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Abstract. In this work, a historical data based battery management system 
(BMS) was successfully developed and implemented using an embedded system 
for condition monitoring of a battery energy storage system in a smart microgrid. 
The performance was assessed for 28 days of operating time with a one-minute 
sampling time. The historical data showed that the maximum temperature 
increment and the maximum temperature difference between the batteries were 
4.5 °C and 2.8 °C. One of the batteries had a high voltage rate of change, i.e. 
above 3.0 V/min, and its temperature rate of change was very sensitive, even at 
low voltage rate of changes. This phenomenon tends to indicate problems that 
may deplete the battery energy storage system’s total capacity. The primary 
findings of this study are that the voltage and temperature rates of change of 
individual batteries in real operating conditions can be used to diagnose and 
foresee imminent failure, and in the event of a failure occurring the root cause of 
the problem can be found by using the historical data based BMS. To ensure 
further safety and reliability of acceptable practical operating conditions, rate of 
change limits are proposed based on battery characteristics for temperatures 
below 0.5 °C/min and voltages below 3.0 V/min. 

Keywords: battery management system; energy storage system; performance analysis; 
smart microgrid; temperature changes; voltage changes. 

1 Introduction 
The microgrid is a technology that integrates distributed energy resources, such 
as wind turbines, solar photovoltaic systems and energy storage systems, that 
have varying output power and operating conditions. Fluctuation and 
intermittence resulted from unstable energy sources and nonlinear loads have 
considerable impacts on the normal operation of a microgrid [1] and can cause 
volatility, high uncertainty and complexity in renewable energy generation [2]. 
A microgrid can operate in either grid-connected or autonomous mode [3]. In 
grid-connected mode it operates as a system connected to the electricity grid 
and can feed power to residential, commercial, or industrial loads [4]. In 
autonomous mode, also called off-grid or isolated mode, it can be used as back-
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up power supply or provide power to remote rural areas [5]. The reference 
voltage of a microgrid in autonomous mode is generally provided by the energy 
storage [5]. These operation modes and conditions may affect the reliability of 
distribution systems with microgrids and should be carefully investigated [6].  

In isolated operational mode, voltage and frequency control are vital in 
microgrid systems [7]. Reference [8] proposes a voltage-based droop (VBD) 
control method for unbalance mitigation and sharing of distributed generation. 
A frequency-based control strategy has been proposed by [9] to ensure the 
microgrid frequency according to the strict limits imposed by the EN 50160 
standard. Discussing AC/DC microgrid systems, [10] contains a comparison of 
microgrid systems with distributed generation (DG) systems using renewable 
energy sources (RES), energy storage systems (ESS) and loads. Monitoring 
stationary ESS is an important part of maintenance, testing, surveillance, and 
determination of the state of the ESS [11]. Online monitoring for fault diagnosis 
can also contribute to better maintenance and an optimal battery replacement 
program [12]. Monitoring is more important when the location is difficult to 
access and the efficiency of maintenance personnel needs to be ensured. 

As an infrastructure of smart grids, microgrids should become even smarter in 
the future. A smart microgrid unifies the platform of communication for 
interconnection of power electronics interfaces, energy management systems, 
control systems and human machine interfaces (HMIs) [2]. An advantage of 
smart microgrids is their suitability for online visualization, data collection, and 
indication and manipulation of the system [13]. The most important advantage 
is the ability to continuously monitor the battery parameters, either during 
charging or discharging, which can be useful especially in battery protection 
systems [14]. The historical data of battery parameters are useful for 
maintenance as well as inspection to take possible action, either automatically 
or manually, to extend battery lifetime.  

