
 

 
J. Eng. Technol. Sci., Vol. 51, No. 5, 2019, 707-728                707 

 

Received October 24th, 2018, 1st Revision May 8th, 2019, 2nd Revision August 2nd, 2019, Accepted for 
publication September 20th, 2019. 
Copyright ©2019 Published by ITB Journal Publisher, ISSN: 2337-5779, DOI: 10.5614/j.eng.technol.sci.2019.51.5.8 
 

Drought Event Analysis and Projection of Future 
Precipitation Scenario in Abaya Chamo Sub-Basin, 

Ethiopia 

Ayele Elias Gebeyehu1, Zhao Chunju1*, Zhou Yihong1 & Negash Wagasho2 

1Department of Hydraulic Engineering, College of Hydraulic and Environmental 
Engineering, China Three Gorges University, Yichang443003, China 

2Ethiopian Ministry of Water, Irrigation and Electricity, Addis Ababa, Ethiopia 
*E-mail: chunju.zhao@ctgu.edu.cn 

 
Abstract. Monthly observed and future precipitation magnitudes were subjected 
to statistical trend analysis to examine possible time series behavior. Future 
precipitation was downscaled from large-scale output through statistical 
downscaling. The observed and downscaled future precipitation was analyzed 
for drought events using the Standardized Precipitation Index (SPI) method. In 
the Abaya Chamo sub-basin, Ethiopia precipitation is explained by below 
average magnitudes in most of the low land area, characterized by moderate to 
extreme drought episodes. Nine drought events were discerned during the period 
of 1988 to 2015, i.e. once in three years, resulting in harvest failure and 
subsequent food insecurity. The NCEP-NCAR and CanESM2 model predictors 
were used to statistically downscale the precipitation data. The monthly observed 
and downscaled precipitation magnitudes were in good agreement. The RCP-2.6, 
RCP-4.5 and RCP-8.5 long-term future scenarios were computed to evaluate 
future drought patterns. The mean annual precipitation scenario decreased by 
0.2% to 13.7%, 0.5% to 6.4% and 0.1% to 1.3% for the period from 2016 to 
2040, 2050s and 2080s respectively. The increase in mean precipitation was 
projected to be 0.7% to 12.2%, 0.2% to 11.7% and 0.1% to 17.8% for the period 
from 2016 to 2040, 2050s and 2080s respectively. The present analysis may 
provide useful information associated to drought events to decision makers and 
can be used as a basis for future research in this area. 

Keywords: Abaya Chamo sub-basin; drought event; precipitation scenario; SDSM; 
SPI. 

1  Introduction  
 

Fresh water demand around the world is affected by higher living standards, 
population growth, agricultural and industrial activities growth, LULC changes, 
climate change, degradation in water quality and soil, and numerous other 
factors. The significant spatial and temporal inconsistency of water resources 
frequently results in water shortages in different areas and in different seasons 
or time periods. This issue becomes far more pressing during periods of 
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drought. Drought is a natural and periodic climate feature that occurs in almost 
all climatic regimes [1]. The main reason for drought is insufficient 
precipitation and, in particular, the distribution, intensity, and timing of this 
insufficiency in relation to the existing water demand, storage, and use. Thus, 
drought is an extended period of water shortage that naturally occurs when an 
area obtains precipitation below normal amounts for several months or seasons 
[2]. 

Meteorological drought comprises of temporary below average rainfall and 
results in decreased water resource accessibility and carrying ability of 
ecosystems [3], which influences the environment, human lives and economic 
activities [4]. In recent years, several researchers have investigated drought 
events in different areas of the world [5-12] despite the fact that drought 
phenomena are challenging to identify and monitor because of their complex 
nature. Commonly, drought severity is assessed using drought indices [13]. 
Among the available methods, the Standardized Precipitation Index (SPI) has 
found extensive application worldwide because it can be assessed for various 
timescales and permits the investigation of different drought classifications [14]. 
Because of this, the SPI method is considered a standout among the most 
powerful and effective drought indices [15]. Additionally, the assessment of the 
SPI only requires rainfall data, making it simpler to compute than more 
complex indices, and permits the evaluation of drought circumstances in various 
regions and for various time periods [11,14,16-18].  

