

design, and limitations in travel range. Components of such sensors, such as mirrors, laser

heads, and laser interferometers which make up the sensing system add up to be very

expensive. For example, the laser interferometry setup for the maglev stage in [2] cost

approximately $ 48,000, and the capacitance gauges in [7] cost approximately $15,000. In

terms of design, these sensors require a very good surface finish as a flat reference. For

a laser interferometer, a flat mirror is necessary for the laser beam to be reflected to the

receiver, and for a capacitance gauge, a flat metal surface is necessary to have consistent

measurements. The mirrors may become very large in order to achieve long travel range,

which make the platen heavy, affecting its performance and its design. The use of such

devices is limited to very clean, contaminant-free environments.

It must also be noted that the applications of maglev devices are not only for pho-

tolithography that requires nanometer-precision positioning, but for microassembly where

nanometer resolution is not a strict requirement. Furthermore, there may be more need

for larger angular displacement capabilities, which cannot be met using conventional laser

interferometers. Having these considerations, we seek for inexpensive sensors with suffi-

cient positioning capabilities allowing large rotations, with absolute outputs with respect to

position. We focus on a methodology to estimate the position based on the magnetic field

generated by the magnet matrices which are used to levitate and actuate the platen by using

Hall-effect sensors.

2. Magnetic Field Sensors

Many magnetic field sensors utilize the Hall effect to detect the magnitude of the magnetic

flux density. When a current-carrying conductor is placed in a magnetic field, a voltage

will be generated perpendicular to both the current and the field. Figure 2 illustrates the

basic principle of the Hall effect. It shows a thin sheet of semiconducting material (Hall
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I V=0

(a)

I V=VH

B

(b)

Fig. 2. Hall-effect principle. (a) no magnetic field, (b) magnetic field present

element) through which a current is passed. The output connections are perpendicular

to the direction of current. When no magnetic field is present, as shown in Figure 2 (a),

current distribution is uniform and no potential difference is seen across the output. When a

perpendicular magnetic field is present, as shown in Figure 2 (b), a Lorentz force is exerted

on the current. This force disturbs the current distribution, resulting in a potential difference

(voltage) across the output. This voltage is the Hall voltage (VH). The interaction of the

magnetic field and the current is shown in the following equation.

VH ∝ I × B (1.1)

Hall-effect sensors are used in various fields, for they are contactless, small in size,

reliable, low-cost, and not sensitive to harsh and polluted environmental conditions, and

have a linear relation between the output voltage and the measured magnetic flux density.

However, they have limited accuracy due to offset, noise, temperature, and aging effects.

The measured field is usually nonlinear and hence there is a nonlinear relation between the
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position and the sensor readings [8]. Nevertheless, Hall-effect sensors have been utilized

in various measurement techniques, such as current sensing [9], sensing the movement

of ferrous metal targets with Hall-effect proximity sensors, and measuring positions of

rotating machinery [10]. Previous work showed their capability in sensing rotations of less

than one degree [11].

An LVDT is another position device which utilizes the magnetic field to estimate the

position. An LVDT consists of coils which measure the difference in inductance which

results from the moving magnetic core. A detailed explanation of its working principle can

be found in [12].

Either of these methods can be applied to our proposed method. Due to the simplicity

and compactness, we use Hall-effect sensors in our research.

3. Magnet Arrays

There has been a number of magnet matrices which have been proposed and designed pri-

marily for planar permanent-magnet (PM) motors. Some examples are the magnet matrix

by Asakawa [13], Hinds [14], Ebihara et al. [15], Trumper et al. [16], and Hazelton and

Gery [17]. The magnet matrices of Asakawa, Hinds, and Ebihara et al. are shown in Figure

3. In the figures, non-magnetic material is shown with blank spaces.

We utilize the periodicity and orthogonality of such magnet matrices to estimate the

position of the platen atop a magnet matrix. In this research, we focus on the using the

Halbach magnet matrix shown in Figure 4. Detailed analyses of the Halbach magnet matrix

is discussed in Chapter III.
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B. Proposed Sensing Method

We propose a novel methodology for a 6-DOF positioning of a platen atop a magnet matrix,

using multi-axis Hall-effect sensors. This methodology is capable of sensing large rotation

as well as lateral motion in 6 DOFs, and is capable of positioning resolution on the order

of micrometers. This methodology will allow positioning of the platen within the ‘target

area,’ which is one pitch by one pitch (50.8 mm × 50.8 mm, or 2” × 2”) of the Halbach

magnet matrix.

First, consider a case for positioning in 1 D, as shown in Figure 5 for positioning

within one pitch. The platen will move along the X axis where there is some sinusoidal

magnetic field B. On the platen are two Hall-effect sensors which can detect the magnetic

flux density.

If there is only one Hall-effect sensor, it can detect the location of the platen, but it

will not be unique because there are two points which have the same magnetic flux density
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within one pitch. Further, it is impossible to detect the direction of motion because the

magnetic flux density is symmetric about the local maximum/minimum of B.

If there are two Hall-effect sensors positioned with some phase lag, it is possible to

detect the unique position of the platen within one pitch, as well as the direction of motion.

Further, if the Hall-effect sensors are located

(
1
4
+

1
2

n

)
× pitch, n = 1, 2, 3, . . . (1.2)

apart, at least one sensor is located in a ‘sensitive’ region where the gradient of B is large.

This will allow positioning within the ‘target area’ to be sensitive at all locations.

Next, consider positioning in a 2-D XY plane without rotation. If there are orthogonal

magnetic fields in a plane and two measurements can be taken for each axis, we can position

the platen. This is precisely the reason we consider the use of magnet matrices, because

magnet matrices have orthogonal magnetic fields along the X and Y axes. An example

of a sensor setup for 2-D planar positioning is shown in Figure 6 (a). Note that this has

only the minimum number of sensors, and having more redundant sensors will improve the

accuracy of positioning.

Further, the fact that these magnetic fields are orthogonal brings one more advantage.

By having four sensor outputs and two orthogonal magnetic fields, it is possible to detect

the orientation θz of the platen as well. This approach can be extended to 6-DOF position

sensing, where in that case, the coefficients of the curve-fitting will be modeled as a function

of the air gap, as explained in Chapter IV.

An important part of this research is to find a way to map the nonlinear relationship

between the four sensors’ outputs to the position and orientation of the platen. Candi-

date methods for this nonlinear mapping include neural networks [18] and Gaussian least

squares differential correction (GLSDC). The GLSDC algorithm is implemented due to its

more deterministic nature, and resulted in better convergence.
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Fig. 6. Representative Hall-effect sensor setups with minimum number of sensors (a) For

3-DOF position sensing in a plane. (b) For 6-DOF position sensing.

In addition to the GLSDC, a recursive discrete-time Kalman filter (DKF) is designed

and implemented. The DKF is used to obtain optimal estimates based on the GLSDC’s

position and orientation outputs. The DKF also outputs additional estimates of velocity,

which we can use to design a multivariable controller.

Our approach has many attractive features including the following:

• very small sensor with unrestricted range in planar (X,Y) and yaw (θz) motion

• no costly laser-interferometer setup required (a two-axis Hall-effect sensor is $10

apiece)

• relatively simple electronic circuits with no demanding design constraints

• can be applied in various fields, not limited to magnetic fields

• capable of sensing large rotations with sub-degree resolution

The same method can be extended to positioning in 6 DOFs. A possible setup for 6-

DOF positioning with minimum number of sensors is shown in Figure 6 (b). The algorithm
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is presented in Chapter IV.

C. Thesis Overview

This thesis encompasses the work performed on this sensing mechanism to date. In Chap-

ter II, the electromechanical design and the experimental setup is discussed. In Chapter

III, analysis of the magnetic field due to the Halbach magnet matrix is discussed. This is

the basis for curve-fitting model of the Halbach magnet matrix. Chapter IV explains the

algorithm which is implemented to make this sensing mechanism work. This is the most

essential part of this research, where the GLSDC algorithm and the design of a DKF are

discussed. Designed controllers are also discussed in this chapter. Simulations and experi-

mental results are presented in Chapter V. Conclusions, recommendations for future work,

and applications for which the sensing methodology is suitable are discussed in Chapter

VI.

D. Contribution of Thesis

This masters thesis deals with the design and construction of a new high-precision sensing

mechanism and empirical validation of the proposed design. The capabilities of the sensing

mechanism are discussed thoroughly. The sensing methodology can be used in any situa-

tion where appropriate modeling can be done to estimate the magnetic field. The algorithm

proposed in this research can serve as a basis for using this in a more complex or redundant

sensing scheme.

The contributions of this thesis include: (1) design of mechanical and electrical in-

strumentation of the sensing device, (2) establishment of an algorithm to map nonlinear

relations from four Hall-effect-sensor readings to the position and orientation of the platen,

and (3) implementation of this methodology in the maglev stage as a proof of concept.



13

This research has been done with the extensive use of the magnetically levitated stage

(ATP stage) presented in [2]. The development of the ATP stage has been done by Nikhil

Bhat, a former graduate student of Won-jong Kim, and Tiejun Hu, a doctoral student. The

controls software was developed by Jie Gu, a former graduate student of Won-jong Kim.
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CHAPTER II

ELECTROMECHANICAL DESIGN

This chapter explains the electromechanical design and experimental setup.

A. Instrumentation

1. Maglev Stage

The maglev stage used in our experimental setup is shown in Figure 7. It is a magnetically-

levitated positioner (namely, the platen) capable of positioning in 6 DOFs with a 20-nm

positioning resolution with a travel range of 160 × 160 mm [2]. It is capable of moving at

0.5 m/s in a plane at an acceleration of 5 m/s2. Beneath the platen is a double-axis Halbach

magnet matrix covered with a mirror-finished thin aluminum plate. A detailed explanation

and analysis of the Halbach magnet matrix is presented in Chapter III. The platen is cur-

rently suspended using three aerostatic bearings, and generates force to move in 6 DOFs

using three planar motors, which are attached to the bottom of the platen. Three laser

interferometers and three laser distance sensors are used for the 6-DOF position sensing.

2. Hall-Effect Sensor

The Hall-effect sensor used in this research is a two-axis Hall-effect sensor 2D-VH-11SO

manufactured by Sentron AG 3 [19]. It is an 8-pin, surface mount, small outline integrated

circuit (SOIC). It can measure the magnetic flux density of two orthogonal axes about the

chip’s surface. A photograph of the 2D-VH-11SO mounted on an IC board is shown in

Figure 8. The specifications are shown in Table I. The 2D-VH-11SO requires either a

constant current source of 2 mA or a constant voltage source of 5 V.

3Sentron AG, Baarerstrasse 73 CH - 6300 Zug, Switzerland
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Sensor B

Platen

Sensor A

7.5 in

0.5 in

(a)

(b)

Fig. 7. Photograph of the experimental setup (a) Multi-DOF positioner with two sets of

2D-VH-11 Hall-effect sensors mounted at the base. The triangular platen is placed

atop a mirror-finished aluminum plate, and beneath the plate is the Halbach magnet

matrix. (b) Close-up view of the mounted Hall-effect sensor
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Fig. 8. Photograph of the 2D-VH-11SO mounted on an IC board

3. Laser Interferometers

Laser interferometers are used as a reference to validate the position data of the proposed

method. Figure 1 shows the metrology arrangement of the laser-interferometer system. The

laser-interferometer system consists of a laser head, laser interferometers, beam benders,

beam splitters, laser receivers, and laser-axis boards. The Agilent 5517D laser head has a

HeNe laser source at the wavelength of 632 nm. The resolution from the Agilent 10897B

laser axis board is 0.6 nm. It provides 35-bit position data and 24-bit velocity data. The

Pentek 4284 DSP reads the position measurement values from the three laser-axis boards

through the VMEbus.

These three laser interferometers give us 3-DOF position information of the platen:

translation in the X axis, translation in the Y axis, and rotation around the z axis. The

laser interferometers’ outputs are used to calibrate the estimates obtained by the proposed

sensing method.
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Table I. Specifications of 2D-VH-11SO Hall-effect sensor

Item Conditions Typical value

Input resistance B = 0 mT, Ic = 2 mA 2.2 kΩ

Output resistance B = 0 mT, Ic = 2 mA 8.5 kΩ

Output voltage Constant Current Drive 400 mV

B = 1 T, Ic = 2 mA

Offset voltage B = 0 mT, Ic = 2 mA ±3 mV

Sensitivity Ic = 2 mA 400 mV/T

Magnetic sensitive volume 0.25 × 0.25 × 0.20 mm3

B. Experimental Setup

An overview of the sensing circuit is shown in Figure 9. The circuit consists of a power

supply circuit for a Hall-effect sensor, a Hall-effect sensor, an amplifier and low-pass-filter

circuit for anti-aliasing. There are two sets of this circuit, one for each sensor. Each part is

explained in detail in the following sections.

