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Abstract. We propose a quantization-based numerical scheme for a family of decoupled FBSDEs.

We simplify the scheme for the control in Pagès and Sagna (2018) so that our approach is fully based on

recursive marginal quantization and does not involve any Monte Carlo simulation for the computation

of conditional expectations. We analyse in detail the numerical error of our scheme and we show

through some examples the performance of the whole procedure, which proves to be very effective in

view of financial applications.

1. Introduction and Motivation

In this paper we introduce an efficient scheme for the numerical approximation of the solution

(Y,U, V ) of a family of Forward-Backward Stochastic Differential Equations (FBSDEs hereafter)

(1.1)

{
Yt = y0 +

∫ t
0 b (Ys) ds+

∫ t
0 σ (Ys)

> dWs, y0 ∈ Rd

Ut = ξ +
∫ T
t f (s, Ys, Us, Vs) ds−

∫ T
t V >s dWs, t ∈ [0, T ],

where W is a Brownian motion, T > 0 is a deterministic terminal time and the functions b, σ, f, ξ

satisfy some conditions specified in the sequel in order to grant that the solution of (1.1) is well defined.

FBSDEs of the form (1.1) are particularly popular in financial mathematics: in typical applications

the (forward) process Y describes the evolution of a financial asset, while the (backward) SDE for U

is related to the value of the portfolio that hedges the terminal payoff ξ through the trading strategy

V . BSDEs allow for the treatment of non-linear pricing problems and this originated their popularity

in finance. More recently, in the aftermath of the 2007-2009 financial crisis, the valuation of financial

products has been revisited in several aspects, often by means of advanced BSDEs treatments. The

possibility of a default of both agents involved in the transaction and the presence of multiple sources of

funding are represented at the level of valuation equations by introducing typically non-linear FBSDEs

for value adjustments (xVA), see e.g. Bichuch et al. (2018). Value adjustments are further terms are to

be added or subtracted to an idealized reference price (computed in the absence of the afore-mentioned

frictions), in order to obtain the final value of the transaction. For example, the computation of Credit

Value Adjustment (CVA) requires the knowledge, at each time s ∈ [t, T ] (between today, t, and the

maturity T ) of the future probability distribution of the contingent claim. The numerical cost of such

computations becomes even more pronounced when considering the whole portfolio of claims between

the bank and the counterparty.

The history of BSDEs goes back to Bismut (1973) and originates from the theory of stochastic

optimal control. First existence and uniqueness results have been obtained in the seminal paper of

Pardoux and Peng (1990) and have been further extended in several directions, including the presence

of jumps, see Tang and Li (1994) and reflection El Karoui et al. (1997a), Cvitanić and Karatzas (1996),
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Bouchard and Chassagneux (2008), Chassagneux (2009), Chassagneux et al. (2011). Applications in

mathematical finance are abundant. We refer the reader to El Karoui et al. (1997b), Gobet et al. (2005)

and the surveys in Crépey et al. (2014), Crépey (2013) for numerous references and several applications

in finance, both in complete and incomplete markets. In view of applications, an important issue

concerns the approximation of the solution of a BSDE: the most relevant contribution is based on the

dynamic programming approach, introduced by Briand et al. (2002) in a Markovian setting. In this

case, the rate of convergence for deterministic time discretization has been studied by Zhang (2004),

who transformed the problem to computing a sequence of conditional expectations. This opened the

door to several approaches to attack the problem, as significant progress has been made in computing

the conditional expectations: Bouchard and Touzi (2004) adopted the Malliavin calculus approach,

while Gobet et al. (2005) proposed the linear regression method based on the Least-Squares Monte

Carlo approach in Longstaff and Schwartz (2001). The approach of Bally and Pagès (2003) and Bally

et al. (2005) was based on quantization, a technique that will be treated in the sequel as it represents

the main source of inspiration for our work. Since then, the literature on BSDE flourished and attained

high level of generality, including the non Markovian setting. In the case where the terminal condition

is not necessarily Markovian, Briand and Labart (2014) proposed a forward scheme based on Wiener

chaos expansion, for which conditional expectations can be efficiently computed through the chaos

decomposition formula.

The problem of finding numerical approximations for the solution of (coupled) FBSDEs is difficult

and requires additional care. The first relevant result is due to Douglas et al. (1996) and is based

on the four step scheme of Ma et al. (1994). Later, several papers were devoted to the numerical

approximation of FBSDEs with reflection, such as Bouchard and Elie (2008), Crépey and Matoussi

(2008) and equations of McKean-Vlasov type, see e.g. Chassagneux et al. (2019) for a numerical

method based on the Picard iteration, where the motivation comes from the theory of mean field games.

Despite the charm and mathematical beauty of these very general frameworks, what is interesting in

view of financial applications to pricing and hedging is the case of decoupled FBSDEs like (1.1) (that

is, when the forward SDE for Y does not exhibit a dependence on U) in a Markovian setting. In this

apparently simpler setting, many challenges still remain. First, the curse of dimensionality, namely

the problem becomes immediately untractable for dimensions greater than one. Moreover, even in

the one dimensional case, the numerical procedures described above require a lot of computations

together with Monte Carlo simulations, which leads to algorithms that are too time consuming in

view of concrete applications. Needless to say, any improvement in the efficiency of the procedure

represents an extremely useful result in terms of computational time if we have in mind portfolios that

include thousands of positions.

The aim of our study is to provide a new numerical scheme for the solution of FBSDEs that allows

to improve the approximation of the solution of (1.1). We follow the spirit of Bally and Pagès (2003)

and Bally et al. (2005), where Pagès and coauthors applied the optimal quantization technique to

compute the conditional expectations. We extend their approach by considering an algorithm that

is entirely based on fast quantization: in particular, our procedure does not rely on Monte Carlo

simulation in any step of the algorithm.

We now give a brief picture on quantization, that can be seen as a compression technique for ran-

dom variables and stochastic processes and has been widely used in many fields, including information

theory, cluster analysis, pattern recognition. We refer to Gray and Neuhoff (1998) for the history of

the first fifty years of quantization and to Pagès (2015) for a more recent survey focusing on numerical
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probability. Quantization of random vectors provides the best possible discrete approximation to the

original distribution, according to a distance that is commonly measured using the squared Euclidean

norm. Many numerical procedures have been developed to obtain optimal quadratic quantizers of the

Gaussian (and even non-Gaussian) distribution in high dimension, mostly based on stochastic opti-

mization algorithms, see Pagès (2015) and references therein. While theoretically sound and deeply

investigated, optimal quantization typically suffers from the numerical burden that the algorithms

involve. Indeed, the procedure to be performed to obtain the optimal grids is highly time-consuming,

especially in the multi-dimensional case, where stochastic algorithms are necessary. The recursive

marginal quantization, or fast quantization, introduced in Pagès and Sagna (2015) represents a very

useful innovation in order to overcome the computational difficulties. Sub-optimal (stationary) quan-

tizers of the stochastic process at fixed discretization dates (hence, of random variables) are obtained

in a very fast recursive way, to the point that recursive marginal quantization has been successfully

applied to many models for which a (time) discretization scheme is available, see e.g. the non exaus-

tive list of papers: Callegaro et al. (2017), Callegaro et al. (2018) and Fiorin et al. (2019), Pagès and

Sagna (2018) for the multi dimensional case. We also mention McWalter et al. (2018) where recursive

quantization has been applied outside the usual Euler scheme.

Here, we propose a scheme for (1.1) that is similar to the one in Pagès and Sagna (2018), based

on recursive quantization, with a crucial difference: in a nutshell, we introduce a new discretization

scheme for the control process V that we express in terms of U and Y instead of U and the Brownian

motion W (details will be provided in the sequel). This apparently small difference leads to a simpler

numerical procedure, as there will be no need to discretize the Brownian motion increments. This

reduces the computational time required to solve the FBSDE. In fact, in the approximation of the

conditional expectations required in our scheme, we only need the transition probabilities of the quan-

tized process Ŷ , while Pagès and Sagna (2018) need to additionally compute a conditional expectation

involving the Brownian increments, that they have to estimate (they use Monte Carlo simulation).

Such procedure implies an additional numerical effort which is not required in our case. In other words,

once the process Y has been discretized in space via recursive marginal quantization to get Ŷ , we apply

our backward approximation scheme in order to get an explicit and fully quantization-based algorithm.