Rainfall in Ethiopia is influenced by the wider El Niño-Southern Oscillation 
(ENSO) effects and local weather patterns [19]. The central and east-central 
Pacific Ocean weather system also triggers dominant weather variables such as 
temperature and air pressure above the ocean surface. This impacts the air 
pressure above the ocean and the pattern of wind and rainfall crosswise over an 
extensive area of the tropics and sub-tropics [20]. Rainfall distribution in 
Ethiopia is also manifested by altitudinal variability and seasonality. Some 
geographical territories of the country receive high annual rainfall (exceeding 
1500 mm). However, in the arid and semi-arid regions of the country, very low 
rainfall for limited periods is observed. Based on topographic altitude, the 
country is divided into three climatic zones, namely ‘Dega’ (Cool Zone with 
altitude above 2400 m), ‘Woina Dega’ (Subtropical Zone) and ‘Kolla’ (Tropical 
Zone with altitude below 1500 m) [20,21]. 

The annual seasons resulting from Earth’s orbit around the Sun and its axial 
tilt relative to the ecliptic plane [19] are noticeable in Ethiopia. The Kiremt 
season is a heavy rain season in all parts of Ethiopia except the southeastern and 
southern parts, which receive significant amounts of rainfall from June to 
August. The Belg season is a light rainy season commonly observed in the 
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southeastern and southern parts of Ethiopia from September to November. The 
Bega season (December to February) is a dry season in all parts of the country. 
The Tseday season is a rainfall season in the southeastern and southern parts 
from March to May and imparts the maximum annual solar radiation all over 
the country [22]. 

The national economy and food security are highly dependent on rain-fed 
agriculture [21,23,24]. Frequent droughts as a result of rainfall variability and 
global climate change have hampered agricultural productivity because of water 
shortages and related impacts. The recent historical records indicate that the 
frequency of drought occurrence falls below once in five years [25]. In a period 
of drought, the amount of total rainfall is below average, resulting in low food 
crop production, which affects millions of the human and animal population 
[21,24-28]. The major drought episodes of 1965-66, 1972-73, 1983-84, 1987-
88, 1991-92, 1997, 1999-2000, 2002, 2009 and 2015-16, caused by absence or 
delay in spring (Tseday) and summer (Kiremt) rains, had negative social and 
economic ramifications [24-26,29]. In Ethiopia, El Niño episodes have a high 
probability to cause rainfall above or below normal. The drought events of 
1987-88, 1991-92, 2002, 2009 and 2015-16 were associated with El Niño 
episodes [30]. 

The summer (Kiremt) and annual rainfall trends in southern, eastern and 
southern Ethiopia have declined since 1982 [21]. In the Abaya Chamo sub-
basin, the climate varies from tropical to alpine and the rainfall pattern is 
bimodal. The main rainy season in the catchment is from March to May and the 
second rainy season is from September to October. However, in the northern 
part of the sub-basin, substantial amounts of rainfall are observed between July 
and October [31]. The sub-basin’s agricultural productivity is highly dominated 
by rain-fed crops and traditional farming methods and hence highly influenced 
by rainfall variability. Thus, it is vital to assess the future rainfall variability and 
recommend possible adaptation and mitigation methods. This study was aimed 
at evaluating the historical rainfall variability using the MK trend test method, 
analyzing drought characteristics using the Standardized Precipitation Index 
(SPI), and forecasting the future rainfall scenario using Statistical Downscaling 
Model (SDSM) in the Abaya Chamo sub-basin. 

