

226

J. Eng. Technol. Sci., Vol. 46, No. 2, 2014, 226-243

Received August 3rd, 2013, 1st Revision January 22nd, 2014, 2nd Revision May 6th, 2014 Accepted for

publication May 7th, 2014.
Copyright © 2014 Published by ITB Journal Publisher, ISSN: 2337-5779, DOI: 10.5614/j.eng.technol.sci.2014.46.2.8

GPU Computing to Improve Game Engine Performance

Abu Asaduzzaman
*
 & Hin Y. Lee

Department of EECS, Wichita State University

1845 Fairmount St #JB-253, Wichita, Kansas 67260-0083, USA
*
Email: Abu.Asaduzzaman@wichita.edu

Abstract. Although the graphics processing unit (GPU) was originally designed

to accelerate the image creation for output to display, today’s general purpose

GPU (GPGPU) computing offers unprecedented performance by offloading

computing-intensive portions of the application to the GPGPU, while running the

remainder of the code on the central processing unit (CPU). The highly parallel

structure of a many core GPGPU can process large blocks of data faster using

multithreaded concurrent processing. A game engine has many “components”

and multithreading can be used to implement their parallelism. However,

effective implementation of multithreading in a multicore processor has

challenges, such as data and task parallelism. In this paper, we investigate the

impact of using a GPGPU with a CPU to design high-performance game

engines. First, we implement a separable convolution filter (heavily used in

image processing) with the GPGPU. Then, we implement a multiobject

interactive game console in an eight-core workstation using a multithreaded

asynchronous model (MAM), a multithreaded synchronous model (MSM), and

an MSM with data parallelism (MSMDP). According to the experimental results,

speedup of about 61x and 5x is achieved due to GPGPU and MSMDP

implementation, respectively. Therefore, GPGPU-assisted parallel computing

has the potential to improve multithreaded game engine performance.

Keywords: Game engine; GPGPU computing; multicore processor; parallel

programming; performance improvement; simultaneous multithreading.

1 Introduction

Intel introduced the first video graphics controller (iSBX 275) in 1983 [1,2].

Then Texas Instruments (TMS34010, 1986), IBM (8514 Graphics System), etc.

enhanced GPU applications. Throughout the 1990s, 2D graphical user interface

(GUI) acceleration continued to evolve. The NVIDIA Corporation was the first

to produce a chip capable of programmable shading (GeForce 3, early 2000s).

Today (mid-2014), GPUs are used in embedded systems, mobile phones,

personal computers, workstations, and game consoles. Modern GPUs are very

efficient in manipulating computer graphics, and their highly parallel structure

makes them more effective than general-purpose CPUs for algorithms where

processing large blocks of data is done in parallel. Since 2006 (with the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Engineering and Technological Sciences

https://core.ac.uk/display/427085244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 GPU Computing to Improve Game Engine Performance 227

introduction of the GeForce 8 series), NVIDIA has produced general purpose

GPUs for scientific and engineering computation. For its GPUs, the company

has also developed compute unified device architecture (CUDA) [2], a parallel

computing platform and programming model. Currently, many companies,

including NVIDIA, Intel, and AMD/ATI, produce GPGPUs [3-5]. Although the

original GPU, a specialized electronic circuit, was designed to rapidly

manipulate and alter memory to accelerate the creation of images in a frame

buffer intended for output to a display, now GPGPU computing offers

exceptional application performance by offloading computation intensive parts

of the application to the GPU, while the rest of the code runs on the CPU.

Game engines are traditionally used for developing video games. In addition to

standalone and online game machines, game engines are now being used for

educational, medical, and military applications as well [6,7]. A simple modern

game engine is normally comprised of the following components: input, game

logic, artificial intelligence (AI), physics (engine for collision detection/

response), audio (for sound), and graphics. A rendering engine called “renderer”

is required for 2D or 3D graphics. Many subcomponents can comprise a

component and together they form a complete package. Different levels of

parallelism, such as task and data levels, can be used in game programming.