In order to improve the performance and extend the life of a battery energy 
storage systems (BESS), a battery management system (BMS) is required to 
deal with the dynamics of the battery system [15], while specific charge or 
discharge control strategies are also required [2]. The BMS will examine the 
operational parameters of the battery (e.g. voltage, current, and temperature) to 
estimate the battery state and control the charging and discharging processes 
[16] while maintaining safe and optimal operation of each battery [14]. BESS 
generate heat during rapid charge and discharge cycles at high current levels. 
Understanding thermal behavior and heat transfer within BESS is essential to 
maintain safe operating conditions [17]. 
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The state of charge (SOC) of the battery is the most important parameter to 
monitor. The SOC value cannot be measured directly, but it can be estimated 
from measurement of several battery parameters, such as voltage, electrical 
current, and temperature. To determine the SOC of batteries, several approaches 
have been developed, which are commonly divided into two categories: 
electrochemical model-based methods and data-driven methods, which can 
eliminate the dependency of SOC estimation on physical battery models [18]. 
The Coulomb counting method is most commonly used to estimate the SOC, 
which relies on the integration of the battery current with respect to time to 
account for the charge added or withdrawn from the battery [16]. The traditional 
Coulomb counting method is preferred by most BMS manufacturers because of 
the assumption that all cells work at the same voltage and temperature [19]. A 
model-based estimation of battery SOC influenced by temperature for lithium 
batteries has been proposed in [20] and a combination of the Coulomb counting 
method with the open circuit voltage (OCV) method has been proposed in [21]. 
An innovative data-driven approach using an experimental dataset to predict the 
SOC by using support vector regression (SVR) to indicate good performance 
has been proposed in [22]. 

An advanced BMS system will monitor individual batteries inside a series 
configuration and identify the independent voltages and current contributions as 
well as the SOC levels of each battery [23]. An improved and fault tolerant 
voltage measurement for battery management systems has been introduced in 
[24]. A module-integrated distributed BMS in the battery cells without the need 
for an additional battery equalizer or a converter interface has been introduced 
in [25], and a high-efficiency BMS that applies active charge equalization to 
balance the charge of all cells in the pack has been proposed in [26].  

In the present work, a historical data based BMS was developed and 
implemented using an embedded system in a smart microgrid system to monitor 
operating and performance conditions, including the levels of a battery pack or 
individual batteries that are connected in series or in parallel. The values of 
independent voltages, temperatures, current, and SOC levels identify and affect 
the operation and performance of the energy storage in the smart microgrid 
system. Such smart microgrid monitoring could incorporate innovative ways to 
visualize the power system’s status and health and foresee imminent failure. In 
this report, individual battery voltage and temperature changes were 
investigated to find any potential problems and to find the sources of related 
problems caused by overdischarge or overcharge. The limits of acceptable 
practical operational conditions for battery temperature and voltage rates of 
change in an energy storage system were also analyzed. 



152 Irsyad Nashirul Haq, et al. 

  

2 Smart Microgrid System  
The smart microgrid system used in this work is shown in Figure 1, which is 
deployed at the Department of Engineering Physics, Institut Teknologi 
Bandung, Bandung, Indonesia (latitude -6.890056 and longitude 107.609283). 
The system can be operated either in grid-connected or autonomous (islanding) 
mode and consists of a battery energy storage, a photovoltaic (PV) system, a 
hybrid energy controller (HEC), a grid connection, and electricity loads with 
two units of air conditioning systems, electronic devices, a television, and 
several students’ laptops and computers in the Energy Management Laboratory. 

 
Figure 1 Smart microgrid energy layer. 

The PV system’s total capacity is 1000 Wp, consisting of 20 modules of ML-X 
50 Wp @ 12 V, which are connected in series with an operating voltage of 240 
VDC and plugged into an SMA-SB-2000 grid-tie inverter on 230 VAC/50 Hz. 

 

Figure 2 The battery string configuration. 

The battery energy storage consists of eight valve-regulated lead acid batteries 
(VLRA) of LC-P12100 with characteristics as shown in Table 1, and the battery 
pack is configured as four batteries in series and two strings in parallel 
connections, as shown in Figure 2, with a nominal voltage of 48 V and a 

String 2 – Battery #2  String 2 – Battery #4  String 2 – Battery #2  String 2 – Battery #1  

String 1 – Battery #2  String 1 – Battery #4  String 1 – Battery #2  String 1 – Battery #1  
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nominal capacity of 200 Ah. Figure 3 shows the placement of the battery strings 
in the battery compartment. The lowest number of string connections shows the 
negative side of the electrical connection in the energy storage system.  

 

Figure 3 The battery string placement in the compartment. 

