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ABSTRACT 
 

Comparative Study of Authentic Scientific Research Versus Guided Inquiry in Affecting 

Middle School Students’ Abilities to Know and Do Genetics. 

(May 2006) 

Jane Metty Scallon, B.S., Stephen F. Austin State University 

Chair of Advisory Committee:   Dr. Carol Stuessy 

 
 

     This exploratory mixed methods study addressed the types of gains students made 

when engaged in one of two forms of inquiry.  Gains were measured on three levels: 

conceptual understanding, the process of scientific investigation, and use of practical 

reasoning skills.  One hundred-thirty 8th grade students from a rural public school in East 

Texas participated in this study.  Classes of students were randomly assigned to one of 

two treatment groups: guided inquiry or authentic student research learning.  Non 

parametric statistical analysis and constant comparative qualitative analysis were used to 

triangulate pre-tests and post-tests, student journals, and student drawings to address the 

research questions.  Findings support greater gains in conceptual understanding of 

domain specific content in a highly scaffolded guided inquiry. Further authentic 

scientific research learning was more effective for developing understanding of scientific 

investigation as a process and application of knowledge through practical reasoning 

skills. 
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CHAPTER I  

INTRODUCTION 

 

A Call for Inquiry 

 

     In 2000, approximately three-quarters of the eighth grade students in the United 

States lacked a conceptual understanding of the science information they received in 

school.  Most students were not able to rise above rote factual recall to successfully 

perform scientific investigations, predict, interpret, or explain them.  Furthermore, most 

students were unable to apply their understanding in new and real world applications.  

Findings from the 2000 National Assessment of Educational Progress (NAEP) 

confirmed that 74 % of eighth grade students performed below proficiency in science, 

having only a basic or below basic understanding of science concepts appropriate for the 

eighth grade, with no apparent statistical improvement in performance from 1996 to 

2000 (National Center for Educational Statistics [NCES], 2004a).  NAEP also confirmed 

that many science teachers had attempted the shift toward inquiry-based instruction to 

enhance conceptual understanding, promote practical reasoning, and aid students in 

conducting scientific investigations.  However, science teachers in the United States 

have not yet accomplished this goal.    

     Research findings continue to support student inquiry as an effective method of 

enhancing students’ conceptual understanding.  There are an abundance of studies that 

__________ 
This thesis follows the style of Journal of Research in Science Teaching. 
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point to the benefits of student inquiry (Bonnstetter, 1998; Bruer, 1999; Bransford, 

Brown & Cocking, 2000; Chinn & Malhotra, 2002; Driver, Asoko, Leach, Mortimer, & 

Scott, 1994; Feldman & Minstrell, 2000; Polman, 2000).  Based on this broad consensus 

of research promoting inquiry, the question that must be asked is, “Why don’t the NAEP 

scores reflect improvement in students’ understanding of science?” 

     Perhaps the answer lies in the type of inquiry in which K-12 students typically engage.  

In researching the literature, no studies were found that directly compared the impact of 

one inquiry method over another on student understanding.  This apparent gap in the 

literature punctuated my need to investigate the effects different inquiry-based 

instructional methods have on students’ achievement in science.  

     Inquiry is a generic term that has broad meaning.  Inquiry is sometimes referred to as 

scientific inquiry, full-inquiry, and immersion (Duschl & Grandy, in preparation).  The 

term inquiry has a wide variety of uses in the literature.  It is described as a way of 

knowing, a way of becoming scientifically literate (National Research Council [NRC], 

1996), a way of doing science, (American Association for the Advancement of Science 

[AAAS], 1989), a way of developing conceptual understanding (NRC, 1996) and a way 

of promoting scientific discourse.  Inquiry is routinely described as an activity; an 

ability; a way of learning; a teaching strategy; an action; a process; as iterative cycle of 

experimentation, reflection and revision; a curriculum sequence; as probing; and as 

exploration.  To add to the confusion, inquiry has been divided into levels of complexity 

by some and descriptive of only one event by others.  Still others specify that the 

learning environment directs the inquiry (Duschl & Grandy, in preparation).  The 
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dissensus over how long an inquiry should last spans the continuum from one tight 

experience completed within one class period to months of ongoing investigations. 

     Lehrer, Schauble, & Petrosino (2001) describes inquiry as “more than just 

experimentation, involving complex forms of argument deeply embedded within 

domain-specific practices of modeling, representation and material manipulation of the 

world” (p. 251).  Inquiry has been defined as probing of the natural world in search of 

explanations based on evidence, leading toward an understanding of the world (AAAS, 

1989).  Often inquiry is described as learning with understanding (AAAS, 1989; 

Bransford, Brown & Cocking, 2000; NRC, 1996).   This phrase merges factual recall 

within a conceptual framework to emphasize the importance of understanding a 

phenomenon more completely than either is able to do independently.  Bonnstetter 

(1998) defines inquiry by assigning five levels of inquiry, which span a continuum from 

very teacher directed to completely student directed.  Finally, Etheredge & Rudnitsky 

(2003) stress the cyclical, dynamic nature of inquiry.  They describe inquiry as a process, 

rather than a method of instruction.  Inquiry as iterative with repeated cycles of 

reflection, revision, and experimentation further asserting that inquiry is not a step-by-

step method.   

     This wide breadth of interpretation makes it essential to define how the term inquiry 

will be used within this study.  For the purposes of this study, inquiry is a process in 

which the learner manipulates a system of variables to develop conceptual understanding 

of the system.  Inquiry investigations range from traditional hands on to authentic 
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scientific research.  The inquiry model (Bonnstetter, 1998) used in this research defines 

levels of student inquiry, as follows: 

1. Traditional hands-on, in which the teacher directs all aspects of the 

investigation (topic, question, materials, procedures/design, results/analysis and 

conclusion). 

2.  Structured inquiry, in which the teacher provides the topic, question, material, 

and design of the experiment.  Together the teacher and student collect and 

analyze the data and the student derives the conclusion. 

3.  Guided inquiry, in which the teacher provides the topic, question to be 

investigated, and materials.  Together the teacher and students design the 

experiment; and the students collect the data, analyze it, and forms their own 

conclusions. 

4.  Student directed inquiry, in which the teacher provides only the topic, and 

both the teacher and students develop the question.  The students determine the 

materials to be used, and the procedures to follow.  They collect and analyze the 

data and draw their own conclusions. 

5.  Student research, in which the teacher and student decide on the topic.  The 

students then develop the question, decide which materials and procedures to use, 

collect the data, perform the analysis, and form the conclusion.      

     The levels of inquiry progress from completely teacher directed to largely student 

directed.  Research findings support the assumption that most inquiry done in the 
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classroom falls somewhere in the middle of this spectrum between structured inquiry 

and guided inquiry (Bonnstetter, 1998; Chinn & Malhotra, 2002). 

     The term “authentic” also occupies an interesting position in the discussion on 

inquiry.  Is the inquiry authentic to the student?  If it is, does that mean that the activity 

has meaning and relevance to the student?  Or, is the classroom inquiry authentic to the 

scientist in the laboratory?  If it is, does that mean that the procedures are the same as 

those which are done by a scientist?  Or is the classroom activity authentic to the field of 

science?  In that regard, does that mean that the classroom inquiry is aimed toward 

contributing to the knowledge base of what is known about the natural world?  Edelson 

(1999) extends student research to involve scientists in the inquiry process.  Authentic 

science research learning allows students to learn science through authentic methods 

typically employed in scientists’ laboratories.  These methods have been carefully 

modified for the classroom.  “Adapting the practices of science to classrooms can 

provide benefits of authenticity for science learning.  Current theories hold that authentic 

learning activities are the key to developing understanding that will serve learners 

beyond the classroom” (Edelson, 1999, p. 5).  Bonnstetter’s model of the levels of 

inquiry and Edelson’s model of classroom science research learning fit together as 

shown in Table 1.    
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Table 1 
Combination of Bonnstetter and Edelson Model 
Categories Bonnstetter Model         Edelson Model 
       
 Traditional  Structured Guided Student Directed Student Authentic Scientific  
Inquiry Hands-On Inquiry Inquiry Inquiry Research Research Learning 
Topic 
Choice 

Teacher Teacher Teacher Teacher Teacher/Student Student 

Question Teacher Teacher Teacher Teacher/Student Teacher/Student Student 
Materials Teacher Teacher Teacher Student Student Student 
Procedure & 
Design 

Teacher Teacher Teacher/ 
Student 

Student Student Student 

Results & 
Analysis 

Teacher Teacher/ 
Student 

Student Student Student Student 

Conclusion Teacher/Student Student Student Student Student Student 
Instructional 
Focus 

Curriculum 
Alignment 

Curriculum 
Alignment 

Curriculum 
Alignment  

Curriculum 
Alignment & 
Student Interest 

Student Interest Scientific Knowledge 

Outcome Known Prior Known Prior Known Prior Known Prior Known 
Prior/Unknown 

Unknown 

Contribution Rote Learning Rote Learning Collaborative 
Instruction 

Collaborative 
Instruction 

Student Interest Contribute to the  body 
of scientific knowledge 

Educational 
Focus 

Teaching Teaching Teaching/ 
Learning 

Learning Learning Generation of new 
knowledge& Learning 
about how science is 
done 

Stuessy & Scallon, 2006 
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The Argument 

 

     Debate exists as to whether students are able to engage in authentic scientific research 

learning (ASR).  Those that argue that student research can not be done in schools say 

that,  “authentic scientific inquiry is a complex activity, employing expensive equipment, 

elaborate procedures and theories, highly specialized expertise, and advanced techniques 

for data analysis and modeling.  Schools lack the time and resources to reproduce such 

research tasks” (Chinn & Malhotra, 2002, p. 177).  Those who believe students can and 

should be encouraged to engage in authentic scientific research cite the benefits they 

have observed (Feldman & Minstrell, 2000; Stuessy & Scallon, in press).  Bonnstetter 

(1998) claims that authentic scientific research is inquiry’s ultimate goal.  In authentic 

scientific research the student simply needs support and guidance from the teacher.  

Bonnstetter (1998) goes on to point out that not all students will be able to engage in 

student research.  Edelson (1998) provides examples of successful authentic scientific 

research learning within the classroom.  It is anticipated that this research will help to 

identify and clarify the benefits a broad range of students gain from authentic scientific 

research. 
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Rationale 

 

     The rationale for developing conceptual understanding, practical reasoning, and an 

understanding of the scientific process lies in the need for people in all situations of life 

to be able to apply what they have learned.  Those who really learn something are able to  

apply it in a new context.  Learning must go beyond factual content that is disconnected 

from application and therefore of limited use.  “Informational and societal changes 

require education to develop individuals with the knowledge, problem solving skills, 

cognitive processes, intellectual dispositions, and habits of mind necessary to engage in 

lifelong learning” (Costa, 2001). 

     The ability to take content (factual knowledge) and apply it to different situations 

transforms learning into knowledge that is useful in building new understanding.  

Conceptual understanding separates the expert from the novice (Bruer, 1993).  

Development of conceptual understanding is important because all people in our society 

from entry-level workers to college students are expected to have these types of skills 

when they leave high school (Bruer, 1993).  These skills are the focus of the NAEP 

assessment, which serves as the framework on which the assessments in this study are 

built.  The introduction to Science for All Americans (AAAS, 1989) states that,  

    Education has no higher purpose than preparing people to lead personally 

fulfilling and responsible lives…..education in science… should help students to 

develop the understandings and habits of mind they need to become 

compassionate human beings able to think for themselves and to face life head on.  
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It should equip them also to participate thoughtfully with fellow citizens in 

building and protecting a society that is open, decent, and vital… The most 

serious problems that humans now face are global…What the future holds in 

store for individual human beings, the nation, and the world depends largely on 

the wisdom with which humans use science and technology (p. xiv). 

     That only a few students achieve this level of understanding in school is no longer 

acceptable.  High expectations from the labor force, secondary institutions of learning, 

and post-secondary institutions of learning dictate that all students should leave high 

school with practical reasoning skills.  Instructional practices can incorporate strategies 

that encourage higher-order thinking among students.  This study’s importance resides in 

its potential in contributing to our knowledge about the impact of different inquiry forms 

on students’ conceptual understanding of the material, on their understanding of the 

scientific process, and on their abilities to effectively engage in scientific investigation, 

and finally, their ability to practically reason. 

 

Problem 

 

     Inquiry-based instruction most commonly found in the classroom has left students 

unable to conceptually understand the science they were taught.  Students lack the skills 

to perform scientific investigations successfully, to accurately interpret their data or 

justify their results.  They are unable to transfer their learning to new or real-world 
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applications.  In effect, they have left school ill-prepared for future work or life long 

learning. 

     Previous experiences in the classroom with authentic scientific research, as well as 

the experiences of other teachers using student research (Edelson, 1998; Feldman & 

Minstrell, 2000; Minstrell & van Zee, 2000), have led me to informally conclude that 

authentic scientific research can efficiently and effectively enhance the development of 

the desired outcomes called for by the National Research Council.  Positive results of 

this research could encourage science educators and teachers to invest the time to engage 

their students in authentic scientific research in the classroom.  In addition, these results 

will contribute to the body of knowledge about the effects of scientific inquiry on 

learning.  Perhaps an answer to poor student performance on NAEP can be found in the 

nuances of the type of inquiry in which students are typically engaged.      

 

 Purpose 

 

     Do alternative forms of inquiry differently impact conceptual understanding, practical 

reasoning, and the understanding of scientific investigations?  Does a particular type of 

inquiry best facilitate student development of conceptual understanding, which in turn 

leads to practical reasoning and changes in conceptual models?  The purpose of this 

study was to compare a well scaffolded form of guided inquiry with authentic scientific 

research.  
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Research Questions 

 

     What is the value of authentic scientific research and guided inquiry in enhancing 

students’ abilities to know and do genetic research?     

1. How do these two forms of inquiry affect conceptual understanding? 

2. How do these two forms of inquiry affect students’ understanding of scientific 

investigations? 

3. How do these two forms of inquiry affect practical reasoning ability? 

 

Limitations  

 

     The process by which students were chosen for this study prevented these findings 

from being generalized to the larger population of eighth grade students.  The students 

within each class were pre-determined by the school counselor who intentionally placed 

students in specific classes for a variety of reasons, few of which were random 

placement.  Entire classes were randomly assigned to a treatment group.  For this reason, 

results of this study are not generalizeable beyond the students in this study.  These 

students serve as the population.  A total of six classes of eighth grade students (N = 

130) participated in this study.  However, attrition was high resulting in low numbers of 

students for whom I had matched pre- and post-test data sets.  Reasons for high attrition 

occurred primarily as a result of the time of year in which the study was done.  These 

reasons are expanded on in Chapter V.  The low numbers of matched pre- and post-tests 
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constrained the availability of justifiable analysis techniques.  I made the decision to use 

non-parametric methods to analyze differences between the two treatment groups.   

     Finally, I was constrained by district mandates directing what material was to be 

covered at specified times of the year and the length of time instruction could focus on 

that material.  Tight controls over how the teacher allocates instructional time made it 

sufficiently difficult to conduct this study over the prolonged time required to complete 

the research.  It was essential that I gained permission to deviate from the prescribed 

district syllabus.  This limitation is becoming increasingly common as more districts take 

control away from the teacher, centralizing instruction around district goals rather than 

student needs.  This tight control over time spent on specific topics at specific times 

during the year would likely discourage a teacher from such open-ended inquiry as ASR.  

Authentic scientific research by nature requires significant lengths of time to complete.  

Teachers may find that they have to move on before the student research is complete.  

 

Deficiencies 

 

     As is often the case, questions raised in studies are not likely to be resolved in one 

intervention.  It is far more likely that a combination of variables working together 

would be found to be responsible for changes in student understanding.  Some of these 

combinations include individual teacher differences both in instructional preferences and 

pedagogical knowledge.  Each teacher brings unique experiences, instructional strategies, 

and beliefs about teaching into the classroom.  Brown (1992) states that variations in 
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teachers’ pedagogical abilities and understanding of the theoretical underpinnings of an 

intervention significantly impact student learning.  It is quite possible that another 

teacher conducting this same study could find results that were different, caused by 

variables other than the inquiry intervention.  This study does not address the influence 

of the teacher on the inquiry process. 

     Other important combinations that may influence conceptual understanding include 

the level of metacognition students possess and the degree of emphasis the teacher 

places on developing these skills within the student.  Metacognitive skill development is 

also thought to play an integral part in students’ development of conceptual 

understanding and practical reasoning skills.  Furthermore, teaching metacognitive skills 

may enhance conceptual understanding and practical reasoning abilities among students.  

Schraw and Dennison, (1994) and Sperling et al., (2001) claim that perhaps more 

effective than the inquiry style alone is the degree of metacognitive processes that are 

taught.  Inquiry style and instruction in metacognitive skills in partnership may not only 

enhance students’ practical reasoning and conceptual understanding but maximize it 

(Sperling, 2001).  Changes in students’ metacognitive abilities were not addressed in this 

study.          

     Theories of expertise and the effect of experts over novice learners on conceptual 

understanding also were not addressed in this study.  Development of expertise occurs 

over many years (Goldman, Petrosino & Cognition and Technology Group at Vanderbilt, 

1999).  Studies in expertise show that experts have better conceptual understanding of 

domain specific knowledge and they are able to transfer this knowledge to new 
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situations (Bruer, 1993).  The length of this study was not sufficient to allow for 

complete development of expertise.  Conceptual understanding and practical reasoning 

skills almost certainly would not have had the time to fully develop in the time frame of 

this research.  In this research, however, movement toward this type of learning could be 

evidenced.  Therefore, this study has set the stage for a more in-depth, long-term study 

of the events that influence students’ conceptual understanding, practical reasoning 

abilities, and their understanding of scientific investigation.   

     It is quite possible that the content of this research held little interest for some 

students.  If this were the case and students did not find the content of the study 

meaningful, less cognitive engagement could have occurred on the part of the student 

with lower conceptual gains in all areas of measure.  It would be a mischaracterization to 

conclude that the inquiry methods were ineffective when it may have been a lack of 

engagement or interest on the part of the student.  Student interest in the content of the 

inquiry was not measured. 

     In conclusion, it was unrealistic for me to try to measure the impact of all of these 

events simultaneously in the scope of this exploratory investigation.  Instead, this 

research sought to study one event and how the inquiry method influences student 

learning within a specific time frame and with one experienced teacher filling the role of 

teacher and researcher. 
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Definitions 

 

     Authentic Scientific Research Learning.  Adaptation of the practice of science into the 

classroom consists of three essential components, the attitudes of scientists (uncertainty 

& commitment), tools and techniques that are shared across the community of scientists 

which allow them to pose and investigate questions, and social interactions such as the 

sharing of results in an atmosphere of cooperation and competition (Edelson, 1998). 

     Conceptual Understanding.  The body of scientific knowledge consisting of essential 

scientific concepts which involve a variety of information, including: facts and events 

the student learns from both science instruction and experiences with the natural 

environment; and scientific concepts, principles, laws, and theories that scientists use to 

explain and predict observations of the natural world (O’Sullivan & Wiess, 1999, p. 5). 

     Guided Inquiry.  This level of inquiry has the teacher deciding the question, materials, 

and procedures; the student is invited to contribute to the analysis and conclusions.  

Guided inquiry is focused on problems with known answers and content that aligns with 

curricular goals rather than student interest (Bonnstetter, 1998).      

      Inquiry.  First, it refers to the abilities students should develop to be able to 

design and conduct scientific investigations and to the understanding they should 

gain about the nature of scientific inquiry.  Second, it refers to the teaching and 

learning strategies that enable scientific concepts to be mastered through 

investigations (NRC, 2000 p.xv).   
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     Practical Reasoning.  Practical reasoning probes students’ abilities to use and apply 

science understanding in new, real world application (O’Sullivan & Wiess, 1999, p. 5). 

     Proficient.  Solid academic performance for each grade assessed.  Students reaching 

this level have demonstrated competency over challenging subject matter, including 

subject-matter knowledge, application of such knowledge to real-world situations, and 

analytical skills appropriate to the subject matter (NCES, 2004b).   

      Scientific Investigation.  Scientific investigation includes the application of 

appropriate scientific knowledge, problem-solving skills, and thinking processes to the 

creation of new knowledge and understanding. The NAEP 1996 and 2000 science 

assessments probe students' abilities to: 

• acquire new information; 

• plan appropriate investigations; 

• use scientific tools; and 

• communicate their results to a variety of audiences (NCES, 2004a). 

     Scientific Literacy.  Scientific literacy means that a person can ask, find, or  

determine answers to questions derived from curiosity about everyday experiences.  

