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Abstract. In a packed bed catalytic reactor, the fluid flow phenomena are very 

complicated because the fluid and solid particle interactions dissipate the energy. 

The governing equations were developed in the forms of specific models. The 

shear factor model was introduced in the momentum equation for covering the 

effect of flow and solid interactions in porous media.  A two dimensional 

numerical solution for this kind of flow has been constructed using the finite 

volume method. The porous media porosity was treated as non-uniform 

distribution in the radial direction. Experimentally, the axial velocity profiles 

produce the trend of having global maximum and minimum peaks at distance 

very close to the wall. This trend is also accurately picked up by the numerical 

result. A more comprehensive shear factor formulation results a better velocity 

prediction than other correlations do. Our derivation on the presence of porous 

media leads to an additional viscosity term. The effect of this additional viscosity 

term was investigated numerically. It is found that the additional viscosity term 

improves the velocity prediction for the case of higher ratio between tube and 

particle diameters. 

Keywords: effective viscosity; flow fluid; non-uniform porous media; numerical 

modeling; shear factor. 

1 Introduction  

Catalytic packed bed reactor is the type of reactor that is widely used in many 

chemical industries. The reactor is packed with porous catalyst particles. A flow 

distribution problem occurs frequently in the operation of packed bed reactor. 

The problem is often referred to flow mal-distribution. Generally, the flow mal-

distribution is caused by inherent reactor design and operation problems, which 
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fail to meet the required flow distribution. At present, a reactor is designed 

mostly using the simplification method of flow in which the complicated flow 

that may exist is assumed to be simple and has known flow characteristics, such 

as resulting elementary reactor design procedures either perfectly mixed or plug 

flow reactor design concept. An improved reactor design method should be 

observed.  If the flow field can be predicted realistically, the flow mal-

distribution can be minimized or avoided by the geometry modification in the 

design step. In catalytic packed bed reactor, the fluid flow phenomena are very 

complicated because there is an interaction between the fluid flow and solid 

particles/porous medium. The interaction will dissipate the energy of flowing 

fluid. 

Mathematical and numerical modelings for prediction of fluid flow field in 

porous media have been widely developed. Giese, et al. [1] and Liu and 

Masliyah [2] have solved one-dimensional problem by neglecting convection 

terms and using finite difference method. Stanek and Szekely [3] and 

Papageorgiou and Froment [4] solved the two-dimensional problem using 

vorticity method. Their solution is not much reliable due to its limitation to two-

dimensional laminar problems only. The mathematical and numerical models 

are needed to be developed to obtain a more realistic solution of fluid flow field 

in porous media. The model and method should be flexible in variation of 

porous media properties, expandable to three-dimensional model, and ready to 

incorporate mass and heat transfers. 

The treatment of porous media in the past was carried out by most authors with 

constant porosity. The calculated velocity profiles were considered as a velocity 

profile in a fluid like region. However, this work used a non-uniform porosity 

approach of the media. This is because of that the real condition of the media 

porosity is not uniform. The porosity profile is obtained from the measurement 

data by Benenati and Brosilow [5]. The computed velocity profiles should 

become   more realistic in which the velocity in the region with higher porosity 

should be higher than the velocity in the region with lower porosity.   

The effect on this expected velocity distribution will be more prompt to the 

reaction process in the porous media. If the computed velocity is based on 

uniform   porosity approach, the predicted chemical component concentration 

profile will be considered not to represent the actual condition. This work 

focused on the computational method and fluid flow physical models for non 

uniform porous media. When velocity distributions are well predicted 

numerically, the chemical reactions can be easily included to be computed 

together with velocity components by adding their mass conservation equations.   
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The momentum equations for porous media are different from that for full fluid 

media in the term of the additional friction term.  The friction in porous media 

was originally formulated from experimental data to state the relation between 

the pressure drop and the superficial velocity of the fluid.  The earlier 

correlations are based on the absence of the convection contribution to the 

momentum equations like Darcy’s, Forcheimer and Brinkman equations.  The 

later correlations were constructed from experiments. These friction correlations 

are given in Table 1.  

