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Abstract. This paper presents the development of the core spreading vortex 

element method, a mesh-free method for simulating 3D viscous flow over bluff 

bodies. The developed method simulates external flow around complex 

geometry by tracking local velocities and vorticities of particles introduced 

within the fluid domain. The viscous effect is modeled using the core spreading 

method coupled with a splitting spatial adaption scheme and a smoothing 

interpolation scheme for overlapping issues and population control, respectively. 

The particle’s velocity is calculated using the Biot-Savart formulation. To 

accelerate computation, the fast multipole method (FMM) is employed. The 

solver was validated using a number of benchmark problems for both unbounded 

and bounded flows at low Reynolds numbers. For unbounded cases, simulation 

of the collision of two vortex rings was performed. The energy spectrum 

calculated using the current core spreading diffusion model approached that of 

the particle strength exchange model. To test the performance of the method in 

simulating bounded flow problems, simulation of flow around a sphere was 

carried out. The results were found to be in very good agreement with those 

reported in the literature. 

Keywords: bluff body flow; core spreading; fast multipole method; viscous flow; vortex 

method. 

1 Introduction 

Problems of flow around bluff bodies have attracted a lot of interest in the past 

few decades [1-4]. The distinguishing feature of bluff body flows in real fluids 

is the generation of vorticity and the shedding of vortices into the wake, which 

is difficult to predict using an analytical approach. Due to the current 

availability of high performance computers, these problems can now be 

overcome using numerical methods known as computational fluid dynamics 

(CFD).  

In CFD, there are two main approaches: grid-based and meshless methods. As 

suggested by the name, in the more traditional grid-based methods, the Navier-
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Stokes equations are solved using a discretized grid. However, simulation of 

flow over for example a deformable body is very difficult, if not impossible, 

using the grid-based CFD. In particular, the difficulty is due to the requirement 

to generate a grid at every time step because of the continuous change in the 

geometry of the body.  

On the other hand, meshless methods, such as smoothed particle hydrodynamics 

(SPH) [5] and vortex element methods [6,7], benefit from their inherent 

adaptivity. Specifically, meshless or Lagrangian methods use Lagrangian grid 

points, which follow the movement of the flows. Therefore, such methods can 

handle irregular and complex geometries without any complication.  

As far as complex vortical flow is concerned, a vortex element method is the 

suitable solver to resolve the vorticity region correctly with a high resolution 

[3,8]. In addition, another advantage of this type of method is that it can be 

easily implemented in parallel computation in order to allow long time 

simulations.  

Accordingly, a fully meshfree version of the vortex element method (VEM) was 

developed in this research in order to simulate 3D viscous flow problems. The 

fast multipole method (FMM) was employed to accelerate the computation of 

the developed method. A novel spatial adaptation scheme was introduced to 

control the computational resolution and particle population. Finally, the 

performance of the developed method was investigated by performing 

benchmark simulations for unbounded and bounded flow: a simulation of two 

colliding vortex rings and a simulation of flow around a sphere, respectively. 

2 Vortex Element Method 

For unsteady incompressible viscous flow with uniform density   and kinematic 

viscosity  , the momentum equations for the flow field, are written as 

 
  

  
 (   )   

 

 
        (1) 

In Eq. (1),  is the velocity vector and  is the pressure of the flow field. By 

taking the curl      of Eq. (1) and defining the vorticity vector as       

we get the vorticity-velocity equations: 

 
  

  
 (   )       (2) 

with a Dirichlet boundary condition of    . It is common to use a time-

splitting algorithm over a time step         , to numerically integrate the 



438 Lavi R. Zuhal, et al. 

nonlinear system. This time-splitting algorithm basically solves Eq. (2) in two 

fractional steps. First, the stretching part of the equation is solved by evaluating 

 
  

  
 (   )   (3) 

withno-flow-through boundary condition     , where is the normal vector 

at the boundary. The vorticity field at the end of this stretching process is 

updated as     . This vorticity is then used to initialize the vorticity for the 

second step, where the viscous part is worked out by solving 

 
  

  
       (4) 

with full no-slip boundary conditions    . The vorticity at the end of the 

diffusion process is consistent with that obtained directly from the momentum 

Eq. (2). 

