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Abstract. A simple approach of active surge control to compression systems is 

presented. Specifically, nonlinear components of the pressure ratio and rotating 

speed states of the Moore-Greitzer model are transferred into the input vectors. 

Subsequently, the compressor characteristic is linearized into two modes, which 

describe the stable region and the unstable region respectively. As a result, the 

system’s state and input matrices both appear linear, to which linear realization 

and analysis are applicable. A linear quadratic regulator plus integrator is then 

chosen as closed-loop controller. By simulation it was shown that the modified 

model and characteristics can describe surge behavior, while the closed-loop 

controller can stabilize the system in the unstable operating region. The last-

mentioned was achieved when massflow was 5.38 per cent less than the surge 

point. 

Keywords: active surge control; compression systems; linear quadratic regulator; 

nonlinear model; nonlinearity cancellation. 

1 Introduction 

The characteristic and operating area of a compressor can be described by a 

compressor map as shown in Figure 1. The characteristic is a function of 

nondimensional pressure ratio ( ) against nondimensional mass flow ( ), as 

shown in Figure 1. A surge line divides the compressor operating area into a 

stable region and a surge/unstable region. When compression takes place, 

massflow is reduced so that it moves toward the unstable region. If mass flow is 

left to pass through the surge line, the compressor will enter its unstable 

operating region and undergoes surge.  

Surge is a compressor instability phenomenon when pressure ratio and 

massflow fluctuate with a large amplitude. The fluctuations result in a limit 

cycle in the compressor map. Since it reduces efficiency and may even damage 
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the compressor, the presence of surge is highly undesired in any compressor 

operation. 

The traditional and most-used approach in dealing with surge is surge 

avoidance. While its implementation strategies may vary, the basic idea of surge 

avoidance is simply to prevent the compressor from entering the unstable 

operating region. This can be achieved by defining a surge margin close to the 

surge line in the stable region, as shown in Figure 1. However, this approach 

has an inherent drawback, i.e. the limitation of the compressor operating point. 

Moreover, the compressor cannot reach its maximum efficiency since it lies at 

the surge line.  

Active surge control takes a very different approach from surge avoidance. This 

approach is intended to deal with surge instead of avoiding it. Therefore, the 

compressor can perform stably even in its unstable operating region. This means 

that the stable operating area of the compressor is extended and it can now reach 

its maximum efficiency.  

 

Figure 1 Compressor Map. 

Since being introduced by Epstein, et al. [1], various aspects of active surge 

control has been developed. An overview about the development in model, 

sensor and actuator can be found in [2,3]. Several approaches to approximate 
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compressor characteristics are tested and discussed in [4]. In the area of control 

strategies, several methods have been applied, namely proportional-integral 

control [5], globally stabilizing switching controllers [6], backstepping [7,8], 

and linear quadratic regulation (LQR) with integral action [9]. It is worth 

mentioning that the control strategies in [5-10] are applied to a centrifugal 

compressor model with spool dynamics.   

In this study, an equivalent linear form of state and input matrices was obtained 

by applying nonlinearity cancellation [11] to the model and linearizing the 

compressor characteristic. As a framework, the Moore-Greitzer compressor 

model with spool dynamics, developed in [5,6], was used. Throttle and torque 

were chosen as actuators as in [6]. Any loss occurring in the actuators, such as 

friction loss, was not taken into consideration. Finally, an LQR plus integrator 

was chosen as the controller. 

2 Model 

2.1 Model and Compressor Characteristic 

The compression system under study consists of centrifugal compressor, duct, 

plenum and throttle, as shown in Figure 2. This scheme is related to the Moore-

Greitzer model with spool dynamics, which was developed by Gravdahl [5] and 

nondimensionalized by Leonessa, et al. [6] as: 
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 (1)          

where ψ  is nondimensional pressure ratio,  non-dimensional massflow, ω~

nondimensional rotational speed,  ω,ψ c
~ is compressor characteristic,  

ψγth  and τ   are throttle and torque inputs, respectively, while )(
.

 refers to 

derivation of a state against nondimensional time ξ . The parameters a , b  and 

c  represent compressor physical quantities, which are defined as [6]: 
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and:   
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=c c
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, (4) 

where cL  is duct length, 
pV  plenum volume, 1A  inducer (impeller eye) area, 2r  

radius of impeller tip, 01p  pressure at inlet, 01a  sonic velocity at inlet, and J  

moment of inertia.   

 

Figure 2 Schematic diagram of compression system [10]. 

