
VIEW DEPENDENT FLUID DYNAMICS

A Thesis

by

BRIAN ARTHUR BARRAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2006

Major Subject: Visualization Sciences

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4270847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VIEW DEPENDENT FLUID DYNAMICS

A Thesis

by

BRIAN ARTHUR BARRAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Donald House
Committee Members, Vinod Srinivasan

John Keyser
Head of Department, Mardelle Shepley

May 2006

Major Subject: Visualization Sciences

iii

ABSTRACT

View Dependent Fluid Dynamics. (May 2006)

Brian Arthur Barran, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Donald House

This thesis presents a method for simulating fluids on a view dependent grid structure to

exploit level-of-detail with distance to the viewer. Current computer graphics techniques,

such as the Stable Fluid and Particle Level Set methods, are modified to support a non-

uniform simulation grid. In addition, infinite fluid boundary conditions are introduced that

allow fluid to flow freely into or out of the simulation domain to achieve the effect of

large, boundary free bodies of fluid. Finally, a physically based rendering method known

as photon mapping is used in conjunction with ray tracing to generate realistic images of

water with caustics. These methods were implemented as a C++ application framework

capable of simulating and rendering fluid in a variety of user-defined coordinate systems.

iv

To my family, friends, and the Texas A&M Visualization Laboratory

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II PRIOR WORK . 4

III METHODOLOGY . 6
III.1. Coordinate Transformations 6

III.1.1. Transformed Coordinates 7
III.1.2. Grid Generation . 9

III.2. Fluid Dynamics . 10
III.2.1. Stable Fluid Method 12
III.2.2. Divergence Calculation 14
III.2.3. Pressure Computation and Velocity Correction 14
III.2.4. Boundary Conditions 15

III.3. Fluid Surface Calculation . 16
III.3.1. Particle Level Set Method 17
III.3.2. Reinitialization . 19
III.3.3. Extension Velocities 20

III.4. Rendering and Shading . 21
III.4.1. Ray Tracing the Level Set Surface 22
III.4.2. Rendering Using Photon Mapping 23

IV IMPLEMENTATION AND RESULTS 27
IV.1. Implementation . 27

IV.1.1. Class Hierarchy . 27
IV.1.2. Program Flow . 29

IV.2. Results . 30
IV.2.1. Large Water Simulation 31
IV.2.2. Boundary Free Simulation 33
IV.2.3. Final Simulations . 34

V CONCLUSIONS . 38
V.1. Conclusions . 38
V.2. Future Work . 39

REFERENCES . 41

VITA . 44

vi

LIST OF FIGURES

FIGURE Page

1 Traditional CG fluid simulation setup. 2

2 View dependent simulation setup. 3

3 Physical space grid vs. computational space grid. 8

4 View-dependent polar computational grid. 11

5 Velocity components and cell face normals used to calculate divergence. . 15

6 An example of a fluid drop with infinite-fluid boundaries. 17

7 Cylindrical bounding box setup. 22

8 A scene ray traced without and with global illumination. 24

9 A water simulation rendered with caustics using photon mapping. 25

10 Artifacts appear in the view dependent surface as seen from above. 32

11 Artifacts appear in the view dependent surface as seen from the viewer. . . 32

12 A drop of water with infinite-fluid boundaries. 33

13 A drop of water with wall-fluid boundaries. 34

14 A 80x60x80 water simulation rendered with caustics. 35

15 Another 80x60x80 water simulation rendered with caustics. 35

16 A view dependent water simulation. 36

1

CHAPTER I

INTRODUCTION

Computational Fluid Dynamics simulations of water, smoke, fire, and other natural phe-

nomena are quite popular in films and games and these industries have increasingly em-

braced their use. The results are highly believable and the techniques and software used to

create fluid effects are becoming more available for widespread use. In most films using

fluid simulation effects, these effects are confined to glasses of water, river beds, goldfish

bowls or other environments with fixed boundaries. There has been no published research

in computer graphics and few films explore the dynamic simulation of large, effectively

boundary-less, bodies of fluid.

An exception to this rule, the recent film The Day After Tomorrow used dramatic sim-

ulations of water interacting with a large-scale city environment, but the computational

cost was extremely great. This is at least party because the fluid simulation technology

employed a uniform simulation grid, yielding a constant density of detail in the fluid sim-

ulation regardless of how it affected the final image.

Another impediment to the simulation of large-scale fluid effects are the kinds of

boundary conditions common in current techniques. In a goldfish bowl, fluid simulation

within fixed boundaries is appropriate, and wave reflections off of these boundaries are

consistent with reality. However, in a large-scale environment like the open ocean there

are no walls and wave motion should be free to move into or out of the simulation without

reflections.

To address the problems inherent in simulating large bodies of fluid, this thesis pro-

poses extending computer graphics fluid simulation techniques in two ways. The first ex-

The journal model is IEEE Transactions on Visualization and Computer Graphics.

2

tension supports view-dependent level-of-detail simulation. View dependence presents a

natural solution to the efficiency problem by simulating large bodies of fluid with decreas-

ing detail as distance from the camera increases, thus providing constant screen-space de-

tail across the simulation. The second extension replaces simulation boundary walls with

boundaries that allow waves to pass freely, acting as sources or sinks to maintain fluid level

within the simulation volume.

The conceptual difference between traditional computer graphics fluid dynamics and

view dependent fluid dynamics is visualized below. Figure 1 shows how a traditional CG

fluid simulation might be setup for rendering while Figure 2 shows a view dependent simu-

lation setup. Note that the camera in the view dependent setup can vary its position slightly

while still maintaining a close 1:1 simulation cell to pixel ratio.

Fig. 1. Traditional CG fluid simulation setup.

3

Fig. 2. View dependent simulation setup.

