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ABSTRACT 

Long-term Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on  

Soil Carbon and Nitrogen Dynamics. (May 2005) 

Fugen Dou, B.S., Zhejiang Agricultural University, Hangzhou, China; 

M.S., Chinese Academy of Agricultural Sciences, Beijing, China 

Chair of Advisory Committee: Dr. Frank M. Hons 

       Management practices that may increase soil organic matter (SOM) storage include 

conservation tillage, especially no till (NT), enhanced cropping intensity, and 

fertilization. My objectives were to evaluate management effects on labile [soil microbial 

biomass (SMB) and mineralizable, particulate organic matter (POM), and hydrolyzable 

SOM] and slow (mineral-associated and resistant organic) C and N pools and turnover in 

continuous sorghum [Sorghum bicolor (L.) Moench.], wheat (Triticum aestivum L.), and 

soybean [Glycine max (L.) Merr.], sorghum-wheat/soybean, and wheat/soybean 

sequences under convent ional tillage (CT) and NT with and without N fertilization. A 

Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochepts) in southern central 

Texas was sampled at three depth increments to a 30-cm depth after wheat, sorghum, and 

soybean harvesting.  Soil organic C and total N showed similar responses to tillage, 

cropping sequence, and N fertilization following wheat, sorghum, and soybean. Most 

effects were observed in surface soils. NT significantly increased SOC. Nitrogen 

fertilization significantly increased SOC only under NT. Compared to NT or N addition, 

enhanced cropping intensity only slightly increased SOC. Estimates of C sequestration 
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rates under NT indicated that SOC would reach a new equilibrium after 20 yr or less of 

imposition of this treatment. Labile pools were all significantly greater with NT than CT 

at 0 to 5 cm and decreased with depth. SMB, mineralizable C and N, POM, and 

hydrolyzable C were highly correlated with each other and SOC, but their slopes were 

significantly different, being lowest in mineralizable C and highest in hydrolyzable C. 

These results indicated that different methods determined various fractions of total SOC. 

Results from soil physical fractionation and 13C concentrations further supported these 

observations. Carbon turnover rates increased in the sequence: ROC < silt- and clay-

associated C < microaggregate-C < POM-C. Long-term incubation showed that 4 to 5% 

of SOC was in active pools with mean residence time (MRT) of about 50 days, 50% of 

SOC was in slow pools with an average MRT of 12 years, and the remainder was in 

resistant pools with an assumed MRT of over 500 years. 
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CHAPTER I 

INTRODUCTION 

 
       Concerns about the effect of increasing concentrations of greenhouse gases in the 

atmosphere on global climate have increased interest in the soil carbon (C) cycle, with a 

focus on the potential for increasing C sequestration (Lal et al., 2004). The largest pool of 

terrestrial C is contained in soils. Compared to other ecosystems, agroecosystems are 

estimated to contain 178 * 109 mt C, and are second only to tropical forests which have 

approximately two times the area of agroecosystems (Schlesinger, 1997). On the other 

hand, agroecosystems are more manageable than other ecosystems. Furthermore, soil 

organic matter (SOM) plays essential roles in soil nutrient cycling as well as in soil 

physical, chemical, and biological properties. Therefore, a better understanding of SOM 

dynamics in agroecosystems as affected by various agricultural strategies is necessary.  

 

LITERATURE REVIEW 

Effect of Tillage on Soil Organic Matter 

       SOM storage is not only determined by intrinsic soil properties as well as 

environmental factors, but also by management strategies. Conventional tillage (CT) has 

caused reductions in C contents of agricultural soils by leading to increased 

decomposition rates and redistribution of C (Christensen, 1996). These reductions can be 

mitigated by utilizing sustainable management practices such as reduced tillage,   

                                                 
 This dissertation follows the style of the Soil Science Society of America Journal. 
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decreased bare fallow, increased residue input and conversion to perennial vegetation 

(Paustian et al., 1997). Compared to other management practices, conservation tillage has 

received increasing focus due to its potential to increase soil C sequestration. A 

commonly accepted definition of conservation tillage is any tillage system that results in 

at least 30% of the soil surface covered with residues after a crop is planted (Unger, 

1990).  In the southern USA, Franzluebbers et al. (1994) reported that after 9 years, SOC 

under no tillage (NT) was 9% greater in continuous wheat [Triticum aestivum ( L.)], 22% 

greater in rotated wheat-sorghum [Sorghum bicolor (L.) Moench.], and 30% greater in 

continuous wheat-soybean [Glycine max (L.) Merr.] than under CT and suggested that 

accumulation of SOC under NT compared to CT increased with increasing cropping 

intensity. Similar results have also been observed in other regions. Balota et al. (2004) 

found that no tillage practices increased total SOC concentrations over CT by 45, 34, and 

14%, in 0- to 50-, 50- to 100, and 100- to 200-mm depths, respectively, in a tropical 

Oxisol. 

          Conservation tillage not only affects SOM storage, but also its distribution and 

turnover in different pools. Soil organic matter conceptually is divided into several pools 

with different turnover rates, although SOM represents a continuum. In general, SOM is 

often divided into active, slow, and passive pools. Active, or labile, pools are sometimes 

selected to reflect early changes in SOM due to management practices. Soil microbial 

biomass (SMB) is one of the labile pools which has been widely used as an early 

indicator of change in SOM. Many studies have reported that NT significantly increases 

SMB more than CT, especially in surface soil (Feng et al., 2003; Needelman et al., 1999; 

Saffigna et al., 1989). Similarly, Balota et al. (2004) observed that NT resulted in a 
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significant increases in SMB in all crop rotations averaged across all depths compared to 

CT in a Brazilian Oxisol after 20 yrs. However, the greatest differences between NT and 

CT occurred in the surface soil layer (0 to 5 cm). Tillage not only affected the amount of 

SMB, but also the structure of the soil microbial community. Frey et al. (1999) reported 

that fungal abundance in surface soil (0 to 5 cm) in the southern USA was significantly 

higher in NT than CT at all sites, but significantly higher bacterial abundance was only 

observed in two of four sites. At 5 to 15 cm, no significant difference was observed for 

either bacterial or fungal abundance. In an early review of long-term effects of 

agricultural systems on soil biochemical and microbial parameters, Dick (1992) 

summarized that soil urease, acid phosphatase, protease, dehydrogenase, arylsulfatase, 

invertase, and amidase activities in surface soils were significantly higher in NT soils 

compared to plowed soils. Further, this author also reported the opposite result with 

increasing depth in several reviewed studies. Feng et al. (2003), using the phospholipid 

ester- linked fatty acid (PLFA) method, found that the soil microbial community shifted 

over time with soil depth to a greater number of soil bacteria. The above changes in SMB 

may be a consequence of positional differences in plant residue return and the soil 

physical environment resulting from different tillage management. 

        Compared to CT, plant residues are usually left on the soil surface with NT. 

Increased surface accumulation of residues may reduce gas and energy exchange between 

the soil surface and the atmosphere (Grant et al., 1997). A number of studies have 

documented effects of tillage practices on several soil water, temperature, and aeration 

regimes (Black, 1973; Licht and Al-Kaisi, 2005). Franzluebbers et al. (1995b) found that 

soil water content under NT was greater than with CT in surface soil during the fallow 
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period of sorghum-wheat/soybean, and greater or equal water content as CT was 

observed at deeper depths. Soil temperature was lower under NT than CT, and bulk 

density was greater under NT than CT. Similar results were estimated by the 

mathematical model, ecosys, with elevated CO2 (Grant et al., 1997).  

       Particulate organic matter (POM) is significantly affected by tillage practices. After 

examining tillage treatments, Cambardella and Elliott (1992) reported that POM under 

NT was 36% greater than with CT to a depth of 20 cm in a Duroc loam in Sidney, NE 

after 20 years of treatment imposition. Furthermore, these researchers suggested that 

decomposition even in a stubble-mulch treatment was more rapid than in NT, considering 

that the inputs from crop production were not different between tillage treatments. This 

hypothesis was partially supported by significantly higher C/N (20:1) under NT than with 

CT (14:1) for POM. In general, fresh plant residues have higher C/N ratios depending on 

specific species compared to more decomposed materials. The C/N ratio decreases with 

decomposition, and usually approximates 10:1 for highly humified materials. Therefore, 

higher C/N ratio may indicate slower decomposition or residues in an early stage of 

decomposition. However, significantly higher C/N for POM was only observed in surface 

soil (0 to 5 cm) by Franzluebbers and Arshad (1997) in four sites in northern Alberta and 

British Columbia. These authors found no significant differences when C/N of POM was 

averaged to 200-mm depth. One possible reason for the observed difference may be due 

to colder weather because soil temperature, moisture, or substrate availability between 

tillage treatments could affect POM decomposition (Cambardella and Elliott, 1992).   

       Other labile pools, such as mineralizable and hydrolyzable SOM pools, are changed 

by tillage treatments as well. Using aerobic incubation at 25 0C for 24 days, 
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Franzluebbers et al. (1994) observed that mineralizable C was significantly greater under 

NT than CT for several cropping sequences, especially in surface soil. Because slow and 

passive C pools contribute less to short-term incubation, results of mineralizable C 

usually mirror changes in POM or SMB. Compared to mineralizable C, estimates of 

minerlizable N are frequently more complicated and more variable due to N 

reimmobilization and relatively low concentration. Studies on effects of tillage treatments 

on soil hydrolyzable C are few compared to other labile C pools. One possible reason 

may be that this C pool includes all labile C pools as well as part of slow C pools after 18 

hr of digestion at high temperature using strong acid. Another reason may be the 

relatively complicated procedures and specific equipment used.  

       Compared to labile C pools, slow and passive C pools are thought to be more stable 

and less affected by cultivation. Slow and passive C pools are conceptual terms. Our 

discussion of these pools will focus mostly on mineral-associated C and resistant organic 

C (ROC). In fact, although mineral-associated C is considered a protected pool, it is still 

affected by tillage practices. Cambardella and Elliott (1992) reported that mineral-

associated C was 2492, 2813, 2803, and 2566 g m-2 for bare fallow, stubble mulch, no 

till, and native sod, respectively. In this case, CT significantly reduced the pool size of 

this slow C pool. Conversely, NT stored more C in this fraction than native sod which 

was thought to be near equilibrium for C dynamics. These researchers suggested that the 

enrichment in mineral-associated C may have resulted from decomposition of the POM 

originally contained in the grassland soils when first plowed and the subsequent 

movement of this organic matter into the slow C pool.  



 

 

6
 

 

 
 
 

       Resistant organic C is defined as unhydrolyzable C after acid hydrolysis for 18 hrs 

(Rovira and Vallejo, 2002). The turnover rate for this C pool is much slower than other C 

pools. According to the results of 14C dating by Paul et al. (1997), the turnover time of 

this resistant C pool averages more than one thousand years and increases with depth. 

However, the quantity of C is still affected by cultivation. After examining nine soils 

from long-term experimental sites in the Corn Belt region of the East-Central United 

States, Collins et al. (2000) found that ROC was significantly greater under NT than CT 

at 0 to 5 cm. These authors also reported that the proportion of SOC as ROC decreased 

with soil depth. Similar results were also reported by Follet et al. (1997).  

 

Cropping System and Fertilization 

       Compared to tillage practices, cropping system affects SOM and its different pools 

mainly through quantity and quality of plant residue (Janzen et al., 1997). SOM levels 

depend on the balance between soil respiration and annual C inputs to soil. Therefore, 

soil with more C inputs will have more SOM if all other conditions are similar. Larson et 

al. (1972) reported that SOM in agroecosystems is positively correlated with the amount 

of C inputs. However, plant residue quality such as lignin content or the ratio of lignin to 

N also affects decomposition, and therefore, amount of SOM. Parton et al. (1994) 

hypothesized that lignin concentration is a species-specific characteristic and controls 

decomposition rates. Using the conceptual model, CENTURY, Schimel et al. (1994) 

found that soil C storage was linearly related to lignin content over the range of lignin 

values simulated.  Furthermore, cropping system changed soil C pools, especially labile 

C pools. After reviewing the effect of crop rotation on soil biochemical and microbial 
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parameters, Dick (1992) summarized that intensified crop rotation results in significantly 

higher levels of microbial biomass and soil enzyme activities than cropping sequences 

that are either continuously monocultured or have more limited crop rotations. Similar 

results were also reported by Franzluebbers et al. (1994), and these authors suggested that 

the difference in SMB was partially caused by higher SOC from enhanced cropping 

intensity compared with continuous monoculture.  

     Nitrogen fertilization usually has a positive effect on SOM. A number of studies have 

shown that alleviation of nutrient deficiencies by the addition of nutritive amendments 

can enhance crop residue inputs, and consequently SOC content (Campbell et al., 1991b; 

Christensen, 1986; Franzluebbers et al., 1994). However, Halvorson et al. (2002) reported 

that although N addition increased the mass of crop residue returned to the soil, it 

generally did not increase SOC sequestration in the examined cropping systems. 

Therefore, the influence of N addition on soil C storage may vary with other factors, such 

as soil texture or climate.  

 

Research Methods  

       Chemical procedures have long been used to explore SOM dynamics. Soil organic 

matter may generally be divided into three major categories: the fulvic acid fraction that 

is soluble in both acid and alkali; the humic acid fraction that is soluble in alkali and 

insoluble in acid; and the humin fraction that is insoluble in both acid and alkali (Oades, 

1989). The principle behind the use of chemical analysis is that chemical characteristics 

affect SOM transformation or decomposition. For example, ROC extracted by chemical 

procedures has a turnover time of over thousand years, as dated with 14C techniques (Paul 
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et al., 1997). Although humic molecules are undoubtedly more recalcitrant natural 

biopolymers, their intrinsic chemical recalcitrance does not account fo r the observed 

stabilization of organic matter in soils (Golchin et al., 1997). Supporting work reported 

by Duxbury et al. (1989) found that old humic acid fractions of SOM, with ages in the 

range of thousands of years, have half lives on the orders of weeks when extracted and 

added to unextracted soils. Therefore, Ladd and Foster (1996) suggested that studies of C 

dynamics in soils involving extractive chemical procedures have not provided much 

useful information. 

       Alternatively, physical fractionation methods have been extensively used in the last 

two decades. These methods are based on the assumption that SOM dynamics are mainly 

controlled by turnover of soil aggregates. Aggregate hierarchy has been used to explain 

SOM storage and distribution. In a recent review, Jastrow and Miller (1997) summarized 

this hypothesis of aggregate hierarchy. In soils where OM is the major binding agent, 

primary particles are bound together with bacterial and fungal debris into extremely 

stable silt-sized microaggregates (2- to 20-µm diameter), which may be bound together 

with additional debris and fragments into larger microaggregates (20- to 50-µm 

diameter). These microaggregates, in turn, are bound into macroaggregates (>250 µm 

diameter) by transient and temporary binding agents such as fine roots and fungal 

hyphae. In this conceptual model, organic matter is divided into particulate organic 

matter and adsorbed organic matter (Golchin et al., 1997). Particulate organic matter can 

be divided into three categories: free POM, macroaggregate-POM, and microaggregate-

POM according to their function in aggregate stabilization, as well as their physical 

position. Free POM consists of relatively fresh plant root and other residues with slight 
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decomposition, and thus can be floated out of the soil with gentle shaking using a 

solution of density 1.6 g  ml-1. Macroaggregate POM is more decomposed and tightly 

associated with soil minerals of microaggregates and functions more as the core of 

macroaggregates than does free POM. Compared to the extraction of free POM, more 

energy should be used to separate macroaggregates to obtain occluded POM. A number 

of researchers indicate that this fraction is responsible for C loss during conversion of 

pasture or forest to cultivated soils.  Microaggregate POM is usually separated by 

ultrasonic energy and consists of materials with various densities ranging from 1.6 to 2.0 

g ml-1 depending on the degree of decomposition. However, soil POM is a continuum 

from relatively fresh plant residues to deeply degraded residues, and therefore, the above 

definition of POM is not absolute. Recently, Six et al. (2000a) proposed additional 

mechanisms of C storage under NT. These authors suggested that new microaggregates 

can be produced within macroaggregates. Compared to CT, more new microaggregates 

can be formed under NT, and therefore more C may be sequestered under NT because the 

C associated with microaggregates is more stable.  

       Isotopes, especially stable isotopes such as  13C have been coupled with physical 

fractionation techniques to study soil C turnover. Boutton (1996) and Balesdent and 

Mariotti (1996) reviewed the theory, techniques, case studies, and issues on 13C 

fractionation during decomposition as well as environmental factors. The basic principle 

behind  the 13C natural abundance technique is related to a change from C3 to C4 

vegetation or vice versa. C3 and C4 plants have different 13C discrimination, or 

fractionation, because of different photosynthetic pathways. The extent of discrimination 

against 13C is greater for C3 than C4 plants. Plants with the C3 photosynthetic pathway 
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have 13C values ranging from approximately -32 to -22 ‰, with a mean of -27‰, and the 

corresponding values for C4 plants is -17 to -9‰, with a mean of -13‰. These authors 

have also indicated that some variations of 13C abundance in plant residues are also 

caused by other environmental and biological factors (Fu et al., 1993). In addition, soil 

microbes and macrofauna contribute to 13C fractionation during decomposition. Thus, 

final data analysis should interpret these effects to help explain C turnover. Boutton 

(1996) used 13C and physical fractionation methods to study SOC dynamics of savanna 

ecosystems in the subtropical Rio Grande Plains of southern Texas. The results showed 

that the sand fraction contained new C derived from the current C3 woodland vegetation 

and conversely, older C derived from previous C4 grassland was mainly found in finer 

fractions. Similar results were reported by Jastrow et al. (1996b). 

 

OBJECTIVES 

       Access to a long-term experiment in the southern USA with treatments of cropping 

sequence (wheat, sorghum, and soybean systems), tillage (CT and NT), and N 

fertilization (with and without) provides an opportunity to explore the effects of 

agricultural practices on soil C storage and turnover. Specifically, we wanted to evaluate 

the effects of cropping sequences, tillage, and N fertilization on: i) SOC and total N 

storage, as well as C sequestration rates in the last decade, ii) labile SOC pools such as 

SMB, mineralizable C and N, POM C, and hydrolyzable C, iii) slow and ROC pools 

(mineral-associated organic C and unhydrolyzable C), iv) C distribution in physical size 

fractions, and v) C turnover rates and pool sizes using a long-term incubation technique. 
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CHAPTER II 

SOIL ORGANIC CARBON AND NITROGEN STORAGE AS  

AFFECTED BY TILLAGE, CROPPING SEQUENCE, 

 AND NITROGEN FERTILIZATION 

 

INTRODUCTION 

        Accumulation of soil organic matter (SOM) affects soil quality, greenhouse gas 

mitigation, and agricultural ecosystem dynamics (Lal et al., 2004). SOM storage is 

determined not only by intrinsic soil properties as well as environmental factors, but also 

by management practices. Management practices that may increase SOM storage include 

conservation tillage, especially no-till (NT), enhanced cropping intensity, and 

fertilization. Increasing SOM accumulation by NT compared to conventional tillage (CT) 

has been extensively reported (Lal et al., 2004). However, the potential of NT to 

sequester C is not unlimited since previous studies have reported that soil organic C 

(SOC) concentration reaches a maximum peak, or a new equilibrium, one or more 

decades after initiation of NT. West and Post (2002), summarizing global data, reported 

that C sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 

10 yr, with SOC reaching a new equilibrium in 15 to 20 yr. Furthermore, these authors 

also indicated that following initiation of an enhancement in rotation complexity, SOC 

may reach a new equilibrium in approximately 40 to 60 yr. These conclusions, however, 

are based on global data, and specific SOM accumulation and dynamics are affected by 

various factors such as soil, climate, and management practices, etc. Therefore, to better 

manage SOM, more specific information is needed. 
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       In this study, our objectives were to explore: (i) the response of SOC and soil N to 

tillage, cropping sequence, and N fertilization, and (ii) to estimate average SOC 

accumulation rates. 

 

MATERIALS AND METHODS 

Crop Management and Site Characteristics 

      A long-term field experiment was initiated in 1982 in the Brazos River floodplain in 

south-central Texas (30032’N, 94026’W). Sorghum [Sorghum bicolor (L.) Moench.] was 

managed under CT and NT in continuous sorghum (CS), and rotated wheat (Triticum 

aestivum L.)/soybean [Glycine max (L.) Merr.]-sorghum (SWS) cropping sequences. 

