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Abstract. Bending and deformation of sandwich panels due to localized pressure 
were analyzed using both Rayleigh-Ritz and finite element methods. The faces 
were made of laminated composite plates, while the core was a honeycomb 
material. Carbon fiber and glass fiber reinforced plastics were used for 
composite plate faces. In the case of Rayleigh-Ritz method, first the total energy 
of the system was calculated and then taking the variations of the total energy, 
the sandwich panel deflections could be computed. The deflections were 
assumed by means of Fourier series. A finite element code NASTRAN was 
exploited extensively in the finite element method. 3-dimensional 8-node brick 
elements were used to model sandwich panels, for both the faces sheets and the 
core. The results were then compared to each other and in general they are in 
good agreements. Dimple phenomena were found in these cases. It shows that 
localized pressure on sandwich structures will produce dimple on the pressurize 
region with little effects on the rest of the structures.  

Keywords: sandwich panels; dimple phenomena; localized pressure; finite element 
methods; composite plate. 

1 Introduction 

Sandwich structure consists of a thick core that is placed in between two thin, 
high strength, high stiffness faces. The core is made from a low density, low 
stiffness material such as foam and honeycomb. Whilst the face is usually made 
of high stiffness materials such as steel, aluminum or fiber reinforced composite 
materials. The resulting sandwich structure is light but at the same time stiff in 
bending direction. Hence, the structures are usually used in aircraft, ships and 
nowadays even found in buildings and bridges. Figure 1 shows a typical 
sandwich structure with honeycomb core. 

Since sandwich structure is usually thick and consists of a weak core, the usual 
Kirchoff-Love assumption regarding bending and deformation of thin plates 
could not be used to analyze sandwich panels. Kirchoff-Love disregards normal 
and shear strains in the thickness direction. Since sandwich structure is thick 
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and contains a weak core, these two strains should be included in the analysis. 
A weak core also means that sandwich structure is susceptible to concentrated 
load, such as impact load, which will produce a local deformation known as 
dimple. This local deformation is an interesting phenomenon since most of the 
concentrated load is absorbed locally, with little influence to the other part of 
the structures. In this paper, bending and deformation of sandwich panels due to 
concentrated loading will be analyzed using both analytical and finite element 
methods. The results will be compared each other. 

 
Figure 1 Typical sandwich structures with honeycomb core. 

 
Several authors have studied sandwich structures. Allen [1] and Plantema [2] 
had produced monographs on the subject, but mostly dealt with buckling and 
cylindrical bending. Pagano [3] analyzed three-layered sandwich beam and his 
results were considered to be exact. The results of Pagano were often used as 
benchmarks for other solutions, such as finite element results. Meyer-Piening 
[4] developed a model to analyze bending of sandwich beams due to 
symmetrical loads with consideration of overhanging ends (cantilever beams). 
He developed further [5] to include sandwich plate’s analysis regarding 
bending, instability and natural frequency. Anderson [6] developed 3-
dimensional model to study the deformation of sandwich plate under impact 
loading. The faces were made of orthotropic materials. 

The core is usually made of a honeycomb structure. The structure is relatively 
stiff in the thickness direction but very weak in the plane direction. Therefore, it 
is known as an anti-plane core [1]. B.K. Hadi and F.L. Matthews [7] developed 
a model to calculate the total energy of sandwich panels due to external loads by 
assuming the core as an anti-plane core. The faces were made of laminated 
composite plates that were anisotropic plates in nature. They used the model to 
calculate wrinkling and overall buckling of anisotropic sandwich panels due to 
compressive in-plane forces. The results were compared to experimental results 
by Pearce and Webber [8] and also Webber, et. al [9] and they are in good 
agreements. 
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In this paper, the methodology developed previously [7] is used to compute 
deformation and stresses of sandwich panels due to localized pressure. The 
results are then compared by finite element results. 

2 Total Energy of the System 

Figure 2 shows the problem. It shows sandwich panels with laminated 
composite plate faces and an anti-plane core. The transverse load is localized in 
the center of the panel. In order to solve the problems using Rayleigh-Ritz 
method, it is necessary to calculate the total energy of the system. 
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Figure 2 Definition of the problem. 

