
NEGATIVE-NORM LEAST-SQUARES METHODS FOR AXISYMMETRIC

MAXWELL EQUATIONS

A Dissertation

by

DYLAN MATTHEW COPELAND

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2006

Major Subject: Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4270857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NEGATIVE-NORM LEAST-SQUARES METHODS FOR AXISYMMETRIC

MAXWELL EQUATIONS

A Dissertation

by

DYLAN MATTHEW COPELAND

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Joseph E. Pasciak
Committee Members, James H. Bramble

Jean-Luc Guermond
Ping Yang

Head of Department, Al Boggess

May 2006

Major Subject: Mathematics



iii

ABSTRACT

Negative-norm Least-squares Methods for Axisymmetric

Maxwell Equations. (May 2006)

Dylan Matthew Copeland, B.S., Southeastern Louisiana University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Joseph E. Pasciak

We develop negative-norm least-squares methods to solve the three-dimensional

Maxwell equations for static and time-harmonic electromagnetic fields in the case of

axial symmetry. The methods compute solutions in a two-dimensional cross section

of the domain, thereby reducing the dimension of the problem from three to two. To

achieve this dimension reduction, we work with weighted spaces in cylindrical coor-

dinates. In this setting, approximation spaces consisting of low order finite element

functions and bubble functions are analyzed.

In contrast to other methods for axisymmetric Maxwell equations, our least-

squares methods allow for discontinuous coefficients with large jumps and non-convex,

irregular polygonal domains discretized by unstructured meshes. The resulting linear

systems are of modest size, are symmetric positive definite, and can be solved very

efficiently. Computations demonstrate the robustness of the methods with respect to

the coefficients and domain shape.
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CHAPTER I

INTRODUCTION

We are interested in solving three-dimensional Maxwell equations in the case of sym-

metry with respect to an axis. Because solving three-dimensional vector-valued prob-

lems is very expensive computationally, there is a need for numerical solvers which ex-

ploit axial symmetry by reducing the problem to a two-dimensional computational do-

main. The specific problems we shall numerically solve are the axisymmetric Maxwell

equations for electrostatics, magnetostatics, and time-harmonic systems. In a simply-

connected domain Ω ⊂ R3, the Maxwell system for electrostatics is
∇× e = f in Ω

∇ · (εe) = g in Ω

e× n = 0 on ∂Ω,

(1.1)

and for magnetostatics the system is
∇× h = f in Ω

∇ · (µh) = g in Ω

h · n = 0 on ∂Ω.

(1.2)

Here e and h are the electric and magnetic fields, and the coefficients ε and µ are the

electric permittivity and magnetic permeability, respectively. Both coefficients are

assumed to be in L∞(Ω) and uniformly positive. The time-harmonic Maxwell system

The journal model is SIAM Journal of Numerical Analysis.
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is complex-valued, but can be reduced to solving two real-valued systems of the form

∇× h = ωεe + j in Ω

∇× e = ωµh + m in Ω

µh · n = 0 on ∂Ω

e× n = 0 on ∂Ω.

(1.3)

We assume that the above problems are axisymmetric, meaning that in cylindri-

cal coordinates (r, θ, z) the domain Ω is symmetric with respect to the z-axis and

the coefficients and data are independent of the angular variable θ. Under these

assumptions, the solution is also axisymmetric, so its derivatives with respect to θ

are zero and it suffices to compute the solution on the two-dimensional half section

D = {(r, z) : (r, 0, z) ∈ Ω}. Thus a dimension reduction is achieved in the computa-

tional domain.

In particular, the electrostatic system (1.1) reduces to the following two decou-

pled systems: 
∇× (er, ez) ≡ ∂er

∂z
− ∂ez

∂r
= fθ in D

∇r · (ε(er, ez)) ≡ 1
r
∂
∂r

(rεer) + ∂
∂z

(εez) = g in D

(er, ez) · (−nz, nr) = 0 on Γ1,

(1.4)

and 
−∂eθ

∂z
= fr in D

1
r
∂
∂r

(reθ) = fz in D

eθ = 0 on Γ1,

(1.5)

where Γ1 = {(r, z) ∈ ∂D : r > 0}. Similarly, the magnetostatic system (1.2) reduces
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to the following two decoupled systems:
∇r × (hr, hz) = fθ in D

∇r · (µ(hr, hz)) = g in D

(hr, hz) · (nr, nz) = 0 on Γ1,

(1.6)

and  −∂hθ
∂z

= fr in D

1
r
∂
∂r

(rhθ) = fz in D.
(1.7)

We define a special curl operator ∇r× on scalar functions φ by

∇r × φ =

(
−∂φ
∂z
,
1

r

(
∂

∂r
(rφ)

))
.

The time-harmonic system (1.3) reduces to the two decoupled systems

∇× (er, ez) = ωµhθ +mθ in D

∇r × hθ = ωε(er, ez) + (jr, jz) in D

∇r · ε(er, ez) = −ω−1∇ · j in D

(er, ez) · t = 0 on Γ1,

(1.8)



∇× (hr, hz) = ωεeθ + jθ in D

∇r × eθ = ωµ(hr, hz) + (mr,mz) in D

∇r · µ(hr, hz) = −ω−1∇ ·m in D

(hr, hz) · n = 0 on Γ1.

eθ = 0 on Γ1

(1.9)

Here t = (−nz, nr) is the unit tangent vector, oriented counterclockwise. We shall

develop negative-norm least-squares methods to solve (1.4) and (1.6) for the meridian

components in the electrostatic and magnetostatic equations. For the time-harmonic

problem, we shall solve (1.8) and (1.9) for all components of the solution pair (e,h).
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Recently, numerical methods have been developed for related problems. In [4],

Börm and Hiptmair present a multigrid method for the H(curl; Ω)-elliptic variational

problem arising from discretization of the time-dependent Maxwell equations. Their

analysis requires the rather restrictive assumptions that the coefficients of the bilinear

form fit a tensor product structure and have constant ratios. Moreover, their method

requires mesh structure, as it performs r-line smoothings and semicoarsening in the

z-direction.

Gopalakrishnan and Pasciak [10] demonstrated that line smoothing and semi-

coarsening are unnecessary for the convergence of geometric multigrid for the ax-

isymmetric Laplace and Maxwell (θ-component only, i.e. (1.5) or (1.7)) equations,

in the case of constant coefficients. However, the methods of [10] require structured

meshes, and the degradation of convergence with variable coefficients is not addressed.

It should also be noted that in [10], only the θ-component of the electric field is solved

for (see equation (1.5)). It appears that only [4] treats the (r, z)-components.

For the time-harmonic systems (1.8) and (1.9), Pardo et al. [14] have developed

a self-adaptive hp finite element method. Although hp methods aim to optimize

the computational cost of solving the linear systems of finite element formulations,

the methods must contend with the inherent difficulty that variational formulations

for the reduced axisymmetric systems have coefficients behaving like r or r−1 near

the z-axis. Moreover, hp methods are significantly more difficult and expensive to

implement than least-squares methods. Therefore, we are interested in least-squares

as an efficient alternative method which is robust with respect to the coefficients.

We propose negative-norm least-squares methods which require no special mesh

refinement near the z-axis due to the weights r and r−1. Mesh refinement is necessary

only in areas where the solution is poorly behaved. Thus we allow for unstructured

quasi-uniform meshes discretizing D, which may be any simply-connected polygonal
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domain in R2, possibly non-convex. Further, we allow the coefficients ε and µ to be

piecewise constant with large jump discontinuities. Under these widely applicable

conditions, our methods give first order convergence rates with modest problem sizes.

Since the reduced problems in D are derived by restricting the problems in Ω in

cylindrical coordinates, the function spaces are weighted with the radial variable r

[3]. This complicates the analysis, but the implementation of the resulting discrete

systems is simple. For example, the solution space L2
1(D), defined in Chapter II, is

approximated by the space of piecewise constant functions on a given quasi-uniform

triangulation of D. The test spaces are approximated by piecewise linear functions,

enriched with bubble functions on edges and elements. The discrete analogues of the

least-squares problems are then defined by restricting to these discrete subspaces.

The negative-norm least-squares methods involve inner products in dual spaces,

which are approximated in computations using preconditioners consisting simply of

Gauss-Seidel smoothing on the bubble subspaces and multigrid on the piecewise linear

subspaces. The multigrid iteration is computationally inexpensive to perform [10].

The resulting linear system is symmetric and positive definite, and we have shown that

it can be preconditioned simply by diagonal scaling. Thus the discrete problems can

be solved accurately with few iterations of the conjugate gradient method. Numerical

experiments demonstrate quasi-optimal first order convergence rates, as predicted by

the theory of [7].
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CHAPTER II

PRELIMINARIES

This chapter introduces the function spaces on which our methods are based. We

begin by setting the notation for general Hilbert spaces and then proceed to define

axisymmetric functions and Sobolev spaces weighted by the radial variable in cylin-

drical coordinates. We next consider differential operators acting on axisymmetric

functions in the weighted Sobolev spaces. Finally, discrete subspaces are introduced,

along with inverse estimates and interpolation operators.

A. Hilbert Spaces

In this section, we introduce notation in general Hilbert spaces. Let H be a Hilbert

space with inner product (·, ·)H and norm ‖ · ‖H . We denote by H ′ the dual of H, i.e.

the space of bounded linear functionals on H. Let < F, x > denote the action of a

bounded linear functional F in H ′ on an element x of H.

The operator TH : H ′ 7→ H is defined by

(THF, x)H =< F, x > for all x ∈ H. (2.1)

The Riesz Representation Theorem guarantees that TH is a well-defined operator.

The dual space H ′ is a Hilbert space with the inner product

(F,G)H′ =< F, THG > (2.2)

and the corresponding norm

‖F‖H′ = ((F, F )H′)
1/2 = sup

x∈H

< F, x >

‖x‖H
. (2.3)

If X and Y are Hilbert spaces and B : X 7→ Y is a linear operator, then we
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define the adjoint operator B∗ : Y 7→ X by

(x,B∗y)X = (Bx, y)Y for all x ∈ X, y ∈ Y.

The kernel of a linear operator B is denoted kerB.

B. Differential Operators and Sobolev Spaces

A subset A of Rd is said to be a domain if it is Lebesgue-measurable and has a non-

empty interior. Given an open domain A in Rd, with d = 2 or 3, we denote by Ck(A)

the space of continuous real-valued functions on A with continuous derivatives up to

order k. Let D(A) denote the space of infinitely smooth real-valued functions with

compact support in A and D(A) denote the space of functions in D(Rd) restricted to

the closure of A. To be precise,

D(A) = {φ : A 7→ R : supp φ is compact in A, and φ ∈ Ck(A) for all k ≥ 0}, (2.4)

D(A) = {φ|A : φ ∈ D(Rd)}. (2.5)

A linear functional F : D(A) 7→ R is continuous if F (φn) converges to F (φ) for

all sequences {φn}n∈N of functions φn in D(A) converging to some φ in D(A). The

convergence of such a sequence in D(A) means that there exists a compact subset K

of A such that φn vanishes on A \K for all n ∈ N, {φn}n∈N converges uniformly to φ

on K, and all derivatives of the functions φn converge uniformly to those of φ on K.

The space of continuous linear functionals on D(A), i.e. the space of distributions, is

denoted by D(A)′.

We now define differential operators on smooth functions in D(Rd), for d = 2 or

3. Let {x1, . . . , xd} be any prescribed coordinate system for Rd. Given a multi-index

α = (α1, . . . , αd) of length |α| =
∑d

j=1 αj, where each αj is a non-negative integer, we
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define the differential operator Dα : D(Rd) 7→ D(Rd) by

Dαu =

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd
u.

The weak differential operator Dα
w : D(Rd)′ 7→ D(Rd)′ is defined on distributions F

by

< Dα
wF, φ >= (−1)|α| < F,Dαφ > for all φ ∈ D(Rd)3.

If {x1, . . . , xd} is the Cartesian coordinate system, then the gradient operator ∇ :

D(Rd) 7→ D(Rd)d is defined by (∇u)j = ∂u
∂xj

. We define the distributional divergence

operator ∇· :
(
D(Rd)3

)′ 7→ D(Rd)′ by

< ∇ · F, φ >=< F,∇φ > for all φ ∈ D(Rd)3.

In the case d = 3, the curl operator ∇× : D(Rd)3 7→ D(Rd)3 is defined (in Cartesian

coordinates) by

∇× v =

(
∂v3

∂x2

− ∂v2

∂x3

,
∂v1

∂x3

− ∂v3

∂x1

,
∂v2

∂x1

− ∂v1

∂x2

)
,

where v = (v1, v2, v3) in the standard orthonormal basis of R3. Then we define the

distributional curl operator ∇× :
(
D(Rd)3

)′ 7→ (
D(Rd)3

)′
by

< ∇× F, φ >=< F,∇× φ > for all φ ∈ D(Rd)3.

Next we introduce Sobolev spaces of functions with certain differentiability prop-

erties. For real p ≥ 1, Lp(A) is the Banach space of Lebesgue-measurable functions

bounded in the norm

‖u‖Lp(A) =

(∫
A

|u|p dx
)1/p

.

For integers k ≥ 1, the Sobolev space W k
p (A) is defined as the space of distributions
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in Lp(A) having all weak derivatives up to order k in Lp(A). The norm on W k
p (A) is

‖u‖Wk
p (A) =

∑
|α|≤k

‖Dα
wu‖

p
Lp(A)

1/p

.

In [1], it is proved that W k
p (A) is a Banach space. When p = 2, Hk(A) ≡ W k

2 (A) is

a Hilbert space.

The Sobolev Imbedding Theorem (see [1, 11]) gives conditions under which

certain Sobolev spaces are related by continuous imbeddings. Below we state a specific

case of the theorem.

Theorem 1 (Sobolev Imbedding Theorem) Let A be a bounded, open domain in

R
d, with a Lipschitz boundary. For all real t ≤ s and p ≤ q satisfying s− d

p
= t− d

q
,

we have the continuous imbedding

W s
p (A) ⊂ W t

q (A).

C. Axisymmetric Functions

The methods of this dissertation are designed to compute axisymmetric functions,

which we define precisely in this section. It will be convenient to express such functions

in terms of cylindrical coordinates (r, θ, z), where r, θ, and z are the radial, azimuthal,

and axial variables, respectively. Together, the radial and axial coordinates (r, z) are

referred to as the meridian coordinates. Recall that the Jacobian of the transformation

from Cartesian coordinates (x, y, z) to cylindrical coordinates (r, θ, z) is

J =

∣∣∣∣∂(x, y, z)

∂(r, θ, z)

∣∣∣∣ = r. (2.6)

A domain Ω in R3 is said to be an axisymmetric domain if it is symmetric with respect

to rotation about the z-axis.
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Assumption 1 Throughout the dissertation, we assume that Ω is a bounded axisym-

metric domain in R3, which intersects the z-axis. Further, we assume that Ω is simply

connected, with a polyhedral boundary.

For the purposes of this dissertation, it is not necessary to assume that Ω intersects

the z-axis. We are simply excluding the trivial case of Ω being bounded away from

the z-axis, in which the problems can be solved with simpler methods requiring much

less analysis. Indeed, the problems involve operators weighted by the radial variable,

which have singularities at the z-axis. This necessitates careful analysis in weighted

spaces and special bubble functions in the computations. If the domain is bounded

away from the z-axis, then there are no such difficulties.

The meridian domain D = {(r, z) : (r, 0, z) ∈ Ω} shall be the computational

domain for our methods. The assumptions on Ω imply that D is simply connected,

with a polygonal boundary ∂D. Since Ω intersects the z-axis, the boundary of D has

exactly one connected segment on the z-axis, denoted Γ0 = {(0, z) ∈ ∂D}. The outer

boundary of D is denoted Γ1 = ∂D \ Γ0. Note that D may be non-convex.

