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Abstract. The problems of blending electrolyzer and multistoaint
optimization of electrolytic aluminum scheduling tine electrolytic aluminum
production process were addressed. Based on a mmatioal model analysis, a
novel hybrid optimization algorithm is proposed faptimization of blending
together the molten aluminum in different electtialycells. An affinity degree
function was designed to represent the path of awm scheduling. The
mutation operators were designed to implement thensformation of
electrolyzer combination and change the route aflilmy. A typical optimization
example from an aluminum plant in northwest Chiaiven in this paper, the
results of which demonstrate the effectiveness®fproposed method.

Keywords: blending electrolyzer; chaos clone algorithm; distance of collecting path;
electrolytic cell; process scheduling.

1 I ntroduction

Blending liquid aluminum together is a key opematjprocess and is mainly
done in an artificial way in the factory. The woik difficult and time-
consuming [1-3]. In allusion to the problems meméid above, little research
work has been conducted on this aspect [4]. Xiakaaron algorithms for
optimization of blending electrolytic cells withoabnsidering scheduling [5].
Denis Blanchard-Gaillard put forward heuristic dmn approaches for
assigning the output of electrolytic cells to ovstches in the production of
aluminum, based on the levels of two impurities. [Gptimization for the
process of blending electrolytic cells with multirstraint conditions pertaining
to the aluminum ladle combined with two electralytiells was developed by
Zhang Yali. Blending electrolytic cell schedulingshbeen optimized using the
optimal objective combined with the Fe and Si cohend the distance of the
collecting path [7]. But in real production, blendi electrolytic cells and
scheduling is much more complex: the test datacameplex and not only Fe
and Si need to be computed; the electrolytic celidition is much more
complex as either the test data are so good thhingoneeds to be done, or so
bad that automatic blending and scheduling canadirtished; the scheduling
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process is much more complex, the number of elgtitacells used to form
one aluminum ladle is variable, and there can e tlean is acceptable.

Thus, in this paper a hybrid optimization algorithoomposed of an immune
chaos clone algorithm and an artificial experiengsgroposed for optimization
of blending together the aluminum in different @élelytic cells and rule out

special cases. The affinity degree function wasnoped by the path of

aluminum scheduling. The mutation operators weggthed to implement the
transformation of electrolyzer combination and g®the route of loading. A
typical optimization example from an aluminum plamtnorthwest China is

given in this paper, the result of which demonssahe effectiveness of the
proposed method and indicates that the proposestitlin produced better
solutions than a genetic algorithm.

2 M athematical M odeling of Blending Electrolytic Aluminum
Scheduling

Blending liquid aluminum together means to extitaet liquid aluminum from
two or three electrolytic cells (Figure 1) into aluminum ladle (Figure 2). In
the production process, the assay results of egkstrolytic cell, including
ferrum (Fe), silicon (Si), magnesium (Mg), cupru@uj, calcium (Ca) and zinc
(zn), are different from each other due to using raaterial. These chemicals
decide the final purity of the aluminum. The impyrtontent of the blending
liquid aluminum, including Fe, Si, Mg, Cu, Ga and, Zannot exceed the
production standard. The process of blending albtic cells is very complex
in real production in the plant. The plan of blerglelectrolytic cells is not only
closely related to the chemical composition of eatdctrolytic cell but also
directed by the distance among the electrolytitsablat will be extracted into
the same aluminum ladle (Figure 2). This distascdefined as the ‘collecting
path’.

i
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Figure1l Electrolytic cells in an electrolytic aluminum ptan
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Figure2 Aluminum ladle.

The electrolytic cells are kept in the same order,shown in Figure 3. In
production, each aluminum ladle is combined witlo tar three electrolytic

cells. In the product standard testing premisdaa for which three electrolytic

cells are chosen to be combined, the aluminum iadMorked out such that the
purging path is the shortest possible.

glectrolvtic cells 1 2 3 i+

Y
N H|§ [ 8

Figure 3 Arrangement of the electrolytic cells.

Definition 1. The setN = {N,,---,N, N, } denotes the electrolytic cells.

m+1

Definition 2. The set{M,,...M, ..M M
chemical impurity elements in the electrolytic cells, s the number of
elements that the process requires to testifofl,m] M. denotes the element’s
maximum content,M denotes the maximum content for the sum of m
elements.

