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Abstract. Seepage is an important problem analyzed in geotechnical 

engineering. Conventionally, the analysis is performed in conditions where the 

soil is intact. The presence of desiccated cracks requires a seepage analysis that 

considers not only the soil matrix part of the cracked soil but also the crack 

network. Currently, there are three approaches in the analysis of seepage through 
cracked soils: (i) analysis by modeling the cracked soil as an intact material with 

cracks being represented as macropores; (ii) analysis by modeling the cracked 

soil as a material with a bimodal pore-size distribution; and (iii) analysis by 

modeling two components of the cracked soil separately: the soil matrix and the 

crack network. Each approach is reviewed and discussed in this paper. It was 

found that each approach is suitable for specific cases: (i) the first method is 

suitable for seepage analysis of cracked soil deep below the ground surface; (ii) 

the second method is suitable for seepage analysis of cracked soil at the ground 

surface under a drying process; (iii) the third method is suitable for seepage 

analysis of cracked soil at the ground surface experiencing rainwater infiltration. 

Choosing the appropriate method is essential in modeling the appropriate 
seepage mechanism. 

Keywords: cracked soils; methodology of analysis; numerical model; seepage; 

unsaturated soils; water content.  

1 Introduction 

Seepage is an important problem analyzed in geotechnical engineering. This 
problem ranges from seepage in slopes due to rainwater infiltration and seepage 

in agricultural fields to seepage from liquid waste ponds. Conventionally, the 

analysis is performed in conditions where the soil is intact (e.g. [1,2]).  

The presence of cracks changes the flow mode of cracked soil as compared to 
that of intact soil (e.g. [3]). In cracked soil, water exists in both the soil matrix 

part and the crack network part. Therefore, the presence of desiccated cracks 
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requires a seepage analysis that considers not only the soil matrix part but also 

the crack network. 

Several methods have been proposed to analyze seepage in cracked soils (e.g. 

[4-22]). The methods differ in their assumptions regarding the quantification of 
the water flow through the soil matrix part and the crack network. The 

difference in assumptions leads to a difference in the flow analysis in these two 

components of cracked soil.  

Choosing the appropriate method of analysis is essential. The use of an 

incorrect method may lead to a wrong analysis, which may endanger  

geotechnical constructions. Therefore, it is important to understand the working 

principles and the applicability of each method.  

This paper presents a summary of the advancement in methods of analysis of 

water seepage through cracked soils. A review of the applicability of each 

method is also discussed in this paper. 

2 Review of Methods of Analysis 

Bear [4] showed that in terms of permeability, a crack network can be 

represented by an intact material that has an anisotropy in permeability. An 
ellipse can be used to quantify the permeability, which varies with respect to 

direction. Li & Zhang [5] used the works of Bear [4] and Long, et al. [6] to 

represent the ellipse of permeability for crack networks with particular 
statistical parameters (i.e. crack length, crack orientation, and crack density). 

The ratio between the long and short axes of the ellipse of permeability 

represents the anisotropy of permeability of the represented intact material. The 
larger the ratio between the long and short axes of the ellipse of permeability, 

the larger the anisotropy of permeability. A crack network with cracks that have 

two orthogonally predominant orientations results in an ellipse of permeability 

with a large ratio between the long and short axes. A crack network with cracks 
that do not have a predominant orientation results in a circle of permeability (a 

circle can be viewed as an ellipse with the ratio between the long and short axes 

equal to one). Li, et al. [7] computed the representative elementary volume 
(REV) of a crack network related to the work of Li & Zhang [5].  

Huysmans, et al. [8] modeled a deep cracked soil as an intact representative 

material with an equivalent permeability. The permeability of the intact 

representative material was computed by proportionally averaging the 
permeability of the intact soil matrix and the permeability of the cracks. Peters 

& Klavetter [9] analyzed the permeability of a cracked soil and came up with 

the permeability of the soil matrix part, the permeability of the crack network 
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and combined them as the permeability of the cracked soil. The permeability of 

the soil matrix and the permeability of the crack network were computed based 

on their respective pore-size distributions. A method to compute the 

permeability of the represented material was developed by utilizing the pore-
size distribution of the crack, the pore-size distribution of the soil matrix, water 

compressibility, bulk (matrix and crack) compressibility, and crack 

compressibility.  