For two dimensional flow, the momentum equations are constructed by 

convection, diffusion, and friction terms. The definition of the friction term in 

this work is adopted from the relation between the pressure drop and the fluid 

velocity described above. The x-momentum equation uses the same 

construction of the friction relation with the y-momentum equation except its 

velocity variable in the friction equation in which it uses its own velocity 

direction.  

Many expressions of the friction equation are available. The clarification on 

which friction term expression to provide a good prediction in velocity profiles 

needs to be investigated. The contribution of this work is on filling the 

information gap on this matter.   

Liu and Masyliah [2] considered the effect of porous media in enhancing the 

diffusional momentum term. The conventional approach does not have this 

additional diffusional term in the momentum equation. Their postulation is a 

kind of complex formulation. It is our interest to simplify this complex 

formulation to a simple one.  Our simplified formula was derived to form an 

additional viscosity to give an effective viscosity in the diffusional term of the 

momentum equations. Therefore, this can be easily studied numerically to 

investigate this postulation in a more simple way.   

The objectives  of this research are (i) to construct a numerical solution to  solve 

two-dimensional continuity and momentum equations for the fluid flow in non-

uniform porous media which involves various shear factor expressions, (ii) to 

investigate which shear factor expression can give a better prediction of the 

velocity field,  (iii) to form a simplified formula of the additional contribution 

by porous media to the momentum transfer and (iv) to investigate numerically 

the  additional  contribution by the porous media to the momentum transfer.  

Specific models of flow in porous media have been derived in which these 

models are more comprehensive in considering two-dimensional case covering 

diffusion, convection, and shear factor terms. The numerical procedures and 

solution have been established.  
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The measurement of the velocity components inside the porous media is not 

easy. It requires a complicated and advanced technique. For the purpose of this 

study, the available experimental data from literatures we used.  There are two 

sets of experimental data available. The first set is   the experimental data of 

Kufner and Hofmann [6] and the second is the data of Stephenson and Stewart 

[7].  These data are very useful for this study. First, the numerical predictions 

show the trend of the superficial velocity field in a good agreement with and 

Stephenson and Stewart [7]. By comparing to the experimental data, Liu and 

Masliyah shear factor correlation results a better velocity production than other 

correlations do. The existence of the porous media was derived to contribute on 

an additional viscosity. The effect of this additional viscosity was successfully 

investigated numerically [8]. It is found that the additional viscosity improves 

the velocity prediction for the case of higher ratio between tube and particle 

diameters. 

2 Mathematical Modeling of Fluid Flow in Porous Media 

Fluid flow field in porous media can be obtained by solving the momentum, 

continuity, and species concentration transfer equations simultaneously.  For the 

interest of fluid flow only in which the mass transfer is not involved, the 

momentum and continuity equations govern this phenomenon. The momentum 

and continuity equations in porous media should be derived to cover the effect 

of solid porous media to the fluid flow.  

An ideal approach to establish the fluid flow model inside porous media is to 

define the momentum and continuity equations inside pore volumes only and to 

treat the solid media as zero boundaries for the flow field. However, this 

approach is not practical and very tedious. The most common approach is to 

assume the whole porous media (solid and pore volume) as a continuum 

medium. The flow governing equations work on this continuum medium 

without considering whether solid or fluid medium. All quantities are defined 

on the base of volume average. 

There are two important parameters to differentiate between the porous and 

empty media. The ratio between pore volume (fluid volume) and continuum 

medium volume (solid and fluid volumes) quantifies the space, which can be 

flown by the fluid. This ratio is known as porosity, . Another parameter of the 

fluid flow in porous media is tortuosity, . Tortuosity is the ratio between the 

global passage distance of the flow in a continuum volume (macroscopic 

distance) and that total passage distance of the flow in pore network straits 

(microscopic distance) in the continuum volume.  
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A local quantity 

 is used to define a volume average quantity . If a control 

volume is 
V

, a volume average of quantity is defined by Stanek and Szekely 

[3] as  

 dV
1

V


 (1) 

Volume average quantities for fluid flow field are usually referred as superficial 

velocities. Consequently, the superficial velocities are also spatially distributed. 

