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Abstract: The research explores the potential of digital-twin-based methods and approaches aimed at
achieving an intelligent optimization and automation system for energy management of a residential
district through the use of three-dimensional data model integrated with Internet of Things, artificial
intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area
consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable
energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of
different scenarios of energy efficiency intervention aimed at achieving a virtuous energy manage-
ment of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the
objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able
to provide reliable data using edge-computing paradigm. Therefore, the developed methodology
led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy
production from solar energy necessary to raise the threshold of self-produced energy, meeting the
nZEB (near zero energy buildings) requirements.

Keywords: digital construction; artificial intelligence; digital twin; nZEB; energy management;
energy efficiency; edge computing

1. Introduction

The energy management of building systems and urban areas such as residential
districts is assuming an increasingly relevant role in the control and assessment of urban
development and refurbishment processes.

Digital predictive technologies and sensor-based control systems are becoming fun-
damental tools [1] supporting policies to reach near-zero requirements and targets for
buildings and urban districts. Nowadays, the integration of information communication
technologies (ICT) has an important role in the configuration of smart cities and in defining
digital strategies addressing social, public health, economic, environmental, and safety
issues [2].

The success of such digital transformations requires the ability to meet and manage
new emerging challenges [3]. Deep interactions between humans, infrastructures, and
technologies are increasingly created over time by the global consequences of urbanization
and the growth of human activities. Dealing with complexities related to sustainability mat-
ters, cities are implementing technological improvements achieving smarter performances
through the definition of smart cities that adhere to a smart growth agenda [4].

According to the above mentioned, it can be introduced the urban intelligence [5]
concept, providing insights into a number of issues currently faced by modern cities (i.e., air
pollution, communication network demand, congested traffic, water floods, etc.) through
the introduction of data from Internet of Things (IoT) sensors processed by intelligent and
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real-time advanced analytics. According to the United Nations prediction, 60% of cities
will have at least half a million inhabitants by 2030, leading to issues in cities such as the
increasing of network demand and crowd congestions [6].

In the future, progressively current problems in cities will be necessarily managed
through intelligent urban reasoning algorithms and suitable deployment data-model based
on urban intelligence systems, pervasive computing, communication, big data manage-
ment technologies, and artificial intelligence (AI), leading to a strong evolution in the
management of urban environments as well as in the quality of life in smart cities [7,8].

The configuration of city digital twins represents a giant leap forward for urban sus-
tainability from design to construction and maintenance basing on the implementation of
Industry 4.0 principles [9,10]. It is defined as a digital replica of a physical asset, collecting
information from sensors, drones, or other sensive IoT devices, applying advanced analyt-
ics, machine learning (ML), and AI obtaining real-time processed data about the lifecycle
process of physical assets.

In particular, digital twin (DT) ecosystems are related to three main entities: a physical
object, its virtual replica, and the connection between them in terms of collecting and
connecting real-time information. Such a digital ecosystem can effectively contribute to the
lifecycle management of both vertical and horizontal systems, in order to store, manage
and process big data about the urban environment in a three-dimensional data model as a
structured information system connected to the physical.

In this paper, the applications of such ICT-based digital approaches are related to
energy management systems, in order to predict real time situations, enriching and leading
to more effective decisions, obtaining the automation of repetitive tasks, and providing
added value with the optimization of decision-making processes.

In particular, the objective concerns the configuration of a solid methodology for an
increasingly intelligent system where the potential of ICT, IoT, big data and AI are combined
interacting with BIM (building information modeling) models (Figure 1), defining three-
dimensional information and predictive systems for energy management.

Figure 1. Rione Rinascimento III three-dimensional BIM model overview, consisting of encoded
functional blocks (FB) and building models (from C_0n to H_0n).

In fact, the connection between IoT devices, digital information models (BIM), and AI
defines an advanced smart-city ecosystem as an intelligent, ubiquitous, and sustainable
digital urban context [2] where real-time monitoring systems allow data connections and
processing anytime and anyplace [3,4].

More specifically, the project developed by CITERA Interdepartmental Centre of
Sapienza University of Rome explores the potential of digital-twin models integrated
with AI systems finding a specific application as an opportunity to apply the developed
methodology. The case study is related to the configuration of an effective DT model of a
residential district in Rome, increasing energy efficiency and identifying a cost-optional
solution for which both consumption and costs are expected to be reduced.



Energies 2021, 14, 2338 3 of 25

Therefore, the 3D information model was developed gradually from the territorial,
infrastructural (using Autodesk InfraWorks for geographic information systems) up to
the building scale (using Autodesk Revit for building information modeling). The model
resulted both as a microscopic and macroscopic digital database, containing static, dynamic,
geometric, and semantic data about buildings and their functional interactions.

As mentioned, a BIM approach was carried out focusing on energy management
model-uses and leveraging interoperability using IFC (industry foundation classes) models
for energy diagnosis purposes. Basing on such analysis, a smart-energy-grid manage-
ment system was developed combining BIM as-built models with IoT and AI obtaining a
substantial as-performed and up-to-date city digital twin.

2. Background

The objective of bringing the virtual and physical worlds together is focused to
better support decision-making, reducing risks and configuring a citizen engagement
tool, improving urban sustainability [9]. The introduction of DT in construction processes
addresses the improvement of decision-making focusing on well-informed and advanced
real-time “what-if” scenario assessments, reducing wastes of time and resources that are
typical in construction.

In this regard, the Newcastle University created a DT of the city dedicated to incidents
and disasters responding and prevention, running simulations of incidents such as burst
pipes, heavy rainfall or floods to evaluate the potential impact on communities over a 24 h
period [10].

