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Abstract. The problems of blending electrolyzer and multi-constraint 
optimization of electrolytic aluminum scheduling in the electrolytic aluminum 
production process were addressed. Based on a mathematical model analysis, a 
novel hybrid optimization algorithm is proposed for optimization of blending 
together the molten aluminum in different electrolytic cells. An affinity degree 
function was designed to represent the path of aluminum scheduling. The 
mutation operators were designed to implement the transformation of 
electrolyzer combination and change the route of loading. A typical optimization 
example from an aluminum plant in northwest China is given in this paper, the 
results of which demonstrate the effectiveness of the proposed method. 
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1 Introduction 

Blending liquid aluminum together is a key operation process and is mainly 
done in an artificial way in the factory. The work is difficult and time-
consuming [1-3]. In allusion to the problems mentioned above, little research 
work has been conducted on this aspect [4]. Xia worked on algorithms for 
optimization of blending electrolytic cells without considering scheduling [5]. 
Denis Blanchard-Gaillard put forward heuristic solution approaches for 
assigning the output of electrolytic cells to oven batches in the production of 
aluminum, based on the levels of two impurities [6]. Optimization for the 
process of blending electrolytic cells with multi-constraint conditions pertaining 
to the aluminum ladle combined with two electrolytic cells was developed by 
Zhang Yali. Blending electrolytic cell scheduling has been optimized using the 
optimal objective combined with the Fe and Si content and the distance of the 
collecting path [7]. But in real production, blending electrolytic cells and 
scheduling is much more complex: the test data are complex and not only Fe 
and Si need to be computed; the electrolytic cell condition is much more 
complex as either the test data are so good that nothing needs to be done, or so 
bad that automatic blending and scheduling cannot be finished; the scheduling 
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process is much more complex, the number of electrolytic cells used to form 
one aluminum ladle is variable, and there can be less than is acceptable.  

Thus, in this paper a hybrid optimization algorithm, composed of an immune 
chaos clone algorithm and an artificial experience, is proposed for optimization 
of blending together the aluminum in different electrolytic cells and rule out 
special cases. The affinity degree function was optimized by the path of 
aluminum scheduling. The mutation operators were designed to implement the 
transformation of electrolyzer combination and change the route of loading. A 
typical optimization example from an aluminum plant in northwest China is 
given in this paper, the result of which demonstrates the effectiveness of the 
proposed method and indicates that the proposed algorithm produced better 
solutions than a genetic algorithm. 

2 Mathematical Modeling of Blending Electrolytic Aluminum 
Scheduling 

Blending liquid aluminum together means to extract the liquid aluminum from 
two or three electrolytic cells (Figure 1) into an aluminum ladle (Figure 2). In 
the production process, the assay results of every electrolytic cell, including 
ferrum (Fe), silicon (Si), magnesium (Mg), cuprum (Cu), calcium (Ca) and zinc 
(Zn), are different from each other due to using raw material. These chemicals 
decide the final purity of the aluminum. The impurity content of the blending 
liquid aluminum, including Fe, Si, Mg, Cu, Ga and Zn, cannot exceed the 
production standard. The process of blending electrolytic cells is very complex 
in real production in the plant. The plan of blending electrolytic cells is not only 
closely related to the chemical composition of each electrolytic cell but also 
directed by the distance among the electrolytic cells that will be extracted into 
the same aluminum ladle (Figure 2). This distance is defined as the ‘collecting 
path’. 

  
Figure 1 Electrolytic cells in an electrolytic aluminum plant. 



 Blending and Loading Problem of Molten Aluminum 457 
 

   
Figure 2 Aluminum ladle. 

The electrolytic cells are kept in the same order, as shown in Figure 3. In 
production, each aluminum ladle is combined with two or three electrolytic 
cells. In the product standard testing premise, a plan for which three electrolytic 
cells are chosen to be combined, the aluminum ladle is worked out such that the 
purging path is the shortest possible. 

 

Figure 3 Arrangement of the electrolytic cells. 

Definition 1. The set { }1, , ,i nN N N N= ⋯ ⋯  denotes the electrolytic cells. 

Definition 2. The set { }1 1,..., ,... ,i m mM M M M
+

 denotes the maximum content of 

chemical impurity elements in the electrolytic cells, m is the number of 
elements that the process requires to test for, [1, ]i m∈ iM  denotes the element’s 

maximum content, 1mM
+

 denotes the maximum content for the sum of m 

elements. 

Definition 3. The set { }1 i,..., ,..., nW W W  denotes the liquid aluminum weight that 

will be extracted into the aluminum ladle from the electrolytic cells at number n.  