Spatial distribution of superficial velocities provides the information of fluid 

velocity field. Other quantities, such as fluid and solid properties, are also 

presented as volume average quantities.  

The continuity equation of fluid flow in porous media can be averaged in a 

continuum control volume,  

 0dV
i

1
dV

t

1

VV

 (2) 

Equation (2) is finalized in the form of  

 0
i

1

t
 (3) 

At steady state condition and two-dimensional directions, axial and radial, 

Equation (3) leads to 

 0)vr(
rr

11
)u(

z

1
          (4) 

The general momentum equations of fluid flow in porous media in a control 

volume V  constitute rate of increase of momentum, rate of momentum gained 

by convection, rate of momentum gained by viscous transfer (diffusion), 

pressure force, and gravitational force or external force. Each of these terms can 

be averaged in a control volume of continuum medium. The averaged flux (total 

convection and diffusion) can be composed mathematically in a transfer 

quantity inside the control volume, the transfer quantity between fluid and solid 

media.  
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Based on the volume average above, Liu and Masliyah [2] derived the 

momentum equations of flow in porous media to give more general equations as 

follows: 

i ji

t

T
iK p g F

i j i

 (5) 

One can overview the momentum equations above as mathematical modeling 

equations for fluid flow in porous media. The second term in the right hand side 

of Equation (5) was a postulated closure form as an extra term for interaction 

flux within the fluid, which can be simplified into a similar form to diffusion. 

The first term in the right hand side of Equation (5) is a pure diffusion term. 

Both of these terms can be combined to give a total diffusion term.   

The quantity K was defined as a tensor of dispersion coefficients by Liu and 

Masliyah [2],  

 

100

010

00

DdK

L

Tp
i

   (6) 

Where dp, DT and L are particle diameter, transverse dispersion coefficient and 

normalized longitudinal dispersion factor respectively.  

The last term in the right hand side of Equation (5) represents the total flux from 

fluid to solid. Moreover, the form used by these authors was a specific proposed 

model for flux exchange between fluid and solid.  The factor F was termed as 

the shear factor and considered to be a function of its local Reynolds number. 

The shear factor in a momentum transfer indicates the momentum loss due to 

fluid and solid interaction.  

For the moment, Equation (5) is the most comprehensive momentum equation 

for fluid flow in porous media. This equation will be used to form a more 

specific mathematical model of fluid flow in porous media which will be 

evaluated in this work. Further simplification of Equation (5) can lead to 

conventional mathematical models of flow in porous media, such as Darcy’s, 

Brinkmam’s, and Forchheimer’s equations.   
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The diffusion contribution to a momentum transfer is determined by a diffusion 

coefficient. The diffusion coefficient for the laminar flow in full fluid duct is a 

dynamic fluid viscosity. For the turbulent flow, the total diffusion coefficient is 

obtained by adding the turbulent viscosity or eddy viscosity to the dynamic 

fluid viscosity. For the flow in the porous media, the solid porous media 

contribute to enhance the uniformity of the flow distribution. The use of 

dynamic fluid viscosity only for the flow in the porous media does not follow 

this logical concept.  For this reason, the diffusion coefficient for the fluid flow 

in the porous media can be established by taking an analogical approach to the 

turbulent flow to give an effective viscosity eff  as the following,  

         
peff

  (7) 

Variable  is the dynamic viscosity of the fluid and p is the porous viscosity 

(diffusion coefficient) contributed by the presence of the solid matrix in a 

continuum medium.  

Two fundamental reasons can be built to support the concept of increasing 

viscosity by the porous media, Equation (7). First, the solid medium actually 

diffuses through the fluid flow leading to a flatter velocity gradient. A flatter 

velocity gradient in momentum transfer is produced by higher viscosity. This 

phenomenon is shown by Equation (7). Second, the first two terms in the right 

hand side of Equation (5) represent the diffusion momentum transfer. The 

dispersion coefficient tensor K for x-direction has components Kxx, Kyx and Kzx. 

