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ABSTRACT 

Protein arginine deiminases (PADs) are a class of Ca2+ dependent cysteine 

hydrolases that catalyze a protein post-translational modification known as 

citrullination, where a positive protein-bound arginine residue is converted into a 

neutral unconventional citrulline residue. The reaction results in a shift of protein 

charge from positive to neutral, which dramatically impacts the structure, 

conformation, and function of proteins as well as intra/intermolecular interactions. 

Citrullination represents an important regulatory mechanism affecting several 

physiological cellular processes, such as gene expression, cell differentiation, 

apoptosis, and inflammatory immune responses.  

Among the PAD family members, PAD2 and PAD4, which are the only isoforms 

expressed by immune cells, have attracted considerable interest due to their role in 

producing neutrophil extracellular traps (NETs) and playing a detrimental role in a 

wide range of diseases such as Rheumatoid Arthritis, Ulcerative Colitis, Systemic 

Lupus Erythematosus, Multiple Sclerosis, and Alzheimer's Disease. 

Pharmacological PAD inhibition has brought beneficial therapeutic results in 

animal models of these pathologies since it leads to an amelioration of the disease-

dependent inflammation and reduces immune cell accumulation and tissue damage. 

However, how PAD2 and PAD4 isoforms directly affect immune cell trafficking in 

the context of inflammation has not yet been studied. Hence, this project 

investigated the role of PAD-dependent citrullination in leukocyte adhesive activity 

under physiological and pathological conditions.  

We first treated neutrophils and lymphocytes with different concentrations of BB-

Cl-amidine, a pan PAD inhibitor, and GSK199, which induces PAD4 specific 

blockade, and we studied the effect of cell treatment on b2- integrin-dependent 

adhesion. Our data showed that PAD inhibitors reduce integrin activation and 

binding to endothelial ligands upon stimulation in vitro with chemokines, 

suggesting a role for PADs in rapid leukocyte adhesion mediated by b2 integrins. 

In addition,, we demonstrated that BB-Cl-amidine also blocked lymphocyte b1-

integrin-dependent adhesion on VCAM-1 counterligand, suggesting that PADs are 

involved in controlling signaling pathways common to both b2 and b1 integrin 

activation. To exclude potential unspecific effects exerted by PAD inhibitors, we 
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confirmed the data obtained with the pharmacological approach and showed that 

mRNA silencing of PADs blocks integrin-dependent adhesion in vitro, further 

confirming the involvement of PADs in leukocyte adhesion. To characterize more 

in detail the role of PADs in adhesion induction, we studied LFA-1 conformational 

changes triggered by chemoattractants and found that treatment with BB-Cl-

amidine and GSK-199 completely prevented integrin transition to more extended 

conformations, suggesting a role for PADs in integrin affinity increase leading to 

leukocyte adhesion.  

Considering the function of PAD2 and PAD4 in NET release and our previous data 

demonstrating a role for neutrophils in animal models of Alzheimer's disease, we 

next investigated the effect of PAD blockade in 3xTg-AD mice, which develop both 

amyloid and tau pathologies. We treated the 3xTg-AD mice with BB-Cl-amidine, 

and the results from behavioural tests showed that PAD inhibition significantly 

rescues spatial working memory and associative learning compared to untreated 

control mice. Histopathological analysis confirmed the beneficial effects of PAD 

inhibitors since microglial activation, amyloid accumulation, and tau 

phosphorylation were strongly reduced after PAD blockade. Finally, we quantified 

brain-infiltrating leukocytes in BB-Cl-amidine treated mice, reporting that treated 

animals show reduced accumulation of neutrophils, CD4+ cells, and B lymphocytes 

compared to untreated mice, suggesting a role for PADs in leukocyte trafficking 

into the brain in AD mice. 

In conclusion, this PhD project demonstrated that PAD2 and PAD4 are key 

elements controlling leukocyte adhesion and that PAD-dependent citrullination is 

required for integrin-mediated adhesion under physiological and pathological 

conditions. Moreover, we reported that PADs are involved in  disease pathogenesis 

in 3xTg-AD mice and that therapeutic blockade of PADs ameliorates cognition and 

reduces neuropathology, suggesting that PAD inhibitors may offer a novel 

therapeutic strategy for AD. 
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ABBREVIATIONS 

 
3xTg Triple Transgenic 
ACPA Anticitrullinated Protein Antibodies  
AD Alzheimer Disease 
AIF Apoptosis Inducing Factor 
Apoe Apolipoprotein-E 
Aβ β-amyloid peptides 
BB-Cl-amidine N-[(1S)-1-(1H-benzimidazol-2-yl)-4-[(2-chloro-1-iminoethyl) amino] 
butyl]-[1,1'-biphenyl]-4-carboxamide 
BBB Blood Brain Barrier 
BSA Bovine Serum Albumin 
CFC Contextual Fear Conditioning 
CIA Collagen Induced Arthritis  
CNS Central Nervous System 
CRAMP Cathelicidin Related Antimicrobial Peptide 
CXCL12 C-X-C Motif Chemokine Ligand 12 
EAE Experimental Autoimmune Encephalomyelitis 
EMT Endothelial Mesenchymal Transition 
ER Endoplasmic Reticulum 
ESAM Endothelial Cell-Selective Adhesion Molecule 
ETs Extracellular Traps 
fMLP N-Formyl-Methionyl-Leucyl-Phenylalanine 
GEF Guanidine Nucleotide Exchange Factor 
GFAP Glial fibrillary acidic protein 
GPCR G-Protein-Coupled Receptor 
GSK199 [(3R)-3-amino-1-piperidinyl] [2-(1-ethyl-1H-pyrrolo[2,3-b]pyridin-2-yl)-7-
methoxy-1-methyl-1H-benzimidazol-5-yl]-methanone, monohydrochloride 
H Histone 
HBSS Hank Balanced Salt Solution 
IC Immune Complex 
ICAM-1 Intercellular Adhesion Molecule 1 
IFN Interferon 
IHC Immunohistochemistry 
IL Interleukin 
ITB2 Integrin Beta 2 
JAM Junctional Adhesion Molecule 
K Lysine 
LFA-1 Lymphocyte Function-associated Antigen 1 
MAC Membrane Attack Complex 
MAC1 Macrophage-1 Antigen 
MBP Myelin Basic Protein 
Met Methionine 
METs Macrophage Extracellular Traps 
MOG Myelin Oligodendrocyte Glycoprotein 
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mRNA messanger RNA 
MS Multiple Sclerosis 
NADPH Nicotinamide Adenine Dinucleotide Phosphate 
NCF Neutrophil Cytosol Factor 
NETs Neutrophil Extracellular Traps 
NMF Natural Moisturizing Factor 
NTF Neurofibrillary tangles 
OL Oligodendtrocyte 
PAD Protein Arginine Deiminase 
PAMP Pathogen Associated Molecular Patterns 
PBS Phosphate Buffered Saline 
PD Parkinson Disease 
PECAM Platelet Endothelial Cell Adhesion Molecule 
pGIA Peptide Glucose-6-Phosphate Isomerase-Induced Arthritis 
PHF Paired Helical Filament 
PMA Phorbol myristate acetate 
Pro Proline 
PS Presenilin  
PSGL1 P-Selectin Glycoprotein Ligand 1 
PTK Tyrosine Kinase 
PTM Post Translation Modification 
R Arginine 
RA Rheumatoid Arthritis 
RHM Recurrent Hydatidiform Mole 
RNS Reactive Nitrogen Species 
ROS Reactive Oxygen Species 
SC Spinal Cord 
SEM Stardar Error Mean 
SF Synovial Fluid 
siRNA Small Interference RNA 
SLE Systemic Lupus Erythematosus 
TCR T Cell Receptor 
Th T helper 
THREDs T Helper Released Extracellular DNA 
TNBC Triple Negative Breast Cancer 
UC Ulcerative Colitis 
UHS Uncombable Hair Syndrome 
VCAM-1 Vascular cell adhesion protein 1 
VLA-4 Very Late Antigen 4 
WHO World Health Organization 
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INTRODUCTION 

1. PROTEIN ARGININE DEIMINASES 

Protein arginine deiminases (PADs) represent a protein family of cysteine 

hydrolases that catalyses the protein post-translational modification (PTM) known 

as deimination. Citrullination is also used to identify the same reaction, which 

converts a positively charged arginine residue into a neutrally charged citrulline 

residue upon increasing Ca2+ influx. Consequently, the protein charge shifts from 

positive to neutral, a chemical modification that affects protein-protein interactions, 

hydrogen bond formation, protein structure, and protein denaturation[1]. 

The enzymatic activity of PADs was first identified in hair follicle extracts in 

1977[2] but, nowadays, five different isoforms have been described in mammals: 1, 

2,  3, 4 and 6. PAD5 was initially discovered in murine, but it was classified as 

PAD4 since it was recognised as an orthologue of human PAD4.  

Mammalian PADI genes shares a homology of ~ 41-55% and are co-localized on 

chromosome 1 in humans and on chromosome 4 in mice [3]. PAD proteins are 663–

665 amino acids long with a molecular mass of ~ 74 kDa, excluding PAD6 isoform, 

which has 694 amino acids in its sequence[4]. PADs are characterized by two 

immunoglobulin‐like subdomains at the amino‐terminus (from Met1 to Pro300) 

that contain three calcium ion‐binding sites, and by a highly conserved carboxy‐

terminal domain (amino acid 301 to C‐terminus), which includes the catalytic site 

located near two calcium ion‐binding residues (Fig. 1). One histidine, two aspartic 

acids, and one cysteine are crucial for the enzymatic activity of these enzymes[5].  
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The N-terminal domain of PAD4 contains a canonical nuclear localization sequence 

[56-PPAKKKST-63], which partially localizes it to the nucleus[6]. Interestingly, 

although the PAD2 enzyme lost this localization signal, it can also localize to the 

nucleus[7]. 

Several mammalian tissues specifically express PADs: the isoforms 1 and 3 are 

found in skin and hair follicles; PAD6 is located in oocytes and embryos, while 

PAD2 and PAD4 are predominantly present in immune cells. However, PAD2 is 

also expressed in skeletal muscle, peripheral nerves, and central nervous system 

(CNS), where it co-localizes with PAD4[1].  

Fig. 1. PAD crystal structure. 
(a-d) Rainbow colour representation of human PADs. Blue and red indicate N terminal 
and C-terminal domains, respectively.  
a) PAD1 monomeric protein. 
b-d) Heterodimeric PAD2 (b), PAD3 (c) and PAD4 (d) 
From M. Alghamdi et al, CMLS, 2019. 
 
  

a) 

b)

c) 

d) 



 
 

11 

1. 2. ENZYMATIC ACTIVITY REGULATION  

Ca2+ ions regulate the catalytic function of PADs, inducing protein conformational 

changes that collocate the catalytic cysteine in the right position for the catalysis, 

as illustrated in Fig. 2[8].  

 

Indeed, after Ca2+ binding, cysteine could react with the guanidine group of the 

arginine substrate since it is located closer to it, forming a covalent tetrahedral 

intermediate associated with ammonia release (Fig. 3).  

  

Ca2+ 

Fig. 2. Ca2+ dependent PAD structural change. 
Backbone conformational changes of PAD2. The catalytic domain is shown in green, and 
the cysteine residue in red. The immunoglobulin-like subdomains 1 and 2 are shown in 
pink and blue, respectively. 
From V. V. Nemmara and P. R. Thompson, Curr Top Microbiol Immunol, 2019. 

Fig. 3. The chemical reaction of citrullination. 
The hydrolysis of arginine to citrulline. PADs catalyze the nucleophilic attack of the 
primary arginine ketimine group, resulting in the formation of a ketone group and 
ammonia release. 
From A. S Rohrbach et al, Front Immunol, 2012. 
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Then, the adduct is hydrolyzed, releasing the cysteine and forming a keto‐group. 

PAD4 binds five Ca2+ ions in an ordered fashion, as well as PAD2. Analogously, 

PAD1 has four calcium-binding sites[9]. PADs require high micromolar amounts of 

Ca2+ (1-10mM), not always available in the intracellular environment. Therefore, 

other factors are supposed to control the enzymatic activity. In vitro biochemical 

studies have recently demonstrated that physiological levels of bicarbonate 

upregulate citrullination in neutrophils, independently of calcium concentration and 

pH value[10]. A redox intracellular environment is also important for PAD catalysis 

since the chemical reduction of the active site allows the cysteine attack on the 

targeted guanidinium group. The physiological redox agents, which may be 

responsible for PAD reduced state, are the glutathione reductase, physiologically 

implicated in the protection against ROS and RNS[11], and the thioredoxin 

oxidoreductase, involved in maintaining tissue redox homeostasis[12]. It may be 

concluded that citrullination is regulated by an equilibrium of multiple factors. 

Interestingly, PADs are also able to control themselves through auto-deimination, 

which showed controversial effects. It seems that two arginines directly involved 

in substrate recognition could be auto-citrullinated, resulting in 3D structure 

changes and enzymatic activation. Alternatively, the auto-deimination of the 

substrate recognition site does not induce total protein conformational changes, but 

a slight movement of the active site that blocks PAD activity[13, 14]. 

 

1. 3. CITRULLINATION 

Post-translation modifications (PTM) are a complex regulatory mechanism of 

protein function, impacting charge state, hydrophobicity, conformation, and 

stability. Therefore, they affect processes such as signaling, localization, and 

protein degradation. To date, more than 450 PTMs have been identified, including 

phosphorylation, acetylation, ubiquitination, SUMOylation, and citrullination[15].  

Citrullination is catalyzed by the PAD family, which converts, in the presence of 

Ca2+ ions, the peptidyl arginine residue into citrulline residue. Since it leads to just 

a 1Da mass decrease, the isolation and investigation of PAD targets are particularly 
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challenging. The protein electrostatic change, from positive to neutral, is the most 

critical effect of citrullination, affecting protein folding, hydrophobicity, and intra- 

or inter-molecular interactions[16]. Although all the PTMs are reversible, an enzyme 

able to convert citrulline into arginine has not yet been discovered [17].  

Another feature of PTMs is their reciprocal crosstalk, an additional regulatory 

mechanism of protein function. Recently, it has been shown a negative mutual 

interaction between PAD2-mediated histone H3R26 citrullination and EZH2-

mediated H3K27 methylation, which seems to complicate the epigenetic 

background. In particular, citrullination on R26 completely blocks methylation on 

K27, which in turn decelerates citrullination on R26. The fact that citrullination 

abrogates EZH2 activity may be explained by the fact that, once histone is 

citrullinated, its folding is dramatically compromised leading to hide the 

methyltransferase interaction. On the contrary, methylation induces only a 30-fold 

reduction of PAD2 catalytic efficiency[18]. 

Even if citrullination is one of the less studied PTMs, it has been found that this 

natural reaction is physiologically involved in several processes and has a negative 

role in pathologies such as chronic inflammation, immune disorders, 

neurodegenerative diseases, skin-related pathologies, and infertility[19].  

 

1. 4. PAD PHYSIOLOGICAL FUNCTIONS 

1. 4. 1. PAD2 

PAD2 is the most conserved homologue of the mammalian ancestral PADs[20]. It is 

widely expressed in oligodendrocytes, immune cells, granular keratinocytes, and 

skeletal muscle cells[4, 21, 22].  

PAD2 can be transported into the nucleus in response to calcium signaling, even 

though it lacks the nuclear localization sequence, still present in PAD4 isoform. 

Indeed, a calcium-dependent phospholipid-binding protein, known as annexin A5, 

associates with the cytoplasmatic PAD2, preventing its translocation into the 

nucleus. Upon Ca2+ influx increase, PAD2 releases annexin A5 and interacts with a 

small GTPase, known as Ran, which promotes PAD2 nuclear entry [7]. 
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Nuclear PAD2 citrullinates histone 3 and histone 4 substrates that had been 

previously considered exclusive targets of PAD4, mediating chromatin 

decondensation and inducing neutrophil extracellular traps (NETs). NETosis is a 

pro-inflammatory form of cell death, which eliminates invading pathogens and 

restores homeostasis. Inflammatory stimuli, such as LPS, PMA or IL-8, stimulate 

neutrophils to release DNA web-like structures, citrullinated histones, and primary 

(NE, cathepsin G, MPO) and secondary/tertiary (lactoferrin, gelatinase) granular 

proteins[23]. The exact implication of PAD2 in NETosis is not clearly understood. 