2.1 Treatment of Viscous Effect 

Due to the linearity of Eq. (4), the viscous part on the right hand side can be 

split into two parts. The first part is valid within the fluid domain (solution 

denoted by   ), while the second part is valid in regions close to solid 

boundaries (solution denoted by   ).  These equations are expressed as 
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In these equations    and   denote the boundary and the fluid domain, 

respectively. While it is easy to solve Eq. (5) using standard schemes (particle 

strength exchange or core spreading), Eq. (6) is subjected to boundary 

conditions. The boundary conditions are given in terms of velocity, which is 

translated into wall vorticity      , which will be discussed in more detail in 

Subsection 2.3.  

In vortex methods, the fluid domain is represented by particles. Each particle is 

tracked by calculating its vortex strength   ), core radius    , and velocity    . 
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The viscous effect is modeled by changing either  ,  , or  .  

The analytical solution of the diffusion Eq. (5) is  

    
  

      
 
 

     
   

 

      (7) 

    is the distance between the vortex element   and vortex element  .   is the 

core size of the vortex blob which is obtained by setting it as the variance of the 

Gaussian distribution kernel 

         (8) 

where    is the time scale to resolve the viscous flow. 

2.1.1 Particle Strength Exchange 

The particle strength exchange (PSE) method exchanges the particle’s strength 

in a supported domain by approximating the Laplacian operator on the right-

hand side of Eq. (5) by integral operator as 
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|   |

 
)                (9) 

The kernel  (
|   |

 
) in this expression is a particle distribution function 

defined as 
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By employing (9), (5) can be expressed as  
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     (11) 

    is the average core size between particle   and particle  . The supported 

domain mentioned earlier is defined as    from    [9]. In this work, the PSE 

diffusion model was used for comparison purposes. 

2.1.2 Core Spreading Method 

The core spreading method (CSM) models the viscous effect by spreading the 

core size of every single particle with respect to time. The rate of change of the 

core radius is calculated using 
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  (12) 

This is a straightforward procedure to increase the core radius of the vortex 

blob, which actually represents the viscous diffusion process.  

However, the core size will eventually become too large to retain the local fluid 

velocity, as mentioned in Greengard [10]. Barba [6] and Yokota [11] have 

proposed an alternative method, based on the use of radial basis function 

interpolation to redistribute the vorticity strengths field using the smaller core 

sizes. The method leads to a linear system          where     is a Gaussian 

function of two vortex elements   and  ,   is the vorticity of the element   
evaluated by Eq. (7). The first advantage of this method is that the number of 

particles will remain constant during computation. The second advantage is that 

overlapping among the vortex elements is spatially adapted by reducing the core 

sizes to become sufficiently small. 

Rossi [12,13] proposed a splitting scheme in which the “father” blob is split into 

the several smaller “children” blobs if the core radius of the vortex blob is larger 

than a certain threshold. Meanwhile, the vortex strength of these child blobs 

isthe father blob’s strength divided by the number of child blobs. The core 

radius of the child blobs is reset to a smaller value. Obviously, the children’s 

cores are overlapped after this process.  

In this study, the splitting scheme proposed by Rossi [13] for unbounded flow 

simulation (vortex ring simulation) and external bounded flow simulation is 

extended to 3D cases. Since the splitting scheme introduces a large amount of 

error, there is a need to carefully consider the core radius threshold and the 

splitting scheme itself. Another issue is that the use of the splitting scheme 

introduces a large amount of vortex elements, more than those required to 

resolve the flow. Thus, in the following section, a remeshing scheme employing 

cubic spline interpolation is proposed for the purpose of controlling the 

population of vortex elements after a splitting event. In addition, this 

interpolation also serves as a means to control the overlapping among vortex 

elements, which is important in high-resolution simulation. 

