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†Appendix 1.

Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS

regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging,

magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI

techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue

outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS

tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of

quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research

and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration

into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by

improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment

response.
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Introduction
Conventional MRI provides invaluable information for the

diagnosis, prognosis, and monitoring of the effectiveness of

therapeutics in patients with multiple sclerosis.1,2 The term

conventional MRI encompasses the methods used in clinical

practice to describe pathology by relying on contrast changes

in weighted images. These are images that predominantly, but

not exclusively, reflect a biophysical contrast mechanism (e.g.

T1- and T2-weighted scans). Using conventional MRI in the

multiple sclerosis clinic, it is generally possible to identify the

number, location, and activity of multiple sclerosis lesions, al-

though the sensitivity to those characteristics generally varies

depending on several technical factors.3 On the other end,

conventional MRI is largely insensitive to the heterogeneity of

focal multiple sclerosis lesions and to the pathology affecting

CNS tissue outside multiple sclerosis lesions (normal-appear-

ing white and grey matter). Furthermore, conventional MRI

is unable to depict the level of damage within different CNS

tissue components, such as myelin, axons, and glia.

Better quantification of the extent, type, spatial distribu-

tion, and evolution over time of CNS tissue damage in

patients with multiple sclerosis could improve our under-

standing of disease mechanisms. It may also aid in stratifica-

tion of disease burden, assessment of therapy response and

evaluation of subclinical disease progression.

Quantitative MRI can potentially address these needs by

providing more sensitive measures of multiple sclerosis path-

ology and more specific information regarding which tissue

component has been damaged (Fig. 1). Unlike conventional

MRI, which acquires datasets that have a mixture of weight-

ings and therefore cannot be resolved into a quantitative

map, quantitative MRI relies exclusively on acquisitions that

can then be used to disentangle the source of signal varia-

tions. Moreover, through computational or mathematical

modeling, this approach can provide quantitative maps

where intensities have physical units.4 Thus, quantitative

MRI techniques are superior to conventional MRI regarding

their sensitivity to subtle alterations within lesions and nor-

mal-appearing tissue4 as well as their increased specificity

relating to the damage of different tissue components of the

CNS (e.g. myelin, axons, glia, iron and blood flow/volume).

Nonetheless, quantitative MRI is not currently used in clin-

ical practice, primarily because it has not reached ‘clinical ma-

turity’. A method can be considered ‘clinically mature’ when it

can be run on most up-to-date clinical scanners without the

need for additional sequence development, there is available

and validated software able to process the data and provide

the user with the desired quantitative maps, and cut-off values

of pathology assessed with that method have been established.

In this review, we summarize: (i) the information that can,

and cannot, be provided by conventional MRI; (ii) the con-

tribution of quantitative MRI to our understanding of mul-

tiple sclerosis pathology in the brain and spinal cord; (iii) the

relationship between quantitative MRI features and clinical

outcome and the potential role of quantitative MRI in

improving the prediction of disability, especially motor and

cognitive deficits; and (iv) the clinical maturation stage of

the various quantitative MRI techniques.

Quantitative MRI and
multiple sclerosis
neuropathology
When radiographically investigating multiple sclerosis, con-

ventional MRI provides the following measures: (i) number,

volume, and location of focal T2-weighted hyperintense

lesions; (ii) number of contrast-enhancing T1-weighted
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lesions (CEL); (iii) number and volume of T1-hypointense

lesions (also called black holes); and (iv) global/regional vol-

ume of tissues (a measure of atrophy). However, T2-

weighted lesions are not pathologically specific, because they

may represent active inflammation (e.g. oedema) as well as

demyelination with or without axonal loss. T1-hypointense

lesions may also result from variable damage to different

CNS tissue components (myelin/axon/cells), which cannot be

distinguished. Therefore, T2-weighted and T1-hypointense

lesions provide only basic information relating to the histo-

pathological heterogeneity of multiple sclerosis lesions5,6 and

the different stages of lesion development and repair (e.g.

remyelination) that may occur over time. Additionally, brain

atrophy reflects only the late-stage results of degenerative

phenomena and does not describe the normal-appearing tis-

sue pathology preceding tissue volume loss. In fact, conven-

tional MRI is mostly insensitive to the early and subtle

axonal pathology,7 alterations in myelin morphology (e.g.

myelin blisters8) and early-stage dendrite/synapse changes

such as those occurring in the hippocampus.9

Quantitative MRI techniques

T1 relaxometry

T1 relaxometry measures the recovery of longitudinal mag-

netization of excited spins in a tissue by providing T1

relaxation time (T1-RT) values, which are related to the in-

tegrity of micro- and macrostructural components of a tis-

sue10 (Table 1).

Pathological evidence

Several studies have explored the sensitivity and specificity of

T1-RT for detecting multiple sclerosis pathology (Table 1).

The three major determinants of T1 changes in the CNS of

patients with multiple sclerosis are myelin, iron, and water.