We provide two numerical experiments. The first involves a linear BSDE, so that we can test our

approximated solution in a case where there exists a closed form for the control. Here our procedure

reveals to be fast and accurate. The second example focuses on a non-linear BSDE, with unknown

closed-form solution, corresponding to a pricing problem where lending and borrowing rates may be

different, as in Bergman (1995). We compare our solution with the one in Pagès and Sagna (2018)

that we take as a benchmark. Results are very promising insofar we get accurate estimates even tak-

ing a very small number of quantizers and time discretization points (20 quantizers and 50 time steps).

The rest of the paper is organised as follows: in Section 2 we briefly introduce the FBSDE and we

recall the main existence and uniqueness results in order for our working setting to be well-posed. In

Section 3 we illustrate our new scheme for the control U . Section 4 provides the essentials on recursive

marginal quantization that we apply in Section 5 to the computation of conditional expectations. In

Section 6 we study the error, while in Section 7 we illustrate some numerical test. Section 8 concludes.
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2. Forward-Backward stochastic differential equations

We start by fixing some notations. Vectors will be column vectors and, for x ∈ Rd, |x| denotes

the Euclidean norm and 〈x, y〉 denotes the inner product. Matrices are elements of Rq×d, with |y| =√
Trace[yy>] and 〈x, y〉 = Trace[xy>]. Let (Ω,F ,P) be a probability space rich enough to support

an Rq-valued Brownian motion W = (Wt)t∈[0,T ]. Let F = (Ft)t∈[0,T ] be the filtration generated by W ,

assumed to satisfy the standard assumptions. We consider the following spaces:

• L2 is the space of all FT -measurable Rd-valued random variables X : Ω 7→ Rd such that

‖X‖2 = E
[
|X|2

]
<∞.

• H2,q×d is the space of all predictable Rq×d-valued processes φ : Ω × [0, T ] 7→ Rq×d such that

E
[∫ T

0 |φt|
2dt
]
<∞.

• S2 the space of all adapted processes φ : Ω× [0, T ] 7→ Rq×d such that E
[
sup0≤t≤T |φt|2

]
<∞.

Let Y = (Yt)t∈[0,T ] be an Rd-valued process solving the stochastic differential equation (henceforth

SDE):

Yt = y0 +

∫ t

0
b (Ys) ds+

∫ t

0
σ (Ys)

> dWs, y0 ∈ Rd(2.1)

and let us consider the following standing assumption:

Assumption 2.1. The vector fields b : Rd 7→ Rd and σ : Rd 7→ Rq×d satisfy the following conditions

|b(y)− b(z)| ≤ L1|y − z|,(2.2)

|σ(y)− σ(z)| ≤ L2|y − z|,(2.3)

|σ(y)| ≤ L3(1 + |y|), |b(y)| ≤ L3(1 + |y|),(2.4)

for some positive constants L1,L2,L3.

It is well known that under such regularity conditions there exists a unique adapted right continuous

with left limits (henceforth RCLL) strong solution Y y0 = (Y y0
t )t∈[0,T ] to (2.1) which is a homogeneous

Markov process. It is also well known that the solution Y y0 satisfies the following: for all couples

(t, y0), (t, y′0) ∈ [0, T ]× Rd and p ≥ 2 we have

E

[
sup

0≤t≤T
|Y y0
t − y0|p

]
≤ L4 (1 + |y0|p)T,(2.5)

E

[
sup

0≤t≤T

∣∣∣Y y0
t − Y

y′0
t

∣∣∣p] ≤ L5

(
|y0 − y′0|p

)
,(2.6)

where L4,L5 are positive constants. To alleviate notations we will simply write Y for the solution,

omitting the dependence on the initial condition y0. We investigate a backward SDE with a terminal

condition and a generator that depends on the state process solving the forward SDE (2.1). More

precisely, we consider the backward stochastic differential equation

Ut = ξ +

∫ T

t
f (s, Ys, Us, Vs) ds−

∫ T

t
V >s dWs, t ∈ [0, T ],(2.7)

where V = (Vt)t∈[0,T ] is a process in H2,q×1. We will also work under the following:

Assumption 2.2. (i) The function f : [0, T ]× Rd × R× Rq → R is Lipschitz continuous, uniformly

in t ∈ [0, T ]: ∣∣f(t, y, u, v)− f
(
t, y′, u′, v′

)∣∣ ≤ L6

(∣∣y − y′∣∣+
∣∣u− u′∣∣+

∣∣v − v′∣∣)
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for a positive constant L6.

(ii) The terminal condition ξ is of the form ξ = h(YT ), for a given Borel function h : Rd → R.

The system formed by the forward SDE (2.1) and the backward SDE (2.7) is a decoupled forward-

backward SDE. Decoupled here means that the forward SDE for Y does not exhibit a dependence on

U . The following result for FBSDE is standard, see e.g. Delong (2013) Theorem 3.1.1, Theorem 4.1.3.

Theorem 2.3. Under assumptions 2.1 and 2.2 there exists a unique solution (Y,U, V ) ∈ S2(Rd) ×
S2(R)×H2,q×1 to the FBSDE (2.1)-(2.7).

3. A generic scheme for FBSDEs

In the following subsections we will introduce the proposed numerical scheme to approximate the

solution of the FBSDE (2.1)-(2.7). To do so, we fix a time discretization: let n ∈ N, ∆ = ∆n = T
n

and set tk = Tk
n . The scheme, given below in (3.10), is defined as a backward induction and reads as

follows: 

Ũtn = h(Y tn) and for k = 0, . . . , n− 1

Ũtk = E
[
Ũtk+1

∣∣∣Ftk]+ ∆ f(tk, Y tk ,E
[
Ũtk+1

∣∣∣Ftk] , Ṽtk)

Ṽtk = 1
∆

[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

(
Y tk+1

− Y tk

)∣∣∣Ftk]
−
[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

∣∣∣Ftk] b (Y tk

)
where Ũ and Ṽ are approximations of U and V (that will be properly introduced in Subsection 3.3)

and where Y denotes a suitable (time) discretization of Y that, at this point, is left unspecified.

The scheme is similar to the one proposed in Pagès and Sagna (2018), the novelty being a new

discretization scheme for the control process. More precisely, Ṽtk , k = 0, . . . , n − 1, is no longer a

function of Ũtk+1
,Wtk ,Wtk+1

, but depends here only on Ũtk+1
, Y tk , Y tk+1

. This leads to a simpler

numerical procedure, which is faster to implement. Indeed, since Y is approximated indipendently

from U and V , there will be no need to discretize the Brownian motion increments and this will result

in a speed-up of the computational time required to solve the FBSDE. More details on this will be

given in Remark 6.5. From a practical point of view, once the stochastic process Y has been discretized

in space via recursive marginal quantization to get Ŷ , the scheme reads as in Equation (5.1) and the

backward recursion results to be explicit and fully quantization-based.

3.1. Scheme for the value process U . Following Zhao et al. (2006) we provide a step by step

derivation of the numerical scheme for the process U . Let (Y,U, V ) be the adapted solution to the

FBSDE (2.1)-(2.7). Restricting ourselves to two consecutive points in time tk+1 and tk, we write

Utk = Utk+1
+

∫ tk+1

tk

f(s, Ys, Us, Vs)ds−
∫ tk+1

tk

V >s dWs(3.1)

and taking Ftk -conditional expectations on both sides we get

Utk = E
[
Utk+1

∣∣Ftk]+

∫ tk+1

tk

E [f(s, Ys, Us, Vs)| Ftk ] ds.

Let us first concentrate on the integral term, using θ1 ∈ [0, 1] we write∫ tk+1

tk

E [f(s, Ys, Us, Vs)| Ftk ] ds = (tk+1 − tk)
{

(1− θ1)E
[
f(tk+1, Ytk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]

+θ1f(tk, Ytk , Utk , Vtk)}+RU
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where the error term RU is defined as

RU :=

∫ tk+1

tk

(
E [f(s, Ys, Us, Vs)| Ftk ]− (1− θ1)E

[
f(tk+1, Ytk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]

+θ1f(tk, Ytk , Utk , Vtk)) ds.

Hence we arrive at

Utk = E
[
Utk+1

∣∣Ftk]+ (tk+1 − tk)
{

(1− θ1)E
[
f(tk+1, Ytk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]

+θ1f(tk, Ytk , Utk , Vtk)}+RU .

Remark 3.1. In most situations, we do not have an exact simulation scheme for the solution of the

forward SDE (2.1). This means in general that we are not able to simulate Y (i.e. the exact solution

of (2.1)), and we need to introduce a suitable discretization Y , such as the Euler-Maruyama scheme,

the Milstein discretization or higher order scheme as presented e.g. in Kloeden and Platen (1992).