The compressor characteristic is the ratio between the pressures at the 

compressor’s downstream and upstream flow (inlet), denoted in Figure 2 as 

02p
 

and 01p , respectively. Several approaches to approximate compressor 

characteristics are discussed in [4]. In this paper, a physical-based compressor 

characteristic is used. This characteristic was derived by Gravdahl [5], 

experimentally validated by Gravdahl, et al. [12], and has been used in [6].  In 

nondimensional form, it is defined as [6]: 

 
     12~~,1~,  



 dcc
, (5)  

where  ω,ηc
~  is compressor isentropic efficiency, and σ  a slip factor 

between inducer and impeller tip. Parameters  κ  and d  are given by [5-6]:  
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01

2
01

Tc

a
=d

p

, (7)  

where pc  and vc  are specific heat at constant pressure and volume respectively, 

while 01T  is inlet temperature.  

Isentropic efficiency is defined as [5-6]: 

  
lo ssid ea l,

id ea l,

c
Δh+Δh

Δh
=ω,η

0 c

0 c~ , (8) 

where ideal,Δh0c  is specific enthalpy delivered to the fluid without taking 

account of the losses [5]. In nondimensional form, it is defined as [6]: 

 2
0c

~ωσ=Δh ideal,
. (9) 

On the other hand, 
lossΔh is the sum of losses in the compression system that is 

defined as [5]: 

 
dfifdiiiloss Δh+Δh+Δh+Δh=Δh , (10) 

where iiΔh  and diΔh  are incidence losses at the inducer and diffuser 

respectively, while fiΔh  and  fdΔh  are friction losses at the inducer and 

diffuser respectively. In nondimensional form, these losses are defined as [6]: 

  221
~

2

1
fωf=Δhii  , (11)  

  23
~

2

1
fωσ=Δhd i  ,  (12) 

 
2

4f=Δhif , (13) 

and: 

 
2

5f=Δhdf ,   (14) 

where 1...5=i,f i  are nondimensional parameters. To find the details of the 

dimensional parameters represented by if , the reader may consult [5]. In 

compression system operation, the compressor characteristic as defined in (5) 

applies for positive massflow. For negative massflow, the compressor 

characteristic is defined as [6]:   
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   0
2~

cc ψ+μ=ω,ψ  , 0 , (15) 

where 0   and [6]: 
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and [6] :  

  
1

200
2

2σ~

f+σ+σ
=ω,η=η =cc  . (17) 

2.2 Surge Line 

The surge line is defined as the line that passes through the maxima of the 

compressor characteristic [5]. Hence, from   0∂/~∂ =ω,ψc  , it is found that 

the surge line for any speed line as described in Figure 1 will pass through the 

extreme point:  

 
    

sl
=cfslsl ω,ψωk=ψ  2 ~~ . (18)  

where index sl  refers to the surge line and  fk  is a constant that is defined as 

[6]:  

 
54

2
3

2
2

321

22 f+f+f+f

σf+ff
=k f . (19) 

As implied by (18), the compressor’s maximum pressure ratio exists right at the 

surge point. The compressor’s maximum isentropic efficiency is also achieved 

at this point [6]. However, a small reduction in massflow from this point will 

lead the compressor into surge. 

2.3 Model and Compressor Characteristic Modifications 

Both the compressor model (1) and itscharacteristic (5) are highly nonlinear. In 

order to apply linear control theory to (1), the following approaches are used:  

(i) Cancellation of the nonlinear components [11], which exist at statesψ  and 

ω~  in (1), by transferring them into the input vectors. 

(ii) Linearization of the compressor characteristic (5) around the surge point in 

the stable region and in the unstable region as well.  

By approach (i), states  ψ   and  ω~   in (1) appear linear, that is:  
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where 1v  and 2v  are newly defined control inputs given by: 

 ψγ=v th1 , (21) 

and: 

   1~
2  ωστ=v . (22) 

Approach (ii) is applied based on the fact that surge point (18) is the point 

where the system is in steady-state condition. In this condition, the following 

relations apply [6]: 

    sssscssssssss vvψ=ωψ 21
~ , (23) 

where index ss  refers to the steady-state condition. Inspired by Leonessa, et al. 

[6], linear compressor characteristics are derived by defining a small operating 

range of each region relative to the steady-state point. For the unstable region, 

such range is defined by: 

 ψψ=x ss 1
, (24) 

  ss=x2
, (25) 

 
ωω=x ss
~~

3  , (26) 

 111
ˆ vv=v ss  , (27) 

and:  

 222
ˆ vv=v ss  . (28) 

Assuming the operating range defined by (24)-(28) is linear, the compressor 

characteristic can be defined as: 

      ω,ψω,ψ=xxψ csssscc
~~

32,   . (29) 

Furthermore, linearization (5) near ss  and 
ssω~  using Taylor expansion results 

in:  
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The value of  ssssc ω,ψ ~  is obtained by substituting 
ss=  and s sω=ω ~~  

into (5). On the other hand, substituting ss=  and s sω=ω ~~  into: 
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results in  ssssc ω,ψ ~∂/∂  and  ssssc ω,ωψ ~ ~∂/∂  , respectively.  Substituting 

(30) into (29) results in the compressor characteristic at the unstable (surge) 

region, that is: 

 
  ωγ+β=ω,ψc

~~  ,  (33) 

where: 

  ssss
c ω,

ψ
=β ~

∂

∂



,                                                                              (34) 

and: 

  ssss
c ω,
ω

ψ
=γ ~

~∂

∂
 . (35)   
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Remark 1. According to [5], surge occurs at points with positive slope in the 

compressor characteristic curve. However, calculation of (30) uses
ss< , thus

02 x .Therefore   ∂/~∂  ω,ψc in (31) must be negative, so that (33) has a 

positive slope.  