When components in a game engine consist of many different types of

middleware, the design of the library will most likely dictate which one is more

suitable to use. Some middleware, such as the Bullet Physics Library, includes

multithreading in its API [8]. Depending on the type of multithreading model

used, some level of data redundancy and mechanism to ensure data coherency is

required to improve performance. To fulfill the performance requirement, game

engines are adopting new hardware like multicore CPUs and software like

multithreaded processing.

Multithreading can be implemented in a game engine in many different ways.

However, the currently available middleware used in high-level APIs makes the

implementation of parallelism very challenging. Therefore, various methods

should be evaluated when implementing multithreading in a game engine

because a given multithreading technique might not be suitable for a particular

component’s API due to the way it is built. It is difficult to objectively calculate

and/or predict which implementation is needed to properly optimize a

multithreaded application; therefore, optimization of multithreaded game

engines requires numerous experiments.

The success of modern game engines significantly depends on new innovation,

that is, the shift from single-core to multi-core systems [9,10] and also

substantial changes in software design, from sequential programming to parallel

programming [11]. Recently introduced CUDA/GPGPU computing has the

228 Abu Asaduzzaman & Hin Y. Lee

potential to increase the speedup factor by many times [12]. However, more

research work is needed to explore the challenges and opportunities of

multithreaded game engines running on multicore/manycore systems.

This paper is organized as follows: Section 2 reviews a number ofrelated

published articles. Section 3 describes task and data parallelism concepts with

respect to designing gaming engines. Two experiments are conducted for this

work: a GPGPU/CUDA-assisted separable convolution filter implementation is

presented in Section 4 and a multithreaded multi-object game engine

implementation is introduced in Section 5. The experimental results are

discussed in Section 6. Finally, this work is concluded in Section 7.

2 Literature Survey

Considerable research work has been done on GPGPU computing and the

multithreaded game engine in recent years. Some articles are presented in this

section.

Intel has introduced a method of using a “thread pool” to manage task-level

parallelism, as discussed in [13]. In a thread pool, each component has one or

more tasks that will be queued and threads that are idle or have finished a task

will retrieve a task from the queue to run next. Usually, the number of threads

matches the number of cores of a particular system. In [14], Intel’s thread

building blocks (TBBs) are used to implement the multithreaded engine. This

threading middleware consists many algorithms and data structures to help

developers implement multithreading.

In [15,16], a task tree with a thread pool system to manage dependencies

between tasks is used. In this approach, tasks are arranged in a tree where one

task has multiple children and one parent. Each task is given a priority order

number. The task within the same parent with the same priority number can run

in parallel and the next order can only run when tasks from the previous order

are completed. In this scheme, the mixture of data level parallelism and task

level parallelism shows performance benefits.

In an asynchronous model of game engines, as introduced in [17], each thread

runs a task without a synchronizing step. The task depends on the fact that

another task will always secure the latest data available to be processed. This

allows each component to update at its own frequency. Occasionally, threads

must access shared data. Data sharing could limit the effectiveness of this

model, depending on the amount of synchronization required. An asynchronous

multithreaded game engine is introduced in [18] to improve game performance.

 GPU Computing to Improve Game Engine Performance 229

In [19,20], multicore architecture is integrated to expose a multithreaded engine

of game programmers to a different number of cores without recompilation of

the code. Games are inherently serial, which makes multithreaded application

difficult. The first attempt to parallelize the game engine was by running the

client and the server on their individual cores using coarse grained threading.

The best-case scenario was twice the performance improvement; however, a 1.2

times improvement was seen in single-player mode, in which case, the server

needs 20% of the time it takes the client to complete a clock cycle.

A game company called RedLynx implemented multithreading in its game

Trials HD [21]. This game uses the Bullet Physics Engine for simulation. The

library is optimized in-house for the Xbox 360 CPU and vector units.

Workloads are split among all six of the Xbox 360 hardware threads. Physics

are handled in one thread and the graphics setup, graphics rendering, game

logic, sound networking, and particle systems are handled in the other threads.

One thread is used to handle timing, scheduling, and data synchronization

between the other threads. One of the three CPU cores is completely reserved

for the physics engine. Physics-heavy levels tend to utilize most of the cores’

processing time. The graphics setup thread is bottlenecked in the final stage of

this optimization.