Another effective example of smart-city DT currently ongoing is virtual Singapore,
which provides capabilities from virtual experimentations, test-bedding, and decision-
making up to research and development [11].

Moreover, a relevant experience is carried out by the Centre for Digital Built Britain
(CDBB) delivering a “smart digital economy for infrastructure and construction”, as a
transformation of the UK AEC (architecture engineering and construction) industry’s
approach about planning, building, maintenance and utilization of social and economic
infrastructures [12].

In addition, the ongoing project for the city digital twin of Atlanta creates a virtual
reality (VR)-based platform (built basing on the unity interactive and data-driven cross-
platform game engine) which contains a three-dimensional fully modeled city of Atlanta,
reproducing the entire city into a virtual space, facilitating spatial-temporal feedbacks
and interactions between the human/infrastructure systems and their virtual representa-
tions [13].

Focusing on the energy implementations, three significant experiences related to DT
developments integrated with AI systems can be mentioned, in order to define a systemic
approach for the present study, aiming at integrating the objectives of the single experiences
reported below.

The first concerns a microclimatic study on urban scale carried out in the Kalasatama
district by the Municipality of Helsinki, in which it is important to highlight the “Energy
and Climate Atlas”, defined as a city information model for studying and developing
strategies for the mitigation of climate changes and improving energy efficiency. The atlas
includes a number of specific information about the buildings, such as heating systems,
energy certification, electricity consumption, district heating, and water distribution. As
configured, the model helps to analyze a series of technological scenarios, allowing users
to define the solar energy potential of buildings, evaluating the possibility for reducing
carbon dioxide emissions or outlining cost-impact scenarios for different interventions [14].

In addition, it is important to investigate the behavior of energy-smart-grid systems
serving differentiated users managed by ML. As known, the main issue to be resolved
concerns the need to implement storage systems due to the characteristics of discontinuity
of renewable energy production.
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The ESS (energy storage system) management realized through a DT integrated with
ML systems can bring significant improvements leading to consequent bill savings, if
compared with the current systems based on predefined control systems of the electrical
power supply from the batteries.

In addition, the development of an energy management system (EMS) is fundamental.
As reported by Park, Byeon et al. [15] “an EMS reinforces operational functions such as
adjusting the amount and schedule of charging and discharging through the efficient
control of the ESS and power conditioning system (PCS) and manages the overall power
flow”. Moreover, it is connected with sensors and measurement equipment able to analyze
and monitor consumption patterns, managing information about power activities and
optimizing the overall efficiency.

Another extremely significant energy application of DT is the simulation and testing
of scenarios for energy-efficiency interventions aiming to achieve nZEB (near zero energy
buildings) requirements on buildings. Since most buildings today are already built, it
is necessary to underline the essential application of nZEB parameters on existing built
environments through the use of BIM-oriented 5D and 6D digital approaches [16].

The fifth and sixth dimensions of BIM are used and developed to promote stake-
holder’s collaboration, visualizing and evaluating different options with the configuration
of nZEBs, in terms of sustainability and energy efficiency parameters (6D), estimating
associated costs (5D) and technical issues [16].

From there, the advances in building data interoperability both at a technical and
organizational level enable relevant innovation in end–user energy delivery and optimiza-
tion [17] beside to open data availability, leveraging on technologies [18] such as the IoT
and cyber–physical systems.

3. Material and Methods

The case study of the present research analyzes digital ICT-based energy manage-
ment techniques applied to a 16 eight-floor buildings residential district called Rione
Rinascimento III, located in Rome, which represents the most significant Italian residential
implementation of a geothermal source heat pump (GSHP) system, that is currently the
largest in Europe.

3.1. The Urban Context

Rinascimento III (Figure 2) is configured as a building intervention characterizing
an energetically self-sufficient new portion of the city, integrated as much as possible
with the surrounding areas in terms of urban planning and services, and it is considered
of relevant significance since it is powered by a still not-commonly-deployed kind of
renewable energy system.

In the urban planning agreement between the Municipality of Rome and the private
owner, primary and secondary public works were planned, as well as the completion of
the Talenti Park area in front of the district. According to the Italian regulations, the new
district is included in the category of bioenergetic improvement interventions, which aim
at improving the bioclimatic performance of the settlement.

Moreover, the introduced Italian energy policies (such as Decree Law no. 63 of
4 June 2013) aim at a partial refunding up to 65% of the amount for energy requalification
expenses, consistently improving the use of renewable sources such as the geothermal one.

The geological characteristics of the Italian territory are particularly favorable for the
development of geothermal energy systems and could allow one to exploit low-enthalpy
resources at different depths and in numerous areas of the country.

According to the above mentioned, a research activity was developed by the CNR
(National Centre for Research) with a pilot project promoted in four Italian regions
(Calabria, Campania, Apulia, and Sicily), contributing to the increase of knowledge about
the use of geothermal resources, with the aim of providing useful information to start
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activities of exploration for the improvement of geothermal energy uses in the south of
Italy [19].

Figure 2. Master plan of the considered area (Rinascimento III) in Rome.

3.2. Linking Virtual to Physical

The concept of Construction 4.0 defines a framework where data-driven systems are
able to manage physical processes by configuring a virtual replica of the physical world and
achieving decentralized decision-making processes based on self-learning mechanisms [20].

Therefore, BIM models containing data and information useful for processing as-
sessments become able to communicate with the real systems using data from sensors,
developing learning capabilities, and being able to process the received information.

The collaboration between 3D information models and IoT devices is highly necessary
for a successful implementation of real-time DT purposes, as well as for energy manage-
ment optimizations. However, the implementation of IoT in real-world environments
configuring smart, ubiquitous, and live-interconnected systems (Figure 3) is currently
still restricted by technical barriers such as device battery life, network capacity, and
maintenance costs.