While it is possible to model their effect on T1-RT,11 it is chal-

lenging to disentangle the relative contributions of myelin,

axons, and free water (e.g. oedema in active lesions) to T1-

RT.12 Indeed, T1-RT highly correlates with both myelin (r =

–0.78, P50.001) and axon content (r = –0.62, P50.001)

within the normal-appearing white matter and within white

matter lesions in the CNS.13 Moreover, demyelination, axon

loss, and iron loss may all lead to prolonged relaxation

times.13,14 Interestingly, lesions with longer T1-RT are more

destructive due to a combination of axonal loss and accumu-

lation of extracellular water.15 On the other hand, shortening

or moderate prolongation of T1-RT over time may suggest

reparative phenomena such as remyelination and gliosis.16

Assessment of multiple sclerosis impact and

prognostic value

T1-RT mapping displays high accuracy for discriminating

focal lesions in both white and cortical grey matter in

Figure 1 Information provided by quantitative MRI about key features of multiple sclerosis pathology for clinical applications

in patients with multiple sclerosis. Quantitative MRI provides information about normal-appearing tissue pathology, multiple sclerosis lesion

heterogeneity, remyelination, and blood–brain barrier disruption. dia-mag = diamagnetic; para-mag = paramagnetic.
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patients with multiple sclerosis.17,18 Ultra-high-field (7 T),

T1-RT mapping can identify cortical focal pathology in cere-

bral hemispheres19 and cerebellum20 of patients with mul-

tiple sclerosis. In addition, whole-brain T1-RT maps at 3 T

provide a personalized approach with which to assess the

heterogeneity of damage in focal lesions and the extent of

diffuse pathology by quantifying the changes in T1-RT com-

pared to the normal distribution of T1-RT in healthy sub-

jects.21 T1-RT mapping studies have been used to generate

whole-brain assessments of multiple sclerosis disease impact

and progression. These studies found that global T1-RT

increases with disease progression, predominantly in later

disease stages and also correlates with brain atrophy.22,23

The volume of lesions with very long T1-RT (black holes)

better correlates with composite clinical functional scores

compared with total lesion volume,24 and the decrease over-

time in T1-RT inside black holes is associated with clinical

improvement25 and response to therapy.25 Finally, patterns

of T1-RT change associated with cognitive impairment can

be observed even at early multiple sclerosis stages.26

Technology availability in the clinic

To date, T1 relaxometry has not been included in clinical

multiple sclerosis protocols. There are several reasons for

this: (i) numerous approaches have been proposed, exhibit-

ing variable sensitivity to spurious effects such as magnetiza-

tion transfer (MT), T2 relaxation, diffusion, and B1

variation; (ii) there is no consensus for the best T1 mapping

sequence27,28; (iii) obtaining high accuracy for T1 mapping

in vivo is still challenging29 (e.g. T1 relaxation in white

Table 1 Technical background and pathological specificity and sensitivity of quantitative MRI techniques

Quantitative MRI

technique

Contrast mechanism Measure(s) Specificity to multiple

sclerosis pathology

Sensitivity to multiple

sclerosis pathology

qT1 Recovery of longitudinal

magnetization

T1-RT/R1 Low: myelin/axons/cells/macro-

and micro molecules/water)

High: (lesions and NAT)

T2 relaxometry Loss of spin

Coherence of water pools (myelin

layers, intracellular, intra-axonal,
extracellular)

T2-RT/R2 Low: myelin/axons/cells/water) High: (lesions and NAT)

MWI Loss of spin coherence of water

molecules trapped in myelin

MWF High: myelin High: (lesions and NAT)

MTI Exchange of magnetization be-
tween free protons and macro-

molecular protons (proteins/
lipids)

MTR Low: myelin/macromolecules
(e.g. lipid/protein in biological

membranes) extracellular
water

High: (lesions and NAT)

DTI Diffusivity of water proteins (intra-

cellular-extracellular)

MD, RD/AD, FA Low

Highly dependent on tissue

structure (e.g. fibre crossing/

activated microglia/cells)

High: (lesions and NAT)

Diffusion-based
models of

microstructure

Modelling of water compartments

Modelling of the diffusion magnetic
resoance signals

Restricted water fraction
(CHARMED)

Axon calibre (ACTIVEX)

Diffusion Kurtosis

ICVF

ODI

fis

High

ODI: neurite dispersion

Moderate

NDI: myelin and axonal count

fis: Neurite and soma

High: (lesions and NAT,

little evidence)

QSM Local changes in tissue composition

cause frequency shifts (measured

by phase images)

Magnetic susceptibility Low: Influenced by changes in

iron/myelin/water content

Moderate: (lesions)

Perfusion MRI

ASL Magnetically labelled blood is used
as endogenous tracer

CBV

CBF

MTT

Ktrans

Ve

Vp

Moderate: linked to mitochon-
drial energetic failure; linked

to elevated levels of endothe-
lin-1

Moderate: (NAT)

DSC Susceptibility effect of the para-

magnetic contrast agent leads
to signal loss in T2/T2*-

weighted images

DCE Wash-in, plateau, wash-out of

contrast enhancement

The evaluation of ‘specificity’ and ‘sensitivity’ of quantitative MRI measures has been made along two criteria: (i) the strength of correlation between quantitative MRI measures with

a given neuropathological feature (specificity); and (ii) the number of neuropathological features measured with quantitative MRI (sensitivity). Based on those criteria, an expert con-

sensus was reached a consensus among the participants of the MAGNIMS workshop (Basel, December 2019) on ‘Quantitative MRI towards clinical application in MS’. ASL = arterial

spin labelling; CBF = cerebral blood flow; CBV = cerebral blood volume; DCE = dynamic contrast-enhanced; DSC = dynamic susceptibility contrast; fis = soma signal fraction;

GM = grey matter; GRASE = gradient and spin echo; ICVF = intracellular volume fraction; Ktrans = transfer constant; MTI = magnetization transfer imaging; MTT = mean transit

time; MWI = myelin water imaging; NDI = neurite density index; ODI = orientation dispersion index; Ve = fractional volume of the extracellular space; Vp = fractional volume of

the plasma space.
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matter is double-exponential because of magnetization ex-

change with myelin-bound protons, but most available

methods assume single-exponential relaxation); and (iv) the

complexity of the T1 mapping techniques often results in

lack of reproducibility30 (Table 2).