For the moment, let Y be a discretization scheme for Y , which is still left unspecified. We write

Utk = E
[
Utk+1

∣∣Ftk]+ (tk+1 − tk)
{

(1− θ1)
(
E
[
f(tk+1, Y tk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]+Rf1

)
+θ1

(
f(tk, Y tk , Utk , Vtk) +Rf2

)}
+RU ,

where

Rf1 := E
[
f(tk+1, Ytk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]− E

[
f(tk+1, Y tk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]

Rf2 := f(tk, Ytk , Utk , Vtk)− f(tk, Y tk , Utk , Vtk).

Setting Rf := (1− θ1)Rf1 + θ1R
f2 we finally arrive at

Utk = E
[
Utk+1

∣∣Ftk]+ (tk+1 − tk)
{

(1− θ1)E
[
f(tk+1, Y tk+1

, Utk+1
, Vtk+1

)
∣∣Ftk]

+θ1f(tk, Y tk , Utk , Vtk)
}

+RU +Rf .
(3.2)

We observe that in (3.2) the discretization error is due to the time discretization and the choice of the

numerical scheme for the forward process Y . Further sources of error will arise in the space dimension

as we will approximate the conditional expectations appearing in (3.2).

3.2. Scheme for the control. We derive the newly proposed scheme for the numerical approximation

of the control process V . What is tipically done in the literature is obtaining a discretization scheme

for V which involves the increments of the Brownian motion. This is done by multiplying Equation

(3.1) by (Wtk+1
−Wtk) and then taking as usual conditional expectations and truncating the error

terms. We will proceed here in a different way, which is new, up to our knowledge. Our objective,

indeed, is to derive an update rule for the control that only involves Y (i.e. the process that we will

quantize in the sequel) and not W . To this end we consider again the BSDE (3.1) and multiply both

sides by
∫ tk+1

tk
σ(Ys)

>dWs:

Utk

∫ tk+1

tk

σ(Ys)
>dWs = Utk+1

∫ tk+1

tk

σ(Ys)
>dWs +

∫ tk+1

tk

f(s, Ys, Us, Vs)ds

∫ tk+1

tk

σ(Ys)
>dWs

−
∫ tk+1

tk

V >s dWs

∫ tk+1

tk

σ(Ys)
>dWs.

(3.3)
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We take then Ftk -conditional expectations on both sides, thus obtaining the following identity

UtkE
[∫ tk+1

tk

σ(Ys)
>dWs

∣∣∣∣Ftk]︸ ︷︷ ︸
(A)

= E
[
Utk+1

∫ tk+1

tk

σ(Ys)
>dWs

∣∣∣∣Ftk]︸ ︷︷ ︸
(B)

+ E
[∫ tk+1

tk

f(s, Ys, Us, Vs)ds

∫ tk+1

tk

σ(Ys)
>dWs

∣∣∣∣Ftk]︸ ︷︷ ︸
(C)

− E
[∫ tk+1

tk

V >s dWs

∫ tk+1

tk

σ(Ys)
>dWs

∣∣∣∣Ftk]︸ ︷︷ ︸
(D)

.

(3.4)

We now analyze every conditional expectation in (3.4) starting from (D):

• (D) Via Itô isometry we find E
[∫ tk+1

tk
V >s dWs

∫ tk+1

tk
σ (Ys)

> dWs

∣∣∣Ftk] = E
[∫ tk+1

tk
σ (Ys)

> Vsds
∣∣∣Ftk]

and using θ2 ∈ [0, 1] we have

E
[∫ tk+1

tk

σ (Ys)
> Vsds

∣∣∣∣Ftk] = (tk+1 − tk)
{

(1− θ2)E
[
σ
(
Ytk+1

)>
Vtk+1

∣∣∣Ftk]+ θ2σ (Ytk)> Vtk

}
+RV−θ,

where RV−θ := E
[∫ tk+1

tk

[
σ (Ys)

> Vs − (1− θ2)σ
(
Ytk+1

)>
Vtk+1

− θ2σ (Ytk)> Vtk

]
ds
∣∣∣Ftk]. We

now take into account the impact of the numerical scheme to approximate Y , namely we

insert Y :

E
[∫ tk+1

tk

σ (Ys)
> Vsds

∣∣∣∣Ftk] = (tk+1 − tk)
{

(1− θ2)E
[
σ
(
Y tk+1

)>
Vtk+1

∣∣∣Ftk]+ θ2σ
(
Y tk

)>
Vtk

}
+RV−θ +RV−Y ,

withRV−Y := (tk+1−tk)
{

(1− θ2)
(
σ
(
Ytk+1

)> − σ (Y tk+1

)>)
Vtk+1

+ θ2

(
σ
(
Ytk+1

)> − σ (Y tk+1

)>)
Vtk

}
.

• (C) We clearly have:

E
[∫ tk+1

tk

f(s, Ys, Us, Vs)ds

∫ tk+1

tk

σ (Ys)
> dWs

∣∣∣∣Ftk] = 0.

• (A) Here, too:

UtkE
[∫ tk+1

tk

σ (Ys)
> dWs

∣∣∣∣Ftk] = 0.

• (B) A distinctive feature of our numerical scheme is based on the following simple observation:

we can exploit the dynamics (2.1) to express the stochastic integral in (B) as follows

E
[
Utk+1

∫ tk+1

tk

σ (Ys)
> dWs

∣∣∣∣Ftk] = E
[
Utk+1

(
Ytk+1

− Ytk −
∫ tk+1

tk

b (Ys) ds

)∣∣∣∣Ftk] .(3.5)

Splitting the conditional expectation on the right hand side, we obtain two simple conditional

expectations that can be suitably estimated, once we have an approximation for the transition

probabilities of the forward process Y . We write

E
[
Utk+1

(
Ytk+1

− Ytk
)∣∣Ftk] = E

[
Utk+1

(
Y tk+1

− Y tk

)∣∣Ftk]+RU−Y ,
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where RU−Y := E
[
Utk+1

(
Ytk+1

− Y tk+1

)∣∣Ftk]−E
[
Utk+1

∣∣Ftk] (Ytk − Y tk

)
, while for the sec-

ond expectation in (3.5) we have

E
[
Utk+1

∫ tk+1

tk

b (Ys) ds

∣∣∣∣Ftk] = (tk+1 − tk)(1− θ2)E
[
Utk+1

b
(
Y tk+1

)∣∣Ftk]
+ (tk+1 − tk)θ2E

[
Utk+1

∣∣Ftk] b (Y tk

)
+Rb−θ +Rb−Y ,

where

Rb−θ := E
[
Utk+1

(∫ tk+1

tk

b (Ys) ds− (tk+1 − tk)
{

(1− θ2)b
(
Ytk+1

)
+ θ2b (Ytk)

})∣∣∣∣Ftk]
Rb−Y := (tk+1 − tk)(1− θ2)E

[
Utk+1

(
b
(
Ytk+1

)
− b

(
Y tk+1

))∣∣Ftk]
+ (tk+1 − tk)θ2E

[
Utk+1

∣∣Ftk] (b (Ytk)− b
(
Y tk

))
.

By regrouping all terms (A), (B), (C) and (D) we obtain the following relation, providing an implicit

update rule for the control process V (the explicit rule for the control V will be specified in the next

subsection):

0 = E
[
Utk+1

(
Y tk+1

− Y tk

)∣∣Ftk]+RU−Y − (tk+1 − tk)(1− θ2)E
[
Utk+1

b
(
Y tk+1

)∣∣Ftk]
− (tk+1 − tk)θ2E

[
Utk+1

∣∣Ftk] b (Y tk

)
−Rb−θ −Rb−Y

− (tk+1 − tk)
{

(1− θ2)E
[
σ
(
Y tk+1

)>
Vtk+1

∣∣∣Ftk]+ θ2 σ
(
Y tk

)>
Vtk

}
−RV−θ −RV−Y .

(3.6)

3.3. The truncated scheme. Starting from Equations (3.2) and (3.6) and by truncating all error

terms, we obtain the following system of two equations (for each k) for the couple (Ũ , Ṽ ), where (Ũ , Ṽ )

are approximations of (U, V ) where we recall that Y is a suitable discretization of Y

Ũtk = E
[
Ũtk+1

∣∣∣Ftk]+ (tk+1 − tk)
{

(1− θ1)E
[
f(tk+1, Y tk+1

, Ũtk+1
, Ṽtk+1

)
∣∣∣Ftk]

+θ1f(tk, Y tk , Ũtk , Ṽtk)
}(3.7)

0 = E
[
Ũtk+1

(
Y tk+1

− Y tk

)∣∣∣Ftk]
− (tk+1 − tk)(1− θ2)E

[
Ũtk+1

b
(
Y tk+1

)∣∣∣Ftk]
− (tk+1 − tk)θ2E

[
Ũtk+1

∣∣∣Ftk] b (Y tk

)
− (tk+1 − tk)

{
(1− θ2)E

[
σ
(
Y tk+1

)>
Ṽtk+1

∣∣∣Ftk]+ θ2σ
(
Y tk

)>
Ṽtk

}
.