Previous studies suggested that PAD4 is the main citrullinating enzyme whereas 

PAD2 represents a dispensable enzyme[24]. However, other reports demonstrated 

that NET citrullination does not require PAD4, but nuclear PAD2[25]. A possible 

explanation of these controversial data is that NET release is mediated by several 

stimuli, which activate different PADs. For example, PAD4 does not respond 

to Klebsiella pneumoniae or C. albicans stimuli, while PAD2 is not required 

TNFa or LPS induced NETs[26].  

In addition to neutrophils, it has been recently reported that other immune cells 

release decondensed chromatin fibers similar to NETs, which are generally referred 

to as ETs (Extracellular Traps). Macrophage ETs, called METs, depend on 

citrullinated histone 3 and histone 4 as neutrophils. Unlike NETs, preliminary 

findings demonstrate that during MET formation, PAD2 is the main enzyme 

required for histone citrullination [27]. 

Recently, it has been found that activated CD4+ T cells release DNA extrusions, 

called T helper-released extracellular DNA (THRED). In line with previously 

described ETs, THREDs contain nuclear DNA and citrullinated histones, which 

have already show a detrimental role in T-cell-mediated autoimmune disorders[28].  

Apart from its relatively recent established role in ETosis, PAD2 is also involved 

in macrophage and lymphocyte apoptosis, a pathway dependent on the transient 

increase of the cytosolic Ca2+ concentration, which leads to PAD2 activation[29]. 

The enzyme deiminates the N-terminal domain of vimentin, an intermediate 

filament associated with the support and anchorage of cytosolic organelles[30]. 

Protein citrullination mediates vimentin disassemble, affecting cell cytoskeleton 

and resulting in cell structural disintegration into apoptotic bodies[31]. Granular 
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keratinocytes express PAD2 isoform, which is supposed to cooperate with PAD1 

in the cornified envelope protein deimination[4].  

Moreover, PAD2 is present in oligodendrocytes (OLs), where it participates in cell 

differentiation through histone 2 citrullination and epigenetic gene transcription 

regulation.  

 

Once OLs are differentiated, PAD2 regulates the myelination process, directly  

targeting myelin component proteins, which is considered a physiological event 

that contributes to normal myelination and motor function. Indeed, PAD2 lacking 

mice show motor and cognitive defects[32]. PAD2-mediated differentiation and 

myelination of OLs are represented in Fig. 4. 

Autoimmune and allergic reactions are also regulated by PAD2-mediated 

citrullination (Fig. 5).  

 

 

 

 

Fig. 4. PAD2 mediates differentiation and myelination of OLs. 
Graphical illustration of PAD2 role in CNS. The isoform 2, localized within the nucleus, 
contributes to the epigenetic transcription of OL differentiation genes. Cytoplasmatic 
PAD2 citrullinates myelin component protein, leading to myelination and motor 
function. 
From M. Falcao et al, Cell Reports, 2019. 
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When PAD2 citrullinates the R330 of GATA3, a key transcription factor (TF) for 

T helper 2 (Th2) cells, its DNA binding ability decreases, whereas citrullination of 

RORgt, the most important TF for Th17 subsets, has the opposite effect[33]. The 

double regulation of Th subsets implies that PAD2 blocking may be advantageous 

in Th17 cell-mediated inflammation, such as arthritis or colitis, but could worsen 

Th2 cell-mediated diseases, such as allergic inflammation. 

Although PAD2 was first isolated in skeletal muscle, its relative function has not 

yet been clarified, probably due to very low levels of citrullinated proteins[34]. 

 

1. 4. 2. PAD4 

PAD4 is the best characterized isoform among the PAD family. It is the main 

protein responsible for nuclear citrullination since it is the only PAD to retain the 

canonical nuclear localization sequence. Its expression is restricted to immune cells, 

where it is involved in inflammation, gene expression, and cellular differentiation. 

PAD4 is even localized in CNS, especially in neurons and myelin sheath, but it has 

been described as inactive[35]. Neutrophils represent the major source of isoform 4, 

Fig. 5. PAD2 regulates Th2/Th17 cell response. 
PAD2-mediated citrullination inhibits Th2 and enhances Th17 cell differentiation. 
Citrullination of GATA3 reduces its DNA binding affinity, while deimination of RORgt 
increases Th17 gene transcription. 
The epigenetic modulation of Th2/Th17 responses may represent a novel therapeutic 
strategy for Th17 cell-mediated inflammation, but it could exacerbate Th2 cell–mediated 
allergic inflammation. 
From B. Sun et al, JCI insight, 2019. 
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where it is crucial for NETosis and neutrophil oxidative burst. NET formation starts 

with cell polarization and proceeds with nuclear envelope disassembly and 

chromatin decondensation; next, granule proteins are released in the cytosolic 

environment, plasma membrane permeabilizes, and web-like structures appear in 

the extracellular space within 3–8 hours[36]. In this complex pathway (shown in Fig. 

6), PAD4 activated by pro-inflammatory stimuli and by increases in both ROS and 

Ca2+ levels, moves into the nucleus where it neutralizes the positive arginine charge 

of histones, decreasing histone electrostatic interactions and histone/DNA 

attraction. Thus, DNA, which is tightly linked to histones to form the chromatin 

structure, starts to unravel[37]. As mentioned in the previous paragraph, it is now 

established that other immune cells release chromatin traps such as macrophages, 

which predominately require PAD2 catalytic activity[27], and lymphocytes, where 

the exact role of PADs has not yet been clarified, although citrullinated histones 

and chromatin decondensation occur[28]. Recently, it has been demonstrated that 

PAD4 regulates the production of neutrophil ROS, which are oxygen species 

indispensable for activation of phagocytosis, killing, and NETosis[38].  

Fig. 6. PAD4 mediates histone citrullination and induces chromatin decondensation. 
Neutrophils release web-like structures during NETosis, starting from nuclear delobulation 
and envelope disassembly. Intracellular Ca2+ influx activates nuclear PAD4, which 
citrullinates chromatin-linked histones. Electrostatic interactions between histones and DNA 
decrease. Finally, plasma membrane permeabilizes and decondensed chromatin is extruded. 
The image was adapted from Venizelos Papayannopoulos, Nat Rev Immunol, 2018. Lower 
image: S. Mohanan et al, Biochem Res Int, 2012. 
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Compared to other immune cells, neutrophils have fewer mitochondria and use the 

NADPH oxidase complex to produce ROS. PAD4 acts as structural anchorage to 

stabilize cytosolic subunits of NADPH burst machinery, named neutrophil cytosol 

factor (NCF) 1 and 2, but this association does not require citrullination. Indeed, it 

dissociates under membranolytic agent insults, such as perforin or Membrane 

Attack Complex (MAC), as a consequence of lethal calcium influx and PAD4 

hyperactivation, which results in deimination of NCF1 and NCF2 and in impairing 

ROS production. During physiological neutrophil activation, PAD4 remains 

associated with NADPH subunits, avoiding their disaggregation. Moreover, in the 

same context, other cytosolic PAD4 molecules can enter the nucleus and citrullinate 

histones, leading to NETosis[39]. Apart from its inflammation-related role, PAD4 

induces cell death through the citrullination of nucleophosmin. This nucleolar 

protein inhibits p53 translocation to mitochondria, a canonical key step in 

apoptosis. Once citrullinated, nucleophosmin changes its folding and binds p53, 

facilitating its localization inside the mitochondria[40, 41]. In addition, nuclear PAD4 

acts as a transcription factor, regulating gene expression. For example, PAD4 can 

upregulate pluripotent markers (Klf2, Tcl1, Tcfap2c, Kit, Nanog) or downregulate 

differentiation markers (Prickle1, Epha1, Wnt8a)[42]. Moreover, PAD4 targets p53 

promoter leading to its gene silencing. However, in cases of heavy DNA injury, 

PAD4 dissociates from the promoter and induces transcriptional activation of the 

DNA repair pathway[43].  

 

1. 4. 3. OTHER PADs 

PAD1 is expressed in the intracellular filamentous matrix of corneocytes and in the 

cytoplasm of keratinocytes, where it is involved in the epidermal differentiation. 

During their differentiation, keratinocytes move from the basal to the upper layer 

of the epidermis (stratum corneum), undergoing structural and metabolic changes, 

resulting in corneocyte cell maturation. PAD1 is present mainly in the stratum 

corneum, and it is requested in keratinocyte to corneocyte transition through 

citrullination of filaggrin and keratins (Fig. 7).  
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Keratins and filaggrin have a high-affinity binding, resulting in the formation of an 

insoluble complex of lower corneum stratum, which contributes to the compaction 

of squames and stratum integrity. The lifetime of this structural component is rather 

short since it is disrupted during transition to upper corneum stratum. Citrullination 

of these substrates facilitates their dissolution and the enzymatic attack of 

transglutaminases 1 and 3, which finally cross-link keratin to other citrullinated 

Fig. 7. Illustration of PAD1 distribution in epidermal layers and effects of 
citrullination on filaggrin and keratins. 
On the left panel, PAD1 distribution is represented by its isoform number. All the 
epidermal layers are indicated. 
On the right panel, filaggrin (Fil) interacting with keratin intermediate filaments (KIF) in 
the lower corneum stratum. Once filaggrin is deiminated, filaggrin/KIF complex 
dissociates, leading to NMF production and citrullination of keratins. 
Adapted from M. C. Méchin et al, Int J of Cosmet Sci, 2007. 
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proteins, such as hornerin, in order to mediate cornified envelope formation, the 

last step of corneocyte differentiation[44].  

Moreover, once filaggrin is deiminated, it is degraded into free amino acid, forming 

the Natural Moisturizing Factor (NMF), a pool of hygroscopic molecules that 

contribute to the hydration of the upper corneum stratum [4].  

PAD1 activity has also been detected in hair follicles, where it citrullinates 

trichohyalin, a protein responsible for hair morphology. Deiminated trichohyalin 

undergoes structural protein reorganization and interacts with keratin filaments 

offering mechanical support to hair follicle structure and growth[4].  

PAD1 and PAD3 are the evolutionary closest isozymes among the family, with 

68% of identical amino acid sequence in mammals[45]. PAD3 isoform shares with 

PAD1 the hair follicle expression but it also has a unique tissue localization: it is 

the only PAD member present in all the three layers of the inner root sheath (the 

Henle layer, the Huxley layer, and the cuticle) and in the medulla of hair shaft. 

PAD3 targets trichohyalin in the medulla compartment, where citrullinated protein 

forms cross-linked homo-oligomers and vacuolated aggregates, which absorb air 

and, therefore, are essential for thermal insulation. In the inner root sheath, 

deiminated trichohyalin offers mechanical support to the hair follicle structure and 

growth, suggesting that citrullination may have a tissue-, organelle-, and even site- 

dependent effects[46]. 

The isoform 3 is specifically expressed by granular keratinocytes, being located in 

keratohyalin granules and filamentous matrix of lower corneum stratum.  

In these cellular compartments, the isoenzyme cooperates with PAD1 to offer 

enzymatic support. Indeed, keratins and filaggrins are classified as PAD3 

substrates[4].  

PAD3 has been recently found in neuronal stem cells, where it seems to regulate 

cell death via AIF (apoptosis-inducing factor) cleavage dependent, which has been 

shown to requires PAD3 citrullination, or through citrullinated vimentin, a 

structural intermediate filament protein which leads to cytoskeleton integrity 

disruption after deimination [47].   

PAD6 shares only ~ 42 % homology with the rest of the family[48]. Its amino acid 

sequence has lost several Ca2+ binding residues present in its isoenzymes, and 
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therefore, PAD6 has been supposed to catalyze citrullination only during 

embryonic development[43]. It is uniquely expressed in mammalian oocytes and pre-

implanted embryos, where it associates with cytoskeletal sheets[49].  

PAD6 is one of the few studied oocyte genes with maternal effects that regulates 

embryonic development at the two-cell stage. Zygotes from female PAD6 

deficient-mice are not able to pass the two-cell stage of development, compared to 

the wild-type zygotes, which progress until 8-16 cell stages. Therefore, PAD6 is 

essential for the regulation of female fertility. Male mice that lose PAD6 protein 

expression are still fertile, confirming the role of PAD6 as maternal genes[49].   

In the oocyte and zygote, PAD6 regulates embryonic gene transcription activation 

crucial for the formation of cytoplasmic lattice structures, which function as 

maternal ribosomes and mRNA storage[50]. Moreover, in the cytoplasmic lattices, 

PAD6 is also a key regulator of organelle positioning and movement, which is 

largely mediated by microtubule. Microtubules are associates with motor proteins 

such as tubulin, which is physically associated with PAD6. Citrullination of this 

fibrous complex induces microtubule polymerization, motor activity, and finally 

organelle positioning[51].  

In germ cells, PAD6 dependent citrullination also mediates the formation of 

cytoskeletal sheets through cytoplasmatic or structural proteins deimination, such 

as keratins, leading finally to a correct embryo development[52]. 

 

1. 5. PATHOLOGICAL ROLES OF PADs 

1. 5. 1. PAD2 AND PAD4   

Studies carried out over the last decade have demonstrated that dysregulation of 

both PAD2 and PAD4 is commonly associated with the pathogenesis of 

neurodegenerative diseases (such as Multiple Sclerosis, Alzheimer's, and 

Parkinson's Diseases)[53-55] and inflammatory and autoimmune disorders (such as 

Ulcerative Colitis, Systemic Lupus Erythematosus, Atherosclerosis, and 

Rheumatoid Arthritis)[56-58]. 

The isoform 4 does not normally deiminate any adult CNS related proteins, but it 
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is functional during cerebral development[1]. However, its detrimental activity has 

been previously described in neurodegenerative disorders, such as multiple 

sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD).  

MS is a chronic inflammatory autoimmune demyelinating disease of the CNS, 

characterized by the destruction of myelin sheath around the axon, inflammatory 

and degenerative changes in the brain and spinal cord (SC). In MS, the myelin basic 

protein (MBP), implicated in the maintenance of correct myelin structure and 

axonal impulse conduction, is hypercitrullinated.  

 

Abnormal MBP deimination produces open protein conformation, increasing 

proteolytic susceptibility to cathepsin D protease, which catalyzes myelin 

breakdown (Fig. 8). White matter from MS patients presents hypomethylated 

PADI2 gene promoter compared to healthy patients. This tissue-specific epigenetic 

landscape correlates with brain PADI overexpression and results in an abnormal 

increase in target citrullination[54]. Recently, other substrates, such as GFAP and 

vimentin, have been discovered as hypercitrullinated in the white matter of MS 

patients.  Interestingly, abnormal PAD-mediated deimination has not been 

correlated to CD4+ cell autoreactivity, which might occur in the presence of 

citrulline since it is not available during thymic selection[59]. 

Fig. 8. MBP deimination in MS. 
In healthy individuals, PADI2 promoter has a methylated cytosine residue, epigenetic state 
which decreases protein transcription level. In MS patients, the gene promoter is 
demethylated at cytosine, and it correlates with PAD2 transcription increase. The amount 
of citMBP rises with relative lipid bilayer destabilization and protein degradation. 
From M. A. Moscarello et al, Neurochem Res, 2007. 
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PD is a long-term neurodegenerative disorder that affects normal motor functions. 

Indeed, it is characterized by the loss of dopamine neurons in the substantia nigra. 

A correlation between PADs and PD has been previously suggested, considering 

that these enzymes are upregulated in patients, but the driver trigger for this 

alteration has not yet been investigated[55]. The accumulation of neuronal a-

synuclein aggregates in substantia nigra, or in the peripheral nervous system plays 

a central role in PD pathogenesis. These aggregations of aberrant soluble a-

synuclein oligomers are cell toxic and contribute to neuronal and synaptic loss 

[60]. Recently, a-synuclein has been shown as PAD substrate, and its citrullination 

seems to trigger CD4+ cell activation, contributing to detrimental inflammatory 

changes that occur in PD brains[61]. 

AD is the most common form of dementia, contributing to 60-70% of the cases[62]. 

It is characterized by neuronal loss in medial lobe and temporo-parietal association 

cortices by intraneuronal neurofibrillary tangles (NTFs), composed of a 

hyperphosphorylated form of tau protein, and by extracellular β-amyloid peptides 

(Aβ) deposits[63]. Post-mortem histochemical analysis on AD human brains, 

represented in Fig. 9, revealed that hippocampal extracts contained abnormal 

accumulation of citrullinated proteins[53].  