Scientifically literate people have the ability to describe, explain, and predict 

natural phenomena; they can read with understanding articles about science, 

engage in social conversation about the validity of the conclusions.  A 

scientifically literate person can identify scientific issues underlying national and 

local decisions, express positions that are scientifically and technologically 
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informed, and they can pose and evaluate arguments based on evidence and to 

apply conclusions from such arguments appropriately (NRC, 1996). 

     Special-Needs Students.  Students who have a physical or mental impairment, as 

defined by Americans with Disabilities Act, that substantially limits one or more major 

life activities, who have a record of such impairment or who are regarded as having such 

an impairment. (Concepts to Classroom, 2000)  
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

Introduction 

 

 …what the subject matter comes to mean in the lives of learners still 

depends on the forms of participation available to them.   Wenger, 1998  

 

     This study was designed to investigate what students learn as a result of participation 

in one of two forms of inquiry, guided inquiry (GI) or authentic scientific research 

learning (ASR).  This review provides an in-depth look at the inquiry by answering four 

questions.  First, who calls for inquiry and how is it defined?  Second, what are the 

potential benefits and deficiencies of inquiry on student learning?  Third, what do 

cognitive learning theories reveal about how learners gain knowledge that would 

advocate the use of inquiry?  Finally, how are the effects of inquiry on learning best 

assessed?  In short, what does the literature say about inquiry learning and its place in 

enhancing understanding of scientific facts and concepts?  Further, this section reviews 

the literature on the understanding of scientific investigation as a process, and the ability 

to practically reason using new knowledge and finally how best to assess this learning.    
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Who Calls for Inquiry, and How Is It Defined?   

 

     Broad support exists for students to go beyond factual recall to develop deep 

conceptual understandings of domain-specific concepts (American Association for the 

Advancement of Science [AAAS], 1989; Bransford, Brown & Cocking, 2000; Bruer, 

1993; Donovan & Bransford, 2005; Duschl, & Gitomer, 1997; Driver, Asoko,Leach, 

Mortimer, & Scott, 1994; Minstrell & van Zee, 2000; National Research Council, [NRC], 

1996; Polman, 2000; Wiggins & McTighe, 1998).  The NRC stresses the importance of 

students being scientifically literate and advocates the fundamental role of inquiry in 

education to develop scientific literacy (NRC, 1996).  The National Science Education 

Standards (NSES) explains scientific literacy as follows: 

     Scientific literacy means that a person can ask, find, or determine answers to 

questions derived from curiosity about everyday experiences. It means that a 

person has the ability to describe, explain, and predict natural phenomena. 

Scientific literacy entails being able to read with understanding articles about 

science in the popular press and to engage in social conversation about the 

validity of the conclusions. Scientific literacy implies that a person can identify 

scientific issues underlying national and local decisions and express positions 

that are scientifically and technologically informed. A literate citizen should be 

able to evaluate the quality of scientific information on the basis of its source 

and the methods used to generate it. Scientific literacy also implies the capacity 
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to pose and evaluate arguments based on evidence and to apply conclusions 

from such arguments appropriately (NRC, 1996 p. 22). 

     Scientific literacy is seen as an essential component for every citizen to function in a 

free society. Citizens should be able to evaluate claims and make informed decisions 

(AAAS, 1989; Bransford, Brown & Cocking, 2000; Bruer, 1993; Costa, 2001).   Inquiry 

learning is consistently presented as the preferred instructional method by which 

students meet the challenges of learning at the levels called for in not only the Texas 

state standards, but also the national standards for science (Texas Education Agency 

[TEA], 2005).     

     AAAS (1989) defends the need for inquiry in the following statement, “By gaining 

lots of experience doing science, becoming more sophisticated in conducting 

investigations, and explaining their findings, students will accumulate a set of concrete 

experiences on which they can draw to reflect on the process” (p. 4).  The inquiry 

process is instrumental in learning with understanding and competent performance 

(NRC, 1994; AAAS, 1989).  Tables 2 and 3 provide a summary of what the NRC 

suggests should be emphasized as well as deemphasized in science instruction.    

Inquiry instruction has broad support from the science community (Bonnstetter, 1998; 

Bransford, Brown & Cocking, 2000; Bruer, 1993; Brown, 1992; Edelson, 1998, Feldman, 

2000; Wiggins & McTighe, 1998).  Edelson (1999) says, “Participation in inquiry can 

provide students with the opportunity to achieve three inter-related learning objectives: 

the development of general inquiry abilities, the acquisition of specific 
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Table 2   
Emphasis of the NRC National Science Standards 
Emphasis of National Science 
Standards 

 Emphasis of National Science Standards 

Less Emphasis on:  More Emphasis on: 
Memorization of facts and information  Understanding of scientific concepts through 

inquiry. 
Learning science disciplines in 
isolation 

 Learning science in the context of integrated 
inquiry & technology in the context which is 
meaningful. 

Science facts as separate from the 
process 

 Integration of concepts and scientific process 

Presenting scientific process as a set 
of procedures 

 Present scientific process as a dynamic 
process that seeks to investigate, and analyze 

Superficially teaching many science 
topics 

 Deep understanding of fewer topics 

Table modified from Chiappetta & Koballa, 2000) 
 
 
 
Table 3   
NRC National Standard Emphasis in Inquiry 
Less Emphasis on Inquiry that:  More Emphasis on Inquiry that: 
Cook book type labs that demonstrate 
a concept  

Activities that require investigation and 
analyzing of findings 

Lack of process skills  Emphasis on process skills 
Investigations completed in one class 
session  

Investigations occurring over a prolonged time 

Getting the right answer 
 

Using evidence to develop and revise thinking 
to provide an explanation 

Individual work that is not shared 
 

Discussion of ideas and results as a class 
emphasizing justification and explanation 

Few Investigations done is classroom 

 

Many investigations done to develop 
understanding, ability, knowledge of inquiry 
and science content. 

Table modified from Chiappetta & Koballa, 2000) 

      

 

investigation skills, and the understanding of science concepts and principles” (p. 393).   

Even with this support inquiry remains a loosely defined instructional style having 

varying degrees of student-centeredness (Bonnstetter, 1998; Etheredge & Rudnitsky, 

2003).  
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What Are the Potential Benefits and Limitations of Inquiry on Student Learning? 

 

     Recent studies have revealed unexpected benefits of inquiry learning for students 

with special needs (Brown, 1994; Champion, Shaprio, & Brown, 1995; Zohar & Dori, 

2003).  A synthesis (Zohar & Dori, 2003) of four independent studies investigating the 

role of inquiry on low achieving students’ responses to instruction reported positive 

findings in all four studies.  Zohar and Dori’s (2003) analysis of these four studies 

revealed that most teachers believed that only those students who were academically 

accelerated would benefit from instruction designed to develop higher-order thinking.  

Further, Zohar and Dori found that low-level students were not typically given the same 

opportunities to engage in higher-order thinking and that they were held to lower levels 

of expectation.  Zohar and Dori also noted that even when teachers were explicitly 

instructed to engage all students equally in higher-order thinking tasks, differences in the 

treatment of students persisted.  Zohar and Dori concluded that these studies were thus 

inherently biased against lower-level students as a result of teacher beliefs that higher-

order skills were beyond the ability of low-level students.  Even in light of this bias, 

results of all four studies showed significant gains in higher-order, practical reasoning 

performance in both low- and high-achievement groups.  Significant also in this study 

was the clear pattern of improved performance for the low-achieving population of 

students.  This goes counter to what most teachers believe, making a strong case for the 

benefits of inquiry-based instruction that places special emphasis on higher-order 

reasoning skills (Zohar & Dori, 2003).  These studies support inquiry as an effective 
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means of challenging all learners at whatever academic level they are, thus complying 

with No Child Left Behind (NCLB) mandates to provide students with the least 

restrictive learning environment. 

     Brown (1994) summarized the benefits of inquiry for all students including special-

needs students in this statement, “Group cooperation, where everyone is trying to arrive 

at consensus concerning meaning, relevance, and importance, helps ensure that 

understanding occurs, even if some members of the group are not yet capable of full 

participation.  Because thinking is externalized in the form of discussion; beginners can 

learn from the contributions of those more expert than they” (p. 7).   This quote 

summarizes not only the benefits of cognitive apprenticeship (Collins, Brown & 

Newman, 1991) and distributed expertise (Brown, 1994) in inquiry for special-needs 

students, but also for all students of various developmental levels.  Learners participate 

in inquiry to the level that they are capable as well as develop the cognitive skills to 

participate more fully in future inquiry experiences.   

    Donovan and Bransford (2005) identify three benefits students gain when they engage 

in inquiry.   

1. Inquiry allows students to confront their own misconceptions under the 

guidance of a teacher who is aware of misconceptions that need to be 

corrected.   

2. Inquiry allows students to develop an understanding of what it means to do 

science.  
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3. Inquiry coupled with metacognitive strategies enhances learning. Students 

improve their conceptual understanding by developing their metacognitive 

abilities through reflection on inquiry and monitoring and critiquing claims 

of their own and their peers (White & Frederiksen, 2000; Lin & Lehmann, 

1999). 

     Two studies conducted by Kuhn, Schauble, & Garcia-Mila (1992) further reinforce 

the importance of conducting inquiry with special-needs students.  Further they 

emphasize the beneficial impact of inquiry over a prolonged period of time.  

Additionally, these studies provided evidence that support the importance of allowing 

students to deal repeatedly with the same phenomenon.  Kuhn and her associates found 

that long term, self-directed inquiry improved students’ reasoning strategies.  In their 

studies, students dealt repeatedly with the same phenomenon over a period of months, 

undergoing iterative cycles of reflection and revision.  These cycles were found to 

enhance students’ conceptual understanding. As a result of repeated exposure, students 

developed a rich conceptual understanding atypical of cookbook-type experiences, “one 

shot” inquiry lessons, or teacher demonstrations.  These authors found that students 

underwent revisions to their conceptual theories and also improved their reasoning 

strategies.   

     Students do not gain an understanding of what it means to do science by memorizing 

a set of steps, commonly referred to as the scientific method (Bransford, Brown & 

Cocking, 2000; Brown, 1994; Bruer, 1993; Chinn & Malhotra, 2002; Driver, Asoko, 

Leach, Mortimer, & Scott, 1994).  Inquiry allows students to learn new concepts and 
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theories with understanding, to experience the processes of inquiry that are key elements 

of the culture of science, and finally, to reflect metacognitively on their own thinking 

and participation in scientific inquiry (Bransford, Brown & Cocking, 2000). 

 

Benefits of Authentic Scientific Research Learning 

 

     Petrosino, Lehrer, & Shauble (2003) cite benefits of the authentic inquiry process in 

the following statement33 

…the use of tools and procedures, in the context of authentic inquiry, 

become devices that allow students to extend their everyday experiences of 

the world and help them organize data in ways that provide new insights 

into phenomena (p.143). 

Edelson (1998) makes a compelling argument in defense of authentic scientific research 

learning, the most student-centered form of inquiry.  His three arguments are: 

1. Authentic scientific research places the student in the setting in which the 

knowledge applies.  Edelson (1998) draws attention to the attitudes and social 

aspects of authentic inquiry that are likely to be lacking in other more guided 

forms of inquiry.   

2. Scientists pursue answers to unanswered questions.  This uncertainty 

constrains scientists to re-examine and repeat their investigations.  This 

uncertainty is lacking in inquiry experiences with known answers.  With 

these types of experiences, the cognitive processes scientists experience in 
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the authentic science of uncertainty are lacking.  Learners who engage in 

traditional guided inquiry are believed to entirely miss this aspect of authentic 

science.  

3. Scientists collaborate.  They share their findings, discuss, and debate their 

findings with others in the community of scientists.  Unless students are 

explicitly exposed to discussion or small group interactions that encourage 

them to defend their ideas and provide evidence critiqued by others, they too 

miss this essential element of what it means to do science.    

Scientists pursue things that are personally meaningful to them.  They seek 

answers to questions they want to answer.  Activities that dictate what students 

are to investigate deny ownership of learning.  This ownership, by its very nature, 

elicits a level of commitment to resolve the question.   

 

Limitations of Less Student-Centered Forms of Inquiry 

 

     Though more and more classrooms across the United States are engaging in inquiry-

based instruction in response to the NRC, National Standards, and AAAS, much of the 

theory that drives classroom instruction is outdated.  Brown (1994) observed that “...the 

design of school practice is influenced by theories of development more typical of the 

1950’s than the 1990’s” (p.10). When inquiry does make it into the classroom, the 

inquiry experiences are typically cookbook-type labs that bear little to no resemblance to 

the authenticity of how science is done in the real world. Chinn and Malholtra (2002) go 
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so far as to claim that cookbook-type experiences actually embed an inaccurate 

epistemological view of what science is and how it is done.   

     Chinn & Malholtra (2002) draw interesting comparisons between what they call 

simple inquiry tasks and authentic science inquiry.  These authors make a very strong 

argument for the cognitive and epistemological differences between the two inquiry 

strategies.  The first argument is that simple inquiry tasks foster an inaccurate 

understanding of authentic science.  The second argument is that simple inquiry tasks do 

not engage the learner in the cognitive processes that are employed in authentic science.  

Consequently, students engaged in simple inquiry tasks will not experience the same 

cognitive benefits as those who engage in authentic science inquiry.   

     In typical guided inquiries, the teacher orchestrates the question, which may or may 

not be of interest to the student.  The teacher also provides experiments and hands-on 

activities that have known outcomes.  Inquiry experiences with known and predictable 

outcomes circumvent almost entirely the collaborative aspect of the scientific process.  

They also deny students the cognitive benefits inherent in solving a problem with no 

known solution.  In addition, these types of investigations do not provide a context from 

which students can develop an accurate understanding of what it means to do real 

science. Epistemologically, their experience with scientific investigation does not 

resemble how scientific investigations are really done.  As a result, students develop an 

inaccurate conceptual model of what it means to do science.   

     Bonnstetter’s (1998) model of inquiry explains how the roles of the teacher and the 

student change with the level at which the inquiry is experienced.  Implications for the 
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student and the teacher are different at every level.  As instruction moves from teacher-

centered to student-centered, the impact on the student’s intellectual development 

increases.  The focus of the classroom changes from a focus on teaching to a focus on 

learning (Bonnstetter, 1998; Bransford, Brown & Cocking, 2000).  In more student-

centered forms of inquiry the student moves from simple recitation and recall of what 

they know to a more “internal reconstruction of the new information” that allows them 

to apply their knowledge to new situations such as those occurring in problem solving 

(Bonnstetter, 1998).  These differences in experiences and the potential impact on 

learner outcomes influenced the choice of guided inquiry and authentic scientific 

research learning as the two treatments in this study. 

 

What Does Cognitive Learning Theory Reveal About How Students Learn? 

 

     Conceptual understanding and the ability to transfer new knowledge to novel 

situations are primary goals of education (Etheredge & Rudnitsky, 2003).  Inquiry in the 

classroom can be effective in accomplishing these goals (Bransford, Brown & Cocking, 

2000;  Bruer, 1993; Driver, Asoko, Leach, Mortimer, & Scott, 1994; Etheredge & 

Rudnitsky, 2003; Feldman & Minstrell, 2000; Goldman, Petrosino & Cognition and 

Technology Group at Vanderbilt, 1999;  Kuhn, Schauble, &Garcia-Mila, 1992; Polman, 

2000).    What then, is the link between conceptual understanding and inquiry?    

     Bruer (1993) presents a convincing argument that the link is readily explained by 

what recent cognitive learning theory has revealed about how students learn.  Advances 
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in research techniques allow researchers as never before to observe how learning occurs.  

Studies have shaped and continue to shape new beliefs about what classroom 

instructional strategies enhance learning (Bruer, 1993; Donovan & Bransford, 2005).  

Figure 1 summarizes the link between cognitive learning theory and inquiry in 

producing scientifically literate learners.   

 

 

Figure 1    Concept Map.   How Cognitive Theory Through Inquiry Can Lead to Scientific Literacy 
Among Learners. 
 

 

 

     Cognitive learning foundations on which the call for inquiry instruction rests and 

which are applicable to this study are as follows: 

1. Learners actively construct new understanding.  This understanding is built 

on the foundation of existing knowledge. Learners are not passive recipients 
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of knowledge (Bransford, Brown & Cocking, 2000; Bruer, 1993; Donovan & 

Bransford, 2005; Driver, Asoko, Leach, Mortimer, & Scott, 1994).  

2. There are different forms of knowledge (Anderson & Krathwohl, 2001; 

Donovan & Bransford, 2005).  Effective instruction incorporates the different 

forms of understanding as mutually important in creating conceptual 

understanding.  One form should not be taught exclusive of the other forms 

(Bruer, 1993). 

3. Conceptual constructs, prior knowledge, and prior experiences influence how 

learners interpret new knowledge (Bransford, Brown & Cocking, 2000; 

Brown, Collins, & Duguid, 1989; Bruer, 1993; Driver, Asoko, Leach, 

Mortimer, & Scott, 1994).  

4. Learners need to be encouraged to develop habits of mind that allow them to  

assess their own learning.  This process is referred to as metacognition  

(Bransford, Brown & Cocking, 2000; Bruer, 1993; Donovan & Bransford 

2005; Goldman, Petrosino & Cognition and Technology Group at Vanderbilt, 

1999; White & Frederiksen, 2000). 

5. Effective learners “chunk” relevant facts together into organized sets of 

information rather than independent disconnected units.  They readily see 

relationships within and between systems.  They form schema or network 

structures that store and organize knowledge.  These schemas help learners to 

interpret new knowledge as well as assist the learner in predicting (Bruer, 

1993).   Development of these schemas takes time and repeated exposure.  
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The ability to efficiently organize information separates the novice from the 

expert (Bransford, Brown & Cocking, 2000; Bruer, 1993; Donovan & 

Bransford, 2005). 

6. Learners can more “flexibly” use new knowledge when it is acquired in a 

situation resembling the context in which the knowledge will be used (Bruer, 

1999; Brown et al., 1989; Donovan & Bransford, 2005). 

7. Learning is social.  Learning occurs naturally within communities where 

diverse experiences, expertise and opinions are shared and critiqued.  

Learners need feedback and opportunities to reflect and revise their mental 

models as well as evaluate alternative conceptual models (Bransford, Brown 

& Cocking, 2000; Brown, Collins, & Duguid, 1989; Brown & Champione, 

1996; Bruer, 1993; Driver, Asoko, Leach, Mortimer, & Scott, 1994; 

Etheredge & Rudnitsky, 2003; Wenger, 1998). 

8. Learning occurs when we challenge the learner’s current beliefs, referred to 

as cognitive dissonance (Bruer, 1993; Kuhn, Schauble, & Garcia-Mila, 1992). 

     Each of these eight theoretical statements is examined more closely in the following 

paragraphs.  

     Learners actively construct new understanding.   Conceptual constructs, prior 

knowledge, and prior experiences influence how the learner interprets new knowledge.  

Learning occurs when we challenge the learner’s current beliefs.  Learners’ 

preconceptions are often developed based on everyday experiences and are therefore 

difficult to change.  These preconceptions are based on prior knowledge or beliefs and 
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typically are incomplete, inaccurate conceptions (Donovan & Bransford, 2005).  It is 

difficult, for example, for young children to accept that the world is a sphere when their 

everyday experience tells them they are on flat ground.  This preconception is further 

reinforced when their own experience tells them that they can’t stand on a curved 

surface, such as on a ball.   These conceptions form the basis for our understanding of 

how the world works.  Left unchallenged, learners will build constructs on these faulty 

foundations (Guzzetti, Snyder, & Glass, 1992).  For example, when children are told that 

the Earth is round like a ball, studies have shown that they merge this new knowledge 

into their current schemas and construct a new understanding that the earth is round, but 

also flat forming a new belief that the Earth is shaped like a pancake, both round and flat 

(Kotulak,1996).   Learner’s preconceptions must be made visible to insure that new 

knowledge is not built upon a flawed foundation (Brown, Collins & Duguid, 1989).   

     Research reveals that when learners are exposed to new information that is in conflict 

with their current beliefs they often will memorize the information for purposes of 

passing a test, but when asked to apply this new knowledge, it becomes apparent that 

they have not merged this new knowledge into their schema.  Instead, they will revert 

back to their previous conception using their original mental model to explain the 

phenomena (Donovan & Bransford, 2005).  This explains in part how students are able 

to perform well on factual recall assessments yet fail miserably when asked to apply or 

explain their conceptions of the phenomena.  Unless the underlying conceptual 

constructs are made visible and the misconceptions are challenged, learners are unlikely 
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to develop coherent and accurate conceptual understandings of the information (Guzzetti, 

Snyder, & Glass, 1992).     

