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Abstract. This paper proposes the Novel Differential Evolution (NDE) method 
for solving the environmental economic hydrothermal system dispatch 
(EEHTSD) problem with the aim to reduce electricity generation fuel costs and 
emissions of thermal units. The EEHTSD problem is constrained by limitations 
on generations, active power balance, and amount of available water. NDE 
applies two modified techniques. The first one is modified mutation, which is 
used to balance global and local search. The second one is modified selection, 
which is used to keep the best solutions. When performing this modified 
selection, the proposed method completely reduces the impact of crossover by 
setting it to one. Moreover, the task of tuning this factor can be canceled. 
Original Differential Evolution (ODE), ODE with the first modification 
(MMDE), and ODE with the second modification (MSDE), and NDE were 
tested on two different hydrothermal systems for comparison and evaluation 
purposes. The performance of NDE was also compared to existing methods. It 
was indicated that the proposed NDE is a very promising method for solving the 
EEHTSD problem. 

Keywords: available water constraints; emission function; fuel cost function; modified 

mutation; modified selection; nonconvex objective. 

1 Introduction 

Hydrothermal systems are composed of thermal plants and hydropower plants 
that supply electricity load through transmission lines. For electricity 
generation, thermal power plants use expensive fossil fuels and release huge 
amounts of emissions into the air. Thus, the EEHTSD problem aims to 
minimize electricity generation fuel cost and emissions released from thermal 
plants while all constraints are satisified [1-5]. 

The EEHTSD problem has been widely and successfully applied so far by using 
different optimization algorithms. The simulated annealing-based goal-
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attainment (SA-BGA) method [3] has been implemented for fuel cost and 
emission dispatch but only some weight values were used. Therefore, the best 
emission was small but the best fuel cost was much higher than an appropriate 
value. Improved particle swarm optimization (IPSO) [4] has been proposed by 
using PSO and Lagrange optimization. This method can reduce a high number 
of control variables and shorten the search process. However, its application is 
stopped when nonconvex functions are employed. The Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II) [5] has been proven to be effective and was 
compared to other methods such as the Real-coded Genetic Algorithm (RCGA) 
and Multi-objective Differential Evolution (MODE). Multiplier updating 
combined with the ε-constraint technique (IGA-MU) in [6] was stated to be 
better than conventional GA, but there was no result comparison in this study. 
Another method, based on the integration of predator-prey optimization, is the 
Powell search and penalty handling method (PPO-PS-PM) [7], which obtained 
better results than PPO-PS, PPO-PM, PSO-PS and PSO-PM. The application of 
a distribution method based on an improved regularity model (IRMDM) was 
not compared to other methods, not even its own conventional version [8]. An 
efficient cuckoo algorithm (CA) [9] showed superiority over other methods in 
[5-8] in terms of better solutions and faster execution time. A modified Real-
coded Genetic Algorithm approach using mutation based on random transfer 
vectors (RCGA-RTVM) was presented in Haghrah, et al. [10]. A combination 
of improved Mühlenbein mutation and RCGA is proposed in Nazari-Heris, et 

al. [11] and the Parallel Multi-objective Genetic Algorithm (PMOGA) is 
proposed in Feng, et al. [12]. A modified dynamic neighborhood learning-based 
particle swarm optimization (MDNLPSO) [13] and multi-objective quantum-
behaved particle swarm optimization (MOQBPSO) [14] obtained better cost 
than most methods, including conventional PSO. Multi-objective improved 
artificial physical optimization (MOIAPO) [15] was demonstrated to be more 
effective than other methods, i.e. MOPSO, MODE, and NSGA-II. Dynamic 
non-linear programming (DNLP) [16] has shown its potential with much better 
cost than other methods but emission reduction was not considered as an 
objective.  

The original differential evolution (ODE), developed by Storn and Price in 1997 
[17], is a family of effective meta-heuristic algorithms dealing with power 
system optimization problems considering a non-differentiable objective 
function, nonlinear constraints and complicated constraints [18]. Apart from 
that ODE has two main advantages, i.e. fast convergence and few control 
parameters [19]. However, it still suffers from limitations such as feeble local 
search ability, low convergence to global optimum solutions, and easily getting 
trapped in local optima [20]. In Reference [21], Qin, et al. report the use of the 
mutation operation and point out its limits including easy convergence to local 
optimal solutions and difficulty for the selection of the most appropriate 
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mutation factor. Padhye, et al. [22] have suggested elitist selection. Many DE 
variants have been constructed, such as DE with adaptive mutation [20-21], DE 
with elitist selection [22], DE with ancestor tree [23], DE with adaptive 
mutation and elitist selection [24], DE with penalty method [25], and surrogate 
differential evolution (SDE) [26].  