Substituting (24)-(28), differentiation of (24)-(26) and (33) into (20) results in a 

linear compressor model for the surge region:  
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Parameter 0>α  in (36) is a coefficient that guarantees cssss ψ=ψ  in (23) will 

be achieved, where:  

 
ssss

ss

ωγ+β

ψ
=α ~

. (37) 

For the stable region, a small operating range relative to the steady-state point is 

defined by: 

 ssr ψψ=x 1 , (38) 

 ssr =x  2 , (39) 

 ssr ωω=x ~~
3  , (40)  

 ssr vv=v 111
ˆ  , (41) 

and: 

 ssr vv=v 222
ˆ  .   (42)  

The index r  in (38)-(42) refers to the stable region. Assuming the range 

defined by (38)-(42) is linear, the compressor characteristic for the unstable 

region can be defined as [6]: 

      sssscsssscrrc ω,ψx+ω,x+ψ=x,xψ ~~ r 32r32   . (43) 

Substituting (38)-(40) into (30) and subsequently substituting its result into (43) 

results in:  

   ωγ+β=ω,ψc
~~  . (44) 
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Remark 2. The difference between (33) and (44) lies in their respective 

operating regions. In (44),
ss> , thus 02 >x r . Since   ∂/~∂  ω,ψc is 

negative, the slope in (44) will be also negative. 

The linear compressor model for the stable region is obtained by substituting 

(38)-(42), differentiation of (38)-(40) and (44) into (20), that is: 
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Parameter 0>αr
 in (45) is a coefficient that guarantees that cssss ψ=ψ  in (23) 

is achieved, where: 

 
s ss s

s s
r

ωγ+β

ψ
=α ~

.   (46) 

2.4 Defining Switching Function for Compressor Models 

By observation on (36) and (45), it was shown that the general form of these 

two models is similar. Hence, it is of interest to find a switching function that 

determines when the system is in stable mode or in unstable mode.  

The characteristic equation of the state matrix in (36) or (45): 

 




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


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
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c

bαγbαβb
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00

A , (47) 

is given by: 

    02 =ba+λbαβ+λc+λ . (48) 

By inspection of (47) it is found that open-loop stability depends solely on the 

sign of 2,2A , both in (36) and (45). This is because α  (or rα ), a , b  and c  are 

all constant and positive, while β  is negative. If 2,2A  is positive, A  will be 

stable, since its eigen values are all negative. Conversely, if 2,2A  is negative, 

A  is unstable, since at least one of its eigen values is positive. These facts are 

in accordance with the definition of negative and positive slope in (33) and (44). 
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Hence, a switching function is adequate to define stable and unstable region 

mode. A switching function is then inserted to 2,2A , such that: 

 bαβf= s2 ,2A , (49) 

where:  

 








else

<if
=f

ss

s
       1

     1 
. (50) 

Using (50), (37) and (46) can now be stated into a single function, which is: 

 
s ss ss

s s

ωγ+βf

ψ
=α ~ . (51) 

3 Controller Design 

Based on (23), (50) and (51), the control strategy is formulated as follows: 

(i) open-loop control is employed from initial condition to surge line 

(ii) closed-loop control is employed from surge line to unstable operating point  

3.1 Filtering the Control Action 

In closed-loop control, the nonlinear component that originally exists in the 

third-state of (1) will re-appear. However, as indicated in (22), its presence will 

produce a large additional load for the controller to handle. Such a situation will 

be disadvantageous for system performance, especially when the control load 

changes abruptly. To anticipate such problems, a linear low-pass filter with the 

following impulse response: 

 Tt
lp flp f eK=f / , (52) 

is introduced to filter 2v (22). The filter will keep changes in 2v within a small 

range. Gain 
lpfK is set such that the maximum value produced by nonlinearity 

of 2v can be moderated, while constant T  is set to expedite dissipation of the 

nonlinearity as time t goes to infinity. 