4

CHAPTER II

PRIOR WORK

Thompson et al. authored a book titled Numerical Grid Generation that describes gen-

eral boundary-conforming curvilinear coordinate systems for use in grid generation and

numerical applications. He describes how grids are generated using boundary segments

that are split up equally in coordinate dimensions and extended throughout the physical

domain. Because the mapping is to a rectangular transformation grid, the usual numerical

techniques may be applied on this transformed grid. The additional effort required for the

correct physical solution is to develop operators such as divergence, gradient, curl, lapla-

cian, as well as arc, surface, or volume integrals on the transformed grid with meaning in

the physical domain. Operators respecting time would also allow the grid structure to move

throughout the simulation and conform to aspects of the flow [23].

Most computer graphics CFD methods follow the structure developed by Foster and

Metaxas [7] who introduced the marker and cell (MAC) grid method developed by Harlow

and Welch [10] within the context of a finite difference, Eulerian solver for incompressible

fluid.

Stam [21] introduced a semi-Lagrangian method for dealing with instabilities inher-

ent in the Foster-Metaxas approach, allowing larger time steps and higher viscosities. This

has become the backbone for computer graphics fluid simulation because of its stability,

adaptability, and ease of use. It uses a velocity transport step to enforce conservation of mo-

mentum, then applies external and diffusion forces to update the velocity field. Finally, this

tentative solution is projected onto a divergence free solution by solving a Poisson equation

arising from a Helmholtz-Hodge Decomposition of the velocity field. As a byproduct of

this projection step the pressure is determined. Coupled with vorticity confinement [8], this

5

method can be used to produce interesting swirling smoke effects, but does not deal with

the problem of fluid surfaces.

In two papers, Foster, along with Fedkiw’s group developed the Particle Level Set

Method to track the liquid surface interface [6, 5], giving a suitable smooth surface that

captures fine detail for simulation and rendering. Coupling the advantages of an Eulerian

grid-based approach, this method utilizes an implicit surface representing the air-liquid

interface that is advected using the underlying velocities coming from the fluid simulation.

Massless marker particles initially positioned around the surface are tracked and used to

reconstruct fine detail in the implicit surface that would otherwise be lost to numerical

error.

The semi-Lagrangian technique has also been applied to recreate viscoelastic effects

such as goop and jelly [9]. Most recently, choreographing the animation of fluid has been

accomplished using the adjoint method [15] and breaking waves have been animated using

a volume-of-fluid based technique [14].

One limitation of these techniques is the high demand on computational resources

required for high-detail 3D fluid simulation. To address this, Losasso et al. [13] developed

a level-of-detail approach using an unrestricted octree method to simulate water and smoke.

Their results allow extremely high detail in areas of interest by adaptive subdivision of the

simulation. Departing from this approach, this thesis explores the use of a non-Cartesian,

stable fluid method solver to achieve view-dependent level-of-detail.

6

CHAPTER III

METHODOLOGY

III.1. Coordinate Transformations

A Cartesian coordinate system is not always an optimal fit to some dynamics problems,

such as flow around an airfoil or through a pipe. In these cases it is useful to define a new

coordinate system that fits the problem at hand, mapping it to a regular grid for the purpose

of computation. Anderson [1] describes a coordinate system transformation that can be

used to map the semi-Lagrangian, stable fluid method from Cartesian coordinates to any

regular, orthogonal coordinate system.

There are two principles that motivate the coordinate transformation. The first is the

concept of transformed variables. To solve the equations for fluid flow using transformed

variables, for example, values respective to a cylindrical coordinate grid, we must transform

the governing equations (i.e. the Navier-Stokes momentum and continuity equations) to

use these new variables. This transformation introduces new terms to the Navier-Stokes

equations. These terms are known for a small set of standard coordinate systems that have

previously been derived. The second concept is that of transformed coordinates. Here, the

variables such as velocity, pressure, and density are all defined in physical space but are

located on a transformed grid in physical space. In this case the governing equations do

not need to be transformed, only the numerical operators need to be redefined. Using a

coordinate transformation there are an infinite number of coordinate systems available so

long as each can be analytically or numerically expressed.

For a view dependent simulation of a large body of water, a cylindrical coordinate

system with the camera positioned on the central axis is a natural fit. In this coordinate

system, a grid is built to resemble the camera view frustum. The computational grid con-

7

structed provides fine detail close to the viewing position and geometrically reduces detail

with distance from the viewer.

The primary question is which method, transformed variables or transformed coordi-

nates, would be the best fit for view dependent simulations of large bodies of water? To

more readily access the current body of research in computer graphics and industry expe-

rience with current methods a transformed coordinates approach is used in this thesis. In

the remainder of this section the transformed coordinates method as well as grid generation

methods are examined for applicability in the view dependent fluid dynamics model.

III.1.1. Transformed Coordinates

In order to redefine the fluid simulation in transformed coordinates, we need to construct

the appropriate coordinate transformations. All the dynamics problems are solved in this

new computational space then mapped back to Cartesian space when needed. The anal-

ysis below describes this method in 2D coordinates, however it easily generalizes to 3D.

Figure 3 shows an example of a physical space grid compared to a computational space

grid.

There are two approaches to the coordinate transformation: a direct transformation

and an inverse transformation. Given a regular, orthogonal grid defined in Cartesian space

the direct approach requires a set of one-to-one functions that map Cartesian coordinates

to a rectangular computational domain:

ξ = ξ(x, y),

η = η(x, y).

If we have a field u(ξ, η) defined in the computational space, applying the chain rule

8

Fig. 3. Physical space grid vs. computational space grid.

yields

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
,

∂u

∂y
=

∂u

∂ξ

∂ξ

∂y
+

∂u

∂η

∂η

∂y
,

which provides Cartesian partial derivatives for u in terms of the transformation. Second

order derivatives may be found similarly.

However, it is not always possible to find a forward map whose partial derivatives are

in convenient form. In this case, it might be desired to begin with the inverse map

x = x(ξ, η),

y = y(ξ, η),

9

which yields first order partial derivatives

∂u

∂x
=

1

|J |

(
∂u

∂ξ

∂y

∂η
− ∂u

∂η

∂y

∂ξ

)
,

∂u

∂y
=

1

|J |

(
∂u

∂η

∂x

∂ξ
− ∂u

∂ξ

∂x

∂η

)
.