2.1.3 Spatial Adaptation Schemes 

2.1.3.1 Splitting Scheme 

In order to control the size of the blobs, Rossi, Huang, et al. [14] limited the 

blob size to a maximum core width     . The splitting scheme splits a parent 

vortex ofcore width    and strength    into   smaller vortices, whenever    is 

greater than     . Then, the width of each “child” vortex is set as    , where 
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     . With this setting, the larger value of  induces a smaller error due to 

the splitting scheme (      was chosen in this study). The child vortices are 

uniformly distributed around the center of the parent vortex at distance  . The 

value of  and the strength (  ) of the child vortices are determined by 

preserving the total circulation and the second moment of vorticity about the 

center of the parent vortex, as shown in Figure 1.  

 

Figure 1 Splitting scheme with one weakened parent vortex (yellow circle) 

surrounded by six child vortexes (purple circle). 

2.1.3.2    
  Interpolation Scheme 

In order to maintain a sufficient amount of vortex elements to resolve the flow 

while still maintaining the overlapping among the vortex elements, Barba [6] 

proposed another spatial adaptation scheme for the core spreading method. This 

spatial adaptation scheme is a cubic spline interpolation called   
 , which 

conserves angular momentum, linear impulse and energy. This scheme is also 

used to redistribute the vortex elements and interpolate their strength,  , within 

the whole fluid domain. In 1D cases, the   
  interpolation is simply expressed 

as: 

   
     {

 

 
                 

 

 
                  

                                              
                          (13)

 

where the grid size   is set to be      . 

As shown in Figure 2,   is the distance between the particle and the grid node, 

normalized by  . The fraction of the particle information, which is attributed to 

the grid node, or vice versa, is carried by   
    . In 2D and 3D cases, tensor 

products are used to express the   
 interpolation. In this work, a splitting spatial 

adaptation scheme is combined with the   
  redistribution interpolation in one 

time step in order to control the particle population and overlapping. 
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Figure 2 Illustration of the stencil width of the   
 redistribution interpolation 

scheme for 1D cases. The interpolation redistributes the vortex strength of the 

vortex elements to the grid nodes. 

2.2 Fast Multipole Method 

The Biot-Savart law is used to calculate the velocity field  (    ). The original 

formulation of Biot-Savart is written as an integral over the vorticity support, 

which is approximated as a summation over all of the particles: 

  (   )  
 

  
∑

         

  |    |

  

   
    (14) 

This summation requires anO(N
2
) type of operation, known as the “N-body 

problem”. Greengard and Rokhlin [15] have proposed the fast multipole method 

(FMM) to accelerate N-body computation, based on the use of multipole 

expansion. First, particles are grouped into tree structures of cubes. Next, the 

cubes exchange moments using multipole expansions instead of evaluating the 

direct particle pair interactions: 

         ∑ ∑   
  

      

      {∑   
   

            } 
    

 
    (15) 

Also, the particle strength is evaluated as 

         ∑ ∑      
  

      

      {∑   
   

            } 
    

 
    (16) 

Accordingly, the FMM operations reduce the computational cost from N
2
 to N 

log N. 

2.3 No-through Boundary Condition 

Bounded flow problems require the enforcement of the no-through boundary 

condition. The vortex element method is a meshfree approach.  Therefore, the 

enforcement of the no-through boundary condition was accomplished through 

the use of the boundary element method (BEM). The BEM calculates a vortex 

sheet’s strength, which represents the slip velocity on the boundary necessary to 

satisfy the no-through condition. In BEM, the boundary is discretized into linear 

panels and the vortex strength of each panel        is calculated. These vortex 

strengths or wall circulations represent the initial vorticity vectors on the wall 
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panels. The calculated vortex strength is a vector with two wall-tangent 

components and a normal component that satisfy the no-through condition. 

2.4 No-slip Boundary Condition 

In the vortex method there is a direct relation between the no-through and the 

no-slip boundary conditions, called the linked boundary condition, as depicted 

in Figure 3. 