Soybean was managed under CT and NT in continuous soybean (CS), continuous 

wheat/soybean (WS), and rotated SWS cropping sequences. Wheat was managed under 

CT and NT in continuous wheat (CW), WS, and rotated SWS cropping sequences. Crop 

growing seasons were from early November to late May for wheat, early June to late 

October for soybean, and late March to late July for sorghum. Continuous monocultures 

produced one crop each year, WS produced two crops each year, and SWS produced 

three crops every two years. Cropping intensity was defined as the fraction of the year 

when a crop was growing, and was 0.42 for continuous sorghum, 0.38 for continuous 

soybean, 0.5 for CW, 0.65 for SWS, and 0.88 for WS.  Nitrogen fertilizer (NH4NO3) was 

broadcast on wheat at 0 or 6.8 g N m-2 during late winter or early spring. Soybean did not 

receive N fertilizer, while sorghum received 0 or 9 g N m-2 banded preplant. 

       The experimental design was a split-split plot within a randomized complete block 

design, with cropping sequence as the main plot, tillage treatment as the sub plot, and N 
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fertilizer rate as the sub-sub plot. Plots measured 4 x 12.2 m, and treatments were 

replicated four times. 

       The soil used is classified as Weswood silty clay loam (fine-silty, mixed, superactive, 

thermic, Udifluventic Haplustepts) and contains an average of 115, 452, and 433 g kg-1 of 

sand, silt, and clay, respectively.  Under cultivation, this soil has a pH of 8.2 (1:2, 

soil:water) and an organic C content of approximately 8 g C kg-1 soil. Annual 

temperature is 20 0C and annual rainfall is 978 mm. 

 

Soil Sampling and Stover Harvest 

       Soil samples were collected shortly after wheat, sorghum, and soybean harvesting in 

May, August, and October 2002, respectively. Individual samples consisted of 25 

composited cores (19-mm diameter) per plot that were divided into depth increments of 0 

to 5, 5 to 15, and 15 to 30 cm. Soil was sieved to pass a 4.7-mm screen (visible pieces of 

crop residues and roots removed) and oven-dried for 24 h at 40 0C. A portion of the 

sieved, moist soil was also dried at 60 0C for 48 h for chemical analysis. 

       Wheat and sorghum stover yields in 2002 were estimated by hand harvesting 2 m2 or 

3 m2 of each plot, respectively, at ground level, removing panicles, weighing, drying at 

60 0C for 48 h, and reweighing. Soybean stover was not harvested for yield 

determination. 

 

Soil Organic C and N  

       Soil that had been dried at 60 0C was further ground to pass a 0.5-mm screen and was 

analyzed for SOC by the modified Mebius method (Nelson and Sommers, 1982) and total 
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N (TN) following the procedure of Gallaher et al. (1976). Ammonium-N was determined 

from the diluted digest using an automated salicylic acid modification of the indophenol 

blue method (Technicon Industrial Systems, 1977a). 

 

Carbon Sequestration Rates 

       Annual sequestration rates for SOC since 1992 were calculated based on the equation 

proposed by West and Post (2002):   

       ∆SOCR% yr-1 = {[(NT2 – CT2) – (NT1 – CT1)]/(NT1 – CT1)/(t2 – t1)} * 100     (2-1) 

where NT1 and NT2 and CT1 and CT2 are SOC under NT and CT measured in 1992 and 

2002, respectively; SOCR is the estimated annual rate of soil SOC sequestration; and t1 

and t2 are the respective years of soil sample collection (1992, 2002). Because soil sample 

depths in 1992 and 2002 were from 0 to 5, 5 to 12.5, and 12.5 to 20 cm,  and 0 to 5, 5 to 

15, and 15 to 30 cm, respectively, only data from 0 to 15 cm were used. Data collected in 

1992 from 5 to 12.5 cm was normalized to 5 to 15 cm, assuming soil bulk density and 

SOC concentration were the same for these two depths. Soil bulk density values used in 

2002 were those of Franzluebbers  et al. (1994). Soil samples used to estimate C 

sequestration rates were collected after wheat or sorghum harvest. Samples collected in 

1992 represented 10 years of treatment imposition. 

 

Statistical Analysis 

        Analysis of variance, correlation, and regression were conducted as appropriate 

(SPSS, 2001). All differences discussed are significant at the P<0.05 probability level, 
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unless otherwise stated. Fisher’s protected least significant difference was calculated only 

when the analysis of variance F-test was significant at P<0.05. 

 

RESULTS AND DISCUSSION 

Sorghum and Wheat Stover Yield 

       Sorghum stover yield was significantly affected by tillage and cropping sequence. 

Yield of sorghum stover with CT was significantly greater than for NT, especially for CS 

(Fig. 2.1). Compared to NT, stover yield under CT was 28 and 5% greater for CS and 

SWS, respectively. Enhanced cropping intensity with SWS also increased sorghum stover 

yield. Yield was 18% greater for SWS than for CS. Nitrogen addition did not affect 

stover yield. 

       Nitrogen fertilization, however, significantly increased wheat stover yield (Fig. 2.1). 

Averaged across cropping sequence and tillage, N addition increased wheat stover yield 

by 70%. Averaged across N application and cropping sequence, yield of wheat stover 

under NT was significantly higher by 19% than with CT.  Our results contrasted with 

those observed by Fenster and Peterson (1979), who reported that residue inputs from 

crop production were not different between tillage treatments. In addition, Destain et al. 

(1989) observed that wheat stover yield under conventional tillage was greater than with 

minimum tillage in a silt loam soil. One possible reason for these discrepancies may be 

due to a difference in experimental period. Our study was conducted for 20 years instead 

of one year for that by Destain et al. (1989). Compared with tillage, N fertilization 

significantly contributed to observed differences in wheat stover production. Nitrogen 
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Figure  2.1. Sorghum (a) and wheat (b) residue production in 2002 as affected by tillage, 

cropping sequence, and N fertilization. CS, CW, SWS, and WS indicate continuous 
sorghum, continuous wheat, sorghum-wheat-soybean, and wheat-soybean. CT and NT 
refer to conventional and no tillage. Error bars represent standard deviation. 
Comparisons for tillage and N fertilization are within cropping sequences. Means 
followed by the same letter are not different at P<0.05. 

 

 

addition increased stover yield in all cropping sequences, whether produced with CT or 

NT, compared to no N controls. Since grain was removed, the difference in wheat stover 

yield reflected the primary difference in plant residue input, assuming a consistent 

difference in root production. Root dry matter response to increased soil N level has been 

reported as positive (Bulisani and Warner, 1980). However, N has also been shown to 

increase the shoot:root ratio in crops (Reed et al., 1988; Bulisani and Warner, 1980) and 

this increase is due mainly to the increase in new leaf formation and leaf area expansions 

(Reed et al., 1988). Moroke (2002) reported that tillage did not significantly affect root 

length density of cowpea [Vigna unguiculate (L.) Walp], sunflower (Helianthus annuus 

L.), and sorghum in Texas during a two-year observation. 
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Soil Organic C and N 

       In wheat systems, SOC was affected by two significant interactions in surface soil 

samples: tillage by N fertilization and tillage by cropping sequence (Fig. 2.2a). With NT, 

SOC was significantly higher than without N fertilization. The difference was 

insignificant under CT when averaged across all cropping sequences. Although N 

fertilization increased the amount of crop residue input with CT (Fig. 2.1), it did not 

increase concentrations of SOC. SWS and WS under NT, although not different from 

each other, exhibited significantly higher SOC concentration than CW.         

       Compared to surface soil (0 to 5 cm), concentrations of SOC in wheat systems 

decreased with depth (Fig. 2.2b, c). Few differences in SOC concentration between 

treatments were noted at a depth of 5 to 15 cm (Fig. 2.2b). However, at 15 to 30 cm, NT 

significantly increased SOC for SWS and WS compared to CT.  

       Soil total N under wheat showed similar patterns as SOC (Fig. 2.3). The C:N ratio of 

SOM was  > 10:1 at all soil depths (Fig. 2.4), which was slightly greater than 9:1 reported 

by Franzluebbers et al. (1994) 10 years after treatment establishment. 

       In sorghum systems, soil organic C in surface soil (0 to 5 cm) varied with tillage, N, 

and cropping intensity (Fig. 2.2). A significant interaction between tillage and N 

fertilization was observed (Fig. 2.2a). Under NT, SOC was 20% greater with than 

without N fertilization in both CS and SWS. This result contrasted with that observed by 

Franzluebbers et al. (1994), who reported that N fertilization had little effect on SOC 

under both CT and NT. Nitrogen addition had no effect on SOC with sorghum under CT 

in the current study. 
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Figure  2.2. Soil organic C (SOC) with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- to 5-, b) 5- to 15-, 

and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat-soybean, 
respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and NT refer to conventional 
and no tillage, respectively. Nitrogen fertilization in soybean systems refers to the previous crop that received N fertilization. 
Wheat, sorghum, and soybean legends refer to soil samples collected after wheat, sorghum, and soybean harvesting. Error bars 
represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means followed by the 
same letter are not different at P<0.05. 
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Figure  2.3. Soil total nitrogen (TN) with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- to 5-, b) 5- to 15-, 

and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat-soybean, 
respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and NT refer to conventional 
and no tillage, respectively. Nitrogen fertilization in soybean systems refers to the previous crop that received N fertilization. 
Wheat, sorghum, and soybean legends refer to soil samples collected after wheat, sorghum, and soybean harvesting. Error bars 
represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means followed by the 
same letter are not different at P<0.05.  
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Figure  2. 4. The C:N ratio of soil organic matter (SOM) with depth as affected by cropping sequence, tillage, and N fertilization at a) 

0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and 
wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and NT refer 
to conventional and no tillage, respectively. Nitrogen fertilization in soybean systems refers to the previous crop that received N 
fertilization. Wheat, sorghum, and soybean legends refer to soil samples collected after wheat, sorghum, and soybean harvesting. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means followed 
by the same letter are not different at P<0.05.
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       Compared to CT, SOC under NT with sorghum was 50 and 42% greater for CS and 

SWS, respectively. Increased cropping intensity significantly enhanced SOC storage 

under both CT and NT. Soil organic C in SWS was 35% and 28% greater for CT and NT 

compared with CS, respectively. Using global data analysis, West and Post (2002) 

reported that both NT and increased crop intensity increased SOC.  Furthermore, NT 

increased SOC over two-fold compared with enhanced crop intensity. 

       However, SOC with sorghum was lower under NT than CT in deeper soil (5 to 30 

cm) (Fig. 2.2b, c). Soil organic C under NT was 9 and 18% lower for CS and SWS, 

respectively, than with CT at a depth of 5 to 15 cm. The difference was smaller at 15 to 

30 cm. The stratification effect of NT on SOC was also observed by other studies 

(Doran, 1987; Six et al., 2000b). 

       Soil total N under sorghum was highly related with SOC (data not shown). 

Therefore, TN showed patterns similar to SOC (Fig. 2.3). The C:N ratio of SOM with 

sorghum under CT was greater than with NT through all soil depths (0 to 30 cm) (Fig. 

2.4). Differences, however, were only significant (P<0.05) in surface soil. These results 

were consistent with our study for wheat, where we also observed greater C:N ratios 

under CT. 

       In soybean cropping systems, SOC in surface soil after 20 years was significantly 

affected by tillage, cropping sequence, and previous N fertilization of crops (Fig. 2.2a). 

Soil organic C under NT was 45, 49, and 50% higher in CS, WS, and SWS, respectively, 

than under CT. Averaged across tillage and previous crop-N fertilization, SOC was 20% 

higher in WS and 21% higher in SWS compared to CS. Overall, previous crop-N 
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fertilization resulted in 3% more SOC than with no N. Soil organic C increased with 

cropping intensity, but there was no difference between SWS and WS. No major 

significant differences in SOC were observed among treatments at deeper depths (Fig. 

2.2b, 2c). Similar results for TN and C:N ratio of SOM following soybean were 

observed as in sorghum and wheat systems (Figs. 2.3 and 2.4). 

      Significant increases in SOC due to NT have been observed by many studies. Sá et 

al. (2002) reported SOC was significantly higher in soils under long-term NT than under 

native vegetation and CT treatments in the 0-to 5-cm layer in Brazil. These authors also 

reported that SOC in the soil surface was significantly higher at 22 years than at 10 years 

after conversion to NT. Halvorson et al. (2002) also observed similar results in the 

central Great Plains of the US.  Greater crop residue return may partially explain 

differences in SOC between NT and CT. Under NT, the higher concentration of SOC 

with N fertilization was consistent with that reported by Christensen (1988), who 

suggested that mineral fertilizers influence SOM levels by increasing crop productivity, 

thereby, causing a greater return of plant residues to soil.  

         As was found in our study, increased cropping intensity has also been reported to 

increase soil C sequestration (Balota et al., 2004; Campbell et al., 1991a; Paustian et al., 

2000; West and Post, 2002). Lal (1997) suggested that cropping sequences and 

combinations influence SOC contents through their effects on: (i) total amount and rate 

of biomass production, (ii) shoot:root ratio, and (iii) ratio of C to other nutrients in the 

biomass. Furthermore, West and Post (2002) suggested that enhancing rotation 

complexity did not result in as much SOC sequestration as did a change to NT. These 
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authors also observed that enhancing rotation complexity, while already using NT, did 

not result in a significant increase in SOC. However, our study indicated 34% more SOC 

in SWS than in continuous sorghum with NT (Fig. 2.2). 

        Various mechanisms of C accumulation under NT have been proposed. 

Franzluebbers et al. (1994) reported that the lack of soil disturbance under NT 

contributed to the accumulation of SOC compared to CT. After investigating a 

chronosequence of restored tallgrass prairie, Jastrow (1996a) observed that most of the 

accumulated C occurred in the mineral-associated fraction of macroaggregates. Six et al. 

(2000a) proposed a conceptual model to explain the loss or accumulation of SOC under 

CT or NT, respectively. The main mechanism for C sequestration under NT was 

hypothesized to be due to slowed soil macroaggregate turnover and increased 

microaggregate formation (Six et al., 2000a). According to this conceptual model, the 

rate of macroaggregate degradation is reduced under NT compared to CT, resulting in 

microaggregates in which C is stabilized and sequestered over the long term. 

       Different crop species also differentially affected SOC storage. SOC with CW was 

greater than with continuous sorghum or soybean, regardless of tillage treatment (Fig. 

2.5). In surface soil, SOC under CT was 25 and 21% greater with CW than with 

continuous sorghum and soybean, respectively. Under NT, however, the difference in 

SOC was significantly smaller (Fig. 2.5). Differences decreased with depth and were 

smallest at 5- to 15-cm soil depth. The return of aboveground crop stover was greater 

with continuous sorghum than CW. If we that assume these results occur annually, then 
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Figure  2.5. Soil organic C (SOC) with depth as affected by cropping sequence, and 
tillage at a) 0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CSorghum, CSoybean, 
and CW indicate continuous sorghum, soybean, and wheat, respectively. CT and NT 
refer to conventional and no tillage. Error bars represent standard deviation. 
Comparisons are across all crops. Means followed by the same letter are not different 
at P<0.05. 
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one possible reason for this difference may be due to a difference in crop residue quality, 

or possibly due to differences in root distribution.  

 

Rate of C Storage 

       Using the equation suggested by West and Post (2002), C sequestration rates in this 

study were negative compared with data collected in 1992 (Franzluebbers, unpublished 

data), except in sorghum systems with N addition (Table 2.1). Nitrogen addition tended 

to reduce the negative trend. One reason for negative sequestration rates was a decrease 

over time in the difference of SOC between CT and NT. Concentrations of SOC under 

CT in 2002 were greater than those in 1992; however, SOC under NT in 2002 was very 

similar to that in 1992. Thus, according to the suggested equation, it is possible to get 

low or negative values for C sequestration rate. Soil organic C may have reached 

saturation or a new equilibrium under NT. Hassink et al. (1997) hypothesized that soil 

has a finite capability to protect or sequester C. In our case, SOC under NT may have 

approached or reached carbon saturation, while SOC under CT still has capacity to store 

C. Our results with NT were consistent with the hypothesis that SOC reaches a new 

equilibrium in 15 or 20 yrs after converting CT to NT. West and Post (2002) also 

reported minimal or negative rates of SOC accrual for soil converted from CT to NT 

after 7 or 10 years. Compared with monoculture, enhanced cropping intensity did not 

show consistent trends for wheat and sorghum systems with tillage treatments (Table 

2.2). 



 

 

26

Table 2.1. Annual C sequestration rates for no-till vs. conventional till for sorghum and 
wheat systems. Values compared at 9 and 20 years after treatment imposition. 

Crop Systems Cropping 
sequence† N Addition (g N m-2) C sequestration  

rate (% yr-1) 
Wheat CW 0 -7.5 

  6.8 -4.3 
 SWS 0 -2.6 
  6.8 -0.94 
 WS 0 -4.4 
  6.8 -2.3 

Sorghum CS 0 -1.04 
  9.0 3.9 
 SWS 0 -7.1 
  9.0 0.9 

†CW, SWS, WS, and CS refer to continuous wheat, sorghum-wheat-soybean, wheat-
soybean, and continuous sorghum, respectively.  

 
 
 
 
 
 
 
 
 
 
Table 2.2. Annual C sequestration rates for enhanced cropping intensity vs. monoculture 

across N addition for sorghum and wheat systems. Values compared at 9 and 20 years 
after treatment imposition. 

Crop Systems Cropping 
sequence† Tillage treatment‡ C sequestration  

rate (% yr-1) 
Wheat  SWS  CT 232.82 

  NT 1.70 
 WS CT -9.45 
  NT 1.54 

Sorghum SWS CT 1.84 
  NT -0.76 

†SWS and WS refer to sorghum-wheat-soybean and continuous wheat-soybean, 
respectively.  

‡ CT and NT refer to conventional and no till. 
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CONCLUSIONS 

       Crop stover production was differentially affected by tillage, cropping sequence, and 

N fertilization for wheat and sorghum. Nitrogen addition significantly increased wheat 

stover yield regardless of tillage. NT also increased wheat stover yield compared to CT. 

No significant difference from N fertilization was observed for yield of sorghum stover. 

In contrast to wheat, NT also slightly decreased sorghum stover yield compared to CT. 

     Soil organic C and TN showed similar responses to tillage, cropping sequence, and N 

fertilization in soils collected following wheat, sorghum, or soybean. Most effects were 

observed in surface soils. NT significantly increased SOC. Nitrogen addition 

significantly increased SOC under only NT. Compared to NT or N fertilization, 

enhanced cropping sequences only slightly increased SOC. At a soil depth of 5 to 15 cm, 

SOC often was slightly greater under CT than NT. Crop species also affected SOC 

storage. In general, soil cropped to wheat sequestered more C than with sorghum or 

soybean, especially with CT. Soil TN was highly correlated with SOC regardless of soil 

depth or crop species. The C:N ratio of SOM in current samples was slightly wider than 

10 years earlier. 

       Based on the assumption that soil bulk density did not change significantly during 

the past 10 years, the SOC sequestration rate for NT compared to CT generally was 

negative, indicating that SOC reached a maximum or a new equilibrium between 9 and 

20 years after imposition of NT. 
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CHAPTER III 

LABILE SOIL ORGANIC CARBON AND NITROGEN POOLS: RESPONSE TO 

TILLAGE, CROPPING SEQUENCE, AND NITROGEN FERTILIZATION  

 

INTRODUCTION 

       The accumulation of soil organic matter (SOM) is critical because SOM plays 

important beneficial roles in soil physical, chemical, and biological characteristics. 

Recently, SOM has received additional attention because of the magnitude of terrestrial 

SOM in global C sequestration and its potential effect on global climate change 

(Schlesinger, 1997). The quantity of SOM is a balance of net input (such as crop roots 

and residues) and net output through soil respiration or soil erosion. Therefore, 

agricultural management strategies which increase organic matter input and/or decrease 

decomposition are favorable. Conservation tillage, including no tillage (NT), has been 

used to achieve this objective (Lal et al., 2004). Many studies have reported positive 

effects of NT on soil organic C (SOC) sequestration. Compared to conventional tillage 

(CT), NT decreases soil disturbance and increases SOM storage (Franzluebbers et al., 

1994; Jastrow and Miller, 1997). However, the potential of NT to sequester more C is 

limited since previous studies have reported that SOC concentration reaches a peak, or 

new equilibrium, after one or more decades of imposition. Summarizing global data, 

West and Post (2002) reported that with a change from CT to NT, C sequestration rates 

could be expected to peak in 5 to 10 yr, with SOC reaching a new equilibrium in 15 to 

20 yr. Those authors also indicated that following initiation of an enhancement in 
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rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. 

Therefore, a relatively sensitive index is necessary to measure short-term changes in 

SOC resulting from different management strategies. 