 

Fig. 9. Immunohistochemical qualitative images of citrullinated proteins in 
hippocampal sections. 
(A-B) Human hippocampal regions, CA areas and dentate gyrus, were stained with anti-
modified citrulline antibody. In A, hippocampus of AD brains is shown, where brain 
sections indicate antibody positivity; in B), immunohistochemistry from control brains, 
where no citrullinated proteins at all were identifies.  
From A. Ishigami et al, J Neurosci. Res., 2005. 
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This result suggests that PADs become activated in cerebral regions involved in 

AD neurodegeneration and that PAD could play a role in the progression of AD. 

Among citrullinated proteins, GFAP and vimentin, expressed by astrocytes, were 

clearly identified and may provide a positive contribution to AD. Indeed, 

deimination of these intermediate filaments leads to their unfolding and to astrocyte 

size and shape changes, probably enhancing reactive cell phenotype, which occurs 

in order to phagocyte extracellular proteins such as Aβ[64]. Inflammation is another 

pathological hallmark of AD. We have previously demonstrated that, in murine and 

human parenchyma, circulating immune cells adhere in brain vessels, extravasate 

closed to amyloid-b deposits, and, in the case of neutrophils, release NETs [65]. 

PAD2 and PAD4 are essential for NET formation, and citrullinated histones and 

proteases may damage endothelial and neural cells or they may harm the blood-

brain barrier (BBB) integrity, contributing to AD pathogenesis [66].  

Abnormal NET formation is also a hallmark of several inflammatory and 

autoimmune diseases, and the fact that PAD4 and PAD2 are required for web-like 

structure extrusion indicates that PADs are deeply involved in the severity of these 

diseases. 

Ulcerative colitis (UC) is one of the major forms of autoimmune inflammatory 

bowel disease. Its pathogenesis is not entirely understood even though it becomes 

clear that UC is characterized by an abnormal immune response against luminal 

antigens, which correlates with chronic intestinal inflammation. Neutrophils 

damage mucosal areas and release NETs, and therefore, PAD4 is considered one of 

the major players in UC. Indeed, UC patients present higher PAD4 level expression 

compared to controls in the mucosal inflamed area[57]. Recently, PAD4 has been 

proposed as a clinicopathological prognostic predictor in UC since its 

overexpression is significantly associated with histopathologic grade increase and 

anatomical disease extent[67].  

Systemic lupus erythematosus (SLE) is an autoimmune disorder that presents innate 

and adaptive immunity dysregulation. Typical features are systemic clinical 

manifestations, including skin, kidneys, joints, heart and lungs, autoantibodies 

generation, and immune complexes (ICs) reactivity[68]. NET formation/clearance 

imbalance has also been described to contribute to immune responses, 
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inflammasome activation, aberrant adaptive immunity, and tissue damage[35]. In 

genetically prone mouse models of lupus, NZM2328, and MRL/lpr, PAD targeting 

inhibitors abrogate disease phenotype and immune dysregulation. These 

compounds also reduce the lupus-associated vasculopathy and thrombosis[69, 70]. In 

TLR7-mediated SLE mouse model, it has been demonstrated that PAD2 and PAD4 

have different regulatory roles: PAD4 expression abrogation protected mouse from 

antibody production, type I IFN response, renal IC deposition, and endothelial 

dysfunction; while PAD2 seems to be the main regulator of Th1 and Th17 immune 

responses, which have been correlated with lupus-associated nephritis[71]. Human 

studies also support the involvement of PADs in this pathology since specific SLE 

polymorphism (A20) has been associated with increased protein citrullination 

levels[72] and PAD4 polymorphism with the renal involvement[73]. One of the main 

SLE-related PAD targets is LL37, a member of the cathelicidin granular protein 

family, which triggers pathogenic autoantibodies[74]. Abundant citrullination of 

LL37 in human patients causes the loss of T cell immune tolerance, and was 

implicated in SLE autoreactivity[74]. 

Atherosclerosis is a cardiovascular disease where patients are characterized by 

chronic vascular wall inflammation, endothelial dysfunction, and smooth muscle 

cell proliferation. Typical manifestation is the atherosclerotic plaque formation 

associated with hyperlipidemia, which induces neutrophilia[75]. The cholesterol 

crystals of the plaque act as IL-1β production inducer, attracting neutrophils that 

release NETs closed to plaques, where they exert several pro-inflammatory 

functions. Cathepsin G, cathelicidins, or cathelicidin-related antimicrobial peptide 

(CRAMP), which are extruded during NETosis, attract monocyte and dendritic 

cells. Moreover, NETs trigger cytokine production from macrophages and activate 

Th17 cells, enhancing leukocyte infiltration within the plaque[76]. In addition, NETs 

exert cytotoxic and prothrombotic effects and are directly correlated with lesion 

size in atherosclerosis and cardiac infarct[77]. The detrimental contribution of PADs 

is due to their essential role in NET formation: in murine models, PAD 

pharmacological inhibition showed decreased atherosclerotic lesion dimension and 

a late carotid artery thrombosis onset, confirming the critical contribution of PAD4 

to atherosclerosis[78]. 
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Rheumatoid Arthritis (RA) is a chronic inflammatory disorder associated with 

severe synovial tissue inflammation and irreversible cartilage and bone damage 

within the joints[79]. Citrullination is a hallmark of RA since it initiates and 

maintains the rheumatic autoimmune reaction and the diagnosis is based on the 

presence of anti-citrullinated protein antibodies (ACPA) in the synovial fluid (SF) 

of RA patients[80]. In RA pathogenesis, hyperactivated PADs may catalyze non-

selective citrullination such fibrinogen, vimentin, enolase, and therefore may 

deiminate not canonical substrates, leading to neo-citrullinated proteins not 

recognized by the immune system as self-antigens and driving an autoimmune 

response[56].  

 Abnormal citrullination levels have been found in intra- and extracellular 

compartments, suggesting that PADs are hyperactivated in both these cell 

environments. In the SF of RA affected individuals, neutrophils are the most 

abundant immune cells and the main source of PAD dysregulation[81].  

It is supposed that neutrophil intracellular hypercitrullination is due to immune 

pore-forming pathways active in the joints, such as perforin and MAC, which 

induce massive Ca2+ ions and hyperactivation of PADs[82]. Extracellular presence 

of deiminated substrates is correlated to an abnormal NETosis, which releases 

PADs that citrullinate extracellular substrates and break immune tolerance. 

Moreover, PAD4 acts itself as an autoantigen in RA and generates a recently 

described subset of RA antibodies known as anti-PAD4 antibodies. These can lower 

the amount of Ca2+ required for the catalysis, establishing continuous active cycles 

of hypercitrullination[83]. These effects of dysregulated citrullination are 

represented in Fig. 10. 
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PADs are also involved in numerous malignant tumors by regulating apoptosis and 

differentiation, promoting EMT and metastasis, and tumor-associated 

inflammation[84].  

In cancer cells, PAD2 has been shown to play a protooncogenic role. For instance, 

in gastric cancer, PADI2 facilitates abnormal cancer cell behavior by increasing 

expression levels of CXCR2, a gene correlated to cell proliferation and tumor 

invasion. PADI2 has deleterious effects on tumor growth and metastasis even in 

liver cancer via regulation of tumor growth gene erythropoietin[85].  

PAD4 negatively regulates tumor invasiveness in breast cancer by citrullinating 

glycogen synthase kinase-3β (GSK3β), inducing epithelial to mesenchymal 

transition[40]. Moreover, PADs regulate epigenetic expression of estrogen-

responsive genes, mediating neoplastic growth. Interaction between PAD4 and p53 

leads to the block of apoptotic pathway in a wide range of tumors such as lung 

cancer, osteosarcoma, and hematopoietic cancers[86]. 

Fig. 10. Normal citrullination and RA-associated hypercitrullination. 
In A, PADs are tightly controlled by limited intracellular Ca2+ levels or other hypothesized 
regulating factors. In addition, residue clearance prevents the abnormal intracellular 
citrulline accumulation. In B-C, Bacteria or MAC/perforin induce leukotoxic 
hypercitrullination (LTH). Moreover, bacteria may trigger ACPA production in extra 
articular sites (gut, gums, lungs). The huge amount of died neutrophils represents an 
additional source of hyperactive PADs in intra articular regions.  
From E. Darrah et F. Andrade, Curr Opin Rheumatol, 2018. 
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In melanoma, breast, colon, kidney, ovarian, lung, and prostate cancers, PAD2 and 

PAD4 have been detected in exosome and extracellular microvesicles (EMV), 

where they deiminate cytoskeletal proteins, such as actin, resulting in structural 

membrane rearrangement that vesicle release needs .Therefore, PADs may 

indirectly contribute to chemo response therapy, which EMV strongly generate by 

carrying drugs within them[84]. 

 

1. 5. 2. OTHER PADs  

Although the role of PAD1 has been thoroughly characterized in the normal 

functionality of keratinocytes, little is known about PAD1-mediated citrullination 

in cutaneous diseases. Indeed, psoriasis vulgaris is the only skin-related disease 

associated with PAD1 deficiency[52]. 

Psoriasis is a chronic inflammatory cutaneous pathology, which causes red and 

scaly patches, localized mainly on knees, elbows, trunk, and scalp. It is 

characterized by an excessive mitotic activity, correlated to hyperproliferation of 

keratinocytes, which move from basal to upper epidermal layers within days, rather 

than months, and accumulate in dry patches[87]. In normal human cornified cells, 

keratin 1 is the most abundant citrulline-containing protein[88]. Lack of keratin 

citrullination in psoriatic lesions has been widely detected, resulting in the atypical 

arrangement of keratin tonofibrils, which compromises epidermal compactation[89]. 

It is not clear whether the uncommon cell proliferation induces abnormal 

deimination or PAD1-decreased citrullination causes the accumulation of 

keratinocytes within the dermis.  

Apart from its role in epidermis related diseases, PAD1 has been recently classified 

as the only PAD family member involved in the pathogenesis of human triple 

negative breast cancer (TNBC), the most aggressive form of breast cancer. It 

correlates with the upregulation of isoform 1 activity, which results in cell 

proliferation, epithelial-mesenchymal transition, and metastasis increase[90]. How 

PAD1 starts to be dysregulated has not been described, but the molecular 

mechanism of PAD1 hypercitrullination is known. In fact, MEK1 deimination 
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inhibits MEK1-induced ERK phosphorylation, resulting in MMP2 overexpression, 

a metalloproteinase involved in tumor progression through the breakdown of ECM 

components[40]. 

In line with its hair follicle localization, PADI3 mutations are involved in the 

pathogenesis of a rare inherited hair shaft dysplasia, which mostly affects young 

children, known as Uncombable Hair Syndrome (UHS). The disorder presents 

tousled follicles, which do not fat on the scalp, and consequently, patients show dry, 

curly, and shiny hair. PADI3 mutations compromise enzymatic activity, resulting 

in the inhibition of trichohyalin citrullination. This is correlated with a triangular 

and flat form of the hair shaft.  

Different variants of PADI3 are also correlated with central centrifugal cicatricial 

alopecia, a form of inflammatory scarring alopecia, which affects African women. 

The pathology is characterized by hair breakage, perifollicular lymphocyte 

infiltration, and follicular degeneration. Missense mutations lead to decreased 

enzymatic activity, correlated with reduced citrullinated trichohyalin, which is 

supposed to result in follicular degeneration[4].  

Considering that, in granular keratinocytes, isoforms 3 and 1 of PADs cooperate 

for keratin deimination, PAD3 downregulation is obviously associated with 

psoriasis pathomechanism.  

PAD6 is the only PAD member responsible for women's fertility. Homozygous 

PADI6 nonsense mutation in oocytes generates a truncated PAD6 protein, which 

impacts early embryonic arrest. Indeed, PAD6 activity is correlated with oocytes 

cytoplasmic lattice and subcortical maternal complex formation, essential for 

embryonic progression at the 2-cell stage in mice[91].  

Recently, PADI6 biallelic missense variant has been associated with recurrent 

hydatidiform moles (RHM), an aberrant human pregnancy characterized by 

degeneration of chorionic villi and hyperproliferation of the trophoblast. The 

implication of PAD6 in RHM is always due to PAD6 mediated cytoplasmic lattice 

formation. Whereas PADI6 nonsense mutation induces a truncated form of the 

protein, which causes early embryonic  

, the missense variant only delays it, consenting blastocyst implantation, and 

differentiation of embryonic tissues[92]. 
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1. 6. PAD INHIBITORS AND THEIR THERAPEUTICAL 

APPLICATIONS 

Considering that citrullination has a critical and potentially irreversible detrimental 

role in several inflammatory and autoimmune disorders, a massive influx of interest 

into PAD activity inhibition is raised in the last decades. The development of 

compounds targeting PADs represents an advancement in the understanding of 

physiological and pathological functions of PADs, providing a novel therapeutic 

strategy for deimination-related disorders. 

In the next paragraphs, the inhibition mechanism and the therapeutic applications 

of PAD2 and PAD4 inhibitors are described since these isoforms are the main 

object of our interest. 

The first bioactive pan PAD inhibitor was discovered in 2006, and it was called 

Fluoro acetamidine (F-amidine), which mimicked the smallest PAD substrate, the 

benzoy-L-arginine amide, in which one of its amino group was replaced with 

methylene fluoride. The resulting compound sterically fits in the active site of the 

enzymes, forming a stable thioether adduct that blocks the nucleophilic attack of 

PADs[93]. 

  

The F-amidine was optimized leading to the production of Cl-amidine, by replacing 

the fluorine with a chlorine residue in the haloacetamidine warhead (Fig. 11).  

Fig. 11. Structures of amidine-based PAD inhibitors. 
Chemical conformation of benzoyl arginine amide (BAA) is displayed on the right panel. 
On the left, the comparison between F-amidine and Cl-amidine. The amino group of the 
canonical substrate is replaced with fluoride (2) or chlorine residue (1). 
From C. P. Causey et al, J Med Chem, 2012. 
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The mechanism of irreversible PAD blocking was the same as for the F-amidine 

compound, since Cl-amidine inhibits the calcium bound form of PAD enzymes, but 

with enhanced potency[94]. Cl-amidine demonstrated efficacy in animal models of 

RA, SLE, UC, spinal cord injury, breast cancer, and atherosclerosis. Despite these 

results, the drug showed to have poor metabolic stability and cell membrane 

permeability. In an effort to address these issues, the C-terminal carboxamide was 

replaced with a benzimidazole moiety to yield BB-Cl-amidine (Fig. 12), ten times 

more potent than Cl-amidine both in vitro and in vivo[95]. 

 

 

In order to study single PAD enzyme function, selective isoform inhibitors were 

also developed through screening of DNA-encoded small-molecule libraries, with 

and without added Ca2+. 

 GSK121 was the first PAD4 selective inhibitor, which demonstrated high affinity 

to the calcium-free form of the isoform. Optimization of GSK121 led to GSK199, 

which reversibly binds the low-calcium associated conformation of the enzyme 

(Fig. 13). 

 

Fig. 12. Chemical structure of BB-Cl-amidine. 
BB-Cl-amidine is a C-terminal bioisostere of Cl-amidine. The C-terminus of Cl-amidine is 
replaced by a benzimidazole group and the N-terminus with biphenyl moiety to increase 
hydrophobicity and cellular uptake. 
From J. S. Knight et al, Ann Rheu Dis, 2014. 
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GSK199/PAD4 complex prevents the substrate from reacting with the catalytic site 

in a typical competitive mechanism of inhibition, demonstrating a strong inhibitor 

effect on the citrullination of PAD4 targets and NET formation in both human and 

murine neutrophils[96].  

Considering the detrimental role of PAD2 and PAD4 in the pathogenesis of 

inflammatory and autoimmune diseases, several applications of the above-

mentioned inhibitors were performed to investigate their effects in the field of target 

therapy. 

In the murine collagen-induces arthritis (CIA) model of inflammatory arthritis, Cl-

amidine showed therapeutic efficacy by decreasing joint and serum citrullination 

content and the relative synovial levels of citrullinated antibodies, resulting in the 

reduction of clinical symptoms severity [97]. In the same mouse model, BB-Cl-

amidine reversed joint clinical and histological inflammation. Indeed, the 

compound inhibited synovial citrullination and significantly reduced immune 

inflammatory infiltrates, mostly due to neutrophils and macrophages. Moreover, 

the drug suppressed pro-inflammatory Th1 and Th17 responses and enhanced Th2-

mediated reactions, demonstrating its immunomodulatory effects[98]. 