A three-dimensional Cartesian coordinate as an x-momentum component 

expresses the two diffusion terms above, 

 

 

( ) ( ) ( )xx yx zx
u u u

K K K
x y zx y z

             (8) 

 K
eff

 (9) 

The total diffusion coefficient in Equation (8) is obtained to give a similar form 

to Equation (6). As the result, the effective viscosity concept for a fluid flow in 

porous media is proposed logically, Equation (7), and theoretically, Equation 

(9). Equations (7) and (9) were derived from different approaches and converge 

to identical equations.   

T iKi i
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Originally, the effective viscosity term was brought to attention by Brinkman 

[9] when he mentioned the diffusion term to the original Darcy’s law. However, 

the evaluation method of this effective viscosity was not established.  

The use of effective viscosity for the diffusion term is of course more 

preferable. This viscosity is not necessary to be uniform for all directions as 

shown in Equation (9). Consequently, the effective viscosity might not be 

considered as a physical property of the fluid. Taking the form of the dispersion 

coefficient tensor given by Liu and Masliyah [2], effective viscosity can be 

evaluated. Using spherical particles in which their tortuosity is unique, and 

stating steady state condition of the flow, a present developed mathematical 

model of the momentum equation for the flow in porous media is formulated as 

the following  

eff

Ti j
p g Fi ji i

t
  (10) 

The momentum equations above can be further developed to the forms of 

specific models. The shear factor model is one of the forms to be introduced in 

momentum equation for covering the effect of fluid flow and solid interaction in 

porous media. Equation (10) above improves conventional models by including 

the convection term (which is usually excluded), and the diffusion term. At 

steady state condition and two-dimensional direction in axial and radial 

position, Equation (10) can be written in the full forms without gravitational 

force as the following: 

 axial direction: 
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 (11) 

 radial direction: 

 Fv
r

p
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v

z
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r
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z
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11
 (12) 

Equations (11) and (12) can be simplified in flux variables as follows: 
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Therefore, Equation (11) becomes 

 uS
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P
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and Equation (12) becomes 

 vS
r

P
rJ

rr
J

z
vrvz )(

1
)(  (17) 

Fu and Fv terms in momentum equations are mathematical models for 

momentum loss due to a fluid and solid interactions in porous media. This term 

acts as a source term in the momentum equation. Factor F is called as a shear 

factor, Liu and Masliyah [2]. 

Shear factor or modified friction factor can be determined experimentally or 

theoretically. Shear factor is determined by the flow regime, porous media 

characteristics and fluid properties. Ideally, one would like to use heuristic 

arguments to derive an expression for shear factor in terms of universal 

constants and easily measurable properties of the porous material and the 

flowing fluid. Many investigators, like Ergun [10], Mc. Donald [11], Liu et al. 

[12] and Liu dan Masliyah [2],  focused their research on the shear factor 

formulation itself.  Various shear factor models are shown in Table 1. The 

performance of each shear factor for the solution of the momentum equations 

will be investigated here.  

Table 1 Various shear factor models. 

Shear Factor 

model 

Equation 

Darcy  
F

k
                                                                                        (18) 

Forchheimer  F u                                                                                    (19) 

Brinkman 

(1947) 

2
u

F
k u

                                                                         (20) 
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Shear Factor 

model 

Equation 

Ergun (1952) 2

2 33

(1 ) (1 )
150 1, 75

u
F

dd pp

                                             (21) 

Modified 

Ergun,  

Mc.Donald et 

al. (1979) 2 2

2(1 )

2 3 2

1/ 6 Re
      

1/ 2 1/ 21 (1 )

(1 0, 5 )
37, 5 1 0, 44 1

6(1 ) 24

R ds

m

F

d d ds s s

 

                                                                                                         (22) 

Liu, et al 

(1994) 

2

2 2 11/3

      

(1 )

4

2 2 2Re
1 0.69 1 1 0.5 Re

2 26 1 24 16 Re

F
R ds

d ds s mA ds m
m

  