Despite challenges with reproducibility of T1 relaxometry,

there are some promising T1 mapping approaches combin-

ing ‘clinically compatible’ scan times with high intra- and

inter-scanner reproducibility. One of these is the magnetiza-

tion prepared 2 rapid acquisition gradient echoes

(MP2RAGE) sequence,31 which has been shown to provide

highly reproducible T1-RT maps (3% coefficient of variabil-

ity, CV) in a single-vendor, multicentric study32 and in a T1

phantom study (NIST, National Institute of Standards and

Technology) across different 3 T scanners.33 MP2RAGE T1

maps provide a promising ‘all-in-one’ candidate for clinical

practice, but achieving this will require manufacturers to col-

laborate to provide similar acquisitions across different scan-

ners. In addition, clinical cut-offs of pathological changes in

MP2RAGE maps still need to be defined. Another interest-

ing approach is synthetic MRI (SyMRIV
R

), which simultan-

eously analyses T1/T2 relaxometry and proton density.34

The SyMRI sequence and the software to reconstruct

SyMRI maps can be implemented across scanners from all

major vendors. Further, quantitative MRI maps can either

be generated within a minute of the acquisition or can be

installed as a call button on picture archiving and communi-

cation systems.35 Moreover, SyMRI showed less than 6%

variability in T1-RT across scanners from different

vendors.36

Interestingly, MP2RAGE T1 mapping has been recently

reported in the spinal cord in 5 10 min, with a maximum

CV of 5%.37

T2 relaxometry, myelin water
fraction, and magnetization transfer
imaging

Myelin-sensitive metrics are essential to investigate multiple

sclerosis pathophysiology38,39 (Fig. 1), perform outcome pre-

dictions,40,41 and assess therapeutic effects.42,43

Single-component T2 relaxometry (qT2) is obtained by fit-

ting a single exponential and provides measures of T2-RT

that are sensitive to global water content in the CNS (intra/

extracellular water and myelin water). Nevertheless, since T2

decay in the CNS tissue is largely multi-exponential, single-

component qT2 in highly dependent on sequence parameters

and noise44,45 (Table 1).

The distinction of different water pools, including the

myelin water pool [e.g. myelin water fraction (MWF)], in

the CNS may be achieved by using multi-component T2

relaxometry46 (Table 1). MT imaging exploits the selective

saturation of protons bound to macromolecules, including

myelin, and reduces their longitudinal magnetization. This

renders it possible to create MT saturation images (MTsat)

and magnetization transfer ratio (MTR) images providing

information about this pool of molecules13 (Table 1).

Single-component T2-RT, MWF, and MTR are also sensi-

tive to the relative presence of extracellular water. For ex-

ample, their values may be influenced by the presence of

oedema44,47 (Table 1).

Other techniques, such as rapid estimation of myelin for

diagnostic imaging (REMyDI), which is derived from

SynMRI, can also be used to assess myelin integrity.

REMyDI quantifies myelin by estimating its fast relaxation

rate through magnetization exchange and effects on the

observable proton pool (i.e. cellular water, free water, and

excess parenchymal water partial volumes).34,48

Pathological evidence

Myelin-related measures exhibit different specificity in re-

gard to myelin content and myelin-related pathology in mul-

tiple sclerosis.

Post-mortem single-component T2 relaxometry in the nor-

mal-appearing tissue of the cervical spinal cord of patients

with multiple sclerosis is highly influenced by demyelination

(r = 0.77, P5 0.001) but does not seem to be strongly

related to axonal damage (r = –0.44, P5 0.001).49

Additionally, qT2 shows a strong linear correlation with

iron concentration in healthy brains (r2 = 0.67,

P5 0.001).50

MWF shows strong correlations with myelin staining in

both lesions and normal-appearing tissue in histological

Table 2 Current state of reproducibility and availability for use in humans

Quantitative MRI technique Inter-scanner reproducibility Hardware/software

availability for clinical use

qT1 Moderate

High (MP2RAGE)

Limited

T2 relaxometry Moderate Limited

MWI High (little evidence) Limited

MTI Low/moderate Limited

DTI Moderate Broad

Models of diffusion-based microstructure Moderate (little evidence) Limited

QSM High (little evidence) Limited

Perfusion MRI (ASL, DSC, DCE) High Broad

Reproducibility (inter-scanner and same field strength): high = 55% coefficient of variation (CV); moderate = 5–15% CV; low = 4 15% CV in reported studies. ASL = arterial

spin labelling; DCE = dynamic contrast-enhanced; DSCE = dynamic susceptibility contrast; MTI = magnetization transfer imaging; qT1 = quantitative T1.
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specimens of human brain (on average in lesions and

normal-appearing tissue: r2 = 0.67, P5 0.0001).46,51

Whether MWF is also sensitive to accumulation of extracel-

lular iron remains to be demonstrated. A recent post-mortem

study attempted to answer this question by imaging brain

specimens with two different techniques measuring MWF

[Carr Purcell Meiboom Gill (CPMG), and gradient and spin

echo (GRASE)], before and after a de-ironing procedure.52

This work concluded that both were sensitive to brain iron

content; however, this conclusion should be taken with cau-

tion, since the applied de-ironing procedure may well have

affected the iron content within myelin and, as a conse-

quence, altered myelin properties. Therefore, more studies

are warranted to better understand the effect of extracellular

iron on quantitative MRI techniques measuring MWF.