Here |J | is the determinant of the Jacobian matrix J of the partial derivatives of the inverse

mapping functions. In practice, this transformation is required whenever we need to make

use of computational values in Cartesian space, such as when determining normal vectors

for rendering.

III.1.2. Grid Generation

For view dependent fluid simulation we define the computational space using a modified

cylindrical coordinate system (r, θ, h). Then the inverse map back to Cartesian coordinates

is

x(r, θ, h) = r cos θ,

y(r, θ, h) = r sin θ,

z(r, θ, h) = h,

where we take the x-y plane to be parallel to the ground plane, and z to be height.

To construct a computational grid on which to build our solver, we assume that the

viewer is at the origin of the cylindrical system, looking down some radial axis. View

depth then corresponds with radial coordinate r, viewing direction corresponds with angle

θ, and elevation with h. In constructing the gird, we keep the proportions of each cell

consistent to avoid grid bias, by maintaining a constant ratio of the depth of each cell to

the arc length produced by sweeping its angular increment. The height of a cell can simply

be kept constant. This produces a convenient, geometrically increasing function to define

10

our view dependent grid. Numbering from n = 0, assume that the center of the first grid

cell is at radial distance r0 from the origin, and that each cell’s angular dimension is ∆θ. If

the cell is to have uniform spatial dimensions (i.e. be the equivalent of a square), then the

radial depth of the cell should be r0∆θ. If we want all cells to have these proportions, we

arrive at the system of difference equations

r(0) = r0,

r(n + 1) =

(
1 +

r0∆θ

r0

)
r(n),

for the radial coordinate of center of cell n from the origin. Thus, in closed form

r(n) = r0(1 + ∆θ)n.

Figure 4 shows a small sample of a 2D computational grid produced using this method,

together with the relationship between grid array indices (i, j) and coordinates (r, θ). The

polar coordinates of the center of cell (i, j) are simply (r(i), j∆θ). Edges of the cell corre-

spond with array indices ±0.5. Following the staggered grid approach to fluid representa-

tion, we keep velocity components separately in the center of each cell face, and pressure

at the center of each cell.

Note the placement and direction of the velocity components with respect to the grid.

The radial component of the velocity u is parallel to the normal of the bottom cell face

while the angular component of the velocity v is parallel to the normal of the right cell

face.

III.2. Fluid Dynamics

To solve the view dependent dynamics problem we modify the commonly used “stable

fluid” method introduced to the computer graphics community by Stam [21]. This method

11

Fig. 4. View-dependent polar computational grid.

solves the Navier-Stokes equations for incompressible flow

u̇ = −(u · ∇)u− 1

ρ
∇p +

η

ρ
∇2u + f

∇ · u = 0

that determine the time rate of change of fluid velocity u, and the pressure p given fixed

fluid density ρ, fluid viscosity η, and externally applied forces f . The first equation accounts

for conservation of momentum, pressure gradients, diffusion, and forces such as gravity.

The second equation imposes the constraint that, since the fluid is incompressible, the

divergence of fluid velocity must vanish everywhere.

This section proceeds as follows: first, the stable fluid method is described. Second,

we detail the changes required to complete the divergence calculation on the view depen-

dent grid. Lastly, we detail a method for computing the pressure and velocity correction

terms used in the stable fluid method.

12

III.2.1. Stable Fluid Method

The stable fluid method is a semi-implicit method introduced by Stam that uses a semi-

Lagrangian advection scheme and an implicit projection method to guarantee unconditional

stability and divergence free flow. It was created as an alternative to the less stable iterative

scheme introduced in [7] that had difficulties with viscous fluids and was unstable with

large timesteps.

The method is outlined as follows. First, a tentative velocity field W0 is created using

the velocities from the previous timestep Un.

W0 = Un

Next, the external and body forces are applied using Euler integration to create the second

intermediate velocity field

W1 = W0 + ∆tf .

Then, to preserve momentum, a transport routine is used to carry fluid flow. This step

satisfies the −(u · ∇)u term found in the momentum equation. Starting at the center of

each cell on the grid, Euler integration is used to integrate backwards through the velocity

field one timestep. The velocity at this location is then taken as the velocity located at

the center of the current cell. Because velocities are arranged on a staggered grid, these

intermediate velocities must be averaged out to the cell faces to create the third intermediate

velocity field W2 = transport(W1,−∆t). As an alternative, two transport steps can be

made instead, starting from the center of each cell face and sampling for the component of

velocity found at that location. Note that the averaging step would not be required in this

case. We chose to backtrace from the center of each grid cell to avoid doing two backtrace

steps.

13

If the fluid is viscous (has η > 0) a diffusion term is required to account for viscosity

forces. Because this second order term adds stiffness to the system, to avoid instability we

use an implicit integration scheme W3 = W2 + ∆tν
ρ
∇2W3 rather than an explicit Euler

method. This forms the implicit equation, (I− ∆tν
ρ
∇2)W3 = W2, with equivalent matrix

form which can be inverted using a sparse linear solver [22] to solve for W3. This implicit

formulation allows very high viscosities without the need to reduce the timestep.

The final step in the stable fluid method is used to satisfy the continuity equation, i.e.

to guarantee a divergence free velocity field. The idea is to decompose the velocity field

W3 into a divergence free velocity field and the gradient of a scalar field q. The scalar field

q is related to the fluid pressure using the pressure correction equation:

W4 = W3 − ∆t

ρ
∇p = W3 −∇q

If the gradient operator∇ is applied to both sides to find divergence and because we require

that ∇ ·W4 = 0, we can formulate a system of linear equations to solve for the fluid

pressure:

∇ ·W4 = 0

= ∇ · (W3 − ∆t

ρ
∇p)

⇒ ∇ ·W3 =
∆t

ρ
∇2p

This system produces a sparse diagonal matrix which is inverted using a bi-conjugate gra-

dient method to determine the pressures [22].

