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Abstract. Although the graphics processing unit (GPU) was originally designed 

to accelerate the image creation for output to display, today’s general purpose 

GPU (GPGPU) computing offers unprecedented performance by offloading 

computing-intensive portions of the application to the GPGPU, while running the 

remainder of the code on the central processing unit (CPU). The highly parallel 

structure of a many core GPGPU can process large blocks of data faster using 

multithreaded concurrent processing. A game engine has many “components” 

and multithreading can be used to implement their parallelism. However, 

effective implementation of multithreading in a multicore processor has 

challenges, such as data and task parallelism. In this paper, we investigate the 

impact of using a GPGPU with a CPU to design high-performance game 

engines. First, we implement a separable convolution filter (heavily used in 

image processing) with the GPGPU. Then, we implement a multiobject 

interactive game console in an eight-core workstation using a multithreaded 

asynchronous model (MAM), a multithreaded synchronous model (MSM), and 

an MSM with data parallelism (MSMDP). According to the experimental results, 

speedup of about 61x and 5x is achieved due to GPGPU and MSMDP 

implementation, respectively. Therefore, GPGPU-assisted parallel computing 

has the potential to improve multithreaded game engine performance.  

Keywords: Game engine; GPGPU computing; multicore processor; parallel 

programming; performance improvement; simultaneous multithreading. 

1 Introduction 

Intel introduced the first video graphics controller (iSBX 275) in 1983 [1,2]. 

Then Texas Instruments (TMS34010, 1986), IBM (8514 Graphics System), etc. 

enhanced GPU applications. Throughout the 1990s, 2D graphical user interface 

(GUI) acceleration continued to evolve. The NVIDIA Corporation was the first 

to produce a chip capable of programmable shading (GeForce 3, early 2000s). 

Today (mid-2014), GPUs are used in embedded systems, mobile phones, 

personal computers, workstations, and game consoles. Modern GPUs are very 

efficient in manipulating computer graphics, and their highly parallel structure 

makes them more effective than general-purpose CPUs for algorithms where 

processing large blocks of data is done in parallel. Since 2006 (with the 
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introduction of the GeForce 8 series), NVIDIA has produced general purpose 

GPUs for scientific and engineering computation. For its GPUs, the company 

has also developed compute unified device architecture (CUDA) [2], a parallel 

computing platform and programming model. Currently, many companies, 

including NVIDIA, Intel, and AMD/ATI, produce GPGPUs [3-5]. Although the 

original GPU, a specialized electronic circuit, was designed to rapidly 

manipulate and alter memory to accelerate the creation of images in a frame 

buffer intended for output to a display, now GPGPU computing offers 

exceptional application performance by offloading computation intensive parts 

of the application to the GPU, while the rest of the code runs on the CPU.  

 

Game engines are traditionally used for developing video games. In addition to 

standalone and online game machines, game engines are now being used for 

educational, medical, and military applications as well [6,7]. A simple modern 

game engine is normally comprised of the following components: input, game 

logic, artificial intelligence (AI), physics (engine for collision detection/ 

response), audio (for sound), and graphics. A rendering engine called “renderer” 

is required for 2D or 3D graphics. Many subcomponents can comprise a 

component and together they form a complete package. Different levels of 

parallelism, such as task and data levels, can be used in game programming. 

When components in a game engine consist of many different types of 

middleware, the design of the library will most likely dictate which one is more 

suitable to use. Some middleware, such as the Bullet Physics Library, includes 

multithreading in its API [8]. Depending on the type of multithreading model 

used, some level of data redundancy and mechanism to ensure data coherency is 

required to improve performance. To fulfill the performance requirement, game 

engines are adopting new hardware like multicore CPUs and software like 

multithreaded processing.  

 

Multithreading can be implemented in a game engine in many different ways. 

However, the currently available middleware used in high-level APIs makes the 

implementation of parallelism very challenging. Therefore, various methods 

should be evaluated when implementing multithreading in a game engine 

because a given multithreading technique might not be suitable for a particular 

component’s API due to the way it is built. It is difficult to objectively calculate 

and/or predict which implementation is needed to properly optimize a 

multithreaded application; therefore, optimization of multithreaded game 

engines requires numerous experiments. 