Fredlund, et al. [10] modeled a cracked soil as a soil with a bimodal pore-size 

distribution. In the model, with an increase in matric suction, the cracks 

desaturate first and then the soil matrix desaturates with a further increase in 

matric suction. The permeability of the cracks was computed using the methods 
proposed by Kozeny [11] and Carman [12]. A method of superposition was 

proposed to compute the saturated permeability of cracked soil from the 

permeability of the saturated intact soil matrix and the permeability of the 
cracks. The permeability function of cracked soil was then calculated using the 

method from Irmay [13] utilizing the bimodal SWCC and the saturated 

permeability of cracked soil. Fredlund & Hung [14] proposed a method of 
seepage analysis for cracked soils using the permeability of cracked soil 

computed using a bimodal pore-size distribution.  

Mitchell and van Genuchten [15] analyzed water flow from cracks to the soil 

matrix during irrigation. In this method, a lysimeter was used to measure the 
infiltration rate, evapotranspiration, and volumetric water content of cracked 

soil in the field. From the change of volumetric water content versus depth at 

several times of observation it was observed that during infiltration water filled 
the cracks first and then seeped laterally into the soil matrix. Bronswijk, et al. 

[16] measured the water content of the soil matrix at several locations during 

water flow through a cracked soil. The water content was measured randomly at 

several locations in the field. The distance between the point of water content 
measurement and the crack varied between the points of water content 

measurement. This resulted in variation of water content at the same time of 

measurement. The closer the distance between the point of water content 
measurement and the crack, the higher the measured water content at the same 

time of measurement. However, no quantification was performed regarding the 

distance between the point of water content measurement and the crack. Van 
Dam [17] developed a numerical model to analyze water seepage from a crack 

network into the soil matrix part of a cracked soil. In the numerical model, 

water filled the crack first and then seeped laterally into the soil matrix. Zhan, et 

al. [18] performed an extensive in situ water content measurement in the soil 
matrix part of a cracked soil. This study was similar to that performed by 

Bronswijk, et al. [16], but an analysis was performed regarding the distance 

between the point of water content measurement and the crack. Zhang & Zhang 
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[19] numerically modeled seepage through a slope with a cracked ground 

surface using the commercial software Slope/W and Seep/W (Geo-Slope [20]). 

In the 2D numerical model, cracks were modelled as vertical strips using a sand 

material SWCC and the permeability function of intact soil matrix and cracks 
(vertical strips of sand) were incorporated in the numerical model. Krisnanto, et 

al. [21-22] represented the soil matrix and the crack network as two different 

materials. The crack network was modeled as boundary conditions from where 
water seeped into the soil matrix. Common to these methods is the treatment of 

the soil matrix and the crack network as two different materials. 

3 Discussions on the Methods of Analysis 

From the previous studies, it can be summarized that there are three approaches 

for the analysis of seepage through cracked soils: (i) analysis by modelling 

cracked soil as an intact representative material with a unimodal pore-size 
distribution (the cracks are represented as macropores); (ii) analysis by 

modeling cracked soil as an intact representative material with a bimodal pore-

size distribution; and (iii) analysis by modelling two components in the cracked 

soil separately: the soil matrix and the crack network. The difference among the 
methods lies in the manner the soil matrix part and the crack network are 

modeled.  

In the first method, the crack network is considered as macropores and the soil 
matrix contains micropores and soil solids (e.g. [7-9]). The cracked soil is thus 

an intact material that contains macropores, micropores and soil solids. The 

cracked soil (Figure 1(a)) is treated as an intact representative material (Figure 
1(b)).  

  
(a) Actual cracked soil (b) Cracked soil model (intact representative 

material) 

 

Figure 1 Analysis by modeling cracked soil as an intact representative material. 
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The soil-water characteristic curve (SWCC) and the permeability function are 

then developed for this intact representative material. The SWCC and the 

permeability function take the shape of an SWCC and permeability function of 
soil with a unimodal pore size distribution (Figure 2).  

 

Figure 2 Schematic of SWCC and permeability function of cracked soil 

considering the cracked soil as a material with a unimodal pore size distribution. 

The method of analysis by modeling cracked soil as an intact representative 
material requires a condition that when the soil is wetted (matric suction is 

reduced), water enters the small pores first. With a further reduction in matric 

suction, water enters the larger pores. This is in accordance with the condition 

of capillary rise explained in Taylor [23], as shown in Figure 3. 

The sequence of water entering macropores, as shown in Figure 3, occurs when 

the cracks are deep below the ground surface, as described by Peters and 

Klavetter [9] and Miyazaki [24]. In addition, there is no connection of the 
cracks with open air in the ground surface. In a cracked ground surface, 

rainwater fills the cracks very rapidly and the sequence of water entering the 

macropores as shown in Figure 3 does not occur. 
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Figure 3 Capillary rise in soil (redrawn from Taylor, [23]). 

