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Abstract. Simultaneous flow forecasting using multi-input multi-output 

(MIMO) processes is an efficient technique for accurate flow forecasting on river 

systems. The present study demonstrates the capability of radial basis function 

neural networks (RBFNN) incorporating MIMO processes in simultaneous river 

flow forecasting. The river system considered in the present study was the Barak 

river system, Assam, India. Hourly concurrent discharge data were collected 

from the Central Water Commission, Shillong, India from multiple sections of 

the Barak river system. The forecasts were tested for short-range time horizons, 
i.e. 1, 3, 6 and 12 hours in advance, and a comparative analysis was done using 

the popular Nonlinear Autoregressive with Exogenous Inputs (NARX) time 

series model. The result shows that MIMO-NARX provided higher prediction 

accuracy than MIMO-RBFNN, even at longer lead times when compared to 

following various statistical criterions.  

Keywords: radial basis function neural networks (BFNNs); Nonlinear Autoregressive 

with Exogenous Inputs (NARX); direct MIMO process; simultaneous forecasting. 

1 Introduction 

A river system comprises of a network of connected tributaries, where flooding 

in any of the tributaries may change the flow conditions of the main river. 

Together with other meteorological circumstances, this can cause a rise in the 
water level of the major river channel for a given watershed. Such conditions 

frequently arise when part of a contributing tributary receives heavy 

precipitation upstream, thereby feeding flood-like waves into the main river 

channel. The present study was aimed at monitoring and observing this effect 
on the Barak river system in the Barak Valley watershed, Assam, India. The 

forecast was considered simultaneously at multiple sections of the river system 

using multi-input multi-output (MIMO) processes. In general, researchers have 
focused mostly on single-input single-output (SISO) processes and multi-input 

single-output (MISO) processes without extending the weightage to MIMO 

processes. For instance, a number of model structure selection methods have 
been derived for SISO nonlinear models in [1-3] and MISO processes in [4-10], 

most of which can be extended to MIMO processes. MIMO processes have 
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been applied successfully in many different fields [11-14], but Choudhury and 

Roy [15] observed their limited use in dealing with hydrological problems. A 

MIMO process can be described as studying the interrelations of variables 

between inputs and outputs simultaneously. There are two types of MIMO 
processes: (i) multi-stage MIMO processes and (ii) direct (or single-stage) 

MIMO processes. A multi-stage MIMO process is based on prediction horizons 

where multi-step outputs at different time horizons are considered and learning 
is attempted by one multiple-output dependency. The model can be computed 

[16] as: 

 ����, ����, . . , ���� = 
���, … … , ��
���� + �   (1) 

where  .ny
 

and  .y  represent the multi-output and multi-input terms in one 

cycle and k is an integer 1k . The term � is the vector noise term for zero mean 

and non-diagonal covariance, d  is the maximum embedded order. The 

estimation of the next values for � after the learning process is done with Eq. 2: 

 �����, … … … , ����� = 
����, … … … , ��
����  (2) 

This type of MIMO process may suffer from model flexibility because it 
constrains all prediction horizons within the same model structure. On the other 

hand, direct MIMO processes are based on model outputs where at one phase 

the numbers of multiple outputs are considered in a single-step prediction and 

are direct for different time horizons. This is similar to the direct-step process (a 
kind of MISO), except that the model’s outputs considered are of multiple 

series. Direct MIMO processes can be computed using Eq. (3): 

 ��� + ℎ� = 
 ���� − ���, … … … , ��� − 1�, ����; �� − �!�, … … … ,  �� − 1�,  ���  (3) 

where,  ��� = " ����, … … … ,  #���$%  and ����� = "������, … … … , ��#���$%  are 

the input and output vectors, �� and �! are the time lags of input and output, ℎ  
is the prediction time horizon, and 
��� = "
����, … … … , 
#���$%

 denotes the 

nonlinear relation to be estimated. What is common in both methods is that they 

share the returned prediction of the vector time series.  