In the CIA mouse model, GSK199 efficiency was also tested[99], and PAD4 

selective inhibition significantly ameliorated the disease. Indeed, drug treatment 

reduced cartilage and bone damage and synovial inflammation, which is associated 

Fig. 13. GSK199/PAD4 complex. 
PAD4 residues are shown in cyan, excluding the purple 633-645, which interact with F634 
and V643 of GSK199, represented in yellow. 
After binding of GSK199 to PAD4, a b-hairpin structure is formed and packed on the 
apical side the inhibitor. 
From H. G. Lewis et al, Nat Chem Biol, 2015. 
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with infiltration of macrophages, lymphocytes, and neutrophils[100]. Peptide 

glucose-6-phosphate isomerase-induced arthritis (pGIA) mouse model following 

Cl-amidine treatment also showed a significant reduction of IL-6 proinflammatory 

cytokine local secretion due to the inhibition of IL-6 gene expression in the joints 

and draining lymph nodes[101]. Consequently, PAD inhibition suppressed the 

severity of arthritis also in this mouse model, as the histopathological score 

demonstrated a significant blockade of inflammatory cell infiltration and release of 

inactive PADs in RA-affected joints, decreasing antibody responses to citrullinated 

epitopes. In addition, the compound prevented NET formation, contributing to less 

production of citrullinated histone antigens and proinflammatory cytokines [102]. 

Apolipoprotein-E (Apoe−/−) knockout atherosclerosis murine model also 

demonstrated a strong therapeutic effect following PAD inhibition. In this disease 

model, where NET formation is enhanced and autoantibodies are released, daily 

injections of Cl-amidine reduced atherosclerotic lesion area and delayed carotid 

artery thrombosis event. These effects were associated with reduced recruitment of 

netting neutrophils and macrophages into aortic sinus lesions[78]. 

In the dextran sulphate sodium mouse model of UC, Cl-amidine reduced clinical 

signs and symptoms after disease onset, mainly due to colon inflammatory lesion 

decreasing[103]. In addition, in the MRL/lpr mouse model of lupus, reduction of 

NET formation and protection of lupus-related vascular and skin damage were 

observed after both Cl- and BB-Cl- amidine. Moreover, the drugs reduced immune 

complex deposition in kidneys and intestinal inflammation[104]. Additionally, 

treated mice significantly reduced proteinuria and renal inflammation, which was 

correlated with less infiltration of leukocytes into the kidney[105]. Also, Cl-amidine 

treatment prevented immune complex deposition and NET release in the glomeruli 

of NZM, an alternative lupus mouse model[58]. In TLR7-mediated disease mouse 

model, treatment with GSK199 decreased neutrophil migration to kidneys and 

impaired ICAM-1-dependent adhesion[106].  

The beneficial therapeutic effects of PAD inhibitors are also reported in 

neurogenerative disorders. Cl-amidine reduced PAD activity dysregulation in 

protein citrullination in the white matter of MOG-induced EAE animal model. 

Importantly, enzyme inhibition prevented T cell tissue infiltrates, clearing the brain 



 
 

34 

and the spinal cord of inflammatory cells. Finally, PAD inhibition significantly 

reduced disease progression when administered before disease onset, making 

hypercitrullination a valid therapeutic target in MS[107]. 

Overall, these studies show that, in several inflammatory pathologies, 

pharmacological PAD inhibition leads to therapeutic effects, mostly correlated with 

reduction of inflammation and of immune cell recruitment. 
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2. LEUKOCYTE TRAFFICKING 

Leukocytes have the capability to migrate from the blood into the inflamed tissue 

in order to induce an efficient cell response, crucial for the immune surveillance. 

Leukocyte trafficking occurs through tightly regulated leukocyte-endothelial 

interactions (Fig. 14), which are not discrete events but represent synergistic 

contacts among the adhesion molecules, resulting in a complex adhesion 

cascade[108].  

Although additional steps have been included in the classical model of leukocyte 

trafficking, such as slow-rolling, adhesion strengthening and polarization, in this 

thesis we focus on the key adhesive interactions of rolling, arrest, and 

transmigration. 

 

Fig. 14. Key adhesive steps of leukocyte extravasation. 
In the upper panel, all the adhesion molecules that mediate endothelial/leukocyte membrane 
interactions are represented. In the lower panel, the resulting tissue cell recruitment events, 
deeply described in the following paragraphs.  
From M. P. Schon et al, J Inves Dermatol, 2003. 
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2. 1. LEUKOCYTE ROLLING 

The interaction of selectin adhesion molecules with their ligands results in 

leukocyte rolling, the first step of leukocyte trafficking. Selectins are the main 

inducers of leukocyte rolling. Inflamed endothelium expresses E-selectin and P-

selectin, whereas leukocytes express L-selectin. The structure of these molecules is 

characterized by an N-terminal lectin domain, an epidermal growth factor-like 

module, a series of tandem consensus repeats, a transmembrane domain, and a 

cytoplasmic tail. The selectins recognize a sialic Lewis X moiety, normally present 

in glycoproteins[109]. P-selectin glycoprotein ligand-1 (PSGL-1), a homodimeric 

mucin on leukocytes, is considered the most important P-selectin ligand, but can 

bind all three selectins.  
The kinetic of selectin-ligand interaction follows a high on- and off- rates of 

binding[108]. Indeed, immune cells form bounds with endothelium at the leading 

edge and dissociate at the trailing edge. Several intrinsic and extrinsic cell factors 

influence leukocyte rolling by modifying the energy of this bound formation. Shear 

stress is defined as the force exerted by blood flow on the endothelial surface and 

supports L-selectin and P-selectin rolling, strengthening each bond whenever shear 

stress is applied[108]. Therefore, cell rolling ends when flow is abolished. Selectin 

ligands are concentrated on the tips of cellular microvilli: their stretching and 

selectin ligand clustering are the main intrinsic factors that increase adhesive 

contacts[110].   

In both selectin and ligand expressing cells, selectin engagement triggers activating 

signals which, together with leukocyte activation through adjacent G-protein-

coupled receptors (GPCRs), lead to leukocyte arrest, the following step of 

leukocyte migration through the endothelium[111]. 

 

2. 2. LEUKOCYTE ARREST 

Leukocyte rolling is followed by cell arrest, which is mediated by endothelium-

integrin adhesive interactions. Leukocyte integrins are transmembrane αβ 

heterodimeric glycoprotein receptors, which bind endothelial immunoglobulin 
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superfamily members, such as ICAM-1 and VCAM-1, in response to a complex 

signaling pathway rapidly triggered by inflammatory chemokines.  

At least 18α and 8β subunits are known to generate 24 integrin heterodimers, 

containing three different domains, such as the extracellular and transmembrane 

domains, and a final cytoplasmic tail, which binds cytoskeletal proteins and 

intracellular signaling molecules [112]. The Very Late Antigen 4 (VLA-4; 

CD49d/CD29; aMb1) and Lymphocyte Function Associated Antigen 1 (LFA-1; 

CD11a/CD18; aLb2) mediate lymphocyte adhesion. In addition to LFA-1, 

neutrophils, which lack blood VLA-4 expression[113, 114], express Macrophage 

Antigen 1 (MAC1; CD11a/CD18;aMb2), which binds ICAM members and 

extracellular matrix components such as fibrinogen[115]. 

Chemokines, such as CXCL12, and generally chemotactic factors, like fMLP, are 

the most important integrin activators[116]. After their binding to specific GPCRs, 

chemokines almost instantaneously trigger a complex intracellular signaling 

network, known as inside-out signaling, which results in rapid integrin activation. 

In order to reach their functional conformation, integrins undergo discrete and 

dramatic structural changes that expose ligand binding sites and increase integrin 

affinity. The term affinity refers to the energy of ligand attractive binding[117]. The 

most detailed information about integrin activation comes from LFA-1 studies. 

LFA-1 extends its conformation from a bent low-affinity conformation to 

intermediate and finally, high-affinity state, which correlates with the opening of 

the binding pocket for ICAM-1 (Fig. 15)[108].  
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The intracellular signaling cascade that regulates the integrin affinity is still 

incompletely understood. CXCL12 receptor engagement triggers JAK PTKs and 

heterotrimeric Gai protein, leading to activation of multiple Guanidine Nucleotide 

Exchange Factors (GEFs), which in turn regulate small GTPase activity. Rho and 

Rap are the most studied GTPases involved in LFA-1 signaling. These enzymes 

induce the binding of several actin/integrin proteins, such as talin1, to the 

cytoplasmatic tail of integrin, resulting in LFA-1 activation (Fig. 16)[118].  

Fig. 15. Schematic representation of LFA-1 structural domains and conformational 
changes. 
In the right panel, the distinct α and β subdomains are reported. 
In the left panel, the cytoskeletal rearrangements of LFA-1 structure. The low-affinity bent 
conformation has the a and b cytoplasmic tails in close proximity and the ligand-binding 
site toward the plasma membrane. Inside-out signaling leads to physical interaction with the 
cytoskeletal talin, which separates tails and induces integrin extension. Once bI domain is 
able to bind an internal ligand in the aL I domain (aL-E310), the ICAM-1 ligand-binding 
site is exposed.  
From S. C. Pflugfelder et al, J Ocul Pharmacol Ther, 2017. 

Fig. 16. Model of the inside-out signaling controlling LFA-1 affinity. 
CXCL12 binding to CXCR4 receptor induces the concurrent activation of JAK and Gai 
protein. VAV1 activity is JAK dependent, whereas SOS1, DOCK2 and ARHGEF1 are 
regulated by both the kinase and the Gai protein. The cooperation of these GEFs triggers 
RhoA and Rac1 GTPase activation. RhoA could even stimulate Rap1 activity, which is 
additionally controlled by Gai-dependent PLC.  
Finally, FERMT3, Kindlin3, TLN1, Talin1, CYTH1, Cytohesin-1, RIAM, RASSF5 and 
RAPL bind LFA-1 cytoplasmatic tail, inducing integrin high affinity conformation. 
From L. Toffali et al, J Immunol, 2017. 
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It is known that the inside-out pathway induces changes in integrin distribution on 

the cell surface leading to integrin clustering, increasing integrin valency, or the 

number of bonds in discrete surface areas. Integrin clustering and allosteric 

conformational changes trigger outside-in signaling, where integrin binding to 

endothelial surface receptors activates signaling pathways inside the cells, resulting 

in adhesion stabilization and cell motility. In this context, Src family kinases are 

established key players in these inner signaling, leading to cell spreading and 

subsequent transmigration of the leukocytes firmly adhered to the endothelium [119]. 

 

2. 3. LEUKOCYTE TRANSMIGRATION 

Paracellular or, less commonly, transcellular are both accepted leukocyte 

transmigration pathways, which mutually occur depending on the stimuli. In the 

paracellular route, integrin ligation to the endothelial adhesion molecules reduces 

the interendothelial tight contacts, resulting in the passage of leukocytes through 

cell junctions. Indeed, entothelial ICAM-1 binding by integrins, leads to Ca2+ level 

increase, which is associated with the activation of MAPK and Rho GTPase, 

inducing cell contraction and cell contact opening. The molecules that might block 

leukocyte entering the endothelium layer, such as E-cadherin, are collocated away 

from the junctional areas. On the contrary, the endothelial junctional molecules, 

such as PECAM-1, which bind their leukocyte counterparts, are distributed at the 

luminal cell surface, resulting in an adhesive gradient that guides cells to the 

junctions[108]. 
In order to migrate transcellularly, through the thin part of the endothelium, 

leukocytes extend cell membrane protrusions into endothelial cells, where integrin- 

ICAM-1 ligation results in the formation of channels through which cells can pass 

through. The molecules involved in the transcellular migration may also mediate 

the endothelial-cell junction route. These molecules include immunoglobulin 

superfamily members PECAM-1, ICAM-1, ICAM-2, JAM-A, JAM-b, JAM-C 

ESAM, and CD99. Therefore, to ensure successful transmigration pathways, 

several complex molecular interactions occur [120].  
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3. ALZHEIMER'S DISEASE 

AD is the most common cause of dementia. Based on the World Health 

Organization's (WHO) reports, nearly 50 million people have dementia 

worldwide[62]. There are approximately 10 million new cases annually, and 

Alzheimer's disease (AD) may contribute to 60–70% of these cases. AD is usually 

sporadic and commonly occurs in aged people. Both the familial and the sporadic 

forms of AD share a common phenotype converging towards similar 

neuropsychiatric symptoms, emotional disturbance, and the progressive 

impairment of daily activity, resulting in dependency, disability, and mortality[121]. 

The etiology of AD is still unclear, and adequate treatments for this disease are not 

currently available. 

The neuropathological hallmarks of AD include extracellular accumulation of 

plaques containing β-amyloid (Aβ) peptides, intracellular aggregation of 

hyperphosphorylated tau leading to the formation of neurofibrillary tangles (NFTs), 

neuronal death, synaptic loss resulting in brain atrophy, and cerebral chronic sterile 

inflammation[122]. 

Amyloid plaques result from the extracellular accumulation and deposition of Aβ 

peptides, produced by the sequential proteolytic cleavage of the amyloid precursor 

protein (APP) by α-, β-, and γ-secretases, an enzymatic complex composed by 

presenilin 1 (PS1) or presenilin 2 (PS2). An imbalanced production, clearance, and 

aggregation of peptides cause Aβ accumulation. Monomers of Aβ are soluble 

structures that tend to assembly with one another leading to the formation of 

oligomers, which aggregate to form protofibrils in the extracellular matrix or on 

cell surfaces. Protofibrils are the precursors of amyloid fibrils (Fig. 17). Amyloid 

fibrils are highly insoluble and can assemble to form extracellular amyloid plaques, 

which deposit in the brain parenchyma during AD progression. Aβ oligomers are 

the most neurotoxic structures and can alter membrane permeability by forming 

pores and bind to mature synapses on hippocampal and  neurons, leading to the 

blockade of synaptic plasticity and consequently neuronal cell death[123]. 
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NFTs are intraneuronal filamentous inclusions within pyramidal neurons composed 

of hyperphosphorylated and aggregated form of tau protein. Tau is normally a 

soluble axonal protein that promotes assembly and stability of microtubules and 

vesicle transport. Hyperphosphorylated tau becomes insoluble and loses its affinity 

for microtubules, leading to self-association into cytotoxic paired helical filament 

structures (PHF) that accumulate into pyramidal neurons leading to the formation 

of NFTs (Fig. 18). NFTs destabilize microtubules, interfering with axonal flow, and 

leading to the destruction of a vital cell transport system causing neuronal 

degeneration and death[124].  

Fig. 17. Generation of amyloid- β plaques during AD. 
Schematic representation of the two pathways for APP processing and Aβ aggregation. APP 
(605-770 aa) can be processed through the amyloidogenic pathway, which depends on β-, and 
γ-secretases, or through the non-amyloidogenic pathway, that involves α- and γ-secretases. 
The first pathway leads to the Aβ peptide formation, whereas the other demolishes the 
production of Aβ protein. In physiological condition the major part of APP (90%) is processed 
by non-amyloidogenic pathway, while the remaining part (10%) follows the other pathway. 
From F. L. Heppner, Nat Rev Neurosci, 2015. 

Fig. 18. Neurofibrillary tangle formation in AD. 
Key events in the NFT formation are shown. Tau stabilizes axonal microtubule structures 
during physiological conditions. Tau mutations and dysregulation of kinases/phosphatases 
lead to hyperphosphorylated form of the protein, which results in microtubule 
depolymerization, tau dysfunction and axonal defects.   
Adapted from S. Sarkar, J Genet, 2018. 
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The progressive development of AD is associated with an intense neuronal loss, 

which determines brain atrophy. This loss of neurons is highly selective for specific 

brain areas, such as hippocampal field CA1, subiculum, and entorhinal cortex. 

Furthermore, during the pathological process, neuronal loss is also extended to the 

temporal, frontal, and parietal cortex. Synaptic loss occurs in the same regions 

where neuronal loss takes place[125]. 

 

3. 1. NEUROINFLAMMATION IN AD 

Chronic neuroinflammation has a central role in the pathogenesis of AD. 

