
 

 

J. Eng. Technol. Sci., Vol. 46, No. 3, 2014, 299-317 
 

299 

 

Received June 5th, 2013, Revised February 19th, 2014, Accepted for publication June 25th, 2014. 
Copyright © 2014 Published by ITB Journal Publisher, ISSN: 2337-5779, DOI: 10.5614/j.eng.technol.sci.2014.46.3.5 

Dynamic Behavior of Reverse Flow Reactor for Lean 

Methane Combustion 

Yogi W. Budhi, M. Effendy, Yazid Bindar
 
& Subagjo 

Department of Chemical Engineering, Institut Teknologi Bandung 

Jl. Ganesha 10, Bandung 40132, Indonesia 

Email: Y.Wibisono@che.itb.ac.id  

 

 

Abstract. The stability of reactor operation for catalytic oxidation of lean CH4 

has been investigated through modeling and simulation, particularly the 

influence of switching time and heat extraction on reverse flow reactor (RFR) 

performance. A mathematical model of the RFR was developed, based on one-

dimensional pseudo-homogeneous model for mass and heat balances, 

incorporating heat loss through the reactor wall. The configuration of the RFR 

consisted of inert-catalyst-inert, with or without heat extraction that makes it 

possible to store the energy released by the exothermic reaction of CH4 

oxidation. The objective of this study was to investigate the dynamic behavior of 

the RFR for lean methane oxidation and to find the optimum condition by 

exploring a stability analysis of the simple reactor. The optimum criteria were 

defined in terms of CH4 conversion, CH4 slip, and heat accumulation in the RFR. 

At a switching time of 100 s, the CH4 conversion reached the maximum value, 

while the CH4 slip attained its minimum value. The RFR could operate 

autothermally with positive heat accumulation, i.e. 0.02 J/s. The stability of the 

RFR in terms of heat accumulation was achieved at a switching time of 100 s. 

Keywords: fixed bed reactor; oxidation; modeling and simulation; dynamic behavior. 

1 Introduction 

The major energy source used nowadays is fossil fuel, which gives rise to a 

profound negative impact on human health and the environment. Lean methane 

emission vented from fossil fuel industries such as coalmines and oil/gas 

companies, even at low concentrations, has been recognized as extremely 

dangerous. It has been reported by Hayes [1] that methane has a global warming 

potential that is 21 times higher than that of CO2. If those methane emissions 

can be captured in some way, they could potentially be used to generate thermal 

energy due to methane’s exothermic reaction. Capturing methane emissions 

means two things: global warming potential reduction up to 87% and potential 

thermal energy generation. Oxidation of lean methane concentrations smaller 

than 1%-v can be conducted over appropriate catalysts, such as Pt or Pd active 

site [2]. 
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A large amount of methane may be continuously discharged in the atmosphere 

from coalmine ventilation air and compressor houses for pipeline systems for 

natural gas distribution. A single compressor shaft can emit over 500,000 m
3 

(STP)/h of ventilation air in which the methane content could be up to 1%-v [3]. 

The abatement of such emissions therefore becomes indispensable from an 

environmental and economic viewpoint as the gaseous fuel is inadvertently lost, 

which contributes to the greenhouse gas effect. Until recently, no technology 

has been offered for satisfactorily treating the lean methane below 1%-v [4]. In 

addition, the emission of methane has typical characteristics such as ambient 

temperature and dynamic concentration. Treatment of low-temperature lean 

methane emission using a catalytic fixed bed reactor with one-through operation 

usually requires a preheater to achieve the reaction temperature due to its low 

adiabatic temperature rise. As a consequence, its dynamic concentration may 

induce reactor instability to some extent. Therefore, a proper operation method 

for reduction of methane emission is highly required. 

The development of a reverse flow reactor (hereinafter referred to as RFR) was 

already commenced a few decades ago for lean oxidation. It began with reactor 

operation for trapping the heat released by the exothermic reaction inside the 

materials that have a high heat capacity, usually placed at the outer part of the 

catalytic section. The concept of the RFR was originally proposed by Cottrell 

[5] for pollutant removal. Subsequent applications of this reactor were 

motivated by the successful development of SO2 oxidation by Boreskov, et al. 