In this paper, a direct MIMO process is proposed because capturing the 

temporal stochastic dependencies of the historical data can be used to predict a 

time series. This direct MIMO process can be incorporated in RBFNNs, where 
the output node assigns a weight value to each of the radial basis function 

neurons, and the total response is the multiplication of this weight with the 

neuron’s activation. RBFNNs have been widely used in solving many different 

problems, also by inclusion of a hybridization state. The use of RBFNs dates 
back to 1985 [17] and has been exploited in the design of neural networks since 

1988 [18]. Popular applications of RBFNNs include function approximation, 
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control, classification, curve fitting, and time series problems [19]. RBFNNs are 

universal approximators and are well-suited for function approximation 

problems [20] and they are faster in the training phase compared to other neural 

networks due to their simpler network architecture. RBFNNs provide better 
results than multilayer perceptrons (MLP) and functional link artificial neural 

networks (FLANN) in stock market prediction [21]. These and other advantages 

of RBFNNs, including better generalization capability, faster convergence, low 
error extrapolations and better reliability over chaotic data, make this type of 

neural network very suitable to deal with similar problems. 

Similarly, direct MIMO process can also be incorporated in a NARX model, as 
it can predict past values of the same series and current and past values of the 

driving series. NARX is one of the typical paradigms of complex recurrent 

models followed by a state space model and a recurrent multilayer perceptron 
(RMLP). It was introduced in 1985 [22] and was first applied in the context of 

neural networks in 1990 [23]. Nonlinear dynamic systems, especially time 

series, can be appropriately modeled by NARX [24]. NARX can retain 
information as long as conventional recurrent networks [25] and performs better 

than conventional recurrent neural networks [26]. NARX is better suited for use 

with a gradient-descent learning algorithm compared to other recurrent 

architectures [27]. The network also provides faster convergences with better 
generalization than other networks. Recently, NARX networks have been 

applied for solving non-linear problems in various fields other than hydrological 

applications with remarkable results [28-30]. In the present study, the results of 
simultaneous forecasting on a river system obtained with NARX were used for 

comparison with the results obtained with RBFNN. The applicability of direct 

MIMO processes for simultaneous flow forecasting on multiple sections of a 
river system using RBFNN was investigated. We considered a multi-step ahead 

forecasting scheme for short-range prediction horizons by using the model 

form, because an accurate short-range prediction is sufficient to understand the 

dynamics and characteristic behavior of such a system.  

This paper is organized as follows: Section 2 and its subsections describe the 

RBFNN network topology and its MIMO process form. Section 3 and its 

subsections describe NARX networks and their MIMO process form. Section 4 
describes the model’s application. Section 5 defines the performance criterion 

used in this study. The results and their discussion are given in Section 6. 

Finally, Section 7 presents our concluding remarks. 

2 RBFNN Networks Topology  

A typical RBFNN model generally consists of three layers: an input layer, one 

or two hidden layers, and an output layer containing one or more nodes. The 
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network topology of an RBFN network, as depicted in Figure 1, is a MIMO-

RBFNN structure, consisting of more than one output node and is characterized 

by the following aspects: firstly, the input layer is the receptor of the input 

source, secondly, the middle layer, or the hidden layer, which contains sets of 
nodes computing a symmetric radial function, provides the nonlinear 

transformation of the input space to an intermediate space, and, thirdly, the 

output layer, which contains the output node source, linearly combines the 
outputs of the hidden layer. Although there are many basis functions available 

in the literature, this study used a Gaussian function as it can be localized easily, 

although strictly speaking this is not the main reason. The Gaussian function 

can be defined as in Eqs. (4) & (5):  

 ∅�'� = ()* +− #,
�-.,/                0 > 0 (4) 

 3', ∅�'� = ()* +− ‖!
5.‖,
�-., / (5) 

This implies that if  ' → ∞ then  ∅�'� → 0, where ' = ‖ − 89‖ is the Euclidean 

distance of the Gaussian, and   and 8
 
are the input and center. 

 

Figure 1 Structure of the radial basis function. 
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where ����� = "������, … … … , ��#���$%and  ��� = " ����, … … … ,  #���$% are the 

system output and input respectively, ()*�. � is the Gaussian function, �9; are 

the weights, 89 and 09 are the center and width of the Gaussian, > is the number 

of nodes in the hidden layer, respectively. The key problem in finding an 

appropriate solution for the given architecture is to teach the RBFNN, which 
will possibly be challenging for different problems. The identification problem 

of MIMO-RBFNN includes finding centers 89 of the activation functions, 

spread 09 of the activation functions, and finally weights �9; from the hidden 

layer to the output layer. To sort out this problem, a modified backpropagation 
(M-BP) algorithm was applied in this study, as discussed in the next subsection 

(2.2).  