     Inquiry-based instruction promotes an environment in which the learners’ current 

beliefs can not only be made visible through group discussion or written responses, but 

also challenged with the new evidence before them.  Once this conflict occurs, the 

learner within the context of the inquiry experience can explore in depth those aspects 

that are in conflict with their current thinking.  The intent is to allow the learner to 

resolve dissonance and form a new mental model that better explains the phenomena 

under investigation in the inquiry.  Inquiry instruction allows learners to explore new 

concepts by immersing the learner in the phenomena and allowing them the freedom to 

investigate more thoroughly the specific aspects of the phenomena that are inconsistent 

with their current mental model.  Production of new more complex schema is essential to 

conceptual understanding which leads to the ability to use this knowledge in novel 

situations. 

     There Are Different Forms of Knowledge.  Cognitive theorists differ in how they 

define the different types of knowledge.  Some cognitive learning theorists identify two 

forms of knowledge, factual and conceptual.  Factual knowledge is readily observable.  

In How People Learn, Bransford, Brown & Cocking (2000) relate a story, Fish is Fish, 

to illustrate this point.  In the story a frog tells the fish what the world outside the water 

is like.  The fish is able to internalize the facts given, such as people wear clothes, they 

walk upright on two legs, and a cow has udders, four legs, and are black and white.  

These are examples of factual knowledge.  Conceptual knowledge, however, is obscure 



 

 

34

and hard to uncover.  Conceptual knowledge allows learners to evaluate new factual 

knowledge and either weave it into their existing mental constructs or to reject it.    

     Other theorists define four types of knowledge; factual, conceptual, procedural and 

metacognitive (Anderson & Krathwohl, 2001).   Anderson defines factual knowledge as 

“the basic elements students must know to be acquainted with a discipline or solve 

problems in it” (p.29) and conceptual knowledge as “the interrelationships among the 

basic elements within a larger structure that enable them to function together” (p. 29); 

procedural knowledge as “how to do something, methods of inquiry, and criteria for 

using skills, algorithms, techniques and methods” (p.29), and metacognitive knowledge 

as “knowledge of cognition in general as well as awareness and knowledge of one’s own 

cognition” (p. 29).  Though theorists differ in how they define the forms of knowledge, 

there is agreement that knowledge in all its forms should be integrated into the learning 

process.   

     One form, factual knowledge, should not be taught to the exclusion of conceptual 

understanding.  For the purposes of this discussion, the theory advanced by Bransford, 

Brown & Cocking (2000) of two types of knowledge will be used. 

     Bransford’s fish story shows how factual knowledge is integrated with conceptual 

knowledge in the mind of the learner.  The fish, having only a conception of what fish 

looks like, imagined cows as black and white fish with udders and four legs.  The fish 

saw people as upright fish with clothes on.  The fish took the new factual knowledge and 

fit it into its conceptual framework to form an understanding of what life was like 

outside the water.  Merging factual knowledge and conceptual knowledge brings about 
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competence and learning with understanding (Bransford, Brown & Cocking, 2000).  

Cognitive learning theory supports the belief that conceptual understanding must address 

the different forms of knowledge (Anderson & Krathwohl, 2001; Bransford, Brown & 

Cocking, 2000; Bruer, 1993). 

       Inquiry learning merges both factual knowledge and conceptual knowledge through 

exploration.  Inquiry experiences allow the learner to take factual knowledge and use it 

in a context in which it applies giving it both context and relevance.   The hallmark of 

effective inquiry is the natural ease with which the learner is able to merge facts with 

concepts to develop conceptual understanding. Donovan and Bransford (2005) state, 

“Competent performance is built on neither factual nor conceptual understanding alone; 

the concepts take on meaning in the knowledge-rich contexts in which they are 

applied”(p. 6).           

     Effective Learners Use Metacognitive Strategies.  Cognitive learning theory holds 

that the responsibility for learning lies ultimately with the learner (Bruer, 1993; Donovan 

& Bransford, 2005).  Learners must develop the ability to take control or monitor their 

own learning, becoming metacognitively aware.  In short, effective learners know how 

to learn.  Metacognition includes being aware of when you understand something, seeing 

the need for clarification or feedback, and employing strategies effective in retaining 

information.  Metacognition includes processes such as reflection, self explanation, 

feedback, self-monitoring ones’ own comprehension, and employing strategies as 

needed to correct faltering comprehension such as re-reading a passage when the learner 

realizes a lack of comprehension (Donovan & Bransford, 2005).  Palinscar and Brown 
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(1992) were able to show “strong effects” on learning with understanding through the 

process of reciprocal teaching, which employs metacognitive strategies such as self-

monitoring, discussion, reflection and re-reading.   

     Thorndike identified feedback in a paper written in 1913 as a beneficial practice that 

provided support for learners as they engaged in self-assessment, aiding them in 

knowing what they know as well as refining their concepts. Teacher to student or student 

to student discussions afforded an opportunity to hear differing viewpoints, which were 

then used to inform and refine the learner’s conception (Bruer, 1993; Driver, Asoko, 

Leach, Mortimer, & Scott, 1994; Etheredge & Rudnitsky, 2003).  Another component of 

feedback is allowing learners the opportunity to test their ideas through repeated 

experimentation to see if they work.  In summary, learners need to be encouraged to 

develop habits of mind that allow them to assess their own learning (White & 

Frederiksen, 2000; Lin & Lehmann, 1999).  

     Inquiry learning as defined by Etheredge & Rudnitsky (2003) asks the learner, How 

do you know what you know?  This question alone highlights the metacognitive benefits 

inherent in inquiry.  Inquiry within the classroom typically involves small groups where 

student theories and explanations are presented, defended, critiqued, and modified.  This 

process encourages learners to develop metacognitive abilities since they are made 

aware of their thinking in the process of the discourse.  

     Effective Learners “Chunk” Relevant Facts Together Into Organized Sets of 

Information Rather Than Independent Disconnected Units.  Cognitive learning theory 

advances the idea that people organize knowledge into conceptual frameworks (Bruer, 
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1993; Donovan & Bransford, 2005).  Donovan and Bransford (2005) cite studies with 

results that showed unsurprising results that experts had not only more factual 

knowledge than novice learners, but, experts were able to organize these facts into set of 

ideas or chunks that were more easily retrieved as related sets of information rather than 

as independent facts (Bransford, Brown & Cocking, 2000; Bruer, 1993; Donovan & 

Bransford, 2005).   Novice learners see factual knowledge as individually distinct pieces 

of knowledge; they are not yet able to chunk facts together.   Research on expertise 

emphasizes that effective learners organize knowledge in a connected, structured way so 

that the learner not only knows the factual knowledge but how that knowledge fits into 

the bigger conceptual picture.  Another fundamental concept of expertise is that the 

process of becoming an expert takes a long time and can not be expected in an isolated 

experience.  For learners to develop expertise and conceptual understanding, they need 

to be exposed to multiple representations as well as to immerse themselves in the 

phenomenon being studied.  They must have multiple opportunities to manipulate, 

reflect and revise their work with the phenomenon (Etheredge & Rudnitsky, 2003; 

Goldman, Petrosino & Cognition and Technology Group at Vanderbilt, 1999; Kesidou & 

Roseman, 2002; Kozma, 2000; Driver, Asoko, Leach, Mortimer, & Scott, 1994).   

     During the inquiry process learners have multiple opportunities to manipulate 

variables with the system under study. With each iterative cycle the learner modifies 

their mental model refining their understanding to develop a more accurate conception 

through experimenting, reflecting, and revising their work.  Inquiry typically requires 

more time in class than does didactic instruction.  This additional time is essential and 
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indeed sets inquiry above lecture because it allows the learner to begin to develop 

expertise. 

     Learners Can More Flexibly Use New Knowledge When it is Acquired in a Situation 

Resembling the Context in Which the Knowledge Will Be Used.  Cognitive theory 

research supports this view of situated learning.  The learners’ ability to utilize 

knowledge is enhanced when the knowledge is acquired in an environment similar to the 

one in which the knowledge is likely to be used (Brown, Collins & Duguid, 1989).  For 

example, a student is more likely to understand what the scientific process is when 

allowed to experience it in the context of scientific investigation as opposed to reading 

about it in a book or listening to someone explain it.     

     A way in which inquiry instruction embraces grounded knowledge of cognitive 

theory can best be summed up by comparing a student’s understanding about small 

engine repair by reading about it in a manual or listening to a lecture as apposed to 

actually building a small engine under the guidance of an expert.  Inquiry is ideal for 

learning to occur within the situation in which it is relevant.  The student must construct 

the small engine requiring an understanding of how the parts work together.  It is more 

likely that the student will develop a more accurate complete conceptual understanding 

of small engines through inquiry than through listening to a lecture, reading a manual, or 

even watching a demonstration on how to construct a small engine. 

     Learning Is a Social Endeavor (Goldman, Petrosino & Cognition and Technology 

Group at Vanderbilt, 1999; Brown, 1998; Bransford, Brown & Cocking, 2000; Donovan 

& Bransford, 2005; Bruer, 1993).  Learners benefit from dialog with each other where 
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ideas are explained, challenged and discussed.  The diverse experiences other learners 

bring to the learning environment serve to challenge other learners to view alternative 

perspectives and alternative explanations. This creates an environment that promotes 

critical reflection and other metacognitive strategies shown to enhance conceptual 

understanding (Bransford, Brown & Cocking, 2000; Bruer, 1993; Driver, Asoko, Leach, 

Mortimer, & Scott, 1995; Etheredge & Rudnitsky, 2003; Lin & Lehmann, 1999; White 

& Frederiksen, 2000).   Real world learning, such as the work done by scientists in their 

labs or businessmen in their profession is not done in isolation.  Cognitive learning 

theory supports the belief that students do not learn best in isolation either. 

     Inquiry learning embraces the idea of small group interaction, fraught with discourse 

in which ideas are debated, investigated, modified, explained and, challenged by other 

learners.  Contrary to didactic forms of instruction that force students to learn in isolation, 

inquiry requires social interaction as learners grapple with new ideas. 

 

How Are the Effects of Inquiry on Learning Best Assessed? 

 

    A search to find existing assessments designed for inquiry learning that had been 

validated was unsuccessful.  Studies dealing with assessment of genetics at the high 

school and middle school levels primarily assessed understanding of inheritance, allele 

combinations, meiosis and their impact on phenotypic expression.  Many of these studies, 

which involved programs such as GenScopes and BioLogica, used performance-based 

assessments such as New Worm and New Fly, which were designed to go along with the 
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GenScopes project and measured transfer specific to that project (Buckley, Gobert, 

Kindfield, Horwitz, Tinker, Gerlitz, Wilensky, Dede, & Willett, 2004; Hickey, Kruger, 

Fredrick, Schafer, & Kindfield, 2002).  It was hoped that these would yield validated 

pre-test and post-test questions that could be used in this study.  Unfortunately, the 

aspects of genetics under investigation and the tested age group differed too much to be 

adapted to this study.  These assessments, however, did serve to significantly inform the 

understanding of assessment design and implementation within the domain of genetics 

used in this study.    

    This section on assessment is divided into four sections.  The first provides the 

rationale for using short, open-ended written response questions.  The second 

concentrates on issues of validity and reliability.  The third looks at the content focus of 

the assessments and finally what led to the assessment format and rubrics used in this 

study. 

 

Why Short Answer Open-ended Response Questions? 

 

     Fellows (1994) described a study in which students were encouraged to write out 

their responses. This study investigated the impact on conceptual understanding of 

written responses verses multiple-choice responses.  The study found that the students 

gained better conceptual understanding from recording their responses in written format.  

In addition, current theory on assessments demands that assessments do more than assess 

learning; they should serve as an instructional tool as well (Mertler, 2000; Messick, 
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1994).  Messick (1994) refers to other studies done that used similarly open-ended 

assessment questions and found them successful with sixth grade students.  These 

articles provided strong support as well as added validity for the use of an open-ended 

question format on the pre- and post-assessment.        

 

Issues of Validity and Reliability 

 

     Literature of assessment validation and reliability informed the researcher’s 

understanding of what validation is, the importance of validation, and what constitutes a 

valid assessment.  Mertler (2000) defines validity as matching the test to the 

instructional method, assessments should cover content.  They should be meaningful, 

fair, interpretative, as well as contain cognitive complexity.  Mertler (2000) claims, “The 

more of these validation criteria that are considered in assessment development, the 

legitimacy of the instrument increases making its scientific foundations more credibility 

stronger” (p. 13).    McMillian (1999) provided a chart which was found useful in further 

building support for the choice of open-ended questions as a valid method to assess the 

research questions (see Table 4).  This chart provided a number match between the 

learning goal and the method of assessment based on guidelines set forth in the article 

for matching the assessment with the best method of assessment and objective of the 

assessment.   On this chart, high numbers indicate better matches.  This chart matches 

open-ended response questions with student-centered inquiry instruction (McMilllian, 

1999).         
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Table 4 
Assessment Method Adapted from - McMillian, (1999; p. 15) 
      Performance Oral   Self 
Targets Objective Essay Based Question Observation Report 
Knowledge 5 4 3 4 3 2 
Reasoning 2 5 4 4 2 2 
Skills 1 3 5 2 5 3 
Products 1 1 5 2 4 4 

 

             

 
McMillian (1999) echoes Mertler’s view that for assessments to be valid they must 

match what is taught and be given after students have had adequate time to learn what is 

being assessed and be scored by a clearly defined rubric.  They should be designed to 

avoid students’ needing “pre-requisite” knowledge in order to be successful.  These 

same criterions for validation of assessment design and the results obtained from the 

instrument were echoed in a paper presented by Wiggins & McTighe (1998) at the 

Center on Learning, Assessment and School Structures (CLASS) at Princeton.  The 

basic premise of the paper was that credibility of the instrument rests on it measuring 

what it is supposed to do.   

     Messick (1994) also provided a rich source of information used to reinforce the 

concept of validity in assessment design and interpretation.  “Validation must include 

evidential and consequential aspects” (p. 13).  Evidential validity is concerned with the 

content of the domain being assessed.  Consequential validity is concerned with the 

usefulness of the instrument in a variety of arenas such as, informing instruction and 

enhancing student learning.  Together these papers enriched the understanding of what is 

involved in the development of both valid and reliable assessment questions. 
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Focus on Learning Targets 

 

     Clearly delineated learning targets that are age-appropriate and consistent with the 

overall goal of instruction are important to student learning (Dwyer, 1994; McMillian, 

1999; Messick, 1994; Wiggins & McTighe (1998).  The Texas Essential Knowledge and 

Skills (TEKS) are based on the National Science Standards and serve as the legal 

standard and statewide curriculum standards (Texas Education Agency [TEA], 1997) by 

which the teacher, curriculum director, and others in a position to direct curriculum 

make decisions about what will be taught in Texas classrooms.  Compliance with state 

standards is measured annually in the spring of the school year through a standardized 

test called the Texas Assessment of Knowledge and Skills.  The TEKS clearly delineated 

what the learning targets for this study were.  The first five of the TEKS address 

scientific processes and served as justification for bringing scientific inquiry and 

experimentation into the classroom.  These first five TEKS read as follows: 

(1)  Scientific processes. The student conducts field and laboratory investigations  

using safe, environmentally appropriate, and ethical practices. The student is  

expected to:  

(A)  demonstrate safe practices during field and laboratory investigations;  

(B)  make wise choices in the use and conservation of resources and the 

disposal or recycling of materials.  



 

 

44

(2)  Scientific processes. The student uses scientific inquiry methods during field 

and laboratory investigations. The student is expected to:  

(A)  plan and implement investigative procedures including asking 

questions, formulating testable hypotheses, and selecting and using 

equipment and technology;  

(B)  collect data by observing and measuring;  

(C)  organize, analyze, evaluate, make inferences, and predict trends from 

direct and indirect evidence;  

(D)  communicate valid conclusions; and 

(E)  construct graphs, tables, maps, and charts using tools including 

computers to organize, examine, and evaluate data.  

(3)  Scientific processes. The student uses critical thinking and scientific problem 

solving to make informed decisions. The student is expected to:  

(A)  analyze, review, and critique scientific explanations, including 

hypotheses and theories, as to their strengths and weaknesses using 

scientific evidence and information;  

(B)  draw inferences based on data related to promotional materials for 

products and services;  
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(C)  represent the natural world using models and identify their 

limitations;  

(D)  evaluate the impact of research on scientific thought, society, and the 

environment; and  

(E)  connect Grade 8 science concepts with the history of science and 

contributions of scientists. 

(4)  Scientific processes. The student knows how to use a variety of tools and 

methods to conduct science inquiry. The student is expected to:  

(A)  collect, record, and analyze information using tools including 

beakers, petri dishes, meter sticks, graduated cylinders, weather 

instruments, hot plates, dissecting equipment, test tubes, safety goggles, 

spring scales, balances, microscopes, telescopes, thermometers, 

calculators, field equipment, computers, computer probes, water test kits, 

and timing devices; and  

(B)  extrapolate from collected information to make predictions.  

(5)  Scientific processes. The student knows that relationships exist between 

science and technology. The student is expected to: 

(A)  identify a design problem and propose a solution; 
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(B)  design and test a model to solve the problem; and 

(C)  evaluate the model and make recommendations for improving the 

model (Texas Education Code, Subsection B: 112.24). 

 In addition, at the eighth grade level, TEKS 11 deals specifically with genetics.  It reads 

as follows:  

The student knows that traits of species can change through generations and that 

the instructions for traits are contained in the genetic material of the organisms. 

The student is expected to: identify that change in environmental conditions can 

affect the survival of individuals and of species; make predictions about possible 

outcomes of various genetic combinations of inherited characteristics (Texas 

Education Agency, 2005) 

This combination of TEKS provided the solid foundation for the justification to engage 

students in the domain of genetics through the process of scientific investigation. 

 

Format, Framework and Rubric Design 

 

     The assessment instruments developed for this study were based on the framework of 

the United States Department of Education’s National Assessment of Educational 

Progress (NAEP) assessments.  Bruer (1993) supports NAEP as “among the most useful 

indicators of student accomplishments” (p. 3).  Very few questions directly pertained to 
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the domain of genetic mutation in the released questions from the NAEP assessment. 

However, a clear pattern of open-ended question construction did emerge.  This pattern 

was consistent throughout the NAEP assessment instrument.   

     The NAEP open-ended question design and accompanying rubric served as a 

foundation on which my assessment instrument was developed. The scoring rubrics 

accompanying the questions from the NCES (2004b) assessments provided the 

foundation for the rubric design used in this study.  In addition, this framework also 

served as one form of instrument validation.     

     The use of the NAEP framework concurs with curriculum designers such as Wiggins 

& McTighe (1998), who state that validity is enhanced by the use of standards.   

“Assessment needs to be supported and judged in design by standards and peer review” 

(p. 18). The use of the NAEP and TAKS served as my standards.  Peer review, and 

committee review, served to add to the validity of my instruments.    

     These literature pieces informed my careful design of the types of assessments to be 

used in this study. 

 

Conclusion 

 

 My synthesis of the literature on inquiry and inquiry learning provided the basis 

for this study.  The review provided proof that a “knowledge gap” indeed exists, that no 

one had investigated the differential effects of inquiry treatments on student learning.  
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The review also allowed me to build a strong theoretical foundation for the design of a 

study to investigate the effects of inquiry learning on student outcomes. 

 Inquiry learning merges factual knowledge and conceptual knowledge as well as 

knowledge of process (NCES, 2004b). Inquiry learning best occurs when learners 

attempt to seek answers to their own questions about some phenomenon of nature  

through scientific process that allow active exploration, modeling, representation, and 

manipulation of the world (Lehrer, Schauble, & Petrosino, 2001).  Answering scientific 

questions with unknown answers increases the authenticity of the learning experience 

(Chinn & Malhotra, 2002; Edelson, 2003).  Scientific understanding can be measured, 

using open-ended questions that require students to explain scientific facts and concepts, 

to explain the details of scientific investigation, and to use scientific reasoning to solve 

scientific problems (O’Sullivan & Weiss, 1999).  

Classroom inquiry experiences allow learners to use factual knowledge in 

context.   When learners engage in scientific inquiry that is similar to the ways in which 

scientists engage in their inquiries, learners learn and use factual knowledge; they learn 

about the processes by which scientists investigate natural phenomena; and they learn to 

use reasoning in solving problems.  Donovan and Bransford (2005) state that 

“Competent performance is built on neither factual nor conceptual understanding alone; 

the concepts take on meaning in the knowledge-rich contexts in which they are applied” 

(p. 6).   

 Cognitive theory makes the connection between what students learn and how 

they learn it.  Cognitive theory provided the foundation for my thinking about the 
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creation of the ideal science learning environment, an environment that would allow my 

students to actively construct new understanding for themselves, to develop habits of 

mind that allow them to assess their own learning, to “chunk” relevant facts together into 

organized sets of information, to flexibly use new knowledge in new situations, and to 

learn in a social environment where new ideas were constructed, shared, and revised on 

the basis of feedback from peers and internal reflection. 