The unit cylindrical coordinate vectors are denoted by er, eθ and ez. Thus, vector

fields are written either as v = (vr, vθ, vz) or as v = vrer + vθeθ + vzez. Let Rη be

the rotation around the z-axis by the angle η ∈ [−π, π). A scalar function u : Ω 7→ R

is said to be invariant by rotation if

u ◦ Rη = u, for all η ∈ [−π, π), (2.7)

and a vector field v : Ω 7→ R
3 is said to be axisymmetric if

R−η(v ◦ Rη) = v, for all η ∈ [−π, π). (2.8)
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The definition (2.7) means that a scalar function u invariant by rotation satisfies

∂u
∂θ

= 0. If v = (vr, vθ, vz) is axisymmetric, then (2.8) clearly implies vz ◦ Rη = vz for

all η ∈ [−π, π), since the rotation R−η has no effect on the z-component of v◦Rη. On

the other hand, v ◦Rη(x) = Rηv(x) implies that vr ◦Rη = vr and vθ ◦Rη = vθ, since

(vr, vθ) are local coordinates in the plane orthogonal the z-axis at the point x. Thus,

the component functions of an axisymmetric vector field are invariant by rotation. In

particular, derivatives of v with respect to θ equal zero.

Given a function defined on D, a function invariant by rotation can be defined

on Ω by rotating it around the z-axis. The rotation of a scalar function u defined on

D is denoted ŭ, and is given by

ŭ(r, θ, z) = u(r, z). (2.9)

We say that u is the trace of the function ŭ.

D. Weighted Sobolev Spaces

This section introduces the function spaces onD containing the traces of axisymmetric

functions in Sobolev spaces on Ω. For any β ∈ R, let L2
β(D) denote the weighted

space of Lebesgue-measurable functions u on D bounded in the norm

‖u‖L2
β(D) =

(∫
D

rβu2 dr dz

)1/2

.

If a function ŭ is invariant by rotation and u is its trace, related by (2.9), then (2.6)

gives ‖ŭ‖2
L2(Ω) = 2π‖u‖2

L2
1(D)

. In fact, the trace is an isomorphism (see Proposition

1 below). We denote by Hk
β(D) the weighted Sobolev space of functions in L2

β(D)

whose weak derivatives up to order k are in L2
β(D). That is, Hk

β(D) is the Hilbert
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space endowed with the seminorm | · |Hk
β (D) and norm ‖ · ‖Hk

β (D), defined by

|u|2Hk
β (D) =

∑
|α|≤k

‖Dαu‖2
L2
β(D),

‖u‖2
Hk
β (D) = ‖u‖2

L2
β(D) + |u|2Hk

β (D).

Further, we define the subspaces

H1
1,�(D) = {w ∈ H1

1 (D) : w = 0 on Γ1},

H1
−(D) = H1

1 (D) ∩ L2
−1(D),

H1
−,0(D) = {u ∈ H1

−(D) : u = 0 on ∂D},

H2
−(D) = H2

1 (D) ∩ L2
−1(D).

The significance of the function spaces introduced above is evident from the following

result, proved in [3]. The isomorphisms given below indicate the function spaces for

dimension reduced axisymmetric problems. In the sequel, the subspace of axisym-

metric functions in a Hilbert space H is denoted H̆.

Proposition 1 The trace mapping, which maps an axisymmetric function ŭ to u by

(2.9), yields the following isomorphisms:

L̆2(Ω) ∼= L2
1(D),

H̆k(Ω) ∼= Hk
1 (D),

H̆1
0 (Ω) ∼= H1

1,�(D).

In our analysis, we shall often make use of the density of smooth functions in

the weighted Sobolev spaces H1
1 (D) and H1

−(D). The proof of the following density

result in Hk
1 (D) is given in [12], and the result in H1

−(D) is proved in [10].

Proposition 2 The space of smooth functions D(D) is dense in Hk
1 (D) for all inte-
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gers k ≥ 1. The set of smooth functions in D(D) which vanish in a neighborhood of

Γ0 is dense in H1
−(D).

The traces of functions in H1
1 (D) comprise the space H

1/2
1 (Γ) (see [3]). However,

we shall only use the boundedness of the trace as an operator from H1
1 (D) to L2

1(e), for

straight edges e ⊂ D not contained in Γ0. The following result can be easily verified

for functions in D(D), and the proposition then follows by density (see Proposition

2). Note that the norm of the trace operator depends on angles of ∂D. In general,

traces of functions in H1
1 (D) do not exist on Γ0.

Proposition 3 For any straight edge e ⊂ D with e * Γ0, the trace mapping from

H1
1 (D) to L2

1(e) is bounded.

E. Differential Operators in Cylindrical Coordinates

In cylindrical coordinates with the basis representation v = vrer + vθeθ + vzez, the

differential operators curl, divergence, and gradient have the expressions

∇× v =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
er +

(
∂vr
∂z
− ∂vz

∂r

)
eθ +

1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
ez, (2.10)

∇r · v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

,

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez. (2.11)

Assuming axisymmetry, all derivatives with respect to θ equal zero. In particular, we

have

∇× (0, vθ, 0) = −∂vθ
∂z

er +
1

r

∂

∂r
(rvθ)ez,

∇× (vr, 0, vz) =

(
∂vr
∂z
− ∂vz

∂r

)
eθ. (2.12)
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That is, the curl of an azimuthal vector field is meridian, and the curl of a merid-

ian vector field is azimuthal. Thus the curl decouples the azimuthal and meridian

components of an axisymmetric vector field. Consequently, it will be convenient to

define the differential operators curl, divergence, and gradient for the azimuthal and

meridian components of axisymmetric vector fields. In accordance with (2.11), the

gradient is defined by ∇φ = (∂φ
∂r
, ∂φ
∂z

). The divergence ∇r· and the scalar curl ∇× of

a meridian vector field v = (vr, vz) are defined by

∇× (vr, vz) =
∂vr
∂z
− ∂vz

∂r

∇r · (vr, vz) =
1

r

∂

∂r
(rvr) +

∂vz
∂z

, (2.13)

respectively. We define the curl of a scalar field φ by the r and z components of the

curl of φ eθ, i.e.

∇r × φ =

(
−∂φ
∂z
,
1

r

(
∂

∂r
(rφ)

))
. (2.14)

We use the notation (·, ·)r = (·, ·)L2
1(D), (·, ·)r,τ = (·, ·)L2

1(τ), and < ·, · >r,Γ1=

(·, ·)L2
1(Γ1). This notation is also used for the inner products on the vector spaces

L2
1(D)2 and L2

1(τ)2, and the meaning will be clear from the context. For vectors

v ∈ R2, we denote the Euclidean norm |v| = (v2
r + v2

z)
1/2. The Green’s formulas

stated in the following lemma will be used repeatedly.

Lemma 1 Let n = (nr, nz) denote the outward unit normal and t = (−nz, nr) denote

the unit tangent vector (oriented counterclockwise). Then for all v ∈ H1
1 (D)2 and

φ ∈ H1
−(D), we have

(∇× v, φ)r = (v,∇r × φ)r− < v · t, φ >r,Γ1 . (2.15)
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Also, for all v ∈ H1
−(D)×H1

1 (D) and φ ∈ H1
1 (D), we have

(∇r · v, φ)r = −(v,∇φ)r+ < v · n, φ >r,Γ1 . (2.16)

Proof. Clearly (2.15) holds for v ∈ D(D)2 and φ ∈ D(D), with φ vanishing in

a neighborhood of Γ0. By Lemma 3.1 of [10], the subspace of functions in D(D)

vanishing in a neighborhood of Γ0 is dense in H1
−(D). The density of D(D) in H1

1 (D)

is given by Proposition 2.1(1) of [10]. Thus (2.15) follows by a density argument.

Similarly, (2.16) holds for v ∈ D(D)2 and φ ∈ D(D), with vr vanishing in a

neighborhood of Γ0. By density (see the previous paragraph), (2.16) holds on the

spaces stated therein.

F. Discrete Subspaces

The numerical methods we shall present in this dissertation use finite dimensional

subspaces consisting of standard finite element spaces and certain spaces of bubble

functions. These spaces are defined on some mesh Th which discretizes the computa-

tional domain D. Accordingly, their approximation properties depend on the mesh

size h, defined as follows. For each element τ of Th, let hτ denote the diameter of

τ and ρτ the diameter of the largest circle inscribed in τ . Then h = maxτ hτ . Let

T be a given family of meshes discretizing D and containing meshes Th for h > 0

arbitrarily small. Thus h is considered as a parameter associated with meshes in T,

which tends to zero.

Further, we denote by rτ the maximum value of the radial variable r at the

vertices of τ and by he the length of an edge e. The theory and methods of this

dissertation apply to both triangular and quadrilateral meshes, but we only consider

triangular meshes for simplicity of presentation. We make the following assumptions

regarding the family of meshes T.
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Assumption 2 Each mesh Th in T consists of non-overlapping triangles τ with

boundaries aligned with the jumps of the coefficients ε and µ. The family of meshes

T is locally quasi-uniform, i.e. there exists a constant C independent of h such that

hτ
ρτ
≤ C for all τ in Th, all Th in T.

A consequence of the quasi-uniformity of T is the equivalence of rτ and hτ for trian-

gles τ intersecting Γ0. Throughout the dissertation, C represents a generic positive

constant which may vary in different instances. The constant C is always independent

of the mesh size h and the coefficients ε and µ, unless stated otherwise.

The discrete subspaces are defined as piecewise polynomial spaces. For integers

k ≥ 0, we denote by Pk(A) the space of polynomials in r and z of degree less than or

equal to k on a domain A ⊆ D. We shall use the following spaces of piecewise linear

continuous functions:

Sh = {u ∈ C0(D) : u|τ ∈ P1(τ) for all τ ∈ Th} ⊂ H1
1 (D),

Sh� = Sh ∩H1
1,�(D),

Sh− = Sh ∩H1
−(D),

Sh0 = {u ∈ Sh : u = 0 on ∂D}.

In addition to the piecewise linear spaces, we shall also use spaces of bubble

functions defined on the edges and elements of the mesh Th. Let τ be a triangle in

Th, and denote by λi(r, z), i = 1, 2, 3, the barycentric coordinate for (r, z) ∈ τ . Let e

be any edge of τ , and assume that λ3 corresponds to the vertex not in e. Then we

define the edge bubble spaces

B(1)
e = span{λ1λ2}, B(2)

e = span{λ1λ2, rλ1λ2},
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and the element bubble spaces

B(1)
τ = span{λ1λ2λ3}, B(2)

τ = span{λ1λ2λ3, rλ1λ2λ3}.

The following weighted inverse estimates are proved in [2].

Lemma 2 For each integer k ≥ 1, there exists a constant Ck > 0 such that for every

triangle τ ∈ Th and all polynomials f ∈ Pk(τ) vanishing on Γ0 if τ ∩ Γ0 6= ∅,

‖f‖L2
−1(τ) ≤ Ckr

−1
τ ‖f‖L2

1(τ).

Lemma 3 For each integer k ≥ 0, there exists a constant Ck > 0 such that for any

triangle τ in Th,

‖f‖H1
1 (τ) ≤ Ckh

−1
τ ‖f‖L2

1(τ), for all f ∈ Pk(τ). (2.17)

Let {φi} denote the standard nodal basis for Sh, so that for each vertex ai of Th,

we have φj(ai) = δij. As a consequence of Lemma 2,

Sh− = span{φi : ai /∈ Γ0}.

Now we introduce Clement-like interpolation operators [2], which are bounded

in H1
1 (D) or H1

−(D) and have approximation properties. For each vertex ai in Th, let

τi be a triangle in Th having ai as a vertex. Define the L2
1(τi)-orthogonal projector

πi : L2
1(τi) 7→ P1(τi) by∫

τi

r(u− πiu)q dr dz, for all q ∈ P1(τi). (2.18)

Then we define the Clement operators Πh : H1
1 (D) → Sh, Πh

� : H1
1,�(D) → Sh� ,

Πh
− : H1

−(D)→ Sh−, and Πh
0 : H1

−,0(D)→ Sh0 by

Πhu =
∑

ai∈Th(πiu)(ai)φi, Πh
�u =

∑
ai /∈Γ1

(πiu)(ai)φi,

Πh
−u =

∑
ai /∈Γ0

(πiu)(ai)φi, Πh
0u =

∑
ai /∈∂D(πiu)(ai)φi.
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The following approximation results for these projectors are proved in [2]. Here, ∆τ

denotes the union of all triangles in Th sharing a common vertex with τ .

Lemma 4 For all triangles τ in Th, we have

h−2
τ ‖u− Πhu‖2

L2
1(τ) + ‖u− Πhu‖2

H1
1 (τ) ≤ C‖u‖2

H1
1 (∆τ ) for all u ∈ H1

1 (D), (2.19)

h−2
τ ‖u− Πh

�u‖2
L2

1(τ) + ‖u− Πh
�u‖2

H1
1 (τ) ≤ C‖u‖2

H1
1 (∆τ ) for all u ∈ H1

1,�(D), (2.20)

h−2
τ ‖u− Πh

−u‖2
L2

1(τ) + ‖u− Πh
−u‖2

H1
−(τ) ≤ C‖u‖2

H1
−(∆τ ) for all u ∈ H1

−(D), (2.21)

h−2
τ ‖u− Πh

0u‖2
L2

1(τ) + ‖u− Πh
0u‖2

H1
−(τ) ≤ C‖u‖2

H1
−(∆τ ) for all u ∈ H1

−,0(D).

(2.22)
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CHAPTER III

NEGATIVE-NORM LEAST-SQUARES METHODS

In this chapter, we introduce negative-norm least-squares methods in an abstract

setting. The theory of these methods is surveyed, with theorems on the existence

and uniqueness of solutions, as well as convergence rates for discretized least-squares

methods. The presentation follows [7].

The abstract setting for this chapter is in Hilbert spaces X and Y . Recall that

their duals are denoted by X ′ and Y ′. The weak formulations of problems considered

in this dissertation shall be of the following form:
Find x ∈ X satisfying

b(x, y) =< F, y >, for all y ∈ Y.
(3.1)

Here, F is in Y ′ and b : X × Y → R is a continuous bilinear form. That is, b(x, y) ≤

‖b‖‖x‖X‖y‖Y for all x in X and y in Y , with ‖b‖ > 0. It will be convenient to work

with the operator B : X → Y ′ associated with b, which is defined by

(Bx, y)Y = b(x, y) for all x ∈ X, y ∈ Y. (3.2)

Note that B is a bounded linear operator and (3.1) may be rewritten as Bx = F . The

following generalized Lax-Milgram theorem gives sufficient conditions for existence

and uniqueness of solutions to (3.1). Clearly, the compatibility condition for F is

necessary.

Theorem 2 Suppose the continuous bilinear form b : X×Y → R satisfies the inf-sup

condition

‖x‖X ≤ C0 sup
y∈Y

b(x, y)

‖y‖Y
for all x ∈ X, (3.3)
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and F ∈ Y ′ satisfies the compatibility condition

< F, y >= 0 for all y ∈ kerB∗. (3.4)

Then there exists a unique solution x ∈ X to (3.1), satisfying the stability estimate

‖x‖X ≤ C0‖F‖Y ′ . (3.5)

Even when the inf-sup condition (3.3) holds, the weak problem (3.1) does not always

have a solution due to the compatibility condition. However, there is always a unique

solution to the negative-norm least-squares problem: Find x ∈ X satisfying

A(x, z) ≡ (Bx,Bz)Y ′ = (F,Bz)Y ′ , for all z ∈ X. (3.6)

Indeed, the inf-sup condition (3.3) for b implies that

‖x‖X ≤ C‖Bx‖Y ′ for all x ∈ X. (3.7)

Therefore, A is a bounded, coercive bilinear form on X ×X. Thus we have the main

result for the negative-norm least-squares problem.