[6] and Boreskov & Matros  [7]. It was reported that a higher conversion could 

be achieved by using an RFR. The study of reverse flow operation (hereinafter 

referred to as RFO) through modeling and simulation spans from a very simple 

first-order kinetic reaction to full elementary reaction steps, and from one-

dimensional pseudo-homogeneous models [8] to two-phase model accounting 

for gas-solid temperature difference, ignoring effective axial dispersion [9] or 

including effective axial dispersion [10,11], or including mass transfer 

limitations inside and outside the catalyst particles [12-14]. At a higher 

complexity level, Sapundzhiev, et al. [15] developed a two-dimensional 

heterogeneous model including radial diffusion and heat and mass transfers 

between phases. Other applications of reverse flow operation concerned o-

xylene oxidation to phthalic anhydride as a way to decrease the hot spot 

temperature [16], NOx reduction [17-19], and methanol synthesis [9,12,14,20], 

NH3 oxidation with full elementary reaction steps using periodic lower feed 

concentration and side feeding of the RFR [21,22]. Matros and Bunimovich [4] 

comprehensively reviewed the theory and application of the RFR. 

For the purpose of regenerative heat exchange, the use of an RFR for 

exothermic reactions has been proven. When compared to a packed bed reactor 

with utilization of hot reactor effluent for preheating the feed gas, an RFR may 
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indicate higher energy efficiency due to direct contact between gas and solid 

material for storing energy [23]. As mentioned before, the energy released by 

the exothermic reaction can be saved inside the down part of the inert material, 

so that when changing the flow direction, the cold feed gas from the opposite 

direction will be heated up by this hot inert. The heat saving and propagation 

along the reactor bed is strongly influenced by the switching time, the heat 

capacity of the inert material, and the reactor design. Improper reactor operation 

may lead to reactor extinction when the reactor temperature drops 

progressively, or thermal runaway when the reactor temperature increases 

monotonically leading to undesired reactions or deactivation of the catalyst. 

Some applications involve equilibrium-limited reactions or very exothermic 

reactions, in which cooling or energy extraction–that can be used for heat 

generation–is necessary to avoid conversion drop or exceeding the critical 

temperature, which may deactivate the catalyst. The temperature control along 

the reactor bed becomes a crucial strategy to maintain the reactor under stable 

heat propagation, which may be performed by cooling the reactor or operating 

the reactor at a proper switching time. Various modes of RFR cooling have been 

discussed by Matros and Bunimovich [4]. The reactor parameters such as 

cooling method or choosing the switching time or reactor design may affect 

reactor stability. Khinast, et al. [24] studied the conditions that influence the 

quantitative and qualitative prediction of the so-called cooled RFR dynamics by 

single- and two-phase models when the catalyst pellet multiplicity does not 

occur inside the reactor. Rehacek, et al. [11] investigated the chaotic behavior 

of the RFR in a two-phase model. Khinast, et al. [24] checked the chaotic 

behavior of the RFR in a single-phase model. Khinast and Luss [25] describe a 

novel approach for the construction of a bifurcation analysis of the RFR. It was 

shown that instead of computing the large linearized matrices of the defining 

conditions first, followed by computing the corresponding eigen values and 

eigen vectors, it was possible to obtain the product of the linearized matrices 

and their eigen vectors by Fréchet differentiation of the original model 

equations. A highly efficient method for computing the periodic states was 

successfully developed, which enables efficient construction maps of 

distributed-parameter periodic states. In many RFR designs, the reactor consists 

of a catalyst section in the reactor center and two layers of inert material at the 

outer part of the reactor. Some designs insert a space for heat extraction in the 

center part of the reactor. Contrary to Khinast, et al. [24], who developed a 

cooled RFR containing a catalyst section only, in this study, the RFR was 

constructed in five sections, consisting of left inert, left catalyst, heat extraction, 

right catalyst, and right inert. The objective of this study was to investigate the 

influence of switching time and heat extraction from the reactor wall on RFR 

performance for lean methane oxidation. The effects of constant and oscillated 

feed gas concentrations on reactor stability were also taken into account. Two 

RFR types were taken into consideration: a cooled RFR with all catalyst 
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sections as a base model and an RFR equipped with inert material sections and 

heat extractor. 