MTR, but not MTsat, has been validated by post-mortem

studies and shows high correlations with myelin (r = 0.84,

P50.001)53 and axon density (r = 0.83, P5 0.0001)54

when lesions and normal-appearing tissue are considered to-

gether. In addition, very recent MRI-pathology studies dem-

onstrate that MTR sampled in lesion and non-lesion tissue

in multiple sclerosis brains is weakly associated not only

with myelin density [coefficient (95% confidence interval,

CI): 0.31 (0.07 to 0.55), P = 0.01], but also with greater

numbers of astrocytes [coefficient (95% CI): 0.51 (0.02

to 1), P = 0.04] and damaged mitochondria [coefficient

(95% CI): 0.53 (–0.95 to –0.12), P = 0.01].55

Amongst the most recent myelin-sensitive approaches,

REMyDI myelin quantification was shown to weakly cor-

relate with both proteolipid protein (PLP) immunostaining

and Luxol fast blue staining in multiple sclerosis lesions

but not with the same staining in normal-appearing white

matter (multiple sclerosis lesions: 0.025 r50.48,

P5 0.001).56

Assessment of multiple sclerosis impact and prognostic

value

In patients with short disease duration (i.e. 56 years),

T2-RT values were increased in normal-appearing white

matter57-59 and normal-appearing grey matter60 as

compared to healthy controls. T2-RT in combination with

diffusion MRI appeared to be sensitive also to extracellular

water accumulation due to blood–brain barrier disruption in

gadolinium-positive lesions, which could be identified

with 85% accuracy using these two measures.61 Similarly,

MWF increased over 6 months following the appearance of

enhancing lesions, as expected in repairing tissue.62

Additionally, MWF was reported to be lower in lesions with

paramagnetic rims compared with rim-negative lesions,63

showing the more pronounced demyelination in the former

lesion type. Also, MWF moderately decreased over time (–

8%) in the normal-appearing white matter of a small group

of patients followed over an average period of 5 years.

Global MWF was likewise abnormal in the brain and

cervical spinal cord of patients with primary progressive

multiple sclerosis compared to controls,64 and, when

followed for 2 years, decreased at the C2–C3 spinal cord

level65; moreover, cervical spinal cord MWF showed an as-

sociation with disability.65

MTR changes in normal-appearing white matter preceded

the appearance of gadolinium-enhancing lesions in patients

with multiple sclerosis66 and recovered following the acute

phase,67 especially in treated patients.68 MTR was signifi-

cantly lower in hypointense lesions as compared with isoin-

tense lesions on T1-weighted images at the time of initial

enhancement.69 For lesions that changed from hypointense

to isointense, MTR increased significantly during 6 months

of follow-up.69 Intralesional MTR showed longitudinal

changes consistent with demyelination and remyelination in

different regions of active lesions in the 3 years following

treatment.70 MTR also appeared to be lower in outer com-

pared to inner cortical layers in the brain, and in the subpial

region compared to the central region in the spinal cord71;

this may be consistent with differences in myelin content,

but may also, at least in part, be due to partial volume

effects. The lowest outer cortical MTR was seen in second-

ary progressive multiple sclerosis and is consistent with more

extensive outer cortical (including subpial) pathology.72

MTR abnormalities in the subpial region, in both brain and

spinal cord, occurred early in the course of multiple sclerosis

and were more marked in patients with a progressive disease

course.73 As for the spinal cord, lower MTR values were

found in the cervical cord of patients with RRMS71,74 and

primary progressive multiple sclerosis74 compared to con-

trols, which further decreased over 5 years follow-up.74

In contrast to MTR, MTsat has been evaluated in patients

with multiple sclerosis in a few studies, revealing its sensitiv-

ity to normal-appearing white/grey matter abnormalities75,76

and multiple sclerosis lesions.76,77 A proper comparison be-

tween the sensitivity of MTsat and MTR to multiple scler-

osis pathology has still to be performed, but there is

preliminary evidence that MTsat in the cervical spinal cord

better correlates with disability than MTR.78

Myelin maps provided by REMyDI showed increased

myelin loss in normal-appearing white matter of patients

with multiple sclerosis compared to controls, which corre-

lated with baseline cognitive and physical disability.56

Longitudinally, MWF correlated with follow-up physical dis-

ability, even after adjusting for baseline disability.56

Technology availability in the clinic

Up to now, MTR/MT sat, qT2, and MWF have not been

available for clinical use (Table 2). However, there are now

some sequences that provide qT2 and MWF maps in 3–6

min, a time that may be compatible with clinical proto-

cols.79–82 Similarly, for the cervical spinal cord, fast acquisi-

tions for MWF begin to be available.83

There are also several sequences available to perform MT

imaging, but none can provide the reconstruction of MTR

maps in a clinical setting. Interestingly, the comparison of

different myelin-sensitive methods (GRASE- and

mcDESPOT-MWF, qT1, and MTR) indicates that the type

of sequence needs to be chosen according to the purpose of

its application. For example, the GRASE sequence should be

6 | BRAIN 2021: Page 6 of 17 C. Granziera et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab029/6273092 by U
niversity of Verona user on 11 M

ay 2021



used when the greatest confidence is required for assessing

changes specific to myelin.39 If sensitivity to lesion and

normal-appearing white matter pathology is the priority,

then mcDESPOT-MWF and qT1 are the most sensitive

approaches.39

Although achieving reproducible MTR measurement has

traditionally been challenging, by carefully controlling the

sources of technical variability (protocols, type of coil for

MT saturation, and B1 inhomogeneities), it is feasible to ob-

tain inter-scanner MTR in healthy controls, the variability of

which lies within the mean inter-subject variability.84,85

Also, MTsat exhibits moderate variations [CV intra-scanner

7–12%; CV inter-scanner: 15.7% (55% if MT harmoniza-

tion is performed)].86

Intra-scanner reproducibility of MWF in white matter is

quite high (r = 0.95–0.99),81,82,87 and the same holds true in

small areas simulating multiple sclerosis lesions (r = 0.8962).