Neuroinflammation is mainly driven by microglia, the resident phagocyte of the 

CNS, and astrocytes. Microglial cells provide immune brain surveillance, 

microenvironment scanning, and maintenance of neuronal plasticity through the 

release of trophic factors[126]. However, in AD, their continuous activation leads to 

detrimental effects. Indeed, microglia can be activated by Aβ oligomers and tau 

proteins, recognized as PAMPs, via cell-surface receptors. In response to receptor 

ligation, microglia clears Aβ by phagocytosis or by the release of enzymes that are 

able to degrade Aβ in the extracellular space. However, in AD, the clearance 

mechanism of Aβ can be compromised, leading to excessive accumulation of Aβ 

and neuronal debris[126]. In addition, activated microglia induces an increase in tau 

phosphorylation levels. In fact, during neuroinflammation, microglial cells secrete 

IL-6 to activate kinases, such as cyclin-dependent kinase 5 (Cdk5), p38-MAPK, 

and GSK3β producing abnormal tau hyperphosphorylation[127].  

Peripheral inflammatory cells also play a crucial role in the onset and progression 

of the disease, infiltrating the CNS through a dysfunctional BBB[128]. Circulating 

leukocyte subpopulations were identified in the brains of patients with AD and in 

animal models of AD. Although their role in the disease progression remains 

unclear, both CD4+ and CD8+ T cells were found to adhere to the vascular 

endothelium and migrate into the parenchyma. Our unpublished data also reveal 

that lymphocytes infiltrate the brain during AD progression: at early disease stages, 

the frequency of CD8+ T cells was higher compared to CD4+ cells in 3xTg-AD 

brain, showing a progressive reduction with disease progression, whereas 
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conversely, CD4+ T cells gradually increased with time, showing a peak of 

accumulation at 9 months of age. In addition to lymphocytes, neutrophils, which 

are the most abundant leukocytes in the human circulation, adhere to cerebral 

vessels and migrate into the AD brain. They migrate into the parenchyma of mouse 

models of AD at the onset of memory deficit, secreting IL-17 and producing NETs, 

which may harm endothelial and neural cells, contributing to AD pathogenesis and 

cognitive impairment. Integrin LFA-1 is the primary adhesion molecule responsible 

for the intravascular adhesion and intraparenchymal migration of neutrophils in the 

brains of 3xTg-AD mice[65].  

Recently, we demonstrated that circulating CD4+ T cells as well as a significant 

proportion of blood CD8+ T cells expressed higher levels of VLA-4 integrin 

compared to wild type animals, suggesting a role for this integrin in the peripheral 

leukocyte recruitment in the AD brain. Indeed, our recent studies demonstrated that 

blockade of alpha4 integrins leads to improved memory and reduced 

neuropathology in 3xTg-AD mice [113]. Interestingly, plasma samples from AD 

patients show higher levels of soluble VCAM-1, the endothelial counterligand of 

VLA-4, expression than controls, suggesting a role for VLA-4 and VCAM-1 

adhesion molecules in lymphocyte migration during AD[113]. In addition, 

unpublished data from our laboratory demonstrated the presence of an activated  

circulating T cell population, which highly expresses LFA-1 integrin and showed 

that LFA-1 depletion led to an amelioration of cognitive functions and 

neuropathological hallmarks of the disease in 3xTg-AD animals. Therefore, VLA-

4 and LFA-1 integrins may represent key molecular pathways for leukocyte 

adhesion on brain endothelial cells and migration into the CNS during AD. 

  

3. 2. THE 3xTg-AD MOUSE MODEL OF AD 

The triple transgenic mouse (3xTg-AD) generated by the group of Dr. La Ferla is 

among the most commonly used AD models reproducing the main features of 

human AD pathology[129]. Indeed,  3xTg-AD model develops an age-related 

progressive neuropathological phenotype that includes both Aβ plaques and tau 
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pathology due to the expression of three human mutant genes, observed in AD 

familial patients: PS1 (M146V), βAPP (Swedish), and tau (P301L)[130].  

From a pathological point of view, in 3xTg-AD mice, the Aβ deposits initially 

accumulate intracellularly at 6 months of age and become marked at 12 months in 

cortical regions and hippocampus. By 15 months, Aβ plaques appear in posterior 

cortical regions such as the occipital and parietal cortices. Although tau 

hyperphosphorylation is present during early disease stages, NFTs are evident at 

12-18 months of age in the hippocampus, then they progress to the cortex, 

suggesting that their formation may be influenced by the generation of Aβ[131]. At 

6 months of age, 3xTg-AD mice show neuropathological changes and cognitive 

deficits, including short-term as well as long-term memory deficits[131]. 
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MATHERIALS and METHODS 

1. REAGENTS  

The following fluorescence-labelled antibodies were purchased from the indicated 

commercial sources: anti-mouse CD45 (BD HorizonTM clone 30-F11), Ly6G 

(Biologend clone 1A8), B220 (BD PharmigenTM clone RA3-6B2), CD4 (BD 

PharmigenTM cloneRM4-5), CD8 (Biolegend clone 53-6-7), CD3 (BD HorizonTM 

clone 17A2), GD (BD HorizonTM clone GL3). We also used 7-AAD Viability 

Staining Solution from Biolegend. 

Anti-mouse ionized calcium-binding adaptor molecule-1 antibody (Iba-1) was 

purchased from Wako, anti-human Aβ (clone 6E10) from Covance, anti-human 

total tau (clone HT7), and phospho-tau Thr231 (clone AT180) from Thermo Fisher. 

Biotinylated secondary antibodies were purchased from Sigma-Aldrich. 

SMARTpool ON-TARGET siRNAs were purchased from Dharmacon, whereas 

human T Cell NucleofectorTM Kit (Cat. No VPA-1002) from Lonza Bioscience. We 

also anti-human PAD2 (ab183194) from Abcam.  

BB-Cl-amidine and GSK199 were gently provided by P. Thompson, Professor and 

Director of Chemical Biology at the University of Massachusetts Medical School-

Worcester MA. 

Human CXCL12, murine ICAM-1 and VCAM-1, and TNF-a were obtained from 

R&D Systems, human plasma fibrinogen (AF 3879-1G) from Sigma-Aldrich. 

We bought the oligomeric Ab1-42 from GenScript. Monoclonal anti-human KIM127 

and IB4 (b2 integrin) were purchased from ATCC. We also used anti-human VLA-

4 (BD PharmigenTM  555503) and CXCR4 (Biolgend 1245). Anti-mouse IgG-FITC 

were obtained from Sigma-Aldrich (F2012). 

 

2. PRIMARY HUMAN CELLS 

Human studies were approved by the University of Verona Ethics Committee. 

Neutrophils and lymphocytes were isolated from peripheral blood of healthy donors 

by discontinuous density Ficoll gradient separation.  
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After erythrocyte sedimentation (4:1 ratio of blood to 4% dextran), the neutrophil 

cell suspension was washed in Phosphate-Buffered Saline (PBS) 1X and 

erythrocyte lysis was performed (0.2% hypotonic NaCl solution followed by 1.2 % 

isotonic NaCl solution). After gradient sedimentation, mononuclear cell fraction 

was loaded onto a discontinuous Percoll gradient in order to collect human 

lymphocytes.  

 

3. PRIMARY MURINE CELLS 

Neutrophils were isolated from the bone marrow of 3 months of age C57BL/6J 

mice. Tibias and femurs were surgically removed, and bone marrow cells were 

rapidly flushed out of the bones with Hank's Balanced Salt Solution (HBSS) 1X 

supplemented with 0.1% Bovine Serum Albumin (BSA). After erythrocyte lysis (as 

explained in paragraph n2), cells were stratified onto discontinues Percoll gradient. 

After 30min of centrifugation, the neutrophil ring was collected. 

Lymphocytes were isolated from draining lymph nodes of 3 months of age 

C57BL/6J mice. Lymph nodes were removed, transferred onto a 70-μm cell strainer 

fitted on a 50mL tube, and gently smashed by using a syringe plunger. The resulting 

cell suspension was finally washed in PBS 1X. 

 

4. CELL TREATMENT 

5 × 106 of neutrophils and lymphocytes, isolated as described above, were 

resuspended in 1mL of standard adhesion buffer (PBS 1X + 10% FBS + Ca2+ 1 mM 

+ Mg2+ 1 mM, pH 7.2). Then, cells were incubated with BB-Cl-amidine or GSK199 

(1 µM -5 µM -10 µM - 20 µM) for 30min at 37°C. Control and vehicle samples 

were treated with DMSO (Sigma-Aldrich d8418).  
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5. VIABILITY ASSAY 

Vybrant™ DyeCycle™ Violet/SYTOX™ AADvanced™ Apoptosis Kit 

(Invitrogen) was used to identify viable cell fraction. 500.000 cells were 

resuspended in 100µL of antibody mix (998µL of HBSS 1X, 1µL of Vybrant™, 

and 1µL of SYTOX™) and incubated for 15min protecting from light. 

Fluorescence emission at 440 nm and 660 nm was finally measured by 

MACSQuant Analyzer (Miltenyi Biotec). 

 

6. STATIC ADHESION ASSAY 

Neutrophils or lymphocytes were resuspended in standard adhesion buffer at a final 

concentration of 5 × 106/mL.  Adhesion assays were performed on 12-well glass 

slides coated with 20 µL of ICAM-1 or VCAM-1 (µg/mL), or with 20 µL of 

fibrinogen (1mg/mL). 20 μl of cell suspension were added to the wells and 

stimulated with 5 μl of chemokine, as suggested by A. Montresor et al., 2018[116]. 

Lymphocytes were stimulated 3min with CXCL12 (200 nM or 500nM for human 

or murine cells, respectively). PMN were stimulated for 60 sec with fMLP (1nM 

for human cells; 1µM for murine cells) or oligomeric Ab1-42 ( 5µM or 7µM for 

human or murine neutrophils). Moreover, human neutrophils were stimulated with 

10ng/mL TNF-a for 15min. After rapid washing in ice-cold PBS 1X, adherent cells 

were fixed in glutaraldehyde 1.5% (V/V) and counted by ImageJ-assisted 

enumeration. 

 

7. siRNA TECHNIQUES  

PAD2 targeting mRNA silencing was performed by AMAXA nucleofector, 

following the manufacturer's instructions. 5 × 106 per sample of human 

lymphocytes were resuspended in 100µL of Nucleofector Solution combined with 

20nM of SmartPool ON-TARGET plus siRNAs. The cell suspension was first 

transferred into certified cuvettes and then into the Nucleofector Cuvette Holder. 
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U-15 Nucleofector Program was chosen. The efficacy of gene silencing was 

assessed after 12 hours by immunoblotting. 

 

8. IMMUNOBLOTTING 

Cells were lysed in ice-cold RIPA lysis buffer supplemented with a complete 

protease inhibitor cocktail (Roche). Bradford protein assay (Bio-Rad) was 

performed in order to quantify protein content. An equal amount of proteins was 

separated through 10% SDS-PAGE electrophoresis. After protein transfer from the 

gel to a nitrocellulose membrane, the unspecific binding was blocked with 3% 

bovine serum albumin (BSA), and after 1 hour of incubation, the filter was stained 

by anti-human PAD2 Ab (1:200) overnight. HRP-coupled secondary antibody (GE 

Healthcare Life Science) was added after rapid membrane washing with PBS 1X + 

0,2% Tween 20. Finally, immunoreactive bands were visualized by the ECL 

detection kit (Merck Millipore), acquired by ImageQuant Las4000 (GE Healthcare 

Life Science), and quantified by densitometric analysis (Quantity One, Bio-Rad). 

 

9. MEASUREMENT OF LFA-1 AFFINITY STATES 

Human lymphocytes were resuspended in standard adhesion buffer at the 

concentration of 2 x 106/mL and briefly (3min) treated with 10 μg/mL of KIM127 

antibody, as reported by A. Montresor at al., 2018[116]. 10min of 50nM CXCL12 

incubation followed at 37°C. After rapid washing, cells were stained by anti-mouse 

FITC secondary polyclonal antibody and analyzed by MACSQuant Analyzer 

(Miltenyi Biotec). 

 

10. CXCR4, VLA-4, AND LFA-1 PROTEIN EXPRESSION 

Human primary lymphocytes were treated with PAD inhibitors (see paragraph n.4). 

After 30 min of compound incubation, 500.000 cells were stained with the 
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following PE-conjugated antibodies: anti-human CXCR4 (1:200) and VLA-4 

(1:200) for 20min at RT, protecting cells from light.  

500.000 cells were also labelled with anti-human IB4 (1:200). After 20 min of 

staining with the primary antibody, lymphocytes were washed and incubated with 

anti-mouse FITC-conjugated secondary antibody (1:200) for 20min. Finally, 

samples were analyzed by MACSQuant Analyzer (Miltenyi Biotec).  
 

11. MICE 

3xTg-AD mice (MMRRC stock no. 34830-JAX) and wild-type control 

B6129SF2/J (stock no. 101045) were purchased from the Jackson Laboratory. 

3xTg-AD mouse expresses the human mutant APP and PS1M146V, associated 

with familial AD, and the TauP301L allele. Therefore, it develops both amyloid 

and tau pathologies.  

Animals were housed in pathogen-free and climate-controlled conditions, provided 

with food and water ad libitum. The experiments were conducted following the 

principles of the NIH Guide for the Use and Care of Laboratory Animals and the 

European Community Council.  

 

12. TREATMENT OF MICE 

6 months of age 3xTg-AD and B6129SF2/J were given a daily i.p. injection with 5 

mg/Kg of BB-Cl-amidine or 30 mg/Kg of GSK199, while B6129SF2/J and 3xTg-

AD control mice were treated with vehicle (DMSO). We studied the effects of drugs 

both in males and females, approximately 15 animals per group.  Treatment was 

continued for 4 weeks, and then mice were left untouched for one month, allowing 

them to rest after injection stress.  
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13. BEHAVIOURAL ASSESSMENTS  

Before proceeding with behavioral tests, mice were selected on the basis of precise 

criteria. We excluded mice with body weight higher than 40g or with evident 

physical and cutaneous defects. Hindlimb clasping and Ledge test were performed 

as pre-cognitive tests in order to identify general deficits which could affect task 

performance, such as alterations in vestibular function.  

Behavioral tests were performed during the light phase of the circadian cycle. We 

started from the Y-maze to conclude with the most stressful Contextual Fear 

Conditioning (CFC), reducing all possible stress-related variables. We conducted 

cognitive tests, as we previously illustrated by our group[65]. Experiments and 

analyses were conducted in a random and blinded fashion with respect to genotype 

and treatment.  

At the end of behavioral tests, 5 mice per group were intracardially perfused by 

cold 4% paraformaldehyde (PFA) in order to collect brains and perform 

neuropathological analysis. 5 animals per group were intracardially perfused by 

cold PBS 1X, and brains were next digested for the isolation of infiltrating 

leukocytes. The remaining animal organs were fixed in 4% PFA or perfused in PBS 

1X and stocked for future studies of immunohistochemical and proteomic analysis, 

respectively. 

 

14. PRE-COGNITIVE TESTS  

Ledge test was performed to directly measure animal coordination[132]. The mouse 

was observed walking along the cage ledge and lowering itself into its cage. A score 

of 0 corresponded to a mouse that walked without losing its equilibrium and 

lowered itself into the cage using its pawns. If the mouse lost its balance but 

coordinately moved, the score assigned was 1. It received 2 points when it did not 

use its pawns to descend into the cage. If the animal refused to move or fell off the 

ledge while walking, the assessed score was 3.  

Hindlimb clasping tested neurodegeneration progression[132]. The mouse was 

grasped from its tail and lift away for at least 10sec, observing its hindlimbs. If 
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these were away from the abdomen, it was assigned a score of 0. It received 1 when 

one hindlimb was retracted toward the abdomen. If both hindlimbs were partially 

retracted, the score was 2, while it was 3 in case of hindlimbs totally retracted for 

more than 5sec. 

Both the tests were performed four times, calculating finally an average score. 

 

15. SPONTANEOUS ALTERNATION Y-MAZE TEST  

Y Maze Spontaneous Alternation is a behavioral test that allows researchers to 

assess hippocampus-dependent spatial working memory in rodents. Each mouse 

was placed in the center of a symmetrical Y-maze equipped with three arms (A, B, 

and C), collocated at 120° angle from each other.  The animal had 8min to freely 

explore the environment and enter the arms of the maze. The sequence and the total 

number of arm entrances were recorded. The entrance into one arm was assessed 

when murine pawns were entirely inside it. The alternation percentage was 

calculated based on the entries into the three arms in overlapping triple sets (e.g., 

ABC but not ABA). To reduce odor cue influences, the maze was cleaned with 70% 

ethanol.  