 
The equations below are taken from [7]. Readers should refer to that publication 
for detailed analysis of these equations. 

2.1 Internal Energy Contribution of the Faces 

The strain energy of the faces due to bending and membrane strain is: 
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 is membrane strain in the middle of the plate faces, 

and 
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 is curvature of the middle of the plate faces, and  

i = 1,2 are upper and lower faces respectively. U1, V1, W1 and U2, V2, W2 are 
displacements of upper and lower faces respectively. [A], [B] and [D] are 
standards extensional, couple and bending stiffness matrices of laminated 
composite plate faces [10]. 

2.2 Internal Energy Contribution of the Faces 

We assumed an anti-plane core, in which the stiffness in the x and y direction 
(plane direction) is neglected. Therefore, the core strain energies are represented 
by energies due to shear strains and normal strains in the thickness direction 
only.  

Energy due to shear strains is calculated by using equation below: 
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while the energy due to normal strains are given as follows: 
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where Gx and Gy are shear modulus of the core in the x-z and y-z planes 
respectively and xγ  and yγ  are shear strains in the x-z and y-z planes 

respectively. While h is core thickness.  

During bending of the panels, displacements’ continuity in the interfaces 
between the core and the upper and lower faces should be maintained. The 
continuity produces strain energy in the bonded joint between faces and core 
that can be given as follows: 
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where: 
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= . While t1 and t2 are upper and lower face thicknesses 

respectively; and h is core thickness. xλ  and yλ  are Lagrange Multipliers 

which are arbitrary functions of x and y.  

2.3 External Energy Due to Transverse Load 

The external load is a localized constant pressure in the shaded area as given in 
Figure 1. The load produces external energy that is given by: 
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where Pz is a constant pressure over localized area on the upper face. 

2.4 Total Energy of the System 

Finally, the total energy of the system is given by: 

 eaCCff VUUUUU +++++=Π 2121      (6) 

In order to solve Eq. 6, it is necessary to assume deflection functions of the 
panel. For the case of simply supported plate on all sides, the deflection 
functions could be given in the form of Fourier series as follows: 
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Ritz method requires that the total energy of the system should be stationery. 
Inserting Eq. (7) into Eq. (6), and fulfilling Ritz condition as follows, 
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we have 10 simultaneous equations in ( ) .10,......,2,1  , =iC i
mn  The Fourier series 

were expanded until the deformation values are stable, i.e. they don’t differ 
significantly with the increasing Fourier series. In this paper, m and n were 
expanded up to 50 terms, in order to get satisfactorily results. 
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3 Finite Element Analysis 

A quarter and a full of sandwich panel were analyzed using 3-dimensional 8-
node brick elements (CHEXA elements). Both the faces and the core were 
modeled using these elements. A single layer of brick elements was used to 
model the faces, while the numbers of bricklayer for the core depended on the 
core thickness. Nodal displacements’ continuity between the faces and the core 
should be maintained. A finite element code NASTRAN was used extensively 
during the analysis. The boundary conditions were simply supports in all sides.  

4 Results and Discussions 

4.1 Orthotropic Faces 

The panel dimension and properties are shown in Figure 2 and Table 1. Loading 
area is ranging from x = 47.5 mm through 52.5 mm and from y = 90 mm 
through 110 mm. The pressure is applied on the upper face with a loading 
pressure of  – 1 MPa. The material properties are taken from [5]. As seen in 
Table 1, the seemingly very low stiffness of the core was intended to exploit the 
possibility of having a dimple for these cases. 

Table 1 Panel Dimension and Properties. 

Dimension 
a = 100 mm ; b = 200 mm ; Overall thickness = 12 mm 

Face 
Upper face thickness = 0.1 mm ; Lower face thickness = 0.5 mm 

    E
1
 =  70000  MPa    G

12
 =  26000  MPa     v

12  =  0.3 

    E
2 =  71000  MPa    G

13 =  26000  MPa      v
13  =  0.3 

    E
3 =  69000  MPa    G23 =  26000  MPa     v

23  =  0.3 

Core 
Thickness : 11.4 mm 

   E   =  3          MPa    G   =  1           MPa       υ �����=  0.25 
 

Since the face is an orthotropic material, then the panel is symmetric. Therefore, 
in the finite element analysis, only a quarter of the panel was analyzed. The 
maximum deformation occurred in the center of the panel on the upper face, and 
the value is given in the Table 2. 
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Load : - 1 MPa 

Table 2 Maximum Deformation of the Sandwich Panel due to Pressurized 
Loading. 