 These readings from the literature confirmed the personal relevance of my study.  

In my own professional context as an eighth grade science teacher, I wanted to explore 

the effects of design of instruction on students’ learning.  I embraced the tenets of 

cognitive theory and reasoned that a design more like that of scientists, that is, more 

“authentic,” would provide richer learning opportunities for my students and that they 

would therefore learn more.  I personally expected that more authentic scientific learning 

environments would lead to greater gains in my students’ scientific factual and 

conceptual knowledge, greater gains in their understanding of science as a process, and 

stronger, better developed reasoning abilities.   More restricted inquiry learning 

environments, such as those in which the teacher guides and controls student learning, 

would provide fewer benefits to student learner.   

Before this investigation, however, all I had were “gut feelings.”   The following 

chapters explain how I designed a classroom-based study using my own eighth grade 

students to investigate the benefits of two types of inquiry learning environment, guided 

inquiry, and authentic scientific research learning, on student learning.  
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CHAPTER III 

METHODOLOGY 

   

Rationale for Mixed Methods Approach 

 

     Answers to three questions about the effects of two different forms of inquiry 

(Guided inquiry [GI], and authentic scientific research learning [ASR]) were the focus of 

this study.  

1.  How do these two forms of inquiry affect conceptual understanding?   

2.  How do these two forms of inquiry affect students’ understanding of scientific   

     investigations?   

3.  How do these two forms of inquiry affect practical reasoning ability?   

     To answer these questions a mixed methods approach with concurrent triangulation 

to confirm and cross-validate the data was used (Creswell, 2003). Creswell asserts that 

triangulation in a mixed method research approach will “result in well-validated and 

substantiated findings” (p. 217).    Both quantitative and qualitative data were collected 

concurrently and integrated at the time of data analysis.  

     Mixed method methodology was selected for two reasons.  First, the heart of the 

research was to explore the types of learning gains students achieved as a result of one of 

two different inquiry experiences.  This question was best answered through qualitative 

questions that were then quantified.  Second, mixed methods were ideal for analyzing 

investigations done within the messiness of the classroom (Brown, 1992; Chi, 1997).  It 
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was essential to “preserve the potential to capture unanticipated phenomena” (Maxwell, 

1998, p. 75), a benefit of qualitative analysis.  Emphasis on quantitative data alone could 

have significantly limited the scope of findings arising from the study, particularly in an 

exploratory study where hypotheses could not be generated a priori.    

     Further reasons for using mixed methods were best stated by Creswell (2003), “…all 

methods have limitations, researchers felt that bias inherent in any single method could 

neutralize or cancel the biases of other methods” (p. 15) and that “... results from one 

method can help develop or inform the other method” (p. 16).  The choice of mixed 

methods was based on the anticipation that one method would inform the other and 

capture unanticipated outcomes.  Feldman and Minstrell (2000) made the following 

point advocating the use of mixed methods, “The extent [to which] we can triangulate 

students’ understanding from test results, discussions, laboratory activities, and written 

work, we establish the reliability of our findings” (p. 256).   By using a mixed methods 

approach with congruent triangulation, I hoped to bring reliability to my results as well 

as provide rich, thick descriptions to my analysis (Geertz, 1973). 

     The remainder of this chapter will be devoted to the specific details of the study.  

They are presented in the following six sections:  Students and the Research Setting, 

Ethical Considerations, Details of the Intervention, Data Collection and Assessment, 

Analysis and, a concluding Summary.   

 

 

 



 

 

52

Students and Classroom Research Setting 

 

     Six classes of eighth grade students (N=130) from a rural public middle school were 

randomly divided into two groups.  These students were of mixed gender, ethnicity, 

interests, socio-economic status, and academic achievement levels.  Particularly 

noteworthy about these classes were the extremely high numbers of children with special 

needs.  The percentage of children identified as special-needs students in each class 

ranged from 24 to 50 percent.  Class sizes ranged from 16 to 24 students.  Each class met 

every day for a period of 45 minutes.  There were six classes each day.   These classes 

served as the population of this study.   

     The classroom was outfitted with four light box set-ups (see Figures 2, 3 and 4).  

Each of the light boxes had eight fluorescent bulbs, four of which were fluorescent grow 

lights; the other bulbs were regular white fluorescent bulbs.  A 24-hour timer was 

attached at the outlet from which a power strip was connected.  The technology available 

to the students included 15 digital cameras (see Figure 5), four web-cameras, one 

classroom computer, six computers in the library, and an LCD projector in the classroom, 

which was used in large-group viewing of student data sets and student presentations.   

Black construction paper was placed behind the plants.  The paper served two purposes: 

first, it provided a strong contrast between the plant and the background, making 

morphological features of the plant more easily distinguishable and second, the 
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paper helped to focus the students’ data collection on the plants under investigation 

rather than on all of the other plants around it.  Each digital camera contained a data 

storage card on which the data was captured, powered by an A/C adaptor rather than the 

battery.  A/C adapters were necessary because several of the data sets were captured 

over a 72-hour period.  Obviously, the battery alone would be insufficient to power the 

camera over that length of time.  Cameras were held in place using table-top tripods (see 

Figure 5). 

Figure 4   Flats of Arabidopsis Plants. Figure 5   Digital Camera Set-ups. 

Figure 2   Light Box Set-ups with Several 
Student Data Sets Being Captured. 

  Figure 3   Light Box Set-up with Several     
  Students Collecting Data in Their Journals. 
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     The seeds, soil, plant flats, and dome lids used for this study were provided by 

research scientists from Texas A&M University.  Most of the wild-type seeds were 

produced and supplied by the university.  The mutant seeds were obtained by the 

university through an outside supplier.   The light box design was that of Dr. Griffing 

and Dr. Pepper, research scientists from Texas A&M University, who assisted in 

constructing the first of the four light boxes and provided ongoing support throughout 

the project. 

    Prior to planting, seeds were soaked using an imbibing solution for 24 hours and kept 

refrigerated.  Imbibed seeds were grown by one of two methods: in flats of soil, or on 

moistened paper towels in Petri dishes.  Two methods of growing seeds were necessary 

for observing the germination process and the gross morphological development of the 

plants.  Seeds were planted by using a pipette (see Figure 6), to place them on the 

surface of the soil, or onto moistened paper towels in Petri dishes.  The seeds placed in 

flats of soil were not covered with additional soil (see Figure 7).  Seeds placed in Petri 

dishes were sealed using a Para-Film wax sealer to prevent water loss.  Students 

analyzed their data sets on library computers (see Figure 8 and 9).  Before students 

looked at their data sets the data were downloaded to the classroom computer as a safety 

protocol.  Once data had been analyzed and copied to the classroom computer, the data 

storage card was erased to make room for more data sets to be captured.  

    Each class was divided into small groups (see Figures 10 and 11) consisting of two to 

five members.  Group composition varied throughout the study.  Groups were formed by 

the students and were based on the research interests of the students.    



 

 

55

                       

 

 

 

 

 

 

 

 

 

 

    

 

 

             

 

 

 

 

 

Figure 8    Students Analyzing Time-lapse 
Video. 

 Figure 9    Student Groups Analyzing 
Data. 

Figure 6   Teacher Modeling Use of Pipette to 
Plant Seeds on Soil Surface. 

Figure 7   Students Filling Trays 
with Soil.   
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Figure 11   Student Groups Collecting Data 
from Flats of Plants. 

                

                       
 

 

 

Ethical Considerations 

 

     To comply with Institutional Review Board (IRB) requirements that students not be 

coerced or threatened, data collection occurred anonymously.  All consent forms were 

printed in both Spanish and English and were distributed to the students and their parents.  

Forms were distributed and collected by a collaborating teacher (Mrs. Ruth Brooks).  

Mrs. Brooks held all forms for the duration of the study.  As the teacher/researcher, I had 

no knowledge of which students participated in the study and which only participated as 

a part of the regular class work.  To further ensure that students did not feel coerced in 

anyway, students completed the study as a non-graded activity.  In addition, none of the 

pre-tests, post-tests, or student journals was analyzed until after the entire study was 

complete and student grades for the grading period had been submitted.    

Figure 10   Student Groups Collecting Data.
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     Mrs. Brooks collected all tests and student journals.  She removed students’ names 

and replaced them with a code that identified the data by class period and designated a 

number for each student within the class. It was essential that I knew which class period 

data came from, as different classes had different treatments.  Any students who had not 

given consent for their work to be part of this study were separated from the rest of the 

data and kept by Mrs. Brooks.  At the end of the school year after grades had been 

submitted to the administration, I received the data.  Students therefore were assured that 

their consent or refusal would have no impact on their class grade. 

     Credibility of the Research.  One might question the credibility of research done by a 

classroom teacher.  To address this concern, I would like to summarize my qualifications 

to conduct valid classroom research.  My participation in the Information Technology in 

Science (ITS) Center’s long-term professional development program prepared me to 

conduct these interventions, both in theory and in practice.  I was immersed in the 

inquiry process, read significant numbers of scholarly publications that informed my 

understanding of inquiry, pedagogy, and educational research methodology.  In addition 

to these courses, I spent a significant amount of time with the science researchers in their 

laboratory learning about not only their research with the Arabidopsis plant but also how 

science is done in the real world, in other words how to do scientific research.  These 

experiences uniquely qualified me to engage my students in different forms of inquiry 

and to guide them in developing a correct epistemological view of the scientific process. 

Furthermore, during my second summer with the ITS center, I was exposed to 

educational research design and was guided in the development of this study.  This study 
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design, although my idea was enhanced and critiqued by a team of researchers in science 

education, science, and educational psychology.   

     As part of my course work at Texas A&M, I completed several classes in research 

methodologies and techniques.  Much of my research was informed by a course in 

educational research in which Creswell’s book, Quantitative, Qualitative and Mixed 

Methods, was used (Creswell, 2003).  I also completed a class that explored design 

experiments and considerations for conducting research within the classroom.  Finally, 

because I was the teacher of the students in this study, I had the unique advantage of 

being able to detect changes in my students that likely would have gone unnoticed by 

another researcher not acquainted with these students. 

      The Pilot Study.  Prior to this study, the intervention and the assessment instruments 

that were developed for this study were pilot tested.  Analyses of these pilot studies were 

thorough and reviewed by me and discussed with the members of my research team. 

Results of the pilot study led to changes in the research design and in the revision of 

assessment instruments.   

 

The Intervention 

 

     Six classes were divided into two groups.  Though selection of the students within a 

class was out of my control, I was able to randomly assign entire classes to a treatment.  

Students in my first, fourth, and seventh period classes were assigned to the ASR 
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treatment. Students in my second, third, and eighth period classes were assigned to the 

GI treatment. Both groups were similar in the total number of students involved in each 

treatment and in the distribution of special-needs students.   

    Both groups experienced three Phases in the study.  Both groups received the same 

treatments in Phase I and II of the study and differed in Phase III of the study. Group A 

(the GI group) experienced one Phase of direct instruction and traditional hands-on 

experiences, followed by two Phases of highly scaffolded guided inquiry experiences.  

Group B (the ASR group) experienced one Phase of direct instruction and traditional 

hands-on activities, followed by one Phase of highly scaffolded guided inquiry, and a 

final Phase of authentic scientific research.  Tables 5 and 6 summarize the research plans 

for groups A and B, respectively. 

     Intervention. Phase I - Direct Instruction.  Prior to Phase I, both groups A and B took 

a pre-test consisting of eight open-ended response questions over a five day period.  

Students also made drawings of the Arabidopsis plant in their journals while observing 

this plant (see Figures 12 and 13).  During Phase I, both groups participated in direct 

instruction in which basic content knowledge was delivered.  As part of this Phase, 

students engaged in well scaffolded, teacher-led discussions.  These discussions were 

intended to model and encourage practical reasoning.   

     In addition, this Phase encouraged students to apply genetic concepts they had 

learned and observed.  Students also received instruction in use of digital still 

photography and time-lapse photography.  They used this technology in a traditional 

hands-on investigation in which a control Arabidopsis plant (the wild-type) was 
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Table  5 

Research Plan for Group A (Guided Inquiry Group) 
Pre-Study Phase I Activity & 

Assessment 
Phase II Activity & 
Assessment 

Phase III  Activity & 
Assessment 

End of Study 
Assessment 

Pre-Test   Direct Instruction Guided Inquiry Guided Inquiry Post–Test 
 Guided Inquiry Student Journals Student  Journals Drawing 
Drawing Student  journals Open-ended 

questions  
Open-ended 
questions  

Open-ended 
questions  

Week 1 Weeks 2 & 3 Weeks 4 & 5 Weeks 6, 7 & 8 Week 9 
 
 
 
 
 
 
Table 6 
Research Plan for Group B (Authentic Student Research Group) 
Pre-Study Phase I Activity & 

Assessment 
Phase II Activity & 
Assessment 

Phase III  Activity & 
Assessment 

End of Study 
Assessment 

Pre-Test  Direct Instruction Guided Inquiry Student Research Post-Test 
 Guided Inquiry Student Journals Student Journals Drawing 
Drawing Student Journals Open-ended 

questions  
Open-ended 
questions  

Open-ended 
questions  

Week 1 Weeks 2 & 3 Weeks 4 & 5 Weeks 6, 7 & 8 Week 9 
 

 

 

              

 

Figure 13   Student Recording Observations 
in His Journal II. 

Figure 12   Student Recording Observations in 
His Journal I. 
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compared with a mutated form of the Arabidopsis plant (see Figure 14), referred to as a 

variant.  This Phase was used to scaffold the scientific process and prepare students to 

engage in guided inquiry. As additional assessments during Phase I, students 

periodically answered one or two open-ended response questions in their science 

journals.  These questions were typically done at the end of class.  These questions were 

designed to make students’ thinking and learning both visible and measurable.  During 

the traditional hands-on investigation occurring in Phase I, students observed differences 

between the control plant and the variant (see Figure 15).  This variant, also called the 

det-mut, caused the plant to behave as though it were constantly in light.  As a result, the 

variant was dwarfed in size.  The students reasonably concluded that since the det-mut 

plant was so much smaller than the wild-type Arabidopsis and both varieties were 

planted at the same time, the function of the gene was to control the growth of the plant. 

The classroom teacher/researcher conducted think-aloud protocols to model observation 

techniques fundamental to scientific research.  In addition to observing the plants, 

students were encouraged to record observations, as well as develop hypotheses based 

on their observations.  Data recording and researchable questions were modeled by the 

teacher/researcher for both groups.        

     In a second activity of Phase I, students as groups, with my guidance, were asked to 

hypothesize what they believed the physical appearance of each seed would be based on 

their previous observations of the plants and their hypothesis that the gene in question 

controlled growth.   Would they expect the dwarf mutated variant of Arabidopsis to have 

smaller seeds than the larger wild-type plant?  Using images captured by digital 
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Figure 15   Group of Students Evaluating Data Using Time-lapse Cameras. 

Figure 14    Sample of Wild-type Arabidopsis and Det-mut Variant. 
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photography and enlarging these images, students observed the size of the seeds for both 

the wild-type and the det-mut plants to confirm or reject our hypothesis.  Students 

observed that the det-mut seed was actually larger than the wild-type seed.  As a result of 

this observation most students modified their hypothesis to further specify that the 

altered gene affected the rate of growth rather than growth in general.   

     As a final activity in Phase I, students were asked to consider our refined hypothesis 

and predict whether the det-mut or the wild-type plant would germinate first.  The idea 

behind this activity was to have students consider that if the gene played a role in the rate 

of growth, was it plausible that the wild-type would germinate faster than the det-mut?  

This became our hypothesis.  Once again, the students found that their predictions 

though logical were not accurate.  The det-mut germinated before the wild-type plant.  

These two experiments prepared the students to question their original hypothesis thus 

prepared them to entertain alternative hypotheses.   To guide the students toward the 

actual function of the det-mut gene, it was essential that they be brought face to face 

with discrepancies in their thinking; this dissonance was the foundation on which 

students would be able to move forward and entertain the alternative hypotheses 

presented in Phase II.  

     Intervention. Phase II - Guided Inquiry.  Both treatment groups, A and B, engaged in 

an experiment to determine if or how the wild-type plant would be affected by 

environmental influences, specifically changes in the amount of light to which the plants 

were exposed.  Student were presented with wild-type plants and asked what they 

thought they would see.  Some of which had been grown in continuous light, while 
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others remained in a controlled lighting environment consisting of  sixteen hours of day 

and 8 hours of darkness.    

     The focus of this activity was two fold.  First,  by showing students plants that were 

genetically the same, with only the environmental conditions altered (amount of light), I  

hoped that students would discover environmental effects on phenotype at a deeper level 

than just understanding that if  plants are not given water they would die.  The second 

focus was to capitalize on the student dissonance created in Phase I.  As a group students 

were asked to generate an alternative hypothesis.  Students could not agree on one single 

hypothesis, so I made the decision to allow the students to conduct exploratory research 

without first generating a hypothesis.   I saw this as an excellent opportunity to convey to 

my students that not all research follows a prescribed scientific method.    To accomplish 

this, students worked in small groups to compare morphological differences between the 

wild-type plants grown in continuous light and those that remained in controlled lighting.    

     Results and supporting evidence from group observations were discussed in a large 

group led by the classroom teacher/researcher.  Class members were encouraged to 

critically evaluate the claims made by other groups.  Group discourse was done to mimic 

the social nature of science as scientists routinely present their claims, support them with 

evidence, and respond to criticisms raised by other scientists regarding their work.  

Students noted that the wild-type plants were shorter and had more trichomes than the 

wild-type plants grown in controlled lighting.  Students were next asked to compare the 

wild-type plants grown in continuous light with the det-mut plants.  Students observed 

that the wild-type plants exhibited characteristics similar to that which they observed in 
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the det-mut plants.  Based on the finding of these two activities, we further modified our 

original hypothesis to state that the gene had some function in light sensing and 

somehow this impacted the way the plants grew.   

     The next activity done in Phase II was done with both groups, designed to prepare the 

students for independent research, a skill the ASR group would use in Phase III.  An 

essential element of ASR is that students work with a phenomenon in which the answer 

is unknown.  This next activity exposed students in both groups to Arabidopsis plants 

with genetic alteration on a gene of unknown function. Students in both groups were 

provided seed sets that contained a control and a plant with an altered gene (function 

unknown).  With my guidance, seeds were planted in two different mediums.  Some 

seeds were planted in soil, and some were put in Petri dishes similar to procedures used 

in Phase I with the wild-type and det-mut plants.   As in Phase I, students captured the 

germination process with time-lapse photography by placing seeds on moistened paper 

towels and sealing them in clear Petri dishes. Students also captured the growth process 

of the plants emerging from the soil.  Both data sets were analyzed in large-group.  From 

both of these experiments, students observed growth patterns exhibited by the plants to 

try to uncover the function of the unknown gene.  As with Phase I, small groups 

analyzed their data, presented their claims, and responded to questions from other 

students in the class.  By the end of Phase II all content information had been presented 

to both groups at least once.   

     Intervention. Phase III – Overview.  In the third Phase of the research, the type of 

inquiry instruction differed significantly in the two groups.  Until this point, both groups 
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had engaged in a well-scaffolded, guided inquiry format of instruction intended to 

prepare students for a more independent inquiry learning experience.  Phase II 

instruction for group A mirrored exemplary guided inquiry and represented the best 

practice of guided inquiry.  This guided inquiry experience continued into Phase III for 

group A only.  All students had engaged in experiences designed to help them 

understand the process of scientific investigation as well as the use of time-lapse 

technology.  In addition, they had been exposed to think-aloud protocols and group 

discussions designed to help develop practical reasoning skills.  Think-aloud protocols 

and group discussions provided an observable model of practical reasoning in the 

classroom.   

     In Phase III, Group B pursued authentic student research (ASR) learning.  In this 

study ASR learning differed significantly from guided inquiry in three ways:   

1. Students directed their own learning.   

2. Students experienced first hand how scientists do science, they generated 

their own questions, designed their own experiments, analyzed (see Figures 

16 and 17) their own data, and made their own knowledge claims using 

technology similar to that used by researchers in their laboratories.  They also 

had to provide evidence to justify their claims.  

3. Data sets generated from the research were made available on an internet 

website for other scientists to view and use contributing to the body of 

scientific knowledge. 
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       Unique to ASR learning is that scientific questions are generated by the student 

researchers that have no known answers.  Students worked collaboratively as colleagues 

in answering their own questions.  All contributions were relevant, which made the 

intervention meaningful, valid, and significant.  The ASR intervention provided real-

world application situated within the context of real science.   