 

Figure 3 Enforcement of no-slip boundary condition. The vortex strengths of 

wall panels will be diffused to the near-wall vortex blobs. 

Basically, it can be shown that the no-slip boundary condition is automatically 

satisfied when the no-through boundary condition is fulfilled. The process of 

translating the vorticity from the panels (computed using BEM) to the particles 

is explained by Kamemoto [8] and sketched in Figure 4. 

Specifically, the procedure involves the introduction of nascent vortex elements 

that model the boundary layer surrounding the wall. As shown in this figure, 

these vortex elements are distributed along the boundary with a predetermined 

height that depends on the kinematic viscosity and time step. Next, the nascent 

vortex elements are converted into vortex plates, which have volume      and 

strength       .  Finally, the vortex plates are replaced by vortex blobs with the 

same volume and strength. These blobs are then shed like other existing 

particles. At this point, the wall boundary conditions have been satisfied and a 

new set of particles is created. 
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Figure 4 Enforcement of no-slip boundary condition. The vortex blobs will be 

generated based on the vortex strength and slip velocity of the wall panels 

calculated using BEM. 

3 Simulations and Discussions 

3.1 Collision of Vortex Rings 

A simulation of colliding vortex rings was conducted in order to test the 

performance of the developed code in simulating unbounded flows. In 

particular, this benchmark simulation can demonstrate the ability of the 

diffusion model in capturing the details of the reconnection process. 3D CSM 

was utilized for the simulation. The results were compared with results from a 

similar successful simulation conducted using PSE and results from a similar 

simulation carried out by Chatelain [16]. Figure 5 depicts an upper vortex ring 

 

 

Figure 5 Configuration of the simulation of vortex ring in Re=250. 

 

 



 Vortex Method for Simulating 3D Flow Around Bluff Bodies 445 
 

with radius R and a lower vortex ring with radius R/2. The lower ring is placed 

with its center located at the radius of the first ring separated and moved over a 

distance of R/4 in the y-direction. Instead of the two rings moving in opposite 

directions, both rings move in the same upward direction. 

The parameters used for these simulations (both CSM and PSE) are listed in 

Table 1. 

Table 1 Parameters for the vortex ring simulation. 

 CSM PSE 

Reynolds number (Re) 250 250 

Initial vortex strength (  ) 1 1 

Time step (  ) 0.025 0.025 

Kinematic viscosity (      ) 0.004 0.004 

Radius of ring (R) 1 1 

Vorticity limitation (       )                 

Initial core size (      √    ) 0.014 none 

Maximum core size (            ) 0.14 0.14 

 

It is well known that vortex methods can successfully calculate the inertia sub-

range of the energy spectrum cascade whereby the diffusion model plays an 

important role in defining the dissipation range in the kinetic energy cascade. In 

the present work, we focused on the study of the two diffusion models (CSM 

and PSE) in order to observe their influence on the dissipation range. The 

kinetic energy and energy spectrum were evaluated at every time step of the 

simulation. The kinetic energy and energy spectrum depend only on core size 

and vortex strength of the vortex blobs, as indicated in the following equations: 
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      |     | 

 |     |
        

                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                 (18) 

The kinetic energy results of both the CSM and the PSE simulations are 

summarized in Figure 6. The results demonstrate that the energy decay ranged 

from 0.73 to 0.45 (m
2
/s

2
). At the initial stage of the simulation, the energy 

spectrums calculated by both the PSE and the CSM method were the same (0.73 

m
2
/s

2
). This is because the initial core sizes of the particles used in both tests 

were initially set to be the same (     in Table 1). 
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Figure 6 Comparison of the history of kinetic energy versus time between CSM 

and PSE. 

During time evolution from 0 to 1, the energy decay calculated by CSM (red-

dashed line) agreed very well with that of PSE (solid line). However, the figure 

also shows that the results from PSE were more dissipated than those from 

CSM. It is quite possible that the change of the core threshold from      to 

         in CSM has some effect on the decay process of the energy spectrum. 