2.2 Training MIMO-RBFNN 

Generally, an RBFNN is trained using two learning modes, unsupervised and 

supervised. The unsupervised learning mode is implemented between the input 

layer and the hidden layer and the supervised learning mode is implemented 
between the hidden layer and the output layer. As mentioned above, this study 

used a modified backpropagation (M-BP) algorithm to train MIMO-RBFNN. 

The activation function used is the Gaussian function. Like simple 

backpropagation, M-BP first initializes the network and forwardpasses the 
training input-output pairs and computes the network output for every layer and 

then backpasses the following: 

 
?@?AB ?@?5B ?@?-, (7) 

Here C is the cost function or error function to be optimized. The parameters are 
then updated as: 

 �D;�� + 1� = �D;��� + ∆�D;�� + 1� (8) 

 and, ∆�D;�� + 1� = IJKD�; (9) 

where, �D;��� is the weight connecting layer * to L at time  �, ∆�D;��� is the 

weight change, IJ is the learning rate, KD is the error at *, �; is the actual output 

at L. 
 8;9 �� + 1� = 8;9 ��� + ∆8;9�� + 1� (10) 

where, ∆8;9 �� + 1� = M,NOAOP�P-O,�!P.
5P.�  (11) 

Similarly, for the width �0�, the relation is defined as:  

 0;�� + 1� = 0;��� + ∆0;�� + 1� (12) 
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where, ∆0;�� + 1� = I�KD�D;�; Q�!OP
5P�,
�-PR S  (13) 

Here, 8;9��� and 0;��� are the center and width connecting the corresponding 

subscripted layers at time �. Similarly, ∆8;9��� and ∆0;��� are their 

corresponding centers and width changes, I� and I� are the learning rate factors, 8;9 and 8D; are the inputs connected by the corresponding subscripted layers. 

This process is then repeated until convergence is attained.  

3 NARX Network Topology  

NARX is a dynamic network architecture with a recurrent structural design for 

nonlinear dynamic systems. Generally, it is used for input-output modeling 
issues in solving nonlinear time series problems. Figure 2 represents the typical 

structure of the NARX model used in this study, consisting of current inputs 

and previous sequences of inputs into the network. Additionally, it also 
comprises the delayed versions of the network outputs. Thus, in Figure 2 the 

embedded memory is shown where the first tapped delay line of order T 

receives the current inputs and its previous sequences. The second tapped delay 

line of order  receives the network outputs and its previous sequences through 

feedback connections. 

 

Figure 2 Typical NARX model from this study. 
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The SISO process [30] for a discrete-time nonlinear system for a NARX model 

can be represented by: 

��� + 1� = 0U�����, ��� − 1�, … … … , ��� − * + 1��;                        ���,  �� − 1�, … … … ,  �� − T + 1�$  (14) 

where, ��� + 1� is the network predicted output,  ������� are the input-output 

pairs at time �, and T ≥ *, 0 is the non-linear differentiable function W0:  D�Y →
 Z. Thus the output of the system at time �� + 1� depends on � past values ���� − [� for �[ = 0,1,2, … … … , * − 1�. Similarly, for the T past values of the 

input  �� − L� for �L = 0,1,2, … … … , T − 1�. 

The mapping function of NARX (or MIMO-NARX) is generally set by a 

multilayer perceptron (MLP). The total network parameters to be adjusted 

during the identification process are a summation of all input connection 

weights, all hidden-layer connected weights and the biases connected to both 
hidden and output nodes. The hidden layer output can be computed as: 

 K9 = 0 ]∑ �9; ; + ^9M_;=� ` (15) 

And the estimated model output is represented by: 

 �� = 0U∑ ��9ℎ9 + ^9MM9=� a (16) 

Here, 0 denotes the size of the input weights and I represents the bias 

size/number of hidden layer nodes. For more information on MIMO-NARX, the 

reader may refer to Tripura and Roy [14].  