       Compared to SOC, labile pools over shorter time periods are preferentially used to 

estimate longer-term changes in SOC. Soil microbial biomass (SMB), particulate 

organic matter (POM) C, mineralizable C, and light fraction C have been researched as 

possible sensitive indicators of changes in SOC. Microbiological properties such as 

enzyme activities, respiration, and SMBC responded more quickly to environmental 

conditions than total SOC (Brookes, 1995; Powlson et al., 1987). On chronosequences of 

reclamation sites, Insam and Domsch (1988) reported that the proportion of SOC as 

SMBC could be used as a sensitive indicator to determine whether the system is 

developing or mature. Sparling (1997) proposed that the sensitivity of SMB is likely due 

to much faster turnover of this pool than SOC. Using a simple size fractionation, 

Cambardella and Elliott (1992) suggested that POM-C explained most of changes in 

SOC due to different management strategies. A comparison between labile C pools was 

made recently by Mclauchlan and Hobbie (2004). These authors suggested that all labile 

pools, including SMBC, mineralizable C in a 12-day incubation, hydrolyzable C, and 

light fraction C were positively correlated with each other and increased with SOC. 

These relationships among labile pools were studied in the northwestern U.S. However, 

few studies are available on whether these results also occur in warmer, drier portions of 

the southern U.S. Thus, for a specific site, it may be necessary to select a distinct 

indicator to reflect changes in SOC status. 
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       The objectives of this experiment were to: (i) determine the effect of tillage, N 

fertilization, and cropping sequence on various soil labile C pools; (ii) determine 

relationships between SMBC, mineralizable C in a 24-day incubation, hydrolyzable C, 

and POM-C; and (iii) determine which of the above indicators is most sensitive to 

management strategies in our environment. 

  

MATERIALS AND METHODS 

Crop Management and Site Characteristics 

      A long-term field experiment was initiated in 1982 on the Brazos River floodplain in 

southcentral Texas (30032’N, 94026’W). Sorghum [Sorghum bicolor (L.) Moench.] was 

managed under conventional (disk) tillage and NT in continuous sorghum (CSorghum), 

and rotated wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.]-sorghum 

(SWS) cropping sequences. Soybean was managed under conventional (disk) tillage and 

NT in continuous soybean (CSoybean), continuous wheat/soybean (WS), and SWS 

cropping sequences. Wheat was managed under conventional (disk) tillage and NT in 

continuous wheat (CW), WS, and SWS cropping sequences. Crop growing seasons were 

from early November to late May for wheat, early June to late October for soybean, and 

late March to late July for sorghum. Continuous crops produced one crop each year, WS 

produced two crops per year, and SWS produced three crops every two years. Nitrogen 

fertilizer (NH4NO3) was broadcast on wheat at 0 or 6.8 g N m-2 during late winter or 

early spring. Soybean did not receive N fertilizer, while sorghum received 0 or 9 g N m-2 

banded preplant. 
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       A split-split plot within a randomized complete block design was established with 

cropping sequence as the main plot, tillage as the sub plot, and N fertilizer rate as the 

sub-sub plot. Plots measured 4 x 12.2 m, and treatments were replicated four times. 

       The soil used is classified as a Weswood silty clay loam (fine-silty, mixed, 

superactive, thermic, Udifluventic Haplustepts) and contains an average of 115, 452, and 

433 g kg-1 of sand, silt, and clay, respectively.  Under cultivation, this soil has a pH of 

8.2 (1:2, soil:water) and an organic C content of approximately 8 g C kg-1 soil. Annual 

temperature is 20 0C and annual rainfall is 978 mm. 

 

Soil Sampling 

       Soil samples were collected shortly after wheat, sorghum, and soybean harvesting in 

May, August, and October 2002, respectively. Individual samples consisted of 25 

composited cores (19-mm dia.) per plot that were divided into depth increments of 0 to 

5, 5 to 15, and 15 to 30 cm. Soil was sieved to pass a 4.7-mm screen (visible pieces of 

crop residues and roots removed) and oven-dried for 24 h at 40 0C. A portion of the 

sieved, moist soil was also dried at 60 0C for 48 h for chemical analysis. 

 

Chemical and Biological Analyses  

       Dried soil was passed through a 2-mm screen and analyzed for initial NH4
+-N and 

NO3
--N concentrations using an automated salicylic acid modification of the indophenol 

blue method (Technicon Industrial Systems, 1977a) and cadmium reduction method 
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(Technicon Industrial Systems, 1977b), respectively, following extraction with 2 M KCl 

(1:4 w:v) by shaking for 30 min. 

        Mineralizable C and N were estimated using a short-term incubation method 

(Campbell et al., 1991a) with the following modifications. Fifty-gram oven-dry soil 

samples were placed in 50-mL beakers, brought to a water potential of approximately 

50% field capacity, and incubated in 1-L air-tight glass jars in the presence of 10 mL of 

1.0 M KOH at 25 0C. Vials of KOH were removed after 1, 7, 17, and 24 days, with 

evolved CO2-C determined by titration (Anderson, 1982). Soil subsamples were dried at 

60 0C for 48 h and ground to pass a 2-mm screen. A 7-g portion was extracted in 28 mL 

of 2 M KCl and the extract analyzed for NH4
+-N and NO3

--N using autoanalyzer 

techniques.  

       Soil microbial biomass C and N were estimated using the chloroform fumigation-

incubation method (Jenkinson and Powlson, 1976) with the following modifications. 

After a 7-day pre- incubation at 50% field capacity, moist soils were fumigated with 

alcohol- free chloroform and incubated in 1-L air-tight glass jars in the presence of 10 

mL of 1.0 M KOH at 25 0C for 10 days. The quantity of CO2-C absorbed in the alkali 

during this period was determined by titration (Anderson, 1982). Soil microbial biomass 

C was determined by dividing the quantity of CO2-C evolved over 10 days by 0.41 

(Voroney and Paul, 1984). 

       Soil microbial biomass N was determined from the following equation: 

  SMBN = [(mg NH4
+-N kg-1 soil 10 day-1) fumigated – (mg NH4

+-N kg-1 soil)initial]/kn   (3-1) 
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where, kn = 0.41 (Carter and Rennie, 1982). No significant increase in NO3
--N occurred 

in the fumigated sample. 

      Specific respiratory activity of soil microbial biomass carbon (SRAC) and specific 

mineralization activity of soil microbial biomass nitrogen (SMAN) were estimated by 

dividing the net potential microbial activity (i.e., mineralizable C and N) by the size of 

the microbial pool (i.e., SMBC and SMBN) (Campbell et al., 1991a). 

        POM C was determined with depth in wheat systems, but only in surface soils (0 to 

5 cm) for sorghum and soybean systems. POM was separated from the <4.8-mm soil 

following the method of Cambardella and Elliott (1992). Subsamples (50 grams) were 

dispersed in 100 mL of 0.001 M Na4P2O7 by shaking for 16 h on a reciprocal shaker. The 

dispersed soil samples were passed through a 53-µm sieve, and retained materials were 

rinsed several times with water. Material retained on the sieve and the soil slurry that 

passed through the sieve containing the mineral-associated and water-soluble C and N 

were both dried in a forced-air oven at 55 0C. The dried slurry sample was subsequently 

ground with a mortar and pestle to pass a 0.2-mm sieve and was analyzed for total 

organic C and N as previously described in other chapters. The difference between the C 

and N values for the soil slurry and those obtained from a nondispersed, whole soil 

sample was considered to be equal to the C or N retained on the sieve.  

       Acid-hydrolyzable organic C which also represents more labile C pools was 

determined using the method suggested by Rovira and Vallejo (2002) with the following 

modifications. One g of oven-dry soil subsample passing through 60 mesh was 

hydrolyzed in 25 mL of 6 N HCl on a digestion tube in an aluminum block digestor at 
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110 0C for 18 h, with occasional shaking. After cooling, the unhydrolyzed residue was 

recovered by centrifuging at 2851x g for 20 min and decanting the liquid. The process of 

washing with deionized water, centrifugation and decantation was repeated several times 

until neutral pH was reached. The residue was then transferred to a pre-weighed vial, 

dried at 60 0C to constant weight, and analyzed for C as previously described. Thus, 

acid-hydrolyzable C was quantified by the difference between the C values for the 

residue and those obtained from a whole soil sample. 

 

Statistical Analysis 

        Analysis of variance, correlation, and regression were conducted as appropriate 

(SPSS, 2001). All differences discussed are significant at the P<0.05 probability level, 

unless otherwise stated. Fisher’s protected least significant difference was calculated 

only when the analysis of variance F-test was significant at P<0.05. 

 

RESULTS AND DISCUSSION 

Soil Microbial Biomass C and N 

       Soil microbial biomass C was more affected by tillage than by crop intensity or N 

fertilization in wheat, sorghum, and soybean systems (Fig. 3.1). In wheat systems, 

SMBC under NT was 18, 25, and 13% greater in CW, SWS, and WS, respectively, than 

with CT at 0- to 5-cm depth, but was 26, 5, and 10% lower in CW, SWS, and WS, 

respectively, than with CT at 5- to 15-cm depth.  At the 15- to 30-cm depth, however, 

there was no consistent difference between CT and NT. Little difference was noted
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Figure  3.1. Soil microbial biomass C (SMBC) with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- 

to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and 
wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and 
NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that received N 
fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and soybean harvesting, respectively. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means 
followed by the same letter are not different at P<0.05.
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at this depth, except greater SMBC with NT in WS compared to CT. An important factor 

may be the effect of surface litter in an NT system. Microbial biomass decreased with 

soil depth in our study. Balota et al. (2004) suggested that the accumulation of crop 

residues at the soil surface provides substrate for soil microorganisms, which accounts 

for the higher SMBC in surface soil under NT.  

      Nitrogen fertilization also increased SMBC in all crop systems, although the 

increases generally were not significant. Our results contrasted with those of Ladd et al. 

(1994), where SMBC was observed to decrease with N fertilization. One indirect reason 

for this result in their study was due to decreasing soil pH with N fertilization, which 

may have caused reduced SMBC in acidic soil (Jenkinson and Powlson, 1976). Our soil 

pH, however, was greater than 7.0. 

      The effect of tillage and cropping intensity on SMBC also varied with cropping 

systems. The most significant difference in SMBC between CT and NT was observed in 

surface soil in sorghum systems, where SMBC under NT was 73 and 40% greater than 

with CT for CSorghum and SWS, respectively. Increased SMBC with increasing 

cropping intensity regardless of tillage was also only observed in sorghum systems. 

Granatstein et al. (1987) observed greater SMBC under CT in an intensive 3-yr rotation 

with a forage legume than in 1- yr rotations, but no differences were observed among 

cropping sequences under NT. In contrast, Franzluebbers et al. (1994) reported increases 

in SMBC with increased crop intensity under both NT and CT in wheat systems. Soil 

microbial biomass C is generally considered an active pool which is more impacted by 

factors such as crop and tillage management practices, climate, season, and so on. 
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       Crop species also affected SMBC, especially at 0 to 5 cm (Fig. 3.1). Compared with 

Csoybean, SMBC under NT without N fertilization was 31 and 15% greater for CW and 

Csorghum, respectively. Similar results under CT without N fertilization were also 

observed. Our results of SMBC as affected by crop species were consistent with SOC in 

surface soils (Chapter II) (Fig. 2.2). 

      Soil microbial biomass C decreased with depth in all crop systems regardless of 

treatment (Fig. 3.1). This result was consistent with those reported by Paul and Clark 

(1989). Using a direct count, these authors reported a linear decrease in SMB with 

increasing depth in the soil profile.  

       The effect of tillage on the proportion of SOC as SMBC varied with cropping 

system (Fig. 3.2). In both wheat and soybean systems, this proportion under CT was 

greater in all depths than NT except for WS at 15 to 30 cm in wheat system, where this 

fraction was greater with NT. This result was consistent with that reported by Balota et 

al. (2004) in a Brazilian Oxisol. Sorghum sequences generally showed little tillage effect 

on SMBC/SOC. Nitrogen fertilization and cropping intensity did not significantly affect 

the proportion of SOC as SMBC at any depth in the various cropping systems, except at 

15 to 30 cm in the wheat systems. 

        Unlike SOC or SMBC, the proportion of SOC as SMBC did not change drastically 

with depth (Fig. 3.2). This proportion in our study was about 5 to 8% for all depths. Our 

proportions were greater than those reported by several previous studies. Jenkinson and 

Ladd (1981) reported that with few exceptions, about 2 to 3% of the organic C in 

European soils was present as SMB in the 10- to 20- cm depth. In tropical soils, 
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Figure 3.2. The proportion of SOC as soil microbial biomass C (SMBC) with depth as affected by cropping sequence, tillage, 

and N fertilization at a) 0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, 
sorghum-wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and 
soybean, respectively. CT and NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to 
the previous crop that received N fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and 
soybean harvesting, respectively. Error bars represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different at P<0.05.
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Balota et al. (2004) observed that this ratio was <1.8% in a long-term tillage and crop 

rotation study. Several possible factors may have resulted in the observed difference. 

One difference is that previous authors subtracted the control soil respiration from 

fumigated samples; while we did not. Our calculation also used 0.41 for kc instead of 

0.45 used by other authors. Our results were similar to these reported by Franzluebbers 

et al. (1994), however, the trends with soil depth were different. No statistical 

differences were noted among the different soil depths, indicating that similar 

proportions of SMBC as SOC were present with depth. The activities of soil microbes 

were different in different depths as will be shown by specific respiratory activity. The 

proportion of SMBC as mineralizable C decreased with soil depth. In general, situations 

favoring accumulation of organic matter increase both the amount of SMBC and the 

proportion on a soil organic matter basis (Jenkinson and Ladd, 1981). In our study, only 

the former was observed. 

      SMBN as expected was highly related to SMBC and other SOC pools in wheat, 

sorghum, and soybean systems (Table 3.1). SMBN was significantly affected by tillage 

under the three crops. For example in the wheat systems, SMBN under NT was 50, 123, 

and 108% greater than CT in CW, SWS, and WS at the 0- to 5-cm depth, respectively 

(Fig. 3.3). Greater differences between NT and CT for SMBN than SOC may reflect that 

SMBN was more sensitive to management. Across wheat cropping sequences and 

tillage, N fertilization increased SMBN by 29% compared with the no N control. At the 

5- to 15-cm depth, however, NT significantly decreased SMBN compared to CT (Fig. 

3.3b).  
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Table 3.1. Correlation matrix of soil carbon and nitrogen pools at 0 to 5 cm 
in soil samples following wheat, sorghum, and soybean, respectively  
(n = 48, 32, and 40 for wheat, sorghum, and soybean, respectively). 

Soil 
microbial Mineralizable 

 SOC TN 
C N C N 

Particulate  
organic 
matter C 

Hydroly  
-zable C 

SOC† --- ** ** ** ** ** ** ** 
TN‡ 0.97 --- ** ** ** ** ** ** 

SMBC§ 0.66 0.75 --- ** ** ** ** ** 
SMBN# 0.96 0.97 0.76 --- ** ** ** ** 

Mineralizable C 0.84 0.80 0.59 0.87 --- ** ** ** 
Mineralizable N 0.72 0.79 0.80 0.83 0.76 --- ** ** 

POMC¶ 0.92 0.84 0.52 0.87 0.90 0.65 --- ** 

W
he

at
 

Hydrolyzable C 0.99 0.95 0.64 0.93 0.84 0.69 0.92 --- 
SOC --- ** ** ** ** ** ** ** 
TN 0.99 --- ** ** ** ** ** ** 

SMBC 0.92 0.93 --- ** ** ** ** ** 
SMBN 0.99 0.99 0.94 --- ** ** ** ** 

Mineralizable C 0.83 0.84 0.85 0.87 --- ** ** ** 
Mineralizable N 0.89 0.91 0.84 0.92 0.91 --- ** ** 

POMC 0.92 0.93 0.81 0.92 0.83 0.92 --- ** 

So
rg

hu
m

 

Hydrolyzable C 0.99 0.99 0.91 0.98 0.86 0.90 0.92 --- 
SOC --- ** ** ** ** ** ** ** 
TN 0.96 --- ** ** ** ** ** ** 

SMBC 0.82 0.85 --- ** ** * ** ** 
SMBN 0.70 0.72 0.80 --- ** ** ** ** 

Mineralizable C 0.60 0.57 0.42 0.88 --- ** ** ** 
Mineralizable N 0.64 0.60 0.37 0.92 0.92 --- ** ** 

POMC 0.94 0.88 0.77 0.64 0.60 0.63 --- ** 

So
yb

ea
n 

Hydrolyzable C 0.99 0.94 0.82 0.73 0.55 0.6 0.96 --- 
      †Soil organic carbon. 
      ‡Total nitrogen. 
      §Soil microbial biomass carbon. 
      #Soil microbial biomass nitrogen.  
      ¶Particulate organic matter C. 
      * and ** denote significance at P =  0.05 and 0.01, respectively. 



 

 

41

S
M

B
N

 (
m

g 
N

 k
g-1

 s
oi

l)

0

5 0

1 0 0

1 5 0

2 0 0

0

5 0

1 0 0

1 5 0

2 0 0

C T - 0  N
C T - N  a d d e d
N T - 0  N
N T - N  a d d e d

C W S W S W S
0

5 0

1 0 0

1 5 0

2 0 0

C S S W S W S

C r o p p i n g  S e q u e n c e

C S S W S

c
bb

a

c
c

b

a

b
b

a

a

a a
bb

a b a b ab
a a

b b

a aaa aaa a a aaa

c c

b
a

c

b

c

a

a a
b a b

a a a b
b

b b

a
a a a aa

b

a

bb b

a

c

b

a
a

a a
ab a

b a b
a a

b b

a a
a aa a a

a aa

a

b

c

a

b

c

a

b

c

W h e a t S o r g h u m S o y b e a n

 
Figure 3.3. Soil microbial biomass N (SMBN) with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- 

to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and 
wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and 
NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that received N 
fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and soybean harvesting, respectively. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means 
followed by the same letter are not different at P<0.05. 



 

 

42

M
in

er
al

iz
ab

le
 C

 (
m

g 
C

 k
g-1

 s
oi

l)

0

2 0 0

4 0 0

6 0 0

8 0 0

C S S W S W S

0

2 0 0

4 0 0

6 0 0

8 0 0

C T - 0  N
C T - N  a d d e d
N T - 0  N
N T - N  a d d e d

C W S W S W S
0

2 0 0

4 0 0

6 0 0

8 0 0

C r o p p i n g  S e q u e n c e

C S S W S

c
bb a

d
c

b
a

c
b

a a

a a b b
a a bb a b aa

b b

a aa a b b aa b b
aa

b
b

a a
c c

b
a

a
aa a a a aa

a aaa aa a a

b

a
b b

a
a

b

a a a

a a
a a

b
a

a a a
a

a
aaa aa aa aa

a

b

c

a

b

c

a

b

c

W h e a t S o r g h u m S o y b e a n

 
Figure 3.4. Mineralizable C in 24-day incubation with depth as affected by cropping sequence, tillage, and N fertilization at a) 

0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, 
and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT 
and NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that 
received N fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and soybean harvesting, 
respectively. Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping 
sequences. Means followed by the same letter are not different at P<0.05.
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One possible reason may be lower crop residue input with depth under NT compared 

with CT, where tillage partially added surface crop residue into this depth. No significant 

differences were observed for depth of 15 to 30 cm. Similar trends were also observed in 

sorghum and soybean systems. 

       Unlike SOC or SMBC, soil microbial biomass N decreased faster with depth in all 

studied crop systems. For example in the wheat systems, SMBN at 5- to 15- and 15- to 

30-cm was only 26 and 9% of that in surface soil, respectively. Similar tends were 

observed in sorghum and soybean systems. The faster decline in SMBN with increasing 

depth has also beeen observed in other studies (Saffigna et al., 1989; Spedding et al., 

2004).  

 

Mineralizable C and N 

      Mineralizable C was highly correlated with SOC, SMBC, SMBN, POM C, and 

hydrolyzble C in wheat, sorghum, and soybean systems (Table. 3.1). NT significantly 

increased mineralizable C in surface soil. Mineralizable C in surface soil increased with 

increasing cropping intensity under both tillage and N fertilization regimes, except for 

soybean in WS (Fig. 3.4). This result was consistent with the report of Franzluebbers et 

al. (1994) who proposed that mineralizable C was sensitive to changes in SOM quantity 

and quality due to increased crop residue input with increased cropping intensity. This 

indicated that mineralizable C was more sensitive than SOC or SMBC to management 

factors. At the 5- to 15-cm depth, mineralizable C was greater under CT than NT in all 
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crop systems. Cropping intensity and N fertilization had little effect on mineralizable C 

of this depth.  