(3.8)

Remark 3.2. The second equation above (which is the truncation of Equation (3.6)) provides an

approximation scheme for Ṽtk as a function of Ṽtk+1
, Ũtk+1

, Y tk , Y tk+1
.

In particular, if we set θ1 = θ2 = 1, we obtain the recursive scheme (which is not yet fully explicit):
Ũtk = E

[
Ũtk+1

∣∣∣Ftk]+ (tk+1 − tk)f(tk, Y tk , Ũtk , Ṽtk)

Ṽtk = 1
(tk+1−tk)

[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

(
Y tk+1

− Y tk

)∣∣∣Ftk]
−
[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

∣∣∣Ftk] b (Y tk

)
,

where
[
σ
(
Y tk

)>]−1
denotes the (q × d) left-inverse of the matrix σ

(
Y tk

)>
.

Remark 3.3. In Section 6, focusing on the error analysis, we will for simplicity consider the case when

q = d and we will work under Assumption 6.1, which will guarantee the invertibility of σ.
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Remark 3.4. In Pagès and Sagna (2018) the scheme is made fully explicit by performing a conditioning

inside the driver, which results in the following

(3.9)


Ũtn = h(Y tn) and for k = 0, . . . , n− 1

Ũtk = E
[
Ũtk+1

∣∣∣Ftk]+ (tk+1 − tk)f(tk, Y tk ,E
[
Ũtk+1

∣∣∣Ftk] , Ṽtk)

Ṽ PS
tk

= 1
(tk+1−tk)E

[
Ũtk+1

(
Wtk+1

−Wtk

)∣∣∣Ftk] .
So, borrowing this idea, we are now in a position to finally state our proposed scheme as (recall

that (tk+1 − tk) = ∆ for every k = 0, . . . , n− 1):

(3.10)



Ũtn = h(Y tn) and for k = 0, . . . , n− 1

Ũtk = E
[
Ũtk+1

∣∣∣Ftk]+ ∆ f(tk, Y tk ,E
[
Ũtk+1

∣∣∣Ftk] , Ṽtk)

Ṽtk = 1
∆

[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

(
Y tk+1

− Y tk

)∣∣∣Ftk]
−
[
σ
(
Y tk

)>]−1
E
[
Ũtk+1

∣∣∣Ftk] b (Y tk

)
.

We stress that, for the moment, we obtained a general, yet original, discretization for the FBSDE

(2.1)-(2.7). The role of recursive marginal quantization will become apparent as we approximate the

conditional expectations appearing in the scheme above.

4. A primer on recursive product marginal quantization

We provide some background on recursive marginal quantization. We consider a diffusion process Y

as in (2.1) and its discretized version Y over a given time grid. Quantizing the diffusion process Y via

recursive marginal quantization (henceforth RMQ) means the following: we consider the discretized

analog Y of Y and, for each given point in time, we project every single random variable Y tk+1
on a

finite grid of points by exploiting the fact that the conditional law of Y tk+1
given its value at time tk

is known. When the discretization Y is chosen to be the Euler scheme the conditional law of Y tk+1

given

Y tk

is Gaussian. This technique was first introduced in Pagès and Sagna (2015) and was further developed

in Fiorin et al. (2019) and applied in different settings, such as Callegaro et al. (2017) among others.

Let us now provide a minimum insight on RMQ. The Euler scheme of Y , solution of (2.1), is defined

via the recursion

Y tk+1
= Y tk + ∆ b

(
Y tk

)
+ σ

(
Y tk

)> (
Wtk+1

−Wtk

)
, y0 ∈ Rd,(4.1)

for ∆ = ∆n = T
n and tk = kT

n . For notational simplicity, in this section we set Y k := Y tk .

Remark 4.1. Some extensions are possible:

a) The results presented here can be extended without any technical issue, yet with additional

notational burden, to the case when the coefficients b and σ are no longer time homogeneous

(this is the setting in Pagès and Sagna (2018)).

b) It is possible to consider higher order schemes such as e.g. the Milstein discretization as in

McWalter et al. (2018). This has an obvious implication on the shape of the conditional

distribution of Y k+1 given Y k.

We define the Euler operator, which allows one to express the distribution of Y
`
k+1 given {Y `

k = y},
with ` = 1, . . . , d

Ek(y, z) := y + ∆ b (y) +
√

∆ σ (y)> z, y ∈ Rd, z ∈ Rq.(4.2)
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Our target is discretizing Y k+1 via a finite grid, Γk+1, under the constraint that the resulting approx-

imating error has to be minimal. Namely, using the Euler operator, we consider the L2-distortion at

time tk+1, Dk+1, which is defined as the square of the L2-distance between the random variable Y k+1

and the grid Γk+1

Dk+1 (Γk+1) = E
[(

dist
(
Y k+1Γk+1

)2]
= E

[
dist

(
Ek
(
Y k, Zk+1

)
,Γk+1

)2]
(4.3)

for Zk+1 ∼ N (0, Iq), and we aim at finding a grid Γ?k+1 that minimizes the distortion function. For

a given size of the grid, it is known that an optimal quantizer exists (see e.g. Graf and Luschgy

(2000)). Moreover, in the one-dimensional case, if the density of the random variable to be discretized

is absolutely continuous and log-concave, then the optimal quantizer is unique.

Remark 4.2. The conditional distribution of the Euler process Y is Gaussian. Also, each component

of a Gaussian vector is Gaussian.

To quantize the vector Y k ∈ Rd, Fiorin et al. (2019) consider each component of the vector sepa-

rately: they quantize Y
`
k over a grid Γ`k of size N `

k for ` = 1, . . . , d and then they define its product

quantization Ŷk, i.e., the quantizer of the whole vector, on the product grid Γk =
⊗d

`=1 Γ`k of size

Nk = N1
k × . . .×Nd

k as Ŷk =
(
Ŷ 1
k , . . . , Ŷ

d
k

)
.

More precisely, for any k = 0, . . . , n and any given ` ∈ {1, . . . , d}, Ŷ `
k denotes the quantization of

Y
`
k on the grid Γ`k =

{
y`,i`k , i` = 1, . . . , N `

k

}
. The idea of Fiorin et al. (2019) is as follows: assume we

have access to Γ`k, an N `
k-quantizer, for ` = 1, . . . , d, of the `-th component Y

`
k of Y k. They define a

componentwise recursive product quantizer Γk =
⊗d

`=1 Γ`k of size Nk = N1
k × . . . × Nd

k of the vector

Y k =
(
Y
`
k

)
`=1,...,d

via

Γk =
{(
y1,i1
k , . . . , yd,idk

)
, y`,i`k ∈ Γ`k for ` ∈ {1, . . . , d} and i` ∈

{
1, . . . , N `

k

}}
.(4.4)

To leverage the conditional normality feature, suppose now that Y k has already been quantized

and that we have the associated weights P
(
Ŷk = yi

k

)
, i ∈ Ik, where yi

k :=
(
y1,i1
k , . . . , yd,idk

)
, i :=

(i1, . . . , id) ∈ Ik and

Ik =
{

(i1, . . . , id) , i` ∈
{

1, . . . , N `
k

}}
, k ∈ {0, . . . , n}.(4.5)

By setting Ỹ `
k = E`k

(
Ŷk, Zk+1

)
, one can approximate each component of Dk+1 (Γk+1) via D̃`

k+1

(
Γ`k+1

)
,

` = 1, . . . , d where

D̃`
k+1

(
Γ`k+1

)
:= E

[
dist

(
Ỹ `
k+1,Γ

`
k+1

)2
]

= E
[
dist

(
E`k
(
Ŷk, Zk+1

)
,Γ`k+1

)2
]

=
∑
i∈Ik

E
[
dist

(
E`k
(
yi
k, Zk+1

)
,Γ`k+1

)2
]
P
(
Ŷk = yi

k

)
.