      Intervention. Phase III - Guided Inquiry, Group A.   Phase III of the study, Group A 

engaged in a final GI experience.  In order to further guide students toward the correct 

function of the gene mutation in the det-mut and keeping in mind what students 

currently believed or hypothesized the function of the gene to be, I designed a GI 

experience in which the wild-type Arabidopsis plants and the det-mut plants were placed 

in total darkness for a period of 10 days.  Time-lapse cameras were used to capture plant 

movement and growth of both types of plants in such a way that side-by-side 

comparisons could be made. Figure 15 shows a similar setup. The emphasis of this 

segment in the GI sequence was to continue to redirect students’ thinking by 

 Figure 16   Student Setting Up a Time-lapse  
 Sequence. 

Figure 17   Students Making Observations of 
Emerging Arabidopsis Plants. 
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highlighting the effects of light or lack of light on Arabidopsis.  Data were compared in 

large-group discussions which I led.  Students observed changes in the circadian rhythm 

of the wild-type similar to what they had observed in the det-mut.  The det-mut exhibits 

very little circadian rhythm.  Students noted that the whirling pattern of plant growth 

diminished the longer the wild-type plants were left in total darkness.  Students observed 

that the det-mut plants appeared to have no reaction to changes in lighting. As in the 

preceding Phase, students recorded data in their journals, made observations, and 

answered open-ended questions about what they had observed and learned.   

     Intervention. Phase III - Authentic Student Research, Group B.  Group B students 

determined what they wanted to investigate in Phase III.  Students with similar questions 

were paired with each other.  Groups were kept to no more than five members.  Each 

small group worked collaboratively to refine their research question, determine their 

materials, design their experiment, collect and analyze their data, and prepare to present 

their conclusions in large-group class discussion. In addition, small groups 

communicated with the university scientist by e-mail and posted significant videos to a 

website set up by the scientist. In Phase III with Group B students, my role as the 

classroom teacher/researcher was that of a coach.   

 

Instruments and Data Sources  

 

     Table 7 provides an overview of the assessment instruments and data sources used in 

this study.  The table provides details of the data collected, by whom the data  
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were recorded, and how this data was analyzed.  Each of the assessment instruments is 

further explained in this section.  

     Researcher’s Journal.  The classroom teacher/researcher recorded observations of 

student interactions.  In addition, changes in students’ thinking which were verbalized 

through comments were then recorded in the journal.  Data was typically updated at the 

end of each class.  This journal served to primarily document what took place during 

each session of instruction. 

     Students’ Journals.  Students periodically responded to open-ended questions at the 

close of the class period.  Students were asked to record responses to questions like, 

What did you learn today? or How do scientists do science in the real world?   These 

journals also contained students’ experimental data, observations, and conclusions.  

Students’ responses to open-ended questions, data, observations, and conclusions 

provided insights into students’ learning as they progressed through the Phases of their 

work with Arabidopsis. 

     Arabidopsis Drawing.  Initial drawings of the Arabidopsis plant provided a baseline 

of students’ observational skills and the level of detail students chose to represent in 

recording data.  These drawings were compared to final drawings done at the conclusion 

of the study to evidence these changes.  Drawing skills were emphasized because of the 
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Table  7 
Assessment Instruments. Data Sources and Types of Analyses  
Data Source- Rationale Participating Group Type of Analysis 
Researcher’s Journal 
   (Maintain record from researcher 
   perspective & log of occurrences) 

Teacher/Researcher Qualitative    
Quantitative 

Student Journal 
   (Scientific data, and reflections) 
   (Record student learning as it occurs) 

Student Qualitative 

Pre-Test – open ended 
   (Baseline measure of pre-existing    

understanding) 

Student Quantitative 
(NAEP, 2004a) 

Initial Arabidopsis Drawing 
   (Baseline representative measure of student    

mental model of plant structures 

Student Qualitative   
Quantitative 

Post –Test – open ended 
   (Measure changes in students understanding of 

content & scientific practices)  

Student Quantitative 
(NAEP, 2004a) 

Final  Arabidopsis Drawing 
   (Measure changes in representations of mental 

model of plant structures) 

Student Qualitative 

 

 

 

importance of observation skills, accurate recording of data is essential to the scientific 

process. 

     Pre-Tests and Post-Tests.  Appendix A displays a copy of the instrument used for 

both the pre-test and post-test that was developed to measure knowledge gains. The 

same instrument was used for both treatment groups and was administered at the 

beginning of the treatment sequence and again at the end of the sequence.  

Administration times of pre-test and post-test occurred approximately two months apart. 

In my deliberations for the design of the study, I felt that the time of the treatment was 

sufficient to allow the use of the same test for both pre-test and post-test administrations.  

I felt it was unnecessary for me to alter the tests in any way or to develop two 
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independent tests to assure that the pre-test did not in some way skew the results of the 

post-test administrations.  Both tests were administered over a one-week period to 

combat test exhaustion that might have occurred in a test where students are required to 

write their responses to eight separate questions in one class period.     

Construction of questions followed a format similar to the National Assessment 

of Educational Progress (NAEP) framework. (See O’Sullivan & Weiss, 1999).  The 

questions were designed, pilot tested, and revised to measure three domains of student 

learning:  conceptual understanding of factual information about the role of genes and 

the environment on the phenotype (Questions 1-5), understanding of scientific 

investigation as a process (Questions 6 and 7), and practical reasoning skills (Question 

8).   

Scoring rubrics were used to score students’ understanding in each of these 

domains and appear in Appendix B.  The NAEP framework also guided the design of the 

rubrics.  The rubric for each question consisted of 4 choices for evaluating the response.  

A score of zero was awarded when students made no attempt to answer the question.  A 

score of “1” was awarded when the response was poor, unintelligible or wrong.  A score 

of “2” was awarded when students’ responses demonstrated partial understanding.  A 

score of “3” was awarded when a student demonstrated complete understanding.  

Complete understanding was awarded when a response included all aspects of 

understanding in the domain. 

I established content validity for the instrument in two ways.  First, I aligned the 

questions with the state standards for eighth grade science, the Texas Essential 
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Knowledge and Skills.  Second, I asked the members of my research team to review the 

questions for clarity, open-endedness, and thoroughness in the light of the Arabidopsis 

sequences I had planned for my students.  Three educational and scientific researchers 

on the research team made suggestions for the improvement of questions before and 

after the administration of the pilot test.  Reliability of the scoring rubric was established 

by using percent agreement between two reviewers.  Eight randomly selected tests (with 

eight questions on each) were scored independently using the rubric.  Both reviewers 

agreed on the scores for 56 of the 64 responses, resulting in an inter-rater reliability of 88 

percent.   

 

Analysis   

 

Both qualitative and quantitative methods were used to analyze the data collected 

before, during, and after the completion of the two treatment groups, as follows:    

Pre-tests and post-tests measuring students’ understanding of science.  Data sets 

were compared using quantitative techniques for matched student responses for each 

question on the pre- and post-tests.  Differences in these responses, which had been 

evaluated by rubric, were determined using matched sets of question responses only.  

Small numbers of matched sets required non-parametric methods to test for statistical 

significance between pre-test and post-test responses for each treatment group, 

separately.   
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SPSS was used for all quantitative analyses.  Wilcoxon signed-ranks tests were 

calculated for each question to reveal the distributions of positive, negative, and neutral 

gains for each question and to assess the statistical significance of the differences 

between pre-tests and post-tests. Confidence intervals were calculated and error box 

plots constructed to display means and standard deviations at the 95% level of 

confidence for each of the eight questions.  Confidence intervals for each pre-test and 

post-test question in each treatment group, which had different numbers of matched pairs, 

were displayed next to each other for ease in visual comparison as no statistical tests 

were possible to determine whether the gains in understanding were indeed statistically 

significant. 

Students’ responses on Question 8 were also analyzed qualitatively by constant 

comparative methods to reveal differences in the depth and elaboration of students’ 

responses and in their specific use of examples.    

Arabidopsis Drawings.  Data for which there were matched sets of Arabidopsis 

drawings before and after the treatments were also compared.  The drawings were 

compared qualitatively for differences in accuracy and attention to detail. 

Students’ Journals.  Students’ responses to two journal entries were chosen for 

content analysis by constant comparison.  Assignments of responses to categories 

emerging from the content analysis were used to tally responses and calculate frequency 

of occurrence in each of the treatment groups.    
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Synthesis 

 
 Research questions were used to synthesize the results of both quantitative and 

qualitative analyses.  To answer Research Question 1, for example, results of the 

Wilcoxon signed-ranks tests and error box plots were used to describe the effects of the 

two forms of inquiry on conceptual understanding.  The qualitative analyses, however, 

provided other types of data which could be used to support or dispute the quantitative 

findings.  The actual mixing of the data to answer the research questions is explained in 

Chapter V. 

 

Summary 

 

 The mixed methods employed in this study were chosen to collect both 

quantitative and qualitative data in order to provide a “tradeoff between breadth and 

depth” (Frechtling & Sharp, 1997, p. 3).  Mixing methods is recommended by the  

National Science Foundation as being critical in telling the “important parts of a story” 

(Frechtling & Sharp, 1997, p. 1) that might otherwise be missed by employing only one 

technique or the other.  In the light of the messy classroom context and the exploratory 

nature of this study, I felt completely comfortable in mixing methods.  I left the 

paradigm wars behind for those more philosophically inclined. With practical outcomes 

in mind, I chose pragmatic methods to guide the design of this study.  I approached the 

problem from the perspective of a classroom teacher wanting to know more about the 
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types of inquiry options open to an eighth grade science teacher aspiring to make 

learning relevant and meaningful to her students.   

     This study combined both quantitative and qualitative analyses and methods to 

determine the gains students achieved in their conceptual understanding about the 

domain of genetics.   Pre- and post-tests were administered by the classroom 

teacher/researcher.  Students also recorded pre- and post-drawings of Arabidopsis plants 

in their journals.  Student journals were used not only for data collection but also for 

recording responses to open-ended questions asked periodically throughout the course of 

the study.  The teacher/researcher’s journal was updated at the end of each class period 

and was kept as a record of the study.   Data from the students and the teacher/researcher 

were triangulated to test congruence in the findings and reveal insights not apparent in 

pre- and post-measures.    

     A three-phase approach was used to prepare students unaccustomed to inquiry 

learning for a more independent minds-on learning environment.  The first two phases 

were heavily scaffolded by the teacher/researcher for three reasons:  

1. To make visible the metacognitive processes used in scientific investigation, 

essential to practical reasoning (Bruer, 1999). 

2. To make visible the iterative and social nature inherent in authentic scientific 

investigation.  These processes include critical questioning, reflection, revision, 

evaluation, discussion, data recording, and justifications.   
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3. To emphasize the need for claims to be backed by evidence as well as the 

importance of repeated experimentation to ensure validity and enhance 

credibility of the findings. 

       The final phase, Phase III, differed between groups A & B in the level of student 

centeredness.  One group continued with heavily scaffolded guided inquiry while the 

other group engaged in student-centered scientific research in which the students 

determined and directed all aspects of their investigation.  For the first group the 

teacher/researcher guided the inquiry.  In the second group the teacher/researcher 

provided assistance only when asked; serving more as a coach or assistant than a teacher.  

      Finally, the assessment instruments used in this study were evaluated using a NAEP 

framework.  NAEP rubrics guided the design of evaluation rubrics for this study and 

were further evaluated by experienced science education researchers.  They were piloted 

and revised to ensure both the reliability and validity.   

     With these instruments, intervention protocols, and analyses, data were collected to 

answer three research questions regarding the differential effects of two inquiry-based 

instructional methods on student outcomes. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

     Introduction 

 

      Classroom life is synergistic:  Aspects of it that are often treated 

independently, such as teacher training, curriculum selection, testing, and so 

forth actually form part of a systemic whole. Just as it is impossible to change 

one aspect of the system without creating perturbations in others, so too it is 

difficult to study any one aspect independently from the whole operating 

system.  Thus, we are responsible for simultaneous change in the system, 

concerning the role of students and teachers, the type of curriculum, the place 

of technology, and so forth.  These are all seen as inputs into the working 

whole (Brown, 1992 pp. 142-143). 

 

     Pre-test and post-tests were administered in sections over five days according to the 

schedule presented in Chapter III.  Students were often absent on one or more of the 

days of test administration, resulting in very small numbers of students who completed 

all questions on pre-tests and post-tests.  Matched pre-test and post-test questions for the 

guided inquiry (GI) group ranged from 21 to 24 students, while matched pre-test and 

post-test questions for the authentic student research (ASR) group ranged from 13 to 30 
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students.  Table 8 summarizes the numbers of students by group for which matched pre-

test and post-test answers were available.  Non-parametric analyses were conducted on 

individual test questions for which there were “matched” answers on both the pre-test 

and the post-test.   

 

 

Table 8 
Matched Pre-test and Post-test Questions Available for Comparison and Analysis  

Numbers of Matched Questions for Pre- and Post-Test Comparisons 
Group Class Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
GI 1 7 9 9 9 9 7 7 9 
GI 2 14 14 14 14 12 14 14 15 
GI 3 0 0 0 0 0 0 0 0 
Total GI  21 23 23 23 21 21 21 24 
ASR 4 13 13 13 0 0 13 13 11 
ASR 5 0 21 21 19 19 0 0 21 
ASR 6 0 0 0 0 0 0 0 0 
Total ASR   13 34 34 19 19 13 13 32 

  

 

 

Non-Parametric Methods for the Analysis of Pre-tests and Post-tests   

 

     Wilcoxon signed-ranks tests were used (as the nonparametric alternative to the paired 

t-test) to compare “before” and “after” measures for each question for each group. SPSS 

was used to (a) calculate the absolute difference between each pair; (b) rank the  absolute 

differences from smallest to largest, employing tied ranks where appropriate; and (c) 

assign to each rank a “+” sign when the pre-test mean was less than the post-test mean, a 
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“-” when the pre-test mean was greater than the post-test mean, and a “tie” when the 

means were the same.  Mean ranks were then calculated for the numbers of “+,”  “-,” 

and “tie” responses.  Z-ratios and their associated one-tail probabilities were calculated 

to determine whether the differences between pre-test and post-test measures were 

significant. 

     Descriptive statistics were used to summarize the distribution of data for each pre-test 

and post-test question.  Data regarding each question were reported in the form of a plot 

with “error bars” on either side of the mean statistic.  The size of the error bar was used 

to display an estimate of the limits at two standard deviations, or 95 percent, for the 

student response data for that question.  Error box plots were compared for each group to 

visualize (a) differences in performance between pre-test and post-test measures for each 

question within each group, (b) differences in performance between the two groups on 

pre-test and post-test measures, and (c) differences in variances between the two groups 

on all measures.   

 

Methods for the Analysis of Students’ Journal Responses 

 

     Students were asked to answer several open-ended questions in their journals 

periodically throughout the course of the study. Student responses to the following 

questions were coded, clustered, and categorized: What have you learned from this 

project?  and What have you learned about how scientists in the real world do research?   

Both questions were intentionally designed to be vague to ensure that students were not 
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cued toward a specific answer.  The first question was asked at the conclusion of the 

inquiry for both groups; and the second question was asked approximately mid-way 

through Phase III.  Numbers of each type of response were counted and percent 

occurrence was calculated.  Results from this analysis were used to supplement 

information provided by the pre-test and post-test comparisons in order to more fully 

understand the differences in student learning between the two groups.   

 

Methods for the Analysis of Student Drawing Samples 

 

     Student drawings were used to collect non-verbal data about students’ understanding 

of plant features.  Students in both groups were asked to draw their observations of an 

Arabidopsis plant before and at the conclusion of the study.  Matched sets of students’ 

drawings were visually examined for detail, accuracy, and methods of representation.  

 

Results 

 

     The rest of this chapter is organized to present the results of the analyses, of the pre-

test and post-test questions, students’ journal entries, and their drawings of Arabidopsis 

plants.  All analyses compared students’ work by treatment group so that data from GI 

and ASR groups were pooled to reveal patterns in learning within each group.  Results 

are reported in three sections.  The first section contains pre-test and post-test analyses 

for each of the questions, including the results of the Wilcoxon sign-ranks tests and error 



 

 

81

box plots.  Conceptual understanding questions are presented first (Questions 1-5), 

following by the two questions that addressed students’ perceptions of scientific 

investigation (Questions 6 and 7), and finally, one question formatted as a scenario to 

reveal students’ abilities to practically reason (Question 8).  The second section of this 

chapter reports the frequencies of students’ journal responses to the two questions 

selected to provide information about students’ reflections on their learning.  The third 

section describes the results of visual comparisons of students’ drawings of an 

Arabidopsis plant before and after the study was completed.               

     Analysis of Pre-tests and Post-tests.  A rubric following the National Assessment of 

Educational Progress (NAEP; O’Sullivan & Weiss, 1999) was constructed to evaluate 

student responses to each question on the pre-test and post-test.  Appendix B includes 

rubrics for each of the eight questions.  Each question followed a similar scoring pattern, 

which evaluated students’ responses on a score from zero to three.  A score of zero 

indicated “no response” to the question; “one” indicated responses that were poor, 

unintelligible, or wrong; “two” indicated partial understanding, and “three” indicated 

complete understanding.  Inter-rater reliability was established at 88% agreement 

between two independent raters who used the rubric to score eight student responses on 

eight tests.   

     Means and standard deviations for each question were calculated in order to construct 

error box plots for each question by group; and the distribution of scores were rank 

ordered to test significance using the Wilcoxon signed-ranks test.    
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Question 1:  Can the Environment Have Any Effect on a Plant’s Genes? 

 

     This question was crafted to reveal what students understood about the relationship 

between genes and the environment, more specifically, to reveal whether the students 

understand that the environment can affect genes.  Matched data sets available for this 

question numbered 13 from the ASR group and 21 from the GI group.  The Wilcoxon 

signed-ranks test analysis revealed that students in the GI group did not show a 

statistically significant change in their conceptual understanding of the environmental 

effects on plant genes (z = -4.06, p = .684).  Analysis of the ASR group revealed 

statistically significant gains for this question (z = -2.021, p = .043).  Tables 9 and 10 

summarize these analyses for Question One.        

     Error box plots using a 95% confidence interval supported these findings and further 

revealed reduced variance in the GI groups’ pre-test to post-test responses (See Figure 

18). There was no apparent reduction in variance for the ASR group.  Error box plots 

also showed that students’ scores in the GI group remained at unsatisfactory levels (at 

about 1.0) based on the rubric design.  The ASR groups’ mean scores increased from 

below unsatisfactory (near 0.4) on pre-tests to post-tests that approached partial 

understanding (at about 1.3) for this question. Mean test scores on pre-test and post-tests 

for the ASR group also indicated increased gains in conceptual understanding.  Visual 

inspection of the box plots revealed that pre-test scores were lower for the ASR group 

with higher means of post-test scores for the ASR group, further indicating that ASR 

students made stronger gains than GI students in their conceptual understanding of 
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Question One.  The ASR group showed a small overlap of pre-test scores and post-test 

scores, the GI group showed complete overlap, indicating that most ASR students 

improved their conceptual understanding while the GI students did not.   

     Overlaps shown in the box plots were clarified by Wilcoxon signed-ranks tests, 

which showed that of the 13 students in the ASR group,  ten improved their scores, one 

scored the same, and two actually scored lower on the post-test than the pre-test (see 

Table 10).  Of the 21 GI students, eight students scored higher, seven scored the same 

and six students scored lower on the post-test (see Table 9). 

 

 

Table 9 
GI Group    Question 1. Can the Environment Have Any Effect on a Plant’s Genes?                    

 N Mean 
Rank 

Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 6 7.75 46.50

  Positive 
Ranks 8 7.31 58.50

  Ties 7   
                            Total 21   

                                                                                                                      
 
 

 
Table 10 
ASR Group    Question 1. Can the Environment Have Any Effect on a Plant’s Genes?                                                                    

 N Mean 
Rank 

Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 2 7.00 14.00

  Positive 
Ranks 10 6.40 64.00

 Ties 1   
  Total 13   
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       Figure 18   Error Box Plot   Question 1. Can the Environment Have Any Effect on a Plant’s Genes?        
      Pre-test results precede post-test results for each group.     
 
 
 
 
 
Question 2:  What Do You Know About genes? 
 

     This question was intended to reveal what students understand about genes.  The 

vagueness of the question was intentional to avoid cueing responses. Thirty-four 

matched data sets from the ASR group and 23 matched data sets from the GI group were 

used in the analyses of this question.  The Wilcoxon signed-ranks test analysis revealed 

that both groups showed a statistically significant change in their conceptual 

understanding of what a gene is (ASR z = -1.66, p = .096 and GI z  = -2.230, p =  .026).  