                                                                                                     (23) 

Liu and 

Masliyah 

(1999) 

1 / 2 1 / 2
2

2

18 1
        

29 / 6 2

1 0, 46 (1 ) (Re 3) Re 0, 363
0, 048 0, 64

36 Re

d p

s
F

s s
 

                                                                                                       (24) 

3 Numerical Method 

The equations (4), (11) and (12) will be solved by numerical method in two-

dimensional direction and cylindrical coordinate. Computation of conservation 

equations-above has been done by numerical Finite Volume Method [13]. In 

this method, the integral approach is done to discrete the conservation 

equations. First, calculate the domain, then discretize the domain in grid points. 

The region around the grid points is called control volume. The conservation 

laws must be valid in each control volume. 

Momentum and continuity equations are arranged until they produce linear 

algebra equations. Those equations are solved with iterative method called line-
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by-line method. This method includes tridiagonal matrix that can be solved by 

Tridiagonal Matrix Algorithm (TDMA). The computation will be considered 

line-by-line following region of grid point. Initially, this computation is applied 

for sweeping from top to bottom and then from left to right. These two types of 

sweeping must be applied to U, V and p and are considered as one-iteration. 

Furthermore, this iteration will be continued until convergence. 

Discretization for momentum equation will have additional term namely source 

term.  Special method used to solve this equation is by accomplishing initial 

predictive pressure field. Subsequently, this discrete equation is solved to obtain 

initial value from velocity field value. The discretized pressure equation has 

been solved to obtain velocity correction equation and then actual pressure and 

velocity will be renewable. This algorithm has been called Semi-Implicit 

Method for Pressure-Linked Equations (SIMPLE), Patankar [13]. 

Source term is an influential term in those equations solution. The source term 

must be linearized to avoid unrealistic computation result. Source term is 

linearized, as Patankar [13]: 

 
PPC SSS   (25) 

The coefficient Sp value must be less or equal than zero. If Sp were positive, the 

physical situation could become unstable. From various linearization method, 

the result of the best realistic are obtained when the source term is linearized, 

with Patankar [13]: 

 
*

*

*

PP
d

dS
SS              (26) 

The symbol 
*

P denotes the previous-iteration value of 
P

. 

The convergence criteria are based on the residuals of the algebraic equations 

for solved variables. The algebraic equations are resulted from the discretization 

of one continuity equation for pressure correction and two momentum equations 

for u and v velocity components. The pressure correction at the centre of a 

control volume 
'

Pp is an algebraic function of the pressure corrections of its 

control volumes 
'

nbp . The pressure correction equation is written as     

 bSSNNWWEEPP papapapapa
'''''

                            (27)  
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where 
'

nbp are 
'

ep , 
'

wp , 
'

np and 
'

sp . The term b in the pressure correction 

equation is the mass flow rate imbalance in the control volume of P. For a 

converged solution, the value of b should be zero theoretically and should be 

small enough numerically.  A criterion for a convergence solution is set when 

the summation of b values for all control volumes are less than a small error 

value . This criterion is defined as follows  

 ' ' ' ' '
Ncv

b a p a p a p a p a p
P p e e w w n n s ssum

icv icv

                              (28) 

A small error value  is set to 10
-6

, then the solution converges if  

 b
sum                                                                       (29) 

4 Non-uniform Porosity of Fixed Bed Media 

For a fixed bed, there is a marked difference between the solid matrix structure 

near the containing wall and that in the bulk. This difference is better described 

by a porosity variation. For the first few particle thickness near the bounding 

wall, the volume-averaged porosity is higher than that in the bulk, which can 

render higher portion of the fluid to pass through this region. This behavior has 

been well characterized by Vortmeyer and Schuster [14]. When annular 

averaging is performed with a rather small band in the radial direction, one can 

also observe a fluctuation in the fluid flux near the wall region. This behavior is 

due to the porosity variation in the near wall region. The explanation of this 

behavior is well known: the layer of particles in contact with the wall is forced 

to be well ordered. The layer itself is less smooth than the wall and can only 

induce a weaker order on the adjacent layer. Hence, the degree of order 

decreases as the distance from the wall increases. While normally the spatial 

oscillation is considered to be removed when volume averaging is applied, there 

are cases where the spatial oscillation may be important. Therefore, it is 

necessary to treat the porosity variations in the near wall region. 