Theorem 3 If the continuous bilinear form b : X × Y → R satisfies the inf-sup

condition (3.3) then there exists a unique solution x ∈ X to (3.6). Moreover, if (3.1)

has a solution then the solutions of (3.1) and (3.6) coincide.

Now we turn our attention to approximation of solutions to (3.6). We consider

discrete subspaces Xh ⊂ X and Yh ⊂ Y of finite dimension, where h > 0 corresponds

to the size of the mesh associated with Xh and Yh. These discrete subspaces are

assumed to have some approximation properties so that for some integers j, k ≥ 1,
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we have

inf
xh∈Xh

‖x− xh‖X ≤ C(x)hj for all x ∈ X, (3.8)

inf
yh∈Yh

‖y − yh‖Y ≤ C(y)hk for all y ∈ Y. (3.9)

In these inequalities, the constant depends on some norm of the function being ap-

proximated. In our applications, this will be a higher order weighted Sobolev norm.

The discrete least-squares system is defined by restricting (3.6) to the discrete

subspaces. In order to implement the method and perform computations, we must

replace the inner product in the dual space Y ′ by a computable inner product in the

discrete space Yh. Therefore, we introduce the operator TYh : Y ′h → Yh defined by

(TYhG, y)Y =< G, y > for all y ∈ Yh. (3.10)

Now the discrete least-squares problem is to find x ∈ Xh satisfying

Ah(x, z) ≡< Bhx, TYhBhz >=< F, TYhBhz >, for all z ∈ Xh. (3.11)

If Xh and Yh are such that the discrete inf-sup condition

‖x‖X ≤ C1 sup
y∈Yh

b(x, y)

‖y‖Y
for all x ∈ Xh (3.12)

holds then a unique solution to (3.11) exists and provides a quasi-optimal approxi-

mation to the solution of the continuous problem (3.6). This is stated precisely in

the following theorem, which is proved in [7].

Theorem 4 Assume the hypotheses of Theorem 2 are satisfied, so that (3.1) has a

unique solution x. If (3.12) also holds, then (3.11) has a unique solution xh in Xh,

with

‖x− xh‖X ≤ (1 + C2
1‖b‖2) inf

z∈Xh
‖x− z‖X . (3.13)
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The discrete least-squares problem (3.11) requires evaluation of the operator TYh ,

which is essentially the solution of a linear system involving the stiffness matrix for

the inner product in Y . In numerical computations, this inversion can be replaced by

a more efficient preconditioner T̃Yh : Y ′h → Yh. By this we mean that the operators

T̃Yh and TYh are spectrally equivalent, i.e. there exist constants 0 < a0 ≤ a1 satisfying

a0 < G, T̃YhG >≤< G, TYhG >≤ a1 < G, T̃YhG > for all G ∈ Y ′h. (3.14)

Thus the discrete least-squares problem becomes

Ãh(x, z) ≡< Bhx, T̃YhBhz >=< F, T̃YhBhz >, for all z ∈ Xh. (3.15)

The following corollary (cf. [7]) states that the problem (3.15) has a unique solution

which is still quasi-optimal, provided the preconditioner T̃Yh is spectrally equivalent

to TYh .

Corollary 1 Assume the hypotheses of Theorem 4 and the existence of constants

0 < a0 ≤ a1 satisfying (3.14). Then (3.15) has a unique solution xh in Xh, and

‖x− xh‖X ≤
(

1 +
a1

a0

C2
1‖b‖2

)
inf
z∈Xh
‖x− z‖X . (3.16)

Remark 1 Assuming the approximation property (3.8), we have the error estimate

‖x− xh‖X ≤
(

1 +
a1

a0

C2
1‖b‖2

)
C(x)hj. (3.17)

Thus we have a quasi-optimal method (3.15). The discrete problem involves the

solution of a symmetric positive definite linear system. In the applications, this

system will be solved iteratively by the conjugate gradient method.
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CHAPTER IV

ELECTROSTATICS

In this chapter, we consider as a model problem the Maxwell system for electrostatics,

defined as follows. The domain Ω in R3 satisfies Assumption 1. The static Maxwell

system for the electric field e ∈ L2(Ω)3 is
∇× e = f in Ω

∇ · (εe) = g in Ω

e× n = 0 on ∂Ω.

(4.1)

We assume that the electric permittivity ε is piecewise constant and positive and well

behaved enough so that when f ∈ L2(Ω), solutions to the Dirichlet problem

−∇ · ε∇u = f in Ω

u = 0 on ∂Ω,

are in the Sobolev space H1+s(Ω) for some s > 0. Further, we assume that f ∈ L2(Ω)3

is axisymmetric and that g ∈ L2(Ω) and ε are invariant by rotation. The boundary

condition e×n = 0 corresponds to a perfect conductor [13]. Inhomogeneous bound-

ary conditions can be handled by simply modifying the data in the weak formulation

considered below.

Under the assumption of axisymmetric data, transforming the system (4.1) to

cylindrical coordinates (r, θ, z) yields (see [3]) two decoupled systems in the two-
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dimensional domain D = {(r, z) : (r, 0, z) ∈ Ω}:
∇× (er, ez) = fθ in D

∇r · (ε(er, ez)) ≡ 1
r
∂
∂r

(rεer) + ∂
∂z

(εez) = g in D

(er, ez) · (−nz, nr) = 0 on Γ1,

(4.2)

and 
−∂eθ

∂z
= fr in D

1
r
∂
∂r

(reθ) = fz in D

eθ = 0 on Γ1,

(4.3)

where Γ1 = {(r, z) ∈ ∂D : r > 0}. The assumptions on Ω imply that D is a bounded

domain in R2 with a polygonal boundary. Note that D may be non-convex.

The azimuthal component eθ can be solved for separately in the following scalar

equation obtained by taking the curl of equation (4.3): −
∂
∂r

(
1
r
∂
∂r

(reθ)
)
− ∂2eθ

∂z2 = ∇× (fr, fz) in D

eθ = 0 on Γ1.
(4.4)

Observe that integration by parts yields a variational formulation for (4.4) that is

coercive on the space {φ ∈ H1
−(D) : φ = 0 on ∂D}. Note that this boundary condition

is equivalent to the one in (4.4), as all functions in φ ∈ H1
−(D) satisfy φ = 0 on

Γ0 = ∂D \ Γ1.) Thus multigrid methods can be used to numerically solve (4.4),

as in [4, 10]. We are interested only in solving (4.2) for the meridian components

e = (er, ez) ∈ L2
1(D)2.
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A. The Least-Squares Formulation

Applying Green’s formulas (Lemma 1) to (4.2) yields the following weak formulation:

Find e ∈ L2
1(D)2 satisfying

b(e, (φ, q)) ≡ (e,∇r × φ)r + (εe,∇q)r = (fθ, φ)r − (g, q)r, (4.5)

for all (φ, q) ∈ H1
−(D) ×H1

1,�(D). (4.5) provides a weak formulation of (4.2), which

implicitly enforces the boundary condition e × n = 0. Define the operators curl1 :

L2
1(D)2 → H1

−(D)
′
, divε : L2

1(D)2 → H1
1,�(D)′, and B : L2

1(D)2 → (H1
−(D)×H1

1,�(D))′

by

< curl1 v, ψ >= (v,∇r × ψ)r for all v ∈ L2
1(D)2, ψ ∈ H1

−(D),

< divε v, ψ >= (εv,∇ψ)r for all v ∈ L2
1(D)2, ψ ∈ H1

1,�(D),

Bv = (curl1 v, divε v) for all v ∈ L2
1(D)2.

(4.6)

The curl operator curl1 has the subscript 1 to distinguish it from a different curl op-

erator used later in the magnetostatic and time-harmonic problems. Thus B satisfies

(Be, (φ, q)) = b(e, (φ, q)) for all e ∈ L2
1(D)2 and (φ, q) ∈ H1

−(D) ×H1
1,�(D). Further

define the symmetric bilinear form A on L2
1(D)2 × L2

1(D)2 and the linear functional

F by

A(u,v) ≡ (Bu, Bv)(H1
−(D)×H1

1,�(D))′

= (curl1 u, curl1 v)H1
−(D)

′ + (divε u, divε v)H1
1,�(D)′ ,

< F,v > ≡ (fθ, curl1 v)H1
−(D)

′ − (g, divε v)H1
1,�(D)′ .

Then the dual based least-squares formulation of (4.5) is to find e ∈ L2
1(D)2 satisfying

A(e,v) =< F,v > for all v ∈ L2
1(D)2. (4.7)
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To show that the linear operator B and its inverse are bounded, we shall use the

following orthogonal decomposition for the space L2
1(D)2.

Lemma 5 For any v ∈ L2
1(D)2, there exist φ ∈ H1

−(D) and q ∈ H1
1,�(D) satisfying

v = ∇r×φ+ ε∇q. This decomposition is orthogonal with respect to the inner-product

(ε−1·, ·)r on L2
1(D)2.

Before proving Lemma 5, we first prove a technical lemma.

Lemma 6 Let s > 0 and assume that A ⊂ Ω and S ⊂ ∂A are open sets with

Lipschitz continuous boundaries. For any divergence-free vector field w in (Hs(Ω))3,

the surface integral ∫
S

w · n ds (4.8)

is finite.

Proof. By the Sobolev Imbedding Theorem (Theorem 1), (Hs(Ω))3 is imbedded

in (Lq(Ω))3 for some q > 2. Define p < 2 by 1
p

+ 1
q

= 1. Then 1− 1
p
< 1

p
. Consider the

space W̃ t
p(S) consisting of all functions in W t

p(S) whose extensions by zero outside S

are in W t
p(∂A). By Corollary 1.4.4.5 of [11], we have W̃ t

p(S) = W t
p(S) when t < 1

p
.

In particular, the characteristic function χS : ∂A 7→ R, defined by

χS(x) =


1 if x ∈ S,

0 otherwise,

is in W
1− 1

p
p (∂A). Consequently, there exists φ in W 1

p (A) such that φ|∂A = χS. Apply-

ing Green’s formula and the hypothesis that w is divergence-free yields∫
S

w · n ds =

∫
∂A

χSw · n ds =

∫
A

w · ∇φ dx

≤ ‖w‖Lq(A)‖∇φ‖Lp(A) <∞.
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Thus the surface integral (4.8) is bounded.

Proof. [Proof of Lemma 5] The Green’s formula (2.15) and the density of smooth

functions yield (∇r × φ,∇q)r = 0 for any φ ∈ H1
−(D) and q ∈ H1

1,�(D). In addition,

‖∇r × φ‖r and ‖ε1/2∇q‖r provide equivalent norms on H1
−(D) and H1

1,�(D), respec-

tively. Thus, by density, it suffices to prove the result for v ∈ (C∞0 (D))2. Associated

with v = (vr, vz), we have a rotated function

v̆ = vrer + vzez

defined on Ω. By Theorem II.2.6 of [3], v̆ is smooth. Let q̆ ∈ H1
0 (Ω) solve

(ε∇q̆,∇θ)L2(Ω) = (v̆,∇θ)L2(Ω) = −(∇ · v̆, θ)L2(Ω) for all θ in H1
0 (Ω), (4.9)

and set

w̆ = v̆ − ε∇q̆.

Since q̆ solves an axisymmetric Laplace equation, q̆ is axisymmetric and so is w̆. By

restricting to θ = 0, we have the decomposition

v = w + ε∇q.

The map q̆ → q is an isomorphism (see [3]) from the space of axisymmetric functions

in H1
0 (Ω) to H1

1,�(D), so we have

‖q‖H1
1 (D) ≤ C‖v‖L2

1(D)2 .

By regularity assumptions on ε, we have that q̆ is in H1+s(Ω) for some s > 0.

This implies that w̆ is in (Hs(Ω))3. It now follows from Lemma 6 and the fact that

w̆ is divergence-free in Ω that ∫
S

w̆ · n ds
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exists on any surface S generated by rotation of a piecewise smooth curve γ ⊂ D

which is nowhere tangent to Γ0. We conclude that∫
S

w̆ · n ds = 2π

∫
γ

rw · n ds

is finite, where n denotes the tangent along γ rotated by −90 degrees. If γ is a curve

with its endpoints on Γ0, then

2π

∫
γ

rw · n ds =

∫
S

w̆ · n ds =

∫
D̆S

∇ · w̆ dx = 0.

Here D̆S is the domain enclosed by S. The same holds true when γ is a closed curve.

For any point (r1, z1) ∈ D, let γ be any piecewise smooth path from some point

a0 on Γ0 to (r1, z1). Define

φ(r1, z1) = − 1

r1

∫
γ

rw · n ds. (4.10)

The above considerations show that φ is well defined and independent of the path γ

and starting point a0 on Γ0. We claim that this function φ satisfies the requirements

of the lemma.

First, we verify that ∇r × φ = w. For (r1, z1) ∈ D and sufficiently small h > 0,

consider the straight-line path γh from (r1, z1−h) to (r1, z1 +h). Then t = (0, 1) and

n = (1, 0), so

−∂φ
∂z

= lim
h→0

1

2hr1

∫
γh

rwr ds =
1

r1

r1wr = wr.

Now let γh be the straight-line path from (r1−h, z1) to (r1 +h, z1), so that t = (1, 0)

and n = (0,−1). Then

1

r1

∂

∂r
(rφ)(r1, z1) =

1

r1

lim
h→0

1

2h

∫
γh

rwz ds =
1

r1

r1wz = wz, (4.11)

and we conclude that ∇r × φ = w.
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Next we show that φ is in L2
−1(D) by using the Hardy inequality (see Appendix

A.4 of [16])(∫ ∞
0

(∫ x

0

f(y) dy

)p
x−k−1 dx

)1/p

≤ p

k

(∫ ∞
0

(xf(x))px−k−1 dx

)1/p

. (4.12)

We illustrate the argument when the strip [0, R] × Γ0 is contained in D for some

R > 0. Simple modifications of this argument give the general case. For z ∈ Γ0,

applying the Hardy inequality gives∫ R

0

r−1
1 φ(r1, z)

2 dr1 =

∫ R

0

r−3
1

(∫ r1

0

rwz(r, z) dr

)2

dr1

≤
∫ R

0

r|wz(r, z)|2 dr.

Integrating over z gives

‖φ‖2
L2
−1([0,R]×Γ0) ≤ ‖w‖

2
L2

1([0,R]×Γ0)2 ≤ C‖v‖2
L2

1([0,R]×Γ0)2 .

Thus ‖φ‖L2
−1(D) ≤ C‖v‖L2

1(D)2 . Using the identity (4.11), we compute

∂φ

∂r
= −φ

r
+ wz.

That ∂φ
∂r

is in L2
1(D) follows from the facts that wz is in L2

1(D) and φ is in L2
−1(D).

Finally,

∂φ

∂z
= −wr

is also in L2
1(D). This completes the proof of the lemma.

The main result of this section now follows.

Theorem 5 For all v ∈ L2
1(D)2,

(εv,v)r = sup
(φ,q)∈H1

−(D)×H1
1,�(D)

(v,∇r × φ)2
r

‖ε−1/2∇r × φ‖2
r

+
(εv,∇q)2

r

‖ε1/2∇q‖2
r

.
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Proof. Applying Lemma 5 to εv ∈ L2
1(D)2 yields φ ∈ H1

−(D) and q ∈ H1
1,�(D)

satisfying v = ε−1∇r×φ+∇q. This decomposition is orthogonal in the inner product

(ε·, ·). Thus,

(εv,v)r = (εv, ε−1∇r × φ+∇q)r =
(v,∇r × φ)2

r

‖ε−1/2∇r × φ‖2
r

+
(εv,∇q)2

r

‖ε1/2∇q‖2
r

.