} denotes the maximum content of

m+1

Definition 3. The set{W,,...W,,...W, } denotes the liquid aluminum weight that
will be extracted into the aluminum ladle from #lectrolytic cells at number n.
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Definition 4. (Pil,...,Pij PP ) P, denotes the content of the number

im i (m+1)
element for the numberelectrolytic cell,R . ,,denotes the total content of all
elements from numberelectrolytic cell.

Definition 5. C ={c,,c,.c,} denotes the set of aluminum ladles, ,
c,andc, are the number of electrolytic cellsis the number of the aluminum

ladle. 0<i g{(n-l) /qu 1. We requirec, <, <G, in order to facilitate easy

calculation (the number of electrolytic cells irettast aluminum ladle can be
less than or equal to 3).

Definition 6. L =|Nqs —qu|+|qu—Nq1|, L, denotes the distance that the

crown block drives for bringing liquid aluminum &uminum ladle numbetr If
the last aluminum ladle only contains liquid aluoim from two electrolytic
cells, the distance equals the distance betweetwihielectrolytic cells. If the
last aluminum ladle only contains liquid aluminumorfi one electrolytic cell,
the distance equals O (the unit is the distancerdmt two adjacent electrolytic
cells).

Based on the blending process requirements, theeshalistance optimization
function is defined as follows:

1+{(n-1/3

L=min > L ie[Ll+|(n1)/3];

i=1

N=%

The computational constraints are:

S S
D (R XW, ) <MY W, @)
k=1 k=1
ie[L1+|(n—1)/3]
where je[L,m+1] s denotes the number of electrolytic cells in the
1<s<3

current aluminum ladle.

3 M odel Solution Based on Hybrid Chaos Clone Algorithm

According to the above discussion of blending aclteduling, there must be
many constraints in the process of optimizationrduthe computing process. It
is very difficult to design an intelligent operator a genetic algorithm because
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of the large amount of invalid solutions, such las trossover operator in a
genetic algorithm. A more simple and efficient aggger needs to be put forward
for the whole optimization process. Here, a novegbrid optimization
algorithm, composed of an immune chaos clone dlyor[8-9] and an atrtificial
experience, is proposed.

3.1 The Gene Code Rule and The Initialization

The gene code is defined éasﬁ,nz,...,nn), wheren is the number of the

electrolytic cell. One aluminum ladle is formed thyee electrolytic cells. For
example, aluminum ladle 1 is composed rpf cell, n, cell, andn, cell.

(Mg 1y Mg 1 2N 1y 5 denotes an aluminum ladle group in the scheduling

scheme. ke[l,lﬂ(n-])/:ﬂ, when k is the last group, the amount of

electrolytic cells can be less  than 3. For  example,
(7,9,10,14,15,16,3,5,6,1,2,4,11,12,13,8) denotat 16 electrolytic cells need
to be blended, (7,9,10) is the first aluminum ladt,15,16) is the second
aluminum ladle, etc. The 6th aluminum ladle onlyteins one electrolytic cell

(8).

During initialization we put emphasis on the comntehFe, as it is one of the
most important indicators in production. The idiiation can be described as
follows:

Step 1. The initial position of electrolytic cell is produced between 1 and n.
Then the sequential genetic chaini+1,+2...n,1,2...i-1) is formed.

Step 2. According to the Fe content, from high to low, blgbbort is used to
adjust the genetic chain.

Step 3. Starting at the first gene-bit, three bits in trengtic chain form one
ladle from left to right. The gene-bits will be &enged sequentially until the
ladle ingredients satisfy the constraint condiiiofrormula 1.

Step 4. Repeat Step 3 until all gene-bits have found tlaglle group. Finally,
the initial genetic chain is formed.
3.2  TheMutation Operator

The mutation operator is used to implement thestamation of electrolytic
cell combination and change the route of collectifige mutation operator can
be described as follows:
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Step 1. The mutation gene positidnis confirmed, guided by a chaotic vector
[7], 3<i<n. Thej position is set to 1.

Step 2. Formula 1 is calculated after exchanging gendipod andj. If j=n or
the result satisfies the inequality then the nesharging gene chain is saved,
the process jumps to the Step 4. else it progrésdbs next stepj=j+1.