Figure 3. Block diagram of the IoT system.

The core functionality of IoT devices is to reliably collect and share data (such as
flow rates, temperatures, pressures, physical movements, distance, mass, etc.) from its
designated environment to the virtual world.

The hardware elements consist of a battery-powered sensor, an actuator, and a network
communication system in which the collected data are processed and consequently sent to
remote servers.

In the present application, the connection between the physical and virtual model is
made through sensors [21] able to monitor and communicate electrical power data such
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as power energy voltmeter ammeter for lighting and heating, ventilation and air condi-
tioning (HVAC) systems and smart plugs for electromotive equipment such as computers,
televisions, washing machines, and so forth (Table 1) [22].

Table 1. Review of the implemented IoT devices.

Communication
Technology Functions Technical

Parameters Real-Time Monitoring

Smart plugs

Communication of the overall profile of
energy consumption to AI systems, in

order to provide data learning on every
single socket, defining a hierarchy of

energy priorities to be attributed to the
different zones of the apartment in case
of deficit in energy production systems.

220–240 V ~10 A, Max
2300 W

WiFi connection

Power
supply

Energy Power Meter

Functionality as above, the dual relay
switch with dual power metering, can

be installed into the wall under the
power socket or a standard light switch.

110~230 V AC
50 Hz~60 Hz

0~10 A.
0–2300 W

WiFi connection

Power
supply

Temperature and Humidity
Monitors

Temperature and humidity monitoring,
WiFi connected with other smart

devices enabling smart appliances
through app platforms.

0–60 ◦C
0–99% RH

QB/WSDJ2401-2019
Bluethoot 4.2 BLE

Temperature and
humidity

In this case, AI systems allow the DT to develop predictive capabilities, learning
from the events and improving outputs, ultimately taking and implementing autonomous
decisions based on the analysis carried out without human interventions.

Moreover, the AI system achieves a balanced condition between energy consump-
tion and energy production system’s performance parameters [23], adapting itself to the
environment in order to achieve the predefined objectives.

In other words, the system takes data from sensing devices, and it generates ap-
propriate and specific actions through reasoning systems, modifying the behavior of the
equipment in order to optimize energy consumptions. Specifically, it takes information
from IFC-BIM and CityGML-GIS (geographic information systems) models, constantly
updating them with real-time data as described in Figure 4.

Figure 4. Data flow and processing for digital-twin-based energy optimization.
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3.3. Data Interoperability

Principles of Industry 4.0 and data interoperability in the AEC sector are extensively
applicable on linking GIS and BIM models, providing data for real-time multiscale object-
oriented simulations of the built environment. As configured, GIS-BIM 3D city information
models and applications require common communication standards introducing problems
related to information integration and data interoperability at different domains and
scales [24].

In the specific case of information management in construction processes based on
BIM methodologies, interoperability consists in exchanging data from models to different
software and application platforms, implemented for different purposes and functionalities
throughout to the whole lifecycle.

The main objective of interoperability is to facilitate the interaction between different
and nonhomogeneous information systems, minimizing errors and aiming at reliability,
effectiveness, and optimization of resources.

For the above mentioned, different levels and approaches on interoperability, are de-
fined by the Information Technology Vocabulary (ISO/ISO/IEC 2382) [25] as the “capability
to communicate, execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique characteristics
of those units” [26,27].

Industry foundation classes (IFC) were defined as a reference standard format for the
building industry to develop different advanced processes based on spatial data relations
between building components of a BIM model.

In the present application, specific processes can be scheduled for different activities,
objectives and domains (Table 2) since objects are connected to data entities and properties
such as name, geometry, identifications, material parameters, etc.

Table 2. Data domains and collection of the interoperability process.

Domain Data Collection Software Interoperability

1. Building information modeling
BIM objects, LOD 400

Autodesk Revit
IFC Standards1.1 Building energy modeling MC4 Suite for Revit

1.2 Computational fluid dynamics
(CFD) simulations Autodesk CFD

2. Geographic information systems BIM/GIS objects Autodesk InfraWorks IFC/City GML Standards
2.1 City information model

In the GIS field, CityGML was developed as a model standard representing geometric
and information relationships between geographic entities, being defined as the most
appropriate territorial modeling standard in different levels of detail. In addition, IFC and
CityGML standard were used, as they are currently the two semantic models dedicated
to the configuration of object-oriented information management systems, even though
research is still focused on information exchanging, linking IFC and CityGML toward an
advanced 3D city information model [28].

3.4. 6D BIM for Sustainability and Energy Efficiency

The study focuses on the Rinascimento III district (about 85,000 m2) which is a part of
Rione Rinascimento, consisting of 16 eight-floor buildings hosting about 900 apartment
units with 2500 inhabitants.

A significant part of the energy supplied to the building complex is self-produced
using renewable geothermal sources. For this reason, the following case study is considered
to be extremely relevant for approaching digital methodologies integrating DT and AI
systems for an efficient energy-smart-grid management.

According to the BIM Use Classification System developed by Penn State Univer-
sity [29] which basically categorizes BIM Uses (Figure 5) as the main purpose to be achieved
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when implementing BIM in construction processes, specific purposes and objectives for
BIM models were identified.

Figure 5. The components of a BIM use, adapted from ref. [29].

The definition of the main BIM purposes led to the identification of specific require-
ments for data implementation and model configuring.

Since the current application is based on the use of BIM and GIS models for energy
management purposes, priority was given to the implementation of specific data such as
well-defined technical parameters of the building envelope, thermal zones, rooms, HVAC
systems, and equipment, as well as specific data about localization, climate [30], boundary
conditions, etc., as information coming directly from the BIM system in the interoperability
process.