1. Hall-Effect Sensor Mount

A photograph of the Hall-effect sensor mounted on the platen is shown in Figure 7. The

sensor mounts are fixed to the platen by screws, and are designed so that minor adjustments

can be made to position and align the sensors. The sensors are mounted approximately

190.5 mm (7.5”) apart in y and 12.7 mm (0.5”) apart in x. The reason for this is to maximize

the sensing capability, as discussed in Chapter I. The surface of the Hall-effect sensor chip

is positioned close to the surface of the magnet matrix. However, placing them too close

will be a source of modeling error because unmodeled higher harmonics of the Fourier
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Fig. 9. Overview of the sensing circuit and connections to 2D-VH-11SO

series will come into play. The air gap between the two surfaces is set to be approximately

2 mm. The sensors’ axes of measurement are adjusted to be aligned with the platen’s

body-fixed xyz axes.

2. Power-Supply Circuit

The power supply for the Hall-effect sensor can be either (1) 5-V constant voltage source,

or (2) a 2-mA constant current source. Comparison was made by testing both cases, using

Agilent E3646A for (1) and current regulator diodes CR200 by Vishay Siliconix4 for (2).

Both power supply circuits were tested by connecting them to a Hall-effect sensor, and the

outputs were acquired. Experimental results showed that the sensor outputs’ fluctuation

is smaller when using a constant current source. The sample standard deviation of the

sensors’ output noise was 5.76 mV for the constant voltage source and 9.90 mV for the

constant current source. The fast Fourier transform (FFT) plots of the outputs from the

Tektronix amplifier showed peaks at 60 Hz and 180 Hz, which was the primary cause of

the noise. Hence, the constant current source using CR200 is used for our experimental

4Vishay Intertechnology, Inc. 63 Lincoln Highway, Malvern, PA 19355-2120
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setup.

The CR200 provides the 2-mA constant current and guarantees a tight ±10% tolerance

with excellent temperature stability [20]. A photograph of two sets of power supply circuit

is shown in Figure 10. The power to the diode is provided by 9-V Alkaline batteries, and

one power supply circuit will supply power for one Hall-effect sensor.

Switch

Current regulator 

diode CR200

9V

Battery

To Hall-effect

sensor

Fig. 10. A photograph of the power supply circuit

3. Amplifier and Analog Filter Design

At first, for the amplifier, ADA400A manufactured by Tektronix5 was used. This ampli-

fier has adjustable gain settings (0.1×, 1×, 10×, 100×) with common mode rejection ratio

(CMRR) of greater than 100 dB and a typical noise of ≤ 30 µV rms at 100× gain. This

also has selectable filters at 100 Hz, 300 Hz, and 1 kHz which seemed appropriate for our

setup. However, it was found that there is a 60-Hz peak noise which could not be attenu-

5Tektronix, Inc. 14200 SW Karl Braun Drive, P. O. Box 500, Beaverton, OR 97077
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ated. Hence, an amplifier circuit and analog filters were designed and implemented, which

resulted in less noise compared to the Tektronix amplifier and no 60-Hz peak noise.

The implemented circuit is shown in Figure 11. The operational amplifier (op-amp)

TL072ACP manufactured by Texas Instruments6 is used. The left half of the circuit is a

differential amplifier which is designed to filter out the common-mode noise, and the right

half is the amplifier. The amplifier amplifies the signal by

Av = −27.4kΩ
1.3kΩ

= 21.07 (2.1)

The ±15 V power supply for the op-amp is supplied by Agilent E3646A. Following the

amplifier is an anti-aliasing filter with a corner frequency of 200 Hz. This filter is put

before the input of the A/D channels to prevent aliasing by the A/D converters, and will

also cut off the high-frequency noise. Figure 12 shows the frequency response of this anti-

aliasing filter. The PCB board in Figure 11 (b) is mounted on the rack which the VME

personal computer (PC) is mounted.

4. VMEbus Connection

The setup uses Pentek7 4284 for the DSP, Pentek 6102 for the analog-to digital (A/D),

and DATEL8 DVME622 for the digital-to-analog (D/A) converter board for the control

of the actuator coils. The Pentek 4284 board has a single TMS320C40 processor with

50 Million floating-point operations per second (MFLOPS) peak processing power. The

real-time control routine is executed by this board, and is connected to Pentek 6102 and

Datel DVME622 through the VMEbus. The Hall-effect sensor outputs are connected to

6Texas Instruments Inc. 13532 N. Central Expressway, M/S 3807 Dallas, Texas 75243-
1108

7Pentek, Inc. One Park Way, Upper Saddle River, NJ 07458
8DATEL, Inc. 11 Cabot Blvd. Mansfield, MA 02048-1151



21

0.01µF

0.07µF

10kΩ

10kΩ

10kΩ

10kΩ

10kΩ

1.3kΩ

27.4kΩ

-15V

15V

0.01µF

820pF

(a)

Amplifier

circuit

   15V power

for Op-Amp
From Hall-effect

sensor output

Low-pass

filter

To Pentek

6102 ADC

(b)

Fig. 11. Designed amplifier and anti-aliasing filter. (a) Circuit diagram. (b) Photograph of

four sets of amplifier and anti-aliasing filter
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Fig. 12. Frequency response of the anti-aliasing filter

Pentek 6102’s A/D converter channels. The connections are shown in Table II. The symbols

correspond to the axes defined in Figure 6 (a).

5. Grounding and Shielding

Since the Hall-effect sensor is very sensitive to any external noise due to stray magnetic

field, it is critically important to ground and shield all of the cables appropriately. All

shielded cables are connected as shown in Figure 13. The ground and the shield lines are

connected to the side closer to the signal source, and are not connected on the other side.

The other end is taped and protected with insulating electrical tape so that no portion of

the wire can touch a signal, ground, or a metal point. This prevents ground looping and

reduces the noise. Reference [21] provides an explanation of the ideal setup to reduce the

sensor noise.
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Table II. Hall-effect sensor connections to Pentek 6102

Sensor Aligned axis Symbol Channel on 6102

A −y a1 A1

A −x b1 B1

B −y c1 C1

B −x d2 D2

Signal Line

Ground

Shielding

Shielded Line

Signal Flow

Fig. 13. Shield line connection
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All wires are cut as short as possible. Shielded lines are used between (1) the power

supply circuit and Hall-effect sensor, (2) between Hall-effect sensor and amplifier circuit,

and (3) between amplifier circuit and 6102 A/D converter. In (1), the ground of each output

is connected to its shield line at the end closer to the CR200. In (2), each sensor output

pair (Hall-effect sensor outputs 5-6 pair and 7-8 pair) has its own shielded cable, and the

shield lines are connected to the signal ground at the end closer to the Hall-effect sensor.

Similarly, in (3), each sensor signal has its shielded cable, and the shield lines and signal

grounds are connected at the end closer to the low-pass filter output.

It is important to note that connecting all of the sensors’ grounds amplifies the noise

significantly. Each sensor output should have a separate ground that is not connected to any

other outputs’ grounds. For the same reason, a separate amplifier should be used for each

sensor output.
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CHAPTER III

MAGNETIC FIELD ANALYSIS

A. Halbach Magnet Matrix

A conceptual construction of the Halbach magnet matrix is shown in Figure 4. The magnet

matrix is a superposition of two orthogonal Halbach magnet arrays with orthogonal mag-

netic fields. Halbach arrays have a stronger fundamental field by a factor of
√

2, which

allow a design of a higher power-efficient magnetic device [16, 22]. The magnetic field

atop the magnet matrix is periodic, and hence can be appropriately modeled using Fourier

series. In this section, a theoretical framework is developed to model the three-dimensional

magnetic field generated by the Halbach magnet matrix.

1. Design

The magnetic matrix consists of two kinds of magnets. One is a strong magnet with

90̊ magnetization (shown with ‘N’ or ‘S’ in Figure 4), where we chose NdFeB50 ma-

terial which has a remanence of Brstrong = 1.43 T. The other magnet used is a weak magnet

with magnetization in 45̊ (shown with arrows). For an ideal Halbach array, a weak mag-

net will have a remanence of
Brstrong√

2
= 1.01 T. We chose to use NdFeB30 material with a

remanence of Brweak = 1.10 T, which was the weakest NdFeB magnet at the time of pur-

chase. The blank areas in the figure are non-magnetic aluminum spacers. The pitch of each

magnet array is 50.8 mm (2”), and the dimension of each magnet and spacer is 12.7 mm ×
12.7 mm × 12.7 mm (0.5” × 0.5” × 0.5”). The Halbach magnet matrix was constructed by

Nikhil Bhat, a former graduate student of Won-jong Kim.



26

2. Fourier Series Analysis - Strong Side

Since the Halbach magnet matrix has a periodic geometry and magnetic field, it is beneficial

to use Fourier series representation. Although the magnet matrix has finite length, this

analysis will provide insight on the properties of the magnet matrix. In this thesis, we

follow Melcher’s notation in Reference [23].

One side of the Halbach magnet matrix will have a strong fundamental field, and the

other will be weak. In Figure 4, the top surface is the strong side, which will be facing

the actuator coils of the platen. To model the magnetic flux density of the strong side,

we first model the magnetization using Fourier series. We consider a function Φ which is

dependent sinusoidally on X,

Φ(X, t) = Re
{
Φ̃(t)e− jkX

}
(3.1)

where k = 2π/l is the spatial wave number, and l is the spatial wavelength of the magnet

array, l = 50.8 mm (2”).

The vertical and lateral magnetization components of the Halbach magnet array are

represented by the complex Fourier coefficients [1],

M̃Xn =
1
l

∫ l

0
MXejknX′dX′ (3.2)

M̃Zn =
1
l

∫ l

0
MZejknX′dX′ (3.3)

where kn is the spatial wave number,

kn =
2πn

l
. (3.4)

The Fourier coefficients for Halbach array whose magnet has a square cross-section



27

Z

MZ

MX

M0
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X

X

∆

surface a

Fig. 14. Halbach magnet array’s magnetization (strong side)

as shown in Figure 14 with peak magnetization M0 are

M̃Zn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2M0

π|n| n = ±(8m + 1) or ± (8m + 3)

−
√

2M0

π|n| n = ±(8m + 5) or ± (8m + 7)

0 even.

(3.5)

Similarly, MXn and MYn are

M̃Xn = M̃Yn = jnMZn · Brweak

Brstrong
(3.6)

The total magnetization can be written as

MZ =

∞∑
n=−∞

(M̃Zne
− jknY + M̃Zne

− jknX) (3.7)

MX = 2
∞∑

n=0

(M̃Xne
− jknX) = 2

∞∑
n=0

M̃Xn(cos knX − j sin knX). (3.8)
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Next, from the magnetization components, we solve for the magnetic flux density

at air gap Z0. Computing for the magnetic flux density using magnetoquasistatic (MQS)

approximation yields the following equations [1].

B̃Zn =
µ0

2

(
jM̃Xn + M̃Zn

)
e−γnZ0

(
1 − e−γn∆

)
(3.9)

B̃Xn =
µ0

2

(
M̃Xn − jM̃Zn

)
e−γnZ0

(
1 − e−γn∆

)
(3.10)

Here, γn is the absolute value of the spatial wave number.

Equations (3.9) and (3.10) are the field solutions for the magnet array at a plane Z0

above the boundary (a) in Figure 14. Substituting equations (3.5) and (3.6) to these equa-

tions will yield the Fourier coefficients of the magnetic flux density generated by the magnet

array, shown in Figure 15. In the ideal case (as shown in Figure 15 (a)), the generated mag-

netic field is a superimposition of the fundamental, 5th, 9th, . . . harmonics. The 3rd, 7th,

. . . harmonics cancel out. This implies that the Halbach array has a more purely sinusoidal

field on its strong side.

The actual model of the Halbach magnet matrix differs from the ideal case, as shown

in Figure 15 (b). The 3rd, 7th, . . . harmonics have not canceled out because the materials

used do not match the ideal case, that is

Brweak = 1.10 �
Brstrong√

2
= 1.01 (3.11)

However, it is important to note here that the fundamental and 5th harmonics are non-

zero and are large compared to the other odd harmonics. From this analysis, we chose the

harmonics with the largest magnitude as the basis function for the curve-fitting model, i.e.

sinωX, sin 5ωX, . . . . Hence, the model of the magnetic flux density with the two highest
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Fig. 15. Fourier coefficients of the Halbach magnet array flux density. (a) Ideal array. (b)

Modeled array

magnitude harmonics is in one of the following form.