(4.6)

Such approximation allows Fiorin et al. (2019) to introduce the sequence of product recursive quanti-

zations of Ŷ =
(
Ŷk

)
k=0,··· ,n

, for k = 0, . . . n− 1, as

Ỹ0 = Ŷ0 = y0, Ŷk =
(
Ŷ 1
k , . . . , Ŷ

d
k

)
Ŷ `
k = ProjΓ`

k

(
Ỹ `
k

)
and Ỹ `

k+1 = E`k
(
Ŷk, Zk+1

)
, ` = 1, . . . , d

E`k(y, z) = y` + ∆b`(y) +
√

∆
(
σ`• (y) |z

)
, z =

(
z1, . . . , zq

)
∈ Rq

y =
(
y1, . . . , yd

)
, b =

(
b1, . . . , bd

)
and

(
σ`• (y) |z

)
=
∑q

m=1 σ
`m (y) zm

(4.7)
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where for every matrix A ∈M(d, q), a`• = [a`j ]j=1,...,q.

We conclude this section by providing some information about the computation of transition prob-

abilities. In Fiorin et al. (2019) three methods are proposed: the first one, in their Proposition 3.1,

concerns the computation of transition probabilities of the whole vector Ŷ , the second covers the case

where the diffusion matrix is diagonal and the third is a corollary to their Proposition 3.1 for the case

where we are interested only in one component of the whole vector. We refer the reader to this paper

for all the details on how to instantaneously compute these probabilities once the quantization grids

have been obtained.

5. Computing the conditional expectations

Our numerical scheme (3.10) has been conceived in such a way that computing the conditional

expectations, with respect to (Ftk)k=0,...,n, only requires the knowledge of the stochastic process Y .

We will see that this results, from the practical point of view, in a handy, easy to understand and

ready-to-use numerical scheme.

Before proceeding, we now rigorously prove that for every k = 0, . . . , n− 1

Ũtk = uk(Y tk) and Ṽtk = vk(Y tk)

for given Borel functions uk : Rd → R and vk : Rd → Rq.

Proposition 5.1. For every k ∈ {0, . . . , n− 1} the update rule for the control satisfies Ṽtk = vk(Y tk)

and for every l ∈ {0, . . . , n} we have Ũtl = ul(Y tl), where vk : Rd → Rq and ul : Rd → R are{
vk(y) := 1

∆(σ (y)>)
−1

[g1,k(y) + ∆ · g2,k(y)b (y)], k = 0, . . . , n− 1

un(y) := h(y), and ul(y) := g3,l(y) + ∆ · f (tl, y, g3,l(y), vl(y)) , l = 0, . . . , n− 1

with g1,k : Rd → Rd, g2,k : Rd → R and g3,l : Rd → R as follows
g1,k(y) := E [uk (Ek−1(y, Zk)) [Ek−1(y, Zk)− y]]

g2,k(y) := E [uk(Ek−1(y, Zk))]

g3,l(y) := E [ul+1(El(y, Zl+1))]

and for Zj’s i.i.d., Zj ∼ N (0, Iq).

Proof. First of all notice that, by definition of Ũtn , we immediately have Ũtn = h(Y tn) =: un(Y tn).

We now work on the control at time tn−1. By recalling (cf. Section 3.1) that (tk+1 − tk) = ∆ we find:

Ṽtn−1 =
1

∆

[
σ
(
Y tn−1

)>]−1
E
[
Ũtn

(
Y tn − Y tn−1

)∣∣∣Ftn−1

]
−
[
σ
(
Y tn−1

)>]−1
E
[
Ũtn

∣∣∣Ftn−1

]
b
(
Y tn−1

)
=

1

∆

[
σ
(
Y tn−1

)>]−1
E
[
un(Y tn)

(
Y tn − Y tn−1

)∣∣Ftn−1

]
+
[
σ
(
Y tn−1

)>]−1
E
[
un(Y tn)

∣∣Ftn−1

]
b
(
Y tn−1

)
.

Now, from Equation (4.2), we have Y tk+1
= Ek(Y tk , Zk+1), where Zk+1 ∼ N (0, Iq) and the Zk’s,

k = 0, . . . , n− 1 are i.i.d., and so

Ṽtn−1 =
1

∆

[
σ
(
Y tn−1

)>]−1
E
{
un
(
En−1(Y tn−1 , Zn)

) [
En−1(Y tn−1 , Zn)− Y tn−1

]
|Ftn−1

}
+
[
σ
(
Y tn−1

)>]−1
E
[
un(En−1(Y tn−1 , Zn))

∣∣Ftn−1

]
b
(
Y tn−1

)
=

1

∆

[
σ
(
Y tn−1

)>]−1 [
g1,n(Y tn−1) + ∆ g2,n(Y tn−1)b

(
Y tn−1

)]
=: vn−1(Y tn−1),
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where we have used the fact that (Y tj )j=0,...,n
is a Markov process (see e.g. Pagès and Sagna (2018,

Section 3.2.1)) measurable w.r.t Ftn−1 and Zn is independent of Ftn−1 and, for y ∈ Rd, g1,n(y) and

g2,n(y) are defined as in the statement.

We now proceed by induction (notice that the values of k and l for which the claims hold are

shifted): we assume that Ũtk+1
= uk+1(Y tk+1

) and Ṽtk = vk(Y tk) and we prove that this implies that

Ũtk = uk(Y tk) and Ṽtk−1
= vk−1(Y tk−1

).

The proof on Ṽtk−1
is analogous to what we have just done for Ṽtn−1 , so we omit it. It remains the

Ũtk -part, which we develop now:

Ũtk = E
[
Ũtk+1

∣∣∣Ftk]+ ∆ f
(
tk, Y tk ,E

[
Ũtk+1

∣∣∣Ftk] , Ṽtk)
= E

[
uk+1(Y tk+1

)
∣∣Ftk]+ ∆ f

(
tk, Y tk ,E

[
uk+1(Y tk+1

)
∣∣Ftk] , vk(Y tk)

)
= E

[
uk+1(Ek(Y tk , Zk+1))

∣∣Ftk]+ ∆ f
(
tk, Y tk ,E

[
uk+1(Ek(Y tk , Zk+1))

∣∣Ftk] , vk(Y tk)
)

= g3,k(Y tk) + ∆ f
(
tk, Y tk , g3,k(Y tk), vk(Y tk)

)
=: uk(Y tk),

where we have used the functions g3,k introduced in the statement. �

In summary, we can compute the conditional expectations in the discretization scheme (3.10) as

follows, by exploiting Proposition 5.1 and the Markovianity of the discrete time stochastic process

(Y tk)k=0,...,n
E[Ũtk+1

|Ftk ] = E[uk+1(Y tk+1
)|Ftk ] = E[uk+1(Y tk+1

)|Y tk ]

E[Ũtk+1

(
Y tk+1

− Y tk

)
|Ftk ] = E[uk+1(Y tk+1

)
(
Y tk+1

− Y tk

)
|Ftk ]

= E[uk+1(Y tk+1
)
(
Y tk+1

− Y tk

)
|Y tk ].

5.1. Approximation via quantization. As a final step, now we approximate Y via Ŷ , which is

obtained as explained in Section 4 and we get the quantized final version of the recursive discretization

scheme (3.10) (we recall that, for every k = 0, . . . , n, Ŷtk is the quantization of Y tk):

(5.1)



Ûtn = h(Ŷtn) and for k = 0, . . . , n− 1

Ûtk = E
[
Ûtk+1

|Ŷtk
]

+ ∆ f
(
tk, Ŷtk ,E[Ûtk+1

|Ŷtk ], V̂tk

)
=: ûk(Ŷtk)

V̂tk = 1
∆

[
σ
(
Ŷtk

)>]−1

E
[
Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

]
−
[
σ
(
Ŷtk

)>]−1

E
[
Ûtk+1

|Ŷtk
]
b
(
Ŷtk

)
=: v̂k(Ŷtk),

with ûk : Γk → R and v̂k : Γk → Rq Borel functions, for k = 0, . . . , n − 1. Namely, the conditional

expectations in (3.10) are approximated as:

(5.2)



E[Ũtk+1
|Ftk ] = E[uk+1(Y tk+1

)|Y tk ] ≈ E
[
Ûtk+1

|Ŷtk
]

= E[ûk+1(Ŷtk+1
)|Ŷtk ]

E[Ũtk+1

(
Y tk+1

− Y tk

)
|Ftk ] = E[uk+1(Y tk+1

)
(
Y tk+1

− Y tk

)
|Y tk ]

≈ E[Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk ]

= E[ûk+1(Ŷtk+1
)
(
Ŷtk+1

− Ŷtk
)
|Ŷtk ].
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The approximating scheme is then fully explicit, since for every ω̃ ∈ Ω such that Ŷtk(ω̃) = yi
k, for a

given i ∈ Ik, we have

(5.3)



E
[
ûk+1(Ŷtk+1

)|Ŷtk
]

(ω̃)

=
∑

j∈Ik+1
ûk+1(yj

k+1)P
(
Ŷtk+1

= yj
k+1|Ŷtk = yi

k

)
E
[
ûk+1(Ŷtk+1

)
(
Ŷtk+1

− Ŷtk
)
|Ŷtk

]
(ω̃)

=
∑

j∈Ik+1
ûk+1(yj

k+1)
(
yj
k+1 − yi

k

)
P
(
Ŷtk+1

= yj
k+1|Ŷtk = yi

k

)
.