Current learning algorithms for unsupervised learning models (such as deep

belief networks (DBNs) and sparse coding) are too slow for large-scale

applications. Therefore, researchers are forced to focus on smaller-scale models.

General principles for massively parallelizing unsupervised learning tasks using

a GPGPU are developed in [22]. These are able to reduce the time required to

learn a four-layer DBN with 100 million free parameters from several weeks to

around a single day. For sparse coding, a simple, inherently parallel algorithm

leading to a 5- to 15-fold speedup over previous methods was developed.

The GPGPU has become an integral part of today’s mainstream computing

systems. In [23], four GPU computing successes in game physics and

computational biophysics are presented that deliver order-of-magnitude

performance gains over optimized CPU applications. Because games have

become increasingly limited by CPU performance, offloading complex CPU

tasks to the GPGPU yields better overall performance. For the Havok FX [24]

game physics package, experimental results show that a single-core CPU

implementation (on an Intel 2.9 GHz Core 2 Duo) achieved 6.2 frames per

second, whereas the initial GPGPU implementation on an NVIDIA GeForce

8800 GTX reached 64.5 frames per second.

230 Abu Asaduzzaman & Hin Y. Lee

3 Task and Data Parallelism

Task-level and data-level parallelism are important in game engines. They are

briefly explained in the following subsections.

3.1 Task Level Parallelism

Task parallelism is the distribution of different tasks across different threads.

Task parallelism is used in a game engine by running each component task in its

own thread [25-27]. Graphics rendering and physics simulation are good

candidates for parallelism because they are usually process-intensive tasks. This

model is most likely the simplest and most straightforward way to implement

multithreading because the programmer is only required to create and keep the

threads running until they are not needed anymore. For every system running in

a separate thread, the programmer may need to handle race conditions with

mutual exclusions. When using this method of parallelism, there are two models

of execution: synchronous and asynchronous.

The synchronous model is where all component tasks must finish in a single

clock cycle, as shown in Figure 1(a). At the end of the clock cycle, the

application will loop to the beginning to begin the operations again in the same

order every time. The components run in parallel after the logic processing

stage. The asynchronous model is where component tasks can run and finish on

their own time. A component that runs on a thread is independent from the

clock cycle of the other threads. This is ideal when there is little communication

between components. Figure 1(b) shows the model where all components run in

their own loop.

(a) Synchronous execution (b) Asynchronous execution

Figure 1 Task parallelism in a game loop utilizing synchronous and

asynchronous techniques.

 GPU Computing to Improve Game Engine Performance 231

3.2 Data Level Parallelism

Data parallelism is the distribution of the same type of processing data across

different threads. For a game engine, data parallelism is where the same type of

data in a component is parallelized in multiple threads [28,29]. As shown in

Figure 2, the animation subcomponent in the graphics component is divided

into three batches of data for simultaneous processing. The use of this in a game

engine is when a component spawns multiple worker threads to process one

type of data. If only data parallelism is employed, then the series of different

types of operations are sequential and only the data of one type of operation are

processed concurrently at one stage. If a data type requires communication

among itself, a thread safe communication system must be implemented. This

method scales well for a great number of processors because the size of the data

for each thread can be divided equally. Communication among the threads can

be reduced by grouping the objects that are most likely to interact with each

other in the same thread [30].

Figure 2 Game engine utilizing data parallelism where graphical objects are

divided among three threads.

3.3 Task and Data Parallelism

A combination of task and data parallelism is the optimum approach to exploit

multithreading in game engines [15]. Here, each task can run parallel with

another task and may spawn several worker threads. A system may have a

number of cores, less or more than the number of parallelizable components. In

task parallelism, if there are more cores than the number of types of components

to be parallelized, then there will be cores that are not used if each type of

component runs in a single core. Therefore, to maximize parallelism, data

parallelism should be employed to maximize the use of all cores. A system with

a high amount of data-parallelism would make it easier to manage tasks that are

sequential because there may only be a race condition among the same type of

data being parallelized; but it may not fully utilize the concurrency advantage

for some components that are decoupled from each other. A system with a high

232 Abu Asaduzzaman & Hin Y. Lee

amount of task-parallelism would cause some cores to be unused because there

may be more cores than the number of different types of tasks that can run at the

same time, but having a synchronization stage with no mutex (i.e., mutual

exclusion) locking can easily be implemented if it is a synchronous model.