In this study, we propose our NDE method, which uses two new techniques, i.e. 
modified mutation and modified selection. The two techniques will stop the 
NDE from suffering the disadvantages of ODE, namely low capability of global 
convergence, high total number of fitness evaluations and huge number of trial 
runs for different values of the mutation factor. Furthermore, NDE can cancel 
the crossover operation and quit crossover selection. In order to test the 
performance of the proposed NDE, we implemented NDE, ODE and two other 
versions of DE, i.e. DE with modified mutation (MMDE) and DE with modified 
selection (MSDE), to solve two different hydrothermal systems. The first one 
consisted of two thermal units and two hydro units, without considering valve 
point loading effects on the thermal units, and the second consisted of two 
hydro units and four thermal units, with considering valve point loading effects. 
The performance of NDE was evaluated via comparison with ODE, MMDE, 
MSDE, and other methods.  

2 Problem Formulation 

The considered hydrothermal system with N1 thermal units and N2 hydro units 
working in M scheduled sub-intervals is mathematically formulated as follows.  

2.1 Objective Function 

The objective function of the problem aims to determine the task of reducing 
the thermal units’ costs and emissions for the overall scheduled time of M sub-
intervals. The fuel cost function neglecting and considering the loading effects 
are respectively represented in Eqs. (1) and (2) as follows:  

     
2

1i si si si si siF a b P c P   (1) 

 
  2 min

1i si si si si si si si si siF a b P c P d sin e P P            (2) 

Emission gas from each thermal unit can be expressed in the form of a quadratic 
function (See Eq. (3)) and the sum of a quadratic function and an exponential 
function (See Eq. (4)) [7]: 

      2

2i si si si si siF P P   (3) 
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        2

2i si si si si si si si si
F P P exp( P )  (4) 

where si, si, si, si, and si are the emission coefficients of thermal unit i. 

The objective function of the multi-objective problem is converted into a single 
function by using the sum of the two functions in Eq. (5) [7]: 

  
 

  
1 1N N

1 1i 2 2i

i 1 i 1

MinF F F   (5) 

where in Eq. (6): 

 
1 2 1    and 

1 20 , 1    (6) 

2.2 Transmission Grid Constraints and Generator Constraints  

2.2.1 Demand-supply Balance Constraint  

The relationship of total generated power, load demand and power losses should 
satisfy the following Eq. (7) rule: 

  
1 2N N

si ,m hj ,m L,m D,m

i 1 j 1

m  1, , P P MP P 0;
 

      (7) 

where m is the subinterval index; power loss PL,m is calculated by using Kron’s 
loss formula [2]. 

2.2.2 Limits on Power Output 

The operation ranges of hydro generation and thermal generation are bounded 
by their capability in Eq. (8) as follows: 

  
si ,min si ,m si ,maxP P P   and hj,min hj ,m hj,maxP P P   (8) 

2.3 Hydraulic Constraints 

2.3.1 Used Water-available Water Balance Constraint 

The total water discharged via the hydro turbines over the entire scheduled time 
horizon should be the same as the available water, as shown in Eq. (9): 

  
M

m j ,m j

m 1

t q W


 ; j = 1,…, N2 (9) 

where qj,m is the water discharge of hydro plant j in interval m obtained by the 
following Eq. (10): 
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j,m hj hj hj,m hj hj,mq a b P c P    (10) 

2.3.2 Limits on Water Discharge  

The following limitations should be imposed on water discharge as in Eq. (11):  

  j ,min j ,m j ,max 2q q q ; j 1,2,...,N ;m 1,2,...,M     (11) 

where qj,max and qj,min are the highest and lowest discharges from hydro plant j. 

3 Proposed Novel Differential Evolution 

3.1 Original Differential Evolution  

Each individual Ux (x = 1, …, Npop) in population (Npop solutions) is initialized 
within its boundaries as in the following expressionin Eq.(12): 

  U U rand * (U U );  x 1,...,Nx max popmin min     (12) 

The mutation of ODE uses three randomly different existing solutions in Eq. 
(13) as follows:  

  V U MF(U U );x 1,...,Nx pop1 2 3
     (13)   

Crossover is then performed by the definition below in Eq. (14): 

  V if RN CFx x
W ;x 1,...,Nx pop

U otherwisex

 
 


 (14) 

where RNx is a random number between 0 and 1 for individual x and is the 
crossover factor, which is chosen in the range between 0 and 1.  

At the end of each iteration, selection is carried out by using the following 
Eq.(15):  

     W if Fitness W Fitness Ux x x
Ux

U otherwisex

 
 


 (15) 

3.2 The Proposed Novel Differential Evolution  

The proposed NDE method is an improved version of ODE obtained by 
proposing two modifications of the mutation and selection techniques. The two 
modified techniques are explained in detail below. 