Slightly lower, but still very good, is the inter-scanner and

inter-vendor reproducibility for some myelin water imaging

sequences in white matter (r = 0.91, CV5 3%88) although

more studies are required to elucidate this aspect also for

other ‘clinically compatible’ MWI sequences.

An initial assessment of reproducibility of myelin maps as

provided by SyMRI, including REMyDI, showed moderate

reproducibility across vendors (rho = 0.89).76

In the spinal cord, measurement errors for MTR and

MTsat remain very large,89 and more data are required to

understand the intra- and inter-scanner reproducibility of

fast spinal MWF acquisitions.

Diffusion microstructure

Diffusion MRI probes CNS tissue integrity using metrics

derived from modelling signal changes associated with the

diffusion of water molecules in tissue, which can characterize

cellular compartments of brain tissue within multiple scler-

osis lesions, normal-appearing white matter, and normal-

appearing grey matter (Table 1 and Fig. 1).

Diffusion tensor imaging (DTI) is a technique widely avail-

able in clinical research and clinical practice. DTI-derived

metrics [fractional anisotropy (FA), radial/axial diffusivity

(RD/AD), and mean diffusivity (MD)/apparent diffusion co-

efficient (ADC)] have been used for many years to assess the

CNS tissue integrity in both regions of interest and along

specific white matter tracts.90–93 Beyond DTI, several math-

ematical models and computational approaches have

attempted to decode the information contained in diffusion-

weighted signals to retrieve specific features of tissue micro-

structure by: (i) modelling the tissue (e.g. tissue geometry

and water dispersion) and associated signals; or (ii) compu-

tationally exploring the magnetic resonance signal (e.g.

assessing signal behaviour with minimal or no underlying

geometrical assumptions). Some models have attempted to

separate different water compartments (extracellular, intra-

cellular, and other) within CNS tissue.94 These approaches

normally require diffusion acquisitions that are more com-

plex than the ones clinically used for DTI, encompassing

multiple b-values and sampling the signal in numerous direc-

tions. Extensive work comparing different diffusion-

weighted imaging models and their ability to explain

acquired data demonstrated that on average, and with the

methods tested, tissue models tend to explain diffusion-

weighted signal behaviour better than do signal models.95

The composite hindered and restricted model of diffusion

(CHARMED) separates the intra- and extracellular water

compartments and generates maps of the restricted water

fraction (FR), a proxy for axon density.96 The CHARMED

framework has been extended to account for different axon-

al diameters, providing the opportunity to map the distribu-

tion of axon diameters within the brain using AxCaliber97,98

or ActiveAx99 frameworks. Another method is diffusion kur-

tosis imaging (DKI), which aims to provide a more accurate

model of diffusion-weighted signal changes capable of cap-

turing non-Gaussian diffusion behaviour as a reflection of

tissue heterogeneity.100 Diffusion-based spectrum imaging

(DBSI) models the diffusion signal as a linear combination

of anisotropic diffusion tensors reflecting fibres, which are

predominantly axon fibres in white matter, and a spectrum

of isotropic diffusion tensors that encompass cells, oedema,

and CSF.101,102

Neurite orientation dispersion and density imaging

(NODDI) is a three-compartment tissue model providing

metrics to measure the intracellular volume fraction (ICVF)

or neurite density index (NDI) and the orientation dispersion

index (ODI), which describe intracellular diffusion in terms

of neurite density and the degree of fibre dispersion of neur-

itis, respectively.103 Soma and neurite density imaging

(SANDI) is another tissue-model aimed at further distin-

guishing the intracellular space by separately modelling the

intra-neurite and intra-soma spaces.104

Q-space imaging may be applied to study the microstruc-

tural changes in white matter by estimating the water

diffusion function, the probability density function (PDF),

also called mean apparent propagator (MAP)105 or ensemble

average propagator (EAP).106,107

Pathological evidence

Post-mortem studies showed that DTI-derived FA and MD

in normal-appearing white matter correlate to myelin con-

tent (r = –0.79 and r = 0.68, P5 0.001 for both) and to a

lesser degree axon count (r = –0.7 and r = 0.66, P5 0.001

for both).108 Also, in the cortex of non-neurological subjects

and patients with multiple sclerosis, FA values strongly relate

to axon density [b (95% CI) = 1.56 (0.69 to 2.44) and

b (95% CI) = 0.93 (0.45 to 1.42), P5 0.05 for both] but

not to myelin, glia, and total cell density.109 However, these

results should be taken with caution as the relationship

between DTI parameters and myelin/axon content decreases

in lesions and varies in regions of complex microstructure

(e.g. crossing fibres110–113).