4 Model Application and Discussion  

The proposed models were applied to the Barak River system in the Barak 

Valley in the southern part of Assam, India. Figure 1 shows a map of the study 
area and Table 1 describes the six gauging stations at different locations of the 

Barak River system, naming its contributing tributaries. The river Barak 

originates from the Barail Range of Naga Hills at an altitude of about 2995 m 
and enters the plains of South Assam between 24°8’ and 25°8’ N latitude, and 

92°15’ and 93°15’ E longitude. The recorded hourly flow data have a statistical 

observed mean value of 2160.372, 361.843, 1284.779, 37.527, 2206.603 and 
1428.319 Cumec for the respective stations listed in Table 1. As for the CWCs, 

this observed statistical mean is sufficient to provide excess water deluging the 

floodplains, causing severe damage to crops and property in this valley almost 

every year during the monsoon season.  
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Figure 3 Barak river system and different forecasting stations. 

Multiple configurations of both MIMO-NARX and MIMO-RBFNN were 

considered during the experiment, the best of which are reported. The 

experimental provision of data for conducting simultaneous flow forecasting in 

the river system were as follows: first 60% of the data is set for training, 20% 
for cross-validation and another 20% for out-of-sample testing. For efficient 

network training, the pre-processing steps known as normalization were done 

for inputs and targets, besides for the application of nonlinear activation 
functions (AFs). The method for normalization adopted here was the external 

normalization method, as it provides better performance in solving time series 

problems [31]. 

Thus, depending on the types of AFs used, the interval was a range of either [0 

1], [-1 1], etc. to simplify network outliers. Two AFs tested were sigmoid and 

hyperbolic tangent (tanh) functions. The derivatives of the AFs are important 

when the gradients are very dependent. The derivatives of the sigmoid functions 
can be defined as:  

 bc�d�� = eb�d���1 − b�d��� (17) 

where, b�d�� = ����fghij� and b�d�� is bounded to [0 1] but ed� has a range 

of ±∞. Similarly, in the case of tan hyperbolic functions l�d�� = mn�ℎ�ed��, the 

derivative of l�d�� is: 
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 lc�d�� = e�1 − b�d����1 + b�d��� (18) 

The term ed� for mn�ℎ has a range of   and l�d�� is bounded to [-1 1]. Where e represents the steepness of the function and is known as the neuron gain 

factor, which is normally equal to one. However, derivatives of the mn�ℎ 
functions have maximum values equal to e, which correspond to steeper 

functions than those of the sigmoid functions. 

Table 1 Description of site locations for all gauge stations (forecasting 

stations). 

Station 

Code 

Station 

Number 
Gauge Station 

Location 

 (River Name) 
Remarks* 

01-11-01-007 1 Badharpur Ghat (BG) Barak Major 
01-11-01-003 2 Matijuri (MJ) Katakhal Tributary 

01-11-01-008 3 Annapurna Ghat (AG) Barak Major 

01-11-06-004 4 Dholai (DL) Rukni Tributary 

01-11-01-005 5 Maniarkhal (MK) Sonai Tributary 

01-11-01-009 6 Fulertal (FT) Barak Major 
*Major: gauge station at main river site; tributary: gauge station at tributary site. 

5 Performance Criteria 

Statistical criteria such as RMSE (root mean square error), r (correlation 
coefficient), CE (coefficient of efficiency), MAPE (mean absolute percentage 

error) were used to investigate network performance. These are considered to 

achieve prediction accuracy beyond network training. In addition to these 
criteria, PFC (peak flow criteria) were also used, as they provides more accurate 

peak values than RMSE during flood periods. A PFC value equal to zero 

represents a perfect fit. The statistical performance criteria were defined as 

follows:  

 opqC = r�s ∑ ������ − ������s�=�  (19) 

 ' = ∑+W�����
��tuv���ZW����
�tuv���Z/
w∑+W�����
��tuv���Z,W�����
��tuv���Z,/, (20) 

 xC = 1 − +∑ ����� − �������s�=� ∑ W���� − �yz{���Z�s�=�| / (21) 

 p}~C = ���s ∑ +�����
�tuv����|����| /s�  (22) 
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 ~�x = W∑ �����
������,�O��� ������,Z� R|

W∑ ������,�O��� Z� ,|  (23) 

where, ���� is the observed flow at time �, ����� is the forecasted flow at time �. 