6 Kien Chi Le, et al. 

  

3.2.1 Modified Mutation Technique  

As seen from Eq. (13), ODE uses an updated step size based on two random 
solutions for producing new solutions by mutation. The updated step size is 
always used in the search process, resulting in the possibility of a local optimum 
as a result of premature convergence or a nearby global optimum. Thus, the 
following modified mutation technique is suggested:  

 rand/1: 
x 1 2 3V U MF(U U )    (16) 

 rand/2: 
x 1 2 3 4 5V U MF(U U U U )      (17) 

 best/1: 
x best 1 2V S MF(U U )    (18) 

 best 2: 
x best 1 2 3 4V S MF(U U U U )      (19) 

 current-to-best: 
x x best x 1 2V U MF( S U U U )      (20) 

Among the formulas (Eqs. (16) to (20), global search ability is enhanced by 
using rand/1 and rand/2, while local search ability is concentrated by the 
application of best/1 and best/2. It can be seen that the rand modes aim to search 
solutions nearby the existing solutions and the zone of search is extensive but 
the two best modes search the zone around the so-far best solution and the zone 
of search is small. All in all, the rand modes and the best modes must satisfy 
different limitations on fast convergence with a global optimum if they are 
applied separately. The rand modes are promising for global search but they are 
weak for local search, while the two best modes are not highly effective for 
global search but they are capable of improving local search. In addition, 
current-to-best mode also has the same impact on the result as the mode of 
rand/2. Therefore, the selection of either current-to-best or rand/2 is a stochastic 
determination. For this operation, a uniform random number ε1 is produced in 
the range between 0 and 1; this number is compared to probability at 0.5. If ε1 is 
higher than 0.5, the rand/2 mode is employed, otherwise current-to-best is 
chosen. In our paper, we propose modified mutation based on the five suggested 
mutation modes including rand/1, rand/2, best/1, best/2, and current-to-best, 
where rand/1, rand/2 and current-to-best belong to the global search group while 
best/1 and best/2 belong to the local search group. The decision to employ the 
global search group or the local search group is based on a comparison between 
a predetermined tolerance τ and fitness ratio θx, which is calculated by the 
following expression in Eq.(21):  

  x x best bestFit Fit / Fit    (21) 

Because fitness ratio θx is higher than predetermined tolerance τ, solution x is 
far away from the so-far best solution and it is likely that the global search 
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group is a better choice than the local search group. Thus, the rand modes are 
used in this case. However, when θx is equal to or lower than τ, solution x is 
close to the so-far best solution and the local search group is a more appropriate 
choice. Therefore, best modes are started in this case. On the other hand, the 
condition for the selection of either rand/1 or rand/2, and best 1/2 or best/2 is 
also constructed. Thus, mutation mode parameter (MMP) is proposed and 
compared to a random number.  

3.2.2 Modified Selection Technique 

The modified selection technique has better performance than conventional 
selection in ODE in terms of optimal solution quality and solution quality 
stabilization. In the modified technique, U = [U1, U2, …, Ux…,…, UNpop] and W 

= [W1, W2, …,Wx.,…, WNpop] are grouped into one and then Npop solutions with 
better fitness function are kept.  

4 Implementation of the Proposed NDE for the Considered 

EEHTSD Problem 

4.1 Initialization and Handling Equality Constraints 

In the EEHTSD problem, each solution Ux represents thermal units Psi,m,x and 
water discharge qj,m,x and is initialized in Eqs. (22) and (23) as below:  

     P P rand*( P P ); i 2,...,N ; m 1,..., Msi,m,x si,min si,max si,min 1
 (22) 

 q q rand * ( q q ); j 1,...,N ; m 1,...,  M 1j ,m,x j ,min j ,max j ,min 2
       (23) 

Water discharge qj,m,x is first obtained by using Eq.(9) and then hydro generation 
is determined by using Eq.(10) [9]. Finally, Ps1,m,x is obtained by using Eq.(7) 
[9].  

4.2 Fitness Function Evaluation 

The quality of all solutions can be evaluated via the following fitness function 
in Eq. (24):  

 
1 2N NM M

2 2

x i si ,m,x s 1,m,x q 2, j ,x

m 1 i 1 m 1 j 1

Fitness F( P ) K ( PT ) K ( PT )
   

      (24) 

where PT1,m,x is the amount of penalty for slack thermal units in each subinterval 
according to solution x; PT2,j,x is the amount of penalty for slack discharged 
water of hydro unit j according to solution x [9]; and Ks and Kq are penalty 
factors.  
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4.3 Generating New Solutions and Fixing Boundary Violations 

The proposed NDE can produce new solutions by using the modified mutation 
technique. Then all new solutions are checked and fixed for limitations so they 
are always within their feasible zone, as follows:  

 
max x max

x min x min

x

U if U U

U U if U U

U otherwise


 



 (25) 

4.4 Entire Computing Process  

The details of the overall procedure of the proposed NDE for solving the two 
HTS problems are as follows: 

Step 1: Select NDE parameters, i.e. number of individuals Npop, maximum 
iteration number Gmax, mutation mode parameter MMP, mutation 
factor MF, and predetermined tolerance τ.  