In summary, the stable fluid method for viscous fluids is established by solving the

14

following steps for each timestep ∆t over the duration of the simulation:

W0 = Un

W1 = W0 + ∆tf

W2 = transport(W1,−∆t)

(I− ∆tν

ρ
∇2)W3 = W2

∆t

ρ
∇2p = ∇ ·W3

W4 = W3 − ∆t

ρ
∇p

Un+1 = W4

III.2.2. Divergence Calculation

Computing the divergence of the velocity field in view dependent coordinates requires

special treatment. We compute divergence similar to [13] which referenced the second

vector form of Green’s theorem to compute divergence proportional to the volume of the

cell as the sum of flux through each face. This can be conveniently written as:

Vcell∇ · u =
∑
faces

(uface · n)Aface

Figure 5 illustrates the concept using the coordinate normals centered on each face and the

respective velocity components. The minus signs denote outward facing normals.

III.2.3. Pressure Computation and Velocity Correction

As mentioned in the stable fluid method, computing the fluid pressures at each timestep

allows us to correct the velocity field to guarantee zero divergence. The sparse system of

linear equations used to solve for the pressures is constructed by taking the Laplacian of

15

Fig. 5. Velocity components and cell face normals used to calculate divergence.

the pressure field. The Laplacian operator ∇2 can be thought of as “the divergence of a

gradient,” and therefore we compute the elements of the matrix as if we were computing

the divergence of the pressure gradient [13]. Only the current cell and adjacent cells are

required for each row of this system, leading to a sparse matrix with most non-zero terms

near the diagonal.

III.2.4. Boundary Conditions

Fluid simulations require correct boundary conditions for simulation cells located along

walls or other domain features. Two types of conditions are treated in this thesis. The first

are wall-fluid boundaries and the second are infinite-fluid, meaning fluid simulated in the

grid can splash outside or flow into the simulation domain.

Simple wall-fluid conditions are described in [7] and prevent fluid flow through walls

by modifying the pressure Laplacian matrix required in the Stable-fluid method. By as-

suming the flux through wall cells is zero, the pressure gradient across these cells is zero

and the corresponding terms can be removed from the linear system. If after every velocity

16

update the velocities along the wall boundaries are restricted to zero the divergence calcu-

lation proceeds as usual. This approach results in fluid that flows around obstacles and the

simulation boundaries.

An added infinite-fluid boundary condition can be imposed on the simulation bound-

aries to emulate continuous fluid. Rather than constraining velocities along the boundaries

to be zero, the pressures are set either statically or dynamically. In the static case, for ex-

ample, the pressures can be computed by integrating down vertical shafts of fluid starting

at the fluid surface with ambient (air) pressure. Letting the velocities change dynamically

during simulation but constraining the pressures allows fluid to flow freely into or out of

the simulation while maintaining a constant fluid height. Dynamically computing pres-

sures using wave profiles, along with velocity constraints, could be used to generate waves

or other interesting effects.

The infinite-fluid boundaries are used, for instance, to simulate un-contained fluid. In-

teresting flow inside the simulation domain is not interrupted when it crosses the boundary.

Figure 6 illustrates this idea. Notice how the waves caused by the drop do not appear to be

inside a box or container such as a glass.

III.3. Fluid Surface Calculation

In order to fully simulate fluid effects using the stable fluid method, a way of tracking the

surface of the fluid is required. This allows us to treat the fluid-air boundary conditions

correctly as well as provide a convenient surface to render or display. The Particle Level

Set method was developed to be a solution to the problem [6, 5].

The remainder of this section describes the Particle Level Set (PLS) method as it

applies to a water surface. The second and third sub-sections detail the changes to the PLS

required so it functions on a view dependent simulation grid.

17

Fig. 6. An example of a fluid drop with infinite-fluid boundaries.

III.3.1. Particle Level Set Method

The PLS method is a ”thickened” front tracking method that wraps the fluid volume in an

implicit surface called a level set. The level set is the zero set of a signed distance function

φ, where negative values of φ are considered fluid and positive values considered air. The

level set equation is
∂φ

∂t
+ u · ∇φ = 0,

where ∂φ
∂t

is the time derivative, and u · ∇φ being the component of fluid velocity in the

direction along the gradient of the φ. This equation is integrated at each time step when

new fluid velocities are computed to update φ.

Because numerical errors may smear out interesting details, massless fluid particles

are positioned in a thin layer just inside and outside of the surface φ = 0 and are used

to correct the level set through the duration of the simulation. Particles placed inside the

level set carry a negative sign and particles outside carry a positive sign. These particles

18

are initialized randomly around the surface within a radius rp determined by the following

switch

rp =


rmax if spφ(xp) > rmax

spφ(xp) if rmin ≤ spφ(xp) ≤ rmax

rmin if spφ(xp) < rmin


with sp being the sign of the particle, φ(xp) the signed distance to the surface, and rmin and

rmax the minimum and maximum particle radius. These radii are usually 0.1 and 0.5 times

the size of the grid cell dimension.

Once the level set has been advected, the particle positions are updated using the fluid

velocity and are then used to check the level set for errors. If a particle is found to be across

the interface (outside for negative particles and inside for positive particles) by a distance

more than its radius, it is said to have escaped. A possible Level Set correction value for

escaped particles is found using

φp(x) = sp(rp − |x− xp|)

where xp is the position of the particle and x is the position on the grid of the Level Set

sample value. After all escaped particles and correction values are found, the minimum

error correction value for the grid sample is used to replace the Level Set value. After the

correction, the particle radii are adjusted using the switch above. Every 20 or 30 frames,

areas of the surface with too many or too few particles are cleaned up, removing or adding

new particles as the folding and tearing of the surface during fluid motion disturbs the

distribution.

After the Level Set has been updated and corrected using the particles, it is re-initialized

to a signed distance function and smoothed for rendering. Re-initialization is described in

19

the next section. To smooth the surface, a smoothed sign term

S(φ) =
φ√

φ2 + ∆x2

is first computed where ∆x is the minimum grid cell dimension and computed for each cell

individually. This term is used as a weight in the smoothing equation and approaches 1 or

-1 further away from the surface. The smoothing equation

∂φτ+1

∂t
= −S(φτ=0)(|∇φτ | − 1)

is an iterative update in fictitious time used to even out local areas of the Level Set and re-

duce noise in the surface. Special treatment must be given to this process and it is suggested

to use Godunov’s method for computation [18].