 
Deformation (mm) Meyer-Piening 

[5] 
Present Results 

Rayleigh-Ritz Finite Element 
Analysis 

Upper face -3.78 -3.842 -3.775 
Lower face -2.14 -2.156 -2.145 

 
Table 2 shows that a good agreement exists between Rayleigh-Ritz and finite 
element analysis and comparable with the results of [5]. The Rayleigh-Ritz 
produces slightly higher deformations, since it used anti-plane core 
assumptions, whereas both Meyer-Piening [5] and finite element analysis used a 
full three dimensional model. Nevertheless, the Rayleigh-Ritz method was used 
due to its simplicity. Figure 3 shows deformation pattern for this loading. 

 
 
 
 
 
 
 

 
 
                   (a)                                                                      (b)                                                                                

 
Figure 3 Deformation of orthotropic sandwich panel due to constant pressure. 
(a) undeformed state, (b) deformed state. 

Figure 3 shows that local deformation in the vicinity of the pressure occurs, thus 
dimple phenomenon occurs. Figure 4 shows deformation distribution in the x 
direction. It shows that local deformation due to localized pressure exists in the 
upper face, whereas more distributed deformation occurs in the lower face. Both 
figures show that local pressure in the sandwich panels will act locally that will 
not be possible if analyzed using standard Kirchoff-Love assumption. By 
disregarding the shear and normal stiffness in the core thickness direction, 
Kirchoff-Love by definition, will produce the same deformations for the upper 
and lower faces. Therefore, shear and normal strains of the core in the thickness 
direction should be taken into account when analyzing sandwich structures in 
order to produce dimple phenomenon as shown in the above results. 

 

Loading area 
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The stress distribution could also be calculated. Table 3 shows comparison of 
the stresses in the faces using Rayleigh-Ritz (R-R) and finite element analysis 
(FEA). 

 
 
 
 
 
 
 
 
 
 

Figure 4 Deformation distribution in the x-direction. 

Table 3 Stresses in the Faces due to Pressure Load. 

 σσσσx (MPa) σσσσy (MPa) 
 R-R FEA R-R FEA 

Upper 
face 

Top 
Bottom 

-624 
580 

-604.6 
281 

-241 
211 

-256.7 
163.5 

Lower 
face 

Top 
Bottom 

-138 
146 

-106.4 
170 

-121 
127 

-62.76 
98.88 

 
Unlike deformation results, there are some differences in the stresses results 
between R-R and FEA. These due to the difficulties in determining stresses in a 
point in the finite element method, since the stresses are given in the elements, 
not in point, while R-R could accurately calculate stresses in each point. 

4.2 Monoclinic Faces 

We also studied the behavior of sandwich panels with anisotropic faces made of 
typical carbon and glass fiber reinforced plastic (CFRP and GFRP). The 
monoclinic nature of the faces is achieved by orienting fiber direction away 
from x-axis. Figure 5 shows the sandwich panel with off-axis fiber direction. 
The material properties of the carbon and glass fiber reinforced plastics are 
given in Table 4 and 5. 
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Figure 5 Sandwich panel with off-axis fiber direction for upper and lower 
faces. 

Table 4 Material Properties of Sandwich Structures with Typical CFRP Faces. 

Face 

E
1
 =  157889.9 MPa G

12
 =  5957.07  MPa v

12  =  0.32 

E
2 =  9583.713 MPa G

13 
=  5957.07  MPa v

13  =  0.48 

E
3 =  9583.713 MPa G23 =  2537.271 MPa v

23  =  0.32 

Core 

E   =  103.6282  MPa G     =  39.857   MPa v�����  =  0.3 

Table 5 Material Properties of Sandwich Structures with Typical GFRP faces. 