Moreover, BIM models can have different level of depth both geometrically and
informatively, depending on the BIM Uses and related objectives. According to the ISO
19650 [31] standard, LODs were defined, gradually moving toward a LOIN (level of
information need) perspective shifting from a prescriptive to a performance approach,
based on information granularity depending to predetermined specific BIM uses.

As mentioned, the production of the BIM models followed a number of phases
coming from a low degree of definition (LOD 100 [32]), useful in preliminary and outdoor
concept stages, up to a LOD 400 (Figure 4, right), according to the BIMForum, “2013 Level
of Development Specification” (AIA/AGC, 2013), [32] for indoor energy analysis and
simulations purposes as described in Figure 6.

Figure 6. The evolution phases of the BIM model LOD, according to the objective definitions and
energy uses.

As configured, the so-called sixth BIM dimension (6D) was achieved since the identi-
fied BIM use was connected to energy efficiency and sustainability analyses and simula-
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tions [33]. Developing a BIM-oriented methodology allowed to assess the energy perfor-
mance of the building system, providing relevant support to decision-making processes.

In this section, it is necessary to detail the data and boundary conditions necessary to
run the energy analysis through the 6D BIM model [33]. The thermal characteristics of the
building envelope technical systems as well as the related data contained in the BIM model
are reported in Table 3.

Table 3. Characteristics of the buildings’ thermal envelope in the BIM model.

Building Envelope Thickness (mm) Thermal
Transmittance (W/m2K) Solar Factor Threshold Value 2021 (W/m2K)

(Italian Regulations)

Facade wall 445 0.29 - 0.32
Roof 480 0.26 - 0.26

Floor structure 300 0.44 - -
Basement floor 300 0.32 - 0.32

Windows 68 1.37 0.35 1.9

In this case, DT reproduces the energy characteristics of the building envelope and tech-
nical plants, which combine a component of renewable energy as described in Section 3.5.
In Table 4 the technical components of the main HVAC plants, as well as the controlled
mechanical ventilation system are reported.

Table 4. Building’s thermal system configuration detailed in the BIM model.

System Generator Distribution Terminal Equipment Energy

Heating and cooling GSHP (COP 3.8 winter/5.5 summer) Water Radiant floor Electricity
Ventilation Centrifugal fans Filtered air Air vent Electricity

Hot sanitary water Boiler (High efficiency) Water - Gas

3.5. Building Energy Model (BEM)

The main objective of the DT-based developed methodology is using data models
across different simulation and monitoring processes [34], combining data from different
sources (BIM, GIS, IoT, etc.) in a three-dimensional model, which is aligned almost in
real-time with the reproduced system [35,36].

In order to create a building energy model (BEM) [37], each component of the informa-
tion model was associated with the corresponding products in a BEM software connected to
BIM data (MC4 Suite for Revit), defining different thermal zones and boundary conditions.

Once the energy model was generated using a specific and authorized software, [38]
it followed the validation phase.

In particular, according to Italian regulation DLgs. 30 May 2008 on “calculation
methodologies and requirements for the execution of energy diagnoses and energy certifi-
cation of buildings” if the deviation between the values estimated by the model and the
real consumption does not exceed 5% on average, then the model is validated.

In the pilot project described in the present study, the building complex is supplied
by the largest European residential geothermal plant with GSHP (COP of 3.8 in winter
configuration and 5.5 in summer configuration), equipped with 200 vertical geoprobes,
150 m deep.

The components of the total energy consumption of Rinascimento district are reported
in the following schemes (Figure 7) and divided into four main categories: (1) winter air
conditioning; (2) summer air conditioning; (3) hot water; and (4) electric power supply.
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Figure 7. Total primary energy consumption and renewable energy sources (RES) energy production.

In fact, the energy production coming from renewable energy sources (RES) and
particularly from the geothermal plant could be estimated in about 6305 MWh/y on
9.979 MWh/y consumed, subdivided as shown in Figure 7. Consequently, 63% of the total
energy requirement of primary energy is produced by the geothermal system.

In this case study, the energy diagnosis was conducted on one single building (Figure 8)
of about 3648 m2, using the Revit Suite of Mc4 Software through BIM data, for a dynamic
simulation of the building behavior, supplied by a modular portion of the geothermal
plant. Since the highlighted building is currently the only one being fully occupied by
residents (who permitted the implementation of sensing devices for DT configuration), it
was selected for energy modeling and real-time monitoring.

Figure 8. Selected building for the performed energy analysis.

Moreover, since the geometry and spaces subdivision are almost identical for all
the buildings, the modeled building is expected to share similar boundary conditions
about solar radiation (Figure 9) and ventilation with the other five highlighted in Figure 8,
positioned on the outer perimeter of the district without any shading.

Figure 9. Solar radiation analysis.
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The performed simulations led to the evaluation (according to the Italian classification
of Legislative Decree 48, 10 July 2020) [39] of an A2 class with a specific consumption of
26.8 kWh/m2y; the comparison with the real value building consumptions coming from
an average evaluation of 3 year bills (26.6 kWh/m2y) validated the simulation model.

The aim of the DT model was also to simulate the increasing of the RES production
percentage, in order to reach the goal for Rinascimento to become a near zero energy
district (nZED). The energy simulation in the model were performed considering new
installation of photovoltaic panels for the production of electricity and solar collectors for
the production of domestic hot water.

In particular, the model was implemented with the integration of 312 kWp of monocrys-
talline photovoltaic modules in the building façade able to produce 276,000 kWh/y of
electricity; and the realization of an area hosting 405 high-efficiency flat-plane solar collec-
tors able to produce 410,000 kWh/y.