Here, �yz{��� and ��yz{��� denote the average of observed and predicted flow, � represent the total number of observations, and �D represents the number of 

peak flows greater than one-third of the mean peak flow observed.  

6 Results and Discussions 

The experiment was implemented using MATLAB version 8.1.0.604 (R2013a) 

for simultaneous flow forecasting for direct MIMO processes. Random 
initializations of weights were chosen from the normalized input data set for all 

networks. This was done to specify the appropriate range of the initial weights, 

while the final predictions were obtained by averaging the best three predictions 
of each model. The performances criteria described in Section 5 were used to 

test the prediction accuracy of the models when the test data were used. The 

performance statistics of the models for different time horizons are summarized 

in Table 2. The optimal network structure adopted for MIMO-RBFN was 
6:12:6.  

The RMSE and other performance criteria presented in Table 2 show an 

improvement of MIMO-NARX over MIMO-RBFNN for different lead times of 
the forecast. For instance, for one hour ahead forecasts, the RMSE value for the 

BG station was 16.802 Cumec in the case of MIMO-NARX, whereas MIMO-

RBFNN had an RMSE value of 19.582 Cumec. Similarly, for three hours 
ahead, the RMSE values for the BG station were 36.063 Cumec and 47.841 

Cumec, for six hours ahead they were 61.003 and 82.696 Cumec, and for twelve 

hours ahead they were 97.047 and 107.782 Cumec, respectively. Similarly, for 

the other forecasting stations, the RMSE values for MIMO-NARX were 
comparatively lower than those of MIMO-RBFNN.  

The MAPE forecasting values presented in Table 2 show a similar improvement 

for MIMO-NARX over MIMO-RBFNN for all forecasting stations of the river 

system. Correlation coefficient ' determines whether the forecasted values and 

actual values move in the same direction or not, and is confined to a range 

of "−1 1$. Values closer to 1 indicate more accuracy of the model in giving 

perfect movement of the two datasets and closer to -1 indicates imperfect fit. In 
the present case, the values of r  for all the leading time horizons were > 0.90. 

The coefficient of efficiency (CE) expresses the model’s efficiency and is 

confined to a range of "−∞ 1$. A CE value closer to 1 indicates perfect 
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suitability of the model. In the present study, from the CE values presented in 

Table 2, the model was within acceptable limits. 

Table 2 Comparative performance index of MIMO-NARX and MIMO-

RBFNN for different time horizons on tested data. 

Forecasted  

Stations 

Time  

Horizons 

MIMO-NARX MIMO-RBFNN 

RMSE  

(Cumec) 
r CE 

MAPE  

forecasting 

(%) 

RMSE  

(Cumec) 
r CE 

MAPE  

forecasting  

(%) 