       Mineralizable C was also affected by soil depth and crop species. Mineralizable C 

decreased faster with soil depth than SOC or SMBC. This result was in accordance with 

the observation that mineralizable C was more sensitive to crop management practices 

than SOC and SMBC. Further, amount of mineralized C decreased in the order of wheat 

> soybean > sorghum. The greatest difference in mineralizable C between CT and NT 

was observed in the sorghum systems at the 0- to 5-cm depth, where NT increased 

mineralization by 53% compared to CT. 

       The specific respiratory activity of SMBC (SRAC) was more affected by crop 

species than tillage or N (Fig. 3.5). Minor differences among tillage, cropping intensity, 

and N fertilization were observed within sorghum and soybean systems. Greater SRAC 

under soybean at all depths, especially for SWS, may have been due to differences in 

crop residue quality. Soybean residues have a narrower C:N ratio than that of wheat or 

sorghum. Another possible explanation is seasona l changes in SMBC. Soil samples for 

wheat and sorghum were collected in May and August 2002, respectively, while samples 

for soybean were taken in October. Compared to May and August, soil was wetter and 

temperature was milder in October. Therefore, the October condition may have been 

more suitable for microbial activity. This result is consistent with that observed by 

Acosta-Martinez et al. (2004). These authors proposed that microbiological properties 

responded more quickly to environmental conditions than SOC. SRAC also tended to 
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Figure 3.5. Specific respiratory activity of soil microbial biomass C (SMBC) with depth as affected by cropping sequence, 

tillage, and N fertilization at a) 0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous 
wheat, sorghum-wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous 
sorghum and soybean, respectively. CT and NT refer to conventional and no tillage. Nitrogen fertilization in soybean 
systems refers to the previous crop that received N fertilization. Wheat, sorghum, and soybean samples collected after 
wheat, sorghum, and soybean harvesting, respectively. Error bars represent standard deviation. Comparisons for tillage and 
N fertilization are within cropping sequences. Means followed by the same letter are not different at P<0.05.
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decrease with depth in all crop systems. This result contrasted with that reported by 

Franzluebbers et al. (1994), where an increase with depth was observed. This 

discrepancy possibly indicates the sensitivity of this index to cropping system, sampling 

time, and other management practices. Balota et al. (2004) reported lower qCO2 (an 

index similar to SRAC) under NT compared with CT in different crop rotations and with 

depth. However, these authors did not observe a consistent effect of cropping systems on 

SRAC within either CT or NT. 

       The pattern of the proportion of SOC as mineralizable C as affected by tillage, 

cropping intensity, and N fertilization within wheat, sorghum, and soybean systems was 

similar to that observed for SRAC (Fig. 3.6). The greatest proportion of SOC as 

mineralizable C was also observed in soybean systems. The difference, however, was 

smaller among crop systems compared with SRAC. A greater proportion of SOC as 

mineralizable C in soybean systems may also indicate a difference in SOM quality, as 

previously mentioned. This parameter was significantly lower under NT than CT for 0 to 

5 and 5 to 15 cm samples. This proportion tended to decrease with depth, and may 

indicate that SOM was less decomposed or SMB was more active in surface soil. 

       Mineralizable N was highly correlated with mineralizable C in soil from wheat, 

sorghum, and soybean systems, but was more related to SMBN, indicating that biomass 

may also serve as a source of labile N (Fig. 3.7, Table 3.1). Since the patterns for N 

mineralization were similar for all cropping sequences, only results for wheat in SWS 

were reported. During a 24-day aerobic incubation, most mineralizable N appeared in  
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Figure 3.6. The proportion of soil organic C (SOC) as mineralizable C with depth as affected by cropping sequence, tillage, 

and N fertilization at a) 0-to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, 
sorghum-wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and 
soybean, respectively. CT and NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to 
the previous crop that received N fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and 
soybean harvesting, respectively. Error bars represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different at P<0.05.
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Figure 3.7. Linear regression of soil mineralizable N with mineralizable C or soil 

microbial biomass N (SMBN) at a) 0- to 5- and b) 5- to 15-cm depths. 



 

 

49

the first 7 days, and very slowly increased thereafter (Fig. 3.8). No tillage and added N 

increased mineralizable N compared to CT and no N fertilization. Differences were more 

pronounced in the surface soil, but some differences were also observed with depth. The 

rapid increase in N mineralization after rewetting was consistent with many studies 

(Orchard and Cook, 1983; Stevenson, 1956). Several sources are responsible for the 

increased N mineralization after drying and rewetting. One source is killed SMB and 

another is POM exposed during drying and rewetting cycles that previously was 

protected by aggregates (Van Gestel et al., 1991; Van Veen et al., 1985). 

        

Particulate Organic Matter C (POM C) 

       At the 0- to 5-cm depth, no-till significantly increased POM C in wheat, sorghum, 

and soybean systems compared with CT (Fig. 3.9). For example, POM C under NT in 

wheat systems was 43, 58, and 92% greater for CW, SWS, and WS, respectively, 

compared to CT.  Compared with CW, POM-C was greater for SWS or WS after wheat 

regardless of tillage, indicating that soil POM C increased with enhanced cropping 

intensity. Similar differences were also observed for sorghum and soybean systems. 

Differences in POM- C caused by N fertilization were minimal except in sorghum 

systems, where a significant interaction between tillage and N fertilization was observed. 

POM-C under NT was 39% and 44% greater in Csorghum and SWS, respectively, with 

than without N fertilization, while no differences due to N were observed with CT. 
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Figure 3.8. Cumulative N mineralized during a 24-day incubation of soil samples from 
the sorghum-wheat-soybean rotation for depths of a) 0 to 5 cm, b) 5 to 15 cm, and c) 
15 to 30 cm as affected by tillage and N fertilization. CT and NT refer to 
conventional and no tillage. 0 and 6.8 g N m-2 represent N addition treatments. 
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Figure 3.9. Particulate organic matter C (POM-C) with depth as affected by cropping 

sequence, tillage, and N fertilization. CW, SWS, and WS indicate continuous wheat, 
sorghum-wheat-soybean, and wheat-soybean, respectively. CS represents continuous 
sorghum and soybean in sorghum and soybean systems, respectively. CT and NT 
refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers 
to the previous crop that received N fertilization. Wheat, sorghum, and soybean refer 
to soil samples collected after wheat, sorghum, and soybean harvesting, respectively. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization 
are within cropping sequences. Means followed by the same letter are not different at 
P<0.05. 
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        The relationship between tillage and POM-C in the 5- to 15-cm depth was quite 

different from that in the surface soil (0 to 5 cm) for wheat. POM-C was 45, 86, and 

106% lower for NT compared with CT. POM-C in the deeper layer 15 to 30 cm showed 

a similar pattern as in the surface soil, although differences were smaller. Chan (1997) 

also found that NT increased POM-C at the soil surface but decreased it in deeper layers. 

Increased POM-C with depth with CT partially results from burying plant residue with 

plowing. Based on the observation that C inputs from crop production were not different 

between tillage treatments, Cambardella and Elliott (1992) suggested that lower POM 

under CT was due to more rapid decomposition than with NT. In our study, however, 

crop residue input was significantly higher with N fertilization than without under both 

CT and NT (Chapter II), but the difference in POM-C was insignificant between N 

treatments. For CT, this result could be due to more rapid decomposition. Under NT, 

however, it may indicate a limited capacity of the soil matrix to protect additional POM. 

Greater POM-C under NT at 15 to 30 cm may be explained by more anaerobic 

conditions of deeper soil layers and contributions mainly from crop roots (Franzluebbers 

and Stuedemann, 2003). After investigating microbial populations and soil water 

contents, Doran et al. (1998) reported that the biochemical environment of NT soils was 

less oxidative than under CT, especially at deeper depth. 

      The proportion of SOC as POM-C followed similar patterns as for POM-C, except 

that the differences tended to be less distinct (Fig. 3.10). The proportion of SOC as 

POM-C with wheat averaged 30, 15, and 25% for 0- to 5-, 5- to 15-, and 15- to 30-cm 

depths, respectively. Compared to CT with wheat, the proportion under NT was 15% 
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Figure 3.10. The proportion of soil organic C (SOC) as particulate organic matter (POM) 
C with depth as affected by cropping sequence, tillage, and N fe rtilization. CW, SWS, 
and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat-soybean, 
respectively. CS represents continuous sorghum and soybean in sorghum and soybean 
systems, respectively. CT and NT refer to conventional and no tillage. Nitrogen 
fertilization in soybean systems refers to the previous crop that received N 
fertilization. Wheat, sorghum, and soybean refer to soil samples collected after wheat, 
sorghum, and soybean harvesting, respectively. Error bars represent standard 
deviation. Comparisons for tillage and N fertilization are within cropping sequences. 
Means followed by the same letter are not different at P<0.05.
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Figure 3.11. Hydrolyzable C with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- to 5-, b) 5- to 15-, 

and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat-soybean, 
respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and NT refer to 
conventional and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that received N 
fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and soybean harvesting, respectively. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means 
followed by the same letter are not different at P<0.05.
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greater in surface soil, but was 80% lower at 5 to 15 cm. No significant tillage difference 

was observed for this characteristic at 15 to 30 cm. 

       Particulate organic matter N (POM-N) was highly related to POM-C, and decreased 

significantly with depth in all crop systems (data not shown). Trends for POM-N in 

wheat systems were very similar to these of POM-C, especially in the first two depths. 

No tillage and N fertilization increased POM-N at 0 to 5 cm, but NT decreased this 

characteristic at 5 to 15 cm compared with CT. The C:N ratios of POM under wheat 

averaged 15, 8, and 19 for 0- to 5-, 5- to 15-, and 15- to 30-cm depths, respectively. 

        

Acid-hydrolyzable C 

       Hydrolyzable C in surface soil was more affected by tillage, cropping intensity, and 

N fertilization than in deeper soils under all three crops (Fig. 3.11). A significant tillage 

by N fertilization interaction was observed for this parameter (Fig. 3.11a). Hydrolyzable 

C in NT soils (0 to 5 cm) following sorghum was 16 and 22% greater for CSorghum and 

SWS, respectively, with than without N fertilization, while no fertilization effect was 

noted with CT. Similar results were also observed for wheat and soybean.The significant 

role of N addition was attributed to more crop residue return compared to no N controls. 

Under CT, however, tillage accelerates the decomposition of added crop residue. Thus, 

increased crop residue input enlarged the hydrolyzable C pool under NT, but not CT. 

      Increased cropping intensity increased the hydrolyzable C pool with both CT and NT 

(Fig. 3.11). Hydrolyzable C in SWS following sorghum was 30% greater than in 

Csorghum with CT. However, hydrolyzable C under NT was only 19% greater with 
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increased cropping intensity. Greater proportional increase of hydrolyzable C with CT 

than NT may result from possible differences in SOC saturation of  the two systems. 

Christensen (1996) proposed that SOM associated with soil minerals impedes 

stabilization of additional SOM on those portions of soil mineral surfaces that are 

already covered in SOM. We assumed that soil mineral properties are similar for CT and 

NT. Differences in quantities and qualities of residues in SWS vs. CSorghum may also 

contribute to the observed differences. 

        In general, hydrolyzable C decreased with increasing soil depth. No significant 

effect of tillage, N addition, and cropping intensity on hydrolyzable C was observed at 5 

to 15 cm (Fig. 3.11b). At 15 to 30 cm, hydrolyzable C was inconsistently affected by 

tillage in different crop systems. These results may also reflect differences in residue 

quantities and qualities. 

      The proportion of SOC as hydrolyzable C varied with tillage, cropping intensity, and 

soil depth, but was little affected by N fertilization following the three crop species (Fig. 

3.12). A significant interaction of tillage by cropping intensity on this parameter was 

observed in surface soil (Fig. 3.12a). This proportion was significantly greater with CT 

than with NT in SWS or WS, but no tillage effect was observed in monocultures. 

Minimal differences between treatments occurred with depth. Averaged over all main 

factors, the proportion of SOC as hydrolyzable C increased slightly with soil depth. This 

result is consistent with the report by Collins et al. (2000). These authors observed that 

the proportion of SOC as hydrolyzable C increased with soil depth.
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Figure 3.12. The proportion of soil organic C (SOC) as hydrolyzable C with depth as affected by cropping sequence, tillage, 

and N fertilization at a) 0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, 
sorghum-wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and 
soybean, respectively. CT and NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to 
the previous crop that received N fertilization. Wheat, sorghum, and soybean samples collected after wheat, sorghum, and 
soybean harvesting, respectively. Error bars represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different at P<0.05.
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Comparison of Labile Organic C Pools 

       Because the various labile C pools showed similar patterns for sorghum, soybean, 

and wheat systems, only results for sorghum will be discussed. Labile pools in surface 

soil such as SMBC, mineralizable C, POM-C, and hydrolyzable C were significantly (P< 

0.01) and positively correlated with SOC (Table 3.1). These results were consistent with 

those reported by Mclauchlan and Hobbie (2004), who observed SMBC, acid-

hydrolyzable C, light fraction C, mineralizable C in a 12-day incubation, and SOC were 

all positively correlated with each other. On average, SMBC was 5% of SOC, 

mineralizable C in a 24-day incubation was 3% of SOC, POM-C was 35% of SOC, and 

hydrolyzable C was 45% of SOC in our study. Of the C pools, hydrolyzable C was most 

correlated with SOC, followed by POMC and SMBC, and then mineralizable C. 

       Although labile SOC pools increased as SOC increased, they exhibited significant 

differences in rates of increase (Table 3.2). After adjusting all values to the same units 

(mg C kg-1 soil), the slope for mineralizable C during a 24-day incubation was lowest, 

and that for hydrolyzable C was the highest. The slopes for both POM-C and 

hydrolyzable C were several times those for mineralizable C or SMBC. Our results 

contrasted with these observed by Mclauchlan and Hobbie (2004). These authors did not 

observe a significant difference between the slopes for mineralizable C andSMBC. One 

reason may be that they used soil samples with different soil series treated with 

management practices. In addition, they sampled from 0 to 10 cm. 

        Conventional tillage increased SMBC per unit of SOC compared to NT, while the 

opposite effect was noted for POMC.
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Table 3.2. Estimates of slopes and their confidence intervals (a = 0.05) from linear regression of 
soil organic carbon (g C kg-1 soil) and labile pools (mg C kg-1 soil) at 0 to 5 cm (n = 16). 

Method Tillage † Slope 
Lower 

confidence limit 
Upper 

confidence limit 
CT 15.19 8.16 22.23 Mineralizable C 

NT 6.73 -0.39 13.85 

CT 71.29 56.15 86.43 Soil microbial biomass C 

NT 32.60 18.42 46.77 

CT 155.88 34.20 277.55 Particulate organic matter C 

NT 427.54 306.44 548.63 

CT 535.28 474.63 595.93 Hydrolyzable C 

NT 460.50 412.88 508.12 

                † CT and NT denote conventional and no tillage. 
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       Selected measurements of four labile SOC pools were also significantly (P<0.01) 

correlated with each other: mineralizable C, SMBC, POM-C, and hydrolyzable C (Table 

3.1). Hydrolyzable C was highly correlated with mineralizable C (r = 0.863), SMBC (r = 

0.914), and POM-C (r = 0.916). Mineralizable C was positively correlated with both 

SMBC (r = 0.846) and POM-C (r = 0.832). SMBC correlated positively with POM-C (r = 

0.812). These results were consistent with those of previous studies (Doran et al., 1998; 

Fliebbach and Mader, 2000; Franzluebbers et al., 1995a). However, a higher correlation 

of the hydrolyzable C with other labile C was observed in our study. One reason may be 

different volumes of acid solution used. We used 25 ml of 6 M hydrochloric acid added 

to one-gram of soil instead of 10 ml. Thus, more complete hydrolysis of the SOC pool 

may have occurred in our study. According to the three-pool SOC model, hydrolyzable C 

is the sum of active and slow pools. In other words, all labile SOC should be contained in 

this pool. Therefore, it was not surprising to observe high correlations between 

hydrolyzable C and other labile pools. 

       Sensitivity of different labile pools to changes in SOC varied with CT or NT (Fig. 

3.13). Compared with NT, the slopes for regressions between SOC and SMBC and 

hydrolyzable C were significantly greater with CT. This result indicated that these labile 

pools were more affected by CT than NT. Under NT, the slope between SOC and POMC 

was significantly greater than that with CT, increasing almost three times more per unit 

of SOC. Our results indicate that the ability of different labile pools to predict changes in 

SOC may vary with tillage treatment. 
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Figure. 3.13. Linear regression of soil organic C (SOC) and results of four 

methods for estimating labile SOC under conventional tillage (CT) and no 
tillage (NT) in surface soil (0 to 5 cm). Regressions include SOC vs. a) C 
mineralizable during a 24-day incubation, b) soil microbial biomass (SMB) C, 
c) particulate organic matter (POM) C, and d) hydrolyzable C. 
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CONCLUSIONS 

       The majority of significant effects of management practices on labile C pools were 

observed in surface soil. SMB, mineralizable C and N, POM, and hydrolyzable C were 

all significantly greater with NT than CT at 0 to 5 cm. The size of labile C pools and the 

significance of management effects decreased with depth. Tillage exerted the greatest 

influence on these pools, but enhanced cropping intensity and N fertilization also 

increased these labile pools, though not always significantly. In addition, different crop 

species affected labile pool sizes, partially due to differences in sampling season and/or 

crop residue quality and quantity. 

       SMB, mineralizable C and N, POM, and hydrolyzable C were highly correlated with 

each other and SOC, but their slopes were significantly different, being lowest for 

mineralizable C and highest for hydrolyzable C, suggesting that different methods 

included different fractions of total SOC. The labile C pools exhibited varying sensitivity 

to soil tillage regime. Compared with NT, SMBC, mineralizable C, and hydrolyzable C 

exhibited greater slopes with increasing SOC under CT. 
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CHAPTER IV 

SLOW AND RESISTANT ORGANIC CARBON POOLS AS  

AFFECTED BY TILLAGE, CROPPING SEQUENCE,   

AND NITROGEN FERTILIZATION 

 

INTRODUCTION 

      Agricultural management practices influence not only the amount of soil organic C 

(SOC), but also the rate of C cycling. Furthermore, concerns about the effect of 

increasing concentrations of greenhouse gases in the atmosphere on global climate have 

increased interest in the soil C cycle, with a focus on the potential for increasing soil C 

sequestration (Donigan et al., 1997; Lal et al., 1999). Conventional tillage (CT) has 

caused reductions in organic C content s of agricultural soils through increased 

decomposition rates and redistribution of C (Christensen, 1996). These reductions can be 

mitigated by incorporation of sustainable management practices such as reduced tillage, 

decreased bare fallow, increased residue input, and conversion to perennial vegetation 

(Paustian et al., 1997). No-till (NT) has been reported to enhance SOC sequestration in 

many studies (Bayer et al., 2001; Campbell et al., 1991b; Franzluebbers et al., 1994; Six 

et al., 2002b). Increased cropping intensity has also been observed to enhance C 

sequestration (Campbell et al., 1998).  Further, N addition normally increases plant 

residue input, and thus may also increase C sequestration (Christensen, 1996). However, 

studies have shown that the relative increases in soil organic matter (SOM) occurs more 

in coarser size fractions compared to finer fraction, indicating that the sequestered C is 

present in more labile pools (Cambardella and Elliott, 1994; Jastrow and Miller, 1997). If 
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this is the case, then this C may be sequestered more for the short- rather than the long-

term. 

       Stabilization of SOM is a key process determining soil quality and whether a soil is a 

sink or source of C to the atmosphere (Six et al., 2002c). Christensen (1996) proposed 

three mechanisms responsible for stabilization of SOM: chemical recalcitrance of the 

organic matter, chemical stabilization of otherwise decomposable compounds by 

chemical interaction of substrates with the mineral part of the soil, and physical 

protection of otherwise decomposable substrates within micro- or macroaggregates by 

physical barriers created between substrates and decomposers. 

       Various physical and chemical fractionation methods have been used to separate C 

pools with different turnover rates. By the 13C natural abundance labeling technique, 

Balesdent and Mariotti (1996) and Christensen (1996) showed that particle-size fractions 

represent different pools of SOC in terms of turnover time. Organic compounds in sand-

sized fractions [particulate organic matter (POM)] are turned over rather rapidly, within 

several years or less, whereas SOC associated with fractions <50 µm show markedly 

slower turnover times, thus being involved in the mid- and long-term dynamics of SOC. 