Remark 5.2. As expected and already announced, the proposed discretization scheme is fully driven

by the process Ŷ , which is the quantization of the Euler scheme process Y .

In the next section, we provide a study of the numerical error associated with our scheme (5.1).

6. The error

The analysis of the error is divided in two steps: in Section 6.1 we study the error in time whereas

Section 6.2 focuses on the space dimension. Here Y denotes the Euler scheme relative to the stochastic

process Y and we will work under the following:

Assumption 6.1. We have q = d and the matrix σσ> is uniformly elliptic, namely, for every y ∈ Rd,
denoting by aij(y), i, j = 1, . . . , d the elements of [σ(y)σ(y)>], there exists λ0 > 0 such that

1

λ0
||ξ||2 ≤

d∑
i,j=1

aij(y)ξiξj ≤ λ0||ξ||2, ξ ∈ Rd.

Remark 6.2. a) The above Assumption 6.1 ensures that for every y ∈ Rd, the matrix σ(y) is positive

definite, hence invertible, and bounded. The inverse matrix σ(y)−1 is also bounded. More precisely,

denoting by || · ||F the Frobenius norm 1, we have that for every y ∈ Rd

||σ−1(y)||2F ≤ λ0.

This will be crucial in Section 6.2.

b) Assumption 6.1, together with a Lipschitz continuity condition on h with Lipschitz constant K, is

required by Zhang (2004, Lemma 2.5 (i)) to prove that the control process V admits a càdlàg version.

This, in turn, is needed in Zhang (2004, Theorem 3.1) to prove the following:

n∑
i=1

E
{∫ ti+1

ti

[
|Vt − Vti−1 |2 + |Vt − Vti |2

]
dt

}
≤ C(1 + |y0|2)∆,

where C is a constant depending only on T and K and we recall that ∆ = ∆n = T
n . The results by

Zhang are contained in Pagès and Sagna (2018, Theorem 3.1). We adapt them below, in Theorem

6.4, to our setting.

6.1. Time discretization error. Studying the error of our scheme (3.10) with respect to time means

computing a proper distance between (U, V ) and (Ũ , Ṽ ). Inspired by Pagès and Sagna (2018), we will

adapt to our setting their Theorem 3.1.

Before stating the time discretization error result, we need to introduce, as typically done in the

literature, the continuous time extension of (Ũtk)k=0,...,n, denoted by (Ũt)t∈[0,T ]. We introduce the

1Recall that given a matrix B := bij , i, j = 1, . . . , d, ||B||F :=
√

tr(BB>) =
√∑

i,j(bi,j)
2.
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random variable

MT :=
n∑
k=1

Ũtk − E
[
Ũtk |Ftk−1

]
and we notice that MT ∈ L2 and so, by the Martingale Representation Theorem, M admits the

following representation:

MT =

∫ T

0
Ṽ >s dWs,

for an (Ft)t∈[0,T ]-progressively measurable stochastic process Ṽ , with values in Rq, such that E
[∫ T

0 |Ṽs|
2ds
]
<

∞. As a consequence,

(6.1) Ũtk − E
[
Ũtk |Ftk−1

]
=

∫ tk

tk−1

Ṽ >s dWs

and we introduce the continuous extension (Ũt)t∈[0,T ] as follows: if t ∈ [tk, tk+1),

(6.2) Ũt = Ũtk − (t− tk)f
(
tk, Y tk ,E

[
Ũtk+1

|Ftk
]
, Ṽtk

)
+

∫ t

tk

Ṽ >s dWs.

Remark 6.3. Recalling Equation (3.9) and exploiting Equation (6.1), we get, for every k = 0, . . . , n−1,

Ṽ PS
tk

=
1

∆
E
[
Ũtk+1

(
Wtk+1

−Wtk

)∣∣∣Ftk] =
1

∆
E
[∫ tk+1

tk

Ṽsds|Ftk
]
.

This is extensively used in the proof of Pagès and Sagna (2018, Theorem 3.1), which we mimic here,

to prove the error bounds with respect to time.

Theorem 6.4. i) Under Assumption 2.2, let f : [0, T ] × Rd × R × Rq → R be Lipschitz with respect

to time and let h : Rd → R be Lipschitz. Then there exists a real constant C > 0 only depending on

b, σ, f, T such that, for every n ≥ 1

max
k=0,...,n

E
[
|Utk − Ũtk |

2
]

+

∫ T

0
E
[
|Vt − Ṽt|2

]
dt ≤ C

(
∆ +

∫ T

0
E
[
|Vs − Vs|2

]
ds

)
,

where s = tk if s ∈ [tk, tk+1).

ii) Assume moreover that b, σ and f are continuously differentiable in their spatial variable with

bounded partial derivatives and that f is 1
2 -Hölder continuous with respect to time. Then the pro-

cess V admits a càdlàg modification and∫ T

0
E
[
|Vs − Vs|2

]
ds ≤ C ′∆,

for a real positive constant C ′ (only depending on b, σ, f, T ), so that we have

max
k=0,...,n

E
[
|Utk − Ũtk |

2
]

+

∫ T

0
E
[
|Vt − Ṽt|2

]
dt ≤ C̃∆,

for a real positive constant C̃ (only depending on b, σ, f, T ).

Proof. Part ii) is a consequence of i) and it is obtained via Zhang (2004, Lemma 2.5 (i) and Theorem

3.1).

The proof of i) is the same as the one in Pagès and Sagna (2018, Theorem 3.1 a)) relatively to Steps

2 and 3, while something has to be made precise relatively to Step 1. Indeed, the two schemes (3.9)

and (3.10) differ in the control discretization. Nevertheless, since here Y is the Euler scheme of Y ,

namely Y tk+1
− Y tk = ∆b(Y tk) + σ(Y tk)>(Wtk+1

−Wtk), k = 0, . . . , n − 1, also Step 1 in Pagès and

Sagna (2018, Theorem 3.1) can be retraced straightforwardly. �
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Remark 6.5. Despite the fact that the time error bounds for our proposed scheme are the same as

in Pagès and Sagna (2018), our recursions only require the discretization of the process Y and this

results in an increased numerical efficiency, namely in the speed-up of the computational time. What

is more, in the approximation of the conditional expectations required in our scheme, we only need

the transition probabilities of the quantized process Ŷ , i.e., for i ∈ Ik, j ∈ Ik+1:

P
(
Ŷtk+1

= yj
k+1|Ŷtk = yi

k

)
.

This is not the case in Pagès and Sagna (2018), where the authors, in their scheme (3.9) for Ṽ PS ,

need to additionally compute E[Ŷtk+1
(Wtk+1

−Wtk)|Ftk ], k = 0, . . . , n− 1. So, they have to estimate,

for i ∈ Ik, j ∈ Ik+1, the weights (we stick to their notation)

πW,kij :=
1

P(Ŷtk = yi
k)

E
[
(Wtk+1

−Wtk)1{Ŷtk+1
=yj

k+1,Ŷtk=yi
k}

]
,

which is done via Monte Carlo simulation (see Pagès and Sagna (2018, Section 5)), hence requiring

additional numerical effort, which is not needed in our case.

6.2. Space discretization (quantization) error. Here we study the quadratic quantization error

induced by the approximation of (Ũtk , Ṽtk) in (3.10) by (Ûtk , V̂tk) in (5.1), for every k = 0, . . . , n. We

intuitively expect both the error components ||Ũtk − Ûtk ||22 and ||Ṽtk − V̂tk ||22 to be written as functions

of the quantization error ||Y ti − Ŷti ||22 for i = k, . . . , n.