Tables 11 and 12  and Figure 19 summarize the analyses for Question Two.      
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Table 11 
GI Group   Question 2.  What Do You Know About Genes?                                                                                                         

 N Mean 
Rank Sum of Ranks

Pre – Post 
Differences 

Negative 
Ranks 2 4.50 9.00

  Positive 
Ranks 9 6.33 57.00

  Ties 12   
  Total 23   

 
 
 
 
Table 12                                                                                                                         
ASR Group    Question 2.  What Do  You Know About Genes?                                                                                                     

 N Mean 
Rank Sum of Ranks

Pre – Post 
Differences 

Negative 
Ranks 5 6.50 32.50

  Positive 
Ranks 10 8.75 87.50

  Ties 19   
  Total 34   
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Figure. 19  Error Box Plot   Question 2. What Do You Know About Genes?   
Pre-test results precede post-test results for each group. 
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     Error box plots using a 95% confidence interval supported these findings and further 

revealed reduced variance in both groups’ pre-test to post-test responses (See Figure 19).  

Box plots further revealed a greater range of responses for the GI group (ranging from 

approximately 1.4 to 2.4) than the ASR group (ranging from approximately 1.9 to 2.5) 

on pre-tests.  Error box plots also showed that students’ mean scores in the GI group 

remained at levels of partial understanding (about 1.9 on pre-tests and near 2.3 on post-

tests).  The ASR groups’ mean scores also remained at levels of partial understanding.  

Mean scores for the ASR group ranged from pre-test values near 2.3 to post-tests scores 

near 2.5. While responses for both groups achieved a level of partial understanding, the 

post-test scores for the ASR group are closer to approaching complete understanding.  

Mean test scores on pre-test and post-tests for the GI group indicated higher gains in 

conceptual understanding over the ASR group.  Both groups showed considerable 

overlap in pre-test and post-test scores.   

     Overlaps shown in the box plots were clarified by Wilcoxon signed-ranks tests which 

showed that of the 34 students in the ASR group, ten students improved their scores, 19 

showed no change, and five scored lower on the post-test.  Of the 23 matched data sets 

for the GI group, nine students showed improvement, twelve showed no change, and two 

students scored lower on the post-test. 
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Question 3:  What Do You Know About Mutations? 

 

     This question was intended to reveal what students understand about mutations.  This 

question had matched data sets for 34 students from the ASR group and 23 matched sets 

from students from the GI group.  The Wilcoxon signed-ranks test analysis showed that 

both groups had statistically significant differences in conceptual understanding of what 

a mutation is and how they occur (ASR z = –3.581, p = .000 and GI z = -2.183, p = .029). 

Tables 13 and 14 summarize the analyses for Question Three.      

     Error box plots using a 95% confidence interval supported these findings and further 

revealed reduced variance in the GI groups’ pre-test to post-test responses (See Figure 

20). There was no apparent reduction in variance for the ASR group.  Error box plots 

also showed that students’ scores in the GI group remained at unsatisfactory levels (at 

about 1.0).  The ASR group mean scores increased from below unsatisfactory (near 0.4) 

on pre-tests to levels of partial understanding (at about 1.3) on post-tests.    

      Mean test scores on pre-test and post-tests for the ASR group also indicated 

increased gains in conceptual understanding over the GI group.  Visual inspection of the 

box plots revealed that pre-test scores were lower for the ASR group than for the GI 

group and that the mean of post-test scores was higher for the ASR group. These 

findings further indicate that ASR students made stronger gains than GI students in their 

conceptual understanding of Question Three.  The ASR group showed only a slight 

overlap, of pre-test scores and post-test scores while the GI group showed complete  
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Table 13                                                                                                                         
GI Group   Question  3.  What Do You Know About Mutations?                                                                                                     

 N Mean 
Rank 

Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 3 4.00 12.00

  Positive 
Ranks 9 7.33 66.00

  Ties 11   
  Total 23   

 
 
 
 
Table 14                                                                                                                         
ASR Group    Question  3.  What Do You Know About Mutations?                                                                                                    

 N Mean 
Rank 

Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 4 10.88 43.50

  Positive 
Ranks 23 14.54 334.50

  Ties 7   
  Total 34   
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       Figure 20   Error Box Plot  Question  3.  What Do You Know About Mutations?   
      Pre-test results precede post-test results for each group. 
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overlap indicating that more students in the ASR group improved their conceptual 

understanding than those in the GI group.   

     When taken together, overlaps shown in the box plots were clarified by Wilcoxon 

signed-ranks tests.  Of the 34 matched data sets for the ASR group, 23 students showed 

improved scores, seven had no change, and four students scored lower on the post-test 

(see Table 14).  In the GI group, nine students improved, 11 had no change and three 

students scored lower on post-tests (see Table 13).   

 

  Question 4:  Why Do Plants Look the Way They Do? 

 

    This question was designed to uncover students’ knowledge about the role of genes as 

well as environmental factors on phenotype.  The vagueness of the question was 

intentional to prevent cueing in the response.  For this question, matched data sets for the 

ASR group totaled 19; matched sets for the GI group totaled 23.  Wilcoxon signed-ranks 

tests showed statistically significant differences in pre-test and post-test scores in both 

groups (ASR z = -2.236, p = .025 and GI z = -3.082, p= .002).   Tables 15 and 16  

summarize the analyses for Question Four.        

     Error box plots using a 95% confidence interval supported these findings and further 

revealed that the ASR group had a greater reduction in variance from pre-test to post-test 

than did the GI group (See Figure 21).  Error box plots showed that students’ mean  
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Table 15                                                                                                                         
GI Group  Question  4.  Why Do Plants Look the Way They Do?                                                                                                     

 N Mean Rank Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 1 5.50 5.50

  Positive 
Ranks 13 7.65 99.50

  Ties 9   
  Total 23   

 
 
 
 
Table 16                                                                                                                         
ASR Group   Question  4.  Why Do Plants Look the Way They Do?                                                                                                  

 N Mean Rank Sum of 
Ranks 

Pre – Post 
Differences 

Negative 
Ranks 3 6.50 19.50

  Positive 
Ranks 11 7.77 85.50

  Ties 5   
  Total 19   
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Figure 21    Error Box Plot   Question  4.  Why Do Plants Look the Way They Do?  
       Pre-test results precede post-test results for each group. 
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scores in the GI group improved from unsatisfactory levels (at about 1.2) to levels of 

partial understanding (at about 2.0).  The ASR groups mean scores increased similarly 

from unsatisfactory levels on pre-tests (near 1.3) to post-tests approaching partial 

understanding (at about 1.9).  Mean test scores on pre-test and post-tests for the GI group  

also indicated slightly increased gains in conceptual understanding over ASR group.   

Visual inspection of the box plots revealed that pre-test scores were similar for both the 

GI and ASR groups and that post-test scores for both groups showed only a small 

overlap from pre-test to post-test scores.  

     Overlaps shown in the box plots were clarified by Wilcoxon signed-ranks tests, 

which showed that of the 19 students in the ASR group,  11 improved their score, five 

scored the same, and three scored lower on the post-test (see Table 16).  Of the 23 GI 

students, 13 students scored higher, nine scored the same, and one student scored lower 

on the post-test (see Table 15). 

 

Question 5:  Do Plants Move?  Do They Have Patterns of Movement? 

 

    The purpose of this question was to reveal what students understood about plant 

movement.  In other words, did students possess knowledge of patterns of plant 

movement beyond environmental influences such as air currents?   The ASR group had 

19 matched data sets for this question and the GI group had matched data sets totaling 21.  

Wilcoxon signed-ranks tests showed statistically significant gains in students 
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understanding both groups (ASR z = -3.142, p = .001 and GI z = – 3.879, p = .000).  

Tables 17  and 18 and Figure 22 summarize the analyses for Question Five      

     Error box plots using a 95% confidence interval supported these findings and further 

revealed that the ASR group had a greater reduction in variance on post-tests.  All  

students obtained partial understanding in the ASR group (See Figure 22).  Error box 

plots also showed an improvement of students’ mean scores in both groups from 

unsatisfactory levels (at about 1.1 and 1.2, respectively) to levels of partial 

understanding (at about 2.0 for both groups).  Mean test scores on pre-test and post-tests 

for both groups revealed similar gains in conceptual understanding for this question. 

   Visual inspection of the box plots revealed that both the pre-test and post-test scores 

were similar for both groups.  Similarly, both groups showed no overlap in scores from 

pre-test to post-test scores, indicating improvement in students’ understanding of plant 

movement (See Figure 22).   

        

      

Table 17                                                                                                                        
GI Group   Question  5.  Do Plants Move?  Do They Have Patterns of Movement?                                                                        

  N Mean 
Rank Sum of Ranks

Pre – Post 
Differences 

Negative 
Ranks 0 .00 .00

  Positive 
Ranks 17 9.00 153.00

  Ties 4   
  Total 21   
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Table 18                                                                                                                          
ASR Group   Question  5.  Do Plants Move?  Do They Have Patterns of Movement?                                                                       

 N Mean 
Rank Sum of Ranks

Pre – Post 
Differences 

Negative 
Ranks 0 .00 .00

  Positive 
Ranks 13 7.00 91.00

  Ties 6   
  Total 19   
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Figure 22  Error Box Plot   Question 5. Do Plants Move?  Do They Have  
Patterns of Movement?  
Pre-test results precede post-test results for each group. 
 

 

 

     The variances indicated by box plots were clarified by Wilcoxon signed-ranks tests, 

which showed that of the 19 sets in the ASR group, 13 improved their understanding, six 

demonstrated no change, and no students scored lower on post-tests (see Table 18).  Of 
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the 21 matched data sets in the GI group, 17 students improved their scores, four showed 

no change and no student scored lower on post-tests (see Table 17).  

    The data does not allow an inference that one inquiry form allowed students to 

perform better than the other.  Both treatments were effective in improving students’ 

conceptual understanding of plant movement.                                      

                       

 Question 6:  Does an Experiment Have to Prove the Hypothesis Correct to Be a Good 

Experiment?  

 

     This question was designed with the intention of revealing what students knew about 

the relationship between the question (hypothesis) and the data collected.  Students often 

associate experimental outcomes as failures if their hypotheses or questions are not 

supported by the data.  They seldom see the benefit of unexpected outcomes.  Measuring 

change in students’ understanding of authentic scientific investigation as a process was 

seen as a critical indicator.  For this question, matched data sets for the ASR group 

included 13 students; the GI group included matched sets for 21 students.  Results of 

Wilcoxon signed-ranks test indicated that only the GI group had a statistically significant 

difference in conceptual understanding of the relationship between the hypothesis and 

data (ASR z = -1.613, p = .107 and GI z = –2.236, p = .025).  Tables 19 and 20 

summarize the analyses for Question Six.        

     Error box plots using a 95% confidence interval supported these findings and further 

revealed that the ASR group had a greater pre-test variance than the GI group.  Both 
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groups showed a reduction in variance in post-tests.  Further analyses showed the GI 

group pre-test mean scores were below unsatisfactory (near 0.7), while the pre-test mean 

scores (about 1.2) were at the level of unsatisfactory for the ASR group (see Figure 23).  

Error box plots also showed that students’ mean scores in both the GI and ASR groups 

improved to levels approaching partial understanding (about 1.2 and 1.7, respectively).  

     Visual comparison of mean test scores on pre-test and post-tests for both groups 

revealed similar gains in conceptual understanding for this question.  Box plots revealed 

that even though there were similar gains in both groups, the large variance and 

substantial overlap in ASR scores masked any significant difference for this group. 

Visual inspection of mean scores further revealed that the levels of conceptual 

understanding were higher for the ASR group.  Post-test scores for the GI group were 

similar to the pre-test scores for the ASR group (1.3 and 1.2, respectively).  Both groups 

showed considerable overlap from pre-test and post-test scores (See Figure 23).   

     Variances indicated by box plots were clarified in the Wilcoxon signed-ranks test 

analysis, which showed that of the 13 matched data sets for the ASR group, six students 

showed improved scores, five showed no change, and two scored lower on the post-tests 

(see Table 20).  The 21 matched data sets from the GI group showed that 11 students 

improved, seven had no change, and three students scored lower on the post-test (see 

Table 19).   
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Table 19    
GI Group   Question  6.  Does An Experiment Have to Prove the Hypothesis Correct to Be a Good 
Experiment?                                                                                                      

  N Mean Rank Sum of 
Ranks 

Negative 
Ranks 3 6.50 19.50

Positive 
Ranks 11 7.77 85.50

Ties 7   

Pre – Post 
Differences 

Total 21   
 
 
 
Table20                                                                                                                     
ASR Group   Question  6.  Does An Experiment Have to Prove the Hypothesis Correct to Be a Good 
Experiment?                                                                                                                                                                                

 N Mean Rank
Sum of 
Ranks 

Negative 
Ranks 2 3.50 7.00 

Positive 
Ranks 6 4.83 29.00 

Ties 5     

Pre – Post 
Differences 

Total 13     
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Figure 23    Error Box Plot Question  6.  Does An Experiment Have to Prove the Hypothesis Correct to Be 
a Good Experiment?    
Pre-test results precede post-test results for each group.                                                                                                         
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Question 7:  How Do Scientists Go About Answering Scientific Questions? 

 

     This open-ended question was designed to reveal students’ knowledge about the 

processes that scientists use to answer scientific questions.  The wording of this question 

was intentionally general to prevent cuing responses in the hopes that students’ 

misconceptions about the scientific process would be made visible.  Matched data sets 

for the ASR group numbered 13 and 21 matched data sets for the GI group.  Wilcoxon 

signed-ranks test showed statistically significant differences for both groups in their 

understanding (ASR z = -2.889, p = .004 and GI z = -3.291, p = .001).  Tables 21  and 22  

summarize the analyses for this question.        

     Error box plots using a 95% confidence interval supported these findings and further 

revealed that the GI group pre-test mean scores were below unsatisfactory (near 0.5) and 

that ASR pre-test mean scores at levels were also below unsatisfactory (about 0.3, see 

Figure 24).  Error box plots showed that students’ mean scores in both groups improved 

to levels approaching partial understanding (about 1.5 for both groups).      

     Visual comparison of mean test scores on pre-test and post-tests for both groups 

revealed slightly greater gains in conceptual understanding for the ASR group on this 

question.  Box plots revealed no overlap in pre-test to post-tests scores for both groups, 

indicating that all students improved in their understanding of how scientists go about 

answering scientific questions.      
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Table 21                                                                                                                      
GI Group   Question  7.  How Do Scientists Go About Answering Scientific Questions?                                                                  

 N Mean Rank Sum of 
Ranks 

Pre to Post 
Difference 

Negative 
Ranks 2 4.50 9.00

  Positive 
Ranks 15 9.60 144.00

  Ties 4   
  Total 21   

 
 
 
 
Table 22                                                                                                                      
ASR Group   Question  7.  How Do Scientists Go About Answering Scientific Questions?                                                              

  N Mean Rank Sum of 
Ranks 

Pre to Post 
Difference 

Negative 
Ranks 0 .00 .00

  Positive 
Ranks 10 5.50 55.00

  Ties 3   
  Total 13   
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Figure 24   Error Box Plot Question  7.  How Do Scientists Go About Answering Scientific Questions?   
Pre-test results precede post-test results for each group. 
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     Variances shown in box plots were clarified in the analysis using the Wilcoxon 

signed-ranks test, which showed that of the 13 matched data sets for the ASR group, ten 

students improved their scores, three showed no change, and no students scored lower on 

the post-test (see Table 22).  For the 21 matched data sets from the GI group, 15 students 

showed improved scores, four students scored the same, and two students scored lower 

on the post-test (see Table 21).                                                                                         

      

                 Question 8:    Read the Story Below, and Then Answer the Question. 

A scientist has several pots of the same kind of plant in his office.  They 

were spread all over the room to make the room pretty.  He noticed that 

some of these plants didn’t grow as tall as others, even though they 

were all planted at the same time and were the same type of plant.  He 

wanted to know why some of his plants grew taller than others.  He 

couldn’t find any information to answer the question anywhere.  How 

do you think the scientist would go about answering the question?   

 
 
     This question asked students to explain how a scientist would go about solving the 

problem specified in the stem of the question.  The question was similar to what the 

students had been doing throughout the study, in that students were prompted to explain 

a design of an experiment to find out why some plants were doing well and others were 

not.  The purpose of the scenario was to allow students to use practical reasoning to 
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connect what they had learned about the effects of the environment and genes on plants 

with what they understood about scientific investigation as a process. 

     Matched data sets for this question consisted of 32 sets from the ASR group and 24 

sets from the GI group.  Both groups showed statistically significant gains in their use of 

practical reasoning skills (ASR z = -3.967, p = .000 and GI z = -3.667, p = .000).  See 

Table 23 and 24. 

     Error box plots using a 95% confidence interval supported these findings and further 

revealed that all students in both groups made gains in their practical reasoning ability.  

Further analysis of error box plots showed the GI group pre-test mean scores were below 

unsatisfactory (near 0.7).  The ASR group pre-tests mean scores were higher than the GI 

group but still at unsatisfactory levels (about 1.6).   Figure 25 summarize the analyses for 

this question.  Error box plots also showed student mean scores in both groups improved 

to levels approaching partial understanding (about 1.9 for both groups).  Visual 

comparison of mean test scores on pre-test and post-tests for both groups revealed 

greater gains in practical reasoning for the GI group on this question.  Box plots revealed 

no overlap in pre-test to post-test scores for both groups, indicating that all students 

improved scores for this question.         

     Variances indicated in box plots were clarified in the analysis using the Wilcoxon 

signed-ranks tests to reveal that of the 32 matched data sets for the ASR group, 22 

students scored higher, eight students showed no change, and two students scored lower 
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Table 23 
GI Group   Question 8.   Practical Reasoning Question 

 N Mean Rank Sum of 
Ranks 

Pre - Post 
Difference 

Negative 
Ranks 2 6.50 13.00

  Positive 
Ranks 19 11.47 218.00

  Ties 3   
  Total 24   

 
 

 

Table 24    
ASR Group   Question 8.   Practical Reasoning Question 

 N Mean Rank Sum of 
Ranks 

Pre – Post 
Difference 

Negative 
Ranks 2 10.50 21.00

  Positive 
Ranks 22 12.68 279.00

  Ties 8   
  Total 32   
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Figure  25   Error Box Plot  Question 8.   Practical Reasoning Question.   
Pre-test results precede post-test results for each group. 
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on post-tests than they did on pre-tests.  Of the 24 matched data sets for the GI group, 19 

students scored higher, three students showed no change in scores, and two students 

scored lower on post-tests.  These data suggest that both treatments were similarly 

effective in getting students to flexibly apply their understanding of scientific 

investigation, but I felt that students’ actual responses held more information that could 

be uncovered by an analysis of the content residing within the students’ responses. 

     Content analysis of the responses to the question revealed that the ASR group 

provided nearly three times as many elaborations expanding on a point (see Table 25).   

 

 

Table 25 
Frequency Count of Responses to Practical Reasoning Question   

 
GI Post-Test 

(N = 38) 
ASR Post-Test 

(N = 50) 
Student Responses Counts Percents Counts Percents 
Elaboration, expanding a point 6 15.8% 22 44.0% 
Elaboration, providing justification 1 2.6% 10 20.0% 
Examples 2 5.3% 2 4.0% 
Incorporate concepts from the study 8 21.1% 5 10.0% 
No elaboration, examples, or incorporation of concepts 21 55.3% 11 22.0% 
Total 38 100.0% 50 100.0% 

 

 

 

Student responses included elaborations on hypotheses such as, “… then make your 

hypothesis about what you think…” or elaborations on experimental setup like, “He 

could set up different experiments such as putting some in controlled light, some in 

constant…”  Elaborations that provided justification for points made were also made 
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three times as often in the ASR group as they were in the GI group.  A sample 

justifications from the ASR group was, “…put the other plants that don’t get sunlight in 

the window…because plants deeper in the room don’t get any sun.”   Content analysis 

further revealed that both groups referenced knowledge from direct experiences in the 

experiments such as time-lapse photography, controlling lighting, and genetic traits of 

the plants.  There appeared to be no difference in the number of times examples were 

used between groups. 

 

Frequency Counts from Students’ Journals  

 

         Responses to the first question, “What have you learned from this project?” were 

clustered into four categories: scientific investigation, plant features, learning in general, 

and domain specific content.  The total responses for each of the four main groups are 

shown below (see Table 26).  Some students recorded more than one thing learned so the 

total number of GI and ASR group responses does not reflect the number of students, but 

the number of items recorded.      

     Categorization of this data revealed that the GI group recorded almost five times as 

many responses that addressed domain content knowledge (ASR = 6 and GI = 27).  

Further, no students from the ASR group recorded responses about environmental 

effects on plants, while 18 of the 73 GI responses address environmental impact on 

plants. Responses were high in both groups for the category of plant features (ASR = 34 

and GI = 35).  The ASR group recorded almost twice as many responses pertaining to 
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scientific investigation (ASR = 27 and GI = 14) as well as aspects about learning in 

general, such as “learning is hard” and “I learned a lot” (ASR = 11 and GI = 5).   