The HEC used to control the energy supply and consumption in the system is 
operated with priority rules. These priority rules are predefined, where the 
energy-source management is based on the battery pack’s SOC, the terminal 
voltage and also the energy demand [27]. The parameter configurations 
implemented in the HEC are shown in Tables 2 and 3. An SOC-based battery 
management system for microgrids has also been reported in [3]. The HEC is an 
SMA-SI-5048 bidirectional inverter with a nominal capacity of 5000 Wp, which 
is also an intelligent electronic device (IED) that provides the monitoring 
system to measure the battery pack system voltage, ambient temperature, and 
battery pack current. The HEC provides SMA-COM with proprietary serial 
communication to communicate to and from the devices. Using SMA-Webbox, 
the serial SMA-COM proprietary communication is converted to open 
communication protocol TCP/IP using the JavaScript object notation (JSON) 
format, which can be accessed to read and write parameters in the HEC. 

The PV system can charge the energy storage subsequently through the PV 
inverter and the HEC, which may occur when there is excess power from the 
PV system compared to the load consumption. In order for charging to occur 
and run optimally, we need to convert the output of the AC voltage from the PV 
system or the grid to the battery’s DC voltage. The DC operating and charging 
voltage must be adjusted to the limits and characteristics of the battery as shown 
in Tables 1 and 2. This arrangement can be carried out by the battery 
management system in the HEC. 

String 1 – Battery #3  

String 2 – Battery #3  

Sensor Module

Battery Compartment

Door :
if opened

Door :
if opened

Closed Ceiling: 
opened for picture 

purpose
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Table 1 Battery characteristics. 

Parameter Value 
Manufacturer & Model 

Type & Application 
Nominal capacity (@ 25 °C) 
Nominal, charge, discharge 

voltage 
Operating temp. (charge; 

discharge) 
Weight 

Panasonic LC-P12100 
VLRA, standby power 

100Ah  (@ 20 hour rate) 
12 V; 13.6-13.8 V); 10.5 V 

0 to 40 °C; (-15 °C) to 50 °C 
29.0 kg 

Table 2 Smart microgrid operation modes by battery SOC. 

Parameter Value 
SOC limit for switching (on/off) the grid 

Maximum battery temperature 
Voltage set point for float & full charge 

Charging current of the battery 
Set point of battery charging voltage 

40%; 80% 
40 °C 

13.6 & 13.8 Volt 
45 A 

54.6 Volt 

Table 3 Smart microgrid operation modes by load. 

Parameter Value 
Activate the grid request based on power 

Grid request starting; disconnecting power limit 
Nominal grid input power line current 

Nominal power line voltage & frequency 

Enable 
660 W; 330 W 

20 Amp 
230 VAC / 50 Hz 

3 Battery Management System  
In this work, a historical data based BMS was developed to provide information 
about the operation and performance of the individual batteries in the energy 
storage system. The historical data based BMS system, shown in Figure 4, is an 
improvement of the previous work reported in [28], consisting of a 
communication channel to and from the IED, sensor modules, data acquisition, 
local or cloud database system, and a human machine interface (HMI).  

The embedded system that was developed, utilizes TCP/IP digital 
communication with the JSON format for data acquisition to retrieve the battery 
measurement parameters from the IED and utilizes USB-RS485 Modbus RTU 
communication to collect data from the sensor modules as the communication 
protocol, as implemented by [29] in a DC microgrid and by [30] for integrating 
data from a hybrid supply system. The Modbus communication protocol is 
recognized by all major device vendors as the de facto communication protocol 
standard [31]. 
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Figure 4 Smart microgrid communication layer for historical data based battery 
management system. 

 
Figure 5 BMS data acquisition process. 

The embedded system utilized in this work was a Raspberry Pi Model 3, a fully 
customizable and programmable small computer with support for a large 
number of peripherals and network communication [32]. Its primary function 
was to execute data acquisition, store and process historical data, and act as an 
internet gateway to the cloud server. The data acquisition algorithm in the 
embedded system, shown in Figure 5, is implemented using PHP and Python 
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server-side programming to execute two main programs. The PHP server-side 
program captures data from the IED TCP/IP communication, while the Python 
program captures data from sensor modules using the USB-RS485 Modbus 
RTU for every installed battery.  

The sensor modules consist of voltage and temperature sensors for every battery 
and a UART serial communication module to Modbus RTU protocol. In this 
system, eight units of H3G-TA-12 calibrated voltage and temperature sensor 
modules were implemented and two units of TC-CTB-485 with Modbus RTU 
communication modules for each string connection. The individual batteries in 
the first string connection are represented by S1#1, S1#2, S1#3, and S1#4, 
while those in the second battery string connection are represented by S2#1, 
S2#2, S2#3, and S2#4. 