Based on the exponential decay and co-sinusoidal concept, Liu and Masliyah 

[2] found a mathematical model that have a better fit to the experimental data 

for a packed beds of uniform spheres and cylinder as the following: 

 
2

1 2 / 2
(1 0,3 )cos 0,3

2 1 1,6

b
d db

d

D r
E p p

r p dsEr
 (30) 
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3/ 4

/ 2
exp 1, 2 d

s

D r
E p

r
d

       (31) 

Where D is the diameter of the column; b is the porosity in the bulk region; pd 

is the period of oscillation normalized by ds, and Er is an exponential decaying 

function that is defined by Equation (30). For a packed bed of uniform spheres, 

the period of oscillation is found to be 0,94 sphere diameter, Liu and Masliyah  

[2].   One can observe that Equation (30) characterizes the oscillation and decay 

quite well. For the next step, Equation (30) will be used in computation 

program.   

5 Results and Discussions 

The computational parameters were set to be the same as experimental 

parameters of Kufner and Hofmann [6]. Four shear factor models in Equations 

(21), (22), (23) and (24) were introduced in the momentum equation. The 

computation results of fluid flow field inside packed beds are compared to the 

experimental data of Kufner and Hofmann [6] and Stephenson and Stewart [7]. 

The experimental parameters of these data are given in Table 2.  

Table 2 Parameters of the literature experimental data. 

 Data from Kufner and 

Hofmann [6]  

Data from Stephenson 

and Stewart [7] 

Fluid Air Mixture of cyclooctane 

and cyclooctene 

Fluid viscosity ( ) 1.7894 x 10
-5

 kg/m.s 2.42 x 10
-3

 kg/m.s 

Fluid density ( ) 1.225 kg/m
3
 834.3 kg/m

3
 

Reactor diameter (D) 20 mm 75.7 mm 

Particle diameter (dp) 4.5 mm 7.035 mm 

Reynolds number (Re) 2285 2549 

D/dp 4.44 10.7 

Average feed velocity (Uavg) 1.883 m/s 0.097 m/s 

Bulk porosity ( b) 0.349 0.354 

The results in Figure 1 show the axial flow velocity profiles of air flow through 

the packed bed of spheres. These profiles were computed  for  particle diameter 

dp=4.5 mm, pipe diameter D=20 mm, average feed velocity (q) 1,883 m/s, and 

bulk porosity ( b) 0,4167. The Reynold number of this flow is 2285. Figure 3 

shows the radial velocity component profile. These figures indicate that velocity 

profile produces the trend of having global maximum and minimum peaks at a 

distance very close to the wall. Generally, the numerical solutions of all of shear 

factor models agree with the experimental data. 
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In accordance with Kufner and Hofmann’s data, the first maximum and 

minimum peak should occur at distance 0.22 dp and 0.66 dp from the wall. This 

value becomes a critical criterion in comparing the predicted results using 

various shear factor models and experimental results. This computation results 

give the first maximum peak at distance 0.17-0.22dp and the first minimum peak 

at 0.60-0.62dp.  This means that in term of the quantity, these computational 

results are quite accurate.  
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Figure 1 Axial flow velocity distribution for flow through a packed bed. 

The comparison of present numerical modeling results with experimental data 

leads to some important findings. The convection and the diffusion terms in the 

mathematical modeling can be solved numerically and need not to be excluded. 

The effect of these terms to the flow field prediction exists especially to 

complex flow configuration that cannot be simplified in one-dimensional 

approach. Furthermore, the radial velocity profile can be predicted in which its 

importance is very clear for the real flow, and two or three-dimensional flow.  

There are various non-ideal problems of the flow in porous media that can be 

investigated using this numerical model. 
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Various shear factor formulas were investigated using this numerical solver.  