It follows from the Schwarz inequality and the (ε·, ·)r-orthogonality of the decompo-

sition that taking the supremum here preserves the equality.

Remark 2 The norm (ε−1∇r×φ,∇r×φ)
1/2
r provides an equivalent norm on H1

−(D)

while (ε∇q,∇q)1/2
r defines an equivalent norm on H1

1,�(D). If we use these norms to

define the dual spaces, then the above theorem can be restated

(εv,v)r = ‖curl1 v‖2
(H1
−(D))′ + ‖divε v‖2

(H1
1,�(D))′ .

This immediately implies that the existence and uniqueness of the solution to the

least-squares problem (4.7).

Corollary 2 Using the norm (ε·, ·)1/2 on (L2
1(D))2 and the above norms on the dual

spaces, the operator B : (L2
1(D))2 → (H1

−(D))′ × (H1
1,�(D))′ is an isometry.

Proof. By Remark 2 and the generalized Lax-Milgram lemma (see, e.g. [7]), B is

an isomorphism onto its image in (H1
−(D)×H1

1,�(D))′. We need only check that it is

onto. It suffices to show that the only pair of functions φ ∈ H1
−(D) and q ∈ H1

1,�(D)

satisfying

b(v, (φ, q)) = 0 for all v ∈ (L2
1(D))2

is (φ, q) = (0, 0). This is immediate since setting v = ε−1∇r × φ+∇q gives

b(v, (φ, q)) = (ε−1∇r × φ,∇r × φ)r + (ε∇q,∇q)r.
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Remark 3 It is immediate from the above theorem and Remark 2 that (4.5) has a

unique solution which coincides with that of (4.7).

B. Stable Approximation

In this section, we describe a stable pair of approximation spaces for the least-squares

method (4.7). Let Th be a triangulation of D satisfying Assumption 2. For the

electrostatic problem, Th is assumed to be aligned with the jumps of ε. The length

of an edge e in Th is denoted by he. The discrete solution space is Xh, the space

of piecewise constant vector fields in L2
1(D)2. Define the edge and element bubble

spaces

Hh
e,− = ⊕e*Γ0

B(1)
e ,

Hh
e,� = ⊕e*Γ1

B(1)
e , (4.13)

Hh
τ = ⊕τ∈ThB(1)

τ .

The test spaces H1
1,�(D) and H1

−(D) are approximated by

Hh
� = Sh� ⊕Hh

e,� ⊕Hh
τ ,

Hh
− = Sh− ⊕Hh

e,−,

respectively. Thus we use edge and element bubble functions in approximating

H1
1,�(D), but only edge bubble functions in H1

−(D). The main result of this sec-

tion is that the spaces Xh, H
h
� , and Hh

− satisfy a discrete inf-sup condition. We first

prove several lemmas pertaining to these discrete spaces. Recall that the generic

constant C may depend on the regularity of the family of meshes T, but does not

depend on the sizes hτ or he.

Lemma 7 There exists a constant C > 0 such that if be is the bubble function in
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B
(1)
e associated with an edge e in Th not contained in Γ0, then

‖be‖2
L2

1(τ) ≤ Cr−1
τ

(∫
e

rbe ds

)2

.

Here τ is either triangle having e as an edge and rτ is the maximum value of r on τ .

Proof. Let B̂
(1)
e denote the edge bubble space on a reference edge of unit length.

For edges not intersecting Γ0, a standard scaling argument and the equivalence of

norms on the one-dimensional space B̂
(1)
e gives

‖be‖2
L2

1(τ) ≤ rτ‖be‖2
L2(τ) ≤ Crτ

(∫
e

be ds

)2

.

Since e does not intersect Γ0, rτ can be bounded by a constant times the minimum

value of r on e, so (∫
e

be ds

)2

≤ Cr−2
τ

(∫
e

rbe ds

)2

.

We next consider an edge e which intersects Γ0 at a point which we denote by

a1. There are two cases. If τ intersects Γ0 only at a1 then there are constants C0, C1

depending on quasi-uniformity such that

C0r ≤ hτ (λ2 + λ3) ≤ C1r for all (r, z) ∈ τ.

Here λ2 and λ3 are the barycentric coordinates of (r, z) associated with the two

vertices of τ not on Γ0. Scaling and again using equivalence of norms on B̂e gives

‖be‖2
L2

1(τ) ≤ Chτ‖(λ1 + λ2)1/2be‖2
L2(τ)

≤ Ch3
τ

(∫
ê

(λ̂2 + λ̂3)b̂e ds

)2

≤ Ch−1
τ

(∫
e

rbe ds

)2

.
(4.14)

The remaining case is when τ intersects Γ0 along the edge with endpoints, a1 and

a2. Then on τ , r = ατhτλ3 where, because of quasi-uniformity, 0 < C0 ≤ ατ ≤ C1.

Replacing λ2 + λ3 by λ3 in (4.14) completes the proof.
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Lemma 8 Let τ be a triangle in Th and e be an edge of τ not on Γ0. There exists a

constant C > 0 such that for all u ∈ H1
1 (τ),

‖u‖2
L2

1(e) ≤ C(h−1
e ‖u‖2

L2
1(τ) + he‖u‖2

H1
1 (τ)).

Proof. By Propositions 2 and 3, C∞(τ) is dense in H1
1 (τ), and the trace

operator is continuous from H1
1 (τ) to L2

1(e). Therefore, it suffices to prove the result

for u ∈ C∞(τ). When τ does not intersect Γ0, the result easily follows from the

standard (unweighted) estimate.

We next consider the case when e∩Γ0 is a point. For each point x = (xr, xz) ∈ e,

we let ηx denote a unit vector pointing from x to the vertex a3 of τ not on e. There

is a positive number α independent of h such that x +αhηx is in τ and is of distance

greater than Ch from a3. It follows that the value of r on the line from x to x+αhηx

is bounded above and below by a constant (independent of h) multiple of xr. We

write

u(x)2 = −
∫ t

0

∂

∂y
(u2)(x + yηx) dy + u(x + tηx)2 for all 0 < t < αh.

Multiplying the above equation by r = xr, using the above equivalence and integrating

over e gives

‖u‖2
L2

1(e) ≤ C

∫
e

∫ t

0

(x(s) + yηx)r

∣∣∣∣ ∂∂y (u2)(x(s) + yηx)

∣∣∣∣ dy ds
+ C

∫
e

(x(s) + tηx)ru(x(s) + tηx)2 ds.

By quasi-uniformity, the angle between e and ηx does not degenerate, so changing

the integration variable and applying the Schwarz inequality along with integration

over t in (0, αh) gives

αh‖u‖2
L2

1(e) ≤ C(h‖u‖L2
1(τ)‖∇u‖L2

1(τ) + ‖u‖2
L2

1(τ)),
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from which the desired bound immediately follows.

The same argument handles the remaining case as well. When τ intersects Γ0

and e does not, r behaves like hτ on e. Fortunately, since x +αhτηx stays away from

e3 ∈ Γ0, (x + yηx)r behaves like hτ for 0 ≤ y ≤ αhτ . The above argument gives the

desired result. This completes the proof of the lemma.

Lemma 9 There exists a constant C > 0 independent of h such that

sup
φ∈H1

−(D)

(v,∇r × φ)r
‖φ‖H1

−(D)

≤ C sup
φ∈Hh

−

(v,∇r × φ)r
‖φ‖H1

−(D)

for all v ∈ Xh.

Proof. By Lemma 4, there is a Clement-like projector Πh
− : H1

−(D) → Sh−

satisfying

h−2
τ ‖φ− Πh

−φ‖2
L2

1(τ) + ‖φ− Πh
−φ‖2

H1
−(τ) ≤ C‖φ‖2

H1
−(∆τ ), (4.15)

where ∆τ denotes the union of all triangles in Th sharing a common vertex with τ .

Let v ∈ Xh and φ ∈ H1
−(D) be given, and set ψ = φ− Πh

−φ. For each edge e in

Th not contained in Γ0, define we ∈ Be by
∫
e
rwe ds =

∫
e
rψ ds. Set qe =

∑
e*Γ0

we.

The above is constructed so that φh = Πh
−φ+ qe satisfies

(v,∇r × φ)r = (v,∇r × φh)r. (4.16)

Indeed, since v is piecewise constant, v · t is constant on each edge and (2.15) gives

(v,∇r × ψ)r,τ =< v · t, ψ >r,∂τ\Γ0

=< v · t, qe >r,∂τ\Γ0= (v,∇r × qe)r,τ .

Summing over all τ ∈ Th yields (4.16). Thus, the lemma will follow if we show that

‖φh‖H1
−(D) ≤ C‖φ‖H1

−(D).
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By (4.15), it suffices to show

‖qe‖H1
−(D) ≤ C‖φ‖H1

−(D). (4.17)

By Lemma 2, for any polynomial f ∈ Pk(τ) vanishing on Γ0 when τ ∩ Γ0 6= ∅,

‖f‖L2
−1(τ) ≤ Ch−1

τ ‖f‖L2
1(τ). (4.18)

Thus,

‖qe‖2
L2
−1(D) ≤ C

∑
τ∈Th

∑
e⊂τ
e*Γ0

‖we‖2
L2
−1(τ) ≤ C

∑
τ∈Th

∑
e⊂τ
e*Γ0

h−2
τ ‖we‖2

L2
1(τ).

Applying Lemma 7 gives

∑
τ∈Th

∑
e⊂τ
e*Γ0

h−2
τ ‖we‖2

L2
1(τ) ≤ C

∑
τ∈Th

∑
e⊂τ
e*Γ0

r−1
τ h−2

τ

(∫
e

rwe ds

)2

= C
∑
τ∈Th

∑
e⊂τ
e*Γ0

r−1
τ h−2

τ

(∫
e

rψ ds

)2

≤ C
∑
τ∈Th

∑
e⊂τ
e*Γ0

h−1
τ ‖ψ‖2

L2
1(e).

(4.19)

Combining the above inequalities with Lemma 8 and (4.15) gives

∑
τ∈Th

∑
e⊂τ
e*Γ0

h−2
τ ‖we‖2

L2
1(τ) ≤ C(h−2

τ ‖ψ‖2
L2

1(D) + ‖ψ‖2
H1

1 (D)) ≤ C‖φ‖2
H1
−(D) (4.20)

from which it follows that

‖qe‖L2
−1(D) ≤ C‖φ‖H1

−(D).

By Lemma 3, for any polynomial f ∈ Pk(τ) we have

‖f‖H1
1 (τ) ≤ Ch−1

τ ‖f‖L2
1(τ). (4.21)
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Thus

‖qe‖2
H1

1 (D) ≤ C
∑
τ∈Th

∑
e⊂τ
e*Γ0

‖we‖2
H1

1 (τ) ≤ C
∑
τ∈Th

∑
e⊂τ
e*Γ0

h−2
τ ‖we‖2

L2
1(τ). (4.22)

Applying (4.20) shows

‖qe‖2
H1

1 (D) ≤ C‖φ‖H1
−(D).

This completes the proof of the Lemma.

The analogous result for the second term in the discrete inf-sup condition is

contained in the following lemma. Its proof is given later.

Lemma 10 There exists a constant C > 0 independent of h such that

sup
q∈H1

1,�(D)

(εv,∇q)r
‖q‖H1

1 (D)

≤ C sup
q∈Hh

�

(εv,∇q)r
‖q‖H1

1 (D)

for all v ∈ Xh.

In the proof of Lemma 9, we applied the Green’s formula (2.15) with v piecewise

constant. In this case, v is in the appropriate space, namely H1
1 (τ)2. Similarly, the

proof of Lemma 10 will require the Green’s formula for the divergence, but (2.16)

does not apply since constant vectors v do not satisfy vr ∈ H1
−(τ) for triangles τ

which intersect Γ0. However, the Green’s formula for the divergence does hold in

the specific cases we require for proving Lemma 10. This is stated precisely in the

following lemma.

Lemma 11 If τ is a triangle with no edges contained in Γ0 (i.e., τ ∩ Γ0 is empty or

a vertex), then

(∇r · v, φ)r,τ = −(v,∇φ)r,τ+ < v · n, φ >r,∂τ (4.23)

for all φ ∈ H1
1 (D) and constant v ∈ R2.

Proof. The case when τ does not intersect Γ0 is already contained in Lemma 1.

Suppose that τ intersects Γ0 at a point a. When φ is C1(τ), the above formula follows
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immediately from the divergence theorem, i.e.,∫
τ

∇ · (rφv) dx =

∫
∂τ

rφv · n ds.

Thus, by density, it suffices to show that each term in (4.23) is bounded for φ ∈ H1
1 (τ).

Applying the Schwarz inequality gives

|(v,∇φ)r,τ | ≤ ‖v‖L2
1(τ)‖∇φ‖L2

1(τ).

It follows from Lemma 8 that

| < v · n, φ >r,∂τ | ≤ ‖v · n‖L2
1(∂τ)‖φ‖L2

1(∂τ)

≤ C‖v · n‖L2
1(∂τ)(h

−1
τ ‖φ‖2

L2
1(τ) + hτ‖φ‖2

H1
1 (τ))

1/2.

Since v is a constant and the width of τ in the z-direction is Cr for some constant C

depending on an angle, it follows from the Schwarz inequality that

|(∇r · v, φ)r,τ | =
∣∣∣∣∫
τ

vrφ dx

∣∣∣∣ ≤ C(τ)|vr|‖φ‖L2
1(τ). (4.24)

Thus all of the terms in (4.23) are bounded, which completes the proof of the lemma.

Proof. [Proof of Lemma 10] Given φ ∈ H1
1,�(D) and v ∈ Xh, we shall construct

φh ∈ Hh
� satisfying

(v,∇φ)r = (v,∇φh)r

‖φh‖H1
1 (D) ≤ C‖φ‖H1

1 (D).

(4.25)

Again, we use a Clement-like operator Πh
� : H1

1,�(D)→ Sh� satisfying (see Lemma 4)

h−2
τ ‖φ− Πh

�φ‖2
L2

1(τ) + ‖φ− Πh
�φ‖2

H1
1 (τ) ≤ C‖φ‖2

H1
1 (∆τ ). (4.26)
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Set ψ = φ− Πh
�φ. As in Lemma 9, for each edge e in Th not contained in ∂D, define

we ∈ Be by
∫
e
rwe ds =

∫
e
rψ ds. Set qe =

∑
ewe, and note that Lemma 11 gives

(v,∇ψ)r,τ = −vr
∫
τ

ψ dx+ < v · n, ψ >r,∂τ

= −vr
∫
τ

ψ dx+ < v · n, qe >r,∂τ .

for all triangles τ without an edge on Γ0. On each such triangle τ , define wτ in Bτ by∫
τ

wτ dx =

∫
τ

(ψ − qe) dx.

Then

(v,∇ψ)r,τ = −vr
∫
τ

(wτ + qe) dx+ < v · n, wτ + qe >r,∂τ= (v,∇(wτ + qe))r,τ . (4.27)

Accordingly, we define φh = Πh
�φ+ qe +wτ on τ when τ does not have an edge on Γ0.

To deal with the remaining triangles, we have to avoid integration by parts in

the r direction with terms involving ψ. Specifically, for a triangle τ with an edge on

Γ0, we choose the bubble function we0 ∈ Be0 corresponding to e0, the edge of τ on

Γ0, so that

(v,∇φ)r,τ = (v,∇(Πh
�φ+ qe + we0))r,τ . (4.28)

We shall see that this is indeed possible. Let φ̃h = Πh
�φ+ qe and φh = φ̃h +we0 , with

we0 ∈ Be0 to be determined. We have

(1,
∂φ

∂z
)r,τ = (1,

∂φh
∂z

)r,τ +

∫
∂τ\Γ0

nzr(φ− φ̃h) ds,

(1,
∂we0
∂r

)r,τ = −
∫
τ

we0 dx.
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Here nz denotes the z-component of n. Using the first equality above and the defini-

tion of qe gives (
vz,

∂(φ− φh)
∂z

)
r,τ

=

∫
∂τ\Γ0

vznzr(φ− φ̃h) ds

=

∫
∂τ\Γ0

vznzr(ψ − qe) ds = 0.