 

16. CONTEXTUAL FEAR CONDITIONING TEST 

CFC was performed in order to evaluate rodent fear learning and memory. Mice 

were trained and tested on two consecutive days. During training, each animal was 

placed in a 30 × 24 × 21 chamber (Ugo Basile) for 2min, providing a white 

illuminating and a 2 Hz tone stimulus. The sound terminated with a 2sec foot shock 

(1.5 mA). These stimuli were repeated twice at 2min intervals. After 20 hours of 

resting, mice returned to the chamber for the contextual testing, with the same white 

cage illumination but without tone or shock.  During the 5min session, ANY-maze 

software recorded mouse freezing behavior, which means a lack of movement. 

After 2 hours of resting, the fear memory test was performed. The chamber was 

provided with a colored Plexiglas sheet, black and white plastic wall, red light, and 
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novel odor in order to create an unexplored environment, where mice were exposed 

only to the auditory cue. The freezing response was then scored. Fear learning and 

memory was finally calculated by subtracting the percentage of freezing obtained 

in the last test session from that recorded in the contextual environment.  

 

17. INTRACARDIAL PERFUSION 

Mice were exposed to isoflurane inhalation, and once anesthetized, they were 

placed on a surgical support, flatting on their backs. After stretching and pinning 

the paws, skin and ribs were cut to make the heart accessible. The right atrium was 

incised, while a butterfly needle connected to a peristaltic pump (Minipuls3 

GILSON®) was inserted in the left ventricle. The pump injected 25mL of PBS 1X 

supplemented with 1mM Ca2+/Mg2+ (buffer solution) into the systemic circulation. 

Once all the blood was washed away, the buffer solution was replaced with 25mL 

of cold 4% PFA in order to fix the organs.  

 

18. HISTOPATHOLOGICAL ANALYSIS 

PFA perfused brains were collected, overnight fixed in 4% PFA, and stocked in 

cryoprotectant solution (PBS 1X containing 30% sucrose and 7 mM sodium azide). 

The organs were mounted through optimum cutting temperature (OCT) embedding 

compound (DDK Italia) and cut into 30μm coronal sections.  

Tissue sections were treated with a specific antigen retrieval solution using 70% 

formic acid for Ab staining and with a pre-heated 10 mM sodium citrate buffer (pH 

8.5) for tau or microglia staining. Free floating brain slices were incubated in 

blocking solution with (2% normal goat serum and 0.4% Triton X-100) for 1 hour 

at RT and then treated overnight with the following primary antibodies: anti-mouse 

Iba-1(1:500), anti-human Aβ (1:1000) or anti-human total and phospho-tau 

antibody (1:200). After washing with PBS 1X + 0.05% Tween-20 for 10 minutes, 

3% H2O2 was added to the wells at RT to block endogenous peroxidase. Thereafter, 

the slices were washed and then incubated with biotinylated goat anti-rabbit or goat 
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anti-mouse secondary antibodies (1:200). Immunoreactivity was visualized using 

the VECTASTAIN ABC kit (Vector) and Vector NovaRED (Vector) as 

chromogen. Finally, the sections were washed with distilled water, transferred to 

glass slides, dehydrated, and mounted with Eukitt mounting medium (Sigma-

Aldrich).  

 

19. MICROGLIA, Aβ AND TAU QUANTIFICATION 

Images were blindly acquired with the Axio Imager Z2 microscope (Zeiss). The 

areas covered by Iba-1+ microglial cells, Aβ deposits, total tau, and phospho-tau 

positive neurons were blindly quantified using ImageJ v1.32j software. Sections 

were acquired from the anterior hippocampus through the bregma – 2.9 mm at an 

intersection interval of 500 μm (every fourth section) – in order to analyze the whole 

area of the cortex and the hippocampus.  

 

20. ISOLATION OF BRAIN INFILTRATING LEUKOCYTES 

Mouse perfused brains were collected and homogenized by Gentle MACSTM Octo 

Dissociator (Miltenyi Biotec). Tissue was digested with 40 U/mL of DNaseI 

(Thermo Fisher) and 1 mg/mL collagenase (Sigma) at 37°C for 45min. After 

washing and centrifugation, the pellet was resuspended in 30% Percoll. Cell 

suspension was filtered through a 70-μm cell strainer and loaded onto 70% Percoll. 

Leukocytes were isolated at the interface of the discontinuous density gradient, 

washed and labelled with the following anti-mouse antibodies (1µL in 100µL of 

PBS 1X+10% FBS): CD45 BV510, Ly6G FITC, B220 APC, CD4 PE-Cy7, CD8 

APC-Cy7, CD3 BV786, GD PE-CF594 and 7AAD PERCPCY5.5.   
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21. FLOW CYTOMETRY INSTRUMENTATION 

Cytofluorimetric analysis of the methods described in the paragraphs n 5, 9 and 10, 

were performed using MACSQuant Analyzer (Miltenyi Biotec). Brain infiltrating 

leukocytes, isolated as illustrated in the previous section, were acquired by BD LSR 

Fortessa (BD Biosciences). These samples were analyzed using a spillover-

compensated matrix. Leukocytes were individually stained (single-stained) for each 

marker used and cytometer laser voltages were adjusted to obtain a good separation 

between the negative and positive peaks (highest stain index) for each 

fluorochrome. The compensation matrix was then calculated by adjusting the 

median fluorescence intensity of each fluorochrome in the remaining channels to 

that of the negative peak. The optic baseline of the instrument was calculated and 

applied before each experiment using the cytometer setup and tracking (CST) beads 

to achieve optimal reproducibility between experiments. Post hoc analysis of the 

data, including cell percentages, geometric mean (GEO MEAN) and mean 

fluorescence intensity (MFI) were obtained using FlowJo software. 

 

22. STATISTICAL ANALYSIS 

All data were represented using Prism 6 (GraphPad Software), which was also used 

for statistical analysis. A two-tailed Student's t-test was used for the statistical 

comparison of two samples. One-way analysis of variance (ANOVA) followed by 

Dunnett’s multiple comparisons test was used to determine differences in means 

among multiple comparisons. Quantitative data are shown as mean values ± 

standard error (SEM).  

P < 0.05 was considered statistically significant.  
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AIM OF THE STUDY 

Citrullination is a post-translation protein modification in which PADs convert the 

arginine into a citrulline residue in a calcium-dependent manner. The result is a 

shift of the protein charge, from positive to neutral, that could modulate several 

physiological and pathological processes by affecting protein-protein interactions, 

hydrogen bond formation, protein structure or protein denaturation. Immune cells 

selectively express the isoforms 2 and 4, which are physiologically involved in 

inflammatory responses through NET formation. Hyperactivation of these two 

PAD members correlates with a dysregulation in ET release and clearance, leading 

to cell toxicity and immunogenic reactions.  

PAD-catalyzed citrullination is involved in several inflammatory and autoimmune 

disorders such as RA, UC, SLE, MS and AD.  Pharmacological PAD inhibition has 

brought beneficial therapeutic effects for these pathologies, resulting in an 

amelioration of the general inflammation and reducing the immune cell recruitment 

to the inflamed tissue. As a direct involvement of PAD2 and 4 in immune cell 

trafficking has not yet been investigated, the aim of this project was to study the 

role of PADs in neutrophil and lymphocyte adhesion under physiological and 

pathological conditions and determine the effect of PAD inhibition on brain 

neuroinflammation in a mouse model of AD.  
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RESULTS 

1. CELL TREATMENT WITH BB-CL-AMIDINE OR GSK199 IS 

NOT CYTOTOXIC 

Previous studies have demonstrated that PAD2 and PAD4 inhibitors significantly 

reduced leukocyte infiltration in inflammatory diseases[57, 78, 98, 106]. However, how 

these isoforms directly affect immune cell trafficking in the context of 

inflammation has not yet been investigated. To address the hypothesis that 

leukocyte treatment with PAD inhibitors could impair leukocyte adhesiveness, we 

firstly tested the cytotoxic effect of the drugs. Human neutrophils and lymphocytes 

were treated with increasing concentrations of BB-Cl-amidine, a pan PAD 

inhibitor, and GSK199, which selectively blocks PAD4 catalytic activity. 

Vybrant/Sytox staining, followed by FACS analysis, was performed in order to 

quantified cell viable fraction. As it is reported in Fig. 19, PAD blocking did not 

induce apoptotic or necrotic effects since no statistical differences were found 

between treated and untreated leukocytes in terms of cell viability. We performed 

the same viability assays on treated primary murine leukocytes, resulting in 

unchanged levels of cell survival after PAD inhibition (data not shown). 
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2. PADs MEDIATE NEUTROPHIL b2 INTEGRIN-DEPENDENT 

ADHESION 

Proinflammatory chemokines and other chemoattractants activate b2 and b1 

integrins to an extended conformation with high binding affinity for their 

endothelial ligands. Neutrophils express b2 integrins, which binds ICAM members 

and fibrinogen extracellular matrix component. In order to study the role of 

Fig. 19. PAD inhibitor treated leukocytes maintain the same cell survival levels of 
untreated cells. (a-b) FACS analysis showing the viability percentage of human a) 
neutrophils and b) lymphocytes after PAD blocking. Treated cells were incubated with 
indicated µM inhibitor concentrations, whereas DMSO (vehicle) was added to controls 
(ctrl) at the same µM dose present in 20µM condition. After 15min of Vybrant/Sytox dye 
staining, fluorescence emission at 440 nm and 660nm was measured. Data represent mean 
± SEM of 3 independent experiments. 

a) 

b) 
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citrullination in immune cell recruitment, we investigated the effects of PAD 

inhibitors on b2 integrin-dependent neutrophil adhesion. 

Static adhesion assay results, illustrated in Fig. 20, showed that PAD inhibition 

significantly impaired the capability of neutrophils to bind the integrin-ligand 

fibrinogen upon fMLP chemokine stimulus. Interestingly, BB-Cl-amidine, which 

inhibits both PAD2 and PAD4, induced a stronger blockade of neutrophil adhesion 

compared to PAD4 specific inhibition induced by GSK199, suggesting a potential 

additive effect between PAD2 and PAD4 isoforms. The comparison between 

human and murine data revealed that the drugs worked efficiently on both in human 

and mouse cells, suggesting PADs in leukocyte adhesion may be conserved in 

mammals.     

Fig. 20. fMLP-induced neutrophil adhesion is impaired after BB-Cl-amidine or 
GSK199 cell treatment.  
(a-b) Static adhesion assays showing the percentage of a) human and b) murine adherent 
neutrophils after PAD blocking treatment. Cells were spotted in 12-well glass slides coated 
with human plasma fibrinogen and were stimulated for 1min with 1nM (human) or 1 µM 
(murine) fMLP chemokine. Adherent cell number is reported as mean values of 4 
independent experiments; error bars represent SEM. (* P < 0.05; Mann-Whitney test)  

a)  

b)           
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To further investigate the role of PADs in adhesion, neutrophils pre-treated with 

PAD inhibitors were exposed to proinflammatory TNF-a cytokine in order to 

induce a neutrophil integrin transition from basal to primed state, which was 

reported to enhance adhesion molecule expression and to facilitate the migration of 

circulating neutrophils[133] (Fig. 21). The results confirmed our findings from Fig. 

20 demonstrating a role for PAD2 and PAD4 in integrin-dependent neutrophil 

adhesion. Indeed, upon proinflammatory cytokine activation, both BB-Cl-amidine 

and GSK199 inhibited integrin binding to fibrinogen and decreased the percentage 

of adherent cells compared to untreated control cells.  

 

3. PADs MEDIATE LYMPHOCYTE INTEGRIN-DEPENDENT 

ADHESION  

We next investigated whether PADs control adhesion also in human and murine T-

lymphocytes. Lymphocyte firm adhesion in vivo is mainly mediated by VLA-4 and 

LFA-1 integrins, which belong to b1 and  b2 subtypes, respectively. CXCL12 is 

among the most important inducer of integrin ligand binding in lymphocytes. VLA-

4 interacts with the endothelial counterpart VCAM-1, whereas LFA-1 shows high 

binding affinity for the ICAM-1 receptor. We performed static adhesion assays to 

Fig. 21. BB-Cl-amidine or GSK199 inhibit human neutrophil adhesiveness after TNF-
a priming.  
Static adhesion assays representing the inhibitory effects of PAD blocking on the 
percentage of adherent human neutrophils. Cells were pre-incubated with the indicated µM 
drug concentrations for 15min and stimulated with 10ng/mL of human TNF- a. 
Spontaneous cell adhesion was recorded after 3 min. Adherent cell number is reported as 
mean values of 3 independent experiments; error bars represent SEM.  (* P < 0.05; Mann-
Whitney test) 
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evaluate the effect of BB-Cl-amidine and GSK199 inhibitors on CXCL12-triggered 

rapid cell adhesion. Pan PAD blockade led to a strong dose-dependent decrease in 

b1 and b2 integrin-dependent adhesion of human T cells on VCAM-1 and ICAM-

1 endothelial ligands, respectively (Fig. 22a). PAD4 specific inhibitor GSK199 also 

impaired b2 integrin-dependent binding to ICAM-1, although its effect was slightly 

less prominent comparing to BB-Cl-amidine. Regarding the adhesion on VCAM-1 

adhesion molecule, we observed a dose-dependent decrease trend using GSK199 

and the effect was clearly less pronounced comparing with BB-Cl-amidine (Fig. 

22b). Our human data were confirmed by results showing that PAD inhibition also 

blocks murine T cell adhesion, with BB-Cl-amidine having a stronger effect that 

GSK199 (Fig. 22c). Together, our data show that PAD2 and PAD4 have a role in 

integrin-dependent adhesion in neutrophils and lymphocytes and that PAD2 is the 

predominant PAD isoform controlling rapid integrin activation triggered by 

chemokines. 
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a) 

b) 

c) 

ICAM-1 coating  VCAM-1 coating  

ICAM-1 coating  VCAM-1 coating  

Fig. 22. Lymphocyte PAD blockade impairs integrin-dependent binding to endothelial 
adhesion molecules. 
(a-c) Static adhesion assays representing PAD regulation of lymphocyte firm adhesion. a, 
b) Human primary cells were treated with indicated µM concentrations of BB-Cl-amidine 
and GSK199, or not (ctrl). After 30min of incubation, lymphocytes were spotted on 12-well 
glass slides coated with human ICAM-1 or VCAM-1 and were stimulated with 200nM 
CXCL12 for 3min. c) Static adhesion assays representing the inhibitory effects of PAD 
blocking on the percentage of murine T lymphocytes adhering on ICAM-1. Cells were 
stimulated with 500nM CXCL12 for 3min. Adherent cell number is reported as mean values 
of 5 independent experiments; error bars represent SEM.  (* P < 0.05; Mann-Whitney test) 
 



 
 

62 

4. PAD2 INHIBITION USING siRNAs LEADS TO RAPID 

ADHESION BLOCKADE IN VITRO  

BB-CL-amidine and GSK199 are described as specific inhibitors of PAD 

catalytic activity. However, because they may potentially have non-specific 

effects, we next seek to confirmed the data obtained above by performing 

experiments using mRNA silencing of PADs. Considering that we could not 

study the effect of the single PAD2 isoform, since only pan PAD and PAD4 

inhibitors were available, we transfected human lymphocytes with a pool of 

four different siRNAs specific for PAD2 mRNA.  

a) b) 

Fig. 23. PAD2 siRNAs mediate efficient and safe protein downregulation in human 
lymphocytes. 
(a-c) Cells were electroporated with a pool of four off-target scrambles or PAD2 specific 
siRNAs and kept in culture for 12h. a) PAD2 and actin immunoreactive bands are shown. 
b) Densitometric quantification of band intensity normalized to the actin (a). Mean values 
from 3 independent experiment are represented; Error bars express SEM (*P<0.05; Mann 
Whitney test). c) FACS analysis showing the viability percentage of human lymphocytes 
after electroporation (following by scrambled or PAD2 siRNA introduction) or not (ctrl). 
Cell viability was measured by Vybrant/Sytox viable dyes. Data represent mean ± SEM 
of 3 independent experiments. 
  

c) 
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The efficacy of gene expression silencing was assessed at 12 h after transfection by 

immunoblotting (Fig. 23a-b). Before evaluating the functional effect of mRNA 

silencing in static adhesion assays, we monitored cell survival following 

electroporation to exclude a significant effect on cell viability due to the application 

of an electric field. As shown in Fig. 23c, the electroporation was safe, as it 

maintained the survival at comparable levels of non-electroporated cells used as 

control. Moreover, we compared the viability results obtained from a pool of non-

targeting scrambled siRNAs with those from PAD2-targeting siRNAs. These 

samples retained a similar percentage of live cells, demonstrating that PAD2 

silencing did not alter cellular parameters, such as cell viability, independent of the 

mRNA target. 