The simulations outputs lead to a final result of 6991 MWh/y of energy coming from
renewable energy sources (RES) (geothermal+solar), which means about 70% of the district
energy consumption directly produced in place by the RES microgrid of the complex.

However, the obtained results so far were focused on the building as a whole, specify-
ing some different thermal zones created according to differences in use, occupation hours,
types of HVAC installed, or types of external envelope and sun exposure.

Considering the analysis on a smaller scale, focusing on indoor environmental qual-
ity [40] such as thermal-hygrometric conditions, the BIM model was detailed with HVAC
systems to develop computational fluid dynamics (CFD) analysis [41].

The standard k-ε model was deployed according to the limited need of calculation
power and time for iterations (less than 300) as well as for the absence of high-pressure
gradients in the rooms.

The following input conditions have been set:
Average outdoor air temperature equal to 5 ◦C; radiant floor water temperature equal

to 40 ◦C; underfloor heating surface temperature is between 24 and 29 ◦C; radiative model
discrete ordinates; and 1 s timestep.

Four control probes were temporary fixed and positioned in the center of each room
in a typical apartment at 1.50 m from the ground, which is the same height of the DT
temperature and humidity monitors fixed in all the apartment rooms (Figure 10).

Figure 10. Control probes positioning.

Fluid-dynamics analyses were developed from the BIM model to study the temper-
ature gradient and convective air flows in rooms, triggered by the operation of radiant
floors in winter heating mode in order to evaluate comfort parameters in each room,
experimenting data interoperability from BIM model to CFD analysis (Figure 11).
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Figure 11. Temperature gradient and air velocity vectors in different rooms.

3.6. Artificial Intelligence

Machine learning is a form of AI providing systems the capability to learn from data
without the use of explicit programming. ML produces models where there are some
kind of regularity in data [42]. Like human children’s learning processes, it is driven by
“experience” [43].

As a general rule, training a model requires computer resources which are orders of
magnitude bigger than those required to execute the model [44,45].

In this specific case, data are collected and analyzed in order to devise one or more
model for energy-efficiency purposes using AI while allowing normal comfort and living
habits. The general architecture of the system is shown in Figure 12.

Figure 12. System architecture.

The goal was achieved through two phases: (1) design and implementation of the
infrastructure and (2) obtaining data, training, and model testing.

3.6.1. Design and Implementation of the Infrastructure

Energy data are simple time series of power consumption or production, coming from
real sensors in a given time lapse, each one transmitting data with its own application
programming interface (API); moreover, they are obviously located close to energy loads
or near power sources.

This means that data are not all in the same place at the same time, which is a necessary
condition to perform the analysis that led to the desired algorithms.

The first problem is therefore to plan and deploy a cost-effective IT (information
technology) infrastructure able to provide reliable data to be processed.

Each apartment was implemented with monitoring sensors, so that every device
energy consumption could be considered to define the control solution of the overall
energy requirement in each apartment.
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All the implemented metering sensors produce a huge amount of data requiring
significative computational resources to obtain acceptable analysis performances; therefore,
the best solution for reducing installation expenses would be to control the system acquiring
all the information in a data center or a service in a data center.

This architecture leads to the necessity of setting a local system for interconnecting IoT
sensors and actuators over a geographical network (such as the Internet), executing sort
of local computation and buffering data in case of connection blackout, using the known
“ubiquitous and pervasive computing” [46] techniques to deal with the computational
problems of centralized intelligence.

Following this approach, two distinct problems had to be solved designing the infras-
tructure:

• Have uniform data;
• Have data where they have to be physically processed.

The first element in the infrastructure is a subsystem able to cope with several trans-
mission protocols and time frames, whose output is the synchronized power consumption
(or production) of the smart metered devices. This subsystem accepts instruction from the
second element to switch on and off some of the controlled devices.

This element needs to be connected with all sensor networks; therefore, it has to be
physically placed next to them, minimizing transmission problems and monitoring local
environment even in absence of communication with the central control system. This kind
of elements is called “elettra” in the following section.

The second architecture element is another subsystem, composed of a different
“proxy”, and each proxy receives the outputs of the first subsystem as an input. The
proxies deliver the data to the central unit and receive back data from the same device,
taking care of bandwidth problems and unreliability of the network.

These proxies have to be physically close to the first subsystem while the central unit
can be remote; the central control system is a centralized unit able to store and process
data, operating building digital simulation models and delivering commands back to
the proxies.

The logic model of the designed infrastructure is based on three elements, as shown
in Figure 13.

Figure 13. Logic model of the infrastructure.

Following this logic infrastructure, a series of “cheap” small computer or SoC (system
on chip) had to be equipped, containing both the “elettra” and “proxy” subsystems; all
those computers are connected to a high-performing server in a data centre able to run
the software of the central control system. The operative concept of this infrastructure
is exemplified in Figure 14, where only a few energy consumer devices are reported as
an example.
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Figure 14. Operative concept.

Elements e1, e2, e3, e4, and e5 are the cheap computing containing the elettra subsystem
and the proxy, while elements c1 to c10 are energy load examples, and P1, P2 are photovoltaic
panels for electric power production and geothermal plant.

3.6.2. Obtain Data, Train, and Test Models

Once the data are stored in the central control system, they can be analyzed to build
digital numerical models able to simulate and optimize all the main parameters of the
smart energy grid. All data have a similar form, so that they can be viewed as a series of
{location, date-time, object, value}.

Considering a single location, using ML techniques and rule-based methods such as
association rule learning, it is possible to deduce which device is active at a certain time for
each selected location [46].

In the present application, it was not possible to consider all the locations as equivalent
one to the other, as detailed in Section 4.