In other words, constraining the particles’ core to                 has a 

significant effect on the decay rate of kinetic energy. 

 

Figure 7 Comparison of evolution of the energy spectrum in wavenumber 

space between the CSM method (dotted circle) and the PSE method (continuous 

line). 

The significant influence of the diffusion models on the dissipation process can 
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be clearly seen by plotting the energy spectrum vs. wave number, as depicted in 

Figure 7. In the figure, the CSM calculations (dashed line) approach the PSE 

results (solid line) within the energy-containing range (low wave numbers). 

This is not surprising because both simulations used the same initial conditions 

and boundary conditions (specifically for the vortex blob’s core). The same 

behavior between CSM and PSE results can be observed within the inertia sub-

range from T=0 (second) to T=1.2 (second). However, the PSE calculations 

deviate from those calculated using CSM in the dissipation range (high wave 

number region).  

The results demonstrate that the present CSM performs better than PSE within 

the dissipation range because the core evolution of the particle in CSM actually 

expanded the dissipation range. This is probably due to the fact that the particle 

core in CSM is controlled to be smaller than in PSE during the time evolution. 

Accordingly, the dissipation process is improved at higher wave numbers as the 

simulation time increases. 

  

Figure 8 The isosurface evolution of vorticity contours. 

In order to look at the details of the reconnection process during the collision of 

the two vortex rings, the isovorticity contours’ evolution is plotted in Figure 8. 

The CSM simulation results were compared with those simulated using PSE 

and those from Chaterlain. The vorticity evolution is presented from t=0.8 to 

t=4.8. The results show that there is only a small difference between the CSM 

results and the PSE results. Furthermore, the CSM results agree very well with 

those reported by the reference. Therefore, it can be concluded that the 

developed CSM-based vortex method performs very well in simulating 

unbounded flows. 
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Figure 9 shows the isosurface of the second invariant of the velocity gradient 

tensor                    at time T=4.8. Fig. 9 (a) is the isosurface from 

PSE. Fig. 9 (b) is the isosurface from CSM. Fig. 9 (c) is the isosurface of the 

difference of  between both methods. The results show that the larger 

structures of the current CSM match those of PSE, while the smaller structures 

of the two methods still behave differently. The same behavior can also be 

observed in Figure 7, where the kinetic energy at higher wave numbers does not 

match. 

 

Figure 9 Isosurface of second invariant of velocity derivative tensor. 

3.2 Simulation of flow past an impulsively started sphere at 

Re=100 

Simulations of flow past an impulsively started sphere were conducted in order 

to investigate the performance of the developed code in simulating 3D bounded 

flows. The flow past an impulsively started sphere is a benchmark test for 

bounded flow simulation and has been investigated numerically and 

experimentally by many authors for Reynolds numbers from 0.5 to several 

thousands. In the context of numerical methods, the incompressible vortical 

flow around a sphere at low Reynolds numbers (from 10 to 300) has been 

simulated using botha particle method (Kim [17] – vortex-in-cell method) and a 

grid-based method (Johnson and Patel [18]). In addition, this type of external 

flow simulation nowadays has become a popular testing case for the 
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enforcement of no-through and no-slip boundary conditions. This is because the 

flow remains laminar at the low Reynolds numbers, whereas the statistics of the 

flow are stationary stable and can be neglected, specifically in the near-wall 

region.  

In this work, flows past a sphere at Re=100 was simulated in order to test the 

performance of the proposed CSM’s diffusion model. The results of the 

simulation were compared with the numerical solutions of Kim [17], Johnson 

and Patel [18], and Taneda [19]. In this simulation, a sphere with radius 0.5 was 

discretized into triangular panels (the number of panels was 1280 and the 

number of vertices was about twice that of the panels). The free stream velocity 

is set to               . The time step for the simulation was set to be 

        .Figure 10 depicts the reported variation of the drag coefficient, CD, 

versus the Reynolds numbers for flow around a sphere. 