2 Reverse Flow Reactor 

Several methods in dynamic reactor operation have been developed 

progressively, by researchers such as Prof. Schouten at Eindhoven University of 

Technology, Prof. Eigenberger at University of Stuttgart, and Dr. Matros at 

Matros Technologies Inc. Periodic operation has been recognized to offer 

spectacular benefits when compared to steady state operation. One of the 

dynamic operations with periodically changing the direction is better known as 

the reverse flow reactor. It has been widely applied for exothermic and coupling 

exo-endothermic reactions, both from a viewpoint of energy saving and for 

manipulation of surface coverage. The combined benefits at a micro-scale 

(catalyst) and a macro-scale (reactor) can be achieved by using the principle of 

reverse flow if an appropriate operation procedure is applied. This may produce 

more favorable gas concentrations and temperature profiles for the catalytic 

process [16]. 
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Figure 1 Reactor configuration of a reverse flow reactor, consisting of inert, 

catalyst, and heat extractor. The gas passes through the reactor either forward or 

backward, depending on flow direction. The change of flow direction can be set 

at a certain switching time by adjusting the valves, (a) without heat extraction, 

(b) with heat extraction. 

Figure 1 depicts a schematic illustration of a fixed bed for the RFR. In some 

applications, the RFR consists only of the catalyst section. In this case, the 

catalyst acts both for chemical reaction acceleration and heat storage. Therefore, 

the catalyst requirements include a proper active site for reaction and high-heat 

capacity. Reactor cooling is conducted by taking heat from the reactor wall. 

During the first half of each cycle, the feed gas enters the reactor in a forward 

direction, while during the second half of each cycle, the feed gas passes 
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through the reactor in a backward direction. Reversing the flow direction 

periodically at a proper switching time lets us control the heat propagation along 

the reactor bed, which also influences the local reaction rate and the gas 

concentration. Many of these applications are catalytic fixed bed reactors with a 

solid configuration containing outer zones of inert material and an inner zone of 

catalyst. In particular applications, extending the catalyst bed and reducing or 

even excluding the inert material are possible when the catalyst acts as reaction 

accelerator and heat recuperator [4]. 

3 Governing Equation 

To model a reactor, a set of mathematical equations is required, expressing the 

behavior of the reacting system under various operating conditions. The purpose 

of modeling is to develop thorough and detailed information about a process, 

which then can be used for predicting the reactor’s behavior, for optimizing the 

design and operation of the process, and eventually for selection among 

competing novel concepts. The model should allow us to predict the 

performance for a wide variety of designs and operating conditions. It is 

necessary to mention at this stage that such a model should include the 

fundamentals of conservation law, reaction and catalytic engineering, and fixed-

bed hydrodynamics. After the governing reactor model equations are subjected 

with supplements of boundary and initial conditions, the model is usually 

solved simultaneously by using a standard software package. 

In this study, lean methane oxidation over Pt based catalyst was used as a model 

reaction, where the average composition of methane in the feed gas was 1%-v, 

while the remainder was air. The stoichiometric reaction of methane 

combustion can be written as follows: 

 CH4 + 2O2 CO2 + 2H2O             H = -802 kJ/mol (1) 

The reaction rate, following the power law, was assumed to be influenced by 

the methane concentration only as shown in Eq. (2) due to the large excess of 

air in the feed [3]. 

 

rCH4 = ko exp -
Ea

RT

æ

è
ç

ö

ø
÷ CCH4( )

0.81

 (2) 

In the RFR, the domain model of the reactor includes the spatial derivative in 

time and position, leading to a partial differential model. The model of the RFR 

becomes more complicated when the reaction rates involved are nonlinear in 

form. The mathematical models for the RFR are derived from the mass and 

energy conservation laws. The models are governed by the following equations: 
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The reaction rates in Eqs. (3) and (4) were applied in the catalyst zone only and 

QE was applied in the heat extraction zone only (Model 2).  