Using acid hydrolysis and 14C dating, Anderson and Paul (1984) and Paul et al. (1997) 

related OC not hydrolyzed in acid to resistant organic C (ROC), with higher turnover 

times of  > 1000 years. Little information, however, is available on the effect of different 

long-term agricultural management practices on slow and ROC pools in the southern 

USA. A direct determination of effects on these two C pools, coupled with a knowledge 

of the relationship between them developed by physical and chemical separation 

methods, can add to our understanding of SOM processes.  
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       The objectives of this research were to assess the effect of tillage [convent ional (CT) 

vs. NT], cropping intensity (monoculture vs. enhanced cropping systems), and N 

fertilization (no N vs. N addition) on mineral-associated and ROC pools. 

 

MATERIALS AND METHODS 

Crop Management and Site Characteristics 

      A long-term field experiment was initiated in 1982 on the Brazos River floodplain in 

south-central Texas (30032’N, 94026’W). Sorghum [Sorghum bicolor (L.) Moench.] was 

managed under CT (disk) and NT in continuous sorghum (CSorghum), and rotated wheat 

(Triticum aestivum L.)/soybean [Glycine max (L.) Merr.]-sorghum (SWS) cropping 

sequences. Soybean was managed under CT (disk) and NT in continuous soybean 

(CSoybean), continuous wheat/soybean (WS), and rotated wheat/soybean-sorghum 

(SWS) cropping sequences. Wheat was managed under CT (disk) and NT in continuous 

wheat (CW), continuous wheat/soybean (WS), and rotated wheat/soybean-sorghum 

(SWS) cropping sequences. Crop growing seasons were from early November to late 

May for wheat, early June to late October for soybean, and late March to late July for 

sorghum. Continuous crops produced one crop each year, WS produced two crops per 

year, and SWS produced three crops every two years. Nitrogen fertilizer (NH4NO3) was 

broadcast on wheat at 0 or 6.8 g N m-2 during late winter or early spring. Soybean did not 

receive N fertilizer, while sorghum received 0 or 9 g N m-2 banded preplant. Nitrogen 

treatments in soybean refer to N fertilization of the previous crop. 
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       A split-split plot within a randomized complete block design was established with 

cropping sequence as the main plot, tillage as the sub plot, and N fertilizer rate as the sub-

sub 

plot. Plots measured 4 x 12.2 m, and treatments were replicated four times. 

       The soil used is classified as a Weswood silty clay loam (fine-silty, mixed, 

superactive, thermic, Udifluventic Haplustepts) and contains an average of 115, 452, and 

433 g kg-1 of sand, silt, and clay, respectively.  Under cultivation, this soil has a pH of 8.2 

(1:2, soil:water) and an organic C content of approximately 8 g C kg-1 soil. Annual 

temperature is 20 0C and rainfall is 978 mm. 

 

Soil Sampling 

       Soil samples were collected shortly after wheat, sorghum, and soybean harvesting in 

May, August, and October 2002, respectively. Individual samples consisted of 25 

composited cores (19-mm dia.) per plot that were divided into depth increments of 0 to 5, 

5 to 15, and 15 to 30 cm. All samples taken after wheat were analyzed, but only 0 to 5 cm 

sample after sorghum and soybean were analyzed. Soil was sieved to pass a 2-mm screen 

(visible pieces of crop residues and roots removed) and oven-dried at 60 0C for 48 h for 

physical and chemical analysis. 

 

Mineral-associated Organic C (MAC) and N (MAN) 

        Mineral-associated SOC was separated from the < 2-mm soil following the method 

of Cambardella and Elliott (1992). Fifty-g subsamples were dispersed in 100 mL of 0.001 

M Na4P2O7 by shaking for 16 h on a reciprocal shaker. The dispersed soil samples were 
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poured through a 53-µm sieve, and the soil slurries that contained the mineral-associated 

and water-soluble C and N that passed through the sieve were dried in a forced-air oven 

at 55 0C. Dried slurry samples were subsequently ground with a mortar and pestle to pass 

a 200-µm sieve and were analyzed for total organic C and N as previously described 

(Chapter II).  

 

Resistant Organic C  

       Resistant organic C was determined using the method suggested by Rovira and 

Vallejo (2002) with the following modifications. One g of oven-dry soil subsample 

passing through a 200-um sieve was hydrolyzed with 25 mL of 6 N HCl in a digestion 

tube in an aluminum block digestor at 110 0C for 18 h, with occasional shaking. After 

cooling, the unhydrolyzed residue was recovered by centrifuging at 3500 rpm for 20 

minutes and decanting the liquid. The process of washing with deionized water, 

centrifugation and decantation was repeated several times until neutral pH was reached. 

The residue was then transferred to a pre-weighed vial, dried at 60 0C to constant weight, 

and analyzed for C as previously described. 

 

Statistical Analysis 

        Analysis of variance and  regression were conducted as appropriate (SPSS, 2001). 

All differences discussed are significant at the P<0.05 probability level, unless otherwise 

stated. Fisher’s protected least significant differences were calculated only when the 

analysis of variance F-test was significant at P<0.05. 
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RESULTS AND DISCUSSION 

Mineral-associated Organic C and N  

       In surface soil (0 to 5 cm), a significant interaction of tillage by nitrogen fertilization 

for MAC was observed following wheat, sorghum, and soybean (Fig. 4.1). Nitrogen 

addition under NT significantly increased MAC in all three crops in surface soil (0 to 5 

cm). However, no significant increase was observed due to N addition under CT. Under 

NT following wheat, MAC was 19, 12, and 19% greater for CW, SWS, and WS, 

respectively, than under CT. Similar results were also observed following sorghum and 

soybean. Greater SOC in this fraction under NT with N addition may be partially due to 

more plant residue input as we observed previously (Chapter II). Enhanced cropping 

intensity also increased MAC. Greatest differences were observed following sorghum, 

where this fraction was 40 and 27% greater under CT and NT, respectively, with 

increased cropping intensity. A similar effect of enhanced cropping intensity on MAC 

was observed following wheat and soybean. Crop species also affected MAC, with CW 

containing the highest concentration of this fraction, regardless of tillage. Similar results 

were previously discussed for SOC and TN. 

      Overall, MAC decreased with depth. Our result is consistent with the work by 

Franzluebbers and Arshad (1997). In soils below 5 cm following wheat, MAC under NT 

was greater than with CT, although variation increased with depth (Fig. 4.1). Enhanced 

cropping intensity increased MAC a 5 to 15 cm, but not 15 to 30 cm. Nitrogen addition 

also slightly increased MAC in below surface soil depths. 

        The mineral-associated organic C pool is organic C associated with silt- and clay-

sized particles as well as soluble organic C and probably represents more stabilized and 
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Figure  4.1. Mineral-associated organic C (MAC) as affected by cropping sequence, 
tillage, and N fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-
wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to 
continuous sorghum and soybean, respectively. CT and NT refer to conventional and 
no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that 
received N fertilization. Wheat, sorghum, and soybean legends refer to soil samples 
collected after wheat, sorghum, and soybean harvesting. Error bars represent standard 
deviation. Comparisons for tillage and N fertilization are within cropping sequences. 
Means followed by the same letter are not different at P<0.05. 
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humified organic C with a slower turnover rate than particulate organic C (Cambardella 

and Elliott, 1992; Christensen, 1996; Hassink, 1995). One might expect no or minimal 

fluctuation in MAC as affected by tillage, N addition, and enhanced cropping intensity. 

Significantly greater C associated with this pool under NT, however, indicated increased 

C stabilization compared to CT (Fig. 4.1). Nitrogen addition significantly increasing 

MAC only under NT may suggest more physical protection of added C. According to a 

recent hypothesis by Six et al. (2000a), the turnover rate of organic matter under NT was 

slower than under CT due to less disturbance. Therefore, more SOC was likely stabilized 

by microaggregates. Enhanced cropping intensity may have a similar role in increasing C 

stabilization. Decreasing MAC with depth may reflect a lower input of plant residue into 

subsurface soil compared to surface soil. In general, the amount of plant residue input in 

subsurface soil under CT is greater than NT due to mixing by tillage. 

       The proportion of SOC as MAC under NT was lower than under CT in surface soil, 

but difference were not always significant for all cropping sequences (Fig. 4.2). Both N 

addition and cropping intensity minimally affected this proportion. Similar results were 

also observed at a depth of 15 to 30 cm.  The greatest proportion of SOC as MAC was 

observed at 5 to 15 cm, where this proportion under NT was greater compared to CT. The 

proportion of SOC as MAC increased with soil depth below 5 cm. This result agreed with 

work reported by Franzluebbers and Arshad (1997), who found this proportion increased 

with depth from 0.44to 0.88 in cultivated soil. Similar trends were also observed in 

vertisols under pasture (Chan, 1997). 

      The proportion of SOC as MAC decreasing with depth likely reflects differences in 

plant residue input. Most of aboveground residue is returned to surface soil, and crop 



 

 

71

P
ro

po
rti

on
 o

f S
O

C
 in

 <
53

-u
m

 fr
ac

tio
n

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2 CT-0  N
C T - N  a d d e d
NT-0  N
N T - N  a d d e d

C r o p p i n g  S e q u e n c e

C W S W S W S
0.0

0.3

0.6

0.9

1.2

C r o p p i n g  S e q u e n c e

CS S W S
0.0

0.3

0.6

0.9

1.2

C r o p p i n g  S e q u e n c e

C S S W S W S
0.0

0.3

0.6

0.9

1.2

babab
a

a aa
a

bb
a a

b
a aa b

a
a b

cb c a a

bb

a aaa a
a aa

a

aaa

a a a aa a b
b

a a

bab
a ba

cb cb
a

W h e a t S o r g h u m

S o y b e a n

0-5  cm

5-15  cm

0-5  cm

0 - 5  c m

15-30  cm

W h e a t

W h e a t

 

Figure  4.2. The proportion of soil organic C (SOC) as mineral-associated organic C as 
affected by cropping sequence, tillage, and N fertilization. CW, SWS, and WS indicate 
continuous wheat, sorghum-wheat-soybean, and wheat-soybean, respectively. CS in 
sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and 
NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems 
refers to the previous crop that received N fertilization. Wheat, sorghum, and soybean 
legends refer to soil samples collected after wheat, sorghum, and soybean harvesting. 
Error bars represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different at 
P<0.05. 
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root density is also higher in surface soil (Moroke, 2002). The greatest proportion of SOC 

as MAC at a depth of 5 to 15 cm from wheat (Fig. 4.2) may indicate a combined 

differential effect of residue input and decomposition. Compared to deeper soil, plant 

residue input is greater at this depth, but decomposition may also be greater compared to 

colder and wetter soil at a depth of 15 to 30 cm. Since NT resulted in proportionally 

greater SOC as MAC at 5 to 15 cm than CT, roots may be a greater contribution to this 

result than surface residues. 

       Total soil N accumulated with the < 53-µm mineral fraction generally mirrored 

patterns observed for organic C in three crop studied (Fig. 4.3). In surface soil, MAN in 

this fraction ranged from 613 to 1024, and 890 to 1344 mg N kg soil-1 for CT and NT, 

respectively, across crop and N treatments. Nitrogen addition increased MAN under NT, 

but not with CT. Increased cropping intensity showed a similar interaction with tillage. 

The C:N ratio for SOM in the < 53-µm fraction was not significantly affected by tillage, 

N addition, or cropping intensity (data not shown). Cambardella et al (1992) also reported 

that this ratio was not affected by tillage or cropping system.  

 

Resistant Organic C  

       After 20 yr, most effects of tillage, N fertilization, and cropping intensity on ROC 

were observed in surface soil of all cropping systems (Fig. 4.4). A similar significant 

interaction of tillage and N addition existed for ROC as was observed for SOC and other 

C pools. In wheat systems, ROC under NT was 30, 15, and 8% greater for CW, SWS, 

and WS, respectively, with than without N addition. Minimal differences were observed 

under CT for N treatment. Similar results were also observed in sorghum and soybean 
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Figure  4.3. Mineral-associated total N (TN) as affected by cropping sequence, tillage, 
and N fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-
soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to 
continuous sorghum and soybean, respectively. CT and NT refer to convent ional and 
no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that 
received N fertilization. Wheat, sorghum, and soybean legends refer to soil samples 
collected after wheat, sorghum, and soybean harvesting. Error bars represent standard 
deviation. Comparisons for tillage and N fertilization are within cropping sequences. 
Means followed by the same letter are not different at P<0.05.  
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Figure  4.4. Resistant organic C (ROC) in soil with depth as affected by cropping sequence, tillage, and N fertilization at a) 0- to 5-, b) 

5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat-soybean, 
respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, respectively. CT and NT refer to conventional 
and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop that received N fertilization. Wheat, sorghum, 
and soybean legends refer to soil samples collected after wheat, sorghum, and soybean harvesting. Error bars represent standard 
deviation. Comparisons for tillage and N fertilization are within cropping sequences. Means followed by the same letter are not 
different at P<0.05. 
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systems. These result s indicated that cultivation may speed decomposition of returned 

residues and also decrease the formation of ROC. Since the main components of ROC are 

lignin, its decomposed moieties, and plant celluloses, our study is consistent with the 

hypothesis of Amelung et al. (1999) that lignin does not appear to be stabilized by CT. 

Significantly greater ROC under NT was observed compared to CT. The greater results 

under NT in our study are consistent with the work by Collins et al. (2000), that reported 

21 to 40% greater ROC under NT than CT at the 0- to 20-cm depth. ROC also increased 

with enhanced cropping intensity in all cropping systems with one exception; the 

concentration of ROC under CT was equivalent for CW, SWS, and WS in wheat systems. 

        In addition, crop species affected ROC (Fig. 4.4a). ROC averaged over N addition 

and tillage decreased in the order of continuous wheat > continuous sorghum > 

continuous soybean, indicating possible effects of crop residue quality on ROC. After 

hydrolysis with 6N HCl, Follet et al. (1997) found that 42% of the C of wheat straw and 

34% of the C of maize (Zea mays L.) residues were not dissolved. 

        Concentrations of ROC decreased with soil depth (Fig. 4.4), and averaged 5.2, 3.4, 

and 2.7 g C kg-1 soil at 0- to 5-, 5- to 15-, and 15- to 30-cm in wheat systems, 

respectively. Comparative values were also observed in sorghum and soybean systems. 

Collins et al. (2000) reported wider values of ROC ranging from 4.3 to 10.0 g C kg-1 at a 

depth of 0 to 20 cm. The lower value of ROC in our study may partially be explained by 

differences in climates. Higher temperature in the southern USA accelerates 

decomposition of residues as well as more resistant materials (Couteautx et al., 1995). At 

deeper depth, no consistent difference in ROC was observed for tillage, N fertilization, or 
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cropping sequence, except in the sorghum system, where CT tended to increase ROC 

compared to NT (Fig. 4.4b, c). 

       The proportion of SOC to ROC generally was increased by NT in surface soil for 

most cropping systems compared to CT, though difference were small (Fig. 4.5). This  

proportion decreased slightly with depth. Decreasing this proportion with depth was 

consistent with other studies (Collins et al., 2000; Paul et al., 1997). Follet et al. (1997) 

reported that this fraction was 59, 54, and 49% for 0- to 10-, 10- to 20-, and 20- to 30-cm 

depths, respectively, in a wheat- fallow system. No tillage increased the proportion of 

SOC to ROC compared to CT at depths of 0 to 15 cm. By contrast, these authors reported 

a more rapid decrease in this proportion in a native soil with depth compared to cultivated 

soil. One possible explanation may be due to changes in lignin content. Highest lignin 

contents were observed in coarser soil fractions, and lignin contents gradually decreased 

with decreasing particle size (Amelung et al., 1999). 

 

Relationship of Slow and Resistant Organic C 

       Mineral-associated and ROC were highly correlated with each other (P< 0.01) across 

all cropping and tillage systems (Fig. 4.6). The coefficients of determination were 0.87, 

0.90, and 0.95, respectively, in surface soils for wheat, sorghum, and soybean. This result 

suggests that MAC may be a quantitative indicator of change in the ROC pool. Intercepts 

and slopes of all linear regressions in the 0- to 5-cm depth were very similar for the 

different cropping systems. Slopes were 0.77, 0.79, and 0.80, respectively, for wheat, 

sorghum, and soybean systems and corresponding intercepts ranged from –1.90 to –1.84. 
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Figure  4.5. The proportion of soil organic C (SOC) as resistant organic C (ROC) with depth as affected by cropping sequence, tillage, 
and N fertilization at a) 0- to 5-, b) 5- to 15-, and c) 15- to 30-cm depths. CW, SWS, and WS indicate continuous wheat, sorghum-
wheat-soybean, and wheat-soybean, respectively. CS in sorghum and soybean refers to continuous sorghum and soybean, 
respectively. CT and NT refer to conventional and no tillage. Nitrogen fertilization in soybean systems refers to the previous crop 
that received N fertilization. Wheat, sorghum, and soybean legends refer to soil samples collected after wheat, sorghum, and 
soybean harvesting. Error bars represent standard deviation. Comparisons for tillage and N fertilization are within cropping 
sequences. Means followed by the same letter are not different at P<0.05.
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Figure  4.6. Linear regression of mineral-associated organic C and resistant organic C   

(ROC) in wheat, sorghum, and soybean cropping systems. 
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These results indicated that a high association between MAC and ROC, and that the 

relationship was independent of cropping system. Compared to the determination of 

MAC, measuring ROC presents several disadvantages. First, separation of ROC requires 

special reflux equipment and a fume hood. Second, removing acid from the insoluble 

residue is time consuming. Third, due to low yield of residue after acid hydrolysis, 

greater variations were observed for the ROC data. Therefore, it may be desirable to 

estimate the ROC pool using simple linear regression models of MAC vs. ROC. 

       In the wheat systems, the coefficients of determination of MAC vs. ROC decreased 

with soil depth from 0.87 to 0.54, although regressions were still significant. 

Furthermore, the slopes of the linear regressions also decreased from 0.77 to 0.32. 

Decreasing slope with depth indicated a lower ROC content in the MAC, which is 

consistent with our previous results. Using physical fractionation and CuO oxidation 

methods, Kiem and Kogel-Knabner (2003) proposed that polysaccharides (a slow C 

pool), mainly those of microbial origin, contributed to the fine refractory C pool, and 

CuO-oxidized lignin was associated with coarse fractions.  

 

CONCLUSIONS 

          After 20-yr of treatment imposition, MAC and ROC were affected by tillage, N 

addition, and cropping intensity. Most significant effects occurred at a depth of 0 to 5 cm. 

Significant interactions of tillage by N addition for these parameters were observed in all 

cropping systems in surface soil. Mineral-associated C and N under NT were 

significantly greater with than without N addition. However, minimal difference was 

observed under CT. These results indicated that greater protection by soil minerals under 
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NT resulted in greater C storage. Enhanced cropping intensity also increased C and N 

sequestration in the mineral-associated < 53-µm pool, which suggests that greater plant 

residue input with increased cropping intensity benefited C sequestration, too. In 

addition, crop species also exhibited different impacts on MAC in the decreasing order: 

continuous wheat > sorghum > soybean. This order may reflect a difference in quality of 

residue input, since wheat and sorghum had essentially equivalent return of stover. The 

proportion of SOC as MAC ranged from 0.61 to 0.95, and increased with soil depth, 

indicating that more C stabilization with depth. High correlations (r2 ≥ 0.85) were 

observed between MAC and ROC pools for all crop species. The proportion of SOC as 

ROC, however, decreased with depth. High correlation between these two pools 

suggested that MAC might be a quantitative indicator of ROC across diverse factors. 
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CHAPTER V 

STORAGE OF CARBON AND NITROGEN IN PHYSICAL FRACTIONS 

RESPONSE TO TILLAGE, CROPPING SEQUENCE, AND NITROGEN 

FERTILIZATION  

 

INTRODUCTION 

       Organo-mineral interactions not only influence the formation and stabilization of soil 

aggregates (Tisdall and Oades, 1982; Tisdall, 1996; Christensen, 2001), but also 

contribute to the dynamics of soil organic matter (SOM) (Christensen, 1996; Haynes and 

Beare, 1996). Compared to macroaggrega tes, microaggregates are more stable (Tisdall, 

1996) and less affected by agricultural practices (Christensen, 2001). The basic structure 

of microaggregates consists of primary particles bonded by particulate organic matter 

(POM). Golchin et al. (1994) separated two light fractions of POM with different 

chemical characteristics. One was the free light fraction consisting mainly of 

undecomposed plant fragments of 50- to 200-µm diameter, and some larger particles of 

plant origin encrusted with clay. The other was the occluded light fraction, now called 

protected POM, with a smaller diameter of 10 to 20 µm. Compared to the former, the 

occluded light fraction contained more alkyl C and aromatic C, and less O-alkyl C which 

is thought to originate from plants. 