 

The success of modern game engines significantly depends on new innovation, 

that is, the shift from single-core to multi-core systems [9,10] and also 

substantial changes in software design, from sequential programming to parallel 

programming [11]. Recently introduced CUDA/GPGPU computing has the 
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potential to increase the speedup factor by many times [12]. However, more 

research work is needed to explore the challenges and opportunities of 

multithreaded game engines running on multicore/manycore systems. 

 

This paper is organized as follows: Section 2 reviews a number ofrelated 

published articles. Section 3 describes task and data parallelism concepts with 

respect to designing gaming engines. Two experiments are conducted for this 

work: a GPGPU/CUDA-assisted separable convolution filter implementation is 

presented in Section 4 and a multithreaded multi-object game engine 

implementation is introduced in Section 5. The experimental results are 

discussed in Section 6. Finally, this work is concluded in Section 7. 

2 Literature Survey 

Considerable research work has been done on GPGPU computing and the 

multithreaded game engine in recent years. Some articles are presented in this 

section. 

 

Intel has introduced a method of using a “thread pool” to manage task-level 

parallelism, as discussed in [13]. In a thread pool, each component has one or 

more tasks that will be queued and threads that are idle or have finished a task 

will retrieve a task from the queue to run next. Usually, the number of threads 

matches the number of cores of a particular system. In [14], Intel’s thread 

building blocks (TBBs) are used to implement the multithreaded engine. This 

threading middleware consists many algorithms and data structures to help 

developers implement multithreading.  

 

In [15,16], a task tree with a thread pool system to manage dependencies 

between tasks is used. In this approach, tasks are arranged in a tree where one 

task has multiple children and one parent. Each task is given a priority order 

number. The task within the same parent with the same priority number can run 

in parallel and the next order can only run when tasks from the previous order 

are completed. In this scheme, the mixture of data level parallelism and task 

level parallelism shows performance benefits. 

 

In an asynchronous model of game engines, as introduced in [17], each thread 

runs a task without a synchronizing step. The task depends on the fact that 

another task will always secure the latest data available to be processed. This 

allows each component to update at its own frequency. Occasionally, threads 

must access shared data. Data sharing could limit the effectiveness of this 

model, depending on the amount of synchronization required. An asynchronous 

multithreaded game engine is introduced in [18] to improve game performance. 
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In [19,20], multicore architecture is integrated to expose a multithreaded engine 

of game programmers to a different number of cores without recompilation of 

the code. Games are inherently serial, which makes multithreaded application 

difficult. The first attempt to parallelize the game engine was by running the 

client and the server on their individual cores using coarse grained threading. 

The best-case scenario was twice the performance improvement; however, a 1.2 

times improvement was seen in single-player mode, in which case, the server 

needs 20% of the time it takes the client to complete a clock cycle.  

 

A game company called RedLynx implemented multithreading in its game 

Trials HD [21]. This game uses the Bullet Physics Engine for simulation. The 

library is optimized in-house for the Xbox 360 CPU and vector units. 

Workloads are split among all six of the Xbox 360 hardware threads. Physics 

are handled in one thread and the graphics setup, graphics rendering, game 

logic, sound networking, and particle systems are handled in the other threads. 

One thread is used to handle timing, scheduling, and data synchronization 

between the other threads. One of the three CPU cores is completely reserved 

for the physics engine. Physics-heavy levels tend to utilize most of the cores’ 

processing time. The graphics setup thread is bottlenecked in the final stage of 

this optimization.  

 

Current learning algorithms for unsupervised learning models (such as deep 

belief networks (DBNs) and sparse coding) are too slow for large-scale 

applications. Therefore, researchers are forced to focus on smaller-scale models. 

General principles for massively parallelizing unsupervised learning tasks using 

a GPGPU are developed in [22]. These are able to reduce the time required to 

learn a four-layer DBN with 100 million free parameters from several weeks to 

around a single day. For sparse coding, a simple, inherently parallel algorithm 

leading to a 5- to 15-fold speedup over previous methods was developed. 