Mixing task and data parallelism takes advantage of the fact that not all

components and data objects of a game engine are completely dependent. In

most cases, task parallelism is implemented on different types of components or

subcomponents and data parallelism is implemented inside a component or

subcomponent.

3.4 Synchronization

Synchronization with respect to multithreading is basically data synchronization

and is used to ensure that data are not executed at the same time by two threads.

One method for synchronization is by using mutex. Mutex locking in a game

engine depends on the multithreading model.

The main drawbacks with mutex locks are overhead, deadlocks, contention, and

priority inversion [31]. Acquiring and releasing locks requires some time, thus

causing overhead (and decreasing performance). Deadlocks can occur when the

order of acquiring a lock leads back to the same lock at the beginning.

There are many synchronization techniques. Another method is to use a

message passing system between threads. This avoids the use of mutex locking

when passing data. The idea here is to use a common interface among all

components and the advantage is a unified model of synchronization, thus

avoiding the need to write synchronization code for every component. Other

synchronization techniques include reader-writer lock and read-copy-update

[32].

4 Separable Convolution Filter

Separable convolution is a technique for fast convolution. It is commonly used

in computer vision, image processing, signal processing, etc. Convolution is a

mathematical operation on two functions (say, “f” and “g”) that produces a third

function (say, “c”). Function “c” is typically viewed as a modified version of

one of the original functions (say, “f”) giving an area overlap between the two

functions (as illustrated in Figure 3). In the following section, CUDA/GPGPU-

assisted separable convolution filter implementation is introduced.

 GPU Computing to Improve Game Engine Performance 233

4.1 Separable Filters

A separable filter is a special type of filter that can be expressed as the

composition of two 1-D (one dimensional) filters, one on the rows of the image,

and one on the columns. For a width n and height m filter kernel, a two-

dimensional convolution filter normally requires n*m multiplications for each

output pixel. A separable filter can be divided into two consecutive one-

dimensional convolution operations on the data and therefore requires only (n +

m) multiplications for each output pixel.

Figure 3 Separable convolution filter–applying function c(t) to some data is the

same as applying f(t) followed by g(t).

For example, the 3x3 filter shown below is a separable Sobel [33] edge

detection filter. Because applying

1 0 1

2 0 2

1 0 1

 
 
 

  

 to the data is the same as

applying
1

2
1

 
 
 

 followed by  1 0 1 .

Separable filters offer more flexibility in their implementation, as well as a

reduction of the arithmetic complexity and bandwidth usage of the computation

for each data point.

4.2 Simple CUDA Implementation

This approach involves the following: (i) a block of the image loaded into a

shared memory array; (ii) a point-wise multiplication of a filter-size portion of

234 Abu Asaduzzaman & Hin Y. Lee

the block; and (iii) the sum written into the output image in the device memory.

Each thread block processes one block in the image and generates a single

output pixel. An illustration of this is shown in Figure 4.To filter the image

block, an apron of pixels is required. An apron of pixels occurs around the

image block within a thread block for the width of the kernel radius. The apron

of one block overlaps with adjacent blocks and, in order to implement properly,

requires special attention (for example, threads loading the apron pixels will be

idle during the filter computation).The image block apron region is not

considered in this work.

Figure 4 Simple implementation of a separable convolution filter using

GPGPU/CUDA technology.

Five major steps are involved in this approach: (i) random input data values are

used; (ii) the Gaussian convolution kernel is calculated and copied to a CUDA

constant array and because the Gaussian is a symmetric function, the row and

column filters are identical; (iii) the CUDA computation grid is configured for

the requested image and filter parameters; (iv) row and column filters are

applied to the input data; and (v) the resulting image is copied back to the CPU

and checked for correctness.