2 Material and Methods  

2.1 Study Area 
The Abaya Chamo sub-basin is part of the Ethiopian rift valley basin located in 
the South Nations, Nationalities and Peoples’ Region (SNNPR). It is located at 
5°51.5’N to 8°8’N latitude and 37°16.3’E to 38°39.3’E longitude [32] and the 
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altitude varies from 4200 m.a.s.l to 1108 m.a.s.l [31]. In the sub-basin, the mean 
annual total precipitation varies from 400 mm to 2,300 mm. Lake Abaya and 
Lake Chamo are two endorheic lakes situated in the sub-basin created by 
volcanic activity during the Pliocene and Holocene [31]. Observed 
meteorological data from fourteen stations in the sub-basin were used for 
further analysis. Figure 1 shows the location of the study area. 

 
Figure 1 Location of Abaya Chamo Sub-Basin. 

2.2  Data Used 
Daily rainfall data records for fourteen meteorological stations in Abaya Chamo 
sub-basin were acquired from the Ethiopian National Meteorological Agency. 
The second generation Canadian Earth System Model (CanESM2) developed 
by the Canadian Centre for Climate Modeling and Analysis (CCCma) of 
Environment Canada for SDSM input were accessed from online sources [33]. 
The CanESM2 output has three different representative concentration pathway 
(RCP) scenarios, i.e. RCP-2.6, RCP-4.5 and RCP-8.5. The daily rainfall records 
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for this study covered the period from 1988 to 2015. The arithmetic mean and 
the normal ratio methods were used to fill in the missing rainfall records. The 
observed rainfall data were further checked for consistency using the double 
mass curve (DMC) method.  

2.3 Methods 

2.3.1 Consistency and Trend Analysis 
The observed rainfall records were checked for consistency and possible 
systematic anomalies because of man-induced changes or failure of the 
recording devices to measure actual values within the catchment area 
throughout the record period. Inconsistencies may occur due to rain gage station 
moving to another location, obstruction by tall buildings around the station, 
ecosystem changes and observation errors. Within the plot of cumulated 
precipitation of each station against the cumulated precipitation of the group of 
base stations, a break in the slope indicates inconsistency of the records, which 
can be corrected with the following formulation [34,35]. 

c
cx x

o

SP P
S

P                                                                                          (1) 

where: 

Pcx – corrected precipitation record 
Px – original precipitation record  
Sc – corrected slope of DMC 
So – original slope of DMC 

The most common non-parametric tests for working with time series trends are 
the Mann-Kendall (MK) and Spearman’s rho tests [36]. The MK trend test is 
not affected by missing data and the length of the time series. Therefore, in this 
study, the Mann-Kendall non-parametric method was used to analyze for 
possible trends in the rainfall observed at fourteen meteorological stations in the 
sub-basin.  

The MK trend analysis method is a commonly applied approach for 
meteorological and hydrological trend analysis [37-46]. The test was computed 
for n time series values (x1, x2, x3, …, xn) as follows [47]: 
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where E(S) is the expected value, Var(S) is the variance of standard deviation, m 
is the number of tied elements, ti is the number of tied data points of extent i, 
and Z is the standard normal deviate. If -1.96 < Z < 1.96, the null hypothesis is 
significant at 95% confidence level [48]. (Ho) of that the factors are identically 
and independently distributed is rejected if /Z/ > Z1-α/2 at α level of significance 
[39,47]. 

2.3.2  Standardized Precipitation Index (SPI) 
Drought occurs after absence or shortage of rainfall. To determine drought 
indices several methods have been used in the literature, such as the Aggregate 
Drought Index (ADI) [49], Drought Severity Index (DSI) [50], Palmer Drought 
Index (PDI) [51], Regional Deficiency Index (RDI) [52], Regional Drought 
Area Index (RDAI) [53], Standardized Hydrological Index (SHI) [54], 
Standardized Precipitation Index (SPI) [55], Standardized Runoff Index (SRI) 
[56] and Stream flow Drought Index (SDI) [57, 58].  



Drought Event Analysis & Projection in Abaya Chamo Sub-Basin 713 
 

In the present study, the historical drought over the sub-basin was assessed by 
the Standardized Precipitation Index approach. To compute the time series of 
the SPI, the model developed by the National Drought Mitigation Center, 
University of Nebraska-Lincoln was used. 