Step 2: Initialize the population randomly using Eqs. (22) and (23). 
Step 3:  Calculate hydro generation and slack thermal generation.  
Step 4: Calculate the fitness value for all new solutions using Eq. (24) and 

choose the so-far best solution Sbest that has the lowest fitness value; 
set the initial iteration counter G = 1. 

Step 5:  Perform modified mutation to generate new solutions;  
verify limitations and fix using Eq. (25). 

Step 6:  Calculate hydro generation and slack thermal generation. 
Step 7:  Calculate the fitness function for the new solutions using Eq. (24).  
Step 8: Carry out modified selection to keep Npop best solutions.  
Step 9:   Find the best solution Sbest with the lowest fitness value.  
Step 10:  If G < Gmax, G = G + 1 and return to Step 5. Otherwise stop. 

5 Numerical Results 

The performance of the NDE method was tested on two hydrothermal systems. 
The first system had two hydropower plants and two thermal plants scheduled 
in 3 subintervals with 8 hours for each and the second system had two 
hydropower plants and four thermal plants scheduled in 4 subintervals with 12 
hours for each. The data of the first system and the second system were taken 
from [5] and [7] respectively. In addition, ODE and its two improved versions, 
MMDE and MSDE, were also implemented to illustrate the impact of each 
modification on ODE and the effectiveness of application of the two 
modifications on ODE. The four methods were implemented under the same 
conditions on the same Matlab platform and the same PC with a 2 GHz 
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processor and 2 GB of RAM, and with 50 independent trials for each case 
study. 

5.1 Analysis of Control Parameter Impact on the Proposed 

Method 

The impact of the control parameters on the results obtained by the proposed 
method was analyzed by setting them to different values. For the sensitivity test, 
the economic load dispatch of test System 1 was carried out according to the 
following five scenarios.   

In the first and the second scenario, we tested the impact of Npop and Gmax on the 
obtained results by setting them to 7 values with a change of 10 while MMP = 

0.6, MF = 0.6 and τ = 10
-2 were fixed. In addition, Gmax = 50 was adopted for the 

first scenario and Npop = 30 was adopted for the second scenario. In the third and 
the fourth scenario, the impacts of MMP and MF were observed by setting them 
to 5 values from 0.2 to 1 with an interval of 0.2 and setting Npop, Gmax and τ to 
30, 50 and 10

-2, respectively. Meanwhile, running different values of MMP, MF 
was fixed at 0.6 and running different values of MF, MMP was also fixed at 0.6. 
For the last scenario, testing the sensitivity of τ on the results, we set τ to five 
values, i.e. 10-1, 10-2, 10-3, 10-4, and 10-5, while fixing Npop = 30, Gmax = 50, MMP 

= 0.6, and MF = 0.6. The results of these five scenarios in terms of minimum 
cost, average cost, maximum cost, standard deviation cost and computational 
time are reported in Tables 1 to 5. As can be seen from Tables 1 and 2, the cost 
reduction could be improved when Npop and Gmax were increased, reaching a 
best value of $64606.0037 at Npop = 30 and Gmax = 50. When Npop and Gmax were 
respectively less than 30 and 50, this best cost was not obtained. Better cost 
than $64606.0037 was not obtained when Npop and Gmax were increased to 
higher values, i.e. 40, 50, 60 and 70 for Npop and 60, 70, 80, 90 and 100 for Gmax. 
In fact, the best cost could not be improved, whereas other costs such as average 
cost, maximum cost and standard deviation cost could be much improved. For 
instance, these costs were $64606.6699, $64623.2675 and $2.7150 at Npop = 30 
and Gmax = 50, and $64606.008, $64606.019 and $0.0031 at Npop = 70 and Gmax 
= 50. Similarly, these costs were $64606.224, $64609.298 and $0.6633 at Npop = 
30 and Gmax = 100. On the other hand, computation time tended to be higher 
when Npop and Gmax were set to higher values. Clearly, population size and 
maximum iteration number had the same impact on the results, namely better 
results with higher values.  