To retrieve the individual battery measurement parameters from the sensor 
modules, the Pymodbus library in Python programming was used for reading 
the Modbus RTU data, which are converted to JSON format and the parameters 
are automatically stored in a MySQL database using structured query language 
(SQL). The program also executes the data acquisition to retrieve the battery 
pack measurement parameters from the IED in JSON format. All data are then 
processed and converted to SQL in corresponding columns and tables in the 
database system. The data acquisition is scheduled to execute every minute 
using Cronjob in the operating system, as mentioned in IEC Standard 61724, 
which is between 1 and 10 minutes per monitored data [6]. 

4 Results and Discussion 

4.1  Battery Testing & SOC Estimation 
Experimental testing was done to find the initial relationship of the battery pack 
voltage as a function of the SOC. New batteries were configured as in smart 
microgrid implementation, where four batteries were connected in series and 
then two strings of batteries were connected in parallel. The experiment was 
conducted using PowerLog 6S to monitor the voltage and current of the battery. 
A BK Precision 8510 (600 W) was used as programmable load controller. 

The battery pack was charged until it hit the battery cut-off voltage of 54.4 V 
and was kept at a 60-minute rest time so that the battery pack terminal voltage 
approached its OCV and reached 52.07 V. This rest time is important to 
determine the fading of the battery capacity and also to estimate the SOC of the 
battery [33]. Figure 6 represents the initial or new battery pack condition for the 
10 A discharging process compared to the performance of the operating 
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condition of the battery pack in the smart microgrid, which is correlated to its 
battery specifications and parameters in the HEC configuration [27].  

 

 
Figure 6 Relationship of battery pack terminal voltage (V) and its SOC. 

Coulomb counting considering Peukert’s law was used for comprehensive 
experimental analysis of the parameters that affect the battery discharge 
capacity. This formula results in a more accurate description of the discharge 
capacity. This phenomenon can be described using Peukert’s effect, which 
follows Eq. (1) [34]. 

 𝐶𝑑𝑑𝑑𝑑 = 𝑇𝑑𝑑𝑑 ∙ 𝐼𝑑𝑑𝑑
𝑝  (1) 

where 𝐶𝑑𝑑𝑑𝑑 is Peukert’s discharge capacity in ampere-hours, 𝑇𝑑𝑑𝑑  is the 
discharge time, 𝐼𝑑𝑑𝑑 

 is the discharge current, and p is the Peukert number. When 
the Peukert constant is equal to 1, the discharge capacity is independent of the 
applied current. When k is higher than 1, the discharge capacity will decrease 
correlated to the discharge current.  

The discrete-time SOC estimation based on Coulomb counting, which 
implements a compensation for Coulombic efficiency during discharging and 
charging, is influenced by variation of Peukert’s constant. It can be expressed in 
Eq. (2) as in our previous research [16], stated by [35]. 

 𝑆𝑆𝑆𝑘 =  𝑆𝑆𝑆𝑘−1 +  𝜂𝑖𝐼𝑘−1𝛥𝑡
𝐶𝑛

 (2) 
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where  𝑆𝑆𝑆𝑘 is the value of SOC in the kth discrete time interval, 𝜂𝑖 is the 
Coulombic efficiency, 𝐼𝑘−1 is the electricity current, which is influenced by the 
variation of Peukert’s constant in the (k-1)th discrete time interval, 𝛥𝑡 is the 
sampling time, and 𝐶𝑛 is the nominal battery capacity. The Coulombic 
efficiency (𝜂𝑖) refers to the ratio between the consumed charge when the battery 
is fully discharged and its corresponding available stored charge when the 
battery is fully charged. This ratio could be assumed to be 0.992 during the 
charging period and 1.0 during the discharging period [35]. 