The performance of each shear factor was shown by Figure 1 and Figure 2 

Compared to the the experimental data, the predicted axial velocity profiles for 

the same case as experimental case, Liu and Masliyah shear factor formula 

gives a better prediction for the velocity than other shear factors. One of the 

reasons is that Liu and Masliyah shear factor was developed as an improved 

shear factor from others. 
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Figure 2 Radial flow velocity distribution for fluid flow through a packed bed. 

Effect of effective viscosity of diffusion term on momentum equation has been 

investigated. Effective viscosity model, Equation (9), and Liu and Masliyah, 

Equation (24), shear factor were implemented in this computational work. 

Figure 3 shows the comparison of the effect of the dynamic viscosity and the 

effective viscosity on axial velocity profile. Computation results show good 

agreement with experimental results of Kuffner and Hofmann [6] when the 

dynamic viscosity is used for prediction of peak velocity near the wall. When 

using an effective viscosity, Kuffner and Hofmann used a low tube to particle 

diameter ratio, which is 4.44. Hence the space distance between particles is 

considered to be wide. In such that condition the effect of the solid matrix 

resistance becomes smaller and leads to small addition to viscosity. 
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The influence of effective viscosity to axial velocity profile is more pronounced 

for the case of a high tube to particle diameter ratio, Figure 4. Experimental data 

of Stephenson and Stewart [7] are used for comparison. Figure 4 shows the 

comparison of influence of the dynamic viscosity and the effective viscosity on 

axial velocity profile for a mixture of cyclooctane and cyclooctene flows 

through the packed bed of spheres with dp=7.0355 mm; D=75.7 mm, average 

feed velocity q=0.097 m/s, b=0.354 and Re=2549. The D/dp value of 

experimental data of Stephenson and Stewart is 10.7. Hence the space between 

particles is smaller than that of the experimental data of Kuffner and Hofmann. 

The higher the D/dp value, the smaller the space between particles in packed 

beds and the higher the resistance of the solid matrix. Therefore the influence of 

porous viscosity to the fluid flow field will be more significant. The presence of 

the solid matrix itself contributes to the significant addition to the viscosity on 

the diffusion term of flow as is called effective viscosity. 
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Figure 3 Influence of effective viscosity to axial velocity profile with low tube 

to particle diameter ratio (D/dp=4.44). 
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Figure 4 Influence of effective viscosity to axial velocity profile with high tube 

to particle diameter ratio (D/dp=10.7).  

6 Conclusions 

A specific mathematical model for prediction of fluid flow field in porous 

media has been developed from a general and theoretical base momentum 

equation of fluid flow in porous media. The main principle of this mathematical 

flow model in the porous media is in additional term called a shear term which 

is a function its own velocity component and an effective viscosity 

involvement.  A two dimensional numerical solution for this kind of flow has 

been constructed using finite volume method. The numerical results for the 

velocity distribution show a good agreement with the experimental data. The 

flow field profiles on axial direction agree well with the existing literature 

experimental data. It is observed that the first maximum peak occurs at distance 

of 0,17-0.22dp; the second maximum peak occurs at distance of 1.00-1.02dp and 

the first minimum peak occurs at distance of 0.60-0.62dp.  More comprehensive 

shear factor formulation results a better velocity production than other 

correlations do. The numerical study shows that the influence of effective 

viscosity to the velocity profile is more pronounced for higher diameter ratio of 

tube to particle. 
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Notation 

D    = reactor diameter, m R      = reactor radius, m 

dp   = particle diameter, m Re    = Reynolds number 

ds   = D/dp U     = superficial velocity x-

direction, m/s 

F    = shear factor V     = superficial velocity y-

direction, m/s 

g   = gravity force, m/s
2
 i     = vector velocity 

L   = packed length, m       = porosity 

p   = pressure, kg/m.s
2
       = fluid viscosity, kg/m.s 

q     = average feed velocity, m/s       = fluid density, kg/m
3
 

r      = radial position,m  
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