 

Figure 10 Drag coefficient CD versus Reynolds numbers of flow around a 

sphere [17]. 

Figure 11 shows the streamlines (left side) and vorticity contour (right hand 

side) calculated using the developed CSM code. These plots illustrate 

quantitatively the development of a symmetrical wake behind the sphere from 

the initial stage until the later stages of the simulation (T=7.5). As depicted in 

the figure, a pair of vortex bubbles steadily developed into larger and larger 

bubbles during simulation time. As can clearly be seen in the vorticity contour 

plot, the separation point is found to be located around    , which agrees well 

with the numerical result of Kim and the experimental result of Taneda. 
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Figure 11 Left: Contour of Velocity magnitude in XZ plane. Right: Contour of 

vorticity in XZ plane. 

 

Figure 12 Comparison of vorticity contours of the flow past a sphere at Re = 

100 (the upper is the result from Johnson and Patel, the lower is the result from 

the present method). 

Figure 12 depicts the instantaneous vorticity contours at simulation time T=7.5.  

The result from the present method (lower plot) is compared with the grid-based 

result from the simulation conducted by Johnson and Patel (upper plot). The 

difference between the downstream extension of the vorticity contour calculated 

using the present method and the reference appears to be very small. Therefore, 
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it can be concluded that the circulation zone surrounding the sphere simulated 

using the present CSM agrees very well with the results from Johnson and 

Patel. 

 

Figure 13 Evaluation of the center of the vortex bubble behind the sphere 

Figure 13 shows the measurement of the position and the length of the dynamic 

vortex bubbles that steadily developed behind the sphere. A comparison of the 

position and the length of the vortex bubble computed using the present CSM 

with the results from Kim and Johnson, will determine the accuracy of the 

implementation of the boundary conditions in the present method. 

 

Figure 14 Length of the Vortex bubble from the present CSM compared to that 

of other numerical methods. 

Figure 14 and 15 compare the length and position of the bubble center 

calculated using the current CSM method with those from the references. 
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Figure 15 Position of the Vortex bubble’s center from the present CSM 

compared to that of other numerical methods. 

These figures show a good agreement between the present CSM’s results with 

the results of Johnson and Patel and Kim. Furthermore, as shown in Figure 14, 

there is a small difference between the length of the vortex bubble calculated 

using the present method with the results from Johnson and Patel and Kim. This 

difference is due to the fact that the convection error of the vortex blob 

velocities is reduced in the flow simulation due to the spatial adaptation process. 

In fact, the error comes from the fact that continuous spreading of the vortex 

blobs’ core radius in CSM occurs without the consideration of controlling the 

core size. As the core size increases, the vortex blobs no longer move with their 

actual local velocity. However, this error is relatively small, which shows that 

the current implementation of the boundary conditions works very well.  

Therefore, it can be concluded that the developed CSM’s diffusion model 

performs very well in simulating external flow around a complex body at small 

or even moderate Reynolds numbers. 

4 Conclusions 

An algorithm for a CSM-based vortex method, with a splitting spatial 

adaptation scheme, which employs the  
 remeshing scheme, was developed. 

For unbounded flow, the simulation of a vortex ring using the CSM diffusion 

model with   
  spatial adaptation produced a kinetic energy and energy 

spectrum that agreed well with the reference calculation using PSE. However, 

comparison of the isosurface of the second invariant of the velocity derivative 

tensor showed that while the larger structures produced by the proposed CSM 

match those of PSE, there are still slight variations in the smaller structures 

produced. For bounded flow, the developed CSM diffusion model performs 

very well in simulating the 3D external flow around an impulsively started 

sphere at small or even moderate Reynolds numbers. Comparison of the 
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position and length of the vortex bubble calculated using the proposed CSM 

with those obtained in previous studies demonstrated the accuracy of the 

implementation of the boundary conditions in the present method. In the near 

future, the developed method will be used to simulate the flow around a bluff 

body at higher Reynolds numbers, as well as to simulate flows around more 

complex boundaries. 
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