The measured dynamic voltage and current with the corresponding historical 
data were then used to calculate the Coulomb counting to estimate the battery 
SOC considering the effect of Peukert’s law using Eqs. (1) and (2). From the 
analytical calculation using Eq. (1), the initial Peukert number result was 
1.2304, which correlates to Peukert’s discharge current 𝐼𝑘 =  0.6721. 𝐼𝑑𝑑𝑑 1.2304. 
The initial battery pack discharge experiment was conducted from the initial 
battery pack voltage of 52.07 V until the voltage value hit 42.00 V, which 
represents the cut-off voltage for the discharge. The SOC estimation covers a 
range from 6% to 100% of the battery pack capacity. From the analytical 
results, the battery pack discharge capacity that can be drawn and used for the 
load was 169.98 Ah, while 30.02 Ah of battery capacity could not be used for 
the load because of Peukert’s effect. 

4.2 Energy Storage Performance Analysis 
The battery pack is a power source that generates heat during rapid charge and 
discharge cycles at high current levels. The historical data of dynamic changes 
in battery voltage and temperature during charging or discharging can be used 
to identify potential problems and to find the sources of problems caused by 
overdischarge or overcharge in smart microgrid operation. In this report, the 
limit for acceptable practical operating conditions for the battery temperature 
and voltage rates of change was analyzed based on historical data using Eqs. (3) 
and (4). 

 ∆𝑇𝑘′  =  |𝑇𝑘− 𝑇𝑘−1|
∆𝑡

 (3) 

where ∆𝑇𝑘′ is the temperature rate of change at the kth sampling time, 𝑇𝑘 is 
temperature at the kth sampling time, 𝑇𝑘−1 is the temperature at the (k-1)th 
sampling time, and 𝛥𝑡 is the value of the sampling time in seconds or minutes. 

 ∆𝑉𝑘′  =  |𝑉𝑘− 𝑉𝑘−1|
∆𝑡

 (4) 

where ∆𝑉𝑘′ is the voltage rate of changes at the kth sampling time, 𝑉𝑘 is the 
voltage at the kth sampling time, 𝑉𝑘−1 is the voltage at the (k-1)th sampling time, 
and 𝛥𝑡 is the sampling time value in seconds or minutes. 
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4.2.1 Voltage Historical Data 
Figure 7 shows the historical data of the battery pack terminal voltage and SOC 
(%) as a function of operating time. Several cycles of charging and discharging 
show anomalies. There was one operating condition in which the battery pack 
voltage was much lower than the others; this occurred on day 2 of the 
experiment. There were also two operating conditions on day 11 and 15, when 
the battery pack voltages were much higher than in normal conditions. Both 
conditions are expected to prompt problems or failure in the future because 
overvoltage, overcharge or overdischarge can damage a battery or shorten its 
useful life. 

The historical data of the battery pack, as shown in Figures 6 and 7, indicate 
that the HEC only operates from 65% to 85% of the battery pack SOC. Under 
normal conditions the HEC will operate according to Tables 1 and 2, but 
because the battery system is already aged, where the operating conditions and 
battery performance have been degraded, the HEC cannot operate optimally 
according to predetermined parameters, which causes problems to arise during 
the charge or discharge process in the battery system. The SOC pack parameters 
were estimated by the program implemented in the HEC based on the ampere 
hour balance, which means that all currents flowing in and out of the battery 
were accumulated and referred to the nominal capacity [27] and not to the aged 
capacity of the battery system. 

 
Figure 7 Historical data of battery pack terminal voltage (V) and SOC (%) as a 
function of operating time (day). 
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Because the HEC cannot monitor individual battery operation and does not have 
a historical information system, as one contribution in this research, a historical 
data based system was developed that can monitor the individual battery 
temperature and voltage changes. The results of the individual historical battery 
data are shown in Figures 8 to 11 as a function of operating time.By using the 
historical data of the battery cell’s parameters recorded from the sensor modules 
in Figure 8, the source of the problem when the battery pack was under voltage 
or over discharge condition, as shown in Figure 7 on day 2, could be 
determined.  

 
(a) 

 
(b) 

Figure 8 Historical data of batteries voltage (V) as a function of operating time, 
(a) string 1, (b) string 2. 

Battery cells in the string 1 connection, as shown in Figure 8(a), had a much 
larger range of change compared to the string 2 connection in Figure 8(b). The 
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battery in S1#3 clearly was a strong potential source of problems, causing the 
energy storage to fail to operate normally, while the battery in S1#4 had a 
strong potential problem because of overcharging, which could cause imminent 
failure of smart microgrid operation. 