BX(Xi) = c + α sin(ωXi) + β sin(5ωXi)

BY(Yi) = c + α sin(ωYi) + β sin(5ωYi)
(3.12)

This is also the model for curve-fitting because Hall-effect sensors are linear sensors. The

coefficients c, α, and β are the coefficients to be curve-fitted. The method for curve-fitting

is explained in Chapter IV.

From the definition of the Fourier series, the total magnetic flux density due to Halbach

magnet matrix on the strong side is

BZ =

∞∑
n=0

B̃Zn

(
e− jknX + e− jknY

)
(3.13)

BX = 2
∞∑

n=0

B̃Xne
− jknX. (3.14)

The total magnetic flux density at air gap of Z0 = 3 mm is shown in Figure 16.

Next, we compute the relation between the air gap and the maximum magnetic flux
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density. The results are shown in Figure 17. As expected, the magnitude of the magnetic

field decays exponentially. The exponential decay of the fundamental and 5th Fourier coef-

ficients are shown in Figure 18. Considering the previous analysis, the coefficients α and ζ

decay exponentially by e−γ1Z0 whereas β and δ decay by e−γ5Z0 . Therefore, the higher order

harmonics decay at a faster rate.

This is important to note for the case of 6-DOF positioning, because for that case, the

curve-fitted coefficients of equation (3.12) can be assumed to be in the form,

α(Z0) = α0e
−γ1Z0

β(Z0) = β0e
−γ5Z0

(3.15)

where c0, α0, and β0 are the coefficients to be curve-fitted.

3. Fourier Series Analysis - Weak Side

The analysis of the weak side is very similar to that of the strong side. In the 2-D case, the

only difference between the strong side and the weak side is in the sign of the magnetization

MX. Hence the difference in the model is the sign change for MX (Figure 19 and Figure 14).

The total magnetic flux density of the weak side at air gap of 3 mm is shown in Figure 20.

Note that the magnetic flux density is significantly smaller than the strong side as expected.
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(a) (b)

(c)

Fig. 16. Magnetic flux density analysis of Halbach magnet matrix for the strong side, at the

air gap of Z0=3 mm. (a) BX (b) BY (c) BZ
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Fig. 17. BZ with respect to air gap. (b) Close-up for small air gap
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Fig. 18. Fourier coefficients with respect to air gap. (a) BZ1 (b) BZ5



33

∆

surface a
Z

MZ

M0

M0

X

X

X

MX

Fig. 19. Halbach magnet array’s magnetization (weak side)
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(a) (b)

(c)

Fig. 20. Magnetic flux density analysis of Halbach magnet matrix for the weak side, at the

air gap of Z0=3 mm. (a) BX (b) BY (c) BZ
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B. Three-Phase Planar Actuator Coils

Although we have not used the sensing mechanism for coils, it can be applied using the

same principles. This section derives the model of the magnetic flux density due to multi-

phase coil actuators. The coils are assumed to be infinitely long and wide to neglect fringing

effects. A model of the coil with the dimensions and axes are shown in Figure 21. The

model is derived for three-phase winding coil actuators. First, we obtain a model of the

current density J. The Fourier coefficients are the following [1].

Jyn =
1
l

∫
l
Jsk(x, t)e

− jknxdx (3.16)

=
1
l

2q−1∑
k=0

∫ (2k+1)l
4q

(2k−1)l
4q

J0 cos

(
θ(t) +

πk
q

)
e j 2πnz

l (3.17)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qJ0

nπ
sin

(
nπ
2q

)
e∓ jθ(t) n = 2mq ± 1, m = 1, 2, . . .

0 otherwise

(3.18)

The magnetic flux density due to the coils is

Bzn =
jµ0

2kn
Jyn(1 − e−γnΓ)e−γnZ0 (3.19)

Bxn = − µ0

2kn
Jyn(1 − e−γnΓ)e−γnZ0 (3.20)

and

B =
∞∑

n=−∞
Bxne

− jknxix + Bzne
− jknxiz. (3.21)

This analysis is done for an actuator coil used in our maglev stage. The design pa-

rameters have the following values: the pitch is l = 50.8 mm, the winding turn density is

η0 = 3.5246 × 106 turns/m2, the absolute value of fundamental wave number is γ1 =
2π
l

= 123.7 mm, the winding thickness is Γ =
l
5
= 10.2 mm, and the number of pitches is
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Nm = 2. The analytical results are shown in Figure 22, where the nominal current density

is set as J0 = 1.5 × 106 A/m2. The Fourier coefficients of the generated magnetic flux

density Bzn is shown in Figure 23, and the total generated magnetic flux density is shown in

Figure 24. In this case, the basis function with only the fundamental wave will be sufficient

to model the magnetic flux density. The magnitude of the generated magnetic flux density

is small compared to that of the Halbach magnet matrix, on the order of a few milliTeslas.

l

x

y

z

a
b

c
a'

b'
c'

Γ

l/6

Fig. 21. Actuator coil dimensions of the ATP stage
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CHAPTER IV

ALGORITHM

This chapter explains the algorithm applied to solve for the position of the platen from the

Hall-effect sensors’ outputs. The algorithm consists of nonlinear least squares, or Gaus-

sian least squares differential correction (GLSDC), followed by a recursive discrete-time

Kalman filter (DKF), as shown in Figure 25. Single-input-single-output (SISO) controllers

are designed to close the loop using this algorithm.

The GLSDC maps the nonlinear relation between the sensor outputs and the platen’s

position. The DKF is used to provide a reduced-noise signal from the GLSDC, and also to

obtain estimates of the velocity and the angular velocity. These values can be used when

designing a multivariable multi-input-multi-output (MIMO) controller.

The steps required to use this algorithm is the following.

1. Obtain sufficient data for each sensor output

2. Curve-fit the data using the least squares method to solve for the coefficients (a priori)

3. Apply coefficients in the GLSDC algorithm

4. Run the GLSDC and DKF algorithms in real-time

A. Obtaining Least Squares Model for Sensor Outputs

The outputs of the Hall-effect sensors and the position data from the laser interferometers

are obtained using the “snap” function. The data is obtained keeping the platen at a constant

air gap by using aerostatic bearings, and the platen is moved in the range of 52 mm by 52

mm. The plots of the sensors’ outputs are shown in Figure 26. Four of such sensor output

measurements are acquired to obtain the least squares model for each output.
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The four outputs of the Hall-effect sensors are acquired by the Pentek 6102 A/D con-

verter board. a1, b1, c1, and d2 are the sensors’ outputs which correspond to the input

channels to the Pentek 6102. From the obtained data, we solve for the least squares model

using method of batch least squares. Other methods such as linear sequential estimation

can also be used.

It was shown in Section III-A that the periodic wave is composed of odd sine harmon-

ics sin(ωX), sin(5ωX), . . .. Hence, these are chosen as the basis functions for the model

along with the DC term, as shown below. For convenience, only up to 5th harmonics are

included in the model.

â10 = c1 + α1 sin(ω(YA − YAoffset)) + β1 sin(5ω(YA − YAoffset))

+ζ1 sin(ω(XA − XAoffset)) + δ1 sin(5ω(XA − XAoffset))
(4.1)

b̂10 = c2 + α2 sin(ω(XA − XAoffset)) + β2 sin(5ω(XA − XAoffset))

+ζ2 sin(ω(YA − YAoffset)) + δ2 sin(5ω(YA − YAoffset))
(4.2)

ĉ10 = c3 + α3 sin(ω(YB − YBoffset)) + β3 sin(5ω(YB − YBoffset))

+ζ3 sin(ω(XB − XBoffset)) + δ3 sin(5ω(XB − XBoffset))
(4.3)

d̂20 = c4 + α4 sin(ω(XB − XBoffset)) + β4 sin(5ω(XB − XBoffset))

+ζ4 sin(ω(YA − YBoffset)) + δ4 sin(5ω(YB − YBoffset))
(4.4)

XAoffset,YAoffset, XBoffset, and YBoffset are offset values to adjust the location of the sensors with

respect to the magnetic field’s phase. Coupling terms ζ and δ are included to model the

axes’ misalignment with respect to the xyz axes.

The measurements are assumed that there is no rotation about the z axis, so the xyz and

the XYZ axes are aligned. The subscript 0 represents that it is in the state with no rotation,

and the circumflex (ˆ) represents estimated values from the least squares model. First, the
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sensors’ positions are defined. The position of the sensors in XYZ are

XA = xA cos θz − yA sin θz (4.5)

YA = xA sin θz + yA cos θz (4.6)

XB = xB cos θz − yB sin θz (4.7)

YB = xB sin θz + yB cos θz, (4.8)

and since we assume no rotation while obtaining the data, θz = 0. The values of xA, yA, . . .

are known from the position which the Hall-effect sensors are mounted with respect to the

center of mass of the platen (Figure 28).

Next, the offset values are adjusted such that the phase of the sensors’ outputs and

the model are the same. An example is shown in Figure 27, where the offset is adjusted

such that the phase is nearly identical. This can be done by curve-fitting as well, but

due to complexity, this value was adjusted manually. It is important that the phase is the

same because this leads to large modeling errors and will affect the positioning capability.

With the offset values fixed, the coefficients c, α, β, ζ, and δ are obtained using batch least

squares, as described below.

The coefficients to be fitted are

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci

αi

βi

ζi

δi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.9)

and assume that we have n data points which we know the position of the platen (X0 and

Y0 from laser interferometers) and the 4 sensors’ outputs. The batch least squares is done

for each output as the following. Hence, we have n sets of data (X0,Y0, ã1, b̃1 c̃1, d̃2). To use
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batch least squares, we rearrange the data into the following form.

X̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃10

X̃20

...

X̃n0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Ỹ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ10

Ỹ20

...

Ỹn0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ã =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã10

ã20

...

ãn0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, . . . , d̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̃10

d̃20

...

d̃n0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.10)

Consider the case to curve-fit output a1. We solve for the coefficients xa1 from the

following equation.

x̂a1 = (HT H)−1HT ã (4.11)

where H is a n × m matrix and m is the number of basis functions. In this case, m = 5, and

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sin(ω(Y1 + yA − YAoffset)) . . . sin(5ω(X1 + xA − XAoffset))

1 sin(ω(Y2 + yA − YAoffset)) . . . sin(5ω(X2 + xA − XAoffset))
...

...
. . .

...

1 sin(ω(Yn + yA − YAoffset)) . . . sin(5ω(Xn + xA − XAoffset))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.12)

The same procedure is taken for the other outputs, replacing the offset values and the

axes. A curve-fitted model’s output for a1 is shown in Figure 29. It can be seen that the

fundamental shape is very similar to the measured data of Figure 26. From the experimental

results, adding these terms did not reduce the modeling error, and hence, the coefficients ζ

and δ have not been included in the curve-fitted model. The values for coefficients c, α, and

β are substituted into the GLSDC model. The modeling error of the curve-fitting is shown

in Figure 30. The model has a maximum error of about 200 mV, and some reasons which

might cause this error are the following.

• Fabrication error of the Halbach magnet matrix

• Error in material properties of the magnets
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• Modeling error of the magnet matrix using batch least squares curve-fitting

• Hall-effect sensor misalignment with respect to the platen’s axes, in θx, θy, and θz

• Error in defining the precise location of the sensor (the sensitive volume of the Hall-

effect sensor is only 250 µm × 250 µm × 200 µm)

• External magnetic field interference and sensor noise

B. Gaussian Least Squares Differential Correction (GLSDC)

1. GLSDC Problem Formulation

Gaussian least squares differential correction is a widely used successive approximation

procedure, otherwise known as nonlinear least squares. An outline of the GLSDC algo-

rithm is shown in Figure 31. At each time step, the input signals ỹc are obtained, and

GLSDC algorithm is executed to minimize J, the sum square of the residual errors. J de-

creases when the GLSDC algorithm converges, and hence an additional loop is added in

the routine to check for convergence. This is a modified algorithm of that presented in

[24], where α is a scaling factor which is adjusted to minimize the GLSDC output’s oscil-

lation. This value will depend on the Hall-effect sensors’ noise, and the value is chosen by

simulation.

2. Algorithm for 3-DOF Positioning

The objective of this section is to show how to solve for the position of the platen x̃c =

{X0, Y0, θ}T from the sensors’ outputs yc = {a1, b1, c1, d2}T using the GLSDC algorithm.