Standardized precipitation is basically the distinction of precipitation from the 
average for a predefined period divided by the standard deviation, where the 
average and standard deviation are resolved from past records [55]. The input 
parameter for SPI is monthly rainfall data. SPI is a simple and powerful drought 
index and can be computed for time scales of 1, 3, 6, 12, 24, and 48 months 
[55,59,60]. For each meteorological station in the Abaya Chamo sub-basin SPI 
was computed for time scales of 3 and 12 months.  

The first procedure in the computation of the SPI is determining the probability 
density function of long-term observed and simulated rainfall data. When this 
has been resolved, the aggregate probability of observed and simulated rainfall 
amount is processed. Then a Gaussian function is used to calculate the 
probability [25,61].  

Table 1 shows the classification in SPI to classify the drought intensity results 
[55]. If the rainfall magnitude is above average, the SPI value is positive and the 
value indicates wet events. However, if the rainfall magnitude is below average, 
the SPI value is negative and is associated with drought events [55,62].  

Table 1 SPI event classification [55]. 

SPI Event 
≥ 2.0 Extremely wet 

[1.5,2.0) Very wet 
[1.0, 1.5) Moderately wet 
(-1.0, 1) Near normal 

(-1.5, -1.0] Moderately dry 
(-2.0, -1.5] Severely dry 
≤ -2.0 Extremely dry 

2.3.3 Statistical Down Scaling Model (SDSM) 
SDSM, developed by [63], is one of the most reliable tools for studying future 
climate change scenarios. The input parameters for SDSM are: daily observed 
rainfall or temperature as predictands and GCM predictor data sets. SDSM is 
calibrated and validated using NCEP-NCAR outputs and daily observed climate 
data. To generate a future scenario, downscaled, calibrated and validated 
climate outputs and NCEP-NCAR outputs are used.  
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The output from the CanESM2 scenario can be used to forecast a future 
scenario [64]. The predictors downloaded from Canadian Center for Climate 
Modeling and Analysis with spatial resolution of 2.8125° latitude and 2.8125° 
longitude were used. Calibration and validation output results of SDSM were 
checked by using coefficient of determination (R2), Nash-Sutcliffe efficiency 
(NSE) and percent bias (PBIAS) to assess the performance of the model. Figure 
2 shows the overall technical process of statistical downscaling of the model to 
generate the future precipitation scenario. The R2, NSE and PBIAS are 
calculated as follows: 
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where Oi and Si- are the observed and simulated data series, respectively; Oave 
and Save- are the mean values of the observed and simulated data series, 
respectively; and n- is the length of the time series. 

In SDSM, screening of reasonable predictors for downscaling predictands is one 
of the most essential steps [65,66]. The fundamental reason for screen variable 
operation is to help the user in the decision of fitting the downscaling predictor 
variables [63]. The selection of predictors can be different for various 
geographical regions based on the properties of the predictor and the predictand 
to be downscaled [66,67]. Reasonable predictors are selected by three methods 
in SDSM, such as analysis (percentage of variance), correlation matrix and 
scatter plot. In this study, analysis and a correlation matrix were used to select 
suitable predictors. The selected appropriate predictor variables for all stations 
were: mean sea level pressure, 1000 hPa wind speed, 1000 hPa zonal wind 
component, 1000 hPa meridional wind component, 1000 hPa wind direction, 
1000 hPa divergence of true wind, 500 hPa Geopotential, 850 hPa Geopotential, 
1000 hPa specific humidity and air temperature at 2 m. 
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Figure 2  Schematic process of SDSM [63].  

3 Result and Discussion 

3.1 Trend Analysis  
The nonparametric MK trend analysis for observed seasonal and annual 
precipitation data was tested at α = 0.05 (95%) significant level. The trend 
analysis was carried out on a seasonal basis by dividing the whole year into 
three seasons based on wet months. The first, second and third season are 
March to May, June to August and September to October respectively. 
Precipitation was trendless in season two at all stations. An increasing trend was 
observed during season one at Hagere Selam station and Arba Minch, Bilate, 
Hagere Mariam and Mirab Abaya stations during season three.  