Post-mortem validation of microstructural features derived

from biophysical diffusion models has been performed for

some models. However, very few of these models have been

evaluated in multiple sclerosis tissue specimens. AxCaliber
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showed a very high agreement between the estimated axon

diameter distribution in various nerve samples and axon

diameter histograms on histology images (r = 0.98 for optic

nerve and r = 0.86 for sciatic nerve97). ActiveAx maps of

axon diameter and density indices exhibited a similar distri-

bution pattern to those observed histopathologically in the

corpus callosum and corticospinal tract.99 NODDI ODI has

been reported to correspond well with histological measures

of neurite orientation dispersion in brain and spinal cord

(controls: r = 0.84; P5 0.001; multiple sclerosis: r = 0.60;

P = 0.001), whereas NODDI NDI showed good correlation

with myelin (r = 0.74; P5 0.001) and moderate correlation

with histology-derived neurofilament density measures (r =

0.56; P = 0.002).114,115 In post-mortem specimens of mul-

tiple sclerosis lesions in the spinal cord, lower NDI and

increased ODI were observed compared to non-lesion tis-

sue.114 Also, in the same specimens, NDI was reported to be

sensitive to myelin and axon count.114 As to DBSI, the study

of one biopsied tumefactive multiple sclerosis lesion showed

that DBSI-derived AD better detected axonal loss that

DTI116 but no correlation between DBSI parameters and

axonal density was reported.

Other emerging microstructural diffusion models still re-

quire histopathological validation in healthy controls and

multiple sclerosis brain specimens.

Assessment of multiple sclerosis impact and prognostic

value

Even though DTI measures provide only a coarse approxi-

mation of CNS tissue properties, they have been extensively

used in multiple sclerosis research studies. Increases in MD/

ADC have been reported up to 6 weeks before contrast

enhancement,117,118 and MD in enhancing lesions has been

shown to be much lower than in non-enhancing lesions.119

Increased MD in acute multiple sclerosis lesions also

appeared to predict risk of developing persistent black

holes.120 Furthermore, DTI measures along white matter

tracts showed a progressive increase in MD in patients with

no evidence of clinical or radiological disease-activity,121

and a decrease in RD as well as an increase in AD in pro-

gressive patients with multiple sclerosis.91 In addition, the

peak width of skeletonized MD appeared to be higher in

RRpatients with multiple sclerosis compared to controls.122

Recent DTI studies in the cervical spinal cord have reported

increased RD and reduced FA in RRMS with acute spinal

cord involvement, when compared with healthy controls,

and in SPMS, when compared with clinically stable

RRMS.123,124

DTI metrics in the brain can also predict disability

progression125 and cognition,126 especially in combination

with clinical variables.127 Likewise, RD in the optic nerve is

inversely related to visual acuity in patients with multiple

sclerosis128 and has been shown—together with FA—to cor-

relate with clinical disability in patients with spinal cord

lesions.124,129 Furthermore, baseline RD in the cervical

spinal cord over a 6-month period during an acute cord

relapse correlates with recovery at 6 months.130 Also, FA

and MD change over time in patients with multiple sclerosis,

but those measure do not seem to relate to changes in

disability.131

DKI measures (e.g. mean kurtosis) are affected in patients

with multiple sclerosis compared to controls132 and are

related to patient’s disability.133 DBSI-derived measures in

white matter lesions and in the corpus callosum distin-

guished clinical multiple sclerosis subtypes with moderate ac-

curacy134 and also different types of multiple sclerosis

lesions.135

The CHARMED-derived restricted water fraction is

decreased in early multiple sclerosis, both in lesions and in

normal-appearing white matter,136 and decreases over time

in lesions and normal-appearing white matter.137 NODDI

shows a lower neurite density (NDI) together with a higher

neurite orientation dispersion (ODI) in normal-appearing

white matter and in multiple sclerosis lesions compared with

healthy white matter, both in the brain137–139 and in the cer-

vical spinal cord.114,140,141 NODDI abnormalities are more

pronounced in patients with SPMS than RRMS.139

Additionally, NODDI measures better correlate with disabil-

ity and cognitive/motor function in patients with multiple

sclerosis than do standard DTI metrics.139

Last, q-space imaging (QSI) perpendicular diffusivity is

higher and parallel diffusivity lower in the cervical spinal

cord of progressive PPMS compared to healthy subjects,142

and those changes become more evident over time.143 Also,

an increase in cord QSI indices of perpendicular diffusivity is

associated with disability worsening over 3 years in

PPMS.143

Technology availability in the clinic

Currently, DTI protocols are available for most clinical

scanners and could be used in clinical practice, although

DTI measures are more often used for comparisons between

patient groups in research studies than for management of

individual patients. More studies are needed to better under-

stand the clinical validity of DTI-derived metrics for patients

with multiple sclerosis.110

Reproducibility of DTI metrics has been assessed in

numerous studies, which showed that FA has an intra-

scanner coefficient of variation 53% and MD 0–7%,

whereas the inter-scanner coefficient of variability for both

FA and MD is reported to be 45%.144–150 Nevertheless,

further studies should assess DTI reproducibility in multiple

sclerosis cohorts.

Microstructural models applied to multi-shell diffusion

data are far from being ready for clinical adoption, and only

few reproducibility studies have been performed. Among

those, some works reported an inter-vendor reproducibility

of NODDI ranging from 2.3% to 14% and an intra-scanner

reproducibility 44%.151,152 More works are required to

understand the potential clinical role of microstructural met-

rics and their reproducibility across scanners and vendors.