 

 

 

 

 

Fig. 24. CXCL12-dependent rapid lymphocyte adhesion is reduced after PAD2 
targeting using siRNA and electroporation. 
Static adhesion assays were performed on 12-well glass slides coated with human ICAM-
1(left panel) and VCAM-1 (left panel). After 12h cell transfection, lymphocytes designed to 
drug treatment were incubated with 20µM GSK199. After half an hour, all the indicated 
samples were stimulated with 200nM CXCL-12 for 3min. Adherent cell number is reported 
as mean values of 3 independent experiments; error bars represent SEM.   
(* P < 0.05; Mann-Whitney test) 
 
 
 

ICAM-1 coating    VCAM-1 coating   
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Next, we performed adhesion assays and our data demonstrated that human 

lymphocytes showing reduced expression of PAD2 protein, displayed an impaired 

CXCL12-triggered rapid adhesion to both ICAM-1 and VCAM-1 integrin ligands 

in vitro (Fig. 24).  

Moreover, we pre-treated siRNA transfected cells with GSK199 in order to evaluate 

a potential additive effect between PAD2 and PAD4, previously suggested by the 

stronger inhibitory effect of BB-Cl-amidine. The results confirmed that the two 

isoforms cooperated in the induction of LFA-1-dependent lymphocytes adhesion to 

ICAM-1 since PAD2 silencing performed less efficiently than GSK199 pre-treated 

transfected cells. Moreover, PAD2 silencing supported the pharmacological results 

that PAD4 catalytic activity is not required in VLA-4/b1-dependent adhesion since 

GSK199 had no significant effect on adhesion in PAD2 silenced cells.   

 

5. PADs MEDIATE INSIDE-OUT ADHESION PATHWAY  

The data shown above demonstrate that PADs control leukocyte b1 and b2 integrin-

dependent adhesion, suggesting that these enzymes are involved in an activating 

intracellular signaling pathway common between these two integrins. To further 

characterize PADs role in adhesion triggering, we studied the effect of PAD 

blockade on integrin conformational changes triggered by CXCL12, focusing on 

LFA-1 integrin.  

LFA-1 is the best-characterized integrin undergoing structural conformational 

changes consistent with a progressive affinity increase. Notably, we found that BB-

Cl-amidine treatment completely prevented LFA-1 transition to an extended 

conformation in human lymphocytes, specifically evidenced by KIM127 Ab 

binding, detecting LFA-1 activation epitope corresponding to the intermediate 

affinity state (Fig. 25).  
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GSK199 also inhibited integrin conformational changes, although, as expected, less 

efficiently, in line with the results previously shown in Fig. 4 and 6, and suggesting 

a less prominent role for PAD4 in integrin affinity induction. Therefore, KIM127 

mAb staining revealed that PADs participate in the signaling cascade controlling 

integrin activation and indicated that PAD2 and PAD4 cooperate to induce rapid 

integrin affinity increase leading to leukocyte adhesion. 
 

6. PAD INHIBITION DOES NOT ALTER INTEGRIN EXPRESSION  

The intracellular inside-out signaling starts from chemokine receptor engagement, 

which in turn triggers downstream GPCR-mediated signaling that proceeds in a 

cascade-like fashion, finally inducing integrin binding to endothelial adhesion 

molecules. To exclude the possibility that the effect of PAD blocking on integrin 

activation and leukocyte adhesion may be due to other cellular processes, such as 

decrease in  surface integrin expression, we next performed flow cytometry 

experiments. 

Fig. 25. PADs control the CXCL-12 induced LFA-1 intermediate affinity state. 
MAb KIM127 detection of LFA-1 affinity upregulation after PAD blocking is reported. 
Human lymphocytes were treated with indicated drug concentrations or not (ctrl) for 
30min. After half an hour, cells were incubated with 10 μg/mL of KIM127 for 3min and 
then stimulated for 10min with 50nM of CXCL12 at 37°C. Induction of intermediate state 
was finally quantified by FACS analysis. The result is reported as fold increase between 
resting (without adding chemokine) and CXCL12 stimulated cells. The values were finally 
normalizing on the expression level of untreated cells. Data represent mean ± SEM of 3 
independent experiments. * P <0.05; Ordinary one-way ANOVA test.  
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Our data showed that PAD inhibitors have no effect on integrin expression, 

confirming a direct role of PADs in the control of inside out pathways leading to 

integrin activation. Indeed, our data show comparable protein expression levels of 

chemokine receptor CXCR4, b2 and b1 integrins between treated and untreated 

cells, suggesting that adhesion and integrin conformational changes were not 

reduced by unspecific drug effects, but the inhibitory effects observed were due to 

interference with intracellular signalling pathways (Fig. 26).  

 

7. PADs CONTROL Ab1-42-DEPENDENT INTEGRIN ADHESION  

Our previous data showed that Ab1-42 triggers rapid integrin-dependent adhesion 

and integrin activation in neutrophils through GPCRs, particularly through the 

fMLP receptor[65]. Therefore, we next investigated whether PAD inhibitors are able 

to block neutrophil adhesion triggered by oligomeric Ab1-42 in in vitro adhesion 

assays [65].  

Fig. 26. CXCR4, LFA-1 and VLA-4 protein expression levels are retained after PAD 
blocking.  
(a-c) Quantitative flow-cytometry analysis of a) CXCR4, b) LFA-1 b2 and c) VLA-4 b1 
integrin in human T lymphocyte following treatment with BB-Cl-amidine and GSK199 or 
not (ctrl). For all the surface molecule receptors, the graphs show the percentage of the 
fluorescence geometric mean (GEO MEAN) normalized to the control. Error bars represent 
SEM of 3 independent experiments. 
 
 

a) b) c) 
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Our data show that, in static adhesion assays performed using both human and 

murine neutrophils, BB-Cl-amidine or GSK-199 treatment led to an impaired 

capability to bind b2 integrin ligand fibrinogen after Ab1-42 stimulus (Fig. 27), 

further confirming that PADs contribute to rapid integrin-dependent adhesion. BB-

Cl-amidine inhibitor performed better than GSK199, suggesting that both PAD 2 

and 4 control neutrophil adhesion in AD, potentially contributing to BBB damage 

and neuroinflammation in amyloid-rich areas.    

8. PAD INHIBITION IMPROVES MEMORY IN 3xTg-AD MICE 

Together, the results shown in this thesis demonstrate that PAD dependent 

citrullination is involved in leukocyte adhesion under physiopathological 

conditions. Indeed, pathological leukocyte recruitment plays a detrimental role in 

the pathogenesis of several inflammatory diseases[134]. Moreover, our previous 

a) 

b) 

Fig. 27. PAD blocking inhibits Ab-triggered neutrophil adhesion. 
(a-b) Static adhesion assays representing a) human and b) murine neutrophil adhesion to 
fibrinogen after BB-Cl-amidine and GSK199 treatments. Cells were incubated with 
indicated µM concentrations of drugs, or not (ctrl). After 30min of incubation, neutrophils 
were spotted on 12-well glass slides coated with human plasma fibrinogen and were 
stimulated with 5 µM of soluble oligomeric Ab1-42 for 1min. Adherent cell number is 
reported as mean values of 4 independent experiments; error bars represent SEM.  (* P < 
0.05; Mann-Whitney test) 
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studies have shown that blood-derived infiltrating leukocytes are present in the 

brains of AD patients and corresponding animal models, promoting 

neuroinflammation and cognitive impairment[65].  

In order to evaluate the potential therapeutic effect of PADs inhibition in the context 

of AD, we performed in vivo experiments treating 3xTg-AD mice with BB-Cl-

amidine or GSK199. We first treated 6 month old 3xTg-AD for 4 weeks by 

intraperitoneal injection of BB-Cl-amidine. Then mice were tested for Y-maze 

spontaneous alternation task and contextual fear conditioning (CFC) tests. Potential 

motor dysfunctions were excluded through hindlimb clasping and ledge pre-

cognitive tests (data not shown). 

We performed Y-maze behavioural test in order to evaluate rodent short-term 

memory dependent on cortical functions and hippocampal spatial reference. Each 

mouse was placed in the central area of a symmetrical Y-maze apparatus and 

allowed to explore the three arms (A, B and C) of the maze for 8 min, recording 

total arm entries and alternation score (percentage of alternation). All groups (Fig. 

28a) showed comparable total number of arm entries, which indicated normal 

exploratory behaviour. As expected, PAD inhibition rescued 3xTg-AD spatial 

working memory to similar levels of sex- and age-matched wild type animals, 

whereas untreated 3xTg-AD displayed a decreased percentage of spontaneous 

alternation due to their assessed memory impairment (Fig. 28b).   



 
 

69 

The same groups of mice were then tested for CFC test, in order to evaluate rodent 

associative memory correlated with thalamus, hippocampus and sensory cortex 

activity. After a short training period, when animals learned to associate a foot 

shock with a 2Hz sound stimulus, we recorded the percentage of freezing behaviour 

(lack of movement), upon tone stimulation without the electric foot shock. In line 

with the results obtained in the Y-maze test, 3xTg-AD mice following treatment 

with the PAD inhibitor, showed improved fear learning response and memory, 

assuming similar wild type littermate behaviour (Fig. 28c). 

Collectively, these results indicated that the dysregulation of PADs plays a 

detrimental role in AD pathology, suggesting their inhibition as a new therapeutic 

strategy to ameliorate memory deficit and cognitive decline.  

a) b) 

c) 

Fig. 28. AD inhibition reverse memory impairment and cognitive decline in 3xTg-AD 
mice at 6 months of age. 
(a-c) 3xTg-AD and B6129SF2/J mice were treated with 10mg/kg BB-Cl-amidine or DMSO 
vehicle (control).   
(a-b) Mice were tested in Y-maze test at 8 months of age. (a) Total entries in the maze 
arms is reported; (b) the percentage of spontaneous alternation was calculated based on the 
entries into the three arms in overlapping triple sets (e.g., ABC but not ABA). 
c) Histograms showing the percentage of CFC freezing response during the sound 
stimulation, calculated by using ANY-maze software. 
Error bars represents mean ± SEM of one representative experiment with 15 mice per 
condition. (* P < 0.05; Student’s t test). 
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9. PAD INHIBITION REDUCES NEUROPATHOLOGICAL 

HALLMARKS OF AD 

We also performed immunohistological analysis of 3xTg-AD brains following BB-

Cl-amidine treatment in order to identify the neuropathological changes induced by 

PAD2 and PAD4 inhibition. We sacrificed the mice after behavioural tests, and we 

quantified three AD neuropathological markers, such as accumulation of Aβ, 

hyperphosphorylated form of tau protein, and microglial activation in cerebral 

cortex and hippocampus (CA1 and subiculum area).  

Fig. 29. PAD inhibition reduces amyloid accumulation in 3xTg-AD mice. 
(a-b) 6E10 monoclonal antibody staining representing Aβ accumulation in hippocampal 
CA1 region of 3xTg-AD mouse brain. 3xTg-AD following vehicle injection (DMSO), 
showed high intracellular levels of Aβ deposition, whereas BB-Cl-amidine treated mice 
are characterized by lower Aβ intracellular levels. a) Qualitative immunohistochemistry 
images. Higher magnification is reported in lower left panels. Scale bars, 50µm. b) 
Quantitative immunohistochemistry analysis. Aβ positive neuron area expressed as 
pixels2/total examined area. Values are expressed as mean ± SEM of 3 brains. (* P < 0.05; 
Student’s t test). 
 

a) b) 
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Fig. 29a shows a remarkable difference in hippocampal Aβ deposition between 

treated and untreated 3xTg-AD and these qualitative observations were confirmed 

by the quantitative analysis, which determined the total area occupied by Aβ- 

positive neurons. Indeed, the histograms from Fig. 29b show a significant decrease 

of amyloid area in 3xTg-AD after PAD inhibition compared to the tissues obtained 

from sex- and age-matched animals treated with vehicle. We also performed 

neuropathological studies on brain-resident microglial cells. As that these immune 

cells change their morphology and number when activated in response to 

neuroinflammatory stimuli, we quantified cell shape and density by performing 

immunohistochemistry in 3xTg-AD mice following BB-Cl-amidine treatment or 

vehicle administration.  

 As shown in Fig. 30a, our data revealed a smaller and thinner ramification of 

microglial cells in mice treated with PAD inhibitor compared to control 3xTg-AD, 

consistent with a significant reduction of  microgliosis. The quantitative analysis 

a) 

b) 

Fig. 30. PAD inhibition ameliorates microgliosis in 3xTg-AD mice. 
(a-b) Iba-1 monoclonal antibody staining showing microglial activation in hippocampus 
(CA1 and subiculum) and cerebral cortex of 3xTg-AD mouse brain. a) Qualitative 
immunohistochemistry results representing cortical morphological and numerical changes 
of microglial cells in 3xTg-AD following vehicle or BB-Cl-amidine injection. Higher 
magnification is reported in lower left panels. Scale bars, 25µm. b) Quantitative 
immunohistochemistry analysis performed in hippocampal regions (upper panels) and in 
cerebral cortex (lower panels). Microglial area is expressed as pixels2/total examined area, 
while density is reported as number of Iba-1 positive cells/total examined area. Values are 
expressed as mean ± SEM of 3 brains. (* P < 0.05; Student’s t test). 
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confirmed a significant reduction in both cell area and density in hippocampus and 

cerebral cortex (Fig. 30b). 

Finally, we studied the effect of PAD inhibition on AD-related tau pathology 

through immunohistochemical analysis. We used an antibody that reacted with total 

tau protein and another which detected phosphorylated form of tau. Vehicle and 

BB-Cl-amidine treated mice showed comparable levels of hippocampal total tau 

protein, as illustrated in Fig. 31a. Notably, as shown in Fig. 31b-c, our data indicate 

a significant difference in hippocampal tau phosphorylation levels, which were 

lower in mice treated with PAD inhibitor compared to animals injected with 

vehicle.  

  

Collectively, our date indicate that PAD dysregulation has a detrimental role in AD, 

and that the therapeutic blockade of these enzymes reduces AD inflammatory 

Fig. 31. BB-Cl-amidine improves tau pathology in 3xTg-AD mice. 
a) Representative images of hippocampal CA1 region following staining with AT180 
antibody, detecting phosphorylated tau protein. Higher magnification is reported in lower 
panels. Scale bars, 50µm. b) Histograms showing comparable levels of total tau protein 
expression between vehicle and BB-Cl-amidine treated animals. c) Quantitative analysis of 
phosphorylated tau expressing cells in PAD inhibitor treated and control mice.  
(a, c) The area of total tau expressing cells is reported as pixel2/total examined area. Values 
are expressed as mean ± SEM of 3 immunohistochemical acquisitions. (* P < 0.05; Student’s 
t test).  

b) 

c)
) 

a)
) 
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events such as microglial activation, and mitigates neuropathological changes, 

including Aβ accumulation and tau protein phosphorylation. 

 

10. THERAPEUTIC PAD INHIBITION REDUCES LEUKOCYTE 

MIGRATION INTO THE BRAIN OF 3xTg-AD MICE 

AD animal models are characterized by infiltrating immune cells, adhering on brain 

vessels, and migrating into the parenchyma, where they contribute to disease 

pathogenesis, exacerbating neuroinflammation triggered by glial cells and Aβ 

accumulation and tau hyperphosphorylation.  We have shown above that PAD2 and 

PAD4 cooperated to mediate chemokine-induced integrin activation and 

consequent neutrophil and lymphocyte adhesion. In order to confirm the hypothesis 

that PAD2 and PAD4 control leukocyte trafficking in AD, which may explain the 

reduction of memory deficit and cognitive decline following pan PAD inhibition, 

we next quantified leukocyte subpopulations infiltrating 3xTg-AD mice brain after 

treatment with BB-Cl-amidine. As shown in Fig. 32, BB-Cl-amidine-injected mice 

exhibited lower cerebral accumulation of neutrophils, CD4+, and B lymphocytes, 

whereas PAD blockade seemed not to affect CD8+ and gd cell trafficking. 