458 Li Jianhua & Wei Xing 

Definition 4. ( )1 (m 1),..., ,... ,i ij im iP P P P
+

, ijP denotes the content of the number j 

element for the number i electrolytic cell, (m 1)iP
+

denotes the total content of all 

elements from number i electrolytic cell. 

Definition 5. { }1 2 3, ,i i i iC c c c=  denotes the set of aluminum ladles, 1ic , 

2ic and 3ic  are the number of electrolytic cells, i is the number of the aluminum 

ladle. ( )0 -1 / 3 1i n < ≤ +  . We require 1 2 3i i ic c c< <  in order to facilitate easy 

calculation (the number of electrolytic cells in the last aluminum ladle can be 
less than or equal to 3).  

Definition 6. 
3 2 2 1i i i ii c c c cL N N N N= − + − , iL denotes the distance that the 

crown block drives for bringing liquid aluminum to aluminum ladle number i. If 
the last aluminum ladle only contains liquid aluminum from two electrolytic 
cells, the distance equals the distance between the two electrolytic cells. If the 
last aluminum ladle only contains liquid aluminum from one electrolytic cell, 
the distance equals 0 (the unit is the distance between two adjacent electrolytic 
cells). 

Based on the blending process requirements, the shortest distance optimization 
function is defined as follows: 

 
( )1 -1 /3

1

min
n

i
i

L L
 + 

=

= ∑  ( )[1,1 -1 / 3 ]i n ∈ +
 

;    

The computational constraints are: 

 
i

=1 1

( )
k ik ik

s s

c j c j c
k k

P W M W
=

× ≤ ×∑ ∑     (1) 

where 
( )[1,1 1 / 3 ]

[1, 1]

1 3

i n

j m

s

   ∈ + −   ∈ +
 ≤ ≤

, s denotes the number of electrolytic cells in the 

current aluminum ladle. 

3 Model Solution Based on Hybrid Chaos Clone Algorithm 

According to the above discussion of blending and scheduling, there must be 
many constraints in the process of optimization during the computing process. It 
is very difficult to design an intelligent operator for a genetic algorithm because 
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of the large amount of invalid solutions, such as the crossover operator in a 
genetic algorithm. A more simple and efficient operator needs to be put forward 
for the whole optimization process. Here, a novel hybrid optimization 
algorithm, composed of an immune chaos clone algorithm [8-9] and an artificial 
experience, is proposed.  

3.1  The Gene Code Rule and The Initialization 

The gene code is defined as ( )1 2, ,..., nn n n , where in  is the number of the 

electrolytic cell. One aluminum ladle is formed by three electrolytic cells. For 
example, aluminum ladle 1 is composed of 1n  cell, 2n  cell, and 3n  cell. 

( )3( 1) 1 3( 1) 2 3( 1) 3, ,k k kn n n
− + − + − +

 denotes an aluminum ladle group in the scheduling 

scheme.  ( )1,1 -1 / 3k n  ∈ +   
, when k is the last group, the amount of 

electrolytic cells can be less than 3. For example, 
(7,9,10,14,15,16,3,5,6,1,2,4,11,12,13,8) denotes that 16 electrolytic cells need 
to be blended, (7,9,10) is the first aluminum ladle, (14,15,16) is the second 
aluminum ladle, etc. The 6th aluminum ladle only contains one electrolytic cell 
(8). 

During initialization we put emphasis on the content of Fe, as it is one of the 
most important indicators in production. The initialization can be described as 
follows:  

Step 1. The initial position of electrolytic cell i is produced between 1 and n. 
Then the sequential genetic chain（i,i+1,i+2…n,1,2…,i-1）is formed.  

Step 2. According to the Fe content, from high to low, bubble sort is used to 
adjust the genetic chain.  

Step 3. Starting at the first gene-bit, three bits in the genetic chain form one 
ladle from left to right. The gene-bits will be exchanged sequentially until the 
ladle ingredients satisfy the constraint condition in Formula 1. 

Step 4. Repeat Step 3 until all gene-bits have found their ladle group. Finally, 
the initial genetic chain is formed. 

3.2 The Mutation Operator 

The mutation operator is used to implement the transformation of electrolytic 
cell combination and change the route of collecting. The mutation operator can 
be described as follows: 
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Step 1. The mutation gene position i is confirmed, guided by a chaotic vector 
[7], 3 i n< < . The j position is set to 1. 

Step 2. Formula 1 is calculated after exchanging gene position i and j. If j=n or  
the result satisfies the inequality then the new exchanging gene chain is saved, 
the process jumps to the Step 4. else it progresses to the next step,  j=j+1. 