The annual trend test result shows an increasing trend at Hagere Selam and 
Mirab Abaya stations. This classification was based on the rainfall trend in the 
sub-basin. Table 2 summarizes the significance level of the seasonal rainfall 
trend analysis for each station during the study period 1988-2015. 
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Table 2 Seasonal and annual MK trend test. 

Station 
S1 S2 S3 Annual 

Mean Z Mean Z Mean Z Mean Z 
Alaba 
Kulito 337.4 -0.968 367.0 0.000 251.6 0.059 1057.4 -1.403 

Arba Minch 366.8 0.553 158.5 0.336 221.7 2.233 928.5 1.205 

Bilate 280.3 0.731 253.3 0.375 200.7 2.470 822.5 0.533 

Boditi 412.2 -0.375 434.4 -0.612 260.6 1.087 1220.3 -1.047 

Chencha 451.3 -0.257 321.0 -1.758 373.9 0.612 1284.3 -0.968 

Dilla 539.1 0.474 332.5 0.059 440.1 1.600 1447.2 0.178 
Fiseha 
Genet 494.4 1.047 278.6 -0.336 462.8 1.719 1367.5 0.454 

Hagere 
Mariam 414.4 -0.415 150.9 0.652 268.4 2.233 898.0 1.324 

Hagere 
Selam 451.0 2.154 379.4 0.237 371.5 1.600 1317.5 2.074 

Haisawita 399.0 0.375 320.5 0.375 289.9 1.442 1109.8 0.533 

Hawassa 294.3 0.968 347.5 1.166 221.6 -0.257 956.4 0.138 

Hossana 375.4 0.000 462.6 0.573 244.8 -0.178 1178.7 -0.751 
Mirab 
Abaya 297.0 0.968 191.0 1.363 223.6 2.628 793.7 2.746 

Yirga Chefe 552.4 0.099 307.1 1.008 414.0 0.296 1365.9 0.652 
S-season, Z-MK test statistics: bold marks indicate significant values at α = 0.05 significance 
level. 

3.2  Drought Events 
The 3-month SPI gives a correlation of the precipitation over a particular 3-
month time span with the total precipitation from a similar 3-month term for 
every one of the years included in the historical record and the future scenario 
data. In essentially agricultural districts, a 3-month SPI may be more successful 
in determining accessible moisture conditions than the moderate reacting 
Palmer Index or other accessible hydrological indices [59].  

A 12-month SPI is a correlation between the precipitation in 12 back-to-back 
very long time periods and that recorded in 12 successive months in every prior 
year of accessible data. Since these timescales are aggregated after shorter 
periods that may be above or below normal, most SPIs have a tendency to 
incline toward zero unless an unmistakable wet or dry pattern is occurring. It is 
imperative to use both the 3-month SPI and a longer timescale (12-month SPI) 
[59]. The 3-month and 12-month SPIs were computed using both observed 
precipitation data from 1988 to 2015 and simulated precipitation data based on 
RCP scenarios from 2016 to 2100 simultaneously. 
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Based on the record historical precipitation, 3-month and 12-month SPI analysis 
indicated SPI < 0, i.e. drought occurred for more than fifty percent of the sub-
basin area in the years 1990-1991, 1994, 1997, 1999-2000, 2002, 2004, 2008, 
2011-2012 and 2015. During drought periods, the average annual precipitation 
in the sub-basin was between 77 mm to 84 mm, an amount that is below normal 
(average). In 2000, except for the Chencha and Yirga Chefe stations, extreme 
drought occurred at all stations in the 3-month SPI for the month of March 
(Figure 4). Generally, in the sub-basin, the drought frequency is three years due 
to the impact of Indian Ocean Dipole (IOD), a La Niña episode or an El Niño 
episode [68,69]. Plots of the time series of 3-month and 12-month SPI outputs 
at Arba Minch and Dilla stations are shown in Figure 3.  