4.2.2 Temperature Historical Data 
Subsequently, based on the observation and analysis from Figure 9, the average 
battery temperature in the string 1 connection was slightly lower than that in 
string 2. This phenomenon is caused by the closed compartment/space of the 
battery arrangement, where the placement of the batteries in string 1 is closer to 
the door compared to that of string 2. In this condition, the batteries in string 1 
get more ventilation compared to the batteries in string 2. 

 
(a) 

 
(b) 

Figure 9 Historical data of battery temperature (C) as a function of operating 
time, (a) string 1, (b) string 2. 
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4.2.3 Analytical Result 
The temperature relationship of each battery as a function of voltage can be 
seen in Figure 10. These conditions were also analyzed based on the rates of 
change calculated using Eqs. (3) and (4). The results can be seen in Figure 11.  

 
(a) 

 
(b) 

Figure 10 Relationship of individual battery temperature (C) as a function 
voltage, (a) string 1, (b) string 2. 

The voltage of the batteries in string 1 had a significant range of changes. The 
temperature rate of change of battery S1#3 was even below 2.0 °C but it tended 
to overdischarge, which indicates a strong potential problem with the battery 
pack. This problem is most likely due to large voltage changes, which can be 
caused by the internal battery resistance being higher than that of the others 
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[36]. The low voltages in battery S1#3 resulted in an increase of the nearest 
battery voltage to compensate for the stability of the battery pack when 
discharge or charge processes occurred. As a result, in this case, battery S1#4 
increased its voltage. 

 
(a) 

 
(b) 

Figure 11 Battery temperature rate of change as function of voltage rate of 
change per minute, (a) string 1, (b) string 2. 

Unlike the performance of the batteries in the string 2 connections, the 
relationship between voltage change and temperature change tended to be the 
same for the four batteries. The only difference was for S2#1, as shown in Table 
5: the average battery temperature of S2#1 was 1.5 °C higher than that of the 
other batteries, but the dynamics tended to be similar. 

There were several temperature spikes in battery S2#2, as shown in Figure 9 (b) 
and Figure 11 (b), where even at low voltage changes, the temperature rate of 
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change was above 2.0 °C. These battery temperature conditions could have been 
caused by failure of the battery or sensor monitoring connection [12].The 
analytical results indicate that the temperature changes of battery S1#3 were 
very sensitive to voltage changes because of the discharging process, while the 
temperature changes of battery S1#4 were very sensitive to voltage changes 
because of the charging process. From the historical data of the battery cells in 
the database, battery S1#3 had a voltage rate of change above 3.0 V/min, and 
the temperature change was very sensitive, even for a low voltage rate of 
change per minute. This also happened in S1#4, which had similar 
characteristics as S1#3. These problems tend to indicate that batteries S1#3 and 
S1#4 may already have reduced their battery energy storage total capacity and 
life cycle due to irreversible chemical reactions, as reported in [15]. 

In Tables 4 and 5, the maximum difference between every battery’s temperature 
was 2.8 °C. Furthermore, the maximum temperature increment was 4.5 °C, i.e. 
for battery S2#4. According to [17], the maximum temperature increment and 
maximum temperature difference that are considered practical operating 
conditions for a battery pack system are below 7.61 °C and 4.29 °C.  

Based on the analytical results, battery characteristics, and smart microgrid 
operation mode in Tables 1, 2, and 3 in this report, an acceptable temperature 
rate of change is below 0.5 °C/min and the voltage rate of change is below 
3.0 V/min. These limitations may lead to more effective thermal management 
and avoid smart microgrid controller failure, which will ensure the safety and 
reliability of every battery used in the energy storage systems. 

Table 4 Historical data of string 1 battery performance. 

Battery 
Parameters 

Vave 
(V) 

Vmax 
(V) 

Vmin 
(V) 

Tave 
(°C) 

Tmax 
(°C) 

Tmin 
(°C) 

S1 #1 12.62 13.71 12.45 24.39 26.00 22.70 
S1 #2 12.99 15.24 12.54 24.97 26.20 23.10 
S1 #3 12.77 15.68 9.63 25.93 27.20 23.30 
S1 #4 13.60 15.84 12.55 25.13 26.60 23.30 

Average 13.00 15.12 11.79 25.11 26.50 23.10 

Table 5 Historical data of string 2 battery performance. 