 

The GPGPU has become an integral part of today’s mainstream computing 

systems. In [23], four GPU computing successes in game physics and 

computational biophysics are presented that deliver order-of-magnitude 

performance gains over optimized CPU applications. Because games have 

become increasingly limited by CPU performance, offloading complex CPU 

tasks to the GPGPU yields better overall performance. For the Havok FX [24] 

game physics package, experimental results show that a single-core CPU 

implementation (on an Intel 2.9 GHz Core 2 Duo) achieved 6.2 frames per 

second, whereas the initial GPGPU implementation on an NVIDIA GeForce 

8800 GTX reached 64.5 frames per second. 
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3 Task and Data Parallelism 

Task-level and data-level parallelism are important in game engines. They are 

briefly explained in the following subsections. 

3.1 Task Level Parallelism 

Task parallelism is the distribution of different tasks across different threads. 

Task parallelism is used in a game engine by running each component task in its 

own thread [25-27]. Graphics rendering and physics simulation are good 

candidates for parallelism because they are usually process-intensive tasks. This 

model is most likely the simplest and most straightforward way to implement 

multithreading because the programmer is only required to create and keep the 

threads running until they are not needed anymore. For every system running in 

a separate thread, the programmer may need to handle race conditions with 

mutual exclusions. When using this method of parallelism, there are two models 

of execution: synchronous and asynchronous. 

 

The synchronous model is where all component tasks must finish in a single 

clock cycle, as shown in Figure 1(a). At the end of the clock cycle, the 

application will loop to the beginning to begin the operations again in the same 

order every time. The components run in parallel after the logic processing 

stage. The asynchronous model is where component tasks can run and finish on 

their own time. A component that runs on a thread is independent from the 

clock cycle of the other threads. This is ideal when there is little communication 

between components. Figure 1(b) shows the model where all components run in 

their own loop.  
 

 

(a) Synchronous execution                 (b) Asynchronous execution 

Figure 1 Task parallelism in a game loop utilizing synchronous and 

asynchronous techniques. 
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3.2 Data Level Parallelism 

Data parallelism is the distribution of the same type of processing data across 

different threads. For a game engine, data parallelism is where the same type of 

data in a component is parallelized in multiple threads [28,29]. As shown in 

Figure 2, the animation subcomponent in the graphics component is divided 

into three batches of data for simultaneous processing. The use of this in a game 

engine is when a component spawns multiple worker threads to process one 

type of data. If only data parallelism is employed, then the series of different 

types of operations are sequential and only the data of one type of operation are 

processed concurrently at one stage. If a data type requires communication 

among itself, a thread safe communication system must be implemented. This 

method scales well for a great number of processors because the size of the data 

for each thread can be divided equally. Communication among the threads can 

be reduced by grouping the objects that are most likely to interact with each 

other in the same thread [30]. 

 

Figure 2 Game engine utilizing data parallelism where graphical objects are 

divided among three threads. 

3.3 Task and Data Parallelism 

A combination of task and data parallelism is the optimum approach to exploit 

multithreading in game engines [15]. Here, each task can run parallel with 

another task and may spawn several worker threads. A system may have a 

number of cores, less or more than the number of parallelizable components. In 

task parallelism, if there are more cores than the number of types of components 

to be parallelized, then there will be cores that are not used if each type of 

component runs in a single core. Therefore, to maximize parallelism, data 

parallelism should be employed to maximize the use of all cores. A system with 

a high amount of data-parallelism would make it easier to manage tasks that are 

sequential because there may only be a race condition among the same type of 

data being parallelized; but it may not fully utilize the concurrency advantage 

for some components that are decoupled from each other. A system with a high 
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amount of task-parallelism would cause some cores to be unused because there 

may be more cores than the number of different types of tasks that can run at the 

same time, but having a synchronization stage with no mutex (i.e., mutual 

exclusion) locking can easily be implemented if it is a synchronous model. 

Mixing task and data parallelism takes advantage of the fact that not all 

components and data objects of a game engine are completely dependent. In 

most cases, task parallelism is implemented on different types of components or 

subcomponents and data parallelism is implemented inside a component or 

subcomponent. 

3.4 Synchronization 

Synchronization with respect to multithreading is basically data synchronization 

and is used to ensure that data are not executed at the same time by two threads. 

One method for synchronization is by using mutex. Mutex locking in a game 

engine depends on the multithreading model.  

 

The main drawbacks with mutex locks are overhead, deadlocks, contention, and 

priority inversion [31]. Acquiring and releasing locks requires some time, thus 

causing overhead (and decreasing performance). Deadlocks can occur when the 

order of acquiring a lock leads back to the same lock at the beginning. 