For forward flow, the boundary conditions of mass and heat balances can be 

written as: 

 
 oe

o
CHCH TTP

z

T
CC 




      and     

44

 at z = 0 (5) 

 
0





z

T

 
at z = Lr (6) 

For backward flow, the opposite boundary conditions were applied for both 

mass and heat balances. 
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4 Results and Discussion 

4.1 Reverse Flow Reactor without Heat Extraction 

4.1.1 Inert Configuration 

The initial conditions were the simulated results of the reverse flow operation in 

which the feed gas and the reactor temperature were set at 773 K with no heat 

loss and heat extraction. The reactor configuration consisted of inert-catalyst-

inert. The switching times were varied at 20 s, 100 s, and 300 s, and a proper 

result that shows typical RFR profiles was used for simulation with feed gas 

temperature at ambient conditions. The kinetic parameters and physical 

properties used in this study were taken from the literature [26]. Figure 2 

presents the simulation results, showing the temperature and concentration 

profiles along the reactor bed for various switching times. 
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(a) switching time = 20 s 

 

(b) switching time = 100 s 
 

 
 

(c) switching time = 300 s 

Figure 2 Temperature profiles and methane concentrations along reactor bed at 

various switching times. No heat loss and heat extraction were employed. These 

profiles were taken after getting stable oscillation. The dotted line indicates 

forward flow, while the solid line indicates backward flow. 

As can be seen, the influence of the switching time on the dynamic behavior of 

heat propagation and methane concentration along the reactor bed are indicated. 

The temperature and methane concentration profiles along the reactor bed were 
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taken at the beginning of every cycle, immediately after reversing the flow 

direction. These profiles (solid line for right direction and dotted line for left 

direction) constitute the mirror effect. In between, there are intermediate heat 

and mass propagations that may influence process performance. In the case of a 

switching time of 20 s, both profiles (forward and backward) nearly coincided, 

while at a switching time of 100 s, the forward and backward flows were not 

close, which means that the heat propagation occurs over a longer distance. A 

higher temperature peak was obtained when the change of flow direction was 

more frequent. Therefore, at switching times of 20 s and 100 s, the 

accumulation of heat due to the exothermic reaction induced the heat trap 

effectively, as indicated by the higher temperature profile in the reactor centre. 

These time scales exhibit proper conditions for typical flow reversal, also shown 

by the complete conversion of methane. In the configuration without heat 

extraction, at a sort switching time (20 s), the temperature profile developed 

along the reactor bed nearly coincided between forward and reverse flow, which 

means that no significant heat propagation occurred in the reactor bed. A 

temperature profile was developed but the value at every axial position stayed 

almost constant. 

On the other hand, when the switching time was 300 s or higher, the heat trap 

could not be created in the reactor centre. The heat flowed out from the reactor 

system, as shown in Figure 2(c), leading to reactor extinction with very low 

methane conversion. Based on this observation, determination of the proper 

switching time is indispensable for operating the reverse flow reactor. 

The switching time also influenced the heat accumulation inside the reactor and 

CH4 loss due to slip and unconverted CH4, as presented in Figure 3. The heat 

accumulation decreased with an increase in switching time, while the methane 

loss decreased until about 180 s, and subsequently increased. The amount of 

heat that can be trapped by the packed bed will decrease when the heat 

convection by the stream becomes dominant. Therefore, at a longer switching 

time, the heat contained in the stream will flow out of the reactor. The higher 

methane loss at a longer switching time is induced by the lower reaction 

temperature in the reactor centre, leading to a lower degree of conversion. On 

the other hand, the higher methane loss at a shorter switching time is caused by 

methane slip due to the fast flow direction change. The configuration of the 

fixed bed reactor consists of 33% inert, each at the outer part of the reactor. This 

region will contribute to methane slip at every switch of flow direction. 
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Figure 3 The influence of switching time on heat accumulation and methane 

loss. 