Step 3. This step forces ( )1 1 1 / 3i i = + −
 

 and ( )1 1 1 / 3j j = + −
 

 to assume 

integral values. If i1=j1, then j=j+1 and the process jumps to Step 3. Else it 
jumps to Step 2. 

Step 4. The program ends. 

A mutation example can be shown as follows: 

The original genetic chain：(8,12,13,3,6,14,9,10,16,1,11,15,4,5,7,2)  

After mutation：(8,12,13,3,6,14,9,10,16,1,11,2,4,5,7,15) 

3.3 The Hybrid Optimization Algorithm 

Exceptions will be excluded before the optimizing calculation. In actual 
production, the test data of the liquid aluminum in the electrolytic cells are 
usually volatile. When the electrolytic cells’ condition is good, so that all test 
data meet the requirements, nothing needs to be done but collect the liquid 
aluminum according to the nearby-cell principle. When the worst situation 
occurs, so that electrolytic cell blending cannot be executed due to the high 
content of some chemical component, the blending plan cannot be automatically 
computed but can only be dealt with manually. The two different conditions 
need to be excluded by the artificial experience. 

The algorithm is as follows: 

Step 1. Exclude the special case with the best condition. ikc is allocated a 
number from small to large in Definition 5. Formula 1 is calculated. The 
electrolytic cells’ condition is to be excluded if all constraints are satisfied. 
Liquid aluminum will be directly collected according to the nearby-cell 
principle from small number to large number. The program ends.     

Step 2. Exclude the special case with the worst condition. For any iN N∈ , if 
there are not any two cells among the remaining cells that can satisfy all 
constraints of Formula 1, then the electrolytic cells’ condition is bad. The 
blending plan cannot be automatically computed. The program ends. 
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Step 3. Initial population. Population size is NS. The population is produced 
randomly and the parameters of the operators are set. The individual’s fitness is 
calculated. Clone size is AS. 

Step 4. Clonal expansion. A new population is generated by clone expansion of 
the individual according to AS. The new population size is NS CS× . 

Step 5. Chaotic clonal variation. The chaotic vector is calculated. If the value of 
the corresponding bit of the chaotic vector is 1, this individual bit will be 
mutated. The individual’s fitness is calculated after the mutation. 

Step 6. Clonal selection operation. The individual with the best fitness in its 
clone expansion family is selected to be an individual in the younger generation. 
The younger generation size is reduced to NS. 

Step 7. The terminal condition is examined. The process goes back to Step 4 
only if the terminal condition is not satisfied. 

Step 8. The best individual is selected. 

4 Implementation 

Test data from an aluminum plant in the northwest of China, where the purity of 
the aluminum product is required to reach 99.7 %, were used to validate our 
approach. The maximum impurity content allowed in this product is shown in 
Table 1; all of these constraints must be satisfied at the same time. 

Table 1 Maximum content of chemical impurity elements (%). 

Fe Si Cu Ga Mg Zn Sum 

0.2 0.1 0.01 0.03 0.02 0.03 0.3 

Sixteen electrolytic cells were selected from which to collect liquid aluminum. 
The test data of the liquid aluminum in the electrolytic cells are shown in Table 
2. 

The weight of one electrolytic cell is about three tons in actual production. We 
assigned three tons for each electrolytic cell’s weight in order to make the 
calculation convenient and the result display intuitive. The initial population 
size was 10 and the clone size was 10. The shortest distance of the collecting 
path for the initial population, which was randomly generated, was 48. The 
optimal distance value was 14 after 20 generations, the collecting path was：
(1,2,3,14,15,16,4,5,6,9,10,11,7,8,13,12).   

 



462 Li Jianhua & Wei Xing 

Table 2 Test data of sixteen electrolytic cells (%). 

Cell  
number Fe Si Cu Ga Mg Zn Sum 

1 0.21 0.05 0 0.02 0 0.01 0.29 
2 0.16 0.05 0 0.02 0 0.01 0.24 
3 0.14 0.06 0 0.02 0 0.01 0.23 
4 0.16 0.04 0 0.02 0 0.01 0.23 
5 0.22 0.04 0 0.02 0.01 0.01 0.3 
6 0.18 0.05 0 0.02 0 0.01 0.26 
7 0.16 0.04 0 0.02 0 0.01 0.23 
8 0.15 0.04 0 0.02 0 0.01 0.22 
9 0.17 0.06 0 0.02 0 0.01 0.26 
10 0.18 0.04 0 0.02 0 0.01 0.25 
11 0.18 0.04 0 0.02 0 0.01 0.25 
12 0.15 0.04 0 0.02 0 0.01 0.22 
13 0.28 0.04 0 0.02 0 0.01 0.35 
14 0.23 0.04 0 0.02 0 0.01 0.3 
15 0.18 0.05 0 0.02 0 0.01 0.26 
16 0.15 0.04 0 0.02 0 0.01 0.22 

Table 3 Bad test data of sixteen electrolytic cells (%). 