Battery 
Parameters 

Vave 
(V) 

Vmax 
(V) 

Vmin 
(V) 

Tave 
(°C) 

Tmax 
(°C) 

Tmin 
(°C) 

S2 #1 13.12 15.10 11.89 27.23 29.80 25.50 
S2 #2 12.73 13.26 11.97 24.88 27.80 23.30 
S2 #3 13.09 15.07 11.98 25.27 27.40 23.30 
S2 #4 13.07 15.51 11.80 25.55 28.20 23.70 

Average 13.00 14.73 11.91 25.73 28.30 23.95 
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4.2.4 Smart Microgrid Power Supply Analysis 
Investigations of the effects of the power supply and demand in the smart 
microgrid were also conducted. The battery performance diagnostic for 
overdischarge or the lowest voltage utilized the historical data on day 2, as 
shown in Figure 12. The battery pack voltage drop occurred due to the large 
instantaneous load change when the system was operated in isolated or 
islanding mode: a sudden load of over 3000 W, where the power was only 
supplied by the PV at less than 750 W and the rest coming from the battery 
pack.  

In good battery energy storage performance conditions, every battery in the 
system should have the same voltage changes, but in this case, as shown in 
Figure 8 (a), battery S1#3 could not follow the same performance as the other 
batteries. And because the HEC is only able to operate from the battery pack’s 
voltage and SOC to change smart microgrid operation mode, the HEC could not 
directly detect the condition of battery S1#3, which was already below the cut-
off voltage of 10.5 V, as shown in Table 1. 

 
Figure 12 Power supply and demand when the lowest battery voltage occurred. 

 
Figure 13   Power supply and demand when the highest battery voltage occurred. 
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The performance diagnostic for the highest individual battery voltage, which 
was 15.84 V on day 5, was investigated. The highly fluctuating power supply 
changes in the smart microgrid caused by the fluctuating power supply from the 
PV system are shown in Figure 13. They made the battery pack operating 
conditions unstable between supplying and demanding power. When the smart 
microgrid operated in grid connection mode, the power supply was generated by 
the PV system and the grid. But the weather conditions made the PV system’s 
power generation become intermittent and unstable. This condition made the 
BESS operation change dynamically over a short time period between charging 
and discharging. The power supply fluctuation created an unbalanced voltage 
between the batteries in string 1 and string 2 and made battery S1#4 overcharge, 
creating a higher voltage compared to the other batteries. 

In order to optimize and control of various energy resources, it is important to 
build a system that can predict the load consumption. The control system and 
energy storage system can be programmed with the help of reasonable 
prediction. Our findings are focused on real operating conditions of an energy 
storage system by using the voltage and temperature rates of change of 
individual batteries that can be diagnosed, foreseeing imminent failure and in 
the event of failure occurring, we can also find the root cause of the problem 
based on the historical BMS data. There are other findings related to this topic. 
For example, Ref. [37] proposed a method using energy consumption 
simulation and then processing the predicted data to control and optimize the 
energy storage system, while Ref. [38] proposed a method to manage the energy 
storage system by using load simulation and a variable charging/discharging 
threshold in order to have better load smoothing and self-consumption without 
the requirement of precise load or energy resource forecasting. 

5 Conclusion 

The smart microgrid energy storage systems operated in the SOC range from 
65% to 85%, and the battery temperature changes in string number 1, row 
numbers 3 and 4 were very sensitive to voltage changes because of the 
discharging and charging processes whenever the HEC controlled the operation 
mode. Overdischarge or undervoltage in battery string 1 row 3 occurred because 
the HEC could not directly detect the battery voltage whenever it dropped 
below 10.5 V. Overcharge in battery string 1 row 4 occurred because of the 
fluctuating power generation from the PV system, which made the charging and 
discharging processes change dynamically over a brief period of time. 

To further ensure the safety and reliability of every battery that is connected in 
series or in parallel in an energy storage system, limits for acceptable practical 
operating conditions are proposed for the battery temperature and voltage rate 
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of changes. An acceptable temperature rate of change based on battery 
characteristics and smart microgrid operation mode is below 0.5 °C/min, and 
the voltage rate of change is below 3 V/min. These limitations may lead to more 
effective thermal management and avoid smart microgrid controller failure. 
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