 

 

 

 
Figure 3 3-month and 12-month SPIs at Arba Minch and Dilla stations. 
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Figure 4 Spatial distribution of drought events in March 2000. 

Drought in the sub-basin was analyzed for each time scale based on the rare 
event of every occasion for each station regarding the total number of 
perceptions over the sub-basin in the same event and time scale. The lowest 
annual rainfall was recorded in Mirab Abaya station; this area was more 
affected by drought than the others. Table 3 shows the percentage of drought 
events at 3- and 12-month time scales in the sub-basin. Near-normal drought is 
indicated by the highest percentage of drought events occurring in the sub-basin 
and extreme drought is indicated by the lowest percentage.  

Future precipitation data were simulated using a GCM considering RCP 
scenarios. Relative to the reference period 1988 to 2015, the predicted SPI result 
shows an increasing drought frequency. 3-SPI below -1.0 was 15.6%, 21.7%, 
20.1% and 19.8 % in 1988 to 2015, 2016 to 2040, 2050s and 2080s 
respectively. 12-SPI below -1.0 was 15.2%, 20.6%, 18.9% and 18.8 % in 1988 
to 2015, 2016 to 2040, 2050s and 2080s respectively.  

The predicted SPI analysis indicates increasing drought events in all scenarios 
relative to the reference period. Drought event conditions can be provoked by 
changes in precipitation and other climatic variables because of climate change 
[70]. Therefore, future drought events in the study area are strongly affected by 
climate change.  
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Table 3  Percentage of drought occurrence in the Abaya Chamo Sub-basin . 

Drought Event 
3-SPI 12-SPI 

1988 to 
2015 

2016 to 
2040 

205
0s 

208
0s 

1988 to 
2015 

2016 to 
2040 

205
0s 

208
0s 

Extremely dry 2.3 4.8 4.6 4.9 1.6 3.6 3.1 3.1 
Severely dry 4.2 6.0 5.0 5.1 3.5 4.3 4.4 4.9 

Moderately dry 9.1 10.8 10.5 9.7 10.1 12.7 11.4 10.9 
Near-normal 68.9 60.7 77.3 64.5 69.0 62.6 76.4 69.8 

3.3 SDSM Result 

3.3.1 Model Calibration and Validation 
 

The selected appropriate NECP-NCAR predictors and daily precipitation 
predictands were used for model calibration and validation. The data from 1988 
to 2003 and 2004 to 2015 were used for model calibration and validation 
respectively. For precipitation, a conditional process was selected and an event 
threshold of 0.3 mm/day [63] was used. The weather generator model enables 
the confirmation of the calibrated model and can be used to reconstruct 
predictands [63].  

Table 4 Statistical evaluation of model performance. 

Stations 
Calibration Validation 

R2 NSE PBIAS R2 NSE PBIAS 
Alaba Kulito 0.78 0.72 9.1 0.9 0.53 7.1 

Arba Minch 0.67 0.5 23.1 0.82 0.74 14.8 

Bilate 0.92 0.6 17.9 0.92 0.85 10.9 

Boditi 0.96 0.91 9.3 0.96 0.85 16 

Chencha 0.85 0.68 5.8 0.86 0.72 15.3 

Dilla 0.84 0.65 23.9 0.62 0.56 4.9 

Fiseha Genet 0.89 0.60 21.9 0.9 0.82 13.6 

Hagere Mariam 0.79 0.58 24.2 0.94 0.76 24.1 

Hagere Selam 0.89 0.65 16.4 0.97 0.95 6.1 

Haisawita 0.69 0.56 10.1 0.81 0.77 2.5 

Hawassa 0.87 0.59 16.4 0.97 0.66 21.8 

Hossana 0.79 0.65 5.2 0.94 0.87 11.2 

Mirab Abaya 0.91 0.62 17.5 0.87 0.60 13.8 

Yirga Chefe 0.89 0.8 15.5 0.93 0.88 13.5 
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The output of the model was evaluated by coefficient of determination (R2), 
Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS). In general, model 
simulation is evaluated as satisfactory if R2 > 5.0, NSE > 5.0 and PBIAS ± 25%. 
The result in Table 4 shows that the model’s performance was acceptable. Table 
4 shows the performance of the model during calibration and validation. 
According to the result, the precipitation data produced by SDSM closely 
matched the observed precipitation during the calibration and validation period. 