       Physical fractionation has recently been widely used to investigate the dynamics of C 

and N associated with different SOM pools (Christensen, 2001). Various chemical 

fractionation and characterization methods have not proven particularly useful in 

following the dynamics of organic materials in soils and in identifying specific SOM 
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pools that diminish upon intensive management (Stevenson et al., 1989). Compared to 

chemical fractionation, physical techniques are considered chemically less destructive, 

and the results obtained from physical soil fractions relate more directly to the structure 

and function of SOM in situ (Christensen, 1992). 

       Different agricultural management practices can affect the amount and turnover of 

SOM (Angers and Carter, 1996). Compared to conventional tillage (CT), conservation 

tillage or no tillage (NT) not only altered the distribution of plant residue input, but also 

the dynamics of soil aggregates and environmental conditions (Franzluebbers et al., 

1995a). Cultivation disturbs soil structure by destroying soil macroaggregates and 

exposing protected organic matter to decomposers (Cambardella and Elliott, 1993). 

Tillage incorporates aboveground plant residues into the soil matrix, which accelerates 

decomposition. In contrast, NT leaves more plant residue on the soil surface, and reduces 

gas and energy exchange between the soil surface and the atmosphere. These reductions 

decrease soil temperature and increase soil water content, thereby, favoring C 

accumulation (Franzluebbers et al., 1995b; Grant et al., 1997). In addition, greater fungal 

growth, which contributes to the formation and stabilization of macroaggregates, has 

been reported under NT (Tisdall and Oades, 1982; Holland and Coleman, 1987). 

Moreover,  Six et al. (2000b) observed that the rate of macroaggregate formation and 

degradation (i.e., aggregate turnover) was reduced under NT compared to CT and led to a 

formation of stable microaggregates in which C was sequestered long term. 

       Cropping sequence and nitrogen fertilization can also affect plant residue distribut ion 

and production (Franzluebbers et al., 1994; Haynes and Beare, 1996). West and Post 

(2002) examined a total of 67 global, long-term agricultural experiment sites consisting 
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of 276 paired treatments. In this analysis, enhancement of rotation complexity referred to 

a change from monoculture to continuous rotation cropping, a change from crop-fallow 

systems to continuous monoculture or rotation cropping, and an increase in the number of 

crops used in a rotation cropping system. These authors indicated that enhancing rotation 

complexity could sequester an average extra 20 + 12 g C m-2 yr-1, excluding a change 

from continuous corn (Zea mays L.) to corn-soybean which may not result in a significant 

accumulation of SOC. In addition, Dick, (1992) suggested that crop rotation promotes 

crop productivity by suppressing deleterious microorganisms that flourish under 

monocultures.  

       In this study, a long-term experiment with tillage, cropping sequence, and nitrogen 

fertilization treatments was initiated to explore changes in soil C and N associated with i) 

silt and clay fractions, ii) in microaggregates, and iii) in POM. 

 

MATERIALS AND METHODS 

Crop Management and Site Characteristics 

      A long-term field experiment was initiated in 1982 in the Brazos River floodplain in 

southcentral Texas (30032’N, 94026’W). Wheat (Triticum aestivum L.) was managed 

under conventional (disk) tillage and no tillage in continuous wheat (CW), continuous 

wheat/soybean [Glycine max (L.) Merr.] (WS), and rotated wheat/soybean-sorghum 

[Sorghum bicolor (L.) Moench.] (SWS) cropping sequences. Crop growing seasons were 

from early November to late May for wheat, early June to late October for soybean, and 

late March to late July for sorghum. Continuous wheat produced one crop each year, WS 

produced two crops each year, and SWS produced three crops every two years. Cropping 
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intensity was defined as the fraction of the year when a crop was growing, and  was 0.5 

for CW,  0.65 for SWS, and 0.88 for WS.  Nitrogen fertilizer (NH4NO3) was broadcast on 

wheat at 0 or 6.8 g N m-2 during late winter or early spring. Soybean did not receive N 

fertilizer, while sorghum received 0 or 9 g N m-2 banded preplant. Soybean received 0 or 

1.5 g P m-2. 

       A split-split plot within a randomized complete block design was established with 

cropping sequence as the main plot, tillage as the sub plot, and N fertilizer rate as the sub-

sub plot. Split, split plots measured 4 x 12.2 m and treatments were replicated four times. 

       The soil is classified as a Weswood silty clay loam (fine-silty, mixed, superactive, 

thermic Udifluventic, Haplustepts) and contains an average of 115, 452, and 433 g kg-1 of 

sand, silt, and clay, respectively.  The soil has a pH of 8.2 (1:2, soil:water) and an organic 

C content of approximately 8 g C kg-1 soil. Annual temperature is 20 0C and rainfall is 

978 mm. 

 

Soil Sampling 

       Soil samples were collected shortly after wheat harvest in May 2002. Individual 

samples consisted of 25 composited cores (19-mm dia.) per split-split plot that were 

divided into depth increments of 0 to 5, 5 to 15, and 15 to 30 cm. Only results for the 0- 

to 5-cm depth are reported. Soil was sieved to pass a 4.8-mm screen (visible pieces of 

crop residues and roots removed) and oven-dried for 24 h at 40 0C. A portion of the 

sieved, moist soil was also dried at 60 0C for 48 h for chemical and physical analysis. 
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Size and Density Fractionation 

       Size and density fractionation was conducted on soil samples to isolate the SOC 

fractions described in the conceptual model of Six et al. (2002a). Soil (20 g) from the 0-to 

5-cm soil layer was immersed in deionized water on top of a 250-µm mesh screen and 

shaken with 50 glass beads (dia. = 4 mm). A continuous and steady water flow through 

the screen was used to ensure that microaggregates were immediately flushed onto a 53-

µm sieve and not exposed to any further disruption by the beads. After all 

macroaggregates were broken, the material on the 53-µm sieve was washed to ensure that 

the isolated microaggregates were water-stable. The inter-microaggregate POM retained 

together with the microaggregates on the sieve was isolated by density flotation in 1.85 g 

cm-3 sodium polytungstate (Six et al., 2000b). This procedure resulted in the following 

fractions: (i) coarse, non-protected POM (>250 µm), (ii) fine, non-protected POM (53 to 

250 µm), (iii) protected POM (53 to 250 µm),  (iv) protected <53-µm fraction, (v) non-

protected <53-µm fraction, (vi) resistant organic C (ROC) in the non-protected <53-µm 

fraction, and (vii) ROC in the protected <53-µm fraction. A schematic of the 

fractionation scheme is described in Fig. 5.1.  

 

Chemical Analysis 

        SOC was determined using the modified Mebius method (Nelson and Sommers, 

1982) and soil total nitrogen (TN) was determined following the procedure of (Gallaher 

et al., 1976), with analysis by an automated salicylic acid modification of the indophenol 

blue method (Technicon, 1977a). 
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Figure  5.1. Fractionation scheme to isolate soil organic C (SOC) fractions using a  

conceptual model (Six et al., 2000a) 
 

 

 

       Resistant organic C and N in free form in the fraction <53 µm within 

microaggregates was determined using the method suggested by Rovira and Vallejo 

(2002) with the following modifications. One g of oven-dry <53-µm sample passing 

through 60 mesh was hydrolyzed with 25 mL of 6 N HCl in a digestion tube in an 

aluminum block digester at 110 0C for 18 h, with occasional shaking. After cooling, the 

unhydrolyzed residue was recovered by centrifuging at 2851 x g and decanting the liquid. 

The process of centrifugation and decantation was repeated several times with deionized 

water until neutral pH was reached. The residue was then transferred to a pre-weighed 

vial, dried at 60 0C to constant weight, and determined with an elemental analyzer (Carlo 
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Erba EA-1108, Lakewood, NJ, USA) interfaced with a Delta Plus isotope ratio mass 

spectrometer (ThermoFinnigan, Bremen, Germany) operating in continuous flow mode. 

       Carbon and N in coarse unprotected and protected POM were finely ground to pass a 

150-µm sieve and analyzed following Harris et al. (2001). Briefly, samples were weighed 

into silver capsules and treated with 12 M HCl to remove inorganic carbon (CaCO3), and 

then analyzed as previously described for ROC.  

 

Statistical Analysis 

        Analysis of variance and regression were conducted (SPSS, 2001). All differences 

discussed are significant at the P<0.05 probability level, unless otherwise stated. Fisher’s 

protected least significant difference was calculated only when the analysis of variance F-

test was significant at P<0.05. 

 

RESULTS AND DISCUSSION 

Size Distribution of Soil 

       About 99% of the soil was distributed into the two smaller size fractions (<53 and 53 

to 250 µm) (Fig. 5.2). There was no significant difference between the amount of the <53 

and 53- to 250-µm fractions. The amount of soil in the <53-µm fraction, however, was 

8% greater than that in the 53- to 250-µm fraction when averaged across all treatments. 

The amount of soil in the <53-µm fraction was greater under CT than NT with N applied 

except in CW but it was insignificant. In contrast to the smallest fraction, soil distribution  
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Figure 5.2. Soil distribution into size fractions (a) >250 µm, b) 53 to 250 µm, c) 
<53 µm) as affected by cropping sequence, tillage, and N fertilization. CW, 
SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat 
soybean sequences. CT and NT indicate conventional and no tillage. Error bars 
represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different 
at P<0.05. 
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into the 53- to 250-µm fraction was greater under NT than CT for all cropping sequences 

but only significant in WS. Similar results were observed for the >250-µm fraction. No 

tillage increased soil in the >250-µm fraction compared to CT. Nitrogen application also 

increased the quantity of soil found in this fraction, partially because of increased residue 

production. 

  

Organic C and N in Unprotected and Protected <53-µm Fractions  

       No tillage significantly increased the concentration of organic C in the <53-µm 

fraction compared to CT for all cropping sequences (Fig. 5.3a). The non-protected 

organic C concentration in this size fraction under NT was 15%, 29%, 31% greater in 

CW, SWS, and WS than with CT, respectively (Fig. 5.3a). The protected organic C 

concentration in the size fraction under NT was 16, 37, and 38% greater in CW, SWS, 

and WS than CT, respectively (Fig. 5.4a). Unlike NT, no differences in organic C among 

cropping sequences was observed under CT (Figs. 5.3a and 5.4a). Those results indicated 

that the organic C concentration of this size fraction increased with crop intensity only 

under NT. 

       Nitrogen application increased organic C in this size fraction with NT, but results 

were only significant for CW (Figs. 5.3a, 5.4a, and 5.4b). Nitrogen addition did not 

influence organic C under CT. 

       In contrast, Cambardella and Elliott (1992) did not observe any difference in organic 

C between NT and CT in the <53µm fraction. One explanation for this observation may 

be the difference in cropping intensity. The cropping sequences for our study were CW,  
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Figure  5.3. Concentration of non-protected organic C in the <53-µm fraction (a), 
calculated on a whole-soil basis (b), and as a proportion of SOC in the <53-µm 
fraction (c) as affected by cropping sequences, tillage, and N fertilization. CW, 
SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat 
soybean sequences. CT and NT indicate conventional and no tillage. Error bars 
represent standard deviation. Comparisons fo r tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different 
at P<0.05. 
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Figure  5. 4. Concentration of protected organic C in the <53-µm fraction (a), 

calculated on a whole-soil basis (b), and as a proportion of SOC in the <53-µm 
fraction (c) as affected by cropping sequences, tillage, and N fertilization. CW, 
SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat 
soybean sequences. CT and NT indicate conventional and no tillage. Error bars 
represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different 
at P<0.05. 
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SWS, and WS instead of a wheat- fallow system. A tendency similar to that of the 

previous authors was observed for CW, especially, with no N fertilization. Another factor 

might be the difference in sampling depth. We used the surface (0-50 mm) soil, while 

Cambardella and Elliott (1992) used 0 to 20 cm. We also found no significant difference 

for SOC in the <53-µm fraction between NT and CT at the 50- to 15-cm depth (data not 

shown). The concentration of OC reported by Cambardella and Elliott (1992) was three 

times larger. This result might be explained by differences in climate and soil texture 

(Christensen, 1996). 

       The proportion of SOC in the <53-µm fraction was greater under CT than NT (Figs. 

5.3c and 5.4c), with proportions ranging from 23 to 39%. Cropping sequence had little 

impact on the proportions, while N addition tended to decrease it.  

       Physical protection by microaggregates affected organic C concentration of the <53-

µm fraction and the proportion of  SOC as OC in the <53-µm fraction. Compared to the 

non-protected <53-µm fractions, greater C concentration was observed for the protected 

<53-µm fractions. In addition, the difference between NT and CT for C concentration of 

the protected <53-µm fraction was greater than the non-protected <53-µm fraction. In 

contrast to the C concentration, the difference in the proportions of SOC in the non-

protected <53-µm fraction between NT and CT was greater compared to the protected 

<53-µm fraction.  

      Total nitrogen in this fraction was highly related with organic C (Table 5.1). C:N of  

the non-protected or protected <53-µm fraction was approximately 10:1 and there was no 

significant difference between NT and CT. Nitrogen application did not affect C:N ratio. 
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Table 5.1. Correlation matrix of soil carbon and nitrogen pools in physical fractions at 0 to 5 cm in soil samples following 
wheat (n = 48). 

<53-um fraction Microaggregate PPOM† 
Resistant organic 

matter  
OC‡ ON§ OC ON OC ON OC ON 

OC --- ** ** ** ** ** ** ** < 53-um 
fraction ON 0.812 --- ** ** ** ** ** ** 

OC 0.914 0.86 --- ** ** ** ** ** 
Microaggregate 

ON 0.847 0.836 0.965 --- ** ** ** ** 
OC 0.77 0.681 0.866 0.899 --- ** ** ** 

PPOM 
ON 0.831 0.732 0.917 0.925 0.986 --- ** ** 
OC 0.857 0.807 0.934 0.938 0.836 0.856 --- ** Resistant 

organic matter ON 0.675 0.588 0.685 0.664 0.628 0.627 0.744 --- 
†Protected particulate organic matter. 
‡Organic carbon. 
§Organic nitrogen. 
** denotes significance at P = 0.01. 
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       The <53-µm fractions consist of primary particles such as clay and silt minerals, 

small microaggregates, as well as small-size particulate organic matter (SPOM) (Shang 

and Tiessen, 2000). Using a size and density fractionation method, Hassink et al., (1997) 

observed a positive relationship between the proportion of particles <20 µm in a soil and 

the amount of C that becomes associated with this fraction in both surface grassland and 

arable soils. In our case, if we assume both soils under NT and CT have the same 

proportion of particles <53 µm, then the difference between NT and CT could be 

explained by several factors. First, organic C in this fraction does not reach a maximum. 

Second, it was due to the difference in sieve size. We included larger particles into this 

fraction. They also observed the increased C for the larger size fractions. However, if we 

consider the effect caused by fraction source, it appears that free fraction still does not 

reach a maximum, compared to C concentration under NT from microaggregate. 

       The basic model proposed for organo-mineral is Clay-P-OM, where, P represents 

polyvalent cations such as Ca2+, et c. (Edwards and Bremner, 1967). It can further form 

microaggregates such as (Clay-P-OM)x or (OM-P-OM)x (x represents integer). It is 

suggested that C associated with this fraction is very stable, and is not easily disrupted by 

agricultural practices (Turchenck and Oades, 1978). However, our results contrasted with 

those observations. It might indicate that microaggregates provide extra physical 

protection from microbial decomposers, compared to the free fraction. 

 

Resistant Organic C and N 

       Resistant organic C (ROC) was highly related with organic C of the <53-µm fraction 

either non-protected or protected by microaggregate (Table 5.1). Concentrations of ROC 
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on both size fraction and whole soil basis were significantly greater under NT than CT 

(P<0.05), except for NT in CW without N application (Figs. 5.5 and 5.6). Based on 

residue weights after acid hydrolysis, ROC in the non-protected <53-µm fraction under 

NT was 12%, 29%, and 46% greater for CW, SWS, and WS (Fig. 5.5a). ROC in the 

protected <53-µm fraction under NT was 18, 58, and 52% greater for CW, SWS, and 

WS, respectively than with CT (Fig. 5.6a). Nitrogen applications did not consistently 

affect ROC under either NT or CT. Cropping sequences increased ROC in the order 

CW< WS< SWS, but difference was insignificant (Figs. 5.5a, 5.6a). Similar tendencies 

were observed for ROC after conversion to a whole soil basis (Figs. 5.5b and 5.6b). 

       The percentage of SOC as ROC in the protected <53-µm fraction was significantly 

higher than that for the unprotected faction (Figs. 5.5c and 5.6c). This result indicated 

that OC in the non-protected fraction tended to be more labile than that associated with 

microaggregates. 

       Resistant N was highly related with ROC in the <53-µm fraction non-protected or 

protected by microaggregates (Table 5.1). The C:N ratio of resistant organic matter for 

the protected <53-µm fraction under NT was significantly larger than CT except for CW 

(Fig. 5.7). Average values of C:N ratio were 8:1 and 10:1 for CT and NT, respectively. 

The lower C:N under CT indicated that organic matter was more decomposed than under 

NT. In contrast, Six et al. (2002b) reported a consistently lower C:N of 6 to 8 for the non- 

hydrolyzable fraction, and suggested that it is a microbially derived SOC pool. Senesi 

and Loffredo (1999) suggested that resistant organic matter consists of materials from 

plants such as lignin, suberin, and those from microorganisms such as melanins and 
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Figure  5.5. Concentration of non-protected resistant organic (ROC) C in the  
  <53-µm fraction (a), calculated on a whole-soil basis (b), and as a proportion 

of SOC in the <53-µm fraction (c) as affected by cropping sequences, tillage, 
and N fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-
wheat-soybean, and wheat soybean sequences. CT and NT indicate 
conventional and no tillage. Error bars represent standard deviation. 
Comparisons for tillage and N fertilization are within cropping sequences. 
Means followed by the same letter are not different at P<0.05. 



 

 

97

R
O

C
 in

 th
e 

pr
ot

ec
te

d 
<5

3-
um

 fr
ac

tio
n 

(g
 C

 k
g-1

 p
ro

te
ct

ed
 <

53
-u

m
 fr

ac
tio

n)

0

3

6

9

12

15
CT- 0 g N m-2

CT- 6.8 g N m-2

NT- 0 g N m-2

NT- 6.8 N m-2

R
O

C
 in

 th
e 

pr
ot

ec
te

d 
<5

3-
um

 fr
ac

tio
n 

(g
 C

 k
g-1

 s
oi

l)

0

3

6

9

12

15

CW SWS WS

P
ro

po
rt

io
n 

of
 S

O
C

 a
s 

R
O

C
 in

 th
e 

pr
ot

ec
te

d 
<5

3-
um

 fr
ac

tio
n

0.0

0.2

0.4

0.6

0.8

1.0
c

b

a

b b b

a

b b

a a

b
b

a

a

b b b a
b b

a a
b b

a a

a ab b ab a a aa a ab ab b

 
Figure  5. 6. Concentration of protected resistant organic (ROC) C in the <53-µm 

fraction (a), calculated on a whole soil basis (b), and as a proportion of SOC in 
the <53-µm fraction (c) as affected by cropping sequences, tillage, and N 
fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-
soybean, and wheat soybean sequences. CT and NT indicate conventional and 
no tillage. Error bars represent standard deviation. Comparisons for tillage and 
N fertilization are within cropping sequences. Means followed by the same 
letter are not different at P<0.05. 
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Figure  5.7. C:N of protected resistant organic matter (ROM) in the <53-µm fraction as 
affected by cropping sequences, tillage, and N fertilization. CW, SWS, and WS indicate 
continuous wheat, sorghum-wheat-soybean, and wheat soybean sequences. CT and NT 
indicate conventional and no tillage. Error bars represent standard deviation. 
Comparisons for tillage and N fertilization are within cropping sequences. Means 
followed by the same letter are not different at P<0.05. 

 
 
 

paraffinic macromolecules. No tillage likely exerts more protection for SOC than CT, and 

thus affected the C:N ratio of resistant organic matter. 