The numerical scheme relative to U is the same as in Pagès and Sagna, so that the error component

||Ũtk − Ûtk ||22 for k = 0, . . . , n reads as in Pagès and Sagna (2018, Theorem 3.2 a), Equation (31)). We

recall this result here, for the reader’s ease, in the following lemma:

Lemma 6.6. Under Assumptions 2.1 and 2.2 and assuming that h is [h]Lip-continuous, we have that

for every k = 0, . . . , n

(6.3) ||Ũtk − Ûtk ||
2
2 ≤

n∑
i=k

e(1+L6)(ti−tk)Ki(b, σ, T, f)||Y ti − Ŷti ||22

where Kn(b, σ, T, f) = [h]2Lip and for every k = 0, . . . , n− 1 the other Kk’s are provided in Pagès and

Sagna (2018, Theorem 3.2 a)).

We now hence focus on ||Ṽtk − V̂tk ||22.

Theorem 6.7. Under Assumptions 2.1 and 6.1 and if b is continuously differentiable with bounded

derivative, there exist positive constants Ĉ and C, only depending on (λ0,L3,L4), such that for every

k = 0, . . . , n:

(6.4) ||Ṽtk − V̂tk ||
2
2 ≤

1

∆
[Ψk]

2
Lip||Y tk − Ŷtk ||

2
2 +

(
Ĉ

∆
+ C

)
||Ũtk+1

− Ûtk+1
||22

where [Ψk]Lip is the Lipschitz constant of the function Ψk(x) : Rd → R,Ψk(x) := E[uk+1 (Ek(x, Z)) ·Z]

for Z ∼ N (0, Iq).

Proof. We start by noticing that∣∣∣∣Ṽtk − V̂tk ∣∣∣∣22 =
∣∣∣∣Ṽtk − E

[
Ṽtk |Ŷtk

]
+ E

[
Ṽtk |Ŷtk

]
− V̂tk

∣∣∣∣2
2

≤
∣∣∣∣Ṽtk − E

[
Ṽtk |Ŷtk

] ∣∣∣∣2
2︸ ︷︷ ︸

(I)

+
∣∣∣∣E [Ṽtk |Ŷtk]− V̂tk ∣∣∣∣2

2︸ ︷︷ ︸
(II)

.
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Let us focus on (I). By exploting Equations (4.1), (4.2) and Proposition 5.1, we find

Ṽtk =
1

∆
E
[
Ũtk+1

(
Wtk+1

−Wtk

)∣∣∣Ftk]
=

1

∆
E
[
uk+1

(
Ek(Y tk , Zk+1)

)√
∆Zk+1

∣∣∣Ftk]
where we used

(
Wtk+1

−Wtk

)
=:
√

∆Zk+1, with Zk+1 ∼ N (0, Iq) independent of Ftk . So, we have,

being σ(Ŷtk) ⊂ σ(Y tk) ⊂ Ftk and using the tower property of conditional expectation:∣∣∣∣Ṽtk − E
[
Ṽtk |Ŷtk

] ∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣ 1
∆
E[uk+1(Ek(Y tk

,Zk+1))
√

∆Zk+1|Ftk ]− 1
∆
E[uk+1(Ek(Y tk

,Zk+1))
√

∆Zk+1|Ŷtk ]

∣∣∣∣∣∣∣∣2
2

≤ 1

∆

∣∣∣∣∣∣∣∣Ψk

(
Y tk

)
−Ψk

(
Ŷtk

) ∣∣∣∣∣∣∣∣2
2

≤ 1

∆
[Ψk]

2
Lip

∣∣∣∣Y tk − Ŷtk
∣∣∣∣2

2

where in the second passage we defined Ψk(x) = E[uk+1 (Ek(x, Zk+1))Zk+1], we used the definition of

conditional expectation as best L2-approximation and exploited the Lipschitzianity of Ψk, for which

we refer to Pagès and Sagna (2018, Prop. 3.4 (b)) (therein Ψk corresponds to zk).

Now, consider (II): since σ(Ŷtk) ⊂ σ(Y tk) ⊂ Ftk and by recalling the definition of Ṽtk and V̂tk in

Equations (3.10) and (5.1) we have∣∣∣∣E [Ṽtk |Ŷtk]− V̂tk ∣∣∣∣2
2

=
∣∣∣∣E [Ṽtk − V̂tk |Ŷtk] ∣∣∣∣2

2

=

∣∣∣∣∣∣∣∣E
[

1

∆

[
σ
(
Y tk

)>]−1
Ũtk+1

(
Y tk+1

− Y tk

)
− 1

∆

[
σ
(
Ŷtk

)>]−1

Ûtk+1

(
Ŷtk+1

− Ŷtk
)

+
[
σ
(
Y tk

)>]−1
Ũtk+1

b
(
Y tk

)
−
[
σ
(
Ŷtk

)>]−1

Ûtk+1
b
(
Ŷtk

) ∣∣∣∣Ŷtk
]∣∣∣∣∣∣∣∣2

2

≤ 2

∆2

∣∣∣∣∣∣∣∣E
[ [
σ
(
Y tk

)>]−1
Ũtk+1

(
Y tk+1

− Y tk

)
−
[
σ
(
Ŷtk

)>]−1

Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

]∣∣∣∣∣∣∣∣2
2︸ ︷︷ ︸

(IIa)

+2

∣∣∣∣∣∣∣∣E
[ [
σ
(
Y tk

)>]−1
Ũtk+1

b
(
Y tk

)
−
[
σ
(
Ŷtk

)>]−1

Ûtk+1
b
(
Ŷtk

) ∣∣∣∣Ŷtk
]∣∣∣∣∣∣∣∣2

2︸ ︷︷ ︸
(IIb)

.

We are hence led to focus now on (IIa) and (IIb). We start by (IIb). By exploiting again the

definition of conditional expectation with respect to Ŷtk we find:∣∣∣∣∣∣∣∣E
[ [
σ
(
Y tk

)>]−1
Ũtk+1

b
(
Y tk

)
−
[
σ
(
Ŷtk

)>]−1

Ûtk+1
b
(
Ŷtk

) ∣∣∣∣Ŷtk
]∣∣∣∣∣∣∣∣2

2

≤
∣∣∣∣∣∣∣∣ [σ (Ŷtk)>]−1

E
[
Ũtk+1

∣∣∣∣Ŷtk] b(Ŷtk)− [σ (Ŷtk)>]−1

E

[
Ûtk+1

∣∣∣∣Ŷtk
]
b
(
Ŷtk

) ∣∣∣∣∣∣∣∣2
2

≤ ||(σ(·)>)−1||2F

∣∣∣∣∣∣∣∣E [Ũtk+1
− Ûtk+1

∣∣∣∣Ŷtk] b(Ŷtk) ∣∣∣∣∣∣∣∣2
2

≤ λ0

∣∣∣∣∣∣∣∣E [Ũtk+1
− Ûtk+1

∣∣∣∣Ŷtk] b(Ŷtk) ∣∣∣∣∣∣∣∣2
2

where we have used the fact that ||A||2 ≤ ||A||F for any matrix A and Remark 6.2 on the boundedness

of the norm of σ(·)−1. Now notice that the boundedness of the derivative of b implies its uniform

continuity and so, since the quantizer Ŷtk takes values on a compact set, b(Ŷtk) is also bounded.
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Namely, there exists c̄ > 0, only depending on L3 and L4, such that ||b
(
Ŷtk

)
||

2

2
≤ c̄2 and we find

λ0

∣∣∣∣∣∣∣∣E [Ũtk+1
− Ûtk+1

∣∣∣∣Ŷtk] b(Ŷtk) ∣∣∣∣∣∣∣∣2
2

≤ λ0 c̄
2

∣∣∣∣∣∣∣∣E [Ũtk+1
− Ûtk+1

∣∣∣∣Ŷtk] ∣∣∣∣∣∣∣∣2
2

= λ0 c̄
2

∣∣∣∣∣∣∣∣Ũtk+1
− Ûtk+1

∣∣∣∣∣∣∣∣2
2

where the error
∣∣∣∣Ũtk+1

− Ûtk+1

∣∣∣∣2
2

has already been studied in Pagès and Sagna (2018) and for this we

refer to Equation (6.3).