The results in Table 3 indicate that MMP is effective when it is set to 0.2, 0.4 or 
0.6 for obtaining the lowest costs, while the values of 0.8 and 1 did not result in 
the best cost. However, standard deviation cost was more stable when MMP 
was set to higher values. Table 4 shows that MF = 0.6 was the best value, 
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leading to the best cost of $64606.0037 and acceptable standard deviation cost, 
while other values of MF, i.e. 0.2, 0.4, 0.8 and 1, could not enable the proposed 
method to reach to this optimum. The lowest costs shown in Table 5 tell us that 
τ = 10-1, 10-2

 can result in a best cost of $64606.0037, while the three remaining 
values did not enable the proposed method to find this optimal solution. In 
addition, different values of τ had less impact on the search ability stabilization 
once standard deviations were from 1.7 to 5.2.    

Table 1 Results from the proposed method with different values of Npop. 

Npop 
Lowest cost 

($) 
Mean cost 

($) 
Highest cost 

($) 
Std. dev 

($) 
CPU 

(s) 

10 64646.74 65263.155 68809.133 806.4563 0.24 
20 64606.058 64647.282 65202.939 92.9966 0.39 
30 64606.0037 64606.6699 64623.2675 2.7150 0.45 
40 64606.0037 64606.015 64606.082 0.0165 0.75 
50 64606.0037 64606.01 64606.044 0.0086 1.02 
60 64606.0037 64606.009 64606.028 0.0048 1.24 
70 64606.0037 64606.008 64606.019 0.0031 1.51 

Table 2 Results from the proposed method with different values of Gmax. 

Gmax 
Lowest cost 

($) 
Mean cost 

($) 
Highest cost 

($) 
Std. dev 

($) 
CPU 

(s) 
40 64606.0200 64607.147 64623.473 2.7178 0.39 
50 64606.0037 64606.6699 64623.2675 2.715 0.45 
60 64606.0037 64606.62 64620.92 2.4614 0.76 
70 64606.0037 64606.423 64618.135 1.7571 0.85 
80 64606.0037 64606.238 64613.065 1.0328 1.01 
90 64606.0037 64606.892 64622.488 2.9258 1.12 
100 64606.0037 64606.224 64609.298 0.6633 1.24 

Table 3 Results from the proposed method with different values of MMP. 

MMP 
Lowest cost  

($) 
Mean cost 

 ($) 
Highest cost 

 ($) 
Std. dev 

($) 
CPU 

(s) 

0.2 64606.0037 64616.9598 64702.3325 22.2704 0.48 
0.4 64606.0037 64613.2323 64776.5128 26.1207 0.51 
0.6 64606.0037 64606.6699 64623.2675 2.715 0.45 
0.8 64606.0068 64606.1664 64608.7177 0.3859 0.50 
1 64606.1245 64607.6459 64614.3376 1.5241 0.51 

Table 4 Results from the proposed method with different values of MF. 

MF 
Lowest cost 

($) 
Mean cost 

($) 
Highest cost 

($) 
Std. dev 

($) 
CPU 

(s) 

0.2 64645.761 64956.814 66394.439 284.3881 0.44 
0.4 64607.878 64666.446 64924.468 65.9035 0.48 
0.6 64606.0037 64606.6699 64623.2675 2.715 0.45 
0.8 64606.831 64617.665 64658.512 9.1331 0.42 
1 64670.351 64830.28 65428.914 128.116 0.47 
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Table 5 Results from the proposed method with different values of τ. 

τ 10-1 10-2 10-3 10-4 10-5 

Lowest cost ($) 64606.0037 64606.0037 64606.0415 64607.1557 64607.4206 
Mean cost ($) 64607.4431 64606.6699 64607.0266 64614.2236 64613.1142 

Highest cost ($) 64631.7052 64623.2675 64616.9378 64630.2314 64627.1580 
Std. dev. ($) 4.4141 2.7150 1.7016 5.1882 4.2362 

CPU (s) 0.5 0.45 0.49 0.52 0.52 

In summary, the obtained results from the proposed method, i.e. minimum cost 
and standard deviation, were very sensitive to the values of Npop and Gmax, and 
slightly sensitive to the values of MMP, MF and τ. Besides that, computation 
time was also much influenced by small values and high values of Npop and 
Gmax, while MMP, MF and τ had no impact on computation time. For the other 
test cases in this paper, we selected the values of Npop and Gmax by experiment 
while MMP, MF and τ were respectively set to 0.6, 0.6 and 10-2. A comparison 
of results from the proposed method with those from the other methods are 
presented in the following section. 