As for the spinal cord, a recent investigation of the repro-

ducibility of DTI-derived measures at C1–C6 between differ-

ent sites has shown the feasibility of multicentre spinal cord
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DTI, when sequence parameters are homogenized across

sites and vendors.153

Quantitative susceptibility mapping

Quantitative susceptibility mapping (QSM) encompasses

imaging methods by which the absolute concentrations of

iron, calcium, myelin, and other substances may be meas-

ured in tissues based on their changes in local magnetic sus-

ceptibility (Table 1). In particular, the magnetic susceptibility

is calculated from local frequency shifts in the MRI signal of

a gradient echo sequence (as obtained from the phase

images) through deconvolution with a dipole kernel. Several

methods have been proposed to solve this ill-posed inverse

problem.154 QSM maps can quantify paramagnetic trace ele-

ments, such as iron in ferritin, deoxygenated-heme in the

blood, and diamagnetic calcium. In addition, myelin155 and

the microstructural anisotropy of white matter156–159 can

also induce local shifts of the magnetic susceptibility because

of the diamagnetism of proteins and lipids.160 QSM also

provides an improved contrast-to-noise ratio for certain tis-

sues and structures compared with T2*-weighted magnitude

images. However, because of phase filtering, QSM does not

provide absolute susceptibility values, and, therefore, QSM

is computed in relationship to a reference region.161

Moreover, the magnetic susceptibility in white matter is a

tensor (i.e. it depends on fibre orientation with respect to the

main magnetic field, B0), which can make the interpretation

of susceptibility changes in white matter challenging.162

Pathological evidence

A post-mortem study before and after brain fixation at 7 T

showed that QSM is positively related to ferritin iron con-

tent (r = 0.76) and negatively related to myelin content (r =

–0.35), which indicates a paramagnetic effect of iron and a

diamagnetic effect of myelin on tissue magnetic susceptibil-

ity.163 In multiple sclerosis brain samples, QSM identifies

iron accumulation in microglia and macrophages surround-

ing chronic active and smoldering lesions164,165 as well as

active myelin digestion during lesion formation.166

Assessment of multiple sclerosis impact and

prognostic value

QSM reveals magnetic properties sensitive to iron and mye-

lin, and thus can capture specific characteristics of multiple

sclerosis lesions (Fig. 1). Longitudinal QSM measurements in

patients with multiple sclerosis have shown an initial large

rise in magnetic susceptibility occurring within weeks in ac-

tive lesions, and a subsequent increase that occurs for

months.167 The former has been attributed to myelin diges-

tion and the latter to the removal of the myelin debris within

macrophages and the release of iron.167 In addition, lesions

with higher susceptibility at the border and larger volume

maintained a high magnetic susceptibility value for a number

of years,167 a finding confirmed by susceptibility-weighted

imaging (SWI) at ultrahigh field.164 These lesions are particu-

larly interesting as they are thought to contain smouldering

inflammation and are associated with rapid clinical progres-

sion.168 Magnetic susceptibility values in the basal ganglia

were higher in patients with clinically isolated syndrome and

multiple sclerosis than in control subjects.154 Furthermore,

this increased iron deposition in the basal ganglia, measured

by QSM at 7 T, correlated with cognitive measures of inhibi-

tory control in patients with multiple sclerosis.169

Magnetic susceptibility values from QSM maps showed

promise in detecting enhancing lesions without the use of

gadolinium.167 Finally, QSM is also sensitive to the oxygen-

ation state of blood, thereby allowing calculation of the oxy-

gen extraction fraction. Thus, patients with multiple

sclerosis were found to exhibit lower oxygen extraction frac-

tion than controls, which is possibly related to mitochondrial

dysfunction.170

Technology availability in the clinic

It is relatively easy to collect data that may be used to recon-

struct QSM maps on clinical MRI scanners. In fact, many

clinical protocols are already applying 2D or 3D GRE (gra-

dient echo) sequences to obtain T2*-weighted or SWI, and

these protocols may also be used for QSM if phase images

are available. Currently, the main hurdle for the broad trans-

lation of QSM into clinics is that MRI vendors have yet to

implement the necessary algorithms on their commercial

scanners. In addition, offline reconstruction of QSM maps is

laborious and not easy to implement in routine clinical prac-

tice. Also, there is currently no consensus about which algo-

rithm is best for QSM reconstruction. Most current QSM

approaches suffer from over-smoothing and loss of conspi-

cuity of fine features, as the methods are primarily optimized

to minimize error metrics, not improve image quality.171

Brain QSM measurements performed by using the same

algorithm in different magnetic resonance scanners exhibit:

(i) excellent inter- and intra-scanner reproducibility for

healthy subjects (r = 0.99 and r = 0.98, respectively)172; (ii)

very high intra-scanner reproducibility for patients with mul-

tiple sclerosis (r = 0.97)172; and consistently high intra- and

inter-scanner reproducibility in phantoms with different

gadolinium concentrations.173

To date, QSM has not been developed for spinal cord

imaging.

Perfusion imaging

Blood perfusion in the brain can be assessed using a tracer in-

jection (e.g. gadolinium-based contrast agents) during the

MRI acquisition of: (i) a T2*-weighted dynamic susceptibility

contrast (DSC) sequence, which may provide relevant param-

eters in patients with multiple sclerosis such as: cerebral blood

flow, cerebral blood volume, and mean transit time; or (ii) a

T1-weighted dynamic contrast enhancement (DCE) sequence

able to measure the volume transfer constant Ktrans, which is

a measure of permeability between blood plasma and tissue

extravascular spaces and of plasma blood flow and capillary

surface area. Alternatively, arterial spin labelling (ASL), a

technique which does not require intravenous administration
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of gadolinium-based contrast agents, uses magnetically

labelled blood as the intrinsic contrast agent, most commonly

measuring cerebral blood flow and volume.