Face ( ScotchPly 100 /glass epoxy) 

E
1
 =  38600 MPa G

12
 =  4140   MPa v12  =  0.26 

E
2 =  8270 MPa G

13 =  4140       MPa v
13  =  0.26 

E
3 =  8270 MPa G23 =  3281.746 MPa v

23  =  0.26 

Core (Polyurethane) 

E   =  7.9  MPa G     =  3.0385   MPa v  =  0.3 
 

Since these sandwich structures contain monoclinic faces, there is no 
symmetrical plane. Therefore, in the finite element analysis, the whole panels 
should be analyzed. In this case, it will not be enough to analyze only a quarter 
of the panels, as it was the case for sandwich panels with orthotropic faces. 
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Figure 6 shows a 3-dimensional model for finite element analysis of the 
sandwich panels, while Figure 7 shows the deformation results for the sandwich 
panels showing the upper and lower panels. 

                                                                        
 
 
 
 
 
 
 
 
                         (a)                                                                      (b) 
 

Figure 6 Three-dimensional finite element model for full sandwich panels. 
 

                                                                                                
 
 
 
 
 
 
 
 
 
 
                              (a)                                                                   (b) 

 
Figure 7 Deformation results of anisotropic sandwich panels due to pressurized 
loading (a) top view, (b) bottom view. 

 
Figure 7 shows that local deformation occurs extensively in the upper face and 
not so extensive in the lower face. The rest of the structures do not deform as 
deep as the loading area. Once again it shows that weak core contributes to this 
phenomenon. 

The deformation value is given in Table 6, for both sandwich panels with CFRP 
and GFRP faces. Table 6 shows that sandwich panels with 0o fiber direction 
have the smallest deformation, thus the stiffest. Sandwich panels with 90o fiber 
direction have the greatest deformation. It shows that orienting fiber direction 
away from the main direction of the panels will produce higher deformations, 

Loading area 

Load = -100 MPa 
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thus weaker structures. Table 6 also shows that the deformation in the upper 
face is 3 – 4 times greater than the lower face. It shows that dimple phenomena 
occur on these cases. 

Table 6 Deformation of Sandwich Panels with Typical CFRP and GFRP 
Faces. 

 Deformation ( mm ) 
 Fiber direction 
 0o 30o 45o 60o 90o 

CFRP 
Upper 
face 

-4.435 -4.567 -4.829 -5.122 -5.354 

Lower 
face 

-1.219 -1.559 -1.590 -1.626 -1.654 

GFRP 
Upper 
face -5.005 -5.134 -5.266 -5.385 -5.463 

Lower 
face 

-1.764 -1.793 -1.813 -1.826 -1.829 

5 Conclusion 

The analysis concludes that there were good agreements between the results of 
sandwich plate deformations due to localized pressure using Rayleigh-Ritz and 
3-D finite element methods.  

The Rayleigh-Ritz analysis used principle of stationery energy, which also 
included shear, and normal deformation of the core in the thickness direction. 
The displacement continuity between faces and core is maintained using 
Lagrange Multipliers. The finite element analysis used 3-dimensional brick 
elements (CHEXA) in the NASTRAN code. The agreements between the 
results of both analyses are very good, especially in the deformation values. The 
analysis also shows that sandwich panels under localized pressure will produce 
dimple phenomenon that will not occur in the case of thin plate. 

Nomenclature 

[A], [B], [D] : Extensional, coupling and bending stiffness 
matrices for upper and lower faces. 

{ } { }, , 1, 2oi i iε κ =  : Membrane strains and curvature of the middle 
plate of the upper and lower faces. 

, , ,  1, 2i i iU V W i =  : Displacements in the x, y and z directions for 
upper and lower faces. 

,x yG G  : Core shear modulus in the x-z and y-z planes. 
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zE  : Core modulus of elasticity in the z (thickness) 
directions. 

,x yγ γ  :  Core shear strains in the x-z and y-z planes. 

,x yλ λ  : Lagrange Multipliers 

zP  : Pressure loading 

1 2,t t  : Thickness of the upper and lower faces 

h  : Core thickness 
,a b : Sandwich panels width and length 
1, 2a a  : Coordinates in x-direction between which the 

pressure occurs. 
1, 2b b  : Coordinates in y-direction between which the 

pressure occurs. 
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