A possible general solution is the adoption of best practices, which are hard to define
due to the different final uses (home, office, and mixed use) and layouts; if grouped by
location and similarities parameters, AI becomes able to automatize processes attributing
each location to the most appropriate group or cluster. Therefore, it is necessary to run a
ML technique known as “clustering” to automatically create groups of similar apartments
used for mathematical representation of each unit: to create the feature vector of each unit,
each and every energy consumer and producer was counted and grouped together by
type [47].

Given the vector representation of each apartment, we used the well-known unsu-
pervised technique known as K-means, to automatically extract groups of energy-similar
apartments.

After a period of observation, a sample for each homogeneous group in a single
location was chosen. These local samples were used to extract behavioral rules to be
applied to the others belonging to the sample group.

Analyzing the configuration of each location at a given time, it is possible to compare
any apartment “Ai” with the sample one “As”. As an example, a general association rule
can be expressed as follows: “at time tk, make a comparison of device type dj of flat i (dAij)
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with the correspondent device type of the reference one (d As j). If they are in a similar
status, then do nothing; otherwise, switch it on or off, so that it is in the same state of the
reference one’s.”.

An association rule is something in the form X→ Y that in a smart grid should assume
the simplified form TheSolarPanel IsOn→ TheWashingMachineIsOn. We achieved this
using the “Apriori Algorithm” which is an influential algorithm for mining frequent item
for Boolean association rules. It identifies the frequency of individual items in the dataset,
extending them to larger item sets, according to their appearance in the dataset [48].

Nevertheless, every automated system can easily fail if the digital representation of
the built environment does not match reality. Assuming that, inevitably during the lifetime
of an apartment, some smart plug will be connected to different devices, affecting the
digital model reliability and accuracy.

In order to keep the digital model continuously up-to-date, AI techniques transform
a power absorption curve of a single device in a sequence of characters named “energy
words of the device” [48], using analytical processes similar to those of text analyses; then,
a supervised learning method named “Naïve Bayes classifier” automatically identifies the
type of each energy load, so that the system can detect a mismatch between the digital
representation and what is actually connected to the network.

The dictionary of different energy words exceeded the size of 60,000, with the major
number appearing less than three time in the energy footprint; therefore, we set this
threshold to avoid dimensionality problems. The resulting predictive model elaborated
using the Naïve Bayes classifier was validated using both a 66% train 33% test split and a
10-fold cross validation technique, taking advantage of the tool named “Weka”, an open
source ML software (using the class weka.classifier.bayes.NaiveBayes).

4. Results

As a consequence of the energy efficiency improvement based on the implementation
of renewable energy systems, in winter conditions, the geothermal power plant supplies
every building both with heating and domestic hot water; solar collectors integrate the
system, while the photovoltaic system powers the external lighting system around the
perimeter of the buildings. In summer conditions, domestic hot water is produced through
solar collectors covering 100% of the actual needs, while the geothermal power plant only
works for the production of chilled water for cooling (through the absorber), while the
photovoltaic system powers the entire lighting system of the complex.

The energy diagnosis conducted on a single building using the BIM model through
the Revit Suite of Mc4 Software led to the transition from an A2 class (with a specific con-
sumption of 26.8 kWh/m2y) to an A4 class (with a specific consumption of 16.1 kWh/m2y).
Moreover, in order to further validate the results and the obtained energy diagnosis, the
calculation was also repeated with two other numerical simulation tools: (1) Termus BIM,
basing on the BIM model and (2) ArchiEnergy, a semidynamic software developed by
Sapienza University of Rome (Table 5).

Table 5. Energy diagnosis results (kWh/m2y): software comparison.

ArchiEnergy Termus BIM MC4 Software Standard Deviation (SD) Bills

Ante operam 28.6 24.9 30.2 2.7 26.6 *
Post operam 16.1 15.7 18.7 1.6 16.3 **

* Average of 3 year consumptions of the district; ** 3 month summer bills of the analyzed building.

Once the results and deviation values were obtained, they were evaluated and com-
pared to the following chart in Figure 15, which reports results from other energy diagnosis
conducted on similar building systems.
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Figure 15. Software comparison through energy diagnosis results on similar buildings.

From the analysis, it is shown that the diagnoses made with the energy software led
to similar results with a maximum deviation of 12%, and the difference between the two
BIM-based, Mc4 Suite for Revit and Termus BIM, is 5% (Table 5).

Moreover, the fluids-dynamic analysis performed in specific rooms of a single apart-
ment was confirmed by the data coming from sensors, showing that there is no discomfort
in any area due to the configuration of the radiant floor equipment.

In fact, large masses of moving air can be observed as previously shown in Figure 11.
This is mainly due to the temperature difference between the floor and the environment.
Convective motions affecting all the areas are generated; however, the temperature gradient
is fully compliant with the regulation requirements, and the air velocities are very low,
falling within the range of comfort conditions.

It was also monitored the temperature in each area, where the internal temperature
was initially 5 ◦C (equal to the external temperature), until the achievement of the internal
comfort temperature of 20 ◦C. The temperature transient is shown below (Figure 16).

Figure 16. Temperature transient.

It can be noticed that the air heating trend is almost the same for all the rooms, and
the comfort temperature is reached in about 1900 s (just over 30 min).

Moreover, another obtained result was the implementation of an intelligent energy
management model, i.e., an automatic ML system capable of modulating loads (mainly
electrical) according to the expected self-production of energy; for this purpose, information
from the European Copernicus [49] earth observation system are acquired in order to have
accurate predictive meteorological data.
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In this regard, the energy-smart-grid system realized with solar collectors and photo-
voltaic panels needs a set of rules to establish priorities regarding energy production and
consumption loads:

Production: electricity from solar sources, being totally free, must be the first to be
fed into the distribution network, followed by the energy coming from the geothermal
power plant (which needs electricity to power the circulation pumps); as a last option, it is
possible to use energy coming from the public electrical net or use gas.