 

There are many synchronization techniques. Another method is to use a 

message passing system between threads. This avoids the use of mutex locking 

when passing data. The idea here is to use a common interface among all 

components and the advantage is a unified model of synchronization, thus 

avoiding the need to write synchronization code for every component. Other 

synchronization techniques include reader-writer lock and read-copy-update 

[32]. 

4 Separable Convolution Filter 

Separable convolution is a technique for fast convolution. It is commonly used 

in computer vision, image processing, signal processing, etc. Convolution is a 

mathematical operation on two functions (say, “f” and “g”) that produces a third 

function (say, “c”). Function “c” is typically viewed as a modified version of 

one of the original functions (say, “f”) giving an area overlap between the two 

functions (as illustrated in Figure 3). In the following section, CUDA/GPGPU-

assisted separable convolution filter implementation is introduced. 

 



 GPU Computing to Improve Game Engine Performance 233 
 

4.1 Separable Filters 

A separable filter is a special type of filter that can be expressed as the 

composition of two 1-D (one dimensional) filters, one on the rows of the image, 

and one on the columns. For a width n and height m filter kernel, a two-

dimensional convolution filter normally requires n*m multiplications for each 

output pixel. A separable filter can be divided into two consecutive one-

dimensional convolution operations on the data and therefore requires only (n + 

m) multiplications for each output pixel. 

 

 

Figure 3 Separable convolution filter–applying function c(t) to some data is the 

same as applying f(t) followed by g(t). 

For example, the 3x3 filter shown below is a separable Sobel [33] edge 

detection filter. Because applying 
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2
1

 
 
 

 followed by  1 0 1 . 

 

Separable filters offer more flexibility in their implementation, as well as a 

reduction of the arithmetic complexity and bandwidth usage of the computation 

for each data point. 

4.2 Simple CUDA Implementation 

This approach involves the following: (i) a block of the image loaded into a 

shared memory array; (ii) a point-wise multiplication of a filter-size portion of 
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the block; and (iii) the sum written into the output image in the device memory. 

Each thread block processes one block in the image and generates a single 

output pixel. An illustration of this is shown in Figure 4.To filter the image 

block, an apron of pixels is required. An apron of pixels occurs around the 

image block within a thread block for the width of the kernel radius. The apron 

of one block overlaps with adjacent blocks and, in order to implement properly, 

requires special attention (for example, threads loading the apron pixels will be 

idle during the filter computation).The image block apron region is not 

considered in this work. 

 

 

Figure 4 Simple implementation of a separable convolution filter using 

GPGPU/CUDA technology. 

Five major steps are involved in this approach: (i) random input data values are 

used; (ii) the Gaussian convolution kernel is calculated and copied to a CUDA 

constant array and because the Gaussian is a symmetric function, the row and 

column filters are identical; (iii) the CUDA computation grid is configured for 

the requested image and filter parameters; (iv) row and column filters are 

applied to the input data; and (v) the resulting image is copied back to the CPU 

and checked for correctness. 
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5 MultiobjectInteractive Game Console 

A multithreaded multi-object game engine was implemented. The objective of 

the game is to defend a main base structure against enemy attacks. The player 

must build defensive structures that will destroy waves of enemies trying to 

destroy the main base structure. The player will try to survive as many waves as 

possible. Enemies will become more difficult after every wave. For every 

enemy destroyed, the player gains credits that can be used to build more 

defenses. If/when the base is destroyed, the game is over. There may be as 

many as 20 objects on the screen at one time. 

 

The graphics for this game engine, provided by Ogre3D [34], use a scene graph 

to represent graphical objects. While graphics rendering is a GPU-intensive 

operation, the program must call the render operation to send the data to the 

GPU for rendering. The physics are provided by the Bullet Physics Engine [35], 

which will run on the CPU only. The multithreading implementation in the 

Bullet Physics Engine employs data-level parallelism. Kinematic objects, 

sensors and rigid bodies are used from this engine. AI “pathfinding” is provided 

by Recast [36]. The pathfinding library will create the navigational mesh in 

tiles. Because an object is actively residing in the navigational mesh, it becomes 

an obstacle. Such obstacles must update their position with Recast when they 

move to ensure that other objects can create a path around other obstacles. Input 

is provided by Object Oriented Input System (OIS) [37], which has buffered 

input and un-buffered input. Tinythreads++ [38], a low-level threading library 

with basic functionalities, is used. This game is implemented using a single-

threaded model (STM) and various multithreaded models. The different 

implementations are explained briefly below. 