 GPU Computing to Improve Game Engine Performance 235

5 MultiobjectInteractive Game Console

A multithreaded multi-object game engine was implemented. The objective of

the game is to defend a main base structure against enemy attacks. The player

must build defensive structures that will destroy waves of enemies trying to

destroy the main base structure. The player will try to survive as many waves as

possible. Enemies will become more difficult after every wave. For every

enemy destroyed, the player gains credits that can be used to build more

defenses. If/when the base is destroyed, the game is over. There may be as

many as 20 objects on the screen at one time.

The graphics for this game engine, provided by Ogre3D [34], use a scene graph

to represent graphical objects. While graphics rendering is a GPU-intensive

operation, the program must call the render operation to send the data to the

GPU for rendering. The physics are provided by the Bullet Physics Engine [35],

which will run on the CPU only. The multithreading implementation in the

Bullet Physics Engine employs data-level parallelism. Kinematic objects,

sensors and rigid bodies are used from this engine. AI “pathfinding” is provided

by Recast [36]. The pathfinding library will create the navigational mesh in

tiles. Because an object is actively residing in the navigational mesh, it becomes

an obstacle. Such obstacles must update their position with Recast when they

move to ensure that other objects can create a path around other obstacles. Input

is provided by Object Oriented Input System (OIS) [37], which has buffered

input and un-buffered input. Tinythreads++ [38], a low-level threading library

with basic functionalities, is used. This game is implemented using a single-

threaded model (STM) and various multithreaded models. The different

implementations are explained briefly below.

5.1 Single-Threaded Model

The order of operations in the STM implementation is as follows: (i) capture

input (an I/O operation with the operating system); (ii) update input operation

(handles input events and queries); (iii) update game logic (which is inherently

sequential); (iv) update AI (perform state machine and pathfinding operations);

(v) update physics (involves kinematic physics objects); (vi) process

navigational mesh updates (updates processing objects); (vii) simulate physics

(simulates all physics objects in the world); and (viii) render graphics (from the

frame into the screen).

5.2 Multithreaded Asynchronous Model (MAM)

In the MAM implementation, there are two threads, each having an independent

clock cycle. Fine-grained mutex locking is used on the data. The order of

operations is as follows:

236 Abu Asaduzzaman & Hin Y. Lee

Thread 1:

(i) Capture input; (ii) update game logic; (iii) update AI; (iv) updatephysics; (v)

process navigational mesh updates; and (vi) simulate physics.

Thread 2:

(i) Update graphics (sets the transform of the mesh model before rendering);

and (ii) render graphics.

5.3 Multithreaded Synchronous Model (MSM)

In this lockless MSM implementation, a synchronization stage occurs between

clock cycles. Data synchronization is done in the serial stage only. In the

parallel stage, all operations run in parallel, each on a different thread. Threads

are created at the beginning of each cycle and destroyed at the end of each

cycle. The order of operations of this MSM implementation is as follows:

Serial Stage:

(i) Capture input; (ii) update logic; (iii) update AI; (iv) updatephysics; and (v)

update graphics.

Parallel Stage:

(i) Process navigational mesh updates; (ii) simulate physics; and (iii) render

graphics.

5.4 MSM with Data Parallelism (MSMDP)

The final MSMDP implementation is a combination of task and data parallelism

using the multithreaded synchronous model. This is similar to the synchronous

model but the physics involve two worker threads in order to process collision

detection. In the physics simulation thread, two more threads are spawned

during the collision detection stage. This is considered parallelism within a

component. The order of the operations is as follows:

Serial Stage:

(i) Capture input; (ii) update logic; (iii) update AI; (iv) update physics; and (v)

update graphics.

Parallel Stage:

(i) Update navigational mesh; (ii) simulate physics; (iii) perform collision

detection on object batch 1; (iv) perform collision detection on object batch 2;

and (v) render graphics.

 GPU Computing to Improve Game Engine Performance 237

6 Results and Discussion

The focus of this work was to explore the impact of GPGPU/CUDA-assisted

multithreaded programming on game engine performance. A multiobject

interactive game console in an eight-core workstation using an MAM, an MSM,

and an MSMDP was implemented. The experimental results are presented in the

following subsections.