BG 

1 16.802 0.99973 0.99946 0.12 19.582 0.99670 0.99316 1.25 

3 36.063 0.99878 0.99750 0.09 47.841 0.97979 0.94574 2.84 

6 61.003 0.99656 0.99285 0.02 82.696 0.98102 0.95509 1.54 

12 97.047 0.99147 0.98194 0.08 107.782 0.97687 0.94578 3.69 

AG 

1 14.152 0.999465 0.99892 0.13 18.550 0.99824 0.99530 1.38 

3 27.270 0.998051 0.99600 0.11 35.097 0.98096 0.96105 1.48 

6 45.366 0.994822 0.98895 0.12 53.772 0.98201 0.96226 1.88 

12 70.504 0.987737 0.97333 0.25 98.027 0.97572 0.94832 2.18 

FT 

1 25.992 0.999268 0.99853 0.16 35.584 0.99355 0.98408 2.61 

3 48.153 0.997527 0.99496 0.23 59.956 0.99004 0.97828 2.03 

6 80.768 0.993167 0.98583 0.29 98.202 0.98506 0.96427 2.19 

12 131.398 0.982481 0.96252 0.72 140.803 0.96134 0.91235 2.92 

MJ 

1 11.802 0.997903 0.99557 0.18 18.823 0.99121 0.98042 3.74 

3 22.090 0.992801 0.98450 0.13 27.822 0.98797 0.97540 3.69 

6 37.894 0.979787 0.95441 0.48 39.231 0.97658 0.95109 1.68 

12 59.722 0.949928 0.88688 1.81 64.957 0.94387 0.86592 3.78 

DL 

1 4.194 0.98918 0.97704 0.28 5.994 0.97918 0.95308 1.84 

3 5.822 0.97928 0.95577 0.44 6.234 0.97652 0.94925 2.74 

6 8.753 0.95340 0.90003 1.65 9.341 0.94808 0.88607 4.60 

12 13.449 0.89396 0.76411 3.56 13.711 0.88705 0.75449 4.11 

MK 

1 23.530 0.99946 0.99891 0.12 26.534 0.99449 0.98596 1.54 

3 44.714 0.99808 0.99607 0.12 62.102 0.98052 0.96032 1.44 

6 74.197 0.99491 0.98919 0.10 88.408 0.98202 0.96235 1.43 

12 114.982 0.98805 0.97408 0.26 123.569 0.97535 0.94742 1.88 

Figure 5 shows a plot of model PFC for the test data. The PFC plot in Figure 4 

for MIMO-NARX (indicated by the solid blue line) varies from 0.00 to 0.08 and 

that for MIMO-RBFN varies from 0 to 0.12 for different forecast lead times. 

The PFC value for both models increased with the increase in lead time but for 
all forecast lead times the PFC value for MIMO-NARX was smaller than that of 

MIMO-RBFN for any of the forecasting stations. However, the PFC value for 

both models indicates that both efficiently captured the peak flood values. The 
plots depicted in Figures 5 and 6 represent the response of MIMO-RBFNN and 

MIMO-NARX to the target data for multiple gauge stations. Figure 7 shows the 

plot for different lead times for the BG forecasting station. The plots for the 
other five stations remain undisclosed because a single station plot is sufficient 

to justify the model’s accuracy. However, an overall analysis of the result based 

on statistical criteria for the other forecasting stations is shown in Table 2.  
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Thus, MIMO-NARX having the input delay lines and feedback delay lines of 

the network provides significant forecast accuracy even at peak flow. MIMO-

NARX takes more advantage of the input data to model at different lead 

horizons over MIMO-RBFNN and can be considered a suitable model for 
simultaneous forecasting of multiple flows of a river system. 

 

Figure 4 Comparison of PFC using MIMO-NARX and MIMO-RBFNN. 

 

Figure 5 Response of MIMO-NARX vs. observed data for multiple gauge 

stations.  
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Figure 6 Response of MIMO-RBFN vs. observed data for multiple gauge 

stations.  

 

Figure 7 Forecasted time series for MIMO-NARX and MIMO-RBFNN vs. 

observed data for BG gauge station at different time horizons. 

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000 2500 3000 3500 4000

O
u

tp
u

t 
(C

u
m

e
c
)

Time (Hour)

BG Obs

AG Obs

FT Obs

MJ Obs

DL Obs

MK Obs

BG Pred

AG Pred

FT Pred

MJ Pred

DL Pred

MK Pred



 RBFNNs-MIMO Processes for Simultaneous Forecasting 447 
 

7 Conclusions 

Application of RBFNN for simultaneous flow forecasting on a river system was 

adopted through direct MIMO processes. The result of MIMO-RBFNN was 
compared with that obtained by the application of MIMO-NARX. Both the 

MIMO-RBFNN and MIMO-NARX models were applied based on Eq. 3, which 

shows that the predictions are made directly for multiple time steps ahead, i.e. 

not iteratively. It was implemented through MATLAB version 8.1.0.604 
(R2013a). The models were applied to the Barak River system, Assam (India) 

based on real-time hourly flow data pertaining to the monsoon seasons of a six-

year period (2000-2005). The key conclusions that can be drawn from this study 
are: 

1. MIMO-RBFNN provided equally satisfactory results as MIMO-NARX, 

which indicates the efficacy of MIMO-RBFNN for simultaneous flow 
forecasting on river systems. 

2. It was observed that with large numbers of input sequences, computational 

time was longer for MIMO-NARX compared to MIMO-RBFNN.  

3. Comparatively, MIMO-NARX proved to perform better than MIMO-
RBFNN on all counts, even at higher forecast lead times. However, the 

results obtained using MIMO-RBFN are also acceptable. 

The applicability of MIMO-RBFN can also be investigated for other nonlinear 
time series problems, particularly in the area of hydrology. It can also be tested 

for long-range operational time horizons using multivariate data. 
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