5.1 Single-Threaded Model 

The order of operations in the STM implementation is as follows: (i) capture 

input (an I/O operation with the operating system); (ii) update input operation 

(handles input events and queries); (iii) update game logic (which is inherently 

sequential); (iv) update AI (perform state machine and pathfinding operations); 

(v) update physics (involves kinematic physics objects); (vi) process 

navigational mesh updates (updates processing objects); (vii) simulate physics 

(simulates all physics objects in the world); and (viii) render graphics (from the 

frame into the screen). 

5.2 Multithreaded Asynchronous Model (MAM) 

In the MAM implementation, there are two threads, each having an independent 

clock cycle. Fine-grained mutex locking is used on the data. The order of 

operations is as follows: 
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Thread 1: 

(i) Capture input; (ii) update game logic; (iii) update AI; (iv) updatephysics; (v) 

process navigational mesh updates; and (vi) simulate physics. 

Thread 2: 

(i) Update graphics (sets the transform of the mesh model before rendering); 

and (ii) render graphics. 

5.3 Multithreaded Synchronous Model (MSM) 

In this lockless MSM implementation, a synchronization stage occurs between 

clock cycles. Data synchronization is done in the serial stage only. In the 

parallel stage, all operations run in parallel, each on a different thread. Threads 

are created at the beginning of each cycle and destroyed at the end of each 

cycle. The order of operations of this MSM implementation is as follows: 

Serial Stage: 

(i) Capture input; (ii) update logic; (iii) update AI; (iv) updatephysics; and (v) 

update graphics. 

Parallel Stage: 

(i) Process navigational mesh updates; (ii) simulate physics; and (iii) render 

graphics. 

5.4 MSM with Data Parallelism (MSMDP) 

The final MSMDP implementation is a combination of task and data parallelism 

using the multithreaded synchronous model. This is similar to the synchronous 

model but the physics involve two worker threads in order to process collision 

detection. In the physics simulation thread, two more threads are spawned 

during the collision detection stage. This is considered parallelism within a 

component. The order of the operations is as follows:  

Serial Stage: 

(i) Capture input; (ii) update logic; (iii) update AI; (iv) update physics; and (v) 

update graphics. 

Parallel Stage: 

(i) Update navigational mesh; (ii) simulate physics; (iii) perform collision 

detection on object batch 1; (iv) perform collision detection on object batch 2; 

and (v) render graphics. 
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6 Results and Discussion 

The focus of this work was to explore the impact of GPGPU/CUDA-assisted 

multithreaded programming on game engine performance. A multiobject 

interactive game console in an eight-core workstation using an MAM, an MSM, 

and an MSMDP was implemented. The experimental results are presented in the 

following subsections. 

6.1 Separable Convolution Filter 

Three implementations of separable convolution filters were conducted: (i) 8-

core CPU only; (ii) 8-core CPU and 144-core GPU without shared memory; and 

(iii) 8-core CPU and 144-core GPU with shared memory. The execution times 

as the result of different implementations are shown in Table 1. The kernel filter 

radius was kept fixed at 8 and the image radius was changed from 128 to 2048. 

Compared to CPU time, GPGPU times (with and without shared memory) 

decreased significantly as the image radius increased. It is also observed that the 

shared memory GPGPU implementation took the least amount of time to solve 

the problem.  

 
Table 1 CPU and GPU time (kernel radius = 8). 

Image 

Radius 

CPU Time 

(msec) 

GPGPU Time (msec) 

Without Shared 

Memory 

With Shared 

Memory 

128 2.05 0.50 0.20 

256 11.03 1.00 0.40 

512 34.46 3.30 0.80 

1024 140.99 13.10 2.40 

2048 568.87 54.70 9.80 

 

 

Figure 5 Speedup due to GPGPU/CUDA-based parallel implementation. 
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According to the experimental results, the speedup (ratio of single-thread time 

to multithread time) increased as the image radius increased from 128 (see 

Figure 5). It is observed that the GPGPU without shared memory 

implementation hit the performance wall at image radius 256, whereas the 

speedup of GPGPU with shared memory implementation hit the performance 

wall at image radius 1024.  