III.3.2. Reinitialization

As the Level Set is updated using the Level Set equation, the signed distance property of φ

may be destroyed. Once this happens, the methods above do not function properly and will

introduce more errors. Therefore, after each timestep φ needs to be recomputed to have

the signed distance property. The Fast Marching Method [2, 18] is a way to recompute the

distance field both inside and outside the fluid.

The Fast Marching Method (FMM) begins at the fluid surface where interpolation is

used to find approximately correct distance values for surface cells. These cells are labeled

Known cells. Every neighbor of an Known cell is labeled as Tentative, and all other cells

are labeled Unknown. The FMM loops as follows:

1. Let Trial be the position in Tentative with the smallest φ value. Label every neighbor

of Trial that is Unknown as Tentative.

2. Recompute the values of φ for every neighbor of Trial that are Tentative by solving

20

the quadratic equation(
φi,j,k − φ1

∆xi

)2

+

(
φi,j,k − φ2

∆xj

)2

+

(
φi,j,k − φ3

∆xk

)2

= 1

where φ1, φ2, and φ3 are the maximum known neighbor values in each dimension, ∆xi, ∆xj ,

and ∆xk are distances from the current cell and the neighbor value, and φi,j,k is the un-

known value at the current cell. If a neighbor cell is not Known, its corresponding term

must be removed from the equation as it cannot be used to determine the current φ value.

3. Change Trial’s label to Known and return to 1).

The FMM is considered a fast method because it’s algorithmic complexity is O(Nlog

N). This is because every cell in the grid is touched once and if a heap is used to maintain

a list of cells sorted on φ, this list can be updated in O(log N) time.

III.3.3. Extension Velocities

Because fluid particles are located outside the fluid surface, where physically acceptable

velocity values are unknown, there needs to be a way of estimating how they will move

with the surface of the fluid during the simulation. Rather than simulating both air and

water, which involves a difficult two-phase fluid simulation involving more complicated

fluid-air boundary conditions, the fluid velocity at the surface is used to derive acceptable

values for the particles. These extension velocities can be computed in a similar fashion as

the reinitialization algorithm by solving an upwind approximation to satisfy

∇Fext · ∇φtemp = 0

where Fext are the extension velocities and φtemp is a temporary signed distance value

created as in the FMM. This method is described in [2] but was not used here.

Instead, the signed distance field was first updated using the FMM. Then, velocities

21

were converted to physical space coordinates and placed at each node in the grid. Next,

in a similar fashion to the FMM, cells were labeled and sorted using heapsort. Rather

than calculating tentative distance values as in the FMM, weighted averages of Known cell

velocities were used to update the extension velocity for the current Tentative cell. In this

thesis, the signed distance field and extension velocities were calculated in two passes but

could also be calculated together as the front advances.

III.4. Rendering and Shading

An important part of creating a believable fluid simulation for computer graphics includes

how it is visually displayed. Many methods exist to render fluid-like surfaces. A common

method is to extract the level set surface using an iso-surface extraction algorithm, such as

the Marching Cubes algorithm, to generate a polygonal mesh [12]. This mesh is shaded

and rendered similarly to other polygonal objects and also allows the surface at each frame

to be saved to disk cheaply. One drawback, however, is that the surface polygons are not

necessarily coherent between frames, and unless the mesh is highly tessellated, popping

and snapping are visible.

Rather than extracting the surface as a mesh, the surface can be ray traced directly.

This eliminates any tessellation issues and guarantees a clean render of the smoothed fluid

surface. Refractivity and reflection are easily combined in the ray tracer to render trans-

parent fluids as well. Ray tracing also allows more advanced rendering methods, such as

photon mapping and environment lighting, to make the image more realistic. Photon map-

ping traces packets of light energy through the scene to simulate global illumination and

caustics [11].

22

III.4.1. Ray Tracing the Level Set Surface

Integrating a level set object into a ray tracer involves extending the bounding object, com-

monly found in ray tracers to speed up complex model ray-collision tests, and implement-

ing a root-finding algorithm. The bounding object for a regular, Cartesian grid based level

set would, for example, be comprised of a rectangular axis-aligned box. For a view de-

pendent Level Set, the bounding geometry might look like a slice of pie with a hole in the

middle. Figure 7 illustrates this cylindrical bounding geometry setup. The ray collision

table for this box includes 4 ray-plane and 2 ray-cylinder collision tests.

Fig. 7. Cylindrical bounding box setup.

Once a ray has been determined to hit the bounding geometry, the exact intersection

point is determined. This is used as a starting position for an iterative, root finding search

through the level set field. Remember that the level set field provides a signed distance

value at every grid node and that this value is the minimum distance to the surface. Instead

23

of integrating the ray with a constant timestep, the magnitude of the distance value is used.

Alternatively, the magnitude of φ(∇φ · r), where r is the ray direction, might be used as

a more conservative timestep. If the sign of this distance value changes while integrating

through the Level Set, then an intersection has occurred. At this point the ray is reset to

the previous position and the timestep is halved. After a constant number of iterations in

this manner, an acceptable intersection point at the surface has been found and the routine

returns this position and a normal to the surface. Note that the normal is computed as the

gradient of φ. If the ray is integrated outside of the bounding geometry, then there was no

collision and the root finding routine returns no intersection.

If a ray hits a transparent or refractive surface (such as water) two recursive ray tracing

steps proceed. The first ray is refracted through the surface and continues to trace through

the Level Set, returning a color value when it finally hits an opaque object. A second ray

is also calculated and shot to simulate the Fresnel effect. Some dielectric materials won’t

allow rays to pass through the surface due to a difference in the index of refraction of the

two mediums. Therefore, at glancing angles the ray is reflected off the surface, similar to

a mirror. Combining the colors of refracted and reflected rays gives believable results for

water surfaces.