4.1.2 Cooled Reverse Flow Reactor 

In many cases, the RFR predominantly converges to a symmetric state, for both 

the spatial temperature profile and the concentration profile at two consecutive 

flow reversals are mirror images of each other. If the reactor is cooled in some 

way, or the operation is not adiabatic, as is often encountered in experimental 

observations, several intricate dynamical features are obtained [24,25]. Firstly, 

moderate cooling leads to temperature profiles with two maxima, while only 

one flat maximum exists under adiabatic conditions. Profiles with two maxima 

are often observed in experimental studies [27], a clear indication of insufficient 

reactor insulation. If the reactor cooling is increased, the symmetric profiles 

become unstable and either a periodic asymmetric, a quasi-periodic or a chaotic 

state is obtained. In this study, the influence of switching time on the 

symmetricity of the reactor operation with flow reversal was investigated. The 

simulation results are presented in Figure 4. 

At a very short switching time (10 s), the temperature profile as a function of 

reactor length did not form a symmetric distribution between the right and left 

direction. Depending on the initial temperature profile, the heat propagation 

along the reactor bed in between two switching times is indicated in Figure 4(a). 

When the heat travels along the reactor bed, the temperature profile is reversed 

before it reaches steady state condition. Therefore, a symetric temperature 

profile cannot be achieved when the switching time is too short. A symmetric 

temperature profile may result from a non-uniform process performance 

between forward flow and backward flow. When the switching time was 

increased to 20 s, the temperature profiles at the end of the cycle between 

forward and backward flow showed the mirror effect and were symmetric (see 

Figure 4(b)). This means that the reactor system may respond to the flow 

direction change with the same capability for storing heat in solid material and 
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releasing the heat to cold feed gas. Figure 4(c) confirms that longer switching 

times made the reverse flow reactor become symmetric in operation and 

ensured that reactor performance was similar for both flow gas directions. 

 

(a) Switching time = 10 s          (b) Switching time = 20 s 

 

(c) Switching time = 30 s 

Figure 4 Dimensionless reactor temperature as a function of dimensionless 

reactor length at various cycle times (dotted line for  = 1,3,5,… (right direction), 

solid line for  = 0,2,4,…(left direction)). 

4.2 Comparison of RFR with and without Heat Extraction 

A transient operation according to the reverse flow principle with nonlinear 

kinetic parameter gives rise to complicated dynamic behavior of the fixed bed 

reactor for the classical application of energy saving, as has been reported on 

several occasions [25,28]. This complexity is due to the nonlinear dynamics of 

the whole system, induced by nonlinear reaction kinetics on the scale of a 

catalytic active site, in combination with heat transfer aspects on the scale of the 

reactor. 
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The gas emission of methane vented by a coal mine or a leak from a piping 

system of natural gas usually occurs at ambient temperature. This low 

temperature requires a large amount of heat to achieve the reaction temperature 

(around 500°C). In addition, the low concentration of methane emission only 

provides an adiabatic temperature rise of 100-200°C, indicating that a pre-heater 

is necessary when a conventional fixed bed reactor in once-through operation is 

used. In this study, the natural phenomena of heat loss through the reactor wall 

and heat extraction were employed. The heat loss occurs from the whole reactor 

wall (which is represented in the heat loss number), while the heat extraction 

(HE) was performed for the HE section only. Heat extraction was maintained 

constant at 17 W per 9.3 g feed gas/h based on a preliminary simulation. 

A typical temperature profile along the reactor bed in the case of involving heat 

accumulation and heat extraction looks similar to that of an RFR without heat 

accumulation and heat extraction (see Figure 5). A lower decrease of 

temperature, however, took place in the middle part of the reactor (HE section) 

due to heat extraction. At a short switching time, 20 s, the temperature profiles 

for forward and backward flow almost coincided. In this condition, the heat 

accumulation in the reactor decreased at -0.04 W, which gave rise to a lower 

temperature in the reactor centre when compared to a switching time of 100 s. 

The latter indicated better performance: the heat accumulated at a rate of +0.02 

W, leading to a higher reactor temperature at the centre. As a result, the 

methane loss at a switching time of 20 s was slightly higher compared to a 

switching time of 100 s. 