Consumption: the priority of power supply must be given to the lighting system,
followed by the electromotive force circuit, while the air conditioning systems can be
regulated and modulated in the event of a lack of energy, by lowering or raising the
optimal temperature up to 2 ◦C.

Therefore, the AI system contributed to reach the goal of increasing the efficiency
of the entire energy system by more than 10%, limiting the dependence of the building
complex from the electricity and gas distribution networks to a maximum of 20% of the
total energy consumed. The system for energy loads forecasting and managing was created
in a single apartment (Figure 17) according to the following two logical steps: (a) the
creation of a synthetic method to group the plants based on the similarity of results in
terms of energy efficiency and (b) metering, evaluation, and analysis of consumption data
of the selected plant.

Figure 17. Energy loads forecasting and DT managing through AI.

The inevitable use mutability of the apartments was also considered, as well as the
variations in energy loads over time; consequently, an algorithm able to automatically
deduce which devices are used in each power outlet was adopted, analyzing the hourly
trend of current absorption.

Some energy sensors (as detailed in Material and Methods) were applied, and data
were collected in a central system. The different typology of energy loads was considered,
and then submetering was performed, as shown in Table 6 and Figure 18.
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Table 6. Working day energy metering in a typical apartment (Wh).

8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30

Boiler 42.99 51.54 15.52 36.61 112.38 71.21 69.27 51.65 12.23 111.32

Lights Room 1 16.00 24.15 24.19 24.26 24.29 24.15 06.12 24.19 24.23 24.75

Mini PC 9.89 14.01 14.34 8.72 13.11 11.63 11.19 12.22 14.22 12.17

Lights Room 2 90.98 106.17 105.46 103.77 104.77 104.73 104.63 104.94 103.93 104.89

Figure 18. Submetering in a typical apartment.

Energy consumption of each device varies according to its power absorption, as
shown in Table 6 and Figures 18 and 19, which report some controlled measures on a
typical working day, detailing both the apartment and the single rooms.
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Figure 19. Consumption submetering (Wh) in an office room.

The use of these energy sensors led to another result: the so-called “submetering”
It was possible to detect the biggest single load both in the apartment and in a single
room. In this way, the analysis and decision of how to save energy becomes simpler,
devising strategies affecting the most consuming items, effectively contributing to the
overall energy saving.

5. Discussion

The concept of DT is extremely transversal and widely suitable to both microscales
such as apartments and macroscales at the district levels. As the new and future build-
ings will be directed to near-zero-energy building standards (nZEB), or even zero-energy
buildings (ZEB), they therefore need tools suitable for the new design requirements, i.e.,
digital systems able to predict and simulate both global energy consumption and internal
behavior [50].

It is quite impossible to define a validation process able to ensure the reliability of the
calculation method by 100%.

For a full comprehension of the model and interoperability process accuracy, it was
necessary to proceed with a comparison methodology based on the overall final out-
puts, (kWh/m2y) between three different software (1) Termus BIM by Acca Software,
(2) ArchiEnergy from Sapienza University of Rome, and (3) Mc4 Suite for Revit.

The developed analysis was focused on the comparison of results coming from differ-
ent processes basing on both traditional and BIM approaches. On the one hand, Termus
BIM used IFC BIM standards, while in Mc4 Software a plug-in approach was developed
directly connecting the Revit BIM model with Mc4 analysis tools. On the other hand, the
ArchiEnergy software is a traditional system calculating energy consumption based on
inputs by the user about the plant and the building envelope.

Following the validation phase, the DT led to the evaluation of the smart-grid imple-
mentation effects. In particular, in Figure 20, the reduced energy consumption and the
relative reduced CO2 consumption coming from the Mc4 Suite for Revit analysis are shown.
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Figure 20. Results of the energy-efficiency interventions.

At the same time, the work carried out highlights how in highly urbanized contexts
characterized, it is very difficult to achieve high performances as required by the nZEB
Italian Decree [51], even if significant energy requalification interventions are developed,
improving both the building envelope and air conditioning systems.

As a consequence, it became necessary to consider building complexes not only as
consumers, but also as energy producers in a local, block, district, or neighborhood smart
grid: the concept of “prosumer”.

By such a logic, the role of AI in smart-grids management and optimization of both
energy production and consumption becomes decisive, being able to make reliable forecasts
on possible scenarios.

Analyzing similar energy efficiency interventions on buildings and residential com-
plexes, it is shown how efficient technologies are now available, well defined, and widely
known. Therefore, the parameters of selection between different interventions are essen-
tially (a) climatic parameters, (b) regulatory restrictions and constraints on interventions,
and (c) the availability of government grants for the use of RES, compensating the payback
time, which is still too long for certain technologies.

As previously shown, the use of BIM-based systems [16] for building energy efficiency
drives no substantial improvements in terms of accuracy of results compared to traditional
methodologies [18].

However, the real innovation contribution of DT-enabled systems concerns the defini-
tion of digital technologies able to reduce the gap between the expected performance of
buildings and their real behavior. These goals are mentioned in the strategies of National
and International R&D Programs such as Next Generation EU (Recovery and Resilience
Facilities) [52], Strategic Energy Technology (SET) Plan [53], and Italian National Integrated
Energy and Climate Plan (Dimension 5 Research, Innovation and Competitiveness) [54].

In this case, DT becomes a key element for research and development on second-
generation smart buildings entirely based on electricity consumption and characterized by
energy autonomy, high flexibility, block chain, and smart contract dialogue systems with
the grid, assisted by digital monitoring methods.