In the second method, the cracked soil is considered as an intact representative 

material (Figure 1) with a bimodal pore-size distribution (e.g. [10,14]). During 
the drying process, the cracks desaturate first, followed by desaturation of the 

soil matrix. The SWCC and the permeability function take the shape of an 

SWCC and permeability function for soil with a bimodal pore size distribution, 
as shown in Figure 4. It also implies that during the wetting process, water first 

fills micropores in the soil matrix before filling the cracks. Therefore, this 

method is applicable for the condition of the drying process of a cracked soil 
and a wetting process where water fills the cracks slowly.  

The drying process with cracks being desaturated occurs first in the ground 

surface, whereas the wetting process by water filling up the cracks slowly 

occurs deep below the ground surface (e.g. [9,24]). The condition where water 
fills the cracks very rapidly, as when rain falls onto a cracked ground surface, 

cannot be modeled by this method. 

In the third method, the intact soil matrix and the crack network are analyzed as 
two different materials (e.g. [15-19,21,22]). Water enters the crack network 

instantaneously even though the soil matrix has not been completely saturated. 

Thus, in this condition the soil wetting process follows the sequence as shown 

in Figure 5. In this condition, the cracks in the cracked soil (Figure 6(a)) can be 
modeled as head boundary conditions (Figure 6(b)), as in Krisnanto [22]. 

A cracked ground surface is subjected to rainfall. As rain falls onto the ground 

surface, water enters the cracks instantaneously even though the soil matrix has 
not been completely saturated. Thus, the third method is applicable for the 

ground surface subjected to rainfall.  
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Figure 4 Schematic of the SWCC and permeability function of cracked soil 

considering the cracked soil as a material with a bimodal pore size distribution. 

 

Figure 5 Sequence of water entering the soil during rainwater infiltration. 
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(a) Actual cracked soil 
(b) Cracked soil model (cracks is modeled as 

head boundary conditions) 

Figure 6 Analysis by modelling crack and soil matrix as different materials. 

In the condition where the crack network is filled instantaneously with water, 
the seepage into the soil matrix is analyzed using the saturated-unsaturated 

unsteady-state seepage equation. For an isotropic soil with respect to the 

coefficient permeability, the saturated-unsaturated unsteady-state equation can 
be written as in Eq. (1)[2]: 
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where hw / x is the hydraulic head in the x-direction, hw / y, kw is the 
coefficient of permeability with respect to the water phase in the x- and y-

directions (isotropic soil), �
� is the coefficient of water volume change with 

respect to a change in matric suction, w is the density of water, g is the 
gravitational acceleration, t is time.  

An example of a plan view of a 3-D numerical model of a laboratory specimen 

of cracked soil experiencing lateral flow is shown in Figure 7. The third method 
was used in the analysis (i.e. the water in the crack network was modeled as  

head boundary conditions). The analysis was performed using the SVFlux 

software application [25]. The contour of the water content of the numerical 
model of the laboratory specimen of cracked soil is shown in Figure 8. It is clear 

that the water content near the crack walls is higher than that at the center of the 

soil matrix, indicating seepage from the crack walls towards the center of the 
soil matrix. 

Both cracked soil and gravel have macropores, but they behave differently in 

terms of seepage. The difference is because in gravel macropores and 

micropores are located randomly, as shown in Figure 9. This is called a single 
grain structure (e.g. [26,27]). On the other hand, in cracked soil the macropores 

are connected, forming cracks (Figure 5). 
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Figure 7 Example of plan view of a 3-D numerical model of a cracked soil 

specimen after 33 minutes of lateral flow.  

 

Figure 8 Example of a contour of water content in the numerical model of a 

cracked soil specimen after 33 minutes of lateral flow. 

Cracks modeled as  
head boundary conditions 

Cracks modeled as  
head boundary conditions 
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Figure 9 Single grain structure. 

4 Conclusions 

There are three approaches in the analysis of seepage through cracked soils: (i) 

analysis by modeling cracked soil as an intact representative material with a 

unimodal pore size distribution (the cracks are represented as macropores); (ii) 
analysis by modeling cracked soil as an intact representative material with a 

bimodal pore-size distribution; and (iii) analysis by modeling two components 

in cracked soil separately: the soil matrix part and the crack network (the cracks 
are modeled as head boundary conditions). 

The first method is suitable for seepage analysis of cracked soil deep below the 

ground surface. The second method is suitable for seepage analysis of cracked 
soil at the ground surface under a drying process. The third method is suitable 

for seepage analysis of cracked soil at the ground surface experiencing 

rainwater infiltration. 
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