 

Microaggregate Associated C and N 

       A significant interaction between tillage and N application was observed (P<0.05) 

for the organic C concentration of microaggregates (53 to 250 µm) calculated on 

fractional and whole soil bases (Fig. 5.8a, b). Organic C of microaggregates was 

significantly greater with than without N only under NT. Organic C of microaggregates 

under NT was 42, 88, and 85% greater in CW, SWS, and WS, respectively, than with CT  
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Figure  5.8. Concentration of microaggregate organic C in the 53- to 250-µm 

fraction (a), calculated on a whole-soil basis (b), and as a proportion of SOC in 
the 53- to 250-µm fraction (c) as affected by cropping sequences, tillage, and 
N fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-wheat-
soybean, and wheat soybean sequences. CT and NT indicate conventional and 
no tillage. Error bars represent standard deviation. Comparisons for tillage and 
N fertilization are within cropping sequences. Means followed by the same 
letter are not different at P<0.05. 
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when averaged across N fertilization. Due to the higher yield of microaggregates under 

NT than CT, those differences were enhanced when determined on a whole soil basis.  

       Compared with organic C in the non-protected <53-µm faction, the proportion of 

SOC in microaggregates under NT was 12, 25, and 35% greater for CW, SWS, and WS, 

respectively, than with CT (Fig. 5.8c), and indicated that more organic C was physically 

protected under NT. 

       Total nitrogen in microaggregates was highly related with organic C (Table 5.1). 

Greater variation in N was observed than with C. The C:N ratio (8.8 + 0.7) of this 

fraction was less than that (10.7 + 0.7) of whole soil (Fig. 5.9).  

       Tisdall and Oades (1982) suggested that microaggregates consist mainly of <20-µm 

particles cemented together by plant and fungal debris encrusted with inorganic materials, 

crystalline oxides and highly disordered aluminosilicates.  

 

Particulate Organic C and N  

       A significant interaction (P = 0.012) between tillage and N fertilization was observed 

for protected particulate organic matter C (Figs. 5.10a, b). Protected POM C (PPOM C) 

was significantly greater with N fertilization than for no N controls under NT, except in 

WS. Protected POM C for CT calculated on a size-fraction basis (Fig. 5.10a) was not 

affected by N fertilization except for CW where N addition increased PPOM C. Averaged 

across N treatments, PPOM C under NT was 115, 150, and 85% greater in CW, SWS, 

and WS, respectively than with CT. Similar results were observed after converting to a 



 

 

101

CW SWS WS

C
:N

 o
f m

ci
ro

ag
gr

eg
at

es

0

5

10

15

20
CT- 0 g N m -2

CT- 6.8 g N m-2

NT- 0 g N m -2

NT- 6.8 g N m-2

a aa a
a a a a

b
abab

a

 
 
Figure  5.9. C:N ratio of microaggregates (53 to 250 µm) as affected by cropping 

sequences, tillage, and N fertilization. CW, SWS, and WS indicate continuous wheat, 
sorghum-wheat-soybean, and wheat soybean sequences. CT and NT indicate 
conventional and no tillage. Error bars represent standard deviation. Comparisons for 
tillage and N fertilization are within cropping sequences. Means followed by the same 
letter are not different at P<0.05. 
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Figure  5.10. Concentration of protected particulate organic matter (POM) C in the 53- to 

250-µm fraction (a), calculated on a whole-soil basis (b), and as a proportion of soil 
organic C (SOC) in the 53- to 250-µm fraction (c) as affected by cropping sequences, 
tillage, and N fertilization. CW, SWS, and WS indicate continuous wheat, sorghum-
wheat-soybean, and wheat soybean sequences. CT and NT indicate conventional and 
no tillage. Error bars represent standard deviation. Comparisons for tillage and N 
fertilization are within cropping sequences. Means followed by the same letter are not 
different at P<0.05. 
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whole-soil basis, except that  PPOM C in CW decreased compared to the other cropping 

sequences (Fig. 5.10b). The concentration of PPOM C was significantly lower in CW 

compared to the other cropping sequences.  

       The proportion of SOC as PPOM C was significantly greater under NT than CT (Fig. 

5.10c). Nitrogen application also tended to increase this proportion, but was significant 

only for NT with CW. Cropping sequence also had little effect on this proportion. 

Cambardella and Elliott (1992) observed similar results for tillage treatments. The 

proportion of SOC as PPOM C tended to be more sensitive to changes in management 

compared to the proportion of SOC as C within the protected <53-µm fraction (Fig. 5.4c). 

       Protected particulate organic N generally mirrored the results observed for C (Table 

5.1). The overall C:N ratio of coarse, unprotected POM was greater than that of mineral-

associated , or protected, POM (Figs. 5.11a, b). The C:N ratio of POM under NT was 

lower than CT across cropping and N treatments. Based on the morphology and chemical 

structure of organic materials contained in occluded POM forming the core of 

microaggregates, Golchin et al. (1995) proposed that the types and amounts of occluded 

organic materials are dependent upon the nature of organic matter input to soil and the 

microenvironment within soil aggregates. Furthermore, Golchin et al. (1997) suggested 

that occluded organic materials are more recalcitrant and have higher alkyl and aromatic 

C contents than free organic materials. In addition, fungi tend to be more dominant under 

NT than CT (Frey et al., 1999). Since fungi require more C per unit of N consumed than 

bacteria, this could result in the lower C:N of POM under NT.  
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Figure  5.11. C:N ratios of a) protected particulate organic matter (POM) (53- to 

250-µm), and b) coarse unprotected particulate organic matter (>250 µm) as 
affected by cropping sequence, tillage, and N fertilization in surface soil. CW, 
SWS, and WS indicate continuous wheat, sorghum-wheat-soybean, and wheat 
soybean. CT and NT indicate conventional and no tillage. Error bars represent 
standard deviation. Comparisons for tillage and N fertilization are within 
cropping sequences. Means followed by the same letter are not different at 
P<0.05. 
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Figure  5.12. Concentration of non-protected particulate organic matter C (POM-
C) (>250 µm) in the >250-µm fraction (a), calculated on a whole-soil basis (b), 
and as a proportion of soil organic C (SOC) in the >250-µm fraction (c) as 
affected by cropping sequences, tillage, and N fertilization. CW, SWS, and WS 
indicate continuous wheat, sorghum-wheat-soybean, and wheat soybean 
sequences. CT and NT indicate conventional and no tillage. Error bars 
represent standard deviation. Comparisons for tillage and N fertilization are 
within cropping sequences. Means followed by the same letter are not different 
at P<0.05. 
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       Compared to protected POM, coarse free POMC was not significantly affected by 

tillage when calculated on a size-fraction basis (Fig. 5.12a). On a whole-soil basis, 

however, NT increased coarse, unprotected POM C compared to CT (Fig. 5.12b). 

Nitrogen addition also tended to increase the concentration of this fraction calculated on a 

whole-soil basis, but was only significant for SWS. Coarse, unprotected POM N was 

highly related to N (Table 5.1). The proportion of SOC as coarse, unprotected POM 

followed similar tends as the C concentration of this fraction on a whole-soil basis, with 

the proportion being greater with NT and being significantly increased by N addition to 

SWS (Fig. 5.12c).  

 

CONCLUSIONS 

      Distribution of SOC and N in different pools was affected by tillage, cropping 

sequence, and nitrogen fertilization. Compared to crop intensity and nitrogen fertilization, 

tillage exerted a greater effect. Organic C and N under NT increased in all 

poolscompared with CT. Within enlarged pools, soil microaggregate pools contributed 

most to increased C sequestration. No tillage affected not only the quantity of SOC and N 

sequestered, but also the quality. Greater quantities of resistant organic C were found 

under NT than CT in the <53-µm fractions unprotected or protected by microaggregates. 

The C:N ratio of the 53- to 250-µm pool which contained the most C and N was lower 

under NT than CT. All C pools were significantly related with each other, as well as the 

N in each pool. No tillage plus intensive cropping and N application can effectively 

increase soil C and N sequestration. 
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CHAPTER VI 

SOIL CARBON POOL-SIZE ESTIMATIONS AND 13C CHANGES IN PHYSICAL 

FRACTIONS AS AFFECTED BY TILLAGE, CROPPING SEQUENCE,  

AND NITROGEN FERTILIZATION 

 

INTRODUCTION 

       Soil carbon sequestration cont ributes not only to diminishing the greenhouse gas 

effect, but also affects soil structure, nutrient cycling, and soil fertility (Lal et al., 2004). 

Management factors for increasing C sequestration involve enhancing crop residue inputs 

and decreasing soil organic matter (SOM) decomposition in agricultural ecosystems 

(Gregorich and Janzen, 1996). Many studies show that conservation tillage, especially no 

tillage (NT), along with increased cropping intensity, can increase soil C sequestration 

(Angers et al., 1997; Cambardella and Elliott, 1992; West and Post, 2002). The 

mechanisms of these management strategies for increasing soil organic C (SOC) have 

been extensively studied (Jastrow, 1996a; Six et al., 2000b; Tisdall, 1996; Tisdall and 

Oades, 1982). It is generally accepted that increased cropping intensity increases plant 

residue input, and positive relationships have been reported between plant residue inputs 

and SOC (Hassink et al., 1997). Franzluebbers et al. (1994), however, observed no 

significant difference in SOC under conventional tillage (CT) with increasing crop 

residue input. Soil organic C increased, though, with increased cropping intensity under 

NT. Therefore, one infer that SOC under those specific conditions was in a new 

equilibrium or saturated. Some studies have shown that measurement of SOC is not 

sensitive enough to respond to short-term changes in management compared to labile 
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pools such as soil particula te organic matter (POM) C or soil microbial biomass (SMB) 

(Franzluebbers et al., 1994). More information is needed to better understand SOC 

dynamics under different crop management strategies. 

       Physical fractionation of soil has recently been used to investigate the dynamics of 

SOC and N (Christensen, 1992). The concept behind physical fractionation of soil 

emphasizes the role of soil minerals in SOM stabilization and turnover. Using a physical 

fractionation scheme, Six et al. (2000b) proposed a model of SOC stabilization under NT 

in agricultural soils.  

       The use of 13C natural abundance techniques, coupled with physical and/or chemical 

fractionation, has provided additional insight into SOM turnover (Balesdent and Mariotti, 

1996; Gerzabek et al., 2001; Shang and Tiessen, 2000) for cases where an appropriate 

change in vegetation from C3 to C4 or vice versa has occurred (Balesdent et al., 1987). It 

is normally assumed that differences in the 13C composition of different parts of C3- or 

C4-derived plants are relatively trivial, and the discrimination of 13C by the microbial 

community during decomposition is also minor. Thus, the 13C distribution of SOM 

mirrors the turnover of plant residue, in addition to management and environmental 

effects. 

       Long-term incubation has been proposed as a useful tool to distinguish SOC pools 

with different turnover rates (Collins et al., 2000; Paul et al., 2001; Swanston et al., 

2002). Using this tool with stable isotopic tracers, Collins et al. (2000) concluded that 

SOC mineralized in early stages of organic matter decomposition is from newly added 

crop residue, while CO2 released later reflected the slow C pool. Since SOM is a 

continuum which consists of pools with different turnover rates, we hypothesized that 
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labile pools separated by physical fractionation, active pools determined from long-term 

incubation, and newly added plant residues should be highly related. However, little 

information is available using these combined methods to characterize SOC dynamics. 

The aim of this study was to explore: (i) sizes of the active and slow SOC pools, (ii) 

mean residence time of the active and slow SOC pools,  (iii) the relationship between 

active, slow, and physically-separated SOC pools, and (iv) changes in 13C of physically-

separated SOC pools due to management. 

 

MATERIALS AND METHODS 

Crop Management and Site Characteristics 

      A long-term field experiment was initiated in 1982 in the Brazos River floodplain in 

south-central Texas (30032’N, 94026’W). Wheat (Triticum aestivum L.) was managed 

under conventional (disk) tillage and NT in continuous wheat (CW), continuous 

wheat/soybean [Glycine max (L.) Merr.] (WS), and rotated wheat/soybean-grain sorghum 

[Sorghum bicolor (L.) Moench.] (SWS) cropping sequences. Sorghum was managed 

under conventional (disk) tillage and NT in continuous sorghum (CS), and rotated SWS 

cropping sequences. Crop growing seasons were from early November to late May for 

wheat, early June to late October for soybean, and late March to late July for sorghum. 

Continuous wheat or sorghum produced one crop each year, WS produced two crops 

each year, and SWS produced three crops every two years. Cropping intensity was 

defined as the fraction of the year when a crop was growing, and was 0.5 for CW, 0.65 

for SWS, and 0.88 for WS.  Nitrogen fertilizer (NH4NO3) was broadcast on wheat at 0 or 



 

 

110

6.8 g N m-2 during late winter or early spring. Soybean did not receive N fertilizer, while 

sorghum received 0 or 9 g N m-2 banded preplant. 

       A split-split plot within a randomized complete block design was established with 

cropping sequence as the main plot, tillage as the sub plot, and N fertilizer rate as the sub-

sub plot in 1982. Plots measured 4 x 12.2 m, and treatments were replicated four times. 

       The soil used is classified as a Weswood silty clay loam (fine-silty, mixed, 

superactive, thermic, Udifluventic Haplustepts) and contains an average of 115, 452, and 

433 g kg-1 of sand, silt, and clay, respectively.  Under cultivation, this soil has a pH of 8.2 

(1:2, soil:water) and an organic C content of approximately 8 g C kg-1 soil. Annual 

temperature is 20 0C and annual rainfall is 978 mm. 

 

Soil Sampling 

     Soil samples were collected shortly after wheat harvesting in May and sorghum 

harvesting in August 2002. Individual samples consisted of 25 composited cores (19-mm 

dia.) per plot that were divided into depth increments of 0 to 5, 5 to 15, and 15 to 30-cm. 

Only results for the 0- to 5-cm depth are reported. Soil was sieved to pass a 4.7-mm 

screen (visible pieces of crop residues and roots removed) and oven-dried for 24 h at 40 

0C. A portion of the sieved, moist soil was also dried at 60 0C for 48 h for chemical and 

physical analysis. 

 

Long-term Incubation of Surface Soil 

       Long-term incubation was by the method proposed by Robertson et al. (1999) with 

the following modifications. Mineralizable soil C was measured during extended 
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laboratory incubation of initially oven-dry samples. One hundred-g soil samples of each 

field replicate were adjusted to 55% water holding capacity and incubated in sealed 1000-

mL bottles in the dark at 250C. Water holding capacity was estimated by the method 

suggested by Paul et al. (2001). Vials containing 10 mL of water were placed in bottles to 

maintain humidity, while evolved CO2 was trapped in vials containing 10 mL of 1 M 

KOH. Control jars contained no soil. The trapped CO2 was precipitated as SrCO3 using 2 

M SrCl2 (Harris et al., 1997). The quantity of CO2 evolved was measured by titration of 

residual KOH to pH 7.0 with 0.1 M HCl. Carbon dioxide evolved was determined at 

intervals of 1, 7, 17, 24, 52, 80, 108, 136, 164, 192, 220, 248, 276, and 304 days. A 

constrained two-pool, first-order model was used to estimate pool size and turnover rates 

of each pool (Paul et al., 2001): 

                                   Ct = Cae-kat + Cse-kst                                  (6-1) 

where Ct is total organic C in soil at time t excluding resistant organic C determined at 

the beginning of the experiment, Ca and ka represent size and mean residence time (MRT) 

of the active pool, respectively, and Cs and ks represent size and MRT of the slow pool, 

respectively. The parameters Ca, ka, Cs, and ks were estimated using exponential decay 

(Sigmaplot, 2002). 

 

Size and Density Fractionation 

       Size and density fractionations were conducted following the same procedures in 

previous chapter V.  
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Chemical and Stable Isotopic Tracer Analysis 

       Resistant organic matter in the protected or non-protected <53-µm fraction was 

extracted using the method suggested by Rovira and Vallejo (2002) with the following 

modifications. One g of oven-dried soil of the protected or non-protected <53-µm 

fraction was hydrolyzed with 25 mL of 6 N HCl in a digestion tube in an aluminum block 

digester at 110 0C for 18 h with occasional shaking. After cooling, the unhydrolyzed 

residue was recovered by centrifugation at 2500 rpm and decanting the liquid. The 

process of centrifugation and decantation was repeated several times with deionized 

water until neutral pH was reached. The residue was then transferred to a pre-weighed 

vial, and dried at 60 0C to constant weight. 

       Carbon, N, and d13C were analyzed using the method by Harris et al. (2001). Briefly, 

oven-dried samples were ground and homogenized in a commercial blender to pass 

through a 150-µm sieve. Four or 40-mg soil samples, depending on the C concentration, 

were weighed into silver capsules and inorganic carbonate removed by exposure to HCl 

atmosphere in a desiccator. d13C, %C, and % N were determined using an elemental 

analyzer (Carlo Erba EA-1108, Lakewood, NJ, USA) interfaced with a Delta Plus isotope 

ratio mass spectrometer (ThermoFinnigan, Bremen, Germany) operating in the 

continuous flow mode. Precision for the d13C measurements was < 0.1‰. d13C values 

were expressed relative to the V-PDB standard (Coplen, 1995). 

 

Statistical Analysis 

        Analysis of variance and correlationship were conducted using SPSS 11.0 (SPSS, 

2001). All differences discussed are significant at the P<0.05 probability level unless 
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otherwise stated. Fisher’s protected LSD was calculated only when the ANOVA was 

significant at P < 0.05. 

 

RESULTS AND DISCUSSION 

Carbon Mineralization and Curve Fitting 

       Accumulated C mineralized in 304 days was significantly affected by tillage in both 

wheat and sorghum systems (Fig. 6.1). Compared to CT, mineralized C with no-till was 

40, 40, and 46% greater for CW, SWS, and WS sampled after wheat, and 128 and 70% 

greater for CS and SWS sampled after sorghum, respectively. Nitrogen fertilization 

affected C mineralization in wheat and sorghum systems in different ways. In wheat 

systems, cumulative C mineralized under both CT and NT was significantly greater with 

than without N fertilization. However, in sorghum systems, N fertilization only increased 

cumulative C under NT. Increased cropping intensity only increased C mineralization in 

wheat systems, and the reverse trend was observed for sorghum systems.  

       The quantity of C mineralized during the 304-day incubation at 25 0C was about 10% 

of initial SOC. This amount is greater than that reported by Collins et al. (2000), who 

used deeper samples (0 to 20 cm) and a shorter incubation (260 days). 

      Constrained, two-pool exponential decay models adequately described the 

experimental results (Fig. 6.2). All fitted curves were highly related, regardless of  
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Figure  6.1. Carbon mineralized in 304 days as affected by cropping sequence, N 
fertilization and tillage for a) soil sampled after sorghum, and b) soil sampled after 
wheat. CS, CW, SWS, and WS refer to continuous sorghum, continuous wheat, 
sorghum-wheat-soybean rotation, and wheat-soybean, respectively. CT and NT 
indicate conventional and no tillage. 
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Figure  6.2. Measured (symbols) and modeled (lines) carbon mineralization with time as 
affected by N fertilization and tillage for a) continuous wheat, b) sorghum-wheat-
soybean sampled after wheat, c) wheat-soybean, d) continuous sorghum, and e) 
sorghum-wheat-soybean sampled after sorghum. CT and NT indicate conventional 
and no tillage. 
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treatment (Table 6.1), indicating that under similar incubation conditions, decomposition 

of SOC in all treatments followed similar patterns. 

 

Active and Slow Pool Sizes of SOM 

      In wheat management systems, the active pool size of SOC was affected by tillage 

(Fig. 6.3a). The active pool under NT was 34, 30, and 34% greater in CW, SWS, and 

WS, respectively, than with CT. Compared with CW, organic C in the active pool was 15 

and 32% greater in SWS and WS, respectively, when averaged across tillage treatments, 

indicating that the active pool size increased with cropping intensity. A previous study 

(Chapter V) showed that the amount of POM increased with increasing cropping 

intensity. Particulate organic matter has been reported to represent a labile pool 

(Gregorich and Janzen, 1996). Therefore, a larger POM pool might also indicate a larger 

active pool. The active pool size was highly related to POM (Table 6.2), supporting our 

hypotheses on the relationships between labile pools separated by physical fractionation 

and active pools estimated by long-term incubation. In addition, N fertilization increased 

the active SOC pool following wheat (Fig. 6.3a). The proportion of SOC in the active 

pool was similar for all treatments and ranged from 4 to 5%. This proportion was similar 

in magnitude to the proportion of SOC as SMBC reported by Collins et al. (2000). These 

authors also observed that NT increased the proportion of SOC in the active pool. 