Artificial Intelligence

Although optimizations on energy consumption have been studied in depth [55],
when dealing with residential compounds or SOHO (small office home office) buildings,
we cannot directly borrow general solutions from research experiences [56,57]. In fact,
the overall consumption in these environments is the sum of small contributions by a
considerable amount and variety of devices [58], while, mostly in industrial environments,
there are generally few big powers draining that can be controlled one by one.
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Moreover, these small consumers are operated by people which do not follow any
procedure, since they have their personal habits: dealing with both technical and human
factors through data analysis techniques becomes a fundamental strategy [59].

DT was coupled with AI to investigate building behaviors as a whole, and super-
vised learning techniques are used to produce an efficient and intelligent storage system
management in the whole complex.

The problem of energy savings in buildings is strictly connected to the need of measur-
ing and controlling energy loads in an efficient way, which can evolve complex scenarios.
For instance, if nobody is at home and it is already late morning, both the coffee machine in
the kitchen and the air conditioning are wasting energy if they are still switched on, while
if someone is still there then both appliances should be still operational. Consequently,
several sensors and actuators can be involved and their data should be interconnected so
that an ad hoc algorithm derives the correct energy saving policy (e.g., a motion sensor
shares data with electrical relays able to switch on/off the correct devices).

Real-time building management system incorporate model-based control through
ML [60] to extend the use of mathematical models even to the management of human-
related factors. In fact, thermal, humidity, acoustical comfort, and occupants model are
combined and connected to ML.

While the first model depend on facts, the latter depend on humans: the behavioral
model is a probabilistic one [60]: the probability that an occupant takes specific behavioral
decisions or actions is defined as a function of the occupant’s characteristic and the current
environmental conditions, and “predicting the residents” actions toward a specific situation
is not easy”.

Considering the apartment microscale, instead of the whole building, our approach
was to envision the automatic definition of best practices [61]; if grouped by location and
similarities parameters, thanks to unsupervised learning techniques, it was possible to
automatize the processes of attributing each location to the most appropriate group or
cluster. In our approach, the most efficient and performing apartment for each group or
cluster was found considering the energy bill over a few months, confirmed by the energy
data collected over a given period [62].

Given these “sample” location, personal actions in apartments can be modeled with
behavioral rules [63]: the definition of rules was given using a formal logic that allows
exceptions [48] through AI, using Apriori algorithm to automatically learn the rules.

The automatic update of the BIM model to ensure the validity of the DT, based on an
up-to-date information model, was dealt with by using web services [64]. Specifically, it
was necessary to ensure that information about energy loads coming from smart plugs
were up-to-date in the model. A supervised learning technique (named “Naïve Bayes
classifier”) combined with a novel energy load information coding [65] was used to achieve
the goal.

6. Conclusions and Further Developments

The configured DT methodology gives buildings the capability of improving and
enriching their knowledge and available data, receiving input and signals from sensors that
constantly monitor them, developing self-learning capabilities and predictivity through
the integration with AI systems.

Moreover, the paper focuses on how the concept of DT is extremely transversal and
applicable both to macroscopic and microscopic scales (from district to apartment), as
demonstrated for the use of energy management systems. It can be related, for example, to
specific components of technological systems, to the digitalization of infrastructures and
real estate assets, to technological systems, or networks of technological systems, etc.

The objective of the research was to exploit ML systems to manage and to simulta-
neously integrate self-production and supply system in an energy smart grid, in terms of
both thermal and electrical loads.
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The results of the DT-based real-time monitoring are able to reduce the gap between
the energy performance of the buildings (simulated through energy diagnosis) and the real
building performance. This is possible thanks to data analysis, which allows one to get
more refined energy management strategies, even highlighting inadequate users’ behaviors
and policies.

As far as load forecasting is concerned, the configured DT is able to calculate thermal
loads on a daily basis [60], integrating them with algorithms capable to calculate in advance
building consumption based on historical data transmitted by sensors; in this way the sys-
tem, on the one hand, acquires real-time data from smart metering [61] and environmental
quality sensors; on the other hand, it integrates historical data (bills, consumption, etc.)
and IoT with a real-time simulation approach [62]. The purpose is aimed at updating and
refining the database, tailoring the energy profile of consumption on real users

These intelligent systems implemented also provide an active control on the energy
balance; in fact, once the system becomes sufficiently confident, it takes control itself of
the energy production systems, as well as of the loads modulation and regulation in order
to optimize the energy balance system, limiting nonessential loads in case of production
deficit.

Even the optimization of thermo-hygrometric wellbeing parameters in the indoor en-
vironment is considered as fundamental. In fact, through the analysis of data from environ-
mental quality sensors and after an appropriate self-learning period, the DT becomes able
even to set operations times and levels of the systems to optimize the thermo-hygrometric
wellbeing of users.

Moreover, spreading the proposed research to an urban approach, developments in
the BIM-GIS synergy, as both large- and small-scale digital information system configura-
tion, would allow for the integration of each urban energy cell with the national power
distribution grid, with particular focus on electric mobility and storage systems of smart
grids, urban metabolism, etc. Predictions about the impacts on neighboring areas and
profiling functional integrations would be performed, providing essential digital tools for
the implementation and real-time monitoring of municipal and district energy plans.

In addition, in this regard, further developments of the present research would reach
the optimization of the operations using a data model as a process core, replicating reality
in real time, limiting or even eliminating system malfunctioning, grid unbalance, or even
power breakdowns. With the aim of reducing malfunctions and breakdowns on energy
services, the proposed methodology would be applied even to the facility management of
HVAC and electrical plants toward configuring predictive maintenance systems.
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