5.2 Test System 1 

This section focuses on the implementation of the four methods for solving the 
first system, after which the numerical results are summarized and analyzed. 
The four methods were run for fuel cost dispatch, emission dispatch and fuel 
cost-emission dispatch by setting population size and maximum iteration 
number to 30 and 50, respectively. As a result, Table 6 and Table 7 report the 
minimum value, mean value, highest value and standard deviation value of the 
fitness function for 50 trial runs and the mean computation time for each run. 
The lowest-cost comparison indicates that the value obtained by the proposed 
NDE was respectively lower than ODE, MMDE and MSDE by $0.8035, 
$0.1666 and $0.1257. Similarly, the proposed NDE obtained lower cost than 
these methods by $32.6297, $13.0369, and $14.9227 for mean cost, and by 
$106.8649, $25.2055, $27.6303 for highest cost, and by $19.8135, $7.203, 
$6.5076 for standard deviation cost. Clearly, for the fuel cost dispatch, the two 
modifications of the proposed NDE managed to find an improvement on the 
solution quality as reflected in the lowest cost, quality stabilization as reflected 
in the mean, the highest and the standard deviation. Besides that, each 
modification carried out on ODE was also efficient, since both MMDE and 
MSDE had better minimum cost and standard deviation cost than ODE. The 
same figures were also seen for the emission dispatch based on comparisons of 
the minimum, average, maximum and standard deviation values were done.  

The curves reflecting fitness vs. iteration for the fuel cost dispatch and emission 
dispatch are depicted in Figures 1 and 2. The curves show the advantage of the 
proposed NDE over the three other DE methods. For the case of multi-objective 
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optimization, the best compromise solution must be determined among a set of 
non-dominant solutions that have been obtained by using different values for 
these two weight factors. In fact, when the selection of the fuel cost weight is 
close to 1, the obtained solution produces very low costs but very high 
emissions and when setting the fuel cost weight close to 0 and the emission 
weight close to 1, the obtained solution produces very high costs but very low 
emissions. There is clearly a trade-off between fuel cost and emission for this 
solution. Consequently, there must exist a set of solutions. Determination of one 
solution for multi-objective optimization can be done by using a fuzzy method 
[27]. For the case of determination of a compromise solution for multi-objective 
optimization, a set of 26 non-dominant solutions is found and then the priority 

factor 
k

D
  is obtained as described in [27].  

The non-dominant solutions and the best compromise solution of the proposed 
NDE are shown in Figure 3. Similarly, the best compromise solutions have also 
been obtained for ODE, MMDE and MSDE. As a result, NDE, MMDE and 
MSDE obtained the same best cost and best emission with $65,054.9 and 
593.9688 lb, which were both lower than those from ODE, $65,055.4 and 594.2 
lb. Based on the indication from the three dispatch cases, it can be concluded 
that the two modifications of the ODE method proposed in this paper are very 
effective and robust.  

Table 6 Result comparisons for fuel cost dispatch of system 1. 

Method ODE MMDE MSDE NDE 

Npop 30 30 30 30 
Gmax 50 50 50 50 

Lowest cost ($) 64606.8072 64606.1703 64606.1294 64606.0037 
Mean cost ($) 64639.2996 64619.7068 64621.5926 64606.6699 

Highest cost ($) 64730.1324 64648.4730 64650.8978 64623.2675 
Std. dev. ($) 22.5285 9.9180 9.2226 2.7150 

CPU (s) 0.46 0.52 0.51 0.45 

Table 7 Result Comparisons for Emission Dispatch of System 1. 

Method ODE MMDE MSDE NDE 

Np 30 30 30 30 
Gmax 50 50 50 50 

Best cost ($) 566.7811 564.9761 565.2230 564.7405 
Mean cost ($) 584.0673 584.9637 579.0704 566.8626 
Worst cost ($) 610.9993 608.1058 600.1438 588.3300 
Std. dev. ($) 9.7505 7.7831 8.5398 3.8024 

CPU (s) 0.47 0.52 0.52 0.47 
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Figure 1 Convergence curves obtained by four DE variants for economic 
dispatch. 

 

Figure 2 Convergence curves obtained by four DE variants for emission 
dispatch. 
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Figure 3 Set of non-dominant solutions and best compromise obtained by the 
proposed NDE. 

In order to clarify the performance of the proposed NDE, the results obtained by 
NDE and other methods, from [5,7,9], are shown in Table 8 for the system. The 
comparisons for three dispatch cases indicate that the proposed NDE obtained 
the lowest cost for economic dispatch, excluding the comparison with CA [9] 
(which had the same cost) and the lowest emission for emission dispatch and 
the lowest cost and emission for the environmental economic dispatch.  

Table 8 Result comparison for system 1. 