Pathological evidence

Chronic hypoperfusion induces mitochondrial dysfunction

leading to energetic failure and oxidative stress, which are

increasingly recognized as crucial factors associated with

axonal degeneration in multiple sclerosis.174 Furthermore,

generalized microstructural damage in normal-appearing

white matter could be associated with elevated levels of

endothelin-1, a vasospastic peptide.175

Assessment of multiple sclerosis impact and

prognostic value

Changes in local perfusion are known to precede the initial

blood–brain barrier breakdown and T2-weighted lesion ap-

pearance by several weeks.176 In general, lesions tend to de-

velop preferentially in hypoperfused brain areas,177 but the

relation of hypoperfusion to T2-weighted lesion load is con-

troversial.178–180 Generalized hypoperfusion in normal-

appearing white matter is correlated with microstructural

damage in the brain parenchyma.174 Brain perfusion is gener-

ally reduced in chronic disease phases,181,182 is correlated

with diffuse axon degeneration,174 and precedes atrophy de-

velopment.183 Gliosis also induces less metabolic demand and

results in decreased perfusion.176 Reductions in cerebral blood

volume and cerebral blood flow in multiple sclerosis are asso-

ciated with worsening of physical disability184 and have been

widely reported to correlate with disability and composite

functional scores.181,182,185–187 Correlations with the mean

transit time are still controversial, as this parameter is not

consistently altered in multiple sclerosis as it is in other condi-

tions such as stroke.185–187 A multitude of studies have con-

sistently described the correlation between cognitive decline

and reduced perfusion parameters,180,188–191 as well as with

fatigue in multiple sclerosis.188,190,192 Hypercapnic perfusion

experiments showed impaired dilatory capacity of cerebral

arterioles in multiple sclerosis in response to vasomotor

stimulations.193

Technology availability in the clinic

In general, perfusion data in multiple sclerosis may be ham-

pered by sensitivity to artefacts, dependency on haematocrit,

and the lack of absolute quantification, which may render dif-

ficult the interpretation and comparison of data acquired at

different time points or across scanners.194–196 Standardization

of protocols and analyses is currently under development.

Towards clinical application
and clinical decision support
with quantitative MRI
In theory, quantitative MRI techniques that measure accur-

ately and reproducibly a biologically specific signal

correlating with, or predictive of, clinical outcomes, are ideal

candidates for clinical applications. In practice, such techni-

ques do not exist yet (Tables 1 and 2). Among the currently

available quantitative MRI approaches, those achieving high

accuracy (which usually comes at the cost of reproducibility)

are extremely appealing for research investigating the under-

lying tissue changes; on the other end, those providing high

reproducibility, acceptable accuracy, and good correlation

with clinical measures, despite not comprehensively explain-

ing clinical function or disability, may be useful for the man-

agement of people with multiple sclerosis or in assessing

therapies for patients with multiple sclerosis.

Currently, quantitative MRI techniques lack some of the

development steps necessary to achieve clinical maturity

(Fig. 2). These include clinical availability of acquisition

methods and tools to reconstruct parametric maps; methods

to extract quantitative information from parametric maps;

and normative values and pathological cut-offs (Fig. 2).

Additionally, the clinical value of quantitative maps needs to

be compared with existing diagnostic and prognostic criteria

in the clinical setting. In this context, qT1 (e.g. MP2RAGE

and SyMRI) and, to some extent, myelin imaging (e.g.

SyMRI) appear to be the most technically advanced and

ready for use in studies aimed at providing methods to ex-

tract quantitative information, either through brain and spi-

nal cord atlases197–199 or comparison of single subjects to

large cohorts of healthy cohorts21 (Fig. 2). Although brain

myelin imaging may be ready for clinical adoption, we still

lack software solutions that can provide clinicians with valu-

able information related to the state of damage or repair of

the underlying tissue. QSM and diffusion-based methods

providing microstructural information warrant further

technological development, and their reproducibility must be

assessed in a multicentre setting. Finally, while perfusion

MRI may be considered to assess blood–brain barrier per-

meability and for monitoring disease progression, more stud-

ies are needed to provide evidence of its clinical value in

multiple sclerosis.

Another important consideration is whether specific quan-

titative MRI methods are better suited for the characteriza-

tion of specific multiple sclerosis disease subtypes,

assessment of disease progression, and evaluation of therapy

response. The data presented in this review suggest that, cur-

rently, T1 relaxometry and QSM may be most suitable for

multiple sclerosis stratification by contributing to the identi-

fication of lesions associated with more extensive tissue dam-

age and to the differentiation of acute versus chronic

inflammatory lesions. Myelin-sensitive quantitative MRI

techniques [MTR/MTsat, myelin water imaging (MWI), and

T2 relaxometry] and diffusion-microstructure MRI measure-

ments may be most appropriate for assessing clinical pro-

gression through the characterization of normal-appearing

tissue abnormalities, and may also be used to evaluate ther-

apy effects on specific CNS tissue components (e.g. myelin

and axons). As quantitative MRI methods become better

standardized, further studies will be required to define their

role in the management of patients with multiple sclerosis.

10 | BRAIN 2021: Page 10 of 17 C. Granziera et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab029/6273092 by U
niversity of Verona user on 11 M

ay 2021



Besides cerebral imaging, quantitative MRI (e.g. DTI,

MTR/MTsat, and MWI) also holds promise for imaging of

the spinal cord, but both additional software (for localiza-

tion, gating, and motion compensation) and hardware devel-

opment (e.g. multi-channel phased-array coils) are required

to pave the path towards application of spinal quantitative

MRI for multiple sclerosis management.

In summary, quantitative MRI has the potential to provide

information that can improve patient stratification, assess-

ment of therapy response, and evaluation of subclinical dis-

ease progression. Whether these techniques should be

embedded in clinical routines or selected for targeted imple-

mentations and studies within the clinical arena is still to be

determined. Future work should be targeted at improving

quantitative MRI clinical maturity through multicentre

collaborations.
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