 

 

Table 26 
Question: What I Learned from This Project 
 GI 

(N=72) 
ASR 

(N=78) 
Categories  N Percent N Percent 
Scientific Investigation     

How to make observations 6  8.3% 3 3.8% 
How to take time-lapse 3  4.2% 9 11.5% 
How to grow plants 0  0.0% 6 7.7% 
Research takes a lot of hard work and thinking 0  0.0% 5 6.4% 
How to conduct experiments 5  6.9% 4 5.1% 

Category Total 14 19.4% 27 34.5% 
 
Plant Features 

    

Hair-like structures (trichomes) 7 9.7% 10 12.8% 
Circadian rhythm 3 4.2% 6 7.7% 
How plants grow 25 34.7% 18 23.1% 

Category Total 35 48.6% 34 43.6% 
 
General Learning 

    

I learned a lot 5 6.9% 7 9.0% 
This was a fun-interesting way to learn 0 0.0% 4 5.1% 

Category Total 5 6.9% 11 14.1% 
 
Domain Content 

    

Genes and mutations 9 12.5% 6 7.7% 
Environmental effects on plants 9 12.5% 0 0.0% 

Category Total 18 25.0% 6 7.7% 
     
Grand Totals 72 99.9% 78 99.9% 
 

 

 

     Some general trends became apparent within the four categorizes of responses.  The 

first category addressed responses tied to a new understanding of scientific investigation.  
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The GI group tended to record responses that dealt with the “how” of conducting 

research, such as “how” to make observations, “how” to take time-lapse videos and 

“how” to conduct experiments.  The ASR group had similar responses but also included 

the culture of scientific investigation as shown in responses like, “research is hard work”, 

and “research makes you think”.  The most common response for both groups was a new 

understanding for how plants grow (ASR = 18 and GI = 25).   

     Student responses to the second question, “What have you learned about how 

scientists in the real world do research?” showed that both groups displayed an accurate 

understanding of authentic science as done by scientists (See Table 27).  Low numbers 

of responses were the result of attrition due to remediation pull outs, student absenteeism 

and school sponsored incentive trips.   

  

 
Table 27 
Question:  What Have You Learned About How Scientists in the Real World Do Research? 

 
GI 
(N=15) 

ASR 
(N = 23) 

Response N Percents N Percents 
Scientists make lots of observations 1 6.7% 0 0.0% 
Scientists make repeated  trials 6 40.0% 8 34.8% 
Scientists communicate and work with each other 1 6.7% 6 26.1% 
Scientists sometimes get different  results/ sometimes 
things go wrong 

2 13.3% 2 8.7% 

Research is hard work 4 26.7% 5 21.7% 
Scientists don’t always know what they are looking for 1 6.7% 0 0.0% 
Experimentation takes a long time 0 0.0% 2 8.7% 
Total 15 100% 23 100.0% 
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Responses numbered 15 for the ASR group and 23 for the GI group.  The most common 

response to this question for both groups was a new understanding that scientists repeat 

their experiments (ASR = 8 and GI = 6).  The next most common response for both 

groups was that “research is hard work” (ASR = 5 and GI = 4).  Interestingly, the ASR 

group recorded more responses that addressed communication with other scientists as 

part of what scientists do.  Beyond this, both groups recorded similar responses (ASR = 

6 and GI = 1). 

 

Student Drawing Samples 

 

     This section provides examples of students’ initial and final drawings of the model 

plant, Arabidopsis.  Students in both groups were asked to draw Arabidopsis while 

observing the plant before and at the conclusion of the study.  Eight samples, two 

matched sets from each group, are provided below (Figures 26 - 33).  Visual inspection 

of matched sets of students’ drawings revealed no distinguishable difference between the 

representations of Arabidopsis between groups.    

     Overall, students showed marked improvement in the level of detail and accuracy in 

their drawings.  An interesting phenomenon found in both groups was that some students 

chose to attach a sample of Arabidopsis beside their drawing.  This did not occur with 

any of the initial drawings.    
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  Figure  26   ASR Group   Student Sample                    Figure  27     ASR Group   Student Sample      
  Initial Drawing of Arabidopsis I                                   Final Drawing of Arabidopsis I                                                      

                                                                                                                                                                                                                                   

                                                                                 

 
 

                 
 
         Figure 28   ASR Group   Student Sample                             Figure  29   ASR Group   Student Sample      
         Initial Drawing of Arabidopsis II                                          Final Drawing of Arabidopsis  II                                                      
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Figure 30    GI Group    Student Sample                                Figure 31   GI Group    Student Sample 
Initial Drawing of Arabidopsis I                                             Final Drawing of Arabidopsis I 
 
 
 
 

       
Figure 32    GI Group  Student Sample                               Figure  33   GI Group    Student Sample  
Initial Drawing of Arabidopsis II                                        Final Drawing of Arabidopsis II 
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 Summary of Findings 

 

     Pre-test and post-test responses for the GI group showed statistically significant 

improvement in their conceptual understanding on four of the five questions addressing 

conceptual understanding of genes, the environment and their impact on the phenotype 

of the Arabidopsis.  Statistically significant improvement was evidenced in all five of the 

questions addressing conceptual understanding for the ASR group (Questions 1 – 5, see 

Table 28).  Responses to the questions on scientific investigations (Questions 6 and 7) 

revealed that only the GI group made statistically significant gains on both questions.  

The ASR group only showed gains in one of the two measures.  Both groups showed 

statistically significant gains in response to the question using practical reasoning 

(Question 8). 

     Analysis of journal responses revealed responses from the GI group tended to show 

new understanding of the logistics of the scientific process such as how to observe, how 

to take time-lapse pictures, and how to conduct experiments.  Responses from the ASR 

group tended to show new understanding of both the logistics of scientific investigation, 

but also an understanding of some of the abstract aspects of investigation such as the 

thinking and difficulty inherent in the process.  Responses from the GI group focused 

markedly on domain specific concepts of genes and the environmental effects.  The ASR 

group responses focused on the learning processes and the process of scientific 

investigation.  Responses from both groups addressed plant features, such as trichomes, 

circadian rhythms, and how plants grow. 
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Table 28    
Summary of Pre-test and Post-test Results for GI and ASR Groups 

  GI Pre-Post ASR Pre-Post 
Construct Question  Differences  Differences 

1 - + 

2 + + 
3 + + 
4 + + 

Understanding of 
Genetics, Plant, and 
Environmental Concepts 

5 + + 

6 + - Understanding of 
Scientific Investigation 

7 + + 
Practical Reasoning 8 + + 

+ = significant differences;   –  = no significant difference 

 

 

     Finally, initial and final drawings for both groups showed improvement in attention 

to detail as well as in improved accuracy of the drawings.  Visual inspections did not 

support improvement in one group over the other.  Improvement appeared to be 

consistent for both groups and all six classes.  Conclusions inferred from these results 

are the focus of the next chapter.  Table 29 summarizes the data analyses. 
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Table 29 
Summary Comparison. Results on All Measures by Type of Inquiry Group 
  

Guided Inquiry 
Authentic 

Scientific Research 
 
Conceptual Understanding of Genetics 

  

 
Pre-test Post-test Questions 1-5 

 
4 of 5 questions 
significantly different 

 
5 of 5 questions 
significantly different 

 
Gain Scores Question 1-5 
 
 
Journal Question “What have you learned?” 
– Domain Content Category 

 
Similar gains to ASR 
Questions 2,4,5 
 
25% responses 
indicated content 
domain knowledge 

 
Greater gains on  
Questions 1 and 3 
 
7.7% responses indicated 
content domain 
knowledge 

Journal Question “What have you learned?” 
--Plant Features Category 
 

43.6% indicated plant 
features 

48.6% indicated plant 
features 

Arabidopsis pre- and post-Drawings Indicated differences 
similar to ASR 

Indicated differences 
similar to GI 

Understanding of Scientific Investigation   
 
Pre-test Post-test Questions 6-7 
 
Gain Scores 
 

 
2 of 2 questions 
 
Similar gains for both  
groups 
 

 
1 of 2 questions 
 
Similar gains for both 
groups 

Journal Question 1, “What have you 
learned?” –Scientific Investigation Category 

19.4% responses 
indicated information 
about scientific 
investigation 
 

34.6% responses 
indicated information 
about scientific 
investigation 

Journal Question 2, “What have you learned 
about scientists and how they do their work? 
--Communication and collaboration 
category 

6% (1 out of 15 
responses) indicated 
that “Scientists 
communicate and work 
with each other” 

26% (6 out of 23 
responses) indicated that 
“Scientists communicate 
and work with each other” 
 

Journal Question 2, “What have you learned 
about scientists and how they do their work? 
-- Length of Time Category 

0% indicated that 
“experimentation takes 
a long time” 

9% (2 out of 23) indicated 
that “experimentation 
takes a long time” 

Practical Reasoning   
 

Pre-test Post-test Question 8 
 
        Gain Scores 

 
Significant difference 
 
Higher gains evidenced 
by GI group 
 

 
Significant difference 
 
Lower  gains evidenced 
by ASR group 

        Frequency Count for Responses 
 

 7 of 38 elaborations 
10 of 38 concepts 
21 of 38 no elaboration 

32 of 50 elaborations 
 5 of 50 concepts 
11 of 50 no elaboration 
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CHAPTER V 

CONCLUSIONS 

 

Introduction 

 

Quantitative and qualitative techniques provide a tradeoff between breadth and 

depth and between generalizability and targeting to specific (sometimes very 

limited) populations.  ... Data collected through quantitative methods are often 

believed to yield more objective and accurate information because they were 

collected using standardized methods, can be replicated, and, unlike qualitative 

data, can be analyzed using sophisticated statistical techniques.  In line with these 

arguments, traditional wisdom has held that qualitative methods are most suitable 

for formative evaluations, whereas summative evaluations require “hard” 

(quantitative) measures to judge the ultimate value of the project.  This 

distinction is too simplistic.  Both approaches may or may not satisfy the canons 

of scientific rigor.  Quantitative researchers are becoming increasingly aware that 

some of their data may not be accurate and valid. ... On the other hand, 

qualitative researchers have developed better techniques for classifying and 

analyzing large bodies of descriptive data.  It is also increasingly recognized that 

all data collection – quantitative and qualitative – operates within a cultural 

context and is affected to some extent by the perceptions and beliefs of 

investigators and data collectors (Frechtling & Sharp, 1997, pp. 3-4). 
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 I chose mixed methods for the design of this research study for reasons not 

unlike those discussed in the National Science Foundation’s Handbook on Designing 

and Conducting Mixed Method Evaluations (Frechtling & Sharp, 1997), which 

introduces a broader perspective to evaluators who have focused primarily in the past on 

quantitative techniques and who, as a result, “may miss important parts of a story” (p. 1).   

The exploratory nature of this study, the lack of other studies examining the differential 

effects of different forms of inquiry on student learning, and my inabilities to control 

aspects of the administration of my treatments, I believe, warranted the use of a broader 

perspective in the design of the study.  My goals in the design of this investigation were 

to address not only questions of scientific rigor but also the broader need to collect data 

that might contribute to an important, otherwise absent, part of the story regarding the 

effects of two different forms of inquiry on student learning (Tashakkori & Teddie, 

1998; Gall, Gall & Borg, 1999).  The following sections in this introduction are meant to 

explain, summarize, and justify my pragmatic choice to use mixed methods rather than 

to philosophically remain bound to either quantitative or qualitative approaches to data 

collection, analysis, and synthesis. 

      Quantitative Techniques.  My research questions regarding the advantages of inquiry 

instructional methods on student learning were basically quantitative in nature.  I asked 

questions that required pre-test and post-test data to assess and compare the effects of 

two forms of inquiry-based instructional sequences on student learning.  I asked three 

questions, which were informed by the framework of the nationally recognized National 
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Assessment for Educational Progress (NAEP; O’Sullivan & Weiss, 1999), which 

broadly assesses students’ understanding of science in three domains.  The questions 

were: 

1. How do these two forms of inquiry affect conceptual understanding? 

2. How do these two forms of inquiry affect students’ understanding of 

scientific investigations? 

3. How do these two forms of inquiry affect practical reasoning ability?  

     Three of my six classes were randomly assigned to the guided inquiry (GI) treatment; 

and three other classes were randomly assigned to the authentic scientific research 

learning (ASR) treatment.  All classes had similar demographics in terms of students 

with special needs, ethnicity, and socioeconomic status.  Quantitative data were analyzed 

appropriately using nonparametric statistical techniques to assess the statistical 

significance of students’ gains in understanding on eight matched pre-test and post-test 

questions.  The content and design of these questions were revised after they were 

administered to a pilot group of students in the fall prior to the school year in which the 

study occurred.  The content and form of the final questions were validated by two 

“experts” in educational research and one scientific researcher.  A four-point rubric was 

constructed for assessing the quality of my students’ responses on each question, 

informed by conventions for developing rubrics for conceptual understanding that had 

been established by the NAEP (O’Sullivan & Weiss, 1999).  Inter-rater reliability 

regarding the consistency of the rubric as a scoring device was established by comparing 

the scores of two independent raters on 64 pre-test and post-test responses (eight tests).   
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Confidence intervals and error box plots were constructed to display means and 

standard deviations at the 95% level of confidence.  Error box plots for each question 

were displayed for ease in visual comparison between pre-test and post-tests for both 

treatments.  Wilcoxon signed-ranks tests were also calculated for each question to reveal 

distributions of positive, negative, and neutral gains for each question and to assess the 

statistical significance of the differences between pre-test and post-tests. 

     Qualitative Techniques.  Students’ journal entries provided descriptive data about 

their learning that was not available from their pre-test and post-test answers.  Students 

were required periodically at the end of class to reflect on their learning for the day by 

answering an open-ended question posed by the teacher/researcher.  Students were also 

required to make drawings of an Arabidopsis plant before the inquiry instruction began 

and after the inquiry sequences were completed.  These data were collected to fill in 

important parts of the story, to clarify and illustrate results of the pre-test and post-test 

data, and to test for complementarity between measures.  Two journal entries were 

chosen for content analysis which allowed me to probe some of the underlying issues 

that revealed themselves in the students’ responses to pre-test and post-test measures that 

were evaluated on a simple four-point scale.   

     Mixing the Techniques.   While I chose predominantly quantitative questions to drive 

the research, I also allowed students’ journal responses, drawings, and content analyses 

of students’ responses on the pre-test and post-test questions to complete, enhance, 

reinforce, and question the results of the quantitative approaches taken to data analysis.   
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Conclusions 

 

     Research Question 1: How do these two forms of inquiry affect conceptual 

understanding?  Guided inquiry students understood more about genetic concepts and 

environmental effects on phenotype than the authentic scientific research learning 

students.   Quantitative analysis supported gains for ASR over GI, but qualitative data 

revealed that GI students were much more likely to record responses that included use of 

genetics and environmental concepts explored in the study.  When results of both 

analyses were mixed, GI students made greater gains.  Qualitative results did not support 

the statistical results.  Quantitative data showed greater gains for the ASR group on two 

of the five pre-test and post-test questions and similar gains for both groups on the 

remaining questions.  Quantitative analysis further revealed statistical significance in all 

five questions measuring conceptual understanding for ASR and statistical significance 

on four of the five questions for GI indicating slightly greater gains for the ASR group 

on these quantitative measures alone.  However, when GI responses to the question, 

“what have you learned?” were qualitatively analyzed, a different picture emerged.  GI 

responses focused on concepts from the study three times more often than the ASR 

group.  Further the GI group recorded learning about plant features in 43.6 % of their 

responses.  In addition, the GI group used concepts explored in the study twice as often 

as did the ASR group on the question using practical reasoning skills.   

     Scientific Investigation as a Process:  How do these two forms of inquiry affect 

students’ understanding of scientific investigations?    ASR students understood more 
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about scientific investigation as a process.  Quantitative analysis supported similar gains 

for both groups, but an analysis of qualitative data revealed deeper understanding for the 

ASR students.  Qualitative data did not support the statistical results.  Quantitative data 

revealed statistically significant gains in the ASR group on one of the two pre-test and 

post-test questions. Closer inspection of error box plots revealed large variance on ASR 

pre-tests.  Statistical significance was found on both questions for the GI group.  

Qualitative analysis of student journals revealed that 34.5% of ASR students’ responses 

to the question, “what have you learned from this project?” addressed scientific 

investigation while only 19.4% of the GI students mentioned scientific investigation.  

Further, when asked, “what have you learned about how scientists and how they do their 

work?”  35% of ASR students’ responses addressed collaborative communication and 

length of time involved in scientific investigation, while only 6% of GI students made 

these references.   

     Practical Reasoning Skills:  How do these two forms of inquiry affect practical 

reasoning ability?   ASR students made greater gains in demonstrating practical 

reasoning skills.  Quantitative analysis supported similar gains for both ASR and GI, but 

qualitative data revealed that ASR students had a more developed sense of practical 

reasoning.  ASR students were much more likely to provide elaborations and 

explanations to support their responses.  Quantitative results from pre-test and post-test 

questions revealed similar gains. However, when additional statistical analyses were 

completed using error box plots, gains in the GI group over the ASR group became 

evident.  GI pre-test mean scores were lower than ASR pre-test mean scores, while post-
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tests results were similar in both groups indicating greater gains for the GI group.  

Qualitative results did not support the statistical results.  Quantitative analysis further 

revealed that when students were asked to use practical reasoning skills to answer a 

scientific question, 68% of ASR student used some form of elaboration or examples in 

their responses as compared to 24% of GI students.  Only 22% of ASR students failed to 

provide some form of elaboration as compared to 55% of the GI students.   

 

 

Lessons Learned 

 

I designed interventions for both treatments with the best of intentions.  I had 

gathered advice from members of my committee, including a researcher in education and 

a scientist.  I had conducted a pilot test, although shorter in duration, in the fall of the 

previous year with a small number of eighth grade students.  I made revisions on the 

basis of the pilot test, developed a full-blown, three-stage implementation plan, and 

began to organize my classroom to become a “teaching research laboratory” during the 

fall of the school year. 

     While I had planned to complete the data collection for the full study in the fall of the 

school year, I waited to conduct the study until I heard from two important agencies, one 

involved in funding the research and another involved in granting permission to conduct 

it. I had written a grant to the Toshiba Foundation in the fall of the year to buy 

technology, but notification of the award was not made until January.  While the award 
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allowed the opportunity for all of the students in my six classes to engage in one of two 

forms of classroom-based inquiry, the late award required me to wait until the early 

spring to set up my classroom with cameras and light boxes.  Furthermore, I waited to 

receive university approval for my proposal to collect data and informed consent from 

eighth grade students and their parents.  The approval from the Institutional Review 

Board (IRB) at Texas A&M University was also not awarded until the early spring.  

Implications for waiting until the spring of the school year will be discussed later in this 

chapter.    

     As with any study, there are things the researcher learns in the process of doing the 

study that serve to inform future studies.  My study was no exception.  In this section, I 

have identified four main concerns: (1) the impact of my graduate studies on the 

research, (2) the conflict I experienced in serving as both the teacher and the researcher, 

(3) the effects of delayed IRB approval and funding on the timing of the study, and (4) 

alterations in the research design. 

      First, the original design of the study was to compare a typical GI experience with an 

ASR learning experience.  As I have progressed through my studies at Texas A&M, I 

became familiar with research-based learning theories that have transformed my 

teaching (Mundry, 2003).  As I progressed through the GI instructional segments I found 

myself automatically incorporating these learning theories, in effect providing the best 

GI experience possible, as well as the best ASR experience.  I found that I couldn’t go 

back, so to speak.  I no longer was able to conduct the type of GI that more typically 

represents the level of GI done by teachers in most classrooms.  I found myself 
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spontaneously picking up on cues from my students that indicated they required more 

scaffolding or prompting, and I found myself constantly adjusting to meet the needs of 

my students.  In effect, I offered a model GI experience for my students rather than a 

typical representation.  Had I been able to conduct a GI that was more representative of 

the typical GI experiences, there may have been greater differences in all three measures 

of this study. 

     Second, I found the conflict between my responsibilities as a teacher to often be in 

conflict with my role as the researcher.  It was very difficult to separate these two roles. 

The frustration of knowing what to do to assist my students and the constraints of the 

research that mandated no instructional variation was heavy indeed.   I found myself, as 

did Wong (1995), coming face-to-face on a daily basis with conflicts between doing 

what I would intuitively do as a teacher (assist the student in learning) and acting the 

part of the researcher (assure validity in treatments).  The constant conflict between what 

was best for the student and what was best for the research made me question if it was 

even beneficial to engage teachers as researchers.  Perhaps a better model would have 

been a paired research model in which the researcher worked alongside the teacher.    