Method 

Fuel dispatch Emission dispatch Compromise dispatch 

Cost 
($) 

CPU 
 (s) 

Emission 
(lb) 

CPU 
 (s) 

Cost  
($) 

Emission  
(lb) 

CPU 
 (s) 

RCGA[5] 66,031 21.63 586.14 20.27 - - - 
NSGA-II [5] - - - - 66,331 618.08 27.85 
MODE [5] - - - - 66,354 619.42 30.71 
SPEA-2 [5] - - - - 66,332 618.45 34.87 
PSO-PM [7] 65,741 18.25 585.67 18.00 65,821 620.78 18.98 

PSO [7] 65,241 18.32 579.56 18.31 65,731 618.78 19.31 
PPO-PM [7] 64,873 16.14 572.71 15.93 65,426 612.34 16.53 

PPO [7] 64,718 15.99 569.73 15.18 65,104 601.16 16.34 
PPO-PS-PM [7] 64,689 15.98 568.78 15.92 65,089 600.24 16.15 

PPO-PS [7] 64,614 15.89 564.92 15.45 65,058 594.18 16.74 
CA [9] 64,606 0.7 564.81 0.65 65,055 593.97 0.76 
NDE 64,606 0.45 564.71 0.47 65,054.9 593.9688 0.46 
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Furthermore, the execution time from the proposed NDE was also the shortest. 
Clearly, there is enough evidence of better solution quality reflected by lower 
costs and lower emissions and faster convergence reflected by shorter execution 
time to conclude that the proposed NDE is more efficient than the other 
methods. The optimal solutions obtained by the proposed method for System 1 
are given in the Appendix. 

5.3 Test System 2 

In order to implement the proposed NDE for System 2, the number of 
individuals and the maximum number of iterations were set to 50 and 700, 
respectively. The cost and emission results for the fuel cost dispatch, emission 
dispatch and environmental dispatch are compared in Table 9. Lower costs and 
emissions were obtained by the proposed NDE compared to the best method 
from each study, which indicates the superiority of NDE over these methods. 
Among the methods applied in [5], NSGA-II was the best one. Equally, IGA-
MU was the best method in [6] and PPO-PS was the best method in [7]. 
Compared to the best methods for the fuel cost dispatch, the proposed method 
obtained lower fuel costs than SA-BGA [3] by $5,921, IGA-MU [6] by $1,742, 
PPO-PS [7] by $770, CA [9] by $192.  

Table 9 Result comparison for the second system. 

 

Method 

Economic dispatch 
Emission 

dispatch 
Economic emission dispatch 

Cost 
 ($) 

CPU 
 (s) 

Emission  
(lb) 

CPU  
(s) 

Cost 
 ($) 

Emission 
 (lb) 

CPU 
 (s) 

SA-BGA [3] 70,718 - 23,200 - 73,612 26080 1492 
RCGA [5] 66,516 40.36 23,222 41.98 - - - 

NSGA-II [5] - - - - 68,333 25,278 45.42 
MODE [5] - - - - 68,388 25,792 46.76 
SPEA-2 [5] - - - - 68,392 26,005 57.02 
GA-MU [6] 67,751 90.15 23,223 78.27 68,521 26,080 96.10 
IGA-MU [6] 66,539 51.63 23,223 42.87 68,492 26,080 53.54 
PSO-PM [7] 66,349 33.14 23,167 33.63 67,994 25,902 34.11 

PSO [7] 66,223 32.15 23,112 32.34 67,892 25,773 34.52 
PPO-PM [7] 65,912 21.03 23,078 21.18 67,211 25,606 22.04 

PPO [7] 65,885 21.45 22,966 21.56 67,170 25,601 22.11 
PPO-PS-PM [7] 65,723 21.12 22,912 24.74 67,092 25,600 24.90 

PPO-PS [7] 65,567 22.00 22,828 21.98 66,951 25,596 22.76 
IRMDM [8] 68,000 - 23,031.57 - - - - 

CA [9] 64,989 16.4 22,818 16.8 66,530 25,247 16.30 
NDE 64,797 11.2 22,817.9 10.9 66,511 25,138 11.1 

The superiority of the proposed NDE over the other methods can also be seen 
from the environmental dispatch, where the proposed NDE obtained lower 
emissions than SA-BGA [3], IGA-MU [6], PPO-PS [7], and IRMDM [8] by 
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382 lb, 405 lb, 10 lb, and 214 lb, respectively. Equally, the best cost and best 
emission for the environmental economic dispatch obtained by NDE were also 
better than PPO-PS [7] by $440 and 458 lb, CA [9] by $19 and 109lb, 
respectively. The result comparisons show that the proposed NDE obtained 
better solutions than all other methods for the three cases. The execution time 
comparison shows that the proposed NDE is the fastest method, with an 
execution time of around 11 seconds, while the other methods needed from 22 
seconds to 1492 seconds. Consequently, it can be concluded that the proposed 
NDE was very effective for System 2 with nonconvex fuel cost function. The 
optimal solutions obtained by the proposed method for the system are given in 
the Appendix.  