However, the results were not statistically significant, very probably due to the 

small number of samples and to the high variability between animals. Additional 

studies need to be performed in order to confirm the positive correlation between 

PADs and leukocyte trafficking in the 3xTg-AD animal model. Even though not 

statistically significant, these results suggest that PAD inhibition leads to an 

amelioration of AD neuroinflammation and neuropathology by interfering with 

neutrophil and lymphocyte (CD4+ and B cells) extravasation. Interestingly, all 

these leukocyte subpopulations are able to release extracellular traps (ETs), which 

may induce tissue injury, suggesting a pathological link between leukocyte 

adhesion and ETosis in AD. 
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  Fig. 32. PAD inhibition reduces leukocyte migration into the brain of 3xTg-AD 
mice. 
Flow cytometry characterization of leukocyte (Ly6G+, CD4+, CD8+, gd+, B220+) 
subpopulations accumulated in the brains of 3xTg-AD mice following BB-Cl-amidine 
treatment or not (vehicle). The percentage of migrating cells was normalized to the 
total percentage of CD45high population. Data represent the mean ± SEM of at least 3 
animals per group. 
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DISCUSSION 

PADs are a class of five Ca2+ dependent enzymes, which catalyses the 

posttranslational modification known as citrullination, where a positive arginine 

residue is converted into a neutral unconventional citrulline site. As a consequence 

of this reaction, the net protein charge in solution is modified, leading to a dramatic 

impact on the structure, conformation, and protein function, as well as intra or inter 

molecular interactions[135]. Citrullination represents a key regulatory element 

affecting several physiological cellular processes, such as gene expression, cell 

differentiation, apoptosis, and inflammatory immune responses.  

Among the PAD family, PAD2 and PAD4 isoforms have attracted more interest 

than the remaining members, considering their large detrimental role in a wide 

range of inflammatory and autoimmune diseases, tightly associated with the 

induction of leukocyte ET formation.  

ETosis is a recently described cell death associated phenomenon that results in the 

release of chromatin web-like structures equipped with citrullinated histones and 

granule-associated proteins that entrap and kill pathological microorganisms.  

Initially, this phenomenon was described to occur only in neutrophils. However, 

recent studies have demonstrated that other cell types, such as macrophages, CD4+, 

and B lymphocytes contribute to this host defense mechanism by releasing traps 

similar to those identified in neutrophils[136].  

During ETosis, several inflammatory stimuli, such as bacteria, virus, LPS, or IFN 

a/g, activate the NADPH oxidase complex, leading to ROS production and 

consequently an increase in free intracellular Ca2+ levels. Since PAD activity is 

strictly dependent on Ca2+ influx, once it rises, PAD2 and PAD4 became activated 

and translocate to the nucleus where they target H3 and H4 histones, and H2A tails. 

The resulting loss in electrostatic attractions between negative DNA and neutral 

citrullinated histones leads to extensive chromatin decondensation, and the 

downstream signalling pathways end with the release of ETs[137].  

A dysregulation in ET release or clearance is toxic and immunogenic, and it is 

correlated with RA, SLE, atherosclerosis, and UC[138], all pathologies in which 

hyperactivation of PAD2 and PAD4 was demonstrated to be deleterious for disease 
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onset and progression. Pharmacological interventions, which selectively block 

PAD-mediated citrullination, are considered a novel therapeutic strategy for the 

mentioned pathologies.  

Treatment of atherosclerosis murine models with Cl-amidine, a pan PAD inhibitor, 

reduces atherosclerosis burden, arterial thrombosis, and recruitment of netting 

neutrophils and macrophages to the inflamed arteries[78]. Murine models of SLE are 

protected from lupus-related vascular and skin damage since they present less 

immune complex deposition and leukocyte migration to the kidneys after PAD 

inhibition[106]. Moreover, RA animal models, treated with BB-Cl-amidine, rescue 

the severity of clinical disease activity, and mitigate the intense inflammatory cell 

infiltration to the synovial joints[98]. In UC, pan-PAD inhibition has shown 

efficiency in reducing clinical signs and symptoms, attenuating colon inflammation 

associated with aberrant leukocyte infiltration into injured intestinal tissue[103]. All 

these results suggest that PAD blocking drugs result in an amelioration of general 

inflammation state, strictly correlated with a reduction of immune cell infiltration 

to the inflamed zone.  

Previous studies have shown that leukocyte recruitment may be mitigated as a 

consequence of in vivo PAD inhibition but whether PADs directly control immune 

cell adhesion in the context of inflammation has not yet been investigated. 

Ca2+ signalling plays a crucial role during leukocyte migration since it is spatially 

and temporally released from ER stores to coordinate rolling, arrest, and cell 

polarization events[139]. The fact that PAD catalytic activity is strictly dependent on 

Ca2+ influx, which is increased in immune cell trafficking events, is in line with a 

potential physiological involvement of citrullination in leukocyte adhesion cascade.  

Several proinflammatory NET inducers are also able to mediate leukocyte firm 

adhesion arrest, suggesting that PADs may indeed play a role in immune cell 

trafficking. Phorbol myristate acetate (PMA) stimulates DNA release through the 

activation of protein kinase C (PKC), an upstream mediator of NADPH, and 

promotes LFA-1 dependent adhesion[140, 141]. fMLP is one of the most physiological 

NET inducers and mediates G-protein coupled receptor intracellular signalling 

leading to neutrophil firm adhesion[24, 142]. Inflammatory cytokines, such as 

TNFa or IL-8, produced by activated endothelial cells, both trigger NETosis and 
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neutrophil adhesion[143-145]. Therefore, in the present thesis we investigation a 

potential PAD role in the adhesive activity of leukocytes under physiological and 

pathological conditions. 

The results obtained demonstrate that PAD blocking induces a statistically 

significant decrease of neutrophil and lymphocyte integrin-dependent rapid 

adhesion, using both humans and mouse cells. Also, our data show that leukocyte 

adhesiveness via b2 (LFA-1 and MAC1) and b1 (VLA-4) integrins is blocked  after 

PAD inhibition, suggesting that integrins are transmembrane receptors sharing the 

same citrullination targets. Our data are also supported by the genetical approach 

of PAD2 silencing mediated by siRNAs, which confirmed PAD2 and PAD4 

contribution to LFA-1-triggered adhesion. It also demonstrated that these isoforms 

cooperate to induce ICAM-1 binding, previously shown by pan PAD inhibitor BB-

Cl-amidine. This result is not totally unexpected, considering that PAD2 has in 

common some citrullinated targets with PAD4, such as histones[24]. Based on our 

data, it is difficult to clearly establish whether the cooperation between the two 

enzymes is due to additive or synergistic enzyme interactions since we did not 

determine the contribution of PAD4 specific siRNA silencing. However, the 

synergy between PAD2 and PAD4 was recently demonstrated in macrophages[146] 

in which pan PAD blockage showed that the sum of the single isoform-blocking 

drugs greater inhibited NLRP3 inflammasome assembly and IL-1b released. 

Therefore, we speculate that, in our adhesion assays, both PAD2 and PAD4 

participate in LFA-1 integrin-mediated firm adhesion. However, GSK199 

treatment inhibited leukocyte adhesion on VCAM-1 only at the highest 

concentration, and when it was combined with PAD2 siRNAs, there was no further 

reduction in the adhesion, suggesting that PAD2 citrullinates additional targets 

implicated in b1 integrin-dependent adhesion that are not in common with PAD4. 

Indeed, in support of this hypothesis, previous data showed that among 159 selected 

PAD4 substrates, only 18 are shared with PAD2[147]. 

In this thesis we have also studied the mechanism behind the role of PADs in 

leukocyte adhesion, showing for the first time that citrullination regulates the 

complex inside-out signalling pathways leading to integrin activation. We 

demonstrated that BB-Cl-amidine blocks LFA-1 transition from the bent low-
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affinity to the extended intermediate conformation, preventing the opening of the 

ICAM-1 binding pocket. We focused our attention only on LFA-1 since it is the 

best-characterized integrin in terms of structural rearrangements and since both 

PAD2 and PAD4 showed to affect leukocyte adhesion on ICAM-1 ligand. At least 

50 proteins have been implicated in the regulation of integrin-mediated adhesion, 

resulting in a network of more than 6000 protein-protein interactions[108]. Therefore, 

finding the exact collocation of PADs in this enormous complexity, not yet fully 

understood, represents a difficult challenge. Considering that RG/RGG motif has 

been recently described as a consensus sequence for PAD4-mediated 

citrullination[147], we speculate that LFA-1 itself might be the citrullinated substrate 

since its b tail subdomain contains this consensus motif (Fig. 33). 

Several cytoskeletal proteins are counted among the PAD substrates, such as a 

actinin, actin, vimentin, fibronectin, tubulin, and filaggrin[148]. L-selectin binds 

actin through a membrane distal binding site for α-actinin and a membrane-

proximal binding site for ezrin/radixin/moesin (ERM) proteins, a family composed 

of cytoplasmic proteins with the capability to bind simultaneously actin and the 

cytoplasmic tails of different transmembrane proteins[149]. These interactions 

provide a direct cytoskeletal anchorage, which is essential for supporting leukocyte 

Fig. 33. Fasta sequence of human ITB2 (P05107 UniProtKB) 
The amino acid sequence of b2 subunit integrin is represented. PAD consensus sequence 
is evidenced in red and it is collocated at 593-594 positions. 
Information available at: https://www.uniprot.org/uniprot/P05107 

MLGLRPPLLA LVGLLSLGCV LSQECTKFKV SSCRECIESG PGCTWCQKLN  
        60         70         80         90        100 
FTGPGDPDSI RCDTRPQLLM RGCAADDIMD PTSLAETQED HNGGQKQLSP  
       110        120        130        140        150 
QKVTLYLRPG QAAAFNVTFR RAKGYPIDLY YLMDLSYSML DDLRNVKKLG  
       160        170        180        190        200 
GDLLRALNEI TESGRIGFGS FVDKTVLPFV NTHPDKLRNP CPNKEKECQP  
       210        220        230        240        250 
PFAFRHVLKL TNNSNQFQTE VGKQLISGNL DAPEGGLDAM MQVAACPEEI  
       260        270        280        290        300 
GWRNVTRLLV FATDDGFHFA GDGKLGAILT PNDGRCHLED NLYKRSNEFD  
       310        320        330        340        350 
YPSVGQLAHK LAENNIQPIF AVTSRMVKTY EKLTEIIPKS AVGELSEDSS  
       360        370        380        390        400 
NVVQLIKNAY NKLSSRVFLD HNALPDTLKV TYDSFCSNGV THRNQPRGDC  
       410        420        430        440        450 
DGVQINVPIT FQVKVTATEC IQEQSFVIRA LGFTDIVTVQ VLPQCECRCR  
       460        470        480        490        500 
DQSRDRSLCH GKGFLECGIC RCDTGYIGKN CECQTQGRSS QELEGSCRKD  
       510        520        530        540        550 
NNSIICSGLG DCVCGQCLCH TSDVPGKLIY GQYCECDTIN CERYNGQVCG  
       560        570        580        590        600 
GPGRGLCFCG KCRCHPGFEG SACQCERTTE GCLNPRRVEC SGRGRCRCNV  
       610        620        630        640        650 
CECHSGYQLP LCQECPGCPS PCGKYISCAE CLKFEKGPFG KNCSAACPGL  
       660        670        680        690        700 
QLSNNPVKGR TCKERDSEGC WVAYTLEQQD GMDRYLIYVD ESRECVAGPN  
       710        720        730        740        750 
IAAIVGGTVA GIVLIGILLL VIWKALIHLS DLREYRRFEK EKLKSQWNND  
       760  
NPLFKSATTT VMNPKFAES          
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rolling. Considering that citrullination affects protein-protein interactions and that 

some of these cytoskeletal proteins, such as actin and α-actinin, are well-known 

targets of PAD2 and PAD4, we cannot exclude the possibility that PADs could be 

involved not only in firm arrest but also in rolling interactions.  

The impact of all these findings in biomedicine is relevant, providing a novel 

therapeutic strategy against all the inflammatory diseases in which leukocyte 

recruitment plays a critical role in disease pathogenesis. Recently, our group has 

demonstrated that unwanted leukocyte transmigration characterizes AD, where 

leukocyte infiltration occurs through a dysfunctional BBB) and contributes to 

disease pathogenesis[65]. CD4+ and CD8+ T cells were found to adhere to the 

vascular endothelium of AD patients and animal models, as well as neutrophils, 

which release IL-17 and NETs, contributing to AD cognitive impairment. We also 

previously discovered that LFA-1 integrin is the main adhesion molecule mediating 

intravascular cell adhesion in AD mouse models[65]. Based on these data, in this 

thesis we translated to the AD pathological context what we found under in vitro 

conditions. Importantly, the comparison of human and murine data revealed that 

the inhibitory effect is preserved in cells of both species, even though the drugs 

performed slightly better in human than in mouse leukocytes. Moreover, it was 

previously suggested that PADs are involved in AD pathogenesis since their 

upregulation has been already observed in the hippocampus of AD patients, where 

citrullinated proteins are also detected. We here showed that the pathological Ab1-

42-triggered neutrophil adhesion is dependent on PAD citrullination, clearly 

indicating a role for PADs in AD. Furthermore, we discovered that PAD blocking 

might be considered a novel therapy in AD since BB-Cl-amidine treatment reversed 

memory impairment, cognitive dysfunction, and neuropathological changes in 

3xTg-AD mice.  

The mechanism by which PAD inhibition leads to an amelioration of AD 

neuroinflammation may be due to the inhibition of the extravasation of neutrophils, 

CD4+, and B cells, whereas PAD blocking seemed not to affect CD8+ and gd T cell 

trafficking. A different CD4+ and CD8+ adhesive behavior has already been 

demonstrated in chronic brain inflammation. For instance,  the study of the 

molecular mechanism controlling lymphocyte subset recruitment showed that 
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mucin PSGL-1 was critical for CD8+ lymphocyte migration into inflamed brain 

vessels, whereas rolling and adhesion of CD4+ cells were strictly controlled by 

VLA-4 in experimental conditions with relevance to MS[150]. We confirmed this 

CD4+/CD8+ dichotomy in the brain of 3xTg-AD mouse models, where CD4+ T cells 

seemed to be dependent on a4 integrins for cell extravasation[113]. It is important to 

underline that PAD inhibition of restricted T subsets should be considered 

preliminary findings since these results were not statistically significant, probably 

due to the small number of samples and the high variability between animals. 

Therefore, future experiments are needed to conclude that PADs mediate the 

recruitment of neutrophils, CD4+, and B cells in AD mouse models. Even if it is just 

a pilot discovery, we can speculate that the only affected leukocyte subpopulations 

by PAD inhibition are those able to release ETs. Apart from the well-documented 

NETs, recently, B lymphocytes have been shown to release extracellularly 

interferogenic DNA webs in vitro as a rapid antiviral messenger molecule, although 

it is still unclear if this process may occur in vivo[151]. More recently, it has been 

found that even activated CD4+ T cells eject DNA extrusions, called T helper-

released extracellular DNA (THRED)[28]. The association between neutrophil 

trafficking and NETs has been well established in a wide range of NET driven 

diseases, known as NETophaties, where clinical and experimental data indicate that 

circulating neutrophils are recruited to the site of infection or inflammation through 

adhesive endothelial interactions, resulting in rapid cell infiltration and NETosis, in 

addition to the canonical phagocytosis and degranulation[152]. This mechanism has 

also been demonstrated in AD, where our group demonstrated the detrimental role 

of neutrophils in transgenic mice with AD-like pathology, partly related to NET 

release inside the blood vessels and parenchyma[66].  

In conclusion, the results shown in this thesis suggest a pathological role for PADs, 

which may catalyze citrullination of substrates involved in integrin activation and 

subsequent adhesion, potentially exacerbating neuroinflammation and CNS 

damage. Our data also suggest that interfering with PAD activity may represent a 

novel therapeutic strategy to address neurodegenerative disorders. 
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