 

Figure 5 Temperature profile along reactor bed at various switching times: (a) 

switching time = 20 s, Qacc = -0.04 W, which means tending to extinction, 

CH4,loss = 0.6%; (b) switching time 100 s, Qacc = 0.02 W, CH4,loss = 0.13%. The 

dotted line indicates backward flow, while the solid line indicates forward flow. 

Feed gas temperature was 303 K. The inert materials are at the outer part of the 

catalyst bed. 
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4.3 Stability Analysis of Reverse Flow Reactor 

In practice, adiabatic reactor operation can hardly be achieved, even if thick 

isolation is equipped over the reactor wall. Contrary to Khinas, et al. [24], who 

used cooling capacity as key parameter in determining the performance of an 

RFR, in this study the heat loss number was applied and incorporated in the heat 

balance. In addition, heat extraction was the parameter to be investigated. 

According to the above discussion, at a switching time longer than 20 s, the 

symmetricity of the reverse flow reactor is developed. This was also observed in 

this case, with heat loss and heat extraction involved. Obviously, the heat loss 

number did not affect the symmetricity of the RFR at a switching time of 100 s. 

The RFR was still able to operate under stable oscillation at various heat loss 

numbers, spanning from 0 to 500, as shown in Figure 5. At adiabatic operation, 

the inert material downstream of the catalyst may achieve a similar temperature 

to the catalyst section. This means that all heat released by the exothermic 

reaction is stored in the reactor and will be utilized for heating up the cold feed 

gas during the subsequent cycle. However, an adiabatic reactor is not a real one 

and this can hardly be achieved during real operation. When the cooling 

capacity increased, the temperature profiles along the reactor bed, both for 

forward flow and backward flow, still indicated symmetricity. This means that 

at a switching time of 100 s, the heat loss number did not influence reactor 

stability and did not give rise to chaos. A comparison of the temperature 

profiles along the reactor bed is presented in Figure 6. The heat extraction 

strongly induced the temperature profile. At QE = 0, the temperature profile in 

the centre part of the reactor looks flat and it decreased in the downstream 

region. In this region, the lower temperature was induced by the low 

temperature of the feed gas during the previous cycle. After the flow direction 

was changed, a similar temperature profile can be observed where the 

temperature profile shifted up, but was still lower than the temperature in the 

reactor centre. When heat extraction QE increased up to 17 W, the temperature 

profile was slightly different to that of the reverse flow reactor without heat 

extraction. In this case, the temperature profile in the reactor centre formed a 

slight upward concave curve due to the heat extraction. The influence of heat 

extraction on the temperature profile is seen at higher values for QE, for instance 

at QE = 34 W and even at QE = 68 W. Other observations are that the maximum 

temperature decreased. At QE = 68 W, too much heat is withdrawn from the 

reactor, leading to a lower temperature inside the reactor bed and at the outer 

part of the catalyst section, the temperature dropping markedly. This condition 

may endanger the reactor, leading to extinction. Therefore, heat extraction 

should be accomplished under proper operating conditions with the aim to 

generate energy taken from the exothermic reaction and to avoid catalyst 

damage due to overheating the reactor centre. 
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QE = 0                                                   QE = 17 

 

QE = 34QE = 68 

Figure 6 Dimensionless temperature profile along dimensionless reactor length 

at various heat extractions (QE) for Model Reactor I (only catalyst section). The 

heat loss through the reactor wall was incorporated in the energy balance. Feed 

temperature was 303 K and switching time 100 s. 

 

Figure 7 Dimensionless temperature profile as a function of dimensionless 

reactor length at various heat loss numbers. Adiabatic condition is indicated by 

QE = 0. Switching time was 100 s. Flow direction is forward (left) and backward 

(right). 
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Figure 7 shows the symmetricity of the reverse flow reactor at various heat 

extraction values. The symmetricity of the reverse flow reactor held for a heat 

extraction range of 0-68 W. This obviously shows that the heat extraction 

affected the heat accumulation in the reverse flow reactor as indicated by the 

temperature profile along the reactor. At a large heat extraction, the heat 

accumulation inside the reactor became low, leading to extinction. However, the 

reverse flow reactor still showed symmetricity. 