Hence, the closed-loop control inputs in the unstable region are obtained by 

incorporating (21) and (27):  
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ψ

vv
=γ ss

th
11

ˆ
, (53) 

and by incorporating (22), (28) and (52): 

   1~ˆ
22  ωσf+vv=τ lpfss

. (54)  

3.2 LQR plus Integrators Design 

From the general form of state space equations:  

 GwvBAxx ++= ˆ , (55) 

 vDCxy ˆ+= , (56) 

with all the outputs assumed to be measurable. In order to incorporate error, an 

augmented state is introduced [13]: 
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r e f

=



, (57)   

where e and refy are the output error and set point vectors, respectively. In the 

form of (55), (57) can be written as:    

 refyvBxAx ~~~~~~  , (58) 

where: 
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







00

0A
=A

~
,   (59) 

  T0B=B
~

,  (60) 

  Trefref 0y=y~ . (61) 

Furthermore, the standard quadratic performance index form of (58) is written 

as [14]: 

 

 




0

~
ˆ

~
ˆ~~~

2

1
vRvxQx

TTJ , (62) 

where Q
~

and R  are positive semi-definite and positive definite matrices, 

respectively. Control signal v
~
ˆ is given by: 
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 xKv ~~~
ˆ  , (63) 

and:  

 PBRK
T=

~~ 1 , (64)  

where P is a solution of the following Riccati equation [13]:  

 0QPBRBPPAAP =++ TT ~~~~~ 1 , (65) 

with: 

 








e

y
T

=
Q0

0CQC
Q
~

. (66) 

eQ in (66) is the weighting matrix of e . Substituting the result of (65) in (64), 

the control gains are obtained: 

  
e

KKK sfb=
~

, (67) 

where sfbK  and 
intK  are state feedback control gain and integrator gain, 

respectively. Recall that A
~

 and B
~

 are 66  and 26  matrices, respectively, 

then K
~

 is a 62  matrix.  In this case, 
sfbK exist at the 1

st
-3

rd 
column of K

~
, 

whereas eK  exists the 4
th
 -6

th
column. The closed-loop control signal is 

therefore defined as:  

 
refrefsfb += xKeKxKv eˆ , (68) 

where refK  is reference gain.   

4 Simulation 

The numerical values used in this simulation were taken from [6]. The Riccati 

equation in (65) was solved using the built-in Riccati function of Scilab 5.3.2. It 

was chosen that R =0.05 and )5.0,5.0,10,5.10,5(
~

diag=Q . It was obtained that:  

 












790.15443.7524.10

148.14199.16618.32
=sfbK , 

 (69) 

and: 
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 






 

266.8623.20

602.2565.20
=eK . (70)

 
 

For the linear low-pass filter defined in (52), the numerical values 05.0lpfK

and 5T  were chosen. The simulation was carried out using Scilab 5.3.2 and 

the 4
th
 Order Runge-Kutta was used as the numerical method.   

From initial condition 0ψ =0.188, 0 =0.141, 0
~ω =0.397, the compressor was 

brought to steady-state condition ssψ =0.305, ss =0.186, ω~ =0.493. Using the 

dimensional values in [5], the steady-state nondimensional values represent 

ambient pressure p =1.3×10
5
 Pa, massflow m  =2.19 kg/s and rotating speed 

= 25000 rpm, respectively. The compressor characteristic for the stable region 

in such point is given by:  

    ~6787.01565.0~, cr , (71) 

while the surge region is defined by: 

    ~5705.01315.0~, c . (72)  

At nondimensional time ξ = 0.75, massflow was reduced to  = 0.176, which is 

5.38 percent less than the allowed minimum value forω~ =0.493. This means the 

compressor enters its unstable operating region. Several indicators of the 

compressor’s behavior are represented in Figures 3-7. System response without 

the closed-loop control is represented by a dotted line, while its counterpart is 

represented by a solid line.  

As shown in Figures 3-4, the modified model and characteristic can describe the 

surge behavior. On the other hand, the closed-loop control managed to keep the 

compressor stable when being operated in the unstable region. 

It should be noted that massflow is actually difficult to measure [15]. Hence, 

incorporating a massflow observer as proposed in [15] to the model could give 

more realistic results. 
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Figure 3 Pressure ratio against nondimensional time.  

 

Figure 4 Massflow against nondimensional time. 
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Figure 5 Rotating speed against nondimensional time. 

 

Figure 6 Throttle opening against nondimensional time. 
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Figure 7 Torque against nondimensional time. 

5 Conclusion 

An active control of centrifugal compressors via model nonlinear component 

cancellation and characteristics linearization has been presented. By simulation 

it was shown that the modified model and characteristic can describe the surge 

behavior. The closed-loop controller managed to keep the compressor stable 

when operated in the unstable region.  

Inherently, linear realization of the active surge of compression systems has 

limitations within the range of the unstable operating region as to what it can 

cope with. However, the simpler design and analysis used can be seen as a 

trade-off for its nonlinear counterpart. On the other hand, its achievement in 

dealing with surge is still a departure from the surge avoidance approach. 
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