The relation between the position and sensor outputs can be written as

ỹc = Hxc, (4.13)
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where H is the Jacobian matrix and

x̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂0

Ŷ0

θ̂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, ỹc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã1

b̃1

c̃1

d̃2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.14)

The tilde (˜) represents measured values. The sensors are fixed to the platen, and their axes

are aligned with the xyz axes, as shown in Figure 28.

From the curve-fitted model, we know the estimate values when no rotation is consid-

ered.

â10 = c1 + α1 sin(ω(XA − XAoffset)) + β1 sin(5ω(XA − XAoffset)) (4.15)

b̂10 = c2 + α2 sin(ω(YA − YAoffset)) + β2 sin(5ω(YA − YAoffset)) (4.16)

ĉ10 = c3 + α3 sin(ω(XB − XBoffset)) + β3 sin(5ω(XB − XBoffset)) (4.17)

d̂20 = c4 + α4 sin(ω(YB − YBoffset)) + β4 sin(5ω(YB − YBoffset)), (4.18)

where, for the general case,

XA = xA cos θz − yA sin θz (4.19)

YA = xA sin θz + yA cos θz (4.20)

XB = xB cos θz − yB sin θz (4.21)

YB = xB sin θz + yB cos θz. (4.22)

Next, compute the estimates with rotation θz considered.

â1 = â10 cos θz + b̂10 sin θz (4.23)

b̂1 = −â10 sin θz + b̂10 cos θz (4.24)

ĉ1 = ĉ10 cos θz + d̂20 sin θz (4.25)
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d̂2 = −ĉ10 sin θz + d̂20 cos θz (4.26)

From these relations, the Jacobian matrix H is obtained as the following.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a1

∂X0

∂a1

∂Y0

∂a1

∂θz
∂b1

∂X0

∂b1

∂Y0

∂b1

∂θz
∂c1

∂X0

∂c1

∂Y0

∂c1

∂θz
∂d2

∂X0

∂d2

∂Y0

∂d2

∂θz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)

From this algorithm, we also obtain the error covariance matrix, defined in Reference [24]

as

Rk = (Hk
T WHk)

−1 (4.28)

This becomes useful in the DKF design when defining the error covariance of the GLSDC

output.

For our experimental setup, the sensor noise’s standard deviation is approximately 1

mV, and selecting the scaling factor α in Figure 31 as 0.2 resulted in best convergence.

An advantage of using the GLSDC algorithm instead of neural networks (NN) is that

this utilizes the periodicity of the magnet matrix, and the output converges to the local

minimum, depending on the position of the platen. For example, suppose that the platen is

located at (X0,Y0) = (0, 0) and is given an input of (−1 mm, −1 mm). When NN is used,

since it does not recognize the periodicity, it may recognize the reference input as (−49.8

mm, −49.8 mm). However, GLSDC will not do this because it understands that the model

is continuous and periodic. Hence, this algorithm has unrestricted travel range.

This algorithm can easily be extended in case with redundant Hall-effect sensors.

When having redundant sensors, each sensor output must be curve-fitted using appropriate

basis functions. For n number of sensors to position in 3 DOFs, the Jacobian matrix H will

be a 2n × 3 matrix. In the case when rotation about z is negligible and not considered, the
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model is simplified and H matrix becomes a 4 × 2 matrix,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a1

∂X0

∂a1

∂Y0
∂b1

∂X0

∂b1

∂Y0
∂c1

∂X0

∂c1

∂Y0
∂d2

∂X0

∂d2

∂Y0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.29)

Since rotation θz is not considered, θz = 0 and

a10 = a1, b10 = b1, c10 = c1, d20 = d2. (4.30)

This can be used when laser interferometers are used for θz control, assuming negligible

rotation, and will result in better convergence.

3. Algorithm for 6-DOF Positioning

The same algorithm can be extended to 6-DOF positioning. To do this, we must first obtain

the coefficients of the curve-fitting as a function of the air gap Z0. For 6-DOF positioning,

at least three sets of two-axis Hall-effect sensors are necessary, as shown in Figure 6 (b).

For generalization, consider using n number of sensors and 2n number of sensor outputs

(a1, b1, . . . , q). This is possible because the Z axis is orthogonal to the X and Y axes and

has independent basis functions. As explained in the analysis in Chapter III, the Fourier

coefficients decay exponentially with respect to the air gap. Hence, for one sensor output,

the coefficients will be fitted as

α1(Z0) = α10e
−γ1Z0

β1(Z0) = β10e
−γ5Z0

ζ1(Z0) = ζ10e
−γ1Z0

δ1(Z0) = δ10e
−γ5Z0 ,

(4.31)
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and the values for α10, β10, ζ10, and δ10 will be solved for by curve-fitting methods such as

batch least squares. In this case, it is necessary to fit the value of Z0, similar to the way the

offsets XAoffset,YAoffset, XBoffset, and YBoffset are decided.

For 6-DOF positioning, it may be better to obtain measurements of BZ , in which case

the curve-fitted model will be the following,

BZ(Xi,Yi,Zi) = c +
(
αx sin(ωXi) + βx sin(5ωXi)

)
·
(
αy sin(ωYi) + βy sin(5ωYi)

)
, (4.32)

where αx, αy, βx, and βy are functions of the air gap Z0.

To position in 6 DOFs (X0,Y0,Z0, θx, θy, and θz), the Jacobian matrix will be a 2n × 6

matrix,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a1

∂X0

∂a1

∂Y0

∂a1

∂Z0

∂a1

∂θx

∂a1

∂θy

∂a1

∂θz
∂b1

∂X0

∂b1

∂Y0

∂b1

∂Z0

∂b1

∂θx

∂b1

∂θy

∂b1

∂θz
...

...
...

...
...

...

∂q
∂X0

∂q
∂Y0

∂q
∂Z0

∂q
∂θx

∂q
∂θy

∂q
∂θz
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.33)

As we have done for the 3-DOF case, measurements will be taken for the case without

rotation (â10, . . . , q̂0), for various air gaps. The derived model will involve a rotation matrix

which will incorporate the rotation in θx, θy, and θz.

C. Recursive Discrete-Time Kalman Filter (DKF)

A recursive discrete-time Kalman filter (DKF) has been designed to filter out the noise

from the GLSDC, and to provide estimates of the velocity and angular velocity which will

become useful when designing a multivariable controller. I first tried to close the 3-DOF

motion using only GLSDC, but found that the GLSDC output had large variation, which

I assumed was the reason why I could not close all 3 DOFs using two sets of two-axis

Hall-effect sensors. Description of the DKF design is presented below.
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The states are defined as

xk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk

żk

z̈k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, for zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0

Y0

θz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.34)

For continuous time, the dynamic model and measurement (estimated) model are

ẋ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż(t)

z̈(t)
...
z (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I3×3 0

0 0 I3×3

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(t)

ż(t)

z̈(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

I3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
w(t) (4.35)

ỹ(t) = ẑ(t) + v(t) =
[
I3×3 0 0

]
x(t) + v(t). (4.36)

As shown in Figure 25, the inputs to the DKF are the outputs of the GLSDC,

ỹ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃0

Ỹ0

θ̃z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (4.37)

and are not the Hall-effect sensors’ output. v is a 3×1 vector and is the noise which results

from the GLSDC. It is assumed to be zero-mean Gaussian noise,

v(t) ∼ N(0,Rk), (4.38)

where Rk is the error covariance matrix defined in equation (4.28).

The model assumes constant acceleration. The relationships between position, veloc-

ity, and acceleration are modeled exactly without any modeling error. Note that the process

noise w is a 3×1 vector which has the same unit as the jerk and does not depend on the error

due to GLSDC. Further, w is assumed to be a zero-mean Gaussian process, and selecting

the bounds to this process noise becomes the parameter to tune the DKF.
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The constant-acceleration assumption is merely for simple modeling purpose. Al-

though this may not be a valid assumption, the output shows that the noise is reduced and

the accuracy is improved. If more accurate estimates of velocity and acceleration are re-

quired, we can add the process noise to the time derivative of the jerk. This would mean the

model will assume constant jerk, and the computation will be more complex and require

more time.

In discrete time, the model becomes the following.

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3×3 (tk+1 − tk)I3×3
1
2 (tk+1 − tk)2I3×3

0 I3×3 (tk+1 − tk)I3×3

0 0 I3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6 (tk+1 − tk)3I3×3

1
2 (tk+1 − tk)2I3×3

(tk+1 − tk)I3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
wk

= Φxk + Υwk

(4.39)

ỹk =

[
I3×3 0 0

]
xk + vk = Hxk + vk (4.40)

where (tk+1 − tk) is the integration step size, which is constant for simulation and real-time

control, and vk is the measurement noise. The DKF formulation is presented in Table III,

as given in [24].

The Qk is the error covariance matrix of the process noise w, which acts on the ac-

celeration. This becomes the design parameter to tune the DKF by selecting a reasonable

value for the acceleration noise. Qk is chosen to be a positive constant diagonal matrix,

Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx 0 0

0 qy 0

0 0 qθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.41)

where an assumption is made that vk and wk are uncorrelated, and the values of qx, qy, and

qθ are set by the designer. Choosing these values is an ad hoc approach, similar to selecting
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Table III. Recursive discrete-time Kalman filter

MODEL xk+1 = Φxk + Υwk , wk ∼ N(0,Qk)

ỹk = Hxk + vk , vk ∼ N(0,Rk)

INITIALIZE x̂(t0) = x̂0 , P0 = E{x̂(t0)x̂(t0)T }
GAIN Kk = P−k HT

k [HkPkHT
k + Rk]−1

UPDATE x̂+k = x̂−k + Kk[ỹk − Hkx̂−k ]

P+k = [I − KkHk]P−k

PROPAGATION x̂−k+1 = Φx̂+k

P−k+1 = ΦkP+kΦ
T
k + ΥkQkΥ

T
k

the bandwidth of a filter, where we iterate the design until a satisfactory performance level

is achieved. The initial estimates are set to

x̂0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẑ0

06×1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , ẑ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.42)

where ẑ0 is the same as the initial guess used for the GLSDC. The initial estimation error

covariance matrix is specified by

P0 = pI9×9. (4.43)

The initial value of p is set by the designer to obtain a good convergence behavior of the

filter. The DKF updates the P matrix at each time step, and hence the P matrix will converge

if appropriate initial values are chosen. Simulation results with changing these values are

shown in Chapter V.

Instead of using a recursive DKF, some digital filters such as low-pass filters were tried

in both simulation and experiment, but this resulted in large oscillation at the outputs. The



55

reason for this seems to be caused by the delay and the dynamics of the filter. There may

be a way to make this work using low-order digital filters. The DKF output did not show

this behavior, but the dynamics of the filter was too slow to stabilize the 3-DOF motion.

D. Calibration Method

Calibration is done for the translational motion in X and Y when considering negligible

rotation in θz. The position error for discrete points is tabulated so that it can be interpolated

to find the position error.

Although this will reduce the translational positioning error, it cannot compensate for

the error when rotation is considered. In that case, the only valid method will be obtaining a

more precise model and using more number of sensors. This will make the GLSDC output

more likely to converge to the correct value. To obtain a more precise model, other basis

functions can be incorporated which will model misalignments with respect to other axes.

As of now, the coefficients ζ and δ only compensate for the misalignment in the z axis.

E. Dynamical Modeling and Control System Design

In this section, we present the dynamics and control of the maglev stage. Section 1 gives

the dynamic model of the moving part (namely, the platen). We only consider the dynamic

model for planar motion X, Y , and θz. Section 2 gives the control system designs for planar

motions.

1. Dynamic Model

The moving part of the system is modeled as a pure mass because there is no friction in this

maglev system. The total mass of the platen includes the platen, mirrors, actuator coils,

cables, screws, and the Hall-effect sensor setup, and is measured to be 6.20 kg. Therefore,
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for translational motion, assuming that there are is no dynamic coupling, the system is

represented by the differential equation (4.44).

6.20
d2x
dt2
= fx (4.44)

The system transfer function is
X(s)
Fx(s)

=
1

6.20s2
. (4.45)

For rotation, the system is represented by

Iz
d2θz
dt2
= Tz, (4.46)

where Iz = 0.054 kg·m2 is the moment of inertia around the z axis and Tz is the torque

around the z axis. The value of the moment of inertia is obtained by using SolidWorks9.

The system transfer function is
Θz(s)
Tz(s)

=
1

Izs2
. (4.47)

2. SISO Controller Design

SISO controllers are designed to control the platen using sensor readings from the GLSDC

and DKF algorithms. The rule of thumb when designing a controllers is that the dominant

poles of the filter (DKF) must be 6 to 10 times faster than those of the controller. Controller

are designed with crossover frequency of 20 Hz for X and Y controllers, and 10 Hz for θz

controller. However, this puts a very severe restriction in the design of the DKF, and the

DKF with such high bandwidth did not attenuate the noise, but has large overshoot.

A lead-lag controller is designed at various crossover frequencies. Controllers de-

signed for translational motion (X and Y) with a crossover frequency of 10 Hz and con-

troller for rotational motion (θz) with a crossover frequency of 20 Hz are presented.

9SolidWorks Corporation, 300 Baker Avenue, Concord, MA 01742
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First, the controllers D(s) are designed in the continuous-time domain, using the Mat-

lab’s ‘sisotool’ function, a product of Mathworks10. They are the controllers designed for

800-Hz sampling and are obtained by discretizing the controllers designed in the s-domain

using the matched pole-zero (MPZ) method.

The lead-lag controllers for X and Y are described below. The controller’s bandwidth

is 9.90 Hz and phase margin is 70.1̊ . The root-locus plot and the open-loop Bode plot are

shown in Figure 32. The step response to an ideal plant with ideal measurements is shown

in Figure 33.

D(s) = 4.09 × 105 · (s + 8.31)(s + 10)
s(s + 1134)

(4.48)

D(z) = 2.236 × 105 · z
2 − 1.9773z + 0.977428
z2 − 1.2423z + 0.2423

(4.49)

The lead-lag controller for θz is presented below. The controller’s bandwidth is 19.7

Hz and phase margin is 75.3̊ . The root locus plot is shown in Figure 34, and a response to

a 1̊ step input is shown in Figure 35.

D(s) = 7.6 × 103 · (s + 8.31)(s + 10)
s(s + 1134)

(4.50)

D(z) = 4.155 × 103 · z
2 − 1.9773z + 0.977428
z2 − 1.2423z + 0.2423

(4.51)

These controllers have been tested on our setup using the GLSDC algorithm. Experi-

mental results are presented in Chapter V.

10The Mathworks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098
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CHAPTER V

RESULTS

This chapter presents the simulation and experimental results. Due to the performance of

the Pentek 4284 DSP, the computation of each iteration is completed in 1.25 ms, or at the

sampling frequency of 800 Hz.

The simulation results are done assuming the use of two sets of two-axis Hall-effect

sensors, as shown in Figure 28.

A. Simulation Results

1. GLSDC Results with No Plant

This section shows the GLSDC response to a step input without considering the plant’s

dynamics. The sensor noise is approximately 1 mV, and choosing α = 0.2 resulted in

the best convergence and small oscillation in the output. The initial states are set as

{X0,Y0, θz} = {0, 0, 0}, and no sensor noise is considered. At t = 0 s, or at the first time

step, the estimated ideal sensor output value for {X0,Y0, θz} = {0, 200 µm, 0} is given. The

results are shown in Figure 36. From Figure 36 (d), it can be seen that the sum of squares

error J takes approximately three steps to converge. Although the step input was in Y , there

are small changes shown in the outputs for X and θz (Figures 36 (b) and (c)), which show

that this is a coupled nonlinear relation. The same behavior can be seen when applying step

inputs for θz, as shown later in Figure 38.

Giving a large step on the order of a few millimeters can make the GLSDC converge

to an incorrect value. This can happen because the GLSDC algorithm will only converge

to minimize J locally. Due to the periodic nature of the magnet matrix, it can only po-

sition within one pitch. Hence, if there is a local (incorrect) minimum closer to than the
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correct value, the GLSDC may converge to that incorrect value. However, in reality, the

platen’s dynamics will also be involved, and it is impractical for the platen to move very

quickly (over 0.5 m/s), faster than the platen’s design specifications. If the GLSDC algo-

rithm routine can be executed at a faster sampling frequency, then it would result in faster

convergence. The slow response of the GLSDC output may cause difficulty when designing

a fast controller.

It should also be noted that using this method to position in 6 DOFs and adding more

basis functions to the curve-fitting model will make it more difficult for the GLSDC to

converge to the correct value. This is because by adding more basis functions, the mapped

nonlinear relation will have more local minimums which the GLSDC may converge to.

As of now, we have two two-axis Hall-effect sensors with which, in theory, we can obtain

3-DOF position estimates. However, due to modeling errors, we have not succeeded in

closing all 3-DOF motions with only Hall-effect sensors. We believe that having redundant

sensors will mitigate this problem.

2. DKF Dynamics with No Plant

The simulation results of the DKF are presented in this section. This simulation is done

only to see the dynamics of the DKF, and hence the plant (platen) dynamic model is not

included. The purpose of this simulation is to decide the value of qx and qθ so that the

DKF output converges quickly and yet has attenuated the GLSDC output oscillation. Sim-

ulation is done with the value of p0 fixed as p0 = 1 × 10−8 m2 and setting initial guess as

{X0,Y0, θz} = {0, 0, 0}. Values of qx and qθ are adjusted.

First, the input to the GLSDC are the estimated sensor output values for {X0,Y0, θz} =
100 µm, 0, 0 at t = 0.1 s, or at the 80th step. Sensor noise is modeled as a zero-mean white

Gaussian noise (WGN) with a standard deviation of 1 mV. The outputs of the GLSDC

and DKF are shown in Figure 37 for the case when qθ = 105 rad2/s6 and qx = 102 m2/s6.
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Fig. 36. Simulation GLSDC output to a 200-µm step input in Y , with no sensor noise (a) X0,

(b) Y0, (c) θz, and (d) J
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Similarly, the response to an input of {X0,Y0, θz} = {0, 0, 1 mrad} is shown in Figure 38.

The GLSDC output converges in approximately 3 steps, but the DKF dynamics cause the

overshoot and oscillation, taking about 0.1 s to converge. This is due to the choice of qθ

and qx, and there is a design compromise to choose whether we want the fast response or

better noise reduction.

To have a better understanding of the effects of adjusting qz and qθ, simulations are

run by first fixing qθ as 105 rad2/s6 and changing qx. The results to a step input of 100 µm

are shown in Figure 39. Next, simulations are run by fixing qx as 102 m2/s6 and changing

qθ, shown in Figure 40. The results are tabulated in Tables IV and V. The corner frequency

(bandwidth) ωBW of the DKF are calculated using second-order approximation from the

rise-time tr using the following equation [25].

tr =
1.8
ωBW

(5.1)

A conventional way of finding the poles of an estimator modeled as

˙̂x(t) = Fx̂(t) + Bu(t) + K(ỹ(t) − Hx(t))

ŷ(t) = Hx̂(t)
(5.2)

where one would solve for the eigenvalues of E, defined as

E = F − KH. (5.3)

In the case of the DKF, the K matrix varies in each time step because the P matrix is

updated. Hence, although the P matrix will converge after some time, the E matrix is

not constant and will change when a step input is applied. The simple second-order ap-

proximation is used to compute the bandwidth because it provides a rough estimate of the

performance of the DKF, and seeing the response to a step input served its purpose.

Small q values filter out the noise, but result in slow convergence because the band-
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Fig. 37. Simulation DKF output to a 100-µm step input in X with qx = 100 m2/s6 and

qθ = 1 × 105 rad2/s6 , (a) X0, (b) Y0, (c) θz
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Fig. 38. Response to step input of 1-mrad in θz with qx = 100 m2/s6 and qθ = 1×105 rad2/s6 ,
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Fig. 39. Simulation results of X for GLSDC and DKF to a 100-µm step input in X with no

sensor noise, qθ = 105 rad2/s6 , (a) qx = 1 m2/s6 , (b) qx = 102 m2/s6 , (c) qx = 104

m2/s6
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Fig. 40. Simulation results of θz for GLSDC and DKF to a 1-mrad step input in θz with no

sensor noise, qx = 100 m2/s6 , (a) qθ = 1× 102 rad2/s6 , (b) qθ = 1× 104 rad2/s6 , (c)

qθ = 1 × 106 rad2/s6
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Table IV. DKF results of changing values of qx with qθ = 105 rad2/s6

qx (m2/s6) rise time tr (s) Overshoot Mp ωBW (Hz)

1 × 10−1 0.0178 32.4% 16.1

1 × 100 0.1021 32.9% 23.7

1 × 101 0.0080 33.6% 35.8

1 × 102 0.0054 34.4% 53.1

1 × 103 0.0033 35.2% 86.8

1 × 104 0.0020 40.0% 143.2

Table V. DKF results of changing values of qθ with qx = 102 m2/s6

qθ (rad2/s6) rise time tr (s) Overshoot Mp ωBW (Hz)

1 × 102 0.0100 32.8% 28.6

1 × 103 0.0064 32.1% 44.8

1 × 104 0.0039 34.2% 73.5

1 × 105 0.0025 38.8% 115

1 × 106 0.0017 44.4% 169

1 × 107 0.0010 51.0% 286
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width is small. Large q values will converge faster because the bandwidth of the filter is

higher, but will not filter out the noise well. Also, increasing q will cause larger overshoot

of the DKF output, which is not favorable. There must be a design compromise, and we

choose qx = 102 m2/s6 and qθ = 105 rad2/s6 . This will make the bandwidth of the DKF to

be approximately 50 Hz for X and Y and approximately 100 Hz for θz, and overshoot be

less than 40%. The bandwidths are different for X and θz because the controller requires

higher crossover frequency in θz in order to stabilize it. However, for our current setup,

the slow response of the DKF makes it impractical and unfeasible to use in the real-time

control routine. Designing a faster DKF will result in faster convergence but will not serve

its purpose to filter out the noise. Since the bandwidth of the filter should be 6 to 10 times

faster than the controller, the controllers must be slow, but slow controllers may make the

system unstable.

Simulations were done using other filtering techniques such as low-pass filters and

averaging. However, these resulted in large oscillation outputs for both simulation and

experimental results and could not stabilize the platen using it. This is probably due to the

time delay which comes from discretization.

3. GLSDC and DKF with Plant and Controller

The simulink block diagram used for the simulation is shown in Figure 41. The plant is a

3-DOF linearized model. To emulate the sensor signal, the ‘sensor output with noise’ block

outputs are the four sensor outputs with noise of 1-mV standard deviation. The ‘GLSDC’

and ‘GLSDC and DKF’ blocks are s-function blocks which compute the GLSDC and DKF

algorithms, respectively. Various controllers have been tested using this simulation, both

SISO and MIMO controllers. Simulation results using the controllers designed in Chapter

IV are presented.
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Simulation results to 10-µm and 100-µm step inputs when GLSDC outputs are used

are shown in Figures 42 and 43, respectively. The results show that this sensing method

is capable of 10-µm resolution positioning. Experimental results in the proceeding section

confirms this result.

Next, simulation is done closing the loop with DKF outputs. The GLSDC and DKF

outputs are shown in Figures 44 and 45, respectively. It can be seen that the system is

stabilized although the response is slow and there is some oscillation. The DKF output

shows improvement in the estimates compared to those of the GLSDC by attenuating the

noise.

B. Experimental Results

First, experimental results present the GLSDC outputs when controlling X and Y control

using the Hall-effect sensors, and θz control using laser interferometers. This is done to

compare the performance of the proposed method with the laser interferometers. By closing

the θz control using laser interferometers, the X and Y readings of the laser interferometers

can be acquired, and are compared with the GLSDC outputs. Next, the results when closing

all 3-DOF motion using the proposed method is presented.

The SISO controllers presented in Chapter IV are implemented.

1. 2-DOF Positioning

Experimental results for 2-DOF positioning is presented. These experiments were per-

formed using two sets of two-axis Hall-effect sensors, and the X and Y control was closed

using these sensors, and the θz control was closed using laser interferometers.

First, an experiment was conducted to measure the noise output of the GLSDC algo-

rithm. The platen was controlled to be still at the origin, and outputs of the GLSDC and
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Fig. 42. Simulation result of GLSDC output for a 10-µm step
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Fig. 43. Simulation result of GLSDC output for a 100-µm step
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Fig. 44. Simulation result of GLSDC output for a 100-µm step, feedback using DKF output

(a) X0 and Y0. (b) θz.
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laser interferometers were recorded. The outputs were sampled at 800 Hz for 5 s, and the

results are shown in Figure 46 (a) and (b). The fast Fourier transform (FFT) results of the

outputs are shown in Figure 46 (c) and (d), respectively. The sample standard deviation of

the GLSDC algorithm outputs were 9.02 µm for X0 and 7.6 µm for Y0.
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Fig. 46. Experimental results when there is no motion at the origin, and FFT results. (a) X0

from laser interferometers, (b) X0 from the GLSDC algorithm, (c) FFT of the laser

interferometer output, and (d) FFT of the GLSDC output

To better understand the reason for the peak noise at 17 Hz and 230 Hz, compare the
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results with Figure 47. The results of Figure 47 were obtained under the same conditions,

but using a lead-lag controller with a higher crossover frequency (20 Hz) for the X and

Y controllers. The following digital controllers were implemented for X, Y , and θz are

respectively the following,

DX(z) = 3.57 × 105 · z
2 − 1.9204z + 0.921233
z2 − 1.2423z + 0.2423

DY(z) = 3.57 × 105 · z
2 − 1.9204z + 0.921233
z2 − 1.2423z + 0.2423

Dθz(z) = 7.35 × 103 · z
2 − 1.9204z + 0.921233
z2 − 1.2423z + 0.2423

(5.4)

Note the difference in the output and the FFT plots. The peaks of the FFT can vary

depending on the controller used. The FFT plots show that high-frequency noise is present

in the GLSDC outputs, which is why we have considered designing digital filters and the

DKF. The sample standard deviation of the GLSDC algorithm outputs were 10.81 µm for

X0 and 10.76 µm for Y0, which are larger than the above results. This experiment implies

that the design of the controllers can affect the performance of this sensing method. If the

noise profile of the GLSDC output can be known, then digital filters can be designed to pre-

vent the noise. However, these results show that the noise profile depends on the controller.

Hence, instead of designing a filter for each controller, we focus on the implementation of

the DKF.

Responses to 10-µm consecutive steps in Y are shown in Figure 48. The outputs of

both the laser interferometer and the GLSDC are shown. This shows that the Hall-effect

sensors are capable of detecting the change in magnetic flux density for position changes of

less than 10 µm, and hence this method has at least 10-µm position resolution. The results

are comparable to the simulation results in Figure 42. The laser interferometer’s outputs

are not exactly 10 µm as the GLSDC output shows. This is due to the modeling error of the

magnetic flux density, which comes from the reasons discussed in Chapter III.



76

0 1 2 3 4 5
−3

−2

−1

0

1

2

3
x 10

−5

time (s)

X
 fr

om
 la

se
r 

in
te

rf
er

om
et

er
 (

m
)

(a)

0 1 2 3 4 5
−6

−4

−2

0

2

4
x 10

−5

time (s)

X
 fr

om
 G

LS
D

C
 (

m
)

(b)

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

Frequency (Hz)

M
ag

ni
tu

de
 (

m
)

(c)

0 50 100 150 200 250 300
10

−9

10
−8

10
−7

10
−6

10
−5

Frequency (Hz)

M
ag

ni
tu

de
 (

m
)

(d)

Fig. 47. Experimental results when there is no motion at the origin using the fast controller,

and FFT results. (a) X0 from laser interferometers, (b) X0 from the GLSDC al-

gorithm, (c) FFT of the laser interferometer output, and (d) FFT of the GLSDC

output
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Next, an experiment was done to see the positioning accuracy with respect to the laser

interferometer’s outputs. A zigzag reference trajectory is given to the controller, and Figure

49 shows the result of the zigzag motion. The trajectory is identical to Figure 49 (a), and

the platen has been controlled to follow the preplanned path very well. However, the actual

path of the platen detected from the laser interferometers’ outputs is shown in Figure 49 (b).

There is a significant deviation between the measurements from the laser interferometers

and the output of the GLSDC based on the Hall-effect sensors’ outputs. The maximum

positioning error can be as great as 1.4 mm, as shown in Figure 49 (c). Sensor calibration

and use of redundant sensors may reduce this error.

Experimental results for large step inputs are presented next. Figure 50 shows the out-

puts to 1-mm step inputs, and Figure 51 shows the response to a 4-mm step. The GLSDC

output follow the reference, but there is a deviation in the laser interferometer output. Since

the laser interferometer outputs are closer to the true position, it should be that laser inter-

ferometer and GLSDC outputs are identical and the laser interferometer outputs show the

1-mm or 4-mm step.

It is interesting to note that either using very fast or slow controllers will destabilize

this system. For X and Y control, when fast controllers (crossover frequencies higher than

20 Hz) are implemented, the response becomes more oscillatory. This is probably due to

computational delay required for the GLSDC to converge, which takes about 3 iterations

(3.75 ms). On the other hand, slow controllers (crossover frequencies lower than 5 Hz) will

easily become unstable because this is a marginally stable system.

The same applies for θz control. The θz controller should be designed such that its

crossover frequency is higher with a larger gain compared with the X and Y controllers.

I believe this is due to the unmodeled external torque applied by the hung cables which

connect the platen to the VME PC. In our experiment, the θz control became unstable with

a controller with a crossover frequency of 10 Hz.
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From these results, we found that there are performance limitations due to the DSP

and our mechanical design. Further, implementing a DKF will impose stricter limitations,

which made it very difficult to stabilize the platen in 3 DOFs using only Hall-effect sensors.

2. 2-DOF Positioning with Calibration

Calibration is performed to reduce the error between laser interferometers’ outputs and the

GLSDC outputs. The positioning error due to the GLSDC is predefined from the previous

measurements (such as Figure 49 (c)), and the positioning error is then corrected by linear

interpolation. Calibrated results for a 1-mm step and 4-mm step are shown in Figures 52

and 53, respectively. Comparing Figures 51 and 53, the error between the laser interfer-

ometer and the GLSDC has been reduced significantly. However, this calibration method

is only feasible for 2-D positioning because this relies on the tabulated position error, and

laser-interferometer outputs are necessary for the comparison. It would be increasingly dif-

ficult and cumbersome to tabulate when positioning in 3 DOFs or more. When using this

method for positioning in higher DOFs, the only feasible solution is having redundant sen-

sors and obtaining more precise model for the magnetic flux density as well as the sensor

locations.

3. 3-DOF Positioning

The experimental results for 3-DOF positioning are presented in this section. As presented

in Chapter IV, 3-DOF positioning can be done using two sets of two-axis Hall-effect sen-

sors. However, it was difficult to control all 3-DOF motion using Hall-effect sensors. This

is due to the variation between the measured and the modeled magnetic flux density, which

results in large positioning error, and may also result in converging to the wrong values.

Hence, one additional, theoretically redundant Hall-effect sensor was mounted to over-

come this problem, as shown in Figure 54. The third Hall-effect sensor (sensor C) was
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mounted as shown in Figure 55. The notation a2 and b2 correspond to the connections to

the Pentek 6102 A/D channels. Because the θz control is closed using Hall-effect sensors,

the laser beam may stray off from the laser receiver. The following are the experimental

results of the GLSDC without the laser interferometers.

First, experiments were done to see the positioning resolution of the sensing method

for 3 DOFs. The GLSDC outputs for 10-µm steps are shown in Figure 56. As in the 2-DOF

case, the sensing method shows a positioning resolution of better than 10 µm. Next, the

GLSDC outputs to 1-mm steps in Y are shown in Figure 57. The response shows some

motion in X and θz, which are due to the coupled dynamics and the nonlinear nature of

the GLSDC. The X0 output shows a trend that as Y0 increases, the positioning error at the

instant of the step input increases. However, this is not always the case, for this depends

on the modeling error for each sensor output at a particular position. The outputs for θz

show an opposite trend, but this is also not always the case. Large positioning error implies

that there is a large difference between the modeled and measured values for the sensor

outputs. For this reason, having redundant sensors is effective in improving the accuracy

and convergence to the correct local minimum.

Figure 58 shows the response to a 10-mm step input in Y . At 0.4 s, the outputs of X0,

Y0, and θz did not converge immediately to the desired values. This is due to the GLSDC,

for it solves for the local minimum value that minimizes the sum of square error. This

error may happen when large step (as large as 30 mm) inputs are applied which result in

the GLSDC output to converge to the wrong local minimum value. Also, steps as large

as the magnet pitch (50.8 mm) will not be feasible because the magnetic field is periodic

and the sensing method is only capable of positioning within one pitch. Hence, large step

inputs are problematic although this problem is significantly attenuated compared to using

laser interferometers. When using laser interferometers, steps as large as 1 mm can cause

a responsive jerk where the laser beam can stray off from the laser receiver resulting in
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instability. This will not be the problem when using the Hall-effect sensors because it has

unrestricted rotational range. The 22 rad/s oscillation in the X0 output is primarily due to

the actuators’ setup for the platen. Because there is only one actuator which generates force

to move in X, there is asymmetry in the force which causes some moment about the z axis,

which causes the oscillation. The slow controller and the computation for the GLSDC are

also the factors of this oscillation.

Next, experiments for rotational motion are presented. The GLSDC outputs for 100-

µrad steps are shown in Figure 59. The steps are recognizable, and hence this sensing

methodology has a 100-µrad resolution. Experimental results of 1-mrad and 10-mrad step

inputs are shown in Figures 60 and 61, respectively. Some coupled motion in X and Y can

be observed. In Figure 61, the GLSDC outputs for a large rotation of 40 mrad (approxi-

mately 2.3 deg) show a large oscillation in all X0, Y0, and θz outputs. Some possible reasons

for this oscillation may be (1) the linearized models of the actuators are not appropriate for

large rotations, (2) modeling error of the magnetic flux density, and (3) precise locations of

the Hall-effect sensors are not known. (3) is especially problematic because the location of

the platen center of mass is only known from the design, and large rotation in θz can result

in a large difference between the actual and the modeled values. Because the sensor output

model is obtained for the case with no rotation, the modeling error is likely to increase as

the rotation in θz becomes large.

This trend is also present in the large ramp inputs shown in Figures 62 and 63. The

results for +θz motion in Figure 62 shows large oscillation compared to −θz rotation shown

in Figure 63. This 22 rad/s oscillation is similar to the results of Figure 58, and is due to

various modeling error which will become large as each sensors’ measurements differ from

the modeled values.

Despite these positioning error due to the modeling error, the results show that it is

capable of rotating -0.12 rad to 0.16 rad (approximately -6.9̊ to 9.2̊ ). Hence, this sensing
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method shows its capability of sensing large rotation and the results confirm that this sens-

ing methodology has large, unrestricted rotational range, which laser interferometers and

any conventional translational positioning sensors are capable of.
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Fig. 48. Experimental results of 10-µm steps in Y . (a) Y-outputs of laser interferometer, (b)

Y-outputs of the GLSDC, (c) X-outputs of laser interferometer, and (d) X-outputs

of the GLSDC
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Fig. 49. Experimental results of positioning platen in X and Y following a zigzag trajectory.

(a) Measured position from Hall-effect sensors. (b) Measured position from laser

interferometers used for Hall-effect-senor calibration purpose. (c) Error between

the two measured values
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Fig. 50. (a) Laser interferometer and (b) GLSDC output to 1-mm consecutive steps in Y
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Fig. 51. (a) Laser interferometer and (b) GLSDC output to a 4-mm step in Y
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Fig. 52. (a) Laser interferometer and (b) GLSDC output to a 1-mm step in Y with calibration
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Fig. 53. (a) Laser interferometer and (b) GLSDC output to a 4-mm step in Y with calibration
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Fig. 56. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for 10-µm steps in Y (a) X0, (b) Y0, and (c) θz
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Fig. 57. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for 1-mm steps in Y (a) X0, (b) Y0, and (c) θz



89

0 1 2 3 4 5
−4

−2

0

2

4
x 10

−4

time (s)

X
0 (

m
)

(a)

0 1 2 3 4 5
−2

0

2

4

6

8

10

12
x 10

−3

time (s)

Y
0 (

m
)

(b)

0 1 2 3 4 5
−5

0

5

10

15

20
x 10

−3

time (s)

θ z (
ra

d)

(c)

Fig. 58. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for a 10-mm step in Y (a) X0, (b) Y0, and (c) θz



90

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1
x 10

−5

time (s)

X
0 (

m
)

(a)

0 1 2 3 4 5
−2

−1

0

1

2
x 10

−5

time (s)

Y
0 (

m
)

(b)

0 1 2 3 4 5
−2

0

2

4

x 10
−4

time (s)

θ z (
ra

d)

(c)

Fig. 59. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for 100-µrad steps in θz (a) X0, (b) Y0, and (c) θz
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Fig. 60. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for 1-mrad steps in θz (a) X0, (b) Y0, and (c) θz
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Fig. 61. Experimental results of positioning platen in 3 DOFs using the proposed algorithm

for 10-mrad steps in θz (a) X0, (b) Y0, and (c) θz
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Fig. 62. Experimental results for ramp input in +θz rotation. (a) X0, (b) Y0, and (c) θz
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Fig. 63. Experimental results for ramp input in −θz rotation (a) X0, (b) Y0, and (c) θz
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

This chapter contains the conclusions regarding the design, construction, and performance

of the sensing methodology utilizing two-axis Hall-effect sensors. Some applications for

which this sensing methodology is appropriate are discussed. This chapter also includes

suggestions for future work to improve the performance of the sensing and state estimation.

A. Conclusions

In this thesis, a novel multi-DOF precision position sensing methodology was proposed

and implemented. The contribution of this thesis includes the analytical framework of the

nonlinear mapping between the Hall-effect sensors’ outputs and the position of the platen.

A Gaussian least squares differential correction algorithm was implemented and modified

to achieve this, and the algorithm proved to be very effective in solving the nonlinear rela-

tionship. The basis functions of the magnetic flux density generated by the Halbach magnet

matrix were derived from the analysis of the Halbach magnet matrix. Since the Hall-effect

sensors are very sensitive to external noise, the power-supply and amplifier-circuit design

was explained in detail. The key advantage in using this proposed sensing method is that

absolute position sensing is possible atop a magnet matrix with unrestricted translational

and rotational motion range. It only requires small, inexpensive Hall-effect sensors to be

mounted with a simple analog interface circuit.

As a proof of concept, this method has been implemented on our maglev stage, and

shows positioning resolution of 10 µm and 100 µrad, and positioning accuracy of better

than 1.4 mm, which can reduced with error mapping and correction. This sensing method

also shows good repeatability. These specifications are obtained experimentally and can be

improved for more demanding applications. The position accuracy primarily depends on
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the noise from the Hall-effect sensors and the modeling error between the measured and

the curve-fitted model.

The unrestricted translational motion range is a result of utilizing the periodicity and

orthogonality of the Halbach magnet matrix’s magnetic field, and was an ideal platform

for testing this methodology. However, the obtained model has significant modeling error

which comes from (as presented in Chapter IV):

• Fabrication error of the Halbach magnet matrix

• Error in material properties of the magnets

• Modeling error of the magnet matrix using batch least squares curve-fitting

• Hall-effect sensor misalignment with respect to the platen’s axes, in θx, θy, and θz

• Error in defining the precise location of the sensor (the sensitive volume of the Hall-

effect sensor is only 250 µm × 250 µm × 200 µm)

• External magnetic field interference and sensor noise.

If the reference model of the GLSDC has large deviations with the actual measurements,

it will result in large positioning error, and may even result in converging to a wrong lo-

cal minimum position. These are the reasons which make this difficult to achieve high

accuracy.

The use of a recursive discrete-time Kalman filter is one way to obtain better estimates

of a noisy signal. However, the filter’s dynamics was not fast enough compared with the

plant dynamics, and hence there was a difficulty in stabilizing the platen while implement-

ing the DKF in real time. The reason why the DKF was designed was because the platen

could not be controlled in 3-DOF using only two sets of two-axis Hall-effect sensors, and

my guess was that the noisy output of the GLSDC was the reason for the instability. This
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problem was overcome by having an additional, theoretically redundant, Hall-effect sensor

mounted.

B. Applications

Through this research, the fundamental sensing methodology and algorithm has been de-

veloped and can readily be applied for various applications. This sensing methodology will

allow estimating position where there is any periodicity in the magnetic (or any) field. This

is not only limited to permanent magnets, but can also be used directly for actuator coils.

In that case, the rotor (actuator coil) will move with respect to the stator (magnet array),

and the Hall-effect sensors can be mounted on the stator.

One possible application is to have this sensing method as an inexpensive backup in

case the primary laser-interferometer sensing becomes unavailable due to signal loss. Also,

when nanometer-precision is not a strict requirement, but requires large rotational motion

sensing, this sensing method is very effective and can be easily implemented.

C. Suggestions for Future Work

The resolution and accuracy of the proposed method can be improved in a number of ways.

The primary reason for the error is the difference between the measured magnetic flux den-

sity and the modeled, and aligning the sensors’ axes with the platen’s body-fixed axes is

most critical. Having more basis functions in the model to compensate for such misalign-

ments is a possible solution to improve sensing resolution and accuracy. Further adding

redundant sensors is a possibility for better positioning accuracy, and this algorithm can

also be expanded for 6-DOF positioning.

Theoretically, the 3 DOFs can be controlled using only two sets of two-axis Hall-effect

sensors. Further investigating the reason why this did not work is for suggested future work.
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Fine-tuning the DKF or any estimator is a possibility to obtain a noiseless signal. This

will allow design of multivariable controller and also may attenuate the oscillation due to

the noisy GLSDC output.
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APPENDIX A

MATLAB AND REAL-TIME C CODES

A. MATLAB Code for Curve-Fitting

This is the Matlab program is to obtain the least squares model of sensor output a1 using

batch least squares. This is executed for each sensor output, and the model is in the form,

a1hat=c+alpha*sin(w*(Y0+yA-YAoffset))+beta*sin(5*w*(Y0+yA-YAoffset))...

+gamma*sin(w*(X0+xA-XAoffset))

The curve-fit result is saved as trycoefs.mat and used in the GLSDC algorithm.

clc;clear;close all;

tryfit; % determines the value of offset to minimize modeling error

ytilde=a1;

I=eye(4);

H=[sin(w*(Y0+yA-YAoffset)) sin(5*w*(Y0+yA-YAoffset)) ...

sin(w*(X0+xA-XAoffset)) sin(5*w*(X0+xA-XAoffset))];

H=sbs(ones(length(ytilde),1),H);

xhat=inv(H’*H)*H’*ytilde;

% xhat=[alpha beta gamma delta]

c=xhat(1);alpha=xhat(2); beta=xhat(3);gamma=xhat(4); delta=xhat(5);

% model output

a1hat=c+alpha*sin(w*(Y0+yA-YAoffset))+beta*sin(5*w*(Y0+yA-YAoffset))...

+gamma*sin(w*(X0+xA-XAoffset));
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B. MATLAB Code for 3-DOF GLSDC and DKF

clc;clear;close all;

trycoefs; % load coefficients data obtained from batch LS

numcount=500;

% tweak these

qx=1e2; qtheta=1e5; p0=1e-8;

dt=0.00125; %800Hz

time=0:dt:dt*numcount;

zkresult=zeros(numcount+1,3); % result of GLSDC

xkresult=zeros(numcount+1,9); % result of EKF

xbound=1e-3;

thetabound=pi/180;

% initial guess xc

theta=0*pi/180; X0=0; Y0=-0e-3;

zk=[X0; Y0; theta];

zkresult(1,:)=zk’;

w1=1e-3; % std of each signal from Hall sensors

W=eye(4)*(w1ˆ(-2));

% initial values for EKF

x0=[0; 0; 0]; xk=[x0; zeros(6,1)]; xkresult(1,:)=xk’;

Pk=p0*eye(9); %initial Kalman gain

Qk=zeros(3);Qk(1,1)=qx;Qk(2,2)=qx;Qk(3,3)=qtheta;

Hk=sbs(eye(3), zeros(3,6));

Phik=[eye(3) dt*eye(3) 1/2*dtˆ2*eye(3);

zeros(3) eye(3) dt*eye(3);
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zeros(3) zeros(3) eye(3)];

Upsk=[dtˆ3/6*eye(3); dtˆ2/2*eye(3); dt*eye(3)];

Hk=[eye(3) zeros(3,6)];

xk=zeros(9,1);

ytilde=zeros(4,1);

y=pos_to_output(0,0,0)’;

J=zeros(numcount+1,1);

for count=1:numcount,

if count>=80, y=pos_to_output(00e-6,0,1e-3)’;end;

ytilde=y+w1*randn(4,1);

zkresult(count+1,:)=zk’;

Ct=cos(theta); St=sin(theta);

XA = X0 + xA*Ct - yA*St; YA = Y0 + xA*St + yA*Ct;

XB = X0 + xB*Ct - yB*St; YB = Y0 + xB*St + yB*Ct;

wXA=omega*(XA-XAoffset); wYA=omega*(YA-YAoffset);

wXB=omega*(XB-XBoffset); wYB=omega*(YB-YBoffset);

CwXA=cos(wXA); CwYA=cos(wYA);

C5wXA=cos(5*wXA); C5wYA=cos(5*wYA);

CwXB=cos(wXB); CwYB=cos(wYB);

C5wXB=cos(5*wXB); C5wYB=cos(5*wYB);

SwXA=sin(wXA); SwYA=sin(wYA);

S5wXA=sin(5*wXA); S5wYA=sin(5*wYA);

SwXB=sin(wXB); SwYB=sin(wYB);
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S5wXB=sin(5*wXB); S5wYB=sin(5*wYB);

da10dX0=gamma1*omega*CwXA + 5*delta1*omega*C5wXA;

da10dY0=alpha1*omega*CwYA + 5*beta1*omega*C5wYA;

da10dtheta=omega*(xA*Ct-yA*St)*(alpha1*CwYA+5*beta1*C5wYA)

- omega*(xA*St+yA*Ct)*(gamma1*CwXA+5*delta1*C5wYA);

db10dX0=alpha2*omega*CwXA + 5*beta2*omega*C5wXA;

db10dY0=gamma2*omega*CwYA + 5*delta2*omega*C5wYA;

db10dtheta=-omega*(xA*St+yA*Ct)*(alpha2*CwXA+5*beta2*C5wYA)

+ omega*(xA*Ct-yA*St)*(gamma2*CwYA+5*delta2*C5wXA);

dc10dX0=gamma3*omega*CwXB + 5*delta3*omega*C5wXB;

dc10dY0=alpha3*omega*CwYB + 5*beta3*omega*C5wYB;

dc10dtheta=omega*(xB*Ct-yB*St)*(alpha3*CwYB+5*beta3*C5wYB)

- omega*(xB*St+yB*Ct)*(gamma3*CwXB+5*delta3*C5wYB);

dd20dX0=alpha4*omega*CwXB + 5*beta4*omega*C5wXB;

dd20dY0=gamma4*omega*CwYB + 5*delta4*omega*C5wYB;

dd20dtheta=-omega*(xB*St+yB*Ct)*(alpha4*CwXB+5*beta4*C5wYB)

+ omega*(xB*Ct-yB*St)*(gamma4*CwYB+5*delta4*C5wXB);

a10 = dc1 + alpha1*SwYA + beta1*S5wYA + gamma1*SwXA +delta1*S5wXA;

b10 = dc2 + alpha2*SwXA + beta2*S5wXA + gamma2*SwYA +delta2*S5wYA;

c10 = dc3 + alpha3*SwYB + beta3*S5wYB + gamma3*SwXB +delta3*S5wXB;

d20 = dc4 + alpha4*SwXB + beta4*S5wXB + gamma4*SwYB +delta4*S5wYB;

da1dX0=da10dX0*Ct+db10dX0*St;

da1dY0=da10dY0*Ct+db10dY0*St;
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da1dtheta=da10dtheta*Ct-a10*St + db10dtheta*St+b10*Ct;

db1dX0=db10dX0*Ct-da10dX0*St;

db1dY0=db10dY0*Ct-da10dY0*St;

db1dtheta=db10dtheta*Ct-b10*Ct - da10dtheta*St-a10*Ct;

dc1dX0=dc10dX0*Ct+dd20dX0*St;

dc1dY0=dc10dY0*Ct+dd20dY0*St;

dc1dtheta=dc10dtheta*Ct-c10*St + dd20dtheta*St+d20*Ct;

dd2dX0=dd20dX0*Ct-dc10dX0*St;

dd2dY0=dd20dY0*Ct-dc10dY0*St;

dd2dtheta=dd20dtheta*Ct-d20*Ct - dc10dtheta*St-c10*Ct;

H= [da1dX0 da1dY0 da1dtheta;

db1dX0 db1dY0 db1dtheta;

dc1dX0 dc1dY0 dc1dtheta;

dd2dX0 dd2dY0 dd2dtheta];

a1 = a10*Ct + b10*St; b1 = -a10*St + b10*Ct;

c1 = c10*Ct + d20*St; d2 = -c10*St + d20*Ct;

fx=[a1;b1;c1;d2];

deltay=ytilde-fx;

Jbefore=deltay’*W*deltay;

Rk=inv(H’*W*H); % covariance matrix, used in EKF

deltax=Rk*H’*W*deltay;

zk=zk+deltax;
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X0=zk(1); Y0=zk(2); theta=zk(3);

St=sin(theta); Ct=cos(theta);

XA = X0 + xA*Ct - yA*St; YA = Y0 + xA*St + yA*Ct;

XB = X0 + xB*Ct - yB*St; YB = Y0 + xB*St + yB*Ct;

wXA=omega*(XA-XAoffset); wYA=omega*(YA-YAoffset);

wXB=omega*(XB-XBoffset); wYB=omega*(YB-YBoffset);

SwXA=sin(wXA); SwYA=sin(wYA);

S5wXA=sin(5*wXA); S5wYA=sin(5*wYA);

SwXB=sin(wXB); SwYB=sin(wYB);

S5wXB=sin(5*wXB); S5wYB=sin(5*wYB);

a10 = dc1 + alpha1*SwYA + beta1*S5wYA + gamma1*SwXA +delta1*S5wXA;

b10 = dc2 + alpha2*SwXA + beta2*S5wXA + gamma2*SwYA +delta2*S5wYA;

c10 = dc3 + alpha3*SwYB + beta3*S5wYB + gamma3*SwXB +delta3*S5wXB;

d20 = dc4 + alpha4*SwXB + beta4*S5wXB + gamma4*SwYB +delta4*S5wYB;

a1 = a10*Ct + b10*St;

b1 = -a10*St + b10*Ct;

c1 = c10*Ct + d20*St;

d2 = -c10*St + d20*Ct;

fx=[a1;b1;c1;d2];

deltay=ytilde-fx;

Jafter=deltay’*W*deltay;

if Jafter>Jbefore,

zk = zk-0.8*deltax;

X0 = zk(1); Y0 = zk(2); theta = zk(3);
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end;

J(count+1)=deltay’*W*deltay;

zkresult(count+1,:)=zk’;

% Extended Kalman Filter

ytildek=zk;

% gain

matA=Hk*Pk*Hk’+Rk;

Kk=Pk*Hk’*inv(Hk*Pk*Hk’+Rk);

% update

Pkupdate=(eye(9)-Kk*Hk)*Pk;

Pk=Pkupdate;

xk=xk+Kk*(ytildek-Hk*xk);

%Propagation

xk=Phik*xk;

Pk*Phik’;

Pk=Phik*Pk*Phik’+Upsk*Qk*Upsk’;

xkresult(count+1,:)=xk’;

end;

C. C Code for 3-DOF GLSDC

The C codes for the GLSDC are presented. The curve-fitted values are saved in a header

file hall.m. GLSDC flag enables the GLSDC algorithm, and filter flag enables the DKF.

if(GLSDC_flag==1)

{
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Ct=cos(theta); St=sin(theta);

XA = X0 + xA*Ct - yA*St; YA = Y0 + xA*St + yA*Ct;

XB = X0 + xB*Ct - yB*St; YB = Y0 + xB*St + yB*Ct;

wXA=omega*(XA-XAoffset); wYA=omega*(YA-YAoffset);

wXB=omega*(XB-XBoffset); wYB=omega*(YB-YBoffset);

CwXA=cos(wXA); CwYA=cos(wYA);

C5wXA=cos(5*wXA); C5wYA=cos(5*wYA);

CwXB=cos(wXB); CwYB=cos(wYB);

C5wXB=cos(5*wXB); C5wYB=cos(5*wYB);

SwXA=sin(wXA); SwYA=sin(wYA);

S5wXA=sin(5*wXA); S5wYA=sin(5*wYA);

SwXB=sin(wXB); SwYB=sin(wYB);

S5wXB=sin(5*wXB); S5wYB=sin(5*wYB);

da10dX0=gamma1*omega*CwXA + 5*delta1*omega*C5wXA;

da10dY0=alpha1*omega*CwYA + 5*beta1*omega*C5wYA;

da10dtheta=omega*(xA*Ct-yA*St)*(alpha1*CwYA+5*beta1*C5wYA)

- omega*(xA*St+yA*Ct)*(gamma1*CwXA+5*delta1*C5wYA);

db10dX0=alpha2*omega*CwXA + 5*beta2*omega*C5wXA;

db10dY0=gamma2*omega*CwYA + 5*delta2*omega*C5wYA;

db10dtheta=-omega*(xA*St+yA*Ct)*(alpha2*CwXA+5*beta2*C5wYA)

+ omega*(xA*Ct-yA*St)*(gamma2*CwYA+5*delta2*C5wXA);

dc10dX0=gamma3*omega*CwXB + 5*delta3*omega*C5wXB;

dc10dY0=alpha3*omega*CwYB + 5*beta3*omega*C5wYB;

dc10dtheta=omega*(xB*Ct-yB*St)*(alpha3*CwYB+5*beta3*C5wYB)
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- omega*(xB*St+yB*Ct)*(gamma3*CwXB+5*delta3*C5wYB);

dd20dX0=alpha4*omega*CwXB + 5*beta4*omega*C5wXB;

dd20dY0=gamma4*omega*CwYB + 5*delta4*omega*C5wYB;

dd20dtheta=-omega*(xB*St+yB*Ct)*(alpha4*CwXB+5*beta4*C5wYB)

+ omega*(xB*Ct-yB*St)*(gamma4*CwYB+5*delta4*C5wXB);

a10 = dc1 + alpha1*SwYA + beta1*S5wYA + gamma1*SwXA +delta1*S5wXA;

b10 = dc2 + alpha2*SwXA + beta2*S5wXA + gamma2*SwYA +delta2*S5wYA;

c10 = dc3 + alpha3*SwYB + beta3*S5wYB + gamma3*SwXB +delta3*S5wXB;

d20 = dc4 + alpha4*SwXB + beta4*S5wXB + gamma4*SwYB +delta4*S5wYB;

da1dX0=da10dX0*Ct+db10dX0*St;

da1dY0=da10dY0*Ct+db10dY0*St;

da1dtheta=da10dtheta*Ct-a10*St + db10dtheta*St+b10*Ct;

db1dX0=db10dX0*Ct-da10dX0*St;

db1dY0=db10dY0*Ct-da10dY0*St;

db1dtheta=db10dtheta*Ct-b10*Ct - da10dtheta*St-a10*Ct;

dc1dX0=dc10dX0*Ct+dd20dX0*St;

dc1dY0=dc10dY0*Ct+dd20dY0*St;

dc1dtheta=dc10dtheta*Ct-c10*St + dd20dtheta*St+d20*Ct;

dd2dX0=dd20dX0*Ct-dc10dX0*St;

dd2dY0=dd20dY0*Ct-dc10dY0*St;

dd2dtheta=dd20dtheta*Ct-d20*Ct - dc10dtheta*St-c10*Ct;

matH[0][0]=da1dX0; matH[0][1]=da1dY0; matH[0][2]=da1dtheta;

matH[1][0]=db1dX0; matH[1][1]=db1dY0; matH[1][2]=db1dtheta;
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matH[2][0]=dc1dX0; matH[2][1]=dc1dY0; matH[2][2]=dc1dtheta;

matH[3][0]=dd2dX0; matH[3][1]=dd2dY0; matH[3][2]=dd2dtheta;

a1 = a10*Ct+b10*St; b1 = b10*Ct-a10*St;

c1 = c10*Ct+d20*St; d2 = d20*Ct-c10*St;

fx[0]=a1; fx[1]=b1; fx[2]=c1; fx[3]=d2;

deltay[0]=ytilde[0]-fx[0];

deltay[1]=ytilde[1]-fx[1];

deltay[2]=ytilde[2]-fx[2];

deltay[3]=ytilde[3]-fx[3];

Jbefore=deltay[0]*deltay[0]+deltay[1]*deltay[1]

+deltay[2]*deltay[2]+deltay[3]*deltay[3];

/* solve for matH’*matW*matH=HTWH */

for(i=0;i<=2;i++){

for(j=i;j<=2;j++){

HTWH[i][j]=0;

for(k=0;k<=3;k++){

HTWH[i][j]=HTWH[i][j]+matH[k][i]*matH[k][j]*W[k];

}

HTWH[j][i]=HTWH[i][j];

}

}

/* solve for inv(matH’*matW*matH)=Rk */
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det=HTWH[0][0]*HTWH[1][1]*HTWH[2][2]

+ HTWH[1][0]*HTWH[2][1]*HTWH[0][2]

+ HTWH[2][0]*HTWH[0][1]*HTWH[1][2]

- HTWH[0][0]*HTWH[2][1]*HTWH[1][2]

- HTWH[2][0]*HTWH[1][1]*HTWH[0][2]

- HTWH[1][0]*HTWH[0][1]*HTWH[2][2];

Rk[0][0]=(HTWH[1][1]*HTWH[2][2]-HTWH[1][2]*HTWH[2][1])/det;

Rk[0][1]=(HTWH[0][2]*HTWH[2][1]-HTWH[0][1]*HTWH[2][2])/det;

Rk[0][2]=(HTWH[0][1]*HTWH[1][2]-HTWH[0][2]*HTWH[1][1])/det;

Rk[1][1]=(HTWH[0][0]*HTWH[2][2]-HTWH[0][2]*HTWH[2][0])/det;

Rk[1][2]=(HTWH[0][2]*HTWH[1][0]-HTWH[0][0]*HTWH[1][2])/det;

Rk[2][2]=(HTWH[0][0]*HTWH[1][1]-HTWH[0][1]*HTWH[1][0])/det;

Rk[1][0]=Rk[0][1];

Rk[2][0]=Rk[0][2];

Rk[2][1]=Rk[1][2];

/* calculate inv(matH’*matW*matH)*matH’*matW=Rk*matH’*matW=RHTW */

for(i=0;i<=2;i++){

for(j=0;j<=3;j++){

RHTW[i][j]=0;

for(k=0;k<=2;k++){

RHTW[i][j]+=Rk[i][k]*matH[j][k]*W[j];

}

}

}
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deltax[0] = RHTW[0][0]*deltay[0] + RHTW[0][1]*deltay[1]

+ RHTW[0][2]*deltay[2] + RHTW[0][3]*deltay[3];

deltax[1] = RHTW[1][0]*deltay[0] + RHTW[1][1]*deltay[1]

+ RHTW[1][2]*deltay[2] + RHTW[1][3]*deltay[3];

deltax[2] = RHTW[2][0]*deltay[0] + RHTW[2][1]*deltay[1]

+ RHTW[2][2]*deltay[2] + RHTW[2][3]*deltay[3];

/* solve for Jafter */

X0 = X0 + deltax[0]; Y0 = Y0 + deltax[1];

theta = theta + deltax[2];

Ct=cos(theta); St=sin(theta);

XA = X0 + xA*Ct - yA*St; YA = Y0 + xA*St + yA*Ct;

XB = X0 + xB*Ct - yB*St; YB = Y0 + xB*St + yB*Ct;

wXA=omega*(XA-XAoffset); wYA=omega*(YA-YAoffset);

wXB=omega*(XB-XBoffset); wYB=omega*(YB-YBoffset);

SwXA=sin(wXA); SwYA=sin(wYA);

S5wXA=sin(5*wXA); S5wYA=sin(5*wYA);

SwXB=sin(wXB); SwYB=sin(wYB);

S5wXB=sin(5*wXB); S5wYB=sin(5*wYB);

a10 = dc1+alpha1*SwYA+beta1*S5wYA+gamma1*SwXA+delta1*S5wXA;

b10 = dc2+alpha2*SwXA+beta2*S5wXA+gamma2*SwYA+delta2*S5wYA;

c10 = dc3+alpha3*SwYB+beta3*S5wYB+gamma3*SwXB+delta3*S5wXB;

d20 = dc4+alpha4*SwXB+beta4*S5wXB+gamma4*SwYB+delta4*S5wYB;

a1 = a10*Ct+b10*St; b1 = b10*Ct-a10*St;
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c1 = c10*Ct+d20*St; d2 = d20*Ct-c10*St;

fx[0]=a1; fx[1]=b1; fx[2]=c1; fx[3]=d2;

deltay[0]=ytilde[0]-fx[0];

deltay[1]=ytilde[1]-fx[1];

deltay[2]=ytilde[2]-fx[2];

deltay[3]=ytilde[3]-fx[3];

Jafter=deltay[0]*deltay[0]+deltay[1]*deltay[1]

+deltay[2]*deltay[2]+deltay[3]*deltay[3];

if(Jafter>Jbefore){ /*alpha=0.2*/

X0 = X0 - 0.8*deltax[0];

Y0 = Y0 - 0.8*deltax[1];

theta = theta - 0.8*deltax[2];

}

} /* end GLSDC */
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