We now move to the last term, (IIa). Using again the definition of conditional expectation with

respect to Ŷtk and the fact that the Frobenius norm of the matrix σ(·)−1 is bounded (see Remark 6.2),

we have: ∣∣∣∣∣∣∣∣E
[ [
σ
(
Y tk

)>]−1
Ũtk+1

(
Y tk+1

− Y tk

)
−
[
σ
(
Ŷtk

)>]−1

Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

]∣∣∣∣∣∣∣∣2
2

≤
∣∣∣∣∣∣∣∣ [σ (Ŷtk)>]−1

E

[
Ũtk+1

(
Y tk+1

− Ŷtk
)
|Ŷtk

]
−
[
σ
(
Ŷtk

)>]−1

E

[
Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

]∣∣∣∣∣∣∣∣2
2

≤ λ0

∣∣∣∣∣∣∣∣E [E [Ũtk+1

(
Y tk+1

− Ŷtk
)
|Ŷtk+1

]
|Ŷtk

]
− E

[
Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

] ∣∣∣∣∣∣∣∣2
2

where in the last equality we used σ(Ŷtk) ⊆ σ(Ŷtk+1
). Now, by definition of conditional expectation

with respect to Ŷtk+1
we find:

λ0

∣∣∣∣∣∣∣∣E [E [Ũtk+1

(
Y tk+1

− Ŷtk
]
|Ŷtk+1

)
|Ŷtk

]
− E

[
Ûtk+1

(
Ŷtk+1

− Ŷtk
)
|Ŷtk

] ∣∣∣∣∣∣∣∣2
2

≤ λ0

∣∣∣∣∣∣∣∣E [(Ũtk+1
− Ûtk+1

)(
Ŷtk+1

− Ŷtk
)
|Ŷtk

] ∣∣∣∣∣∣∣∣2
2

≤ λ0

∣∣∣∣∣∣∣∣Ũtk+1
− Ûtk+1

∣∣∣∣∣∣∣∣2
2

·
∣∣∣∣∣∣∣∣Ŷtk+1

− Ŷtk

∣∣∣∣∣∣∣∣2
2

where in the last passage we have used conditional Cauchy-Schwartz inequality. Hence, it appears

again the error term
∣∣∣∣Ũtk+1

− Ûtk+1

∣∣∣∣2
2
, for which we refer to Equation (6.3). It remains, then, to deal

with the error
∣∣∣∣Ŷtk+1

− Ŷtk
∣∣∣∣2

2
.

We begin this last part of the proof by recalling that, for every k = 0, . . . , N , Ŷtk is the stationary

quantizer relative to Y tk obtained via recursive marginal quantization as explained in Section 4.

Namely, E(Y tk |Ŷtk) = Ŷtk and so, via conditionl Jensen’s inequality and the tower property, in case

when g is convex we have E[g(Ŷtk)] ≤ E[g(Y tk)]. So when g is the square function, we find∣∣∣∣Ŷtk+1
− Ŷtk

∣∣∣∣2
2

= E
[
(Ŷtk+1

− Ŷtk)2
]

= E
[
(Ŷtk+1

)2 + (Ŷtk)2 − 2Ŷtk Ŷtk+1

]
≤ E

[
(Y tk+1

)2 + (Y tk)2 − 2E
[
Y tk+1

E
[
Y tk |Ŷtk

] ∣∣Ŷtk+1

]]
=

∣∣∣∣Y tk+1
− Y tk

∣∣∣∣2
2
≤ c̃

n
,

for a positive c̃ only depending on L3 and where we recalled the L2-estimate associated to the incre-

ments in the Euler scheme. To conclude it suffices to collect all the terms. �

7. Numerical tests

In this section, we present two numerical experiments where we implement our quantization-based

BSDE solver ad we test it. The first experiment involves a linear BSDE where the solution for the

value process and the control is known in closed-form. This first test allows us to compare our newly
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proposed numerical approximation for the control with the closed-form solution. The second example

focuses on a non-linear BSDE, with unknown closed-form solution, and we compare the initial value

of the solution according to our algorithm against a reference value available in the literature. The

implementation of the routines was performed by means of the Java programming language and it is

available at https://github.com/AlessandroGnoatto. Numerical tests were performed on a laptop

equipped with a 4 core 2.9 GHz Intel Core i7 processor with 16 GB of RAM.

7.1. A linear BSDE: hedging in the Black-Scholes model. We first consider a linear FSDE of

the form:

dYt = rYtdt+ σYtdWt, Y0 = y0 > 0,

where r = 0.04, σ = 0.25 and y0 = 100. We associate to this forward process the BSDE

Ut = ξ +

∫ T

t
f (s, Ys, Us, Vs) ds−

∫ T

t
V >s dWs, t ∈ [0, T ],

with

ξ = (YT −K)+ , f (t, y, u, v) = −rv,

for K = 100 and T = 1. This corresponds to the well-known Black-Scholes model for the evaluation

of a European Call option. For this BSDE the solution is analytically known, namely the process Y

is given by a pathwise application of the Black-Scholes formula, whereas the control satisfies

Vt =
∂U

∂y
(t, Yt)σYt = N (d1(t, Yt))σYt,

where N is the cumulative distribution function of the standard Gaussian and

d1(t, y) :=
log y

K +
(
r + σ2

2

)
(T − t)

σ
√
T − t

.

This example provides a validation of our proposed methodology in a simple case where a closed form

solution to the BSDE is known. The exact solution for U , given the specified data, is U0 = 11.8370. We

apply our proposed algorithm by using a quantization grid consisting of 50 points, a time discretization

with 20 points and a uniform mesh. The approximate initial value for the price U is 11.7548. Since

the novelty of our approach is given by the new scheme for the control, we show that the scheme

produces a reliable approximation for the control by comparing our approximation with the exact

known solution. The reader is referred to Figure 1, where we compare the exact and the quantization-

based approximation for V over the quantization grid. We observe that the newly proposed scheme

provides a very good approximation.

7.2. A nonlinear BSDE: pricing with differential rates. We consider here a non-linear BSDE

arising in financial mathematics in the context of option pricing, where we have the presence of two

different interest rates, namely a borrowing and a lending rate, denoted respectively by R and r ≤ R.

Such setting corresponds to the model of Bergman (1995). Our example is based on Pagès and Sagna

(2018). We first consider a linear FSDE of the form:

dYt = µYtdt+ σYtdWt, Y0 = y0 > 0,

where µ = 0.05, σ = 0.2 and y0 = 100. We associate to this forward process the BSDE

Ut = ξ +

∫ T

t
f (s, Ys, Us, Vs) ds−

∫ T

t
V >s dWs, t ∈ [0, T ],

https://github.com/AlessandroGnoatto
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Figure 1. Comparison between the exact and approximated hedging over the quan-
tization grid at different time steps. Top left panel: 20th and terminal time step. Top
right panel: 15th time step. Bottom left panel 10th time step. Bottom right panel 5th
time step.

with

ξ = (YT −K1)+ − 2 (YT −K2)+ ,

f (t, y, u, v) = −ru− µ− r
σ

v − (R− r) min
(
u− v

σ
, 0
)
,

where we set K1 = 95, K2 = 105 and T = 0.25. This corresponds to a bull-Call spread with a long

Call with strike 95 and two short Call with strike 105. We set the borrowing rate R and the lending

rate r to: R = 0.06 and r = 0.01. There is no known analytical solution in this case. So, in line

with what was done in Section 5.1 in Pagès and Sagna (2018) we benchmark our result against the

reference value U0 = 2.96 (this was indeed taken by Bender and Steiner (2012, Section 4.2, Table

1)). We ran our algorithm by using 20 quantization points and 50 time discretization points and we

obtained an estimate of the initial price of 2.9427. However increasing the number of quantization

points and time steps shows that the price is converging towards a lower value. For 100 time steps

and 100 quantization points we obtain a value of 2.7782, meaning that we can not confirm the value

found in Bender and Steiner (2012).
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5 10 20 50 100
5 2.8492 3.1072 3.4420 3.9854 4.4469
10 2.9258 2.9629 3.0424 3.2363 3.5712
15 2.8957 2.8845 2.9188 3.0659 3.2421
20 2.8243 2.8211 2.8495 2.9427 3.0676
50 2.8147 2.7933 2.7870 2.7959 2.8205
100 2.8149 2.7880 2.7757 2.7728 2.7782

Table 1. Option prices in the Bergman model. Each column corresponds to different
numbers of time steps whereas each row corresponds to a different number of quanti-
zation points.

8. Conclusion

We provided a useful modification for the scheme of the control in Pagès and Sagna (2018) that al-

lows to improve the algorithm for the approximation of the solution of a family of decoupled FBSDEs.

Thanks to this simplification, we can apply a fully based recursive marginal quantization approach

that does not involve any Monte Carlo simulation in any step of the procedure. We applied the

scheme in some linear and non linear FBSDE examples and we found very good results even with a

parsimonious number of quantization and time discretization points. This opens the door to more

ambitious applications, like the computation of xVA on single and multiple positions, where our fully

quantization based method can be used as a pricing tool in the learning phase of any Neural Network

based counterparty credit risk algorithm, like the Deep xVA approaches of Gnoatto et al. (2020) and

Albanese et al. (2020) and Abbas-Turki et al. (2020).
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