6.2 Multiobject Interactive Game Console 

Consider the number of frames generated due to various implementations for a 

30-second simulation of the game. As illustrated in Figure 6, the multithreaded 

synchronous game engine with data parallelism generated more threads than 

any other console. Then, consider the time required to process different frames. 

As shown in Figure 7(a), the single-threaded game console took the highest 

amount of time to process a frame compared with other multithreaded models. 

 

 

Figure 6 Average number of frames generated for 30-second game execution. 

It can also be seen that the multithreaded synchronous game-console with data 

parallelism took the lowest amount of time to process a frame. This is due to the 

large amount of mutex locking required to run a clock cycle when a threaded 

component communicates with many different components in other threads. 

This occurs when using two sets of copies of the shared data. The asynchronous 

model of execution will most likely require more memory to implement and as 

such it is only recommended in cases where user experience can be improved 

by components running on their own clock cycles. We notice that the time to 

complete a frame was also very inconsistent in this model, sometimes equal or 

slightly slower than the single-threaded version.  
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Now, we consider the time required to process different components. As shown 

in Figure 7(b), the components were found to have different processing times. 

 

 

(a)  Time for each frame 

 

(b) Time for each component 

Figure 7 Average maximum time to process frames and components. 

The physics component consumes most of this because the game uses a 

considerable number of physics objects and operations. In a coarse-grained 

implementation, such as the synchronous model, the component that takes the 

longest time becomes the bottleneck because other threads must wait for that 

thread to complete. Using multithreading within a component itself seems to 

improve its performance. The physics component with data parallelism for 

processing collision detection improved the overall performance. The 
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combination of task and data level parallelism achieved the best time in the 

ideal hardware platform. 

 

Finally, the speedup due to multithreaded implementation over single-threaded 

implementation of the game is considered. The maximum speedup factor (about 

5) was achieved by the multithreaded synchronous model with data parallelism 

(see Figure 8). Here, speedup was calculated using the frames generated and 

time to process the frames as expressed in Eq. (1). 

 

                   Frames generated due to MT   Time due to ST 

 Speedup = ------------------------------------- x --------------------- (1) 

                   Frames generated due to ST    Time due to MT 

where MT means multithreading and ST means single-threading. 

 

 

Figure 8 Speedup due to the multithreaded implementations (MAM, MSM, and 

MSMDP) compared to the single threaded model (STM). 

7 Conclusions 

Single-processor multithreaded game engines suffer from poor performance due 

to the lack of hardware support. The multicore/many core CPU/GPGPU 

platform shows promise for improving the performance of multithreaded game 

engines. However, multithreading in multicore system architecture introduces 

challenges, such as data parallelism and synchronization. The work reported 

here investigated the challenges and rewards of GPGPU-based implementation 

of a separable convolution filter and a multithreaded test game console. Various 

single-threaded and multithreaded models with and without data parallelism 

were implemented.  
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In most implementations of game engines, data parallelism seems to fit identical 

types of components, while task parallelism fits different types of components. 

The synchronous model designed with task and data parallelism takes advantage 

of concurrency and is highly scalable for any number of cores. Implementing 

the asynchronous model is more difficult than implementing the synchronous 

model. The asynchronous model is suitable for certain components that are not 

used for rendering at every single clock cycle of the render loop, such as 

networking and resource loading. The results of our experiment of game engine 

implementation support the fact that multithreaded models outperform the 

single-threaded model; MSMDP generates more frames and takes less time to 

process frames (see Figures 6 and 7(a)). Game components normally take 

different amounts of processing time (see Figure 7(b)). The speedup factor due 

to MSMDP implementation with respect to the single-threaded implementation 

was about 5 (see Figure 8). However, according to the experimental results from 

shared-memory GPGPU implementation of the separable convolution filter, the 

speedup factor was more than 61. Therefore, GPGPU/CUDA-based 

multithreaded parallel programming can be used to improve game engine 

performance. 

 

A plan for a future endeavor is to implement the entire test game engine using 

the CPU/GPGPU platform and evaluate its performance and power 

consumption. 
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