III.4.2. Rendering Using Photon Mapping

Photon Mapping [11] is a method that is used to simulate a type of realistic rendering

known as global illumination with caustics. Global illumination is different from regular

ray tracing in that it includes light reflecting from surrounding objects in addition to light

coming directly from the light sources. The effect is quite pronounced. Figure 8 shows

a scene that has been ray traced using simple forward ray tracing and the same scene ray

traced including photon mapping. Notice how the colors from the wall bleed onto the

24

sphere with photon mapping enabled. Caustics, the beautiful patterns of light projected

onto walls or the celiing, are caused by light refracting through ripples or waves on the

water surface. Photon mapping simulates caustics as well because photons, when refracted

through the surface, are accumulated in small areas and produce concentrated areas of light.

Figure 9 illustrates this effect.

Fig. 8. A scene ray traced without and with global illumination.

Regular ray tracing is also known as forward ray tracing because rays are shot start-

ing from the eye or camera position into the scene. When they intersect with geometry, the

intersection point is lit by shooting more rays towards the lights and if visible, the mate-

rial’s lighting equation is solved with the current light’s properties. Summing up all light

equations gives the approximate color at that position. This differs from Photon mapping

which uses a process known as backward ray tracing that shoots rays from light sources

into the scene. The contributions of each light are stored in a data structure describing the

scene and can be referenced when making the final image.

Photon mapping is implemented as a two step process. First, photons are traced from

each light source into the scene. Every time they intersect an object they are stored into a

photon map, and afterwards they are reflected and shot back into the scene. Again they are

25

Fig. 9. A water simulation rendered with caustics using photon mapping.

26

stored in the photon map if they hit an object. This process repeats until either the photon

has no more power or it fails to hit an object.

The next pass is regular forward ray tracing and is where the final image is created.

When intersection points are being shaded the light equation includes an additional two

terms that sample the photon map: one for global illumination and one for caustics. Caustic

sampling is straightforward: search the photon map for photons within a radius of the

intersection point and sum up the photon power. Filtering, for instance a tent or Gaussian

filter, can alternatively be used to smooth the caustic samples but is not necessary.

The second term computes global illumination in a process known as final gathering.

Instead of sampling the global photon map directly, a hemisphere of rays are shot from

the point to be shaded and when an intersection occurs, the global photon map is sampled

from that position. Computing a weighted average of these samples produces an estimate

of the incoming radiance which is added to the lighting equation. Because this step is

computationally expensive and due to the fact that it does not contribute much to the effects

of water it can be ignored.

27

CHAPTER IV

IMPLEMENTATION AND RESULTS

IV.1. Implementation

The methods described in this thesis were implemented as a stand alone, Object Oriented

C++ program. Because of the complexity of this project, a number of parent interfaces

and child classes were used to simplify development, re-usability and testing. The program

structure implements the standard stable-fluid method to simulate fluids such as gas and

smoke as well as liquids such as water, in both Cartesian and view dependent coordinates.

In addition, the structure exposes the functionality at multiple levels so it can be extended

to support features required by other stable-fluid based methods such as explosions [4] and

visco-elastic fluids [9].

IV.1.1. Class Hierarchy

The following important parent classes implement functionality that is shared across the

program:

• Grid - stores required fluid components such as velocity, pressure and density in a

standard 3D grid

• Differencer - executes numerical methods on Grid objects such as finite differencing,

normal calculations and conversion between physical and computational space

• FluidSolver - implements the stable-fluid method and ability to track density along

the flow

28

• LevelSet::Grid - an extension of the Grid to support Level Set methods such as reini-

tialization, smoothing and extension velocities

• RayTracer - a multi-threaded ray tracer used to render out the scene and fluid objects

• Object - ray-traceable object class as described in [19]

These parent classes were extended to support more specific functionality or methods.

The child classes contain more specific code, for example, to implement differences in

numerical methods, program flow or rendering options:

• SmokeSolver::FluidSolver - implements the smoke solver described in [8]

• LiquidSolver::FluidSolver - implements the liquid solver described in [5]

• CartesianDifferencer::Differencer - numerical methods on Cartesian based grids

• PolarDifferencer::Differencer - numerical methods on view dependent (more gener-

ally, polar based) grids

• ParticleLevelSet::LevelSet - an implementation of the Particle Level Set Method de-

scribed in [5]

• LevelSetObject::Object - implements the root-finding algorithm to intersect a Ray

(see below) with the surface

• CylindricalLevelSetObject::LevelSetObject - extension to the renderable LevelSetO-

bject for view-dependent rendering

In addition to the above classes, the following utility classes were implemented to

facilitate efficient development and compile-time optimizations:

• Vector - template 3D vector class with inline operators

29

• Ray - position and direction information used during ray tracing

• PhotonMap - an octree-based container used to store and search photons during ren-

dering

IV.1.2. Program Flow

The final program flow for liquid simulations is listed below. Note that these pseudo-code

listings are “flattened” versions from the Object Oriented structure in the actual implemen-

tation but still maintain the correct order.

SIMULATION(SimulationT ime, T imeStep)

U0, φ0,P0 ← INITIALIZE()

n← 0

while ElapsedT ime < SimulationT ime

do n = n + 1

� Simulate

Un ← UPDATEVELOCITY(Un−1, T imeStep)

φn,Pn ← UPDATELEVELSET(Un, φn−1,Pn−1, T imeStep)

� Render the current frame

SHOOTPHOTONS(Scene, φn)

RAYTRACE(Scene, φn)

30

UPDATEVELOCITY(Un−1, φn−1, T imeStep)

� Use the Stable-Fluid method to update fluid velocity

W0 ← Un−1

W1 ← FORCES(W0, T imeStep)

W2 ← TRANSPORT(W1, T imeStep)

W3 ← DIFFUSE(W2, V iscosity, T imeStep)

W4 ← PROJECT(W3, T imeStep)

� Use the Level Set to provide reasonable velocities outside the fluid

Un ← EXTENDVELOCITIES(W4, φn−1)

UPDATELEVELSET(Un, φn−1,Pn−1, T imeStep)

� Advance and correct the Particle Level Set

φn,Pn ← ADVANCE(Un, φn−1,Pn−1, T imeStep)

φn ← CORRECT(φn,Pn)

φn ← SMOOTH(φn)

φn ← REINITIALIZE(φn)

� Every 20 frames redistribute surface particles

if (n mod 20) Pn ← RESEEDPARTICLES(Pn)

IV.2. Results

The methods above were successfully implemented with mixed results. To explain the

results the original goals of the thesis are reiterated and compared. The first goal was to

simulate large areas of open water efficiently while the second goal was to decouple the

simulation from fixed wall boundaries. Execution times were not a goal of this thesis. The

main idea is to simulate more volume per grid cell and not to optimize the runtime code.