       In contrast to the active pool, a significant interaction between tillage and added N 

was observed for the slow SOC pool following wheat (Fig. 6.3b). Under no-till 

management, the slow pool of organic C was 21, 13, and 15% greater with than without 



 

 

117

    Table 6.1. Correlation matrix of long-term incubation curve fitting data (n = 14). 
 CW1 CW2 CW3 CW4 SWS1 

SW

S2 

SW

S3 

SW

S4 
WS1 WS2  WS3  WS4  

SW

S1 

SW

WS2 

SW

S3 

SW

S4 
CS1 CS2 CS3 CS4 

CW1† --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

CW2 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

CW3 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

CW4 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

SWS1‡ 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

SWS2 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** ** 

SWS3 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** ** 

SWS4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** ** 

WS1  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** ** 

WS2  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** ** 

WS3  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** ** 

WS4  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** ** 

SWS1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** ** 

SWS2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** ** 

SWS3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** ** 

SWS4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** ** ** 

CS1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ** ** ** ** 

CS2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** ** 

CS3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- ** 

CS4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 --- 

 

   †1, 2, 3, 4 refer to conventional tillage (CT) without nitrogen fertilization, CT with 6.8 g N m-2, no tillage (NT) without nitrogen 
fertilization, and NT with 6.8 g N m-2, respectively. CS, CW, SWS, WS, refer to continuous sorghum, continuous wheat, soybean 
wheat-sorghum, and wheat soybean, respectively. 

   ‡SWS refers to in sorghum system, otherwise in wheat system. 
   ** denotes significance at P = 0.01. 
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Table 6.2. Correlation matrix of active and slow organic carbon pools in selected size fractions (n = 12). 

 
Unprotected 

POM† 

Active 

Pool C‡ 
Microaggregate C§ Slow Pool C¶ 

Unprotected POMC --- ** ** ** 

Active Pool C 0.896 --- ** ** 

Microaggregate C 0.962 0.822 --- ** 

Slow pool C 0.970 0.864 0.961 --- 

† Unprotected particulate organic matter C. 
‡C in active pool obtained through curve fitting of C mineralization. 
§Soil organic C in microaggregates (53 to 250 µm). 
¶Slow pool C obtained through curve fitting of C mineralization. 

           ** denotes significance at P = 0.01. 
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Figure  6.3. Active (a and c) and slow (b and d) pools of soil organic C (SOC) in 
wheat and sorghum systems as affected by cropping sequence, tillage, and N 
fertilization. CS, CW, SWS, and WS refer to continuous sorghum, continuous 
wheat, sorghum-wheat-soybean rotation, and wheat-soybean, respectively. CT 
and NT indicate conventional and no-tillage. Error bars represent standard 
errors. 
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N fertilization in CW, SWS, and WS, respectively. The effect of N fertilization under CT 

was smaller. Another significant interaction was observed between cropping sequence 

and tillage for slow pool SOC, with slow pool SOC under NT being 22% greater in both 

SWS and WS, respectively, compared with CW.  

       Different patterns for both active and slow SOC pools were observed for sorghum 

compared to wheat (Figs. 6.3c, d). The effect of cropping intensity on the active SOC 

pool was minimal. The most significant difference in active pool size resulted from 

tillage treatment, with the size in the active pool under NT being 43 and 63% greater for 

CS and SWS, respectively, compared to CT. 

        Only one significant interaction between tillage and fertilization was observed for 

the slow pool under sorghum, in that N fertilization increased pool size only under NT. 

The size of the active pool tended to be smaller under sorghum compared to wheat, but 

sizes of slow pools were similar for both crops. The slow pool tended to be 10 to 12 times 

larger than the active pool. The larger slow pool under NT may partly result from slower 

decomposition of this SOC fraction. 

        

Mean Residence Time (MRT) of Both Active and Slow SOC Pools 

      Mean residence time of the active SOC pool ranged from 34 to 58 days. This was 

consistent with the MRT of the active pool reported by Collins et al. (2000). Compared to 

sorghum systems, the MRT of this active SOC pool was 5% longer in wheat systems. No 

tillage slowed the turnover of the active pool in both wheat and sorghum systems, but 

was significant only in the sorghum systems (Figs. 6.4a, c). Cambardella and Elliott 

(1992) assumed the effect could be due to differences in temperature, moisture, or  
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Figure  6.4. Decomposition rates of active (a and c) and slow (b and d) soil organic C 

(SOC) pools in wheat and sorghum systems as affected by cropping sequence, tillage, 
and N fertilization. CS, CW, SWS, and WS refer to continuous sorghum, continuous 
wheat, sorghum-wheat-soybean rotation, and wheat-soybean, respectively. CT and NT 
indicate conventional and no-tillage. Error bars represent standard errors. 
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substrate availability between CT and NT, all of which can affect decomposition rates. 

Since all soil samples were incubated under the same condition in our study, differences 

might be due to the larger pool size and/or more physical protection by aggregates with 

NT. Compared to CT, more SOC was protected by aggregates in NT according to our 

previous findings (Chapter V). 

      Mean residence time of the slow SOC pool in sorghum systems was 10% longer than 

in wheat systems. The MRT of the slow SOC pool under CT was 62, 8, 18, 10, and 15% 

greater in CS, SWS (after sorghum harvesting), CW, SWS (after wheat harvesting), and 

WS, respectively, than with NT, and averaged 11.3 years with CT and 9.4 years with NT 

(Fig. 6.4b, d). Our results contrast with those of Collins et al. (2000), where NT increased 

the MRT of both active and slow pools compared to CT. 

      One possible explanation for this result is that physically protected organic C in 

aggregates is normally labile. Using density fractionation and long-term incubation, 

Swanston et al. (2002) suggested that the recalcitrance of the heavy fraction (1.65 g ml-1) 

was similar to that of the light fraction and, consequently, differences in their turnover 

rates may be due to physical protection or microbial accessibility. We observed a 

significant relationship between the slow SOC pools and unprotected POM-C (Table 

6.2). Compared with CT, more C is physically protected or inaccessible to the microbial 

community under NT. However, after sampling, sieving, oven-drying, and wetting and 

drying cycles, aggregates, especially macroaggregates, are broken. Moreover, soils under 

CT were already more disturbed than NT due to tillage. Therefore, there might be less 

effect due to sample handling on the soil microbial community under CT. Collins et al. 

(2000) also reported that different pretreatment of soil samples (air-dried vs. no air-
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drying) could affect the MRT of the slow pool. Cambardella and Elliott (1992) reported 

that some POM had a half- life of almost 13 yrs and suggested it as a slow organic-matter 

pool.  

       In sorghum systems, we observed a significant difference in decomposition rate of 

the slow pool between CS and SWS under NT across N fertilization (Fig. 6.4d). The 

mean residence time in SWS was 75% less than in CS under NT, indicating a much 

shortened MRT with increased cropping intensity under NT. A similar tendency, 

however, was not observed in wheat systems. Moreover, the difference in SOC between 

CS and SWS was similar to that between CW and SWS under NT across N fertilization. 

The reason for these differences is not known. 

 

Natural Abundance of 13C in Size Fractions  

      The long-term experiment reported herein was initiated in 1982. Specific information 

on management at the field site prior to that time was not available. Since all treatments 

are located in close proximity and have the same soil series, we assumed an equal initial 

13C natural abundance for all treatments. Thereafter, differences in 13C of soils resulted 

from different management strategies. 

      Size and density fractionation clearly described the effects of a plant community shift 

on the natural abundance of 13C in different size fractions (Table 6.3). In the case of CW, 

the natural abundance of 13C increased in the order of <53-µm fraction > ROC > 

microaggregate > POM. Results were similar to these observed by (Boutton et al., 1993), 

who proposed that organic matter turnover rates in their system appeared to decrease in 

the sequence sand > silt > clay. Therefore, a similar sequence of turnover rates of organic  
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Table 6.3. Natural abundance of 13C of physical size fractions as well as resistant 
organic C (n=4). 
Treatments  CS† CW‡ SWS§ WS¶ 

CT -19.83a* -22.89c -20.96b -23.33c FROC# 
NT -19.49a -23.19c -21.37b -23.51c 
CT -19.38a -23.29c -20.78b -23.97d ROC$ 
NT -18.51a -23.60cd -21.27b -23.99c 
CT -17.80a -22.94c -19.83b -23.39c Free fraction <53 

um  NT -16.90a -22.97c -19.93b -23.12c 
CT -17.35a -23.02c -19.75b -23.48c Fraction* <53 um  
NT -16.31a -23.19c -19.84b -23.42c 
CT -16.93a -24.54c -19.70b -24.89c Microaggregate 
NT -15.92a -24.58c -19.92b -24.86c 
CT -15.65a -28.49e -20.42b -28.27e PPOC% 
NT -15.32a -27.10d -20.29b -26.51c 
CT -14.24a -28.70f -18.97c -28.57f UPPOC& 
NT -14.93a -27.88e -20.66d -27.70e 

†Continuous sorghum. 
‡Continuous wheat. 
§Sorghum-wheat-soybean rotation. 
¶Continuous wheat-soybean. 
#Resistant organic carbon in <53-µm free fraction. 
$Resistant organic carbon in <53-µm fraction from microaggregates. 
%Protected particulate organic C (53 to 250 µm). 
&Unprotected particular organic C (>250 µm).  
*Means within each estimator across tillage treatment and cropping sequence followed 
by the same letter are not significantly different at P<0.05 (Fishers’ protected LSD). 
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matter in different-size pools can be inferred. Compared to 13C of the protected <53-µm 

fraction in CW, the 13C value of the non-protected <53-µm fraction was less negative. 

Balesdent and Balanane (1992) observed an enrichment of 13C associated with soil 

organic matter cropped to maize. In addition, using physical fractionation techniques, 

Golchin et al. (1997) proposed a conceptual model for the relationship between 

microaggregate-POM and its stability. They suggested that the ability of microaggregate-

POM to form stable associations with soil mineral particles was related to the extent of 

POM decomposition. Therefore, as POM decomposition proceeds within 

microaggregates, the more labile portions of POM, such as protein and carbohydrates, are 

consumed by the decomposers leaving a POM core of organic matter which is 

biologically more recalcitrant. The latter was also consistent with differences in 13C 

values of ROC between the protected and non-protected <53-µm fractions. The ROC in 

the protected <53-µm fraction in CW had lower 13C values than that of the non-protected 

<53-µm free fraction. Lignin and some lipids are thought to be main components of 

resistant organic C. The 13C values of lignin and lipids, however, are usually lower than 

the intact plant from which they are extracted (Balesdent and Mariotti, 1996; Boutton, 

1996). Due to similar 13C values of soybean compared to wheat, the same distribution 

was observed in the WS treatment. 

      In contrast with CW, a different pattern was observed for CS (Table 6.3). As 

mentioned before, we do not know the background information for this site prior to the 

long-term experiment. However, we may infer that the vegetation prior to this experiment 

was dominated by C3 species with a similar 13C value as wheat or soybean because 

sorghum is a C4 crop and all 13C values for CS increased compared to CW or WS in all 
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size fractions. Therefore, the pattern of 13C in size fractions in CS also could be explained 

with the same model of organic matter turnover as in the wheat system. Because POM is 

usually labile organic matter and has a short MRT (several months), this fraction was also 

most affected by wheat or sorghum residue input. The less the various fractions were 

affected by sorghum residue input, the more negative were the 13C values observed. 

Results indicated that a greater fraction of SOC in the <53-µm fraction was derived from 

C3 species than in the light fraction. Even in the case of POM, higher 13C values of 

unprotected POM compared to protected POM were observed (Table 6.3). These results 

indicated that a portion of recent crop residues were also incorporated into more 

recalcitrant fractions, but a greater proportion was associated with more labile fractions. 

      A combined effect of C3 and C4 crops was observed in SWS. For labile fractions such 

as PPOM or UPPOM, 13C values appeared to be more affected by the current crop 

(wheat). The 13C value of ROC also appeared to reflect more effect from wheat or 

soybean than sorghum. 

      Tillage effects on 13C values were observed primarily in the labile pool (Table 6.3). 

Compared to CT, greater 13C values were observed in POM under NT, except in UPPOM 

in CS and in SWS. Different tillage treatments may affect the photosynthesis of crops. Fu 

et al. (1993) reported that soil water availability affected the 13C values of plants. Soil 

moisture was higher under NT than CT in related studies (Franzluebbers et al., 1995b; 

Grant et al., 1997).  

      Compared with tillage, effects of N fertilization on 13C values of POM were smaller 

(data not shown). Nitrogen application in wheat systems resulted in more negative 13C 

values than without N, except UPPOM in SWS under NT. In contrast to wheat systems, 
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the reverse pattern was observed in sorghum systems. Fu et al. (1993) also reported N 

effects on 13C values similar to our result with CS. These authors also reported a 

significant N x species interaction. In contrast, several studies observed no effect of leaf 

N concentration on d 13C (Hubick, 1990; White et al., 1990). 

 

CONCLUSIONS 

      Tillage, cropping intensity, and N fertilization affected 1) sizes of active and slow 

pools of SOC as well as turnover rates, and 2) natural abundance of 13C in different 

physical size fractions. The general significance of different treatments was in the order: 

tillage > cropping sequence > N fertilization. Four to 5% of SOC was in active pools with 

MRT around 50 days, 50% of SOC was in slow pools with an average MRT of 12 years, 

and the remainder was in the resistant pool with an assumed MRT of over 500 years. No 

tillage significantly increased both active and slow pool sizes of SOC compared to CT. 

Mean residence time was not significantly affected by tillage in wheat systems. 

Difference in 13C concentration of crop residues significantly affected 13C concentration 

of SOC in all size fractions, with greater differences in labile pools. Carbon turnover rates 

increased in the sequence: ROC < silt- and clay-associated C < microaggregate-C < 

POMC. Surprisingly, active and slow pool-C, POM, silt- and clay-associated C were 

highly related. Stable isotopic tracers, plus physical fractionation, improved our 

understanding of SOC dynamics. 
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CHAPTER VII 

SUMMARY AND GENERAL CONCLUSIONS 

 
       Concerns about the effect of increasing concentrations of greenhouse gases in the 

atmosphere on global climate have increased research into the soil carbon (C) cycle with 

a focus on the potential for increasing organic C sequestration (Lal et al. 2004). 

Compared to other ecosystems, agroecosystems are highly manipulated. Therefore, best 

management strategies may potentially increase C storage in this ecosystem. This 

research dealt with quantifying labile and slow soil C and N pools as well as C turnover 

under CT and NT in different cropping sequences with and without N fertilizer addition. 

       Crop stover production was differentia lly affected by tillage, cropping sequence, and 

N fertilization for wheat and sorghum. Nitrogen addition significantly increased wheat 

stover yield regardless of tillage. NT also increased wheat stover yield compared to CT. 

No significant difference from N fertilization was observed for yield of sorghum stover. 

In contrast to wheat, NT also slightly decreased sorghum stover yield compared to CT. 

       Soil organic C (SOC) was highly affected by tillage, cropping sequence, and N 

fertilization in wheat systems. Two significant interactions in surface soil samples 

affecting SOC were tillage by N fertilization and tillage by cropping sequence. Under 

NT, SOC was significantly higher with than without N fertilization. The difference was 

insignificant under CT when averaged across all cropping sequences. Enhanced cropping 

intensity [ wheat-sorghum/soybean (SWS) and wheat-soybean (WS)] significantly 

increased SOC under NT, but no such result was observed for CT. In general, SOC 

decreased with depth. SOC level is a balance of net input and net output. The greater 
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input of plant residues with enhanced cropping intensity and slower decomposition under 

NT may explain higher SOC under NT than CT in wheat systems. However, the 

significant interaction between tillage and N addition for SOC could not be completely 

explained by differences in net input. Therefore, the decomposition rate of plant residue 

may be different under NT and CT. Significant interaction between tillage and N addition 

was also observed in the sorghum systems, although no significant difference in plant 

residue input was observed due to tillage treatment. This result may indicate that the 

magnitude of soil protection of residue input was greater in NT than the net input of plant 

residues. Similar results were also observed in soybean systems. Due to being coupled 

with SOC, TN usually mirrored trends of SOC as affected by all management practices. 

The C:N ratio of SOM under CT was greater than with NT through all soil depths in all 

crop systems. Differences, however, were only significant in surface soil.  

       Carbon sequestration rates in this study using the equation suggested by West and 

Post (2002) were negative compared with data collected in 1992, except in sorghum 

systems with N addition. Nitrogen addition tended to reduce the negative trend. One 

reason for negative sequestration rates was a decrease over time in the difference of SOC 

between CT and NT. Our results suggested that soil has a finite capability to protect or 

sequester SOC. 

       Soil microbial biomass (SMB) was more affected by tillage than by cropping 

intensity or N fertilization in all cropping systems. For example, in wheat systems, 

SMBC under NT was 18, 25, and 13% greater in CW, SWS, and WS, respectively, than 

for CT in surface soil. Lower SMBC under NT than CT was observed at a depth of 5 to 

15 cm. At 15- to 30-cm depth, however, there was no consistent change between CT and 
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NT. Nitrogen fertilization also increased SMBC in all cropping systems, although it was 

not significant. Crop species also affected SMBC. Compared with continuous soybean, 

SMBC was greater for continuous wheat and sorghum regardless of tillage. The effect of 

tillage on the proportion of SOC as SMBC varied with cropping system. Unlike SOC or 

SMBC, this ratio changed minimally with depth. The proportion of SOC as SMBC in our 

study was about 5 to 8% for all depths. However, the proportion of SMBC as 

mineralizable C decreased with depth. Soil microbial biomass N as expected was highly 

related to SMBC and other SOC pools in wheat, sorghum, and soybean systems. 

Compared to SOC or SMBC, soil microbial biomass N decreased with soil depths faster 

in all studied crop systems.  

       Labile C pools showed similar patterns for sorghum, soybean, and wheat systems. 

SMBC, mineralizable-C, POM-C, and hydrolyzable C were significantly and positively 

correlated with each other and SOC. On average, SMBC was 5% of SOC, mineralizable 

C in a 24-day incubation was 3% of SOC, POM-C was 35% of SOC, and hydrolyzable C 

was 45% of SOC in this study. Although labile SOC pools increased as SOC increased, 

they exhibited significant differences in rates of increase. In addition, sensitivity of 

different labile C pools to change in SOC varied with CT or NT. Under CT, SMBC and 

hydrolyzable C were more affected by change of SOC; however, POM-C was more 

affected under NT. 

       Slow and resistant organic C pools were also highly correlated with SOC, and thus 

showed similar trends as affected by management practices in wheat, sorghum, and 

soybean systems. However, the proportion of SOC as mineral-associated C ranged from 

0.61 to 0.95, and increased with soil depth, indicating that more C with depth occurred in  
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stable form. Similar patterns were also observed for ROC as evidenced by high 

correlation (r2 = 0.85) between mineral-associated and ROC pools, although the 

proportion of SOC as ROC decreased with depth.  

       Physical fractionation helped identify mechanisms of C storage under NT. A 

significant interaction between tillage and N fertilization was observed for protected 

particulate organic matter C (PPOM-C). PPOM-C under NT was significantly greater 

with than without N fertilization, except for WS. The proportion of SOC as PPOM-C was 

significantly greater under NT than CT. A similar result was observed for free POM-C. 

Carbon concentration for mineral-associated organic matter under NT was greater than 

CT regardless of protection. The proportion of mineral-associated C was greater under 

CT than NT, with values ranging from 23 to 39%. Similar trends were also observed in 

ROC. These findings indicated that NT stores more C not only through physical 

protection such as in macroaggregates and microaggregates, but also because changed 

environmental factors reduce decomposition.  

       These hypotheses were further supported by natural 13C abundance determination. 

Tillage effects on 13C values were observed primarily in the labile pool. Compared to CT, 

more positive 13C values were observed in POM under NT, except in UPPOM in CS and 

in SWS. In the case of CW, the natural abundance of 13C increased in the order: <53-µm 

fraction > ROC > microaggregate > POM. These results suggested that SOM 

decomposition increased with decreased particle size. More negative 13C value of OM in 

protected than unprotected < 53-µm fraction may be similarly explained.  

       Long-term incubation results were well described by constrained two-pool 

exponential decay models. Both active and slow C pool sizes of SOC were estimated to 
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be greater under NT in wheat and sorghum systems. Mean residence time (MRT) of the 

active C pool was longer under NT and ranged from 34 to 58 days. However, MRT for 

slow C pool was longer under CT than NT with a range from 9.4 to 11.3 years. These 

results may be partially explained by soil pretreatment such as being oven-dried as well 

as ground. Disturbed soil samples could release physically protected substrates, and thus 

accelerate their decomposition. However, the active C pool refers to substrate which is 

readily accessible to decomposers. 

         In summary, agricultural management practices such as NT, enhanced cropping 

intensity, and N fertilization increased soil C storage in both labile and slow pools, 

indicating that the studied agroecosystem could serve as a sink for sequestration of 

organic C. The potential for increased sequestration, however, appeared to be less than 20 

years for NT in this soil and environment. 
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