Figure 5 shows the observed and downscaled monthly precipitation data for a 
sample of the stations (Boditi, Chencha, Hawassa and Mirab Abaya) for the 
calibration and validation period.  

  

  
Figure 5 Observed and downscaled precipitation. 

3.3.2 Projection of Future Precipitation Scenario 
 

Future scenarios of daily precipitation were generated based on the predictors of 
several Can ESM2 models (RCP-2.6, -4.5 and -8.5) for the period of 2006 to 
2100. To analyze the change in precipitation with reference to the observed 
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precipitation data (1988-2015), three future climate windows were selected, i.e., 
2016 to 2040, 2050s and 2080s.  

 
(a) 

 
(b) 

 
(c) 

Figure 6 Precipitation scenarios change: (a) 2016-2040, (b) 2050s. (c) 2080s. 
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The average of the downscaled precipitation scenario decreases in the sub-basin 
for the future period of 2016 to 2040 and increases in the 2050s and 2080s. The 
decrease in mean annual precipitation varies from 0.9% to 6.5%, 0.2% to 8.9% 
and 1.4% to 13.7% for the stated time windows. The expected increase in mean 
precipitation varies from 0.5% to 11.7%, 0.2% to 8.9% and 0.6% to 11.1% for 
the 2050s period and 0.2% to 12.0%, 0.1% to 9.4% and 2.2% 17.8% for the 
2080s period under all scenarios, respectively. This increase in precipitation 
may be attributed to an increase in surface temperature, which would raise the 
rate of evaporation, prompting increased precipitation [67] and a decrease in the 
impact of (IOD), La Niña episodes or El Niño episodes [68, 69]. Figure 6 shows 
the percentage of precipitation change expected for each station. 

4  Conclusion  
 

Drought events in the Abaya Chamo sub-basin in Ethiopia were estimated using 
the SPI method from observed precipitation data collected from fourteen 
meteorological stations for the period of 1988 to 2015. The analysis result 
indicates that for the 3-month and 12-month SPIs more than fifty percent of the 
sub-basin area is affected by moderate, severe and extreme droughts in 1990-
1991, 1994, 1997, 1999-2000, 2002, 2004, 2008, 2011-2012 and 2015.  

The average annual precipitation in drought periods was between 77 mm to 84 
mm, which is below normal conditions. When precipitation is absent or below 
average, drought episodes are induced in the sub-basin. Droughts are due to the 
impact of IOD, La Niña or El Niño episodes. Such drought events in the sub-
basin lead to harvest, failure, dwindling household income of rural communities 
and food insecurity. Observed and future precipitation can be used as 
appropriate input to study drought implications and probable consequences. 

The future precipitation outputs obtained from a statistical downscaling model 
were subjected to trend analysis. The mean annual precipitation decreases by 
0.2% to 13.7%, 0.5% to 6.4% and 0.1% to 1.3% for the period from 2016 to 
2040, 2050s and 2080s respectively and the expected increase in mean 
precipitation varies from 0.5% to 11.7%, 0.2% to 8.9% and 0.6% to 11.1% in 
2050s and 0.2% to 12.0%, 0.1% to 9.4% and 2.2% 17.8% in 2080s under the 
RCP-2.6, RCP-4.5 and RCP-8.5 scenarios respectively. 

Despite the inherent uncertainties associated with the CanESM2 and SDSM 
models, it can be concluded that SDSM and SPI performed well on the Abaya 
Chamo sub-basin in downscaling future precipitation scenarios and for analysis 
of drought events.  
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