6 Conclusion  
 
This paper presented the application of the NDE method for solving two 
hydrothermal systems related to the environmental economic hydrothermal 
system dispatch problem. The proposed NDE uses two modifications of DE, i.e. 
modified mutation and modified selection. The two modifications enable the 
proposed NDE to obtain higher solution quality with faster convergence than 
the original DE method. As compared to other methods, the proposed NDE is 
also more effective in terms of solution quality and speed. Consequently, it can 
be concluded that the proposed NDE is a very promising method for solving the 
EEHTSD problem. 

Nomenclature 

ahj, bhj, chj  =  Water discharge coefficients of hydro plant j 
asi, bsi, csi, dsi, esi  =  Coefficients of the ith thermal plant fuel cost 
CF  =  Crossover factor 
F1i, F2i  =  Fuel cost and emission of thermal unit i 
Fitbest,Fitx  =  Fitness function of the best solution and solution x 
PD,m, PL,m  =  Load demand and power loss in subinterval m 
Phj,max, Phj,min  =  Maximum and minimum generation of hydro plant j 
Psi,max, Psi,min  =  Maximum and minimum generation of thermal plant i 
Sbest  =  The best solution among the population 
tm  =  Number of hours for subinterval m 
U1, U2, U3, U4, U5  =  Random solutions 
Umax, Umin  =  Maximum and minimum values of each solution Ux 
Wj  =  Volume of available water for hydro unit j 
Φ 1, Φ 2  =  Weight factors related to fuel cost and emission 
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Appendix 

Table A1 Optimal solutions obtained by NDE for economic dispatch of system 1. 

Sub-interval Ps1 (MW) Ps2 (MW) Ph1 (MW) Ph2 (MW) 

1 168.6443 415.9232 245.3859 98.5777 
2 219.1000 570.2528 305.5364 157.0040 
3 202.1990 518.5214 285.1229 137.4259 

Table A2 Optimal solutions obtained by NDE for emission dispatch of system 1. 

Sub-interval Ps1 (MW) Ps2 (MW) Ph1 (MW) Ph2 (MW) 

1 299.9430 361.8473 214.2187 56.0222 
2 299.9646 439.8818 328.0810 186.2548 
3 299.9070 407.4686 291.2719 147.0790 

Table A3 Optimal solutions obtained by NDE for compromise case of system 1. 

Sub-interval Ps1 (MW) Ps2 (MW) Ph1 (MW) Ph2 (MW) 

1 230.5454 371.6319 237.1409 90.1952 
2 289.7196 487.9712 312.0445 163.5092 
3 270.1858 449.1689 286.3401 138.7865 

Table A4 Optimal solutions obtained by NDE for economic dispatch of system 2. 

Sub-

interval 
Duration (h) 

Ps1  
(MW) 

Ps2  
(MW) 

Ps3  
(MW) 

Ps4  

 (MW) 
Ph1 (MW) Ph2 (MW) 

1 12 98.5093 30.0019 124.9080 139.7569 198.8837 323.5380 
2 12 98.5398 30.0038 124.9091 229.5633 223.6900 416.8517 
3 12 98.5389 30.7413 40.9174 229.6754 231.2379 388.9879 
4 12 98.5398 112.6763 209.8098 229.5196 224.7685 457.3343 



20 Kien Chi Le, et al. 

  

Table A5 Optimal solutions obtained by NDE for emission dispatch of system 2. 

Sub-

interval 
Duration 

(h) 
Ps1  

(MW) 

Ps2  

 (MW) 
Ps3 

 (MW) 
Ps4  

 (MW) 
Ph1 (MW) 

Ph2 
(MW) 

1 12 72.2177 133.6229 136.0800 91.6348 169.9480 312.2984 
2 12 78.8182 142.2484 147.7182 99.8561 247.4368 407.8851 
3 12 75.6884 137.8535 141.6653 95.4361 208.3657 360.6454 
4 12 102.0916 167.7859 184.5514 129.3665 249.9996 500.0000 

Table A6 Optimal solutions obtained by NDE for compromise case of system 2. 

Sub-

interval 
Duration (h) 

Ps1 
(MW) 

Ps2 

(MW) 
Ps3 

(MW) 
Ps4 

(MW) 
Ph1 (MW) Ph2 (MW) 

1 12 20.1145 112.6993 125.4129 139.6429 187.6690 330.0879 
2 12 96.9933 112.6802 125.4402 139.7598 223.6429 425.4145 
3 12 98.4666 112.6725 124.9079 139.5154 216.3503 327.4174 
4 12 98.5230 138.6176 209.4597 139.6444 249.8765 497.3240 

 