Step 3. This step forcesl=1+|(i—1) /3 andj1=1+|(j—1 /3 to assume

integral values. Ifil5j1, thenj=j+1 and the process jumps to Step 3. Else it
jumps to Step 2.

Step 4. The program ends.

A mutation example can be shown as follows:

The original genetic chain(8,12,13,3,6,14,9,10,16,1,11,15,4,5,7,2)
After mutation: (8,12,13,3,6,14,9,10,16,1,11,2,4,5,7,15)

3.3  TheHybrid Optimization Algorithm

Exceptions will be excluded before the optimizinglcalation. In actual

production, the test data of the liquid aluminumtlie electrolytic cells are
usually volatile. When the electrolytic cells’ catioh is good, so that all test
data meet the requirements, nothing needs to be dan collect the liquid

aluminum according to the nearby-cell principle. &vhthe worst situation

occurs, so that electrolytic cell blending cannet dxecuted due to the high
content of some chemical component, the blendiag pannot be automatically
computed but can only be dealt with manually. Thwe different conditions

need to be excluded by the artificial experience.

The algorithm is as follows:

Step 1. Exclude the special case with the best conditmnis allocated a

number from small to large in Definition 5. Formulais calculated. The
electrolytic cells’ condition is to be excludedafl constraints are satisfied.
Liquid aluminum will be directly collected accordinto the nearby-cell
principle from small number to large number. Thegram ends.

Step 2. Exclude the special case with the worst conditieor. any N, € N, if
there are not any two cells among the remaininds dblat can satisfy all
constraints of Formula 1, then the electrolyticlsetondition is bad. The
blending plan cannot be automatically computed. driogram ends.
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Step 3. Initial population. Population size is NS. The plgpion is produced
randomly and the parameters of the operators &rd@lse individual's fithess is
calculated. Clone size is AS.

Step 4. Clonal expansion. A new population is generatedlbge expansion of
the individual according to AS. The new populatsize is NSx CS.

Step 5. Chaaotic clonal variation. The chaotic vector icagdted. If the value of
the corresponding bit of the chaotic vector is His tindividual bit will be
mutated. The individual’s fitness is calculateceathe mutation.

Step 6. Clonal selection operation. The individual with thest fitness in its
clone expansion family is selected to be an indigldn the younger generation.
The younger generation size is reduced to NS.

Step 7. The terminal condition is examined. The processsduseck to Step 4
only if the terminal condition is not satisfied.

Step 8. The best individual is selected.

4 I mplementation

Test data from an aluminum plant in the northwégtina, where the purity of
the aluminum product is required to reach 99.7 %rewsed to validate our
approach. The maximum impurity content allowedhis fproduct is shown in
Table 1; all of these constraints must be satisdicitie same time.

Tablel Maximum content of chemical impurity elements (%).

Fe Si Cu Ga Mg Zn Sum
02 01 001 003 002 003 0.3

Sixteen electrolytic cells were selected from whickcollect liquid aluminum.
The test data of the liquid aluminum in the eldgtio cells are shown in Table
2.

The weight of one electrolytic cell is about thiteas in actual production. We
assigned three tons for each electrolytic cell'sghiein order to make the
calculation convenient and the result display intai The initial population
size was 10 and the clone size was 10. The shdlitgsince of the collecting
path for the initial population, which was randonggnerated, was 48. The
optimal distance value was 14 after 20 generatititescollecting path was
(1,2,3,14,15,16,4,5,6,9,10,11,7,8,13,12).
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Table?2 Test data of sixteen electrolytic cells (%).
nucr:rflbler Fe Si Cu Ga Mg Zn Sum
1 0.21 0.05 0 0.02 0 0.01 0.29
2 0.1€ 0.0t 0 0.0z 0 0.01 0.24
3 0.14 0.06 0 0.02 0 0.01 0.23
4 0.16 0.04 0 0.02 0 0.01 0.23
5 0.22 0.04 0 0.02 0.01 0.01 0.3
6 0.18 0.05 0 0.02 0 0.01 0.26
7 0.16 0.04 0 0.02 0 0.01 0.23
8 0.1t 0.0 0 0.0z 0 0.01 0.2z
9 0.17 0.06 0 0.02 0 0.01 0.26
10 0.18 0.04 0 0.02 0 0.01 0.25
11 0.18 0.04 0 0.02 0 0.01 0.25
12 0.15 0.04 0 0.02 0 0.01 0.22
13 0.2¢ 0.0 0 0.0z 0 0.01 0.3t
14 0.23 0.04 0 0.02 0 0.01 0.3
15 0.18 0.05 0 0.02 0 0.01 0.26
16 0.15 0.04 0 0.02 0 0.01 0.22