The stability of the reverse flow reactor is another crucial factor to be 

considered. It too, can be observed by varying the switching time and 

considering its influence on reactor stability. In this case, the reactor stability is 

expressed in the heat accumulation as a function of cycle number. The heat 

accumulation basically indicates the amount of heat that can be stored inside the 

reactor bed. If the amount of heat stored increases due to the reaction heat 

released by the exothermic reaction, the heat accumulation may increase, but it 

will depend on the switching time. Therefore, investigation of this matter 

becomes necessary, since switching time is a key factor in reverse flow reactors 

[29]. Figure 8 shows the dynamic behavior of the reverse flow reactor at 

switching times of 50 s, 100 s, and 150 s as a function of cycle number. In 

Figure 8(a), the heat accumulation increased at the beginning of operation up to 

its maximum value, subsequently decreasing markedly, even lower than its 

value at the beginning. In this case, setting a switching time of 150 s induced 

the heat flowing out of the reactor with the outlet stream. This means that the 

rates of heat conduction and convection were faster than the rate of heat storing. 

This condition results in heat propagation along the reactor bed for too long a 

distance, leading to heat loss through the product stream. Therefore, it is 

necessary to decrease the switching time in order to maintain proper heat 

propagation inside the reactor bed. It was set at 50 s for the second trial, which 

resulted in too fast a switching time. As can be seen in Figure 8(b), the heat 

accumulation inside the reactor bed increased as a function of cycle number. 

The aim of reversing the flow direction seems to be achieved, but when the heat 

accumulation inside the reactor continuously increases, the reactor temperature 

will also increase, which may lead to reactor runaway or overheating. If this 

switching time is chosen, some heat must be withdrawn from the reactor in 

order to avoid reactor and catalyst damage due to overheating. At an  

intermediate switching time value, it was observed that the dynamic behavior of 

the reverse flow reactor produced stability during operation when the switching 

time was 100 s. When no heat extraction is installed, this switching time is 

suitable for operating the reactor. 



 Dynamic Behavior of Reverse Flow Reactor 313 
 

 

Figure 8 Heat accumulation inside the reverse flow reactor as a function of 

number of cycle at switching times of 50, 100, and 150 s. 

5 Conclusion 

The study of RFR stability for lean methane oxidation with constant and 

oscillating feed concentration has been performed. The switching time showed a 

strong influence on reactor stability, design and operation, both with and 

without heat extraction. In the configuration without heat extraction, at a short 

switching time, the temperature profile developed along the reactor bed nearly 

coincided between forward and reverse flow, which means that no significant 

heat propagation occurred in the reactor bed. A temperature profile was 

developed, but the value at every axial position stayed almost constant. At a 
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higher switching time, heat propagation along the reactor bed could be observed 

clearly. However, a switching time that is too long induces heat loss through the 

effluent. When heat extraction was applied, the reverse flow reactor could still 

maintain its stability during operation, but when the heat extraction was too 

great, the stability of the reactor decreased. The heat accumulation inside the 

reactor was affected by the switching time. Too short or too long switching 

times resulted in instability of the reactor. 
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Notations 

aw Specific heat exchange area at the reactor wall (m
2
.m

-3
) 

Ci Concentration (mol.m
-3

) 

cs Heat capacity of solid particle (J.mol.m
-3

) 

cg Heat capacity of gas (J.mol.m
-3

) 

Ea Activation energy (J.mol
-1

)0 

H Heat of reaction (J.mol
-1

) 

k0 Frequency factor (s
-1

) 

Lr Reactor length (m) 

QE Heat extraction (J.m
-3

.s
-1

) 

R Ideal gas constant (J.mol
-1

.K
-1

) 

ri Reaction rate (mol.m
-3

.s
-1

) 

T Temperature (K) 

Tl Atmospheric temperature  (K) 

t Time (s) 

U Overall heat-transfer coefficient of reactor wall (W.K
-1

.m
-2

) 

us Superficial gas velocity (m.s
-1

) 

z Axial coordinate (m) 

g Gas volume fraction 

s Solid volume fraction 

g Gas density (kg.m
-3

) 

s Solid particle density (kg.m
-3

) 

eff Axial thermal conductivity (W.m
-1

.K
-1

) 
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