31

IV.2.1. Large Water Simulation

This thesis approached the problem of large water simulation by decreasing detail with

distance from the camera (i.e. increasing fluid volume per simulated area). This enabled

grid setups that encompass more volume per simulated unit than a uniform Cartesian grid.

While Cartesian grids can be expanded to fill the same space, view dependent grids locate

detail closer to the viewer.

To achieve this level-of-detail approach the simulation was ran on a modified polar

coordinate grid with non-uniform cell sizes. An inverse coordinate transformation was then

used to help modify the numerical methods in the stable fluid method so they may function

on this new grid setup. Finally the particle level set method was adapted to support the new

grid.

While simulations run in this new setup were stable (e.g. the solution converges and

does not “explode”), noticeable artifacts appeared in the fluid motion. Figures 10 and 11

show how fluid appears to flow in the angular direction and is seen as concentric rings.

Upon inspection, these artifacts are caused by the final step in the stable fluid method

– projection. During this step the fluid pressures are found by solving a system of linear

equations relating the divergence of the pressure gradient to the fluid divergence. After

the pressures are found, their gradient is subtracted from the fluid velocity to remove any

divergent flow. While this step satisfies the incompressibility constraint, ∇ · u = 0, and

therefore maintains fluid volume, it is not preserving momentum across cells with varying

tangent spaces.

Alternative approaches to defeating this problem were unsuccessful. The first ap-

proach was to simulate fluid using derivatives determined by coordinate transformation on

physical space vectors, rather than using the stable fluid method in computational space.

This resulted in exactly the same results. The second approach was to apply a non-uniform

32

Fig. 10. Artifacts appear in the view dependent surface as seen from above.

Fig. 11. Artifacts appear in the view dependent surface as seen from the viewer.

33

rotation to gradients used in the pressure matrix to solve for pressures in the same vector

space. This approach seemed to work but was unstable and caused the solution to diverge

(“explode”). Due to time constraints a stable solution to this problem was not found.

IV.2.2. Boundary Free Simulation

This thesis successfully implemented the infinite-fluid boundary conditions. These bound-

ary conditions allow fluid to move freely into or out of the simulation domain without

reflections. Moreover, they help maintain a constant level of fluid, such as deep ocean.

Figures 12 and 13 help distinguish between infinite-fluid and wall-fluid boundaries. Notice

that when the simulation is run with strict wall boundaries the fluid runs high up against the

walls. While with infinite fluid boundaries, the fluid flows smoothly through the simulation

boundary.

Fig. 12. A drop of water with infinite-fluid boundaries.

34

Fig. 13. A drop of water with wall-fluid boundaries.

IV.2.3. Final Simulations

Figures 14 and 15 show sequences of two animations produced by our methods. These

were Cartesian grid-based simulations rendered with caustics using photon mapping. The

simulation grid sizes were 80x60x80 cells and took approximately 24 hours to simulate

and render. Rendering took the majority of the time as 3x3 super-sampling was enabled

and the number of photons was about 500,000. With regards to running times, note that

no hardware specific optimizations (such as maintaining cache coherence or instruction

vectorizing) were implemented as these are beyond the scope of this thesis.

The next example simulation was done using the view dependent framework and is

similar in setup to those above, with the exception being rendering. The eye and top views

in Figure 16 show three fluid sources pouring into a wedge-shaped container.

This simulation took approximately 48 hours to simulate – twice as long as the same

setup in Cartesian coordinates. Although a portion of this time included executing more

35

Fig. 14. A 80x60x80 water simulation rendered with caustics.

Fig. 15. Another 80x60x80 water simulation rendered with caustics.

36

Fig. 16. A view dependent water simulation.

37

complicated conversion routines, the majority of the simulation time was dominated by a

more strict CFL condition required by the level set methods. A view dependent setup allows

much smaller simulated cell sizes near the camera and the simulation can only step through

time as fast as the smallest CFL in the entire domain. This disadvantage is discussed further

in the conclusions section.

38

CHAPTER V

CONCLUSIONS

V.1. Conclusions

To solve view dependent fluid dynamics this thesis relied on an inverse coordinate trans-

formation of the Navier-Stokes equations as applied to the stable fluid method. It coupled

this solution with a modified particle level set method to maintain a liquid surface. Sim-

ple, infinite-fluid boundary conditions were added using pressure constraints. Finally, the

liquid surface was rendered using ray tracing and a global illumination “photon mapping”

technique to render caustics.

Although the implementation of the stable fluid and level set methods were fairly

straightforward, difficulties arose when trying to overcome the grid bias caused by the view

dependent coordinate system. It was found that the velocity projection step in the stable

fluid method, which is used to guarantee a divergence free velocity field, introduces these

artifacts even after an inverse coordinate transformation is applied. The approach taken by

this thesis does not preserve momentum correctly across the grid where vectors of different

basis need to be compared to each other – it only computes flux across the cell boundaries

and ignores any sense of direction.

Another drawback of the method is that the entire simulation can only be run at time

steps satisfying the minimum CFL condition for stability in the level set method. As it’s

name implies, the stable fluid method can take large time steps and will be unconditionally

stable. However, level set methods do not have such luxury and large time steps cause too

much numerical dissipation and eventually the loss of fluid volume. In addition, the level

set methods are much more expensive than the stable fluid method, and given that approxi-

mately 15-30 level set steps are required per frame under usual conditions, simulation times

39

are much larger than having a uniform, lower resolution grid.