Table3 Bad test data of sixteen electrolytic cells (%).

nu?r?bler Fe Si Cu Ga Mg Zn Sum
1 0.16 0.05 0 0.02 0 0.01 0.24
0.14 0.06 0 0.02 0 0.01 0.23
3 0.16 0.04 0 0.02 0 0.01 0.23

4 0.32 0.07 0 0.0z 0 0.01 0.4z
5 0.15 0.04 0 0.02 0 0.01 0.22
6 0.18 0.05 0 0.02 0 0.01 0.26
7 0.16 0.04 0 0.02 0 0.01 0.23
8 0.15 0.05 0 0.02 0 0.01 0.23
9 0.17 0.05 0 0.02 0 0.01 0.25
10 0.18 0.04 0 0.02 0 0.01 0.25
11 0.18 0.04 0 0.02 0 0.01 0.25
12 0.19 0.06 0 0.02 0 0.01 0.28
13 0.15 0.06 0 0.02 0 0.01 0.24
14 0.22 0.05 0 0.02 0 0.01 0.3

15 0.1¢ 0.04 0 0.0z 0 0.01 0.2t
16 0.15 0.04 0 0.02 0 0.01 0.22

In actual production, the test data of the liquichdnum in the electrolytic cells
are usually volatile. The bad test data and thelgest data are shown in Table
3 and Table 4. The collecting path of the good tekita was:
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16). The cbilg path of the bad data
could not be automatically computed. The algorithated that the test data
were too bad to be dealt with manually.
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Table4 Good test data of sixteen electrolytic cells (%).

Cell number Fe Si Cu Ga Mg Zn Sum
1 0.16 0.05 0 0.02 0 0.02 0.25
2 0.18 0.05 0 0.02 0 0.01 0.26
3 0.15 0.04 0 0.02 0 0.01 0.22
4 0.16 0.05 0 0.02 0 0.03 0.26
5 0.18 0.04 0 0.02 0 0.02 0.26
6 0.15 0.05 0 0.02 0 0.03 0.25
7 0.17 0.04 0 0.02 0 0.03 0.26
8 0.19 0.04 0 0.02 0 0.01 0.26
9 0.17 0.05 0 0.02 0 0.01 0.25
10 0.15 0.04 0 0.02 0 0.01 0.22
11 0.17 0.05 0 0.02 0 0.01 0.25
12 0.17 0.05 0 0.02 0 0.01 0.25
13 0.17 0.05 0 0.02 0 0.01 0.25
14 0.16 0.05 0 0.02 0 0.01 0.24
15 0.16 0.05 0 0.02 0 0.01 0.24
16 0.15 0.07 0 0.02 0 0.01 0.25

In an earlier work, we have tried to complete thgimization using a genetic
algorithm [10]. But GA’s are relatively inefficienas the design and calculation
is very complex due to a lot of invalid solutiomsthe crossover process. In
order to test the effectiveness of our approaclgomparative experiment
between GA and our approach was set up to compatéest data of Table 1.
The results of 20 computations with different pagtens are shown in Table 5.

Table5 The results of the experiment.

Algorithms Population Clone  Evaluation Elapsed Shortest distance
9 size size number time(s) of collecting path
Genetic 100 / 150 0.026618067 15.3

algorithm ' ’

Hybrid chaos 10 10 20 0.000699 143

clone algorithm
5 Conclusion

The problems of blending electrolyzer and multistogint optimization of
aluminum scheduling in the electrolytic aluminunoghuction process were
addressed in this paper. On the basis of estambfjshimathematical model, a
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novel hybrid optimization strategy algorithm, whare artificial experience and
a chaos clone algorithm were used to perform opétion, was put forward.
The affinity degree function was optimized by ttatpof aluminum scheduling.
The mutation operators were designed to implembat ttansformation of
electrolyzer combination and change the route oédilmg. A typical
optimization example from an aluminum plant in thethwest of China was
given and the result demonstrated the effectiveak#ise proposed method and
indicated that the proposed algorithm producedebeiblutions than a genetic
algorithm.
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