6.1 Separable Convolution Filter

Three implementations of separable convolution filters were conducted: (i) 8-

core CPU only; (ii) 8-core CPU and 144-core GPU without shared memory; and

(iii) 8-core CPU and 144-core GPU with shared memory. The execution times

as the result of different implementations are shown in Table 1. The kernel filter

radius was kept fixed at 8 and the image radius was changed from 128 to 2048.

Compared to CPU time, GPGPU times (with and without shared memory)

decreased significantly as the image radius increased. It is also observed that the

shared memory GPGPU implementation took the least amount of time to solve

the problem.

Table 1 CPU and GPU time (kernel radius = 8).

Image

Radius

CPU Time

(msec)

GPGPU Time (msec)

Without Shared

Memory

With Shared

Memory

128 2.05 0.50 0.20

256 11.03 1.00 0.40

512 34.46 3.30 0.80

1024 140.99 13.10 2.40

2048 568.87 54.70 9.80

Figure 5 Speedup due to GPGPU/CUDA-based parallel implementation.

238 Abu Asaduzzaman & Hin Y. Lee

According to the experimental results, the speedup (ratio of single-thread time

to multithread time) increased as the image radius increased from 128 (see

Figure 5). It is observed that the GPGPU without shared memory

implementation hit the performance wall at image radius 256, whereas the

speedup of GPGPU with shared memory implementation hit the performance

wall at image radius 1024.

6.2 Multiobject Interactive Game Console

Consider the number of frames generated due to various implementations for a

30-second simulation of the game. As illustrated in Figure 6, the multithreaded

synchronous game engine with data parallelism generated more threads than

any other console. Then, consider the time required to process different frames.

As shown in Figure 7(a), the single-threaded game console took the highest

amount of time to process a frame compared with other multithreaded models.

Figure 6 Average number of frames generated for 30-second game execution.

It can also be seen that the multithreaded synchronous game-console with data

parallelism took the lowest amount of time to process a frame. This is due to the

large amount of mutex locking required to run a clock cycle when a threaded

component communicates with many different components in other threads.

This occurs when using two sets of copies of the shared data. The asynchronous

model of execution will most likely require more memory to implement and as

such it is only recommended in cases where user experience can be improved

by components running on their own clock cycles. We notice that the time to

complete a frame was also very inconsistent in this model, sometimes equal or

slightly slower than the single-threaded version.

 GPU Computing to Improve Game Engine Performance 239

Now, we consider the time required to process different components. As shown

in Figure 7(b), the components were found to have different processing times.

(a) Time for each frame

(b) Time for each component

Figure 7 Average maximum time to process frames and components.

The physics component consumes most of this because the game uses a

considerable number of physics objects and operations. In a coarse-grained

implementation, such as the synchronous model, the component that takes the

longest time becomes the bottleneck because other threads must wait for that

thread to complete. Using multithreading within a component itself seems to

improve its performance. The physics component with data parallelism for

processing collision detection improved the overall performance. The

240 Abu Asaduzzaman & Hin Y. Lee

combination of task and data level parallelism achieved the best time in the

ideal hardware platform.

Finally, the speedup due to multithreaded implementation over single-threaded

implementation of the game is considered. The maximum speedup factor (about

5) was achieved by the multithreaded synchronous model with data parallelism

(see Figure 8). Here, speedup was calculated using the frames generated and

time to process the frames as expressed in Eq. (1).

 Frames generated due to MT Time due to ST

 Speedup = ------------------------------------- x --------------------- (1)

 Frames generated due to ST Time due to MT

where MT means multithreading and ST means single-threading.

Figure 8 Speedup due to the multithreaded implementations (MAM, MSM, and

MSMDP) compared to the single threaded model (STM).

7 Conclusions

Single-processor multithreaded game engines suffer from poor performance due

to the lack of hardware support. The multicore/many core CPU/GPGPU

platform shows promise for improving the performance of multithreaded game

engines. However, multithreading in multicore system architecture introduces

challenges, such as data parallelism and synchronization. The work reported

here investigated the challenges and rewards of GPGPU-based implementation

of a separable convolution filter and a multithreaded test game console. Various

single-threaded and multithreaded models with and without data parallelism

were implemented.

 GPU Computing to Improve Game Engine Performance 241

In most implementations of game engines, data parallelism seems to fit identical

types of components, while task parallelism fits different types of components.

The synchronous model designed with task and data parallelism takes advantage

of concurrency and is highly scalable for any number of cores. Implementing

the asynchronous model is more difficult than implementing the synchronous

model. The asynchronous model is suitable for certain components that are not

used for rendering at every single clock cycle of the render loop, such as

networking and resource loading. The results of our experiment of game engine

implementation support the fact that multithreaded models outperform the

single-threaded model; MSMDP generates more frames and takes less time to

process frames (see Figures 6 and 7(a)). Game components normally take

different amounts of processing time (see Figure 7(b)). The speedup factor due

to MSMDP implementation with respect to the single-threaded implementation

was about 5 (see Figure 8). However, according to the experimental results from

shared-memory GPGPU implementation of the separable convolution filter, the

speedup factor was more than 61. Therefore, GPGPU/CUDA-based

multithreaded parallel programming can be used to improve game engine

performance.

A plan for a future endeavor is to implement the entire test game engine using

the CPU/GPGPU platform and evaluate its performance and power

consumption.

References

[1] Graphics Processing Unit, Wikipedia, https://en.wikipedia.org/

wiki/Graphics_processing_unit (1 August 2013).

[2] Swaine, M., New Chip from Intel Gives High-Quality Displays, Intel

Press, http://en.wikipedia.org/wiki/Graphics_processing_unit (1 August

2013).

[3] CUDA, Nvidia, http://www.nvidia.com (1 August 2013).

[4] Kruger, J. & Westermann, R., Linear Algebra Operators for GPU

Implementation of Numerical Algorithms, International Conf. on

Computer Graphics and Interactive Techniques, 2005.

[5] Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T. & Stumpf,

M.P., ABC-Sysbio – Approximate Bayesian Computation in Python with

GPU Support, Bioinformatics Journal, 26(14), pp. 1797-1799, 2010.

[6] Berberich, S., Video Games Starting to Get Serious, Gazette.net,

http://ww2.gazette.net/stories/083107/businew11739_32356.shtml, (1

August 2013).

[7] Waele, R.D., Gaming: Mobile and Wireless Trends for 2008, M-

trends.org, http://www.m-trends.org/2008/01/mobile-and-wireless-trends-

for-2008.html (1 August 2013).

242 Abu Asaduzzaman & Hin Y. Lee

[8] Parberry, I., Intro to Bullet Physics, larc.unt.edu, http://larc.unt.edu/ian/

classes/fall11/csce4215/notes/bulletphysics.pdf, (1 August 2013).

[9] Brodkin, J., Shift to Multicore Processors Inevitable, but Enterprises

Face Challenges, Network World, http://www.networkworld.com/

news/2008/022708-multicore-processors.html (1 August 2013).

[10] Schauer, B., Multicore Processors – A Necessity, ProQuest Discovery

Guides, http://www.csa.com/discoveryguides/ multicore/review.pdf (1

August 2013).

[11] Sutter, H., The Free Lunch Is Over: A Fundamental Turn toward

Concurrency in Software, Dr. Dobb’s Journal, 30(3), pp. 1-7, 2005.

[12] Designing the Framework of a Parallel Game Engine (PGE), Intel,

http://www.intel.com (1 August 2013).

[13] Threading Building Blocks (TBB), Intel, http://www.threading

buildingblocks.org/ (1 August 2013).

[14] Rhalibi, A.E., England, D. & Costa, S., Game Engineering for a

Multiprocessor Architecture, School of Computing and Mathematical

Sciences, Liverpool John Moores University, 2005.

[15] Harbour, J.S., Multi-Threaded Game Engine Design, Course Technology

PTR (1st ed.), ISBN-10: 1435454170, ISBN-13: 978-1435454170, 2010.

[16] Lake, A. & Gabb, H., Threading 3D Game Engine Basics, Gamasutra,

2005, http://www.gamasutra.com/view/feature/2463/threading_3d_game

_engine basics.php (1 August 2013).

[17] Vries, A.D., Multithreaded Renderloop, slapware.eu, http://blog.

slapware.eu/game-engine/programming/multithreaded-renderloop-part1/

(1 August 2013).

[18] Leonard, T., Dragged Kicking and Screaming: Source Multicore, Valve

Corporation, GDC 2007, pp. 8-13, 2007.

[19] Gasior, G., Valve’s Source Engine Goes Multi-Core, techreport, 2006,

http://techreport.com/review/11237/valve-source-engine-goes-multi-core

(1 August 2013).

[20] Aaltonen, S. & Ilvessuo, A., Tech Interview: Trials HD, Richard

Leadbetter, Eurogamer, 2009, http://www.eurogamer.net/articles/digital

foundry-tech-interview- trials-hd (1 August 2013).

[21] Gadd, K., Threading and Your Game Loop, #Alt-DevBlogADay,

http://www.altdevblogaday.com/2011/07/03/threading-and-your-game-

loop/ (1 August 2013).

[22] NVIDIA Developer Zone: CUDA Samples, http://docs.nvidia.com/

cuda/cuda-samples/ (1 August 2013).

[23] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E. & Phillips,

J.C., GPU Computing: Graphics Processing Units--Powerful,

Programmable, and Highly Parallel--Are Increasingly Targeting

General-Purpose Computing Applications, in: the Proceedings of the

IEEE, 96(5), pp. 879-899, 2008.

 GPU Computing to Improve Game Engine Performance 243

[24] Govindaraju, N.K., Henson, M., Lin, M.C., &Manocha, D., Interactive

Visibility Ordering of Geometric Primitives in Complex Environments, in:

Proc. 2005 Symp. Interact. 3D Graph. Games, pp. 49-56, 2005.

[25] Ooste, J.V., 3D Game Engine Programming: Helping You Build Your

Dream Game Engine, 2011, http://3dgep.com/?p=1821 2011 (1 August

2013).

[26] Guevara, M., Gregg, C., Hazelwood, K., & Skadron, K., Enabling Task

Parallelism in the CUDA Scheduler, in PEMA. 978-1-4244-6443-2/10/

IEEE, 2009.

[27] Baumstark, L.Jr. & Wills, L., Exposing Data-Level Parallelism in

Sequential Image Processing Algorithms, in Proceedings of the Ninth

Working Conference on Reverse Engineering (WCRE’02), 1095-1350/02

IEEE, 2002.

[28] Domino Research: Using Data-Parallel SIMD Architecture in Video

Games and Supercomputers, IBM, http://domino.research.ibm.com/

comm/research.nsf/ pages/r.arch.simd.html (1 August 2013).

[29] Mönkkönen, V., Multithreaded Game Engine Architectures, Gamasutra,

2006, http://www.gamasutra.com/view/feature/130247/multithreaded_

game_engine_.php?page=3 (1 August 2013).

[30] Kriemann, R., Implementation and Usage of a Thread Pool based on

POSIX Threads in MPI MIS Leipzig, Report 2/2003, 2004.

[31] Cronin, E., Kurc, A.R., Filstrup, B., & Jamin, S., An Efficient

Synchronization Mechanism for Mirrored Game Architectures (Extended

Version), Kluwer Academic Publishers, 2003.

[32] Davies, L., Examples of Multi-Threading in Games, Intel, 2006.

[33] An Introduction to Edge Detection: The Sobel Edge Detector,

Generation5, http://www.generation5.org/content/2002/im01.asp (1

August 2013).

[34] OGRE – Open Source 3D Graphics Engine, www.ogre3d.org/ (1 August

2013).

[35] Game Physics Simulation, bulletphysics.com/ (1 August 2013).

[36] Recastnavigation: Navigation-Mesh Construction Toolset for Games,

code.google.com/p/recastnavigation/ (1 August 2013).

[37] Object Oriented Input System, sourceforge.net/projects/wgois/ (1 August

2013).

[38] TinyThread++ – Portable thread library for C++, www.tinythreadpp.

bitsnbites.eu (1 August 2013).