Compared to newer, adaptive resolution fluid simulation methods such as the octree

method used in [13], the view dependent method is overshadowed in its ability to support

level-of-detail. To support view dependent level-of-detail, the octree method can be tailored

to refine simulation cells with distance to the camera as well as to simulation features and

boundaries.

One interesting method was found essentially after the development of the view de-

pendent method that might be of help for future work. [20] transforms the stable fluid

method to support 2D flows on subdivision surfaces (or any general, curvilinear coordi-

nate system). In this method the surface parameterization is used to defeat deformations,

potentially those seen in the view dependent method. After investigation, the method is

essentially an inverse coordinate transformation for non-vector properties such as pressure,

but provides special treatment to vector quantities such as velocity to account for changing

vector bases.

V.2. Future Work

A simple approach to view dependent level-of-detail would be to implement a solution to

the 2D shallow water equation as a height field on a 2D view dependent grid using either an

inverse coordinate transformation or curvilinear coordinate solution described in [20]. This

would allow 2.5D simulations, and if solved using general purpose graphics processors

would allow very high resolution simulations in real-time.

Recently, the popularity of particle-based fluid methods has risen and a large set of

interesting work has been developed. Refer to [3], [16] and [17] for details and some

examples of this method. It would be interesting to see if the particle filtering used by

these techniques could be adapted to a view dependent setup. Moreover, particles could be

40

merged or refined programmatically as they move with distance to the camera.

41

REFERENCES

[1] Anderson, J. D., Computational Fluid Dynamics: The Basics with Applications,

McGraw-Hill, Inc., New York, NY, 1995.

[2] Adalsteinsson D. and Sethian J., “The fast construction of extension velocities in level

set methods,” Journal of Computational Physics, Vol. 148 pp. 2-22, 1999.

[3] Clavet, S., Beaudoin, P. and Poulin, P., “Particle-based viscoelastic fluid simulation,”

Proceedings of Symposium on Computer Animation ’05, pp. 219-228, 2005.

[4] Feldman, B. E., O’Brien, J.F. and Arikan, O., “Animating suspended particle explo-

sions,” ACM Transactions on Graphics (Proc. SIGGRAPH ’03), 2003.

[5] Enright D., Marschner S. and Fedkiw R., “Animation and rendering of complex wa-

ter surfaces,” ACM Transactions on Graphics (Proc. SIGGRAPH ’02), pp. 736-744,

2002.

[6] Foster N. and Fedkiw R., “Practical animation of liquids,” ACM Transactions on

Graphics (Proc. SIGGRAPH ’01), pp. 23-30, 2001.

[7] Foster N. and Metaxes D., “Realistic animation of liquids,” Graphical Models and

Image Processing, Vol. 58, pp. 204-212, 1996.

[8] Fedkiw R., Stam J. and Jensen H., “Visual simulation of smoke,” ACM Transactions

on Graphics (Proc. SIGGRAPH ’01), pp. 15-22, 2001.

[9] Goktekin T. G., Bargteil A. W. and O’Brien J. F., “A method for animating viscoelastic

fluids,” ACM Transactions on Graphics (Proc. SIGGRAPH ’04), pp. 463-468, 2004.

42

[10] Harlow F. and Welch J., “Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with a free surface,” The Physics of Fluids, Vol.8, pp. 2182-

2189, 1965.

[11] Jensen, H. W., Realistic Image Synthesis Using Photon Mapping, A K Peters, Ltd.,

Natick, MA, 2001

[12] Lorensen, W. and Cline, H.E., “Marching cubes: A high resolution 3D surface

construction algorithm,” Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Applications, pp. 163-169, 1987.

[13] Losasso F., Gibou F. and Fedkiw R., “Simulating water and smoke with an octree

data structure,” ACM Transactions on Graphics (Proc. SIGGRAPH ’04), pp. 457-462,

2004.

[14] Mihalef V., Metaxas D. and Sussman M., “Animation and control of breaking waves,”

Proceedings of Symposium on Computer Animation ’04, pp. 315-324, 2004.

[15] McNamara A., Treuille A., Popovic Z. and Stam J., “Fluid control using the adjoint

method,” ACM Transactions on Graphics (Proc. SIGGRAPH ’04), pp. 447-454, 2004.

[16] Muller, M., Solenthaler, B., Keiser, R. and Gross, M., “Particle-based fluid-fluid inter-

action,” Proceedings of Symposium on Computer Animation ’05, pp. 237-244, 2005.

[17] Muller, M., Charypar, D. and Gross, M., “Particle-based fluid simulation for inter-

active applicaitions,” Proceedings of Symposium on Computer Animation ’03, pp.

154-159, 2003.

[18] Osher S. and Fedkiw R., Level Set Methods and Dynamic Implicit Surfaces, Springer-

Verlag New York, Inc., New York, NY, 2003.

43

[19] Shirley, P. and Morley, R.K., Realistic Ray Tracing, AK Peters, Natick, MA, 2003.

[20] Stam, J., “Flows on surfaces of arbitrary topology”, ACM Transactions on Graphics

(Proc. SIGGRAPH ’03), pp. 724-731, 2003.

[21] Stam, J., ”Stable fluids,” ACM Transactions on Graphics (Proc. SIGGRAPH ’99), pp.

121-128, 1999.

[22] Teukolsky, W.H., Vetterling, W., T. and Flannery, B.P., Numerical Recipes in C: The

Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 1996.

[23] Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W., Numerical Grid Generation,

Elsevier Science Publishing Co., New York, NY, 1985.

44

VITA

Brian Arthur Barran
12715 New Kentucky Rd.
Cypress, TX 77429
bbarran@viz.tamu.edu

Education
M.S. in Visualization Sciences Texas A&M University, May 2006
B.S. in Computer Science Texas A&M University, May 2002

Employment
Software Engineer Electronic Arts Canada, July 2005 - Continuing after graduation
Research Assistant Texas A&M University, February 2004 - May 2005
Software Engineer Hewlett-Packard, May 2000 - August 2003