Cell  
number Fe Si Cu Ga Mg Zn Sum 

1 0.16 0.05 0 0.02 0 0.01 0.24 
2 0.14 0.06 0 0.02 0 0.01 0.23 
3 0.16 0.04 0 0.02 0 0.01 0.23 
4 0.32 0.07 0 0.02 0 0.01 0.42 
5 0.15 0.04 0 0.02 0 0.01 0.22 
6 0.18 0.05 0 0.02 0 0.01 0.26 
7 0.16 0.04 0 0.02 0 0.01 0.23 
8 0.15 0.05 0 0.02 0 0.01 0.23 
9 0.17 0.05 0 0.02 0 0.01 0.25 
10 0.18 0.04 0 0.02 0 0.01 0.25 
11 0.18 0.04 0 0.02 0 0.01 0.25 
12 0.19 0.06 0 0.02 0 0.01 0.28 
13 0.15 0.06 0 0.02 0 0.01 0.24 
14 0.22 0.05 0 0.02 0 0.01 0.3 
15 0.18 0.04 0 0.02 0 0.01 0.25 
16 0.15 0.04 0 0.02 0 0.01 0.22 

In actual production, the test data of the liquid aluminum in the electrolytic cells 
are usually volatile. The bad test data and the good test data are shown in Table 
3 and Table 4. The collecting path of the good test data was: 
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16). The collecting path of the bad data 
could not be automatically computed. The algorithm noted that the test data 
were too bad to be dealt with manually. 
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Table 4 Good test data of sixteen electrolytic cells (%). 

Cell number Fe Si Cu Ga Mg Zn Sum 

1 0.16 0.05 0 0.02 0 0.02 0.25 

2 0.18 0.05 0 0.02 0 0.01 0.26 

3 0.15 0.04 0 0.02 0 0.01 0.22 

4 0.16 0.05 0 0.02 0 0.03 0.26 

5 0.18 0.04 0 0.02 0 0.02 0.26 

6 0.15 0.05 0 0.02 0 0.03 0.25 

7 0.17 0.04 0 0.02 0 0.03 0.26 

8 0.19 0.04 0 0.02 0 0.01 0.26 

9 0.17 0.05 0 0.02 0 0.01 0.25 

10 0.15 0.04 0 0.02 0 0.01 0.22 

11 0.17 0.05 0 0.02 0 0.01 0.25 

12 0.17 0.05 0 0.02 0 0.01 0.25 

13 0.17 0.05 0 0.02 0 0.01 0.25 

14 0.16 0.05 0 0.02 0 0.01 0.24 

15 0.16 0.05 0 0.02 0 0.01 0.24 

16 0.15 0.07 0 0.02 0 0.01 0.25 

In an earlier work, we have tried to complete this optimization using a genetic 
algorithm [10]. But GA’s are relatively inefficient, as the design and calculation 
is very complex due to a lot of invalid solutions in the crossover process. In 
order to test the effectiveness of our approach, a comparative experiment 
between GA and our approach was set up to compute the test data of Table 1. 
The results of 20 computations with different parameters are shown in Table 5. 

Table 5 The results of the experiment. 

Algorithms 
Population  

size 
Clone 
size 

Evaluation 
number 

Elapsed 
time (s) 

Shortest distance 
of collecting path   

Genetic 
algorithm 

100 / 150 0.026618067 15.3 

Hybrid chaos 
clone algorithm 

10 10 20 0.000699 14.3 

5  Conclusion 

The problems of blending electrolyzer and multi-constraint optimization of 
aluminum scheduling in the electrolytic aluminum production process were 
addressed in this paper. On the basis of establishing a mathematical model, a 
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novel hybrid optimization strategy algorithm, where an artificial experience and 
a chaos clone algorithm were used to perform optimization, was put forward. 
The affinity degree function was optimized by the path of aluminum scheduling. 
The mutation operators were designed to implement the transformation of 
electrolyzer combination and change the route of loading. A typical 
optimization example from an aluminum plant in the northwest of China was 
given and the result demonstrated the effectiveness of the proposed method and 
indicated that the proposed algorithm produced better solutions than a genetic 
algorithm. 
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