     Third, this study was riddled with situations beyond the control of the researcher that 

typified what Ann Brown (1992) referred to as the messiness of classroom research.   

Delays in funding and IRB approval pushed my implementation of the study from the 

fall into the spring.   Unfortunately, as any classroom teacher can attest, spring is rife 

with student illnesses, incentive trips, field trips, practice tests, meetings for special 

education reviews, mandatory review sessions, spring break, and state-mandated testing.   
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As a result of these interruptions, my original population of 130 students yielded less 

than half the participants in both groups who were able to complete all parts the pre-test 

and post-test measures.   

     Fourth, I would do several things differently in future research to provide a richer 

description (Gertz, 1973) to further inform the research findings.  A review of student 

journals revealed that students on several occasions ran out of time when recording their 

reflections or responding to open-ended guided response questions.  My reflective 

journal also revealed that I did not allow sufficient time for students to fully reflect and 

respond in their journals.  Furthermore, I did not look at any of my students’ writings 

until the study was complete.  I chose to do this in an effort to remain unbiased and in 

response to IRB mandates.  I was therefore unaware of the types of responses some of 

my students were making.  Student responses indicated students did not understand the 

questions.  Had I reviewed the data during the study, I would have been able to modify 

the format of questions to encourage student responses that more clearly addressed the 

idea behind the question.   

     I also discovered (after the fact) that students were recording information in their 

journals in a way that was very hard to follow. If I had looked at journals during the 

course of the study, I could have detected the need to provide more guidance in the way 

the students structured their entries.  A more organized structure for student journal 

responses would have aided me in finding and interpreting student responses.  It might 

have been beneficial to have students respond to questions scaffolded like, I used to 

believe_________, and now I believe _________.  I believe this would have provided a 
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richer, more aware description of changes to student conceptual models as a result of a 

research intervention.    

     Finally, I myself gained a deeper understanding of the implications of missing data.  

As obvious as it is now, when I was in the midst of the study and wearing both the hat of 

a teacher and the researcher and bearing the responsibilities of both, I failed to see the 

implications of missing data on my study results. It wasn’t until I started the data 

analysis that I became aware that the missing data imposed serious limitations on my 

abilities to legitimately make claims about the effects of two treatments on student 

learning. 

 

Recommendations for Further Study 

 

     Working within the messiness of the classroom environment has inherent 

inconsistencies that confound and cloud the most careful of research designs.  This 

research proved to be just such a study, and yet it did yield indications of differences 

between two different inquiry-based instructional approaches.  Additionally, this study 

highlighted unexpected benefits for special-needs students and implications of the role of 

teacher as researcher. The results revealed in this study provided the foundation on 

which the following recommendations for future study were made. 

      Time of Year.   Interruptions occurred throughout this study, resulted in large part to 

the time of year in which the study was conducted.  The spring of the year in a Texas 

classroom brings a wide assortment of deviations from the normal class schedule, none 
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of which contributes to coherence in classroom instruction.  I recommend that any 

similar study done over a sustained period of time be implemented earlier in the school 

year when students tend to be in class more and the educational focus is centered more 

on classroom instruction. 

     Despite the small numbers of students from which complete data was collected, I 

believe that there are trends in the data that warrant further study.  This study revealed 

indications that gains in conceptual understanding of concepts occurred through inquiry-

based instructional methods.  Data from student journals and classroom observations 

further support this finding and suggested benefits in their understanding of the scientific 

investigation as a process, and increased in practical reasoning skills. 

     Special-Needs Students.  Classroom teachers are typically skeptical of engaging 

special-needs students in any form of inquiry-based instruction believing that they will 

lose control of the classroom and that inquiry is beyond the capability of these students 

(Zohar & Dori, 2003).  My findings concurred with Zohar and Dori (2003): Special-

needs students gained substantial benefits from the challenges presented in both inquiry-

based instructional methods.   Inquiry-based instruction resulted in all students being 

actively engaged an obvious classroom management benefit (Stuessy & Scallon, in 

preparation). Repeated instances occurred where low-performing special-needs students 

performed at levels far beyond what I typically expected.  These were students who 

typically did not actively engage in classroom discourse.   

     Teacher professional development is another implication of the apparent benefits of 

inquiry-based instruction for special-needs students.  Benefits of inquiry-based 
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instruction for special-needs students substantiated through repeated investigations could 

reform teachers’ existing beliefs about the capabilities of special-needs students in 

participating in inquiry-based instruction.  Repeated references in my reflective journal 

point to instances where special-needs students were highly motivated, participated with 

enthusiasm in student-centered inquiry, and excelled in the inquiry-based learning 

environment.   

     Data Collection Instruments & Rubric Design.   Student records provided an 

incomplete picture of what I knew my students had learned but had no evidence to 

support.  I listened to student discourse and I knew the richness of their thinking, 

however; students recorded enough to answer the question but did not write the full 

extent of what they really knew.  The discrepancy between what students recorded and 

what I heard them say in group and classroom discussions was huge.  My reliance on 

written evaluation instruments was insufficient to provide a complete picture of the 

impact of GI and ASR on student learning.    

     On several occasions, students did not have adequate time to finish entries in their 

journals.  On more than one occasion, students would be in the middle of recording 

responses to open-ended questions when the bell rang, thus ending class.  Obviously, 

there were lost opportunities to acquire insights from students’ recording of questions 

such as, What I learned today.  I recommend that in future studies the allotment of time 

be seriously and deliberately considered for students to reflect on what they have done 

and learned.    
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      I further recommend the addition of personal interviews and audio taping of small-

group discourse.  These additions would provide a broader and richer collection of data 

for analysis.   Follow-up interviews would allow researchers to probe students for more 

explicit answers to pre-test and post-test questions serving to triangulate the data.   In 

addition, taping small-group discourse would allow researchers to glean from students’ 

conversations a wealth of information that went untapped in this study.         

      Finally, I recommend that student journals be reviewed throughout the study as a 

formative evaluation of the matches between the intent of the researcher, questions, and 

student responses.  Formative reviews would allow the researcher to make minor 

revisions in the way the questions were worded.  It would also reveal if students were 

being given ample time to complete their responses in the allotted time.  

     Design of the Study.  With respect to the actual design of the study, I now suspect that 

the three-phase approach was unnecessary.  I suspect that if these students had engaged 

in ASR from the very beginning (as occurred in the pilot study) that there would have 

been more differences between student learning in the GI and ASR instructional models.  

I now believe that the three phases actually hindered the degree of participant 

engagement rather than providing a scaffold toward independent inquiry.  I noted in my 

reflective journal that toward the end of the second phase of the study, both groups grew 

tired of the guided instruction and began to lose interest.  During Phase III, the ASR 

group re-gained their enthusiasm, but the GI group did not.   Separating the two 

interventions at the onset of the study would have better reflected the model of the pilot 

study, in which students engaged in guided instruction before engaging in ASR only 
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long enough to make them comfortable and allow them to engage in the project. In 

design of this study, I believed this initial guided-inquiry would scaffold students toward 

a more independent student-centered, inquiry-based instructional model, providing an 

essential bridge toward ASR.  However, I now believe I built in too many guided- 

inquiry experiences.  I suspect that the progression from didactic to limited hands-on to 

guided-inquiry was too much scaffolding; in effect, stifling students who demonstrated 

readiness for the independent learning characteristic of the ASR experience. 

    Finally, I suggest that a paired research model be used; that is, a model that splits the 

research roles between the teacher and the researcher, rather than the teacher acting as 

both teacher and researcher.   This study brought to light many of the conflicts 

associated with trying to fill two roles which often times have conflicting objectives 

(Wong, 1995).  Specifically, the role of the teacher is to help students learn, while the 

role of the researcher is to understand a phenomenon.   Where the teacher would alter 

instruction, events, and experiences to enhance student learning, the researcher would 

see these alterations as a threat to the validity of the study.  The focus of the teacher is on 

the student; the focus of the researcher is on the study.   Additionally, the burden of 

managing a study as well as doing the classroom teaching proved at times to be 

overwhelming.  By using a paired research model, the researcher could offer guidance to 

the teacher as the study unfolds.  Similarly, in planning the teacher could provide 

expertise to the researcher on the feasibility of the research design and alert the 

researcher to potential implementation pitfalls.  In addition, because the teacher had 

worked with these students in a context outside the study, they are in a unique position to 
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notice and identify differences in student performance, attitudes and actions specific to 

the study that would probably go unnoticed by a researcher unfamiliar with the students.    

 

A Final Reflection on the Connections Between Theory and Practice.   

 

     Cognitive theory made the connections in my own thinking between what students 

learn and how they learn it. Cognitive theory also provided the foundation for my 

thinking about the creation of the ideal science learning environment.  As a teacher, I 

was interested in knowing more about how to design a science learning environment that 

would allow my students to actively construct new understanding for themselves, to 

develop habits of mind that would allow them to assess their own learning, to “chunk” 

relevant facts together into organized sets of information, to flexibly use new knowledge 

in new situations, and to learn in a social environment where new ideas were 

constructed, shared, and revised on the basis of external feedback and internal reflection.  

Cognitive theory also led me to believe that a more open, authentic learning 

environment would lead to more gains in student learning.  I focused on creating an open 

learning environment for my students in my role as a designer of instruction. 

I believe that the results of this investigation have connected my understanding 

of cognitive theory and practice in a new way.  My choice of mixed methods in my 

classroom-based study contributed many important, otherwise absent, parts of the story.   

The lessons I learned were many, including that I needed to reserve more time for my 

students to reflect on their learning.     
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My Final Reflections Center on Student Reflection.  Of course, I understand now 

that more time would have provided a better data source for analysis.  However, I also 

have a new understanding about the role of student reflection in the study, which I never 

quite understood before. The results of this study indicated to me that the design of the 

environment is not the only important factor in creating the ideal learning environment.  

An unexamined factor in this particular study is the differences in the role of the teacher 

in these two environments, particularly in regard to the teacher’s role in facilitating 

reflective practice in students.   

The guided inquiry environment allowed many opportunities for me to scaffold 

my students’ reflections on their learning, in large-group, on a daily basis.  We 

constantly came together after small bursts of independent activity to review, reflect, and 

revise our practice.  On the other hand, students in the authentic scientific learning 

classes did not have the benefits from large-group discussions in the same way.  While 

small, independent ASR groups may have had opportunities to share and revise their 

ideas about the inquiries they were conducting on their own; the independent small-

group structure did not provide as many opportunities for the more formal, guided 

exchanges between the teacher and students about their experiences.  Multiple 

opportunities were provided for students in the GI group to communicate formally about 

new facts and concepts regarding mutations, environmental effects, genotypes, and 

phenotypes.  By contrast, students in the small ASR groups talked among themselves 

without the benefit of more formalized, directed, teacher intervention.   
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My own personal reflections lead me to wonder about the role of those daily 

teacher-directed, scaffolded discussions in the development of students’ understanding 

about the ways things in the natural world works.  Perhaps these discussions provided 

the factual and conceptual benefits to students in the GI group demonstrated in their 

responses on post-tests and in their answers to journal questions.   Without the thorough 

examination of the quality of student responses, as well as the results comparing pre-test 

and post-test scores in both groups, I do not think that I would be so willing to identify 

the possible connection between teacher-directed discussions and scientific knowledge 

gains.     

Reflections From the Teacher’s Perspective.  The research results fill in only part 

of the story about the design of inquiry-based learning environments.  From the 

professional teacher’s perspective, I would like to fill in another part of the story, and 

that has to do with how I would change my practice as a result of the research I have just 

conducted. 

In designing the “ideal” learning environment for my students, I would provide 

multiple opportunities for individuals, small groups, and entire teacher-led class 

discussions to share, reflect, and revise their ideas about what they are learning.  I would 

encourage students to use factual and conceptual information in their discourse and 

writing, emphasizing the “big ideas” under girding the inquiry, just as I did on a daily 

basis with students in the GI group.   

I would embed my students’ hands-on learning, however, within an authentic 

scientific research learning approach.  Students would ask their own questions, design 
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their own experiments, and collect their own evidence for their own knowledge claims, 

just as I did with the students in the ASR group with one important difference.  I would 

allow more time for students to come together in large groups.  In these large groups, I 

would guide their sharing to reveal what small groups are learning independently.  I 

would scaffold the discussion so that students could learn from one another about what 

is working, what they are thinking, and how they would revise not only their processes 

of doing science but also their thinking about science.   

Overall, on a daily basis, I would spend much more time thinking about ways to 

make my students’ thinking visible through not only what they say in class but what they 

write and draw.  I would monitor and review student reflections daily to focus my 

decisions about the most important topics for the next day’s large-group discussions.  I 

would check specifically for clarity and accuracy in my students’ use of important 

scientific ideas and note them for further discussion, and we would talk as a class about 

what we are learning about how the world works, how scientists do their work, and how 

effective solutions to real-world problems require a good conceptual understanding of 

both facts and process.   

Finally, I would conduct other messy, classroom-based studies to see how well 

these recommendations hold together in other science learning contexts.  I believe in 

time I will feel more comfortable in the teacher-as-researcher role (particularly without 

the constraints of the requirements for rigor applied to the completion of a master’s 

thesis).  I would like to engage in lesson studies, perhaps with other teachers, to “test” 

the effects of innovative inquiry-based lessons on my students’ learning.   
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I am encouraged by the results I have gathered here and my own progress as a 

teacher-researcher.  On the research side, I believe this study contributes new knowledge 

about the differential effects of guided inquiry and authentic scientific research learning 

on student learning.  For me personally, however, I have experienced first-hand the 

benefits that research can have regarding better ways to increase my students’ 

understanding about science.  I have also experienced first-hand the benefits that 

research can have regarding the ways I can increase my own understanding about 

science teaching.     
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Rubric for Pre-Post Test Questions 

 
 

 
Why do plants look the way they do? 
 

3 Complete:  Both genes & environment impact phenotype.  May also mention other phenomenon 
like chlorophyll, cell structure, etc. 

 
2. Partial:  Mention either gene or environment impact phenotype. May also mention other 

phenomenon like chlorophyll, cell structure, function of the parts, etc. 
 
1 Unsatisfactory:  No mention of genes or environment as impacting phenotype only other 

phenomenon like chlorophyll, cell structure, function of parts, etc. 
 
0 No response/ Illegible response 
 

Do Plants Move? 
 

3     Complete:  Expressed understanding of rhythmic cycles like circadian rhythm, geotropism,    etc.  
also, understanding that plants move as they grow,. Elongation, circular pattern seen in time lapse. 

 
2 Partial:  Express either rhythmic or patterns of growth or movement associated with growth. 

 
1 Unsatisfactory:  Expresses understanding that external impacts such as wind or stationary roots 

prevent movement. 
 
0     No response/ Illegible response 

  
Can environment have any affect on genes?  
 

3 Complete:  Environment affects both genes expression and an understanding that genes adapt to 
their environment. 

 
2 Partial:  Environment affects either gene expression or genes adapt to environment 
 
1.    Unsatisfactory:  Yes – no explanation   -    Unrelated answers – answers do not address the 
       question.  
 
0   No response/ Illegible response  
 

Does an experiment have to prove the hypothesis correct to be a good experiment? 
 

3 Complete:  Explanation expresses understanding of value of unexpected outcomes as well as 
hypothesis being unrelated to experimental validity. 

 
2       Partial:  Explanation expresses either a value of unexpected outcomes or understanding that  
         hypothesis is  unrelated to experimental validity. 
 
1 Unsatisfactory:  Yes– no explanation – Any yes answer.  Statements expressing misconceptions. 
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0     No response/ Illegible response 
Tell me everything you know about scientific method. 
 

3.     Complete:  Expressed an understanding of scientific method as a dynamic process used to  
        answer questions.  There are multiple ways to experiment.  Scientific method is NOT a     
        sequential unalterable step by step method.  Responses include an understanding of importance  
        of accuracy, data collection and explanation. 
 
2.  Partial:  Understanding of scientific method as a process, may mention steps but they don’t  

 imply regiment following of the steps. 
 
1 Unsatisfactory:  Step by step sequence that scientists use to experiment – or some other 

misconceptions expressed. 
 
0  No response/ Illegible response. 
 

What do you know about genes? 
 

3.  Complete:  Expressed understanding that genes are inherited, the determine traits and they are        
         instructional information. 
 
2.      Partial:  Expressed one or two of the three, demonstrated some accurate understanding of the  
         function of genes. 
 
1. Unsatisfactory:  Expressed only misconceptions – responses illegible. 
 
0 No response or wrote something like “I don’t know.” 
 

What do you know about mutations? 
 
        3       Complete:    Mutations alter gene function or growth  and mutations usually adversely affect an  
                 organism. 
 
        2       Partial:   Expressed either understanding that mutations affect genes, or mutations adversely  
                 affect organisms, or some other response that demonstrates students has an accurate partial  
                 understanding of what a mutation is.  
 
        1      Unsatisfactory:   Expressed only misconceptions/ illegible responses. 
 
        0       No response - student left blank or wrote something like “I don’t know.” 
 
Practical Reasoning scenario (last question – students design an experiment) 
 

3. Complete:  Students demonstrate an understanding of the need for experimentation.  Elements  
         of a good experimental set-up are elaborated on,  showing an understanding of the role of  
         variables, data collection, observation. 
 
 2.    Partial:  Contains elements of experimental design, explaining what the scientists should do,  
        but not linking it to experimentation. 

 
1 Unsatisfactory:  Response does not address the question / illegible responses. 
 
0       No Response - left blank or wrote something like, “I don’t know.” 
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APPENDIX B 
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Howdy --- Here’s your Pre-Test –    Name:  _____________________________ 

Part 1                                                              Class Period:  _______  Date: ___________ 

 
 

In the space below, draw a plant with all of its parts.   Label as many parts 
as you can !! ( You may draw several drawings if you wish) 
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Use any of these words in your explanations if you can use them 

correctly.  

Genotype          Phenotype                Adaptation                  
Inherit            Traits                     Genome                   
Hypothesis  Data                      Observation             
Conclusion        Result                     Experiment          
 
 
What do you know about genes?     Remember tell me everything you can !!! 
(What are they, where are they,  what do they do, etc) 
 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 

                                                               

 
What do you know about mutations?   Remember tell me everything 
you can !!!  (What are they, what causes them, what do they do, etc.) 
 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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Howdy --- Here’s your Pre-Test –   Name: ______________________________ 

Part 2                                                              Class Period:  _______    Date: __________ 

 

Use any of these words in your explanations if you can use them 

correctly.  

Genotype          Phenotype                Adaptation                  
Inherit            Traits                     Genome                   
Hypothesis  Data                      Observation             
Conclusion        Result                     Experiment          
 

Why do plants look the way they do? Remember tell me everything you can !! 

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 

 

Can the way a plant looks change?     _________ If so, HOW???                                         

Remember tell me everything you can !!! 

_____________________________________________________________

_______________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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Use any of these words in your explanations if you can use them 

correctly.  

Genotype          Phenotype                Adaptation                  
Inherit            Traits                     Genome                   
Hypothesis  Data                      Observation             
Conclusion        Result                     Experiment          
 

How do plants grow?  (What causes them to grow, what determines 

how they will grow?) 

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 

 

Do plants move?  Do they have patterns of movement?   Explain 

please. 

 

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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Howdy --- Here’s your Pre-Test –         Name:  __________________________ 

Part 3                                                               Class Period:  _____   Date: ____________ 

 

Use any of these words in your explanations if you can use them 

correctly.  

Genotype          Phenotype                Adaptation                  
Inherit            Traits                     Genome                   
Hypothesis  Data                      Observation             
Conclusion        Result                     Experiment          
 

How do scientist go about answering scientific questions? 

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 

 

What is model?  Why are they used?  For example what do you think is 
meant when people use terms like “ model system “ or model plant  or “model of 
the solar system”? 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________  
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Do plants respond to the environment? _____  Can the environment 

affect how a plant grows?   _______  Explain your answer please.                     

Give me as much detail as you can. 

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

________________________________________ 

 

Does an experiment have to prove the hypothesis correct to be a 
good experiment?  Explain your answer please. 
 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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Can the environment have any effect on a plant’s genes?  Explain 
your answer please. 
 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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Howdy --- Here’s your Pre-Test –           Name:  _________________________ 

Part 4                                                                      Class Period:  _______  Date: _______ 

 

Read the story below, and then answer the question. 

A scientist has several pots of the same kind of plant in his office.  They are 

spread all over the room to make the room pretty.  He notices that some of 

these plants don’t grow as tall as others, even though they were all planted at 

the same time and are the same type of plant.  He wants to know why some of 

his plants growing taller than others.  He can’t find any information to answer 

the question anywhere. 

 
How do you think the scientist would go about answering the 
question?  Be as detailed as you can 
 
__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________

__________________________________________________ 
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