

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Influencia Del Agregado De Concreto Reciclado En Reemplazo
Del Agregado Grueso A La Compresión Y Costo Del Concreto –
Huaraz, 2020.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Guerrero Mata, Edwin Abel (ORCID: 0000-0002-3504-0542)

Trujillo Herrera, Yesenia Liz (ORCID: 0000-0001-5292-334X)

ASESOR:

Mgtr. Ramírez Rondan, Raúl Neil (ORCID: 0000-0002-5788-472X)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

HUARAZ - PERÚ 2020

DEDICATORIA

A mis padres

Por haberme brindado todo el apoyo y por confiar en mi en todo momento a lo largo de esta carrera.

A mis hermanos

Por el gran apoyo incondicional que me brindaron a lo largo de la carrera.

Guerrero Edwin

Esta investigación está dedicado a mis padres por brindarme todo el apoyo y por confiar en mi en todo momento a lo largo de esta carrera.

Por enseñarnos a seguir adelante y luchar, que con mucho esfuerzo y voluntad podemos lograr todas las metas que nos tracemos en la vida sin importar las adversidades que se presenten

Yesenia Trujillo

AGRADECIMIENTO

A Dios por brindarnos la vida, salud, ser nuestra fuerza espiritual, bendecirnos la vida y ser nuestro apoyo y fortaleza en los momentos de dificultad para así poder cumplir con nuestras metas.

A nuestros seres queridos, quienes nos brindaron su apoyo moral e incondicional para lograr nuestras metas.

A nuestros docentes de la Escuela Profesional de Ingeniería Civil de la Universidad Cesar Vallejo, que nos impartieron sus conocimientos y experiencias en el transcurso de nuestra vida estudiantil y que nos ayudaron de una u otra forma para hacer posible la realización del trabajo de investigación.

Gracias.

ÍNDICE DE CONTENIDOS

DEDICATORIA	ii
AGRADECIMIENTO	iii
ÍNDICE DE CONTENIDOS	iv
ÍNDICE DE TABLAS	V
ÍNDICE DE GRÁFICOS Y FIGURAS	vii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	12
3.1. Tipo de diseño de investigación	12
3.2. Variables y operacionalización	13
3.3. Población, muestra y muestreo.	13
3.4. Técnicas e instrumentos de recolección de datos:	15
3.5. Procedimientos	15
3.6. Método de análisis de datos	17
3.7. Aspectos éticos	17
IV. RESULTADOS	18
V. DISCUSIÓN	57
VI. CONCLUSIONES	62
VII. RECOMENDACIONES	63
REFERENCIAS	64
ANEXOS	67

ÍNDICE DE TABLAS

Tabla 1: Disposición de las muestras. 14
Tabla 2: Contenido de Humedad del agregado fino y agregado Grueso con 0%,
25% y 50% AGCR
Tabla 3: Granulometría del agregado fino convencional
Tabla 4: Granulometría del agregado grueso 100% AGC y 0% AGR 24
Tabla 5: Granulometría del agregado grueso 75% AGC Y 25% AGR
Tabla 6: Granulometría del agregado grueso 50% AGC Y 50% AGR
Tabla 7: Peso unitario del agregado fino y agregado Grueso con 0% ACR 28
Tabla 8: Peso unitario del agregado fino y agregado Grueso con 25% y 50% de ACR
Tabla 9: Peso específico del agregado fino y agregado Grueso con 0%, 25% y 50% AGCR 33
Tabla 10: Porcentaje de absorción del agregado fino y agregado Grueso con 0%, 25% y 50% AGCR
Tabla 11: Resistencia al Desgaste del Agregado Grueso Por Abrasión 36
Tabla 12: Resumen del diseño de mezcla por el Método ACI en volumen 37
Tabla 13: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de los 3 testigos con concreto convencional. 38
Tabla 14: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de los 3 testigos con concreto convencional. 39
Tabla 15: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de los 3 testigos con concreto convencional. 40
Tabla 16: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de los 3 testigos con concreto convencional. 41
Tabla 17: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de los 3 testigos con un 25% de agregado de concreto Reciclado
Tabla 18: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de los 3 testigos con un 25% de agregado de concreto Reciclado

Tabla 19: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de
los 3 testigos con un 25% de Agregado de Concreto Reciclado 45
Tabla 20: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de
los 3 testigos con un 25% de agregado de concreto Reciclado 46
Tabla 21: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de
los 3 testigos con un 50% de agregado de concreto Reciclado 47
Tabla 22: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de
los 3 testigos con un 50% de agregado de concreto Reciclado 48
Tabla 23: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de
los con un 50% de agregado de concreto Reciclado 49
Tabla 24: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de
los 3 testigos con un 50% de agregado de Concreto Reciclado 50
Tabla 25: Análisis del costo de producción del concreto convencional, con un
25% y 50% de reemplazo del agregado grueso por el ACR 55

ÍNDICE DE GRÁFICOS Y FIGURAS

Figura 1: Cuasi experimental
Figura 2: Tamices
Figura 3: Resistencia a la Compresión Alcanzada de los 3 testigos con concreto convencional a los 7 Días
Figura 4: Resistencia a la Compresión Alcanzada de los 3 testigos con concreto convencional a los 14 Días
Figura 5: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días
Figura 6: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días
Figura 7: Resistencia a la Compresión Alcanzada de los 3 testigos de los 7 Días con un 25% de Agregado de Concreto Reciclado
Figura 8: Resistencia a la Compresión Alcanzada de los 3 testigos de los 14 Días con un 25% de Agregado de Concreto Reciclado
Figura 9: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días con un 25% de Agregado de Concreto Reciclado
Figura 10: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días con un 25% de Agregado de Concreto Reciclado
Figura 11: Resistencia a la Compresión Alcanzada de los 3 testigos de los 7 Días con un 50% de Agregado de Concreto Reciclado
Figura 12: Resistencia a la Compresión Alcanzada de los 3 testigos de los 14 Días con un 50% Agregado de Concreto Reciclado
Figura 13: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días con un 50% de Agregado de Concreto Reciclado
Figura 14: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días con un 50% de Agregado de Concreto Reciclado
Figura 15: Promedio de la Resistencia A La Compresión del Concreto Convencional a las edades de 7, 14, 21, 28 días

Figura 16: Promedio de la Resistencia A la Compresión con un 25% de
Agregado de concreto reciclado a las edades de 7, 14, 21, 28 días 53
Figura 17: Promedio de la Resistencia A La Compresión con un 50% de ACR a
las edades de 7, 14, 21, 28 días 53
Figura 18: Análisis del costo de producción del concreto convencional, con un
25% y 50% de reemplazo del agregado grueso por el ACR

RESUMEN

El concreto reciclado puede ser reutilizado en la elaboración de concreto nuevo en esta tesis su usó el concreto reciclado provenientes de las roturas realizadas en el pavimento para las obras de instalación de gas , realizadas por la empresa Quavii la cual después de obtener los bloques de concreto reciclado fueron llevadas a la chancadora hasta convertirlo en agregado grueso, El objetivo de esta tesis fue determinar a qué resistencia de compresión llegó el concreto reciclado sustituido por 25% y 50% en reemplazo del agregado grueso, de las cuales se realizaron los respectivos ensayos del agregado reciclado, agregado natural y agregado fino, con los resultados que obtuvimos se procedió a realizar los diseños de mezclas para una resistencia de 210 kg/cm2, posteriormente se realizaron los testigos a las edades de 7, 14, 21 y 28 días tanto para una sustitución de 0% ACR , 25% ACR, 50% ACR, en total se realizaron 36 probetas.

Se analizaron los precios de cada uno de los diseños de mezcla y los comparamos, para ver si es factible el uso del concreto reciclado en remplazo del agregado grueso.

Se concluyó, que el concreto convencional tuvo una resistencia alta en las roturas de las probetas para las edades de 7, 14, 21 y 28 días, el testigo patrón sobrepasó el porcentaje de resistencia específica a los 28 días, el promedio de los 3 testigos con una resistencia alcanzada de 395.8 kg/cm2, por lo tanto, es una muestra patrón aceptable con un precio por m3 de S/ 313.708 y al reemplazar el 25% ACR por agregado grueso natural, se logró obtener una resistencia promedio de 345.5 kg/cm2, con un precio por m3 de S/ 308.257 en comparación al reemplazar en 50% ACR se obtuvo una resistencia de 292.7 kg/cm2 con un precio por m3 de S/ 302.960 para un diseño de mezcla con una resistencia de 210 kg/cm2.

Palabra Clave: Agregado de concreto reciclado, agregado natural, influencia de sustitución, diseño de mezcla, resistencia a la compresión.

ABSTRACT

The recycled concrete can be reused in the elaboration of new concrete in this thesis if it used the recycled concrete from the breaks made in the pavement for the gas installation works, carried out by the company Quavii which after obtaining the recycled concrete blocks were taken to the crusher to convert it into a coarse aggregate, The objective of this thesis was to determine the strength of compression reached by recycled concrete replaced by 25% and 50% in replacement of coarse aggregate, of which the respective trials of recycled aggregate, natural aggregate and fine aggregate were conducted, With the results that we obtained, we proceeded to make the mixes designs for a resistance of 210 kg/cm2, later the controls were carried out at the ages of 7, 14, 21 and 28 days both for a substitution of 0% ACR, 25% ACR, 50% ACR, in total 36 test pieces were made.

We analyzed the prices of each of the mixing designs and compared them, to see if it is feasible to use recycled concrete to replace the coarse aggregate.

It was concluded that conventional concrete had a high resistance in the breakages of the test pieces for the ages of 7, 14, 21 and 28 days, the standard control exceeded the percentage of specific resistance at 28 days, the average of the 3 cores with an achieved resistance of 395.8 kg/cm2, therefore, is an acceptable standard sample with a price per m3 of S/ 313.708 and by replacing 25% ACR by natural coarse aggregate, it was possible to obtain an average resistance of 345.5 kg/cm2, with a price per m3 of S/ 308.257 compared to replacing in 50% ACR a resistance of 292.7 kg/cm2 was obtained with a price per m3 of S/ 302.960 for a mixing design with a resistance of 210 kg/cm2.

Keyword: Recycled concrete aggregate, natural aggregate, substitution influence, mixing design, compressive strength.

I. INTRODUCCIÓN

La industria que genera una alta contaminación para el Perú y en el mundo es la ingeniería civil o (proyectos de la ingeniería civil), según la (CAPECO), diariamente son producidas 30.000 m3 de desmonte alrededor de 19 000 tn. La demolición es un comercio muy beneficioso como la misma construcción y estos desperdicios terminan, en muchos de los casos, en las orillas de los ríos y por último al mar, situación que cada día se agrava más la contaminación de los suelos esto a causa de las muchas construcciones ilegales que existe en nuestra región y país (LEON, 2017)

Ante este problema, en la actualidad se busca el cuidado ambiental y gestión ambiental, todo esto para la mejora del mundo en el cual que se vive, como ya se mencionó el campo de la construcción es generador de diversos desechos, los cuales son imposibles de reciclar y con mucha frecuencia estos son llevados a botaderos no autorizados, sin embargo, se ha notado que esto se pueden emplear de maneras diferentes, transformándolos, de su estado bruto a productos como son los agregados, por lo que planteamos el siguiente título "Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado Grueso A La Compresión Y Costo Del Concreto – Huaraz, 2020."como una alternativa para poder disminuir el impacto que esta industria le genera al medio ambiente.

Para ello los investigadores con el fin del aprovechamiento de los desmontes de construcción (concreto reciclado), teniendo una temática básica se procedió al desarrollo del proyecto, para lo cual pasamos a formular el problema, ¿Cómo influye el ACR en un 0%, 25% y 50% al reemplazo del agregado grueso convencional a la compresión y costo del concreto de f'c 210 kg/cm²?, con el fin de poder aprovechar al máximo estos residuos para el aporte a un desarrollo sostenible que tanto buscamos en la actualidad.

El presente proyecto se **justificó económicamente** al permitirnos conocer si es posible aminorar los costos en la ejecución de un nuevo proyecto ya que el proyectista no se verá en la necesidad de presupuestar el trasladar un volumen alto de desmonte a los botaderos autorizados en el caso de existir una estructura a demoler antes de la ejecución del nuevo proyecto, en

caso de no existir demolición nos dará a conocer si es posible aminorar los gastos de ejecución de un proyecto en la compra de agregado grueso.

Así mismo se justificó técnicamente, esta investigación nos permitió pasar el porcentaje de reemplazo de ACR que mejora de manera positiva al esfuerzo a la compresión de una nueva mezcla.

Ambientalmente se justificó ya que la presente investigación pretende dar un nuevo uso a los residuos de desmonte, producto de la construcción mejorando la calidad del medio ambiente ya que mitigará paulatinamente la contaminación ambiental producto de la industria de la construcción.

Finalmente se justificó académicamente ya que esta investigación nos permitirá poder lograr obtener el grado de ingeniero civil, así como base para las futuras investigaciones centradas en el reemplazo alternativo de los materiales convencionales buscando aminorar el impacto al medio ambiente ocasionado por la construcción.

La tesis es Aplicada - Cuasi Experimental - Cuantitativo (cantidades), método Estadístico, Informático y Matemático.

Para poder concluir de manera exitosa la presente investigación los investigadores del grupo nos propusimos los siguientes objetivos.

Como **objetivo general** Determinar la influencia del agregado de concreto reciclado en reemplazo del agregado grueso a la compresión y costo del concreto, para lograr este objetivo los investigadores nos planteamos los siguientes **objetivos específicos** Determinar las propiedades mecánicas del agregado grueso mediante el ensayo de Contenido de Humedad, Granulometría, Peso Unitario, Peso Específico, Porcentaje de Absorción y la Resistencia a la Abrasión, Determinar el esfuerzo a la compresión del concreto convencional a 7, 14, 21 y 28 días del concreto de f'c 210 *kg/cm²*, usando cemento portland tipo 1, Determinar la influencia de ACR en 25% y 50% de reemplazo del agregado grueso sobre la compresión a los 7, 14, 21 y 28 días del concreto 210 *kg/cm²* de esfuerzo a la compresión usando cemento portland tipo 1, Analizar el costo del concreto convencional en un 25% y 50% de reemplazo de agregado grueso por el ACR.

Como **hipótesis** los investigadores nos planteamos que, Si remplazamos por 25%, 50% al agregado grueso por el ACR con un concreto de 210 *kg*

/cm² de resistencia obtendremos resistencias más altas a la compresión, así como también costos menores de acorde al porcentaje de reemplazo.

II. MARCO TEÓRICO

Como Antecedentes internacionales tenemos a (Ratcliffe, 2016), Cuya tesis "Uso de concreto reciclado triturado como agregado alternativo para una nueva mezcla de concreto". investigó al agregado de concreto reciclado como una variante del agregado natural para nuevas mezclas de concreto. teniendo como objetivo general indicar que el agregado de concreto reciclado triturado afecta positivamente en el costo del concreto y además genera menos desperdicios obteniendo una resistencia, trabajabilidad y otras propiedades similares a los concretos elaborados con agregados naturales. Para cumplir con su objetivo, realizó comparaciones y evaluaciones en costos entre agregados naturales y agregados reciclados. Como resultado obtuvo que efectivamente el concreto con agregado reciclado tiene un menor costo por unidad de medida que el concreto hecho con agregado natural, además de ello sí se logró obtener propiedades similares a las del agregado convencional cuando se hacía una previa saturación al agregado antes de emplearlo en las mezclas de concreto. En conclusión, mencionó que sí convendría el uso del agregado de concreto triturado como sustitución para el agregado natural cumplía con propiedades similares y a un menor costo. De igual manera (Seara; Gonzalez; Martinez, Eiras, 2018), desarrollaron el artículo "Flexural performance of reinforced concrete beams made with recycled concrete coarse aggregate" cuya investigación realizada en la University of Coruña - España," se basó en obtener el rendimiento a flexión del concreto reciclado en vigas de concreto reforzado, agregado de TMN 3/4" y un diseño de mezcla con f'c 210 kg/cm², utilizando reemplazos del 0%, 20%, 50% y 100%. Determinando la resistencia mecánica a flexión, cargando las vigas hasta su falla utilizando ensayos de flexión de 4 puntos en 28 días, obteniendo como resultados esfuerzos de 40.45 kg/cm², 38.32 kg/cm², 34.55 kg/cm² y 23.25 kg/cm² respectivamente para cada porcentaje de reemplazo. Como parte de la metodología se utilizaron códigos para calcular los momentos de flexión y las deflexiones bajo la aplicación de cargas teniendo en cuenta el diferente porcentaje de agregado reciclado. Concluyendo su investigación, según el estudio, el rendimiento flexible del concreto reciclado puede predecirse empleando propuestas basadas en códigos utilizando la resistencia

experimental y las expresiones propuestas previamente modificadas. Esta investigación aporta al diseño de elementos estructurales, ya que demuestra que es posible la elaboración de estos mediante ensayos a flexión, observando el agrietamiento en estos con la aplicación de cargas hasta la falla. Además, esta resistencia es similar a los concretos convencionales. con una ligera disminución conforme se aumenta el reemplazo de ACR y según (Bedoya y Dzul, 2016), cuya tesis doctoral titulada "El (CAR) como proyecto de viabilidad para el ecosistema urbano de Medellín, Colombia" el cual tuvo como objetivo general "Definir un modelo de gestión integral del Concreto con Agregados Reciclados (CAR) para la toma. de una decisión político-administrativa en la implementación de un proyecto de viabilidad del uso de eco-materiales, en el marco de una PPCS, del ecosistema urbano de Medellín." Para ello procesaron los datos mediante entrevistas codificadas y para los resultados cuantitativos elaboraron tablas para el análisis de los datos recopilados en laboratorio para así emplear cuadros estadísticos llegando a concluir que el comportamiento físico y mecánico del (CAR) fue satisfactorio de acuerdo a las normas técnicas nacionales e internacionales ya que la (f'c) para una sustitución del 25% de los agregados, estuvo dentro de los rangos permitidos llegando a obtener valores por encima de los 98% con respecto a la mezcla convencional y concluyendo también que el comportamiento económico obtenido fue similar en ambos casos tanto en el concreto con agregado pétreo como en el elaborado con ACR concluyendo así afirmando que al final aunque no existe mucha diferencia en los precios el uso de este material es favorable ya que permite reducir favorablemente los costos en la obtención de materia no renovable.

Como antecedentes nacionales tenemos a (Sumari, 2016), en su proyecto denominada "Estudio del concreto de mediana a alta resistencia elaborado con residuos de concreto y cemento Portland tipo I". se propuso de objetivo principal analizar la factibilidad del concreto reciclado determinando las propiedades del AR para posterior a ello compararlo con el concreto de agregados convencionales. Para poder cumplir su objetivo realizó ensayos en el concreto fresco y también al concreto fraguado, dentro de los ensayos realizados al concreto fresco especificó el precio unitario, el asentamiento, la fluidez, entre otros, por otro lado, para los ensayos realizados al concreto

fraguado estudió la resistencia a los 7, 14, 28 y 56 días. Entre los resultados que obtuvo que para los días 7, 14 y 28, la resistencia es menor a la de las muestras convencionales, sin embargo, a los 56 días, la muestra de concreto reciclado supera en un 4% a la muestra de concreto convencional, para el uso de agregados reciclados este proyecto recomienda que los materiales sean de buena calidad cumpliendo con los requerimientos mínimos que establece la (NTP). De igual manera (Vargas y Konny, 2018), evaluó el aporte estructural del ACR en ladrillos KK tipo 14, denominando su tesis. como "Concreto reciclado en el aporte estructural para la fabricación. de ladrillos King Kong tipo 14, Tarapoto 2018". cuya tesis tuvo como objetivo determinar la contribución estructural que tiene el CR en la producción de ladrillos KK tipo 14 de f'c = 142.8 kg/cm^2 . Para poder verificar con el objetivo planteado realizó las siguientes pruebas que le permitieron concluir su 5 investigación: Ensayos de laboratorio para el agregado, esfuerzo a la compresión de elementos de albañilería, esfuerzo a la compresión en pilas, entre otros. Entre los resultados obtuvo que los ladrillos con ACR no alcanzaban la resistencia deseada, llegando solo a 65.14 kg/cm². Vargas concluyó que el empleo de agregados reciclados no influye positivamente y según (Castro y Paredes, 2018), en su tesis "Diseño de concreto estructural de resistencia mayores a 210 kg/cm² con materiales reciclados de concreto, San Juan de Lurigancho, 2018" el cual tuvo como objetivo determinar la fuerza a la que puede llegar el concreto realizado con ACR para lo cual se realizará ensayos de laboratorio para el agregado convencional como también para el ACR sustituyendo este en un 0%, 25%, 50%, 75% y 100% al agregado convencional, siguiendo el ACI de esfuerzo de f'c 210 kg/cm² llegando a concluir que a un reemplazo del 25%, 50% y 75% de agregado convencional por ACR se logró obtener las resistencias requeridas.

Como antecedentes locales tenemos según (Jordan y Viera, 2014), su trabajo titulada "Estudio de la resistencia del concreto, utilizando como agregado el concreto reciclado de obra" el cual tuvo como objetivo determinar las variaciones estructurales del concreto realizado con distintas proporciones de AR para el uso establecido para ello el f'c del concreto, para lograr con su objetivo los tesistas elaboraron distintos ensayos tales como el C.H, P.U, granulometría, gravedad específica, absorción y abrasión todo ello

para la obtención de las propiedades, así como para el agregado de concreto reciclado, luego elaboraron los ensayos de asentamiento (slump) posteriormente para la preparación y curado de los testigos para el posterior análisis a la compresión determinando el f'c de cada uno de los testigos con distintos porcentajes de reemplazo llegando a concluir que a un reemplazo de 25% de agregado convencional por ACR este llega a aumentar de manera positiva el esfuerzo a la compresión pero los gastos de producción son más elevados que el de un reemplazo del 50% llegando así a concluir que un concreto elaborado con un 50% de reemplazo del agregado es más favorable ya que la resistencia tiene un incremento favorable, así como el costo de elaboración es más favorable, así mismo tenemos a (Girio, 2015), en su tesis "Fabricación de concreto de resistencia a la compresión 210 y 280 kg/cm², empleando como agregado grueso concreto desechado de obras, y sus costos unitarios vs concreto con agregado natural, Barranca -2015." Se planteo como objetivo establecer las propiedades del ACR para la producción de concreto de f'c 210 y 280 kg/cm² determinando la diferencia de precios en relación a la mezcla elaborada con agregado convencional llegando a concluir que a un reemplazo del 25% de agregado grueso convencional por el ACR se logra obtener una mejor propiedad física, química y mecánica, así como el costo unitario cumple la NTP y el RNE. E060, con un costo por m3 de s/.187.29 y s/.216.85 nuevos soles para los concretos con f'c 210 y 280 kg/cm² respectivamente.

Así mismo tenemos a **(Huamán, 2018)**, en su tesis denominada "Resistencia de concreto fc=210 *kg/cm*², sustituyendo agregado grueso en 10%, 30% y 50% por material reciclado, Huaraz" tuvo como objetivo la determinación de f'c 210 *kg/cm*² reemplazando el agregado grueso convencional en un 10%, 30% y 50% por el ACR con una granulometría similar obteniendo como resultados a los 28 días que el concreto estándar alcanzo un esfuerzo de compresión del 100.88%, el concreto con un 10% de reemplazo alcanzó un 108.21%, el concreto con un 30% de reemplazo alcanza un 116.28% y el de 50% de reemplazo llegó a alcanzar un 111.00% de resistencia deseada concluyendo que el concreto con un 30% de reemplazo obtiene una diferencia del 15.40% más de resistencia que el concreto patrón.

Con respecto a las teorías relacionadas al tema, las cuales sirvieron para poder lograr una mejor comprensión del tema, definimos a los agregados, concreto reciclado, agregado reciclado, El Cemento portland, Contenido de humedad, El peso unitario, Granulometría, Peso específico, Porcentaje de absorción, Abrasión, Resistencia a la compresión, Agua, Diseño de mezcla, Concreto, La pasta, El curado, análisis de los precios.

Según, (Palacio, Chávez y Velásquez, 2016) "son materiales inertes con forma granular, los cuales son productos minerales que se pueden encontrar en estado natural o artificial" (p. 3). Según los autores hay dos tipos de agregados natural y artificial.

Los agregados para concreto son como un grupo de partículas pétreas naturales o artificiales las cuales pueden ser alteradas o fabricadas, las medidas que tiene este material se encuentran entre limites las cuales están estipuladas en la NTP 400.037 (NTP 339.047, 2006, p.3).

Por otro lado, (Sandhu et al, 2019, p.1), mencionan que **los agregados** "son materiales que no reaccionan químicamente en el concreto y estos ocupan aproximadamente de 60 a 75% del total del volumen".

Según (NTP 339.047, 2006, p.3), **el agregado fino** es derivado de rocas o piedras que pasa por la malla de 9.5 milímetros (3/8 pulgadas) que satisface los límites estipulados en la NTP 400.037, así también según la (NTP 339.047, 2006, p.3), indica que el **agregado grueso** procede de la separación por la mano del hombre o natural de la roca, es el retenido en la malla N° 4 (4.75mm).

Según (Kareema, et al, 2019), define que el **concreto reciclado** "son agregados derivados de materiales procesados, previamente usados en un producto y/o en construcción", así también la, (NTP 339.047, 2006, p.4), indica que el **agregado reciclado** es el resultado del procesamiento de materia inorgánica procedente de la construcción.

Según (RNE. E.060, 2006) el agregado es un conjunto de partículas de origen natural o artificial que pueden ser tratados o elaborados.

"El Cemento portland es un cemento hidráulico producto de la pulverización del Clinker compuesto básicamente de silicatos de calcio hidráulicos y que

contiene usualmente una o más de las formas de sulfato como una adición durante la pulverización" (NTP 339.047, 2006, p.5).

El contenido de humedad o agua total del agregado es la diferencia entre el estado actual de humedad del mismo y el estado seco (López, 2000,159). "El peso unitario es la terminología tradicional para la descripción de la propiedad determinada por este método, el cual representa la masa entre la densidad" (ASTM C29/C29M-07, p.1).

La granulometría es la repartición de tamaños que tiene el agregado (NTP 339.047, 2006, p.11).

La NTP 400.012, fija los procesos para su obtención a través del tamizado para así poder obtener las masas del agregado retenido del tamiz para así posteriormente calcular las masas retenidas y que pasan y los porcentajes. Por otra parte, **el peso específico** es el ensayo que nos permitirá lograr calcular la correlación entre el volumen y el peso, es de mucha importancia el cálculo del peso específico ya que nos permite poder obtener el peso exacto de la muestra, así como la solidez de sus partículas.

Así mismo **el porcentaje de absorción** es la porción de humedad que pueda absorber la muestra hasta su completa saturación, para ello la (NTP 440.022) establece los procedimientos, materiales y equipos a utilizar para su cálculo.

La abrasión es un método de prueba que cubre un procedimiento para el ensayo de agregados gruesos con un tamaño máximo no superior a 37,5 mm (1 1/2 pulgada). Para el cálculo de la resistencia a la degradación mediante La máquina de los Ángeles (ASTM C131/C131M-14, 2006). La resistencia a la compresión es el esfuerzo del concreto empleado en el diseño y evaluada, su valor está representada en MPa (NORMA E.060, 2009, p.17).

Esta propiedad mecánica es una de las más importantes del concreto al ser la tolerancia para soportar la carga viva y muerta de la construcción expresara en peso sobre área en términos de esfuerzo kg/cm^2 , psi y MPa. El contenido de humedad es la cantidad de humedad que se encuentra presente en la muestra, para poder establecer la cantidad de humedad en la muestra, NTP 339.185 establece los procedimientos, así como los materiales necesarios para lograr dicho propósito.

Según la (RNE. NORMA E.060, 2009, p.19), se podrá usar **agua** no potable solo si no se encuentran grandes cantidades de materia inorgánica de materia procesada, materia orgánica entre otros que puedan afectar al concreto o refuerzo, los ensayos relacionados al concreto serán realizados usando el agua de la fuente elegida y las probetas realizadas con agua no potable tendrán una resistencia mayor al 90% a los 7 y 28 días con respecto a las muestras realizadas con agua potable para ello se realizaran comparación en morteros idénticos.

Según (ARGOS 360) el **diseño de mezcla** es un procedimiento práctico, existiendo muchas propiedades importantes del concreto, aunque la mayor parte de procedimientos de diseño principalmente están basados a lograr una resistencia a la compresión y una manejabilidad apropiadas.

Según (BOOKCIVIL) **el concreto** es una mezcla de agregados grueso, agregado fino, cemento, agua y aire en cantidades o proporciones adecuadas para obtener las características como la resistencia a la compresión y la manejabilidad deseadas.

Al **concreto** como una mezcla de materiales conglomerantes y agregados finos y gruesos, para el cemento convencional usualmente se usa como conglomerante el cemento, agua, pero esto no impide que dicha mezcla contenga aditivos, puzolanas y/o escoria (NTP 339.047, 2006, p.6).

"La pasta es el resultado de la mezcla química del material cementante con el agua. Es la fase continua del concreto dado que siempre está unida con algo de ella misma a través de todo el mezclado de éste" (López, 2005, Pág.8).

"El método de determinación empleado es conocido como método del **cono** de **Abrams o método de Slump**, y define la consistencia de la mezcla por el asentamiento, medido en milímetros o pulgadas" (NTP339.035).

Por otro lado, (NTP 339.047, 2006, p.9), **el curado** es un proceso para intervenir en la temperatura y humedad del concreto durante el fraguado del cemento, mortero o concreto.

Para el curado así, para que la mezcla alcance una fluidez requerida y también para que la mezcla alcance la resistencia deseada (f'c) para ello

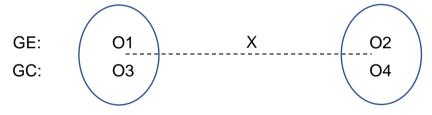
esta agua no debe contener ninguna materia orgánica, sales y grasas, por lo que debe de ser potable.

Es muy importante mencionar el **análisis de los precios** de los materiales que se hizo uso para la elaboración del concreto para cada una de las dosificaciones, son de manera referencial ya que los precios tienden a varias tras el transcurso de los años.

De tal manera se analizó el precio de cada material (Nuevos Soles) en metros cubicos de concreto para cada uno de los porcentajes a dosificar la cual hicimos una comparación de precios para cada porcentaje a dosificar.

III.METODOLOGIA

3.1. Tipo de diseño de investigación


Tipo de investigación

Aplicada: Ya que en la tesis se usó los conocimientos previos adquiridos durante nuestra formación académica también se empleó los resultados obtenidos mediante pruebas de laboratorio para la resolución práctica de problemas existentes relacionados a los materiales utilizados en la construcción, mejorando así la propiedad del concreto.

Diseño de investigación

 Diseño experimental: Se utilizó para contrastar la veracidad o falsedad de la hipótesis planteada, cuasi - experimental debido a que la variable independiente influía directamente en el comportamiento de las variables dependientes.

Figura 1: Cuasi experimental

Fuente: (UPN, 2014.)

- G.E: El conjunto de estudio para nuestro trabajo de investigación son las 24 probetas utilizadas con un 25% y 50% de reemplazo del agregado convencional por el ACR.
- G.C: El Grupo de control para nuestro trabajo de investigación fueron las 12 probetas preparadas con agregado grueso convencional.
- X: Manipulación de la Variable Independiente.(Concreto reciclado).
- O1, O3: Mediciones realizadas antes de la prueba.
- O2, O4: Mediciones realizadas después de la prueba.

3.2. Variables y operacionalización

Nuestro Enfoque de investigación fue Cuantitativo, puesto que a través de nuestros resultados se logró obtener los datos para el presente proyecto y así lograr la conformidad den la hipótesis.

Variable independiente

Concreto reciclado

Variables dependientes

Resistencia a la compresión

Costo del concreto

3.3. Población, muestra y muestreo.

Población:

Para (Luis, 2004, p.1) "La población es el conjunto de personas u objetos, donde deseamos conocer algún tipo de información para una investigación, esta se compone por: personas, animales, registros. médicos, los accidentes viales, etc."

La población para el presente proyecto de investigación fueron las **36 probetas** a realizadas con un diseño de mezcla f´c de 210kg /cm² fabricado con agregado grueso convencional y ACR.

Muestra:

Para el análisis estadístico es recomendable considerar no menos de 30 probetas, para la investigación se elaboró el diseño de mezcla optando el método del A.C.I, para un f'c de 210 kg/cm2, por el cual se tomaron 3 réplicas para el concreto convencional, así como también para cada porcentaje de reemplazo de agregado grueso convencional por el ACR por cada día que se realizó la rotura de probetas llegando así a la suma total de 36 probetas como muestra.

Se tomó en cuenta los costos que generó la elaboración del concreto convencional, así como para cada porcentaje de sustitución del agregado convencional por ACR, para así realizar la comparación de los costos.

Tabla 1: Disposición de las muestras.

DÍAS DE	N° DE PROBETAS PARA LA RESISTENCIA A LA COMPRESIÓN CON % DE SUSTITUCIÓN DE AGREGADO CONVENCIONAL (AC) POR AGREGADO DE CONCRETO RECICLADO (ACR)				
CURADO	SUSTITUCIÓN DE 0% AGREGADO CONVENCIONAL (AC)	SUSTITUCIÓN DEL 25% (S25% ACR)	SUSTITUCIÓN DEL 50% (S50% ACR)		
	P1 (AC 7)	P1 (S25% ACR 7)	P1 (S50% ACR 7)		
7	P2 (AC 7) P2 (S25% ACR 7)		P2 (S50% ACR 7)		
	P3 (AC 7)	P3 (S25% ACR 7)	P3 (S50% ACR 7)		
	P1 (AC 14)	P1 (S25% ACR 14)	P1 (S50% ACR 14)		
14	P2 (AC 14)	P2 (S25% ACR 14)	P2 (S50% ACR 14)		
	P3 (AC 14)	P3 (S25% ACR 14)	P3 (S50% ACR 14)		
	P1 (AC 21)	P1 (S25% ACR 21)	P1 (S50% ACR 21)		
21	P2 (AC 21)	P2 (S25% ACR 21)	P2 (S50% ACR 21)		
	P3 (AC 21)	P3 (S25% ACR 21)	P3 (S50% ACR 21)		
	P1 (AC 28)	P1 (S25% ACR 28)	P1 (S50% ACR 28)		
28	P2 (AC 28)	P2 (S25% ACR 28)	P2 (S50% ACR 28)		
	P3 (AC 28)	P3 (S25% ACR 28)	P3 (S50% ACR 28)		
Fuente: Elaboración propia.					

Muestreo:

Según (Otzen y Manterola, 2017, p.2), "existen tipos de técnicas de muestreo donde las técnicas de muestreo pueden ser probabilísticas y no probabilísticas. Las probabilísticas poseen individuos elegidos al azar, y en las no probabilísticas, los individuos son elegidos bajo criterios del investigador".

Para la tesis el muestreo empleado fue **no probabilístico** puesto que la muestra fue directamente elegida, para este caso las **muestras fueron** las 36 probetas las cuales tuvieron un f'c de 210 kg/cm2 de las cuales 12 fueron con agregado grueso convencional, otros 24 con un 25% y 50% de reemplazo del agregado grueso convencional por ACR los cuales se sometieron al ensayo de resistencia a la compresión NTP 339.034.

Unidad de análisis:

La unidad de análisis para la presente investigación fue la mezcla diseñada de f´c de 210 kg/cm^2 de resistencia preparada con agregado convencional y agregado grueso de concreto reciclado.

3.4. Técnicas e instrumentos de recolección de datos:

La técnica que se empleó en la tesis fue la observación y como instrumento la guía de observación y las fichas técnicas y revisiones documentarias, los cuales nos permitieron comprobar si la resistencia a la compresión con el ACR y el costo del concreto tenían conformidad con la hipótesis.

3.5. Procedimientos

Se detallaron los siguientes pasos para la adquisición de los datos.

- La muestra de ACR se obtuvo de una de las obras que estuvo realizando la empresa QUAVII el lugar donde se obtuvo la muestra fue en Jr. Tecnología – Urbanización San Miguel – Independencia – Huaraz.
- 2. Luego de la aceptación de la muestra de ACR se procedió a acomodar los bloques de concreto a los costales.
- 3. Después de ellos se procedió a trasladarlo a la chancadora que se encuentra ubicada en Tacllan.
- 4. Los materiales transportados fueron acoplados en un lugar adecuado para realizar la limpieza separando material orgánico, plásticos, acero de refuerzo y otras impurezas para quedarnos solamente con el residuo de concreto.
- 5. Después de la limpieza se colocó el material de concreto a la chancadora, regulando el diámetro de agregado requerida para el diseño, para el presente trabajo de investigación fue el material de 3/4", para posteriormente acopiar los agregados finos y gruesos obtenidos en la trituración para ser luego separados ya que en la tesis solo se requirió del agregado grueso luego fue trasladado al laboratorio para realizar los ensayos.

- Se procedió a adquirir los agregados convencionales de la cantera Tacllan luego fue traslado al laboratorio, para realizar los ensayos respectivos.
- 7. Se procedió a realizar los ensayos respectivos para agregado grueso convencional y agregado fino convencional de las cuales mencionamos las normas como:
 - i. (ASTM C566 NTP 339.185, 2013).
 - ii. (ASTM C136 NTP 400.012, 2001).
 - iii. (ASTM C29 NTP 400.017, 2001)
 - iv. (ASTM C127-C128 NTP 440.021- 400.022).
- Después de realizar todos los ensayos, se procedió al Diseño de mezcla por el método ACI 211.
- Al mismo tiempo que se realizó el diseño de mezcla se tomó los costos de preparación del concreto con agregado grueso convencional y ACR para su posterior análisis y comparación.
- 10. Se realizó el vaciado de concreto a los 36 moldes las cuales cumplió con la (NTP 339.209).
- 11. Se realizó el curado adecuado de las probetas para evitar el quemado de la misma.
- 12. Posteriormente se realizó el ensayo de esfuerzo a la compresión del concreto (NTP 339.034, 2008) a los 7, 14, 21 y 28 días de edad.
- 13. Se utilizó el software Excel para analizar los datos obtenidos en el laboratorio tales como el costo de elaboración para cada porcentaje de sustitución de agregado grueso convencional por ACR, así también como la resistencia a la compresión.
- 14. Se contrasto los resultados obtenidos con la hipótesis y los antecedentes para las conclusiones y recomendaciones.

3.6. Método de análisis de datos

Para el presente estudio se utilizó el estadístico, informático y matemático, este análisis fue realizado mediante el programa Excel la cual se realizó mediante la recopilación de datos obtenidos a partir de ensayos elaborados, se realizaron 12 probetas con el reemplazo de un 25% de reemplazo del agregado, 12 probetas con un 50% de reemplazo de agregado grueso y los últimos 12 probetas con agregado convencional, los resultados fueron demostrados en la tesis.

3.7. Aspectos éticos

Los aspectos éticos de la tesis se realizaron empleando la línea de investigación, también se tuvo en cuenta la consideración de la pertenencia intelectual, responsabilidad social, y ética, respeto a la privacidad, honestidad. La presente investigación fue revisada y procesada mediante el software TURNITIN, para así poder avalar su autenticidad y confiabilidad, se consiguió referencias documentarias de tesis, normas y libros virtuales, para toda esta referencia documentaria obtenida se realizó el citado a los autores como corresponde, para así acatar los derechos de autor. Las citas de la tesis se desarrollaron según el sistema ISO 690 y 690-2.

La información y resultados que se obtuvieron fueron realizados por los dos integrantes de la tesis, se respetó la veracidad que se obtuvo durante el inicio y fin de la tesis.

IV. RESULTADOS

Esta parte de la tesis detalla los resultados obtenidos, cabe resaltar que el diseño de la mezcla fue realizado mediante el Método de Diseño del ACI.

Realizado el diseño de mezcla por el Método ACI con una resistencia a la compresión de $f'c=210\ kg/cm^2$ se procedió a realizar las probetas para su posterior rotura a los 7, 14, 21 y 28 días de curado, una vez cumplido los días establecidos para cada probeta se procedió a someterlos a la prueba de resistencia a la compresión, para ello se realizaron un total de 36 probetas.

Para el diseño de la mezcla se utilizó cemento portland tipo 1, agua, agregado fino (arena gruesa) y el agregado grueso (convencional y reciclado), los porcentajes de reemplazo de agregado grueso convencional por agregado de concreto reciclado que se trabajaron para los testigos fueron del 0%, 25% y 50%.

A continuación, se detallará el proceso que se siguió para el diseño y la obtención de los resultados de la prueba a la compresión, así como también los resultados del análisis de costos para un concreto convencional versus el análisis de costos para la elaboración de un concreto con agregado reciclado.

Datos generales

Adquisición de los materiales

Para poder realizar los ensayos los tesistas tuvimos que adquirir los materiales como el cemento, agregado fino y agregado grueso.

Los agregados finos y gruesos se obtuvieron de la cantera Tacllan. Ver fotografía 1 en anexos.

El agregado reciclado se obtuvo de las obras realizadas por la empresa QUAVII ubicada en el Jr. Tecnología – urbanización San miguel – independencia – Huaraz, ver fotografía 3 en anexos.

A continuación, se detallarán los resultados obtenidos de laboratorio como en Análisis Granulométrico, Contenido de Humedad, Peso Unitario, peso Específico, Porcentaje de Absorción y la resistencia al desgaste por abrasión tanto para los agregados convencionales como para el agregado reciclado.

4.1. RESULTADOS DE LOS OBJETIVOS DE ESTUDIO

- **4.1.1. Resultados Según Objetivo General:** Determinar la influencia del agregado de concreto reciclado en reemplazo del agregado grueso a la compresión y costo del concreto.
- 4.1.2. Resultados Según Objetivo Específico 01: "Determinar las propiedades mecánicas del agregado grueso mediante el ensayo de Contenido de Humedad, Granulometría, Peso Unitario, Peso Específico, Porcentaje de Absorción y la Resistencia a la Abrasión"

4.1.2.1. Análisis Del Contenido De Humedad

Es la cantidad de agua en porcentaje que se encuentra dentro de los poros de los agregados fino y grueso.

Equipos y materiales:

- Horno para el secado
- Balanza 0.1g de precisión
- Recipiente o taras
- Muestra

Procedimiento

- Se procedió a cuartear la muestra para posteriormente pasar a pesarlo a su estado natural
- Posterior a ello la muestra fue llevada al horno durante 24 horas después para ser pesadas en estado seco.

Datos obtenidos:

Tabla N°2: Contenido de Humedad del agregado fino y agregado Grueso con 0%, 25% y 50% AGCR

% de Reemplazo	Tipo de Agregado	N° Muestra	Peso Húmedo + Recipiente (gr)	Peso Seco + Recipiente (gr)	Peso Recipiente	Peso del Agua (gr)	Peso suelo Seco (gr)	Contenido de Humedad (%)	Humedad Promedio (%)
	FINO	8	197.80	193.10	20.40	4.70	172.70	2.72%	2.81%
0% ACR	FINO	10	198.40	193.40	20.20	5.00	173.20	2.89%	2.01%
U% ACK	GRUESO	2	142.90	141.50	24.40	1.40	117.10	1.20%	1.24%
	0% ACR	4	154.70	153.10	26.70	1.60	126.40	1.27%	1.24%
	FINO	8	202.40	199.20	40.00	3.20	159.20	2.01%	2 169/
25% ACR		10	217.20	213.20	40.10	4.00	173.10	2.31%	2.16%
25% ACK	GRUESO	2	152.30	150.60	40.00	1.70	110.60	1.54%	1 220/
	25% ACR	4	154.20	153.20	40.40	1.00	112.80	0.89%	1.22%
FINO FINO	8	216.20	213.40	39.00	2.80	174.40	1.61%	2.020/	
	FINO	10	221.40	217.10	40.40	4.30	176.70	2.43%	2.02%
50% ACR	GRUESO	2	161.40	160.00	40.00	1.40	120.00	1.17%	4.450/
50% ACR	4	155.40	154.10	38.40	1.30	115.70	1.12%	1.15%	

Fuente: GEOSTRUCT

Cálculos:

Contenido de Humedad
$$\% = \frac{A}{B} * 100$$

Donde:

A: Peso del agua (gr)

B: Peso del suelo seco (gr)

Peso del agua (gr) = C - D

Donde:

C: Peso Húmedo + Recipiente (gr)

D: Peso seco + Recipiente (gr)

Peso del Suelo Seco = D - E

Donde:

E: Peso Recipiente

Agregado Fino

$$Peso\ del\ agua = 197.80 - 193.10$$

$$Peso\ del\ agua = 4.70\ gr$$

$$Peso\ del\ Suelo\ Seco = 193.10 - 20.40$$

$$Peso\ del\ Suelo\ Seco = 172.70\ gr$$

$$Contenido\ de\ Humedad = \frac{4.70}{172.70}*100$$

Contenido de Humedad = 2.72%

De igual manera para el resto de las muestras

Resultados:

Muestra 8 = 2.72%

Muestra 10 = 2.89%

El promedio de los dos moldes es:

$$\frac{2.72+2.89}{2}=2.81\%$$

Agregado Grueso

 $Peso\ del\ agua = 142.90 - 141.50$

 $Peso\ del\ agua=1.40\ gr$

 $Peso\ del\ Suelo\ Seco=141.50-24.40$

Peso del Suelo Seco = 117.10 gr

Contenido de Humedad = $\frac{1.40}{117.10} * 100$

Contenido de Humedad = 1.20%

De igual manera para el resto de las muestras

Resultados:

Muestra 2 = 1.20%

Muestra 4 = 1.27%

El promedio de los dos moldes es:

$$\frac{1.20+1.27}{2}=1.24\%$$

De igual manera se realizaron los cálculos para el 25% y 50% de reemplazo obteniendo los resultados presentados en la Tabla N° 2

4.1.2.2. Análisis Granulométrico

Este ensayo se realizó de acuerdo a la Norma ASTM C 136 (NTP 400.012) Análisis Granulométrico por tamizado.

Equipos y Herramientas Utilizados en el Ensayo

- Balanza con una sensibilidad aproximado al 0.1% del peso de la muestra.
- · Tamices.
- Horno a una temperatura uniforme de 110° ± 5°C.

Procedimiento seguido.

- Para el ensayo la muestra se obtuvo mediante el cuarteo.
- Después de ser secada la muestra de agregado fino debe de ser de una cantidad mínima de 3000 gr.
- La cantidad de agregado grueso para la muestra fue tomada de acuerdo al anexo 32.
- Se procederá a seleccionar los tamices de tamaños adecuados cumpliendo con las especificaciones de los materiales a ensayar, para el presente trabajo los tamices fueron los siguientes: 2", 1 ½", 1", ¾", ½", 3/8", N° 4, N° 8, N° 16, N° 30, N° 50, N° 100 y N° 200.

Figura N° 2: Tamices

- Se procedió al colocado de los tamices en orden decreciente del tamaño de abertura.
- Se efectuó la operación de tamizado a mano.
- Se procedió a determinar los pesos de la muestra retenidas por cada tamiz.

Cálculos

Se calcula el porcentaje retenido por cada tamiz con una aproximación del 0.10% en base al peso inicial de la muestra ver Anexos 9, 10, 17 y 23.

Datos obtenidos:

Tabla N° 3: Granulometría del agregado fino convencional.

TAMIZ ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
N° 4	4.780	0.000	0.000	0.000	100.000
N°8	2.360	375.400	11.920	11.920	88.080
N° 16	1.190	645.300	20.490	32.400	67.600
N° 30	0.590	850.300	26.990	59.400	40.600
N° 50	0.297	720.300	22.870	82.260	17.740
N° 100	0.149	340.800	10.820	93.080	6.920
N° 200	0.074	120.200	3.820	96.900	3.100
		3052.300			

Fuente: GEOSTRUCT

Se logra apreciar que los datos arrojados por la granulometría del agregado fino se encuentran dentro de los límites establecidos por la NTP 400.037, 2014 por el cual es aceptable el uso del mismo.

Módulo de fineza

Del ensayo granulométrico realizado se obtuvieron los porcentajes retenidos acumulados en los tamices N°8, N°16, N°30, N°50 y el N°100 los cuales fueron sumados y divididos entre 100 para así nosotros poder obtener el módulo de fineza.

$$Mod. fin. A. F. = \frac{N^{\circ}8 + N^{\circ}16 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100}{100}$$

$$Mod. fin. A. F. = \frac{11.92 + 32.40 + 59.40 + 82.26 + 93.08}{100}$$

$$Mod. fin. A. F. = 2.79$$

Tabla N° 4: Granulometría del agregado grueso 100% AGC y 0% AGR

TAMIZ ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2"	50.000	0.000	0.000	0.000	100.000
1 1/2"	38.100	0.000	0.000	0.000	100.000
1"	25.000	0.000	0.000	0.000	100.000
3/4"	19.000	448.400	14.390	14.390	85.610
1/2"	12.700	1505.200	48.320	62.720	37.280
3/8"	9.500	1054.200	33.840	96.560	3.440
N° 4	4.760	54.200	1.740	98.300	1.700
		3062,000			

Fuente: GEOSTRUCT

De acuerdo al anexo N° 34 usando los porcentajes que pasa podemos observar que la granulometría se ajusta al huso 6.

Nota: los límites superior e inferior empleados para el análisis son del huso 67.

El tamaño máximo del agregado fue de 3/4"

El TMN considerado para el deseño 3/4"

Se podría pensar que esta no sirve para el diseño, pero de acuerdo con el ingeniero encargado del laboratorio GEOSTRUCT el material es óptimo al ser un material de río.

Módulo de fineza

Del ensayo granulométrico realizado se obtuvieron los porcentajes retenidos acumulados en los tamices ¾", 3/8", N°4, N°8, N°16, N°30, N°50 y el N°100 los cuales fueron sumados y divididos entre 100 para así nosotros poder obtener el módulo de fineza, se consideró el 100% de acumulados para los tamices N°4 a N°100 porque implícitamente retiene todo el material.

$$Mod. fin. A. G. = \frac{3/4" + 3/8" + 6*(100)}{100}$$
 $Mod. fin. A. G. = \frac{14.39 + 96.56 + 6*(100)}{100}$
 $Mod. fin. A. G. = 7.11$

Tabla N° 5: Granulometría del agregado grueso 75% AGC Y 25% AGR.

TAMIZ ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2"	50.000	0.000	0.000	0.000	100.000
1 1/2"	38.100	0.000	0.000	0.000	100.000
1"	25.000	0.000	0.000	0.000	100.000
3/4"	19.000	657.000	20.300	20.300	79.700
1/2"	12.700	1218.000	37.630	57.920	42.080
3/8"	9.500	813.000	25.120	83.040	16.960
N° 4	4.760	497.000	15.350	98.390	1.610
		3185.000			

Fuente: GEOSTRUCT

De acuerdo al anexo N° 34 usando los porcentajes que pasa podemos observar que la granulometría se ajusta al huso 6.

Nota: los límites superior e inferior empleados para el análisis son del huso 67.

El tamaño máximo del agregado fue de 3/4"

El TMN considerado para el deseño 3/4"

Módulo de fineza

Del ensayo granulométrico realizado se obtuvieron los porcentajes retenidos acumulados en los tamices ¾", 3/8", N°4, N°8, N°16, N°30, N°50 y el N°100 los cuales fueron sumados y divididos entre 100 para así nosotros poder obtener el módulo de fineza, se consideró el 100% de acumulados para los tamices N°4 a N°100 porque implícitamente retiene todo el material.

$$Mod. fin. A. G. = \frac{3/4" + 3/8" + 6*(100)}{100}$$

$$Mod. fin. A. G. = \frac{20.30 + 83.04 + 6*(100)}{100}$$

$$Mod. fin. A. G. = 7.03$$

Tabla N° 6: Granulometría del agregado grueso 50% AGC Y 50% AGR.

TAMIZ ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2"	50.000	0.000	0.000	0.000	100.000
1 1/2"	38.100	0.000	0.000	0.000	100.000
1"	25.000	0.000	0.000	0.000	100.000
3/4"	19.000	878.000	28.360	28.360	71.640
1/2"	12.700	1200.000	38.760	67.120	32.880
3/8"	9.500	656.000	21.190	88.310	11.690
N° 4	4.760	324.000	10.470	98.770	1.230
		2050 000			

3058.000 | Fuente:

GEOSTRUCT

De acuerdo al anexo N° 34 usando los porcentajes que pasa podemos observar que la granulometría se ajusta al huso 6.

Nota: los límites superior e inferior empleados para el análisis son del huso 67.

El tamaño máximo del agregado fue de 3/4"

El TMN considerado para el deseño 3/4"

Módulo de fineza

Del ensayo granulométrico realizado se obtuvieron los porcentajes retenidos acumulados en los tamices ¾", 3/8", N°4, N°8, N°16, N°30, N°50 y el N°100 los cuales fueron sumados y divididos entre 100 para así nosotros poder obtener el módulo de fineza, se consideró el 100% de acumulados para los tamices N°4 a N°100 porque implícitamente retiene todo el material.

$$Mod. fin. A. G. = \frac{3/4" + 3/8" + 6*(100)}{100}$$
 $Mod. fin. A. G. = \frac{28.36 + 88.31 + 6*(100)}{100}$
 $Mod. fin. A. G. = 7.17$

4.1.2.3. Análisis Del Peso Unitario

Este ensayo se realizó de acuerdo al ASTM C127-C128 (NTP 400.021-400.022) Peso específico y porcentaje de absorción.

Equipos y Herramientas Utilizados en el Ensayo.

- Balanza con una aproximación de 0.05 kg permitiendo leer con el 0.1% de exactitud de la muestra.
- Barra compactadora de acero liso de 5/8" de diámetro con aproximadamente 60 cm de longitud.
- Recipiente de medida preferiblemente con asas, tapa y fondo parejo y firme con una superficie rígida para mantener la forma en condiciones extremas de uso, su altura no debe de tener menos del 80% y más del 150% del diámetro.
- Pala con la capacidad suficiente para el llenado del agregado al recipiente.
- Equipo de calibración con medidas de ¼" de espesor como mínimo y 1" mayor del diámetro del recipiente a calibrar.

Preparación de la muestra

La muestra para el ensayo fue aproximadamente 125% a 200% de la cantidad para llenar los recipientes, el material fue llenado al recipiente de manera que se evite el segregado, se procedió a secar el agregado a peso constante preferiblemente a 110° C \pm 5° C.

Calibración