Thus

(v,∇φ)r,τ = (v,∇φh)r,τ + vr

(∫
τ

r
∂

∂r
(φ− φ̃h) dx+

∫
τ

we0 dx

)
. (4.29)

Choosing we0 ∈ Be0 so that∫
τ

we0 dx =

∫
τ

r
∂

∂r
(φ̃h − φ) dx (4.30)

gives (4.28) on triangles τ with an edge on Γ0. Combining (4.27) and (4.28) gives the

equality of (4.25).

To complete the proof, we need only show that the inequality of (4.25) holds.

The arguments in the proof of Lemma 9, together with (4.26), give

‖qe‖H1
1 (τ) ≤ C‖φ‖H1

1 (∆τ ) and ‖qe‖L2
1(τ) ≤ Chτ‖φ‖H1

1 (∆τ ), (4.31)

for all triangles τ ∈ Th. For the remaining terms, there are two cases.

First, we consider τ such that τ does not intersect Γ0 on an edge. Applying a

scaling argument and (4.21) gives

‖wτ‖2
H1

1 (τ) ≤ Ch−2
τ ‖wτ‖2

L2
1(τ) ≤ Crτh

−4
τ

(∫
τ

wτ dx

)2

= Crτh
−4
τ

(∫
τ

(ψ − qe) dx
)2

.

(4.32)
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If τ intersects Γ0, we use (4.31), (4.26), and the proof of Lemma 11 to obtain(∫
τ

(ψ − qe) dx
)2

≤ Crτ‖ψ − qe‖2
L2

1(τ)

≤ Crτh
2
τ‖φ‖2

H1
1 (∆τ ),

from which it follows that

‖wτ‖H1
1 (τ) ≤ C‖φ‖H1

1 (∆τ ). (4.33)

Otherwise, if τ ∩ Γ0 = φ, then the regularity of the family of meshes T implies that

rτ is bounded by a constant multiple of the minimal value of r on τ . Hence(∫
τ

(ψ − qe) dx
)2

≤ Cr−1
τ h2

τ‖ψ − qe‖2
L2

1(τ) ≤ Cr−1
τ h4

τ‖φ‖2
H1

1 (∆τ )

and (4.33) immediately follows.

We finally consider triangles τ with edges on Γ0. As in (4.32),

‖we0‖2
H1

1 (τ) ≤ Ch−3
τ

(∫
τ

we0 dx

)2

≤ C‖ψ − qe‖2
H1

1 (τ), (4.34)

where we used (4.30) and the Schwarz inequality to get the second inequality above.

The estimate

‖we0‖H1
1 (τ) ≤ C‖φ‖H1

1 (∆τ ) (4.35)

follows easily from the above inequalities and (4.26). Combining (4.26), (4.31), (4.33),

and (4.35) proves the inequality in (4.25). This completes the proof of the lemma.

As a result of Lemmas 9 and 10 and Theorem 5, we have that the pair of

approximation spaces Xh and (Hh
−, H

h
� ) is stable. The inf-sup condition given in

the following theorem yields existence and uniqueness of solutions to the discrete

least-squares problem.
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Theorem 6 There exists a constant C > 0, independent of h and ε, such that

‖ε1/2v‖L2
1(D)2 ≤ C ln(h−1)1/2

(
sup

(φ,q)∈Hh
−×Hh

�

(v,∇r × φ)r
‖ε−1/2∇r × φ‖r

+
(εv,∇q)r
‖ε1/2∇q‖r

)

for all v ∈ Xh.

In the case of a constant coefficient ε, Theorem 6 holds without the factor of

ln(h−1)1/2. Although Lemmas 9 and 10 are stated and proved with norms not

weighted by ε, when ε has jumps away from Γ0 one can construct Clément operators

satisfying (4.15) and (4.26) with ε-weighted norms and C replaced by C ln(h−1) (see

[8]). This gives the appropriate estimates with ε-weighted norms, as in Theorem 6.

Indeed, the estimates of the bubble functions in the proofs of Lemmas 9 and 10

are made on individual elements where the coefficient ε is constant, so the ε-weighted

estimates follow.

C. Discrete Least-Squares System

Let Xh and Yh = Hh
−×Hh

� be the stable approximation pair introduced in the previous

section and define the operator Bh : Xh → Y ′h by

< Bhx, y >= b(x, y) for all x ∈ Xh, y ∈ Yh.

Further define TYh : Y ′h → Yh by (TYhf, y)Yh =< f, y > for all y ∈ Yh. Then the

discrete least-squares problem is to find xh ∈ Xh such that

Ah(xh,x) ≡< Bhxh, TYhBhx >=< F, TYhBhx > for all x ∈ Xh. (4.36)

Using Theorem 6, it is easy to see that

C0(h)Ah(x,x) ≤ (εx,x)r ≤ C1(h)Ah(x,x) for all x ∈ Xh (4.37)
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with constants C0(h) and C1(h) satisfying C1(h)/C0(h) ≤ C ln(h−1). Accordingly, the

discrete system corresponding to (4.36) can be uniformly preconditioned by the matrix

corresponding to (ε·, ·)r on Xh. The following theorem is an immediate consequence

of Theorem 6 (see [7]).

Theorem 7 The problem (4.36) has a unique solution which satisfies

‖e− xh‖r ≤ C ln(h−1)1/2 inf
v∈Xh

‖e− v‖r.

Here e is the unique solution of (3.1).

Remark 4 When ε is constant, the above theorem holds without the factor of ln(h−1)1/2

and immediately implies that when the solution is in Hs
1(D)2, for 0 < s ≤ 1, the con-

vergence rate will be at least of order s.

In our computations, instead of TYh we use a preconditioner T h : Y ′h → Yh defined

by T hf = (T h−f, T
h
+f), where the action of T h− and T h+ are computed as follows. We

assemble matrices A− and A+ in the bases of Hh
− and Hh

� according to the partition

A− =

 Abb− Abl−

Alb− All−

 , A+ =

 Abb+ Abl+

Alb+ All+

 ,
where b indicates the space of bubble functions and l the space of piecewise linear

functions. The bilinear forms defining A− and A+ are, respectively,

a−(u, v) =

∫
D

1

rε
∂r(ru)∂r(rv) dr dz +

∫
D

r

ε
∂zu∂zv dr dz,

a+(u, v) =

∫
D

rε(∂ru∂rv + ∂zu∂zv) dr dz.

It is shown in [10] that these bilinear forms are continuous and coercive on their

respective spaces. Multigrid is used to compute approximate inverses M ll
− and M ll

+ to
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All− and All+. Point Gauss-Seidel smoothing is used in the multigrid (cf. [10]). The

vector T h−f = x = (xb, xl)
t ∈ Yh is computed via the algorithm

1. xb ← Forward Gauss-Seidel iteration on Abb− with data fb

2. xl = M ll
−(fl − Alb−xb)

3. xb ← xb + Backward Gauss-Seidel iteration on Abb− with data fb − Abl−xl.

The vector T h+f is computed similarly. This defines the preconditioner T h. The

weights in a−(·, ·) and a+(·, ·) are chosen in accordance with Theorem 6. Conse-

quently, preconditioning (4.36) with the (ε·, ·)r mass matrix ensures that the iterative

convergence rate is independent of ε. Note that this mass matrix is diagonal, as

there is no interaction between basis functions of the piecewise constant space Xh.

According to the theory of [7], the spectral equivalence of T h and TYh ensures that

the method (4.36) with T h will give quasi-optimal convergence. When the solution is

in H1
1 (D)2, the convergence rate will be of first order.
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CHAPTER V

MAGNETOSTATICS

We now consider the Maxwell system for magnetostatics, given by
∇× h = f in Ω

∇ · (µh) = g in Ω

h · n = 0 on ∂Ω.

(5.1)

Here, h is the magnetic field and the coefficient µ is the magnetic permeability.

As in the electrostatic case, inhomogeneous boundary conditions can be treated by

modifying the data of the weak formulation. We assume that µ is positive and

piecewise constant. In contrast to ε, we assume that µ is well behaved enough so that

for some s > 0, we have the regularity u ∈ H1+s(Ω) for solutions of the Neumann

problem

−∇ · ε∇u = f in Ω

∂u

∂n
= 0 on ∂Ω,

(5.2)

where f ∈ L2(Ω) satisfies the condition
∫

Ω
f dx = 0.

The magnetostatic system (5.1) differs from the electrostatic system of the previ-

ous chapter only in the boundary conditions. Consequently, the analysis of the least-

squares method will be similar, but different spaces will be used. In these spaces,

continuous and discrete inf-sup conditions shall be proved, similar to the previous

chapter.

Assuming the system (5.1) is axisymmetric (see Chapter IV), the system reduces
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to the two decoupled systems
∇× (hr, hz) = fθ in D

∇r · (µ(hr, hz)) = g in D

(hr, hz) · (nr, nz) = 0 on Γ1,

(5.3)

and  −∂hθ
∂z

= fr in D

1
r
∂
∂r

(rhθ) = fz in D.
(5.4)

As was done for the electrostatic problem in Chapter IV, taking the curl of (5.4)

yields a variational problem with a coercive bilinear form on H1
−(D). Although system

(5.4) for the azimuthal component hθ has no boundary condition, the bilinear form

is coercive on H1
−(D) because functions in H1

−(D) have a vanishing trace on Γ0 (see

[10]). In this way, a boundary condition is implied by the function space. Thus

multigrid can be applied to solve (5.4) for the azimuthal component hθ. In this

chapter, we shall only solve (5.3) for the meridian components (hr, hz).

A. The Least-Squares Formulation

Applying Green’s formulas (Lemma 1) yields the following weak formulation of (5.3):

Find h ∈ L2
1(D)2 satisfying

b(h, (φ, q)) ≡ (h,∇r × φ)r + (µh,∇q)r = (fθ, φ)r − (g, q)r, (5.5)

for all (φ, q) ∈ H1
−,0(D) ×H1

1 (D). Define the operators curl2 : L2
1(D)2 → H1

−,0(D)′,

divµ : L2
1(D)2 → H1

1 (D)′, and B : L2
1(D)2 → (H1

−,0(D)×H1
1 (D))′ by

< curl2 v, ψ >= (v,∇r × ψ)r for all v ∈ L2
1(D)2, ψ ∈ H1

−,0(D),

< divµ v, ψ >= (µv,∇ψ)r for all v ∈ L2
1(D)2, ψ ∈ H1

1 (D),

Bv = (curl2 v, divµ v) for all v ∈ L2
1(D)2.

(5.6)
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Thus B satisfies (Bh, (φ, q)) = b(h, (φ, q)) for all h ∈ L2
1(D)2 and (φ, q) ∈ H1

−,0(D)×

H1
1 (D). Further, define the symmetric bilinear form A on L2

1(D)2 × L2
1(D)2 and the

linear functional F by

A(u,v) ≡ (Bu, Bv)(H1
−,0(D)×H1

1 (D))′

= (curl2 u, curl2 v)H1
−,0(D)′ + (divµ u, divµ v)H1

1 (D)′ ,

< F,v > ≡ (fθ, curl2 v)H1
−,0(D)′ − (g, divµ v)H1

1 (D)′ .

Then the dual based least-squares formulation of (5.5) is to find h ∈ L2
1(D)2 satisfying

A(h,v) =< F,v > for all v ∈ L2
1(D)2. (5.7)

To show that the linear operator B and its inverse are bounded, we shall use the

following orthogonal decomposition for the space L2
1(D)2.

Lemma 12 For any v ∈ L2
1(D)2, there exist φ ∈ H1

−,0(D) and q ∈ H1
1 (D) satisfying

v = ∇r × φ+ µ∇q.

Proof. By density, it suffices to prove the result for v ∈ (C∞0 (D))2. The proof

is entirely similar to the proof of Lemma 5 with only one modification. Instead of

defining q̆ ∈ H1
0 (Ω) as the solution of (4.9), we define q̆ ∈ H1(Ω)/R as the unique

solution (see, e.g., [9]) of

(µ∇q̆,∇η)L2(Ω) = (v̆,∇η)L2(Ω) = −(∇ · v̆, η)L2(Ω), for all η ∈ H1(Ω)/R.

Since v̆ has compact support, v̆ · n = 0 and
∫

Ω
∇ · v̆ dx = 0, by the Divergence

Theorem. Thus q̆ solves a Neumann problem of the form (5.2) and has the regularity

q̆ ∈ H1+s(Ω). Setting

w̆ = v̆ − µ∇q̆,
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we have that w̆ is divergence-free in Ω. Hence the trace w = v − µ∇q of w̆ on D

satisfies ∇r · w = 0. Although w is not necessarily in H1
−(D) × H1

1 (D), ∇r · w = 0

implies that the Green’s formula (2.16) holds for w (by a simple density argument).

Thus we have

< w · n, φ >r,Γ1= (w,∇φ)r = (v − µ∇q,∇φ)r = 0

for all φ in H1
1 (D). Therefore, w · n = 0 on Γ1.

It follows that φ, defined in (4.10), is in H1
−,0(D). Indeed, the path γ is indepen-

dent of the starting point a0 in Γ0, so we may take a0 to be an endpoint of Γ0. Taking

the path γ to be contained in Γ1 yields φ = 0 at all points in Γ1. The remainder of

the proof proceeds the same as for Lemma 5.

The analogue of Theorem 5 now follows in the same manner.

Theorem 8 For all v ∈ L2
1(D)2,

(µv,v)r = sup
(φ,q)∈H1

−,0(D)×H1
1 (D)

(v,∇r × φ)2
r

‖µ−1/2∇r × φ‖2
r

+
(µv,∇q)2

r

‖µ1/2∇q‖2
r

.

As in Chapter IV, Theorem 8 implies that the weak formulation (5.5) and the

least-squares problem (5.7) both have unique solutions, which coincide.

B. Stable Approximation

In this section, discrete subspaces will be introduced and analogues of Lemmas 9

and 10 will be established. Let Th be a triangulation of D aligned with the jumps of

µ and satisfying Assumption 2. The discrete solution space is again Xh, the space

of piecewise constant vector fields in L2
1(D)2. Define the edge and element bubble
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spaces

Hh
e,0 = ⊕e*∂DB(1)

e ,

Hh
e = ⊕e∈ThB(1)

e . (5.8)

The test spaces H1
1 (D) and H1

−,0(D) are approximated by

Hh = Sh ⊕Hh
e ⊕Hh

τ ,

Hh
−,0 = Sh0 ⊕Hh

e,0,

respectively. Thus we use edge and element bubble functions in approximating

H1
1 (D), but only edge bubble functions in H1

−,0(D). These discrete test spaces are

chosen in such a way that a discrete inf-sup condition can be proved.

Lemma 13 There exists a constant C > 0 independent of h such that

sup
φ∈H1

−,0(D)

(v,∇r × φ)r
‖φ‖H1

−(D)

≤ C sup
φ∈Hh

−,0

(v,∇r × φ)r
‖φ‖H1

−(D)

for all v ∈ Xh.

Lemma 14 There exists a constant C > 0 independent of h such that

sup
q∈H1

1 (D)

(µv,∇q)r
‖q‖H1

1 (D)

≤ C sup
q∈Hh

(µv,∇q)r
‖q‖H1

1 (D)

for all v ∈ Xh.

The proofs of Lemmas 13 and 14 are nearly identical to the proofs of Lemmas 9

and 10. Indeed, the only differences are in the boundary conditions. The appropriate

Clement operators on H1
−,0(D) and H1

1 (D) are given by Lemma 4. The discrete inf-

sup condition now follows.

Theorem 9 There exists a constant C > 0, independent of h and µ, such that

‖µ1/2v‖L2
1(D)2 ≤ C ln(h−1)1/2

(
sup

(φ,q)∈Hh
−,0×Hh

(v,∇r × φ)r
‖µ−1/2∇r × φ‖r

+
(µv,∇q)r
‖µ1/2∇q‖r

)

for all v ∈ Xh.
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Thus the discrete least-squares problem yields a linear system with the same

properties as that of the electrostatic case, and can be solved in a similar manner.
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CHAPTER VI

TIME-HARMONIC SYSTEMS

As a final application, we consider the time-harmonic Maxwell equations, which are

given by 

∇×H = λεE + J in Ω

∇× E = −λµH + M in Ω

µH · n = 0 on ∂Ω

E× n = 0 on ∂Ω,

(6.1)

with λ = −iω. Here, i =
√
−1 is the imaginary unit and ω > 0 is the temporal

frequency of the radiation (cf. [13]). The magnetic and electric fields H and E,

respectively, are complex-valued vector fields. The data J and M are complex-valued

vector fields representing electric and magnetic current densities. If there exists a

solution (H,E) to the homogeneous system

∇×H = λεE in Ω

∇× E = −λµH in Ω

µH · n = 0 on ∂Ω

E× n = 0 on ∂Ω,

then λ is said to be a Maxwell eigenvalue. In order to solve the inhomogeneous system

(6.1), it is necessary to assume that λ is not a Maxwell eigenvalue.

Notice that if (H,E) is a solution to (6.1) then (h, e, j,m) = (<(H),=(E),<(J),
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=(M)) and (h, e, j,m) = (−=(H),<(E),−=(J),<(M)) solve the real-valued system

∇× h = ωεe + j in Ω

∇× e = ωµh + m in Ω

µh · n = 0 on ∂Ω

e× n = 0 on ∂Ω.

(6.2)

Therefore, we develop a solver for (6.2) to avoid complex arithmetic. Observe that

taking the divergence of the first two equations of (6.2) yields ∇ · (µh) = −ω−1∇ ·m in Ω

∇ · (εe) = −ω−1∇ · j in Ω.
(6.3)

We shall include these redundant equations in the system (6.2) in order to obtain a

weak formulation where the operator has a divergence term. This will enable us to

prove an inf-sup condition.

An axisymmetric vector field u is said to be meridian if uθ = 0, azimuthal if

(ur, uz) = 0. Assuming axisymmetry, the curl of a meridian vector field is azimuthal

and the curl of an azimuthal vector field is meridian (see Section E of Chapter II).

This property implies that (6.2) and (6.3) reduce to two separate systems for the

azimuthal and meridian components of h and e in the two dimensional domain D:

∇× (er, ez) = ωµhθ +mθ in D

∇r × hθ = ωε(er, ez) + (jr, jz) in D

∇r · ε(er, ez) = −ω−1∇ · j in D

(er, ez) · t = 0 on Γ1,

(6.4)
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∇× (hr, hz) = ωεeθ + jθ in D

∇r × eθ = ωµ(hr, hz) + (mr,mz) in D

∇r · µ(hr, hz) = −ω−1∇ ·m in D

(hr, hz) · n = 0 on Γ1

eθ = 0 on Γ1.

(6.5)

Here n = (nr, nz) is the unit outward normal and t = (−nz, nr) is the unit tangent

vector, oriented counterclockwise. Note that the boundary condition e × n on Γ1 is

equivalent to eθ = 0 and (er, ez) · t = 0 on Γ1. The boundary condition h ·n = 0 does

not involve hθ, since axisymmetry ensures that the angular component of the normal

vector n is zero.

A. The Least-squares Formulation

Define the space H1
1,t(D) = {v ∈ H1

1 (D)2 : v · t = 0 on Γ1} and the bounded linear

operators

curl1 : L2
1(D)→ H1

1,t(D)′,

curl2 : L2
1(D)→ (H1

1 (D)2)′,

by  < curl1 u, ψ > = (u,∇× ψ)r for all u ∈ L2
1(D), ψ ∈ H1

1,t(D),

< curl2 u, ψ > = (u,∇× ψ)r for all u ∈ L2
1(D), ψ ∈ H1

1 (D)2,

Recall that the operators curl1 : L2
1(D)2 → H1

−(D)
′

and divε : L2
1(D)2 → H1

1,�(D)′

were defined in (4.6), and the operators curl2 : L2
1(D)2 → H1

−,0(D)′ and divµ :

L2
1(D)2 → H1

1 (D)′ were defined in (5.6). Consider the weak formulation corresponding
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to (6.4),

B1
ω(er, ez, hθ) ≡


curl1 (er, ez)− ωµhθ

curl1 hθ − ωε(er, ez)

divε (er, ez)

 =


mθ

(jr, jz)

−ω−1∇r · (jr, jz)

 ≡ F1, (6.6)

and the weak formulation corresponding to (6.5),

B2
ω(hr, hz, eθ) ≡


curl2 (hr, hz)− ωεeθ

curl2 eθ − ωµ(hr, hz)

divµ (hr, hz)

 =


jθ

(mr,mz)

−ω−1∇r · (mr,mz)

 ≡ F2. (6.7)

Here, the operators Bj
ω map L2

1(D)3 to Y ′j , with Y1 = H1
−(D)×H1

1,t(D)×H1
1,�(D) and

Y2 = H1
−,0(D) × H1

1 (D)2 × H1
1 (D). The solutions of (6.4) and (6.6) coincide, as do

the solutions of (6.5) and (6.7). In Theorem 10 below, we shall show that the weak

formulations (6.6) and (6.7) have unique solutions for any data Fj in Y ′j satisfying

the compatibility conditions

< Fj, y >= 0 for all y ∈ ker(Bj
ω)∗, j = 1, 2. (6.8)

Theorem 10 If λ = −iω is not a Maxwell eigenvalue, then the operator Bj
ω satisfies

Cj
1(ε, µ, ω)‖x‖L2

1(D)3 ≤ ‖Bj
ω(x)‖Y ′j ≤ Cj

2(ε, µ, ω)‖x‖L2
1(D)3 (6.9)

for all x ∈ L2
1(D)3, j = 1, 2.

Proof. The upper inequality in (6.9) is trivial, so we only prove the lower in-

equality. First we prove the result for j = 1. The proof is a compactness argument

analogous to the one given for Lemma 2.1 of [6]. Suppose, contrary to the result, that

there exists a sequence {xn}n∈N ⊂ L2
1(D)3, xn = (enr , e

n
z , h

n
θ ), satisfying ‖xn‖2

L2
1(D)3 = 1

and ‖B1
ω(xn)‖2

Y ′ < 1/n. We shall arrive at a contradiction by showing that the se-
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quence {xn}n∈N has a subsequence converging to some x in L2
1(D)3. To do so, we

first show that ‖hθ‖L2
1(D) ≤ C‖curl1hθ‖H1

1,t(D)′ for all hθ ∈ L2
1(D). Given hθ ∈ L2

1(D),

consider the variational problem of finding φ ∈ H1
−(D) satisfying

a(φ, η) = (∇r × φ,∇r × η)r = (hθ, η)r for all η ∈ H1
−(D). (6.10)

By Proposition 3.1 of [10], the bilinear form a(·, ·) is bounded and coercive. Therefore,

the Lax-Milgram lemma gives the unique existence of φ ∈ H1
−(D) solving (6.10).

Theorem 3.1 of [10] gives the additional regularity φ ∈ H2
−(D), with ‖φ‖H2

−(D) ≤

C‖hθ‖L2
1(D). In particular, ∇r × φ is in H1

1 (D)2. By Green’s formula, for all η in

C∞0 (D) ⊂ H1
−(D) we have

(hθ, η)r = (∇r × φ,∇r × η)r = (∇×∇r × φ, η)r.

Thus ∇×∇r × φ = hθ in L2
1(D), since C∞0 (D) is dense in L2

1(D). Hence

< (∇r × φ) · t, η >r,Γ1 = (∇r × φ,∇r × η)r − (∇×∇r × φ, η)r

= (hθ, η)r − (hθ, η)r = 0

for all η in H1
−(D), so (∇r × φ) · t = 0 on Γ1. Thus ∇r × φ is in H1

1,t(D), with

‖hθ‖L2
1(D) =

(hθ,∇×∇r × φ)r
‖hθ‖L2

1(D)

≤ C
(hθ,∇×∇r × φ)r
‖φ‖H2

−(D)

≤ C
(hθ,∇×∇r × φ)r
‖∇r × φ‖H1

1 (D)2

≤ C sup
ψ∈H1

1,t(D)

(hθ,∇× ψ)r
‖ψ‖H1

1 (D)

= C‖curl1 hθ‖H1
1,t(D)′ . (6.11)
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Along with Theorem 5, (6.11) implies

C‖(er, ez, hθ)‖2
L2

1(D)3 ≤ ‖curl1 (er, ez)‖2
H1
−(D)

′ + ‖divε (er, ez)‖2
H1

1,�(D)′

+ ‖curl1 hθ‖2
H1

1,t(D)′ . (6.12)

It follows from (6.12) and

‖B1
ω(er, ez, hθ)‖2

Y ′ =‖curl1 (er, ez)− ωµhθ‖2
H1
−(D)

′ + ‖divε (er, ez)‖2
H1

1,�(D)′

+ ‖curl1 hθ − ωε(er, ez)‖2
H1

1,t(D)′

that the sequence xn = (enr , e
n
z , h

n
θ ) satisfies

‖xm − xn‖2
L2

1(D)3 ≤ C (‖B1
ω(xm − xn)‖2

Y ′ + ω2‖µ(hmθ − hnθ )‖2
H1
−(D)

′

+ ω2‖ε((emr , emz )− (enr , e
n
z ))‖2

H1
1,t(D)′ ) . (6.13)

Observe that L2
1(D) is compactly embedded in H−s1 (D) for all s > 0. Indeed, if

{fn}n∈N is a bounded sequence in L2
1(D), then the sequence of rotated functions

{f̆n}n∈N is a bounded sequence in L2(Ω). Since L2(Ω) is compactly embedded in

H−s(Ω) for all s > 0, there is a subsequence {f̆jn}n∈N which converges in H−s(Ω).

Considering fjn as an element of H−s1 (D) and f̆jn as an element of H−s(Ω), we have

< fjn , η >=

∫
D

rfjnη dr dz =
1

2π

∫
Ω

f̆jn η̆ dx dy dz =
1

2π
< f̆jn , η̆ >

for all η ∈ Hs
1(D). Note that η̆ ∈ Hs(Ω), since the trace operator is a bijective map-

ping from H̆s(Ω) onto Hs
1(D) (see Theorem II.2.1 of [3]). It immediately follows that

{fjn}n∈N is convergent in H−s1 (D). This shows that L2
1(D) is compactly embedded in

H−s1 (D). Consequently, there is a subsequence of {xn}n∈N, also denoted by {xn}n∈N,

which converges in H−s1 (D)3.
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Clearly H−s1 (D) is continuously embedded in H1
−(D)

′
. For any ξ in H−s1 (D), we

have

‖ξ‖H1
−(D)

′ = sup
η∈H1

−(D)

< ξ, η >

‖η‖H1
−(D)

≤ sup
η∈H1

1 (D)

< ξ, η >

‖η‖H1
1 (D)

= ‖ξ‖H−1
1 (D) ≤ ‖ξ‖H−s1 (D).

Similarly, H−s1 (D)2 is continuously embedded in H1
1,t(D)′. For s ∈ (0, 1/2), mul-

tiplication by the piecewise smooth coefficient µ is a bounded operator on Hs(Ω)

and hence on Hs
1(D) (see [5]). By (6.13), {xn}n∈N is a Cauchy sequence in L2

1(D)3

and therefore converges to some x = (er, ez, hθ) in L2
1(D)3. Now ‖x‖L2

1(D)3 = 1 and

B1
ωx = 0 contradicts the assumption that λ = −iω is not a Maxwell eigenvalue, as

h = (0, hθ, 0) and e = (er, 0, ez) satisfy the full three-dimensional system (6.2) and

(6.3). Therefore, we may conclude that (6.9) holds for j = 1.

The proof for j = 2 is similar. We only need to verify the analogue of (6.12). By

(6.11), we have

‖eθ‖L2
1(D) ≤ C‖curl1 eθ‖H1

1,t(D)′ ≤ C‖curl2 eθ‖(H1
1 (D)2)′

for all eθ in L2
1(D). Together with Theorem 8, this implies

C‖(hr, hz, eθ)‖2
L2

1(D)3 ≤ ‖curl2 (hr, hz)‖2
H1
−,0(D)′ + ‖divµ (hr, hz)‖2

H1
1 (D)′

+ ‖curl2 eθ‖2
(H1

1 (D)2)′ .

The rest of the proof proceeds in the same manner as for j = 1.

As an immediate consequence of Theorem 10, we have existence and uniqueness

of solutions to the least-squares problems of finding x in L2
1(D)3 satisfying

Ajω(x,v) = (Bj
ωx, B

j
ωv)Y ′j = (Fj, Bj

ωv)Y ′j for all v ∈ L2
1(D)3, (6.14)
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for j = 1, 2 and any Fj in Y ′j (the compatibility condition (6.8) is not necessary for the

least-squares problem (6.14)). When the compatibility condition (6.8) is satisfied, the

solutions of (6.14) coincide with those of the corresponding weak formulations (6.6)

and (6.7).

B. Stable Approximation

In this section, we describe finite-dimensional approximation subspaces for which

the corresponding discrete least-squares method is stable. Let Th be a triangulation

of D in the quasi-uniform family of meshes T aligned with the discontinuities of the

coefficients µ and ε. Denote by Xh the space of piecewise constant functions in L2
1(D),

and set Sh0 = {p ∈ Sh : p = 0 on ∂D}. Define the edge and element bubble spaces

Hh
e = ⊕e∈ThB(1)

e ,

Hh,j
e,Γ0

= ⊕e⊆Γ0B
(j)
e ,

Hh,j
τ = ⊕τ∈ThB(j)

τ ,

for j = 1, 2. Recall that Hh
e,− and Hh

e,� were defined in (4.13). We approximate

H1
1,t(D) by the finite element subspace Sht = (Sh)2 ∩H1

1,t(D). The discrete subspace

of Y1 is defined as Y h
1 = Hh

− ×Hh
t ×Hh

� , where

Hh
− = Sh− ⊕Hh

e,− ⊕Hh,1
τ ,

Hh
t = Sht ⊕ (Hh

e,0)2 ⊕ (Hh,2
τ )2 ⊕ (Hh,1

e,Γ0
×Hh,2

e,Γ0
),

Hh
� = Sh� ⊕Hh

e,� ⊕Hh,1
τ .
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Similarly, the discrete subspace Y h
2 = Hh

−,0 ×Hh ×Hh ⊂ Y2 is defined by

Hh
−,0 = Sh− ⊕Hh

e,0 ⊕Hh,1
τ ,

Hh = (Sh)2 ⊕ (Hh
e,−)2 ⊕ (Hh,2

τ )2 ⊕ (Hh,1
e,Γ0
×Hh,2

e,Γ0
),

Hh = Sh ⊕Hh
e ⊕Hh,1

τ .

The result of Lemmas 16 and 17 below is an inf-sup condition for the discrete space

Y h
1 . The proof of Lemma 16 will utilize the following Green’s formula, which is not

a consequence of Lemma 1 since constants are not in H1
−(τ).

Lemma 15 If τ is a triangle with no edges contained in Γ0 (i.e., τ ∩ Γ0 is empty or

a vertex), then for all v ∈ H1
1 (τ)2 we have

(∇× v, 1)r,τ =

∫
τ

vr dr dz− < v · t, 1 >r,∂τ . (6.15)

Proof. We consider the case that τ ∩ Γ0 is a vertex, as the result follows from

Lemma 1 when τ∩Γ0 = ∅. Clearly (6.15) holds for the smooth functions in D(τ). The

lemma then follows by the density of D(τ) in H1
1 (D) (see Proposition 2), provided

that the terms in (6.15) are bounded in (H1
1 (D))2. The desired estimates follow

directly from the arguments given in the proof of Lemma 11.

Lemma 16 There exists a constant C > 0 independent of h satisfying

sup
v∈H1

1,t(D)

(hθ,∇× v)r − ω(ε(er, ez),v)r
‖v‖H1

1 (D)2

≤ C sup
v∈Hh

t

(hθ,∇× v)r − ω(ε(er, ez),vh)r
‖v‖H1

1 (D)2

for all hθ ∈ Xh and (er, ez) ∈ (Xh)
2.

Proof. Consider arbitrary but fixed hθ ∈ Xh, (er, ez) ∈ (Xh)
2, and v ∈ H1

1,t(D).

By Theorem 12 of the Appendix, there exists a Scott-Zhang type interpolation
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operator Πh
t : H1

1,t(D)→ Sht and a constant C > 0 such that

h−2
τ ‖u− Πh

t u‖2
L2

1(τ)2 + ‖u− Πh
t u‖2

H1
1 (τ)2 ≤ C‖u‖2

H1
1 (∆τ )2 (6.16)

for all u ∈ H1
1,t(D) and all triangles τ ∈ Th. Set ψ = v − Πh

t v. For each edge

e in Th not contained in ∂D, let te = (tr, tz) be a unit tangent vector on e, with

arbitrary orientation. On each such edge e, define we ∈ Be by we = αλ1λ2 and∫
e
rwe ds =

∫
e
rψ ·te ds. Combining estimates similar to (4.22) and (4.19) in the proof

of Lemma 9, for the function qe =
∑

e*∂D we one can verify the estimate

‖qe‖2
H1

1 (D) ≤ C
∑
e*∂D

h−1
τ ‖ψ · te‖2

L2
1(e).

By Lemma 8 and (6.16), we have

‖qe‖2
H1

1 (D) ≤ C
∑
e*∂D

h−1
τ ‖ψ‖2

L2
1(e)2 ≤ C

∑
τ

(h−2
τ ‖ψ‖2

L2
1(τ)2 + ‖ψ‖2

H1
1 (τ)2)

≤ C‖v‖2
H1

1 (D)2 . (6.17)

Define ue ∈ (Hh
e,0)2 on each edge e * ∂D by

ue =


t−1
r (we, 0) if tr ≥ tz,

t−1
z (0, we) otherwise,

and put qe =
∑

e*∂D ue. Then (6.17) gives ‖qe‖H1
1 (D)2 ≤ C‖v‖2

H1
1 (D)2 . Moreover,

qe satisfies
∫
e
rqe · te ds =

∫
e
rψ · te ds for all edges e * ∂D. Applying the Green’s
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formula of Lemma 15 yields

(hθ,∇× v)r,τ = hθ

∫
τ

vz dr dz − hθ < v · t, 1 >r,∂τ

= hθ

∫
τ

vz dr dz − hθ < ψ · t, 1 >r,∂τ −hθ < Πh
t v · t, 1 >r,∂τ

= hθ

∫
τ

vz dr dz − hθ < qe · t, 1 >r,∂τ −hθ < Πh
t v · t, 1 >r,∂τ

= hθ

∫
τ

(vz − (Πh
t v)z − qez) dr dz + (hθ,∇× (qe + Πh

t v))r,τ (6.18)

for all triangles τ ∈ Th having no edge contained in Γ0 (i.e., τ ∩ Γ0 is either empty or

a vertex). On each such triangle τ , define wτ = (wr, wz) in
(
B

(2)
τ

)2

by∫
τ

lwτ dr dz =

∫
τ

l(v − Πh
t v − qe) dr dz for all l ∈ span{1, r}. (6.19)

On all remaining triangles τ , let wτ = 0. Observe that (6.19) uniquely defines

each component of wτ as the solution of a square system of linear equations. To

see that this system is nonsingular, suppose that φ = αλ1λ2λ3 + βrλ1λ2λ3 satisfies∫
τ
lφ dr dz = 0 for all l ∈ span{1, r}. Then l = α + βr ∈ span{1, r}, so∫

τ

l2λ1λ2λ3 dr dz =

∫
τ

lφ dr dz = 0.

Hence l = 0 and φ = 0, which shows that the system corresponding to (6.19) is

nonsingular. Thus wτ is well-defined. Since r ∈ span{1, r} and hθ, ε, and (er, ez) are

constant on τ , the definition (6.19) and (6.18) imply that wτ satisfies

(hθ,∇×wτ )r,τ − ω(ε(er, ez),wτ )r,τ =(hθ,∇× (v − Πh
t v − qe))r,τ

− ω(ε(er, ez),v − Πh
t v − qe)r,τ .
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Using the identity (6.19) with l = 1 and the same arguments given in the proof

of Lemma 10, one can verify that qτ =
∑

τ∈Th wτ satisfies the estimate

‖qτ‖2
H1

1 (D)2 ≤ C
∑
τ∈Th

h−2
τ ‖v − Πh

t v − qe‖2
L2

1(τ)2 .

The assumption that τ has no edge contained in Γ0 when qτ 6= 0 is necessary for the

above estimate. It is straightforward to verify that h−2
τ ‖qe‖2

L2
1(τ)2 ≤ C|qe|2

H1
1 (τ)2 , since

qe is a sum of bubble functions on interior edges. Hence

‖qτ‖2
H1

1 (D)2 ≤ C
∑
τ∈Th

h−2
τ

(
‖v − Πh

t v‖2
L2

1(τ)2 + ‖qe‖2
L2

1(τ)2

)
≤ ‖v‖2

H1
1 (D)2 .

Now we treat the triangles τ having an edge e contained in Γ0. In this case,

define the edge bubble function we = (wr, wz) in Hh,1
e,Γ0
×Hh,2

e,Γ0
by

wr = αλ1λ2,

∫
τ

rwr dr dz =

∫
τ

r(vr − (Πh
t v)r − qer) dr dz,

and 
∫
τ
wz dr dz =

∫
τ
r∇× (v − Πh

t v − qe) dr dz,∫
τ
rwz dr dz =

∫
τ
r(vz − (Πh

t v)z − qez) dr dz.
(6.20)

Recall that qτ = 0 on τ . By an argument similar to the one given above for ele-

ment bubble functions, the square system of linear equations defining wz in (6.20) is

nonsingular. Thus we is well-defined. Integration by parts yields the identity∫
τ

r∇×we dr dz =

∫
τ

wz dr dz =

∫
τ

r∇× (v − Πh
t v − qe) dr dz.
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To show that ‖we‖H1
1 (τ) ≤ C‖v‖H1

1 (τ)2 , we first compute
∫
τ
rλ1λ2 dr dz ≈ h3

τ , with

constants of equivalence independent of hτ . Hence

‖wr‖2
H1

1 (τ) ≤ Ch−2
τ ‖wr‖2

L2
1(τ) ≤ Ch−2

τ |α|2‖λ1λ2‖2
L2

1(τ)

≤ Chτ |α|2 ≤ Ch−5
τ

∣∣∣∣∫
τ

r(vr − (Πh
t v)r − qer) dr dz

∣∣∣∣2
≤ Ch−5

τ ‖1‖2
L2

1(τ)‖vr − (Πh
t v)r − qer‖2

L2
1(τ)

≤ Ch−2
τ ‖vr − (Πh

t v)r − qer‖2
L2

1(τ).

One can easily verify that ‖wz‖L2(τ) ≤ Ch−2
τ |
∫
τ
rwz dr dz| for all wz ∈ Be, so

‖wz‖L2
1(τ) ≤ h1/2

τ ‖wz‖L2(τ) ≤ Ch−3/2
τ

∣∣∣∣∫
τ

rwz dr dz

∣∣∣∣
= Ch−3/2

τ

∣∣∣∣∫
τ

r(vz − (Πh
t v)z − qez) dr dz

∣∣∣∣
≤ C‖vz − (Πh

t v)z − qez‖L2
1(τ).

It follows that ‖q0‖H1
1 (D)2 ≤ C‖v‖H1

1 (D)2 for q0 =
∑

e⊆Γ0
we. In conclusion, the

discrete vector field vh = Πh
t v + qe + qτ + q0 ∈ Hh

t satisfies

(hθ,∇× vh)r − ω(ε(er, ez),vh)r = (hθ,∇× v)r − ω(ε(er, ez),v)r

‖vh‖H1
1 (D)2 ≤ ‖v‖H1

1 (D)2 .

This completes the proof of the lemma.

Lemma 17 There exists a constant C > 0 independent of h satisfying

sup
φ∈H1

−(D)

((er, ez),∇r × φ)r − ω(µhθ, φ)r
‖φ‖H1

−(D)

≤ C sup
φh∈Hh

−

((er, ez),∇r × φh)r − ω(µhθ, φh)r
‖φh‖H1

−(D)

for all hθ ∈ Xh and (er, ez) ∈ X2
h.
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Proof. Consider arbitrary but fixed hθ ∈ Xh, (er, ez) ∈ X2
h, and φ ∈ H1

−(D). As

shown in the proof of Lemma 9, there exists qh ∈ Sh− ⊕Hh
e,− satisfying ((er, ez),∇r × qh)r = ((er, ez),∇r × φ)r

‖qh‖H1
−(D) ≤ C‖φ‖H1

−(D).

Specifically, qh = Πh
−φ + φe, where φe ∈ Hh

e,− satisfies ‖φe‖H1
−(D) ≤ C‖φ‖H1

−(D) and

Πh
− is a Clement interpolation operator satisfying (by Lemma 4)

h−2
τ ‖φ− Πh

−φ‖2
L2

1(τ) + ‖φ− Πh
−φ‖2

H1
−(τ) ≤ C‖φ‖2

H1
−(∆τ ). (6.21)

On each τ ∈ Th, define wτ in B
(1)
τ by∫

τ

rwτ dr dz =

∫
τ

r(φ− Πh
−φ− φe) dr dz.

One can easily verify that ‖wτ‖L2(τ) ≤ Ch−1
τ |
∫
τ
wτ dr dz| for all τ ∈ Th. If τ ∩Γ0 6= ∅,

then 0 < r < Chτ on τ . In this case,

‖wτ‖L2
1(τ) ≤ Ch1/2

τ ‖wτ‖L2(τ) ≤ Ch−1/2
τ

∣∣∣∣∫
τ

wτ dr dz

∣∣∣∣
≤ Ch−3/2

τ

∣∣∣∣∫
τ

rwτ dr dz

∣∣∣∣ = Ch−3/2
τ

∣∣∣∣∫
τ

r(φ− Πh
−φ− φe) dr dz

∣∣∣∣
≤ C‖φ− Πh

−φ− φe‖L2
1(τ).

On the other hand, if τ ∩ Γ0 = ∅, then r0 < r < 2r0 on τ for some r0 > 0. Hence

‖wτ‖L2
1(τ) ≤ Cr

1/2
0 ‖wτ‖L2(τ) ≤ Cr

1/2
0 h−1

τ

∣∣∣∣∫
τ

wτ dr dz

∣∣∣∣
≤ Cr

−1/2
0 h−1

τ

∣∣∣∣∫
τ

rwτ dr dz

∣∣∣∣ = Cr
−1/2
0 h−1

τ

∣∣∣∣∫
τ

r(φ− Πh
−φ− φe) dr dz

∣∣∣∣
≤ C‖φ− Πh

−φ− φe‖L2
1(τ).
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Thus ‖wτ‖L2
1(τ) ≤ C‖φ − Πh

−φ − φe‖L2
1(τ) for all τ ∈ Th. Since φe is a sum of edge

bubble functions, the estimate h−2
τ ‖φe‖2

L2
1(τ)
≤ C‖φe‖2

H1
1 (τ)

holds. Now the inverse

estimates given by Lemmas 2 and 3, together with (6.21), yield the estimate

‖φτ‖H1
−(D) ≤ C‖φ‖H1

−(D).

for the function φτ =
∑

τ∈Th wτ ∈ H
h,1
τ . Observe that

((er, ez),∇r × wτ )r,τ = (∇× (er, ez), wτ )r,τ+ < (er, ez) · t, wτ >r,∂τ= 0

for all τ ∈ Th, so ((er, ez),∇r × φτ )r = 0. Therefore, φh = Πh
−φ + φe + φτ ∈ Hh

−

satisfies

((er, ez),∇r × φh)r − ω(µhθ, φh)r = ((er, ez),∇r × φ)r − ω(µhθ, φ)r

‖φh‖H1
−(D) ≤ C‖φ‖H1

−(D).

This completes the proof of the lemma.

Now the discrete inf-sup condition for B1
ω is an immediate consequence of The-

orem 10 and Lemmas 10, 16, and 17. It is clear that the corresponding results

for B2
ω may be obtained by simply modifying the boundary conditions in the proofs

of the aforementioned lemmas. Note that the Clement interpolation operators with

the appropriate boundary conditions are given by Lemma 4. Thus we have the main

result of this section, given in Theorem 11. Unlike the electrostatic problem, the

constants in this discrete inf-sup condition depend on the coefficients ε, µ, and ω.

Theorem 11 The discrete inf-sup conditions hold, i.e. there exist positive constants

Cj(ε, µ, ω) such that

‖x‖L2
1(D)3 ≤ Cj(ε, µ, ω)‖Bj

ω(x)‖(Y hj )′ (6.22)
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for all x ∈ (Xh)
3 and j = 1, 2.
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CHAPTER VII

NUMERICAL EXPERIMENTS

We now present the results of numerical experiments for the problems studied in

this dissertation. First we report the results for the electrostatic problem. Since

the magnetostatic system differs from the electrostatic system only in the boundary

conditions, the behavior of the numerical methods for these two problems will be

essentially identical. Therefore, we neglect to perform numerical experiments for the

magnetostatic system. Likewise, for the time-harmonic problem we present results

for the components (er, hθ, ez) in the system (6.4), but not for the other components

in the system (6.5).

A. Electrostatics

The linear system representing (4.36) is symmetric and positive definite. We solve the

system using the preconditioned conjugate gradient method (PCG), with the (ε·, ·)r

mass matrix as the preconditioner. The relative tolerance is 10−12. In the first two

experiments, reported in Tables (I) and (II), D is the unit square and the mesh is

uniform, with square or triangular elements. Table (I) lists the numerical results for

the model problem (4.2) with constant coefficient ε = 1 and data

fθ = π(r − 1) cos πr cos πz,

g = 2 cosπr sin πz − π(r + 1) sin πr sin πz.

The exact solution is (er, ez) = (r cos πr sin πz, sin πr cos πz). The norm of the error

in L2
1(D) is given only for the square mesh, as the error behaves similarly for the

triangular mesh. These results demonstrate the theoretically predicted first order
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convergence rate.

Table I. Electrostatic problem on square domain, with constant coefficient (ε = 1).

Square mesh Triangular mesh

h L2
1 error Ratio PCG Unknowns PCG Unknowns

1/8 0.0723809 1.96296 7 128 8 256

1/16 0.0363771 1.98974 7 512 9 1024

1/32 0.0182127 1.99735 8 2048 10 4096

1/64 0.00910943 1.99933 9 8192 10 16384

1/128 0.0045551 1.99983 9 32768 11 65536

1/256 0.0022776 1.99996 9 131072 11 262144

1/512 0.00113881 1.99999 10 524288 12 1048576

Table (II) gives the PCG iteration counts when the coefficient has a jump,

ε =


104 if r, z > 1/2,

1 otherwise.

Observe that the number of iterations does not grow as the mesh is refined, and is not

affected by the varying coefficient. The same convergence behavior is also observed

when the jump in ε occurs along a line intersecting Γ0.

To be concise, we report three other experiments without tabulating the details

of the results. Figure (1) illustrates three non-convex computational domains used

in these experiments. For domain (i), the exact solution is unknown, so we can-

not confirm the first order convergence rate. The purpose of this experiment is to

demonstrate that the number of PCG iterations does not grow when the domain has
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Table II. Electrostatic problem on square domain, with large jump in coefficient.

Square mesh Triangular mesh

h PCG Iterations Unknowns PCG Iterations Unknowns

1/8 7 128 9 256

1/16 7 512 9 1024

1/32 8 2048 10 4096

1/64 9 8192 10 16384

1/128 9 32768 11 65536

1/256 9 131072 11 262144

1/512 10 524288 12 1048576

reentrant corners and the boundary is not rectilinear. Indeed, the number of PCG

iterations does not exceed 17 for 1/512 ≤ h ≤ 1. For the L-shaped domains (ii) and

(iii), the exact solution is known and the observed convergence rate is first order.

Furthermore, the PCG iteration count does not exceed 12. In conclusion, the method

is efficient and robust with respect to the coefficient and the shape of the domain.

6z

-

�
�
�
�
�

�
��

@
@@

r(i)

6z

-
r(ii)

6z

-
r(iii)

Fig. 1. Computational domains
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B. Time-harmonic System

We now present results for the numerical solution of the components (er, hθ, ez) in

the time-harmonic system (6.4). Essentially the same results have been observed for

the remaining components, which solve the system (6.5).

With constant coefficients ε = µ = 1 and data

j = (r sin πz (π sin πr − cos πr) , cos πz (sin πr + πr cos πr)) ,

mθ = π(r − 1) cos πr cos πz − r sin πr cos πz,

∇ · j = 2 cosπr sin πz − π(r + 1) sin πr sin πz,

the exact solution is (er, hθ, ez) = (r cos πr sin πz, r sin πr cos πz, sin πr cos πz). The

meshes in the computations for the time-harmonic problem are triangular, which was

assumed in Chapter VI. As in the static problem, one would expect similar results

for square meshes. The results reported in Table (III) demonstrate the theoretically

predicted first order convergence rate.

Table III. Time-harmonic system on square domain, with constant coefficients

(ε = µ = 1).

h L2
1 error of (er, ez) Ratio L2

1 error of hθ Ratio PCG Unknowns

1/8 0.0655839 1.99085 0.0309765 1.96871 17 384

1/16 0.0327853 2.00041 0.0155287 1.99479 15 1536

1/32 0.0163932 1.99994 0.0077671 1.9993 16 6144

1/64 0.00819717 1.99986 0.00388316 2.0002 16 24576

1/128 0.00409878 1.9999 0.00194133 2.00025 16 98304

1/256 0.00204944 1.99995 0.000970586 2.00017 17 393216

1/512 0.00102474 1.99997 0.000485271 2.00009 17 1572864
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Table (IV) lists the PCG iteration counts for the time-harmonic problem as ω

varies between 10−3 and 20, with ε = µ = 1. The preconditioner is simply the mass

matrix in the inner product of L2
1(D)3 weighted by µ on the component corresponding

to hθ and by ε on the components corresponding to er and ez. The operator T h is

computed in a manner similar to that of the electrostatic problem (see Section (C) of

Chapter IV).

We observe that small values of ω do not affect the convergence of the PCG

method, but large values have a severely adverse effect. In contrast to the electrostatic

and magnetostatic problems, the inf-sup condition for the time-harmonic problem (see

Theorem 11) involves constants depending on the coefficients ε, µ, and ω. Thus we

do not have uniform convergence with respect to the coefficients as in the electrostatic

problem.

Table IV. Iteration counts for the time-harmonic problem on square domain, as ω

varies with ε = µ = 1.

h ω = 0.001 ω = 0.1 ω = 3 ω = 10 ω = 20

1/8 16 14 31 54 55

1/16 14 13 31 86 86

1/32 12 12 31 130 129

1/64 11 12 30 117 189

1/128 11 12 30 105 222

1/256 10 12 30 105 223

Although the convergence behavior of the PCG method deteriorates as the mag-

nitude of the coefficients increases, jumps in the coefficients have little effect. Indeed,



71

when ω = 1 and

ε = µ =


1/2 if r, z > 1/2,

1 otherwise,

the number of PCG iterations is only 16 for h between 1/8 and 1/256.
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CHAPTER VIII

CONCLUSION

We have presented negative-norm least-squares methods for dimension-reduced elec-

trostatic, magnetostatic, and time-harmonic Maxwell systems under assumptions of

axisymmetry. Theoretical analysis has verified the stability of the methods and has

provided quasi-optimal estimates of the error of approximation.

We have shown that the implementation is quite simple, only requiring low or-

der finite element and bubble spaces. Consequently, the resulting linear systems are

modest in size. These linear systems can be solved efficiently by iterative techniques.

For the electrostatic and magnetostatic systems, we have uniform convergence rates

for the iterative solver, independent of the coefficients. It is still an open question

how to better precondition the time-harmonic system. The methods for the magne-

tostatic and time-harmonic systems can be easily implemented by simply modifying

the implementation for the electrostatic system, with a minimal amount of additional

code.

Compared with other existing methods for numerically solving axisymmetric

Maxwell equations, the methods presented in this dissertation appear to be the most

widely applicable to real problems in electromagnetics. Indeed, our methods allow

for piecewise constant coefficients representing multiple materials. In theory and in

numerical experiments, we have shown the methods to be robust with respect to the

shape of the domain, which may even be non-convex. Moreover, the domain may be

discretized by any unstructured quasi-uniform family of meshes.

Although our methods are quite useful, there are still improvements to be made

in order to apply them to more general problems. For instance, it has been assumed

throughout the dissertation that the domain has no holes. However, there does not
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seem to be any prohibitive obstacle to generalizing the theory to treat domains with

holes. Another advance that seems feasible is the use of higher order finite element

spaces. Unfortunately, this would take much more analysis than that given in this

dissertation, which cannot be easily generalized for higher order polynomial spaces.

A more interesting and challenging goal would be to extend the methods to handle

variable coefficients.
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APPENDIX A

A SCOTT-ZHANG TYPE INTERPOLATION OPERATOR

The result of this appendix is the existence of an interpolation operator Πh
t : H1

1,t(D) 7→

Sht satisfying stability and approximation properties. Recall that Sht = (Sh)2 ∩

H1
1,t(D). This is stated precisely in the following theorem.

Theorem 12 There exists an interpolation operator Πh
t : H1

1,t(D) 7→ Sht satisfying

‖Πh
t v‖H1

1 (D)2 ≤ C‖v‖H1
1 (D)2 (A.1)

and

h−2
τ ‖v − Πh

t v‖2
L2

1(τ)2 + ‖v − Πh
t v‖2

H1
1 (τ)2 ≤ C‖v‖2

H1
1 (∆τ )2 (A.2)

for all triangles τ in Th and all v in H1
1 (D)2.

We shall construct a weighted Scott-Zhang type interpolation operator Πh
t :

H1
1,t(D) 7→ Sht based on the unweighted operator defined by Scott and Zhang in

[15]. As opposed to the Clement operators which use L2
1 projection on elements, the

operator Πh
t uses L2

1 projection on edges. The construction of Πh
t ensures the property

that a function in H1
1 (D)2 with vanishing tangential trace on Γ1 is mapped to a finite

element function in (Sh)2 with vanishing trace on that edge.

In order to enforce the boundary condition v · t = 0 on Γ1, Πh
t must be carefully

defined on the corners of Γ1 where the tangent vector t changes. Without loss of

generality, we assume that a1, . . . , an are all of the vertices of the mesh Th, with

a1, . . . , anc being the corners of D on Γ1. To be clear, the corners a1, . . . , anc are not

on Γ0 and have positive radial coordinates. For each vertex 1 ≤ i ≤ n, select an edge
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ei in Th having ai as a vertex and satisfying the conditions

ei * Γ0 for all ai ∈ Th, (A.3)

ei ⊂ Γ1 if ai ∈ Γ1. (A.4)

It is allowed for two adjacent vertices to share an edge, i.e. two vertices ai and aj may

have ei = ej. The choice of the edges ei is not unique, and the operator Πh
t depends

on the choice. However, the results we shall prove are independent of the choice of

the edges ei, so the operator Πh
t has no need for notation indicating the choice of

edges. Also for all 1 ≤ i ≤ n, let ai,1 = ai and denote by ai,2 the index of the vertex

that is the other endpoint of ei. Thus {φi,1, φi,2} is a basis for the linear finite element

space Sh(ei) on the edge ei. Let {ψi,1, ψi,2} be the L2
1(ei)-dual basis, which satisfies∫

ei

rψi,jφi,k ds = δjk, for j, k = 1, 2, (A.5)

where δjk is the Kronecker delta. Here the condition (A.3) is necessary. To simplify

notation, we put ψi = ψi,1.

The interpolation operator Πh
t : H1

1 (D)2 7→ (Sh)2 is defined by

Πh
t v =

nc∑
i=1

φici(v) +
n∑

i=nc+1

(φi, 0)

∫
ei

rψivr ds+ (0, φi)

∫
ei

rψivz ds, (A.6)

where the vector ci(v) in R2 is defined as follows. For a given index 1 ≤ i ≤ nc, let

eα and eβ denote the two edges of Th on Γ1 having ai as an endpoint. The tangent

vectors on eα and eβ are denoted by tα and tβ, respectively. Then we define ci(v) as

the solution to the linear system ttα

ttβ

 ci(v) =

 ∫
eα
rψαv · tα ds∫

eβ
rψβv · tβ ds

 . (A.7)

Note that Proposition 3 implies that Πh
t is well-defined on H1

1 (D)2. The next two
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lemmas give a stability property for Πh
t .

Lemma 18 For all 1 ≤ i ≤ n, we have

‖ψi‖L∞(ei) ≤ Ch−1
ei
. (A.8)

Proof. The proof given for Lemma 3.1 of [15] applies here, as there is no weighting

by the radial variable in the L∞(ei) norm.

Lemma 19 For all triangles τ in Th and all v in H1
1 (∆τ )

2, we have

‖Πh
t v‖L2

1(τ)2 ≤ C
(
‖v‖L2

1(∆τ )2 + hτ‖v‖H1
1 (∆τ )2

)
, (A.9)

‖Πh
t v‖H1

1 (τ)2 ≤ C
(
h−1
τ ‖v‖L2

1(∆τ )2 + ‖v‖H1
1 (∆τ )2

)
. (A.10)

Proof. By Lemma 2 of [2], for all 1 ≤ i ≤ n we have

‖φi‖L2
1(τ) ≤ Cr1/2

τ hτ , ‖φi‖H1
1 (τ) ≤ Cr1/2

τ . (A.11)

Recall that rτ denotes the maximum value of the radial variable r on τ . For each

1 ≤ i ≤ n, let τi be any triangle having ei as an edge. Since φi = 0 on τ for all

1 ≤ i ≤ n such that ai is not a vertex of τ , we have by (A.8), (A.11), and Lemma 8

that ∥∥∥∥∥
n∑

i=nc+1

(φi, 0)

∫
ei

rψivr ds

∥∥∥∥2

L2
1(D)2

≤
n∑

i=nc+1

‖φi‖2
L2

1(τ)

∣∣∣∣∫
ei

rψivr ds

∣∣∣∣2
≤ C

n∑
i=nc+1

h2
τh
−2
ei
‖vr‖2

L1
1(ei)
≤ C

n∑
i=nc+1

hei‖vr‖2
L2

1(ei)

≤ C
n∑

i=nc+1

hei

(
h−1
ei
‖vr‖2

L2
1(τi)

+ hei‖vr‖2
H1

1 (τi)

)
≤ C

(
‖vr‖2

L2
1(∆τ ) + h2

τ‖vr‖2
H1

1 (∆τ )

)
.
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Similarly,∥∥∥∥∥
nc∑
i=1

φici(v)

∥∥∥∥∥
2

L2
1(D)2

+

∥∥∥∥∥
n∑

i=nc+1

(0, φi)

∫
ei

rψivz ds

∥∥∥∥2

L2
1(D)2

≤ C
(
‖vr‖2

L2
1(∆τ ) + h2

τ‖vr‖2
H1

1 (∆τ )

)
.

The estimate of
∑nc

i=1 φici(v) follows from the facts that |t| = 1 and the angles

between tangent vectors on adjacent segments of Γ1 are bounded away from 0. Thus

the inverse of the matrix in (A.7) is bounded by a constant depending only on the

domain D. Thus (A.9) holds. Similarly, using the inequality ‖φi‖H1
1 (τ) ≤ Cr

1/2
τ yields

(A.10).

Proof. [Proof of Theorem 12] Consider Πh
t , defined above in (A.6), as a map

from H1
1 (D)2 to (Sh)2. For all 1 ≤ j ≤ nc, it can be easily verified from (A.7) that

ci((φj, 0)) = (δij, 0). Therefore,

Πh
t (φj, 0) =

nc∑
i=1

φici((φj, 0)) =
nc∑
i=1

φi(δij, 0) = (φj, 0)

and similarly Πh
t (0, φj) = (0, φj). By (A.5), we have for all nc + 1 ≤ j ≤ n that

Πh
t (φj, 0) =

n∑
i=nc+1

(φi, 0)

∫
ei

rψiφj ds =
n∑

i=nc+1

(φi, 0)

∫
ei

rψi,1φj,1 ds

=
n∑
i=1

(φi, 0)δij = (φj, 0)

and similarly Πh
t (0, φj) = (0, φj). Thus Πh

t is a projection onto (Sh)2.

By Lemma 19, Πh
t is bounded on H1

1 (D)2. For all ξ in (Sh)2, we have by (A.9)

that

‖v − Πh
t v‖L2

1(τ)2 ≤ ‖v − ξ‖L2
1(τ)2 + ‖Πh

t (ξ − v)‖L2
1(τ)2

≤ C
(
‖v − ξ‖L2

1(∆τ )2 + hτ‖v − ξ‖H1
1 (∆τ )2

)
.
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Now taking the infimum over all ξ in (Sh)2 and using the approximation property

inf
uh∈Sh

‖u− uh‖L2
1(τ) + hτ‖u− uh‖H1

1 (τ) ≤ hτ‖u‖H1
1 (∆τ ) (A.12)

for all u in H1
1 (∆τ ), we obtain the inequality

‖v − Πh
t v‖L2

1(τ)2 ≤ Chτ‖v‖H1
1 (∆τ )2 . (A.13)

Similarly, using (A.10) one can show that

‖v − Πh
t v‖H1

1 (τ)2 ≤ C‖v‖H1
1 (∆τ )2 . (A.14)

Combining these two inequalities yields the estimate (A.2).

Next we show that Πh
t maps H1

1,t(D) onto Sht . Let v be an arbitrary vector

field in H1
1,t(D). It is clear from the definition of the vectors ci(v) in (A.7) and the

constraint (A.4) that the coefficients of all the nodal basis functions in (A.6) vanish.

Indeed, for 1 ≤ i ≤ nc, the right-hand side of (A.7) is the zero vector, so ci(v) = 0.

It remains only to verify that Πh
t v · t = 0 on the interior of all segments S of Γ1.

Each straight line segment S has a constant tangential vector t = (tr, tz), and the

function u = trvr + tzvz in H1
1 (D) satisfies u = 0 on S. Here we are considering tr

and tz as constants. Hence

0 =
n∑

i=nc+1

φi

∫
ei

rψiv · t ds =
n∑

i=nc+1

φi

(
tr

∫
ei

rψivr ds+ tz

∫
ei

rψivz ds

)
= Πh

t v · t

on S. Since S is an arbitrary segment of Γ1, we have established that Πh
t in fact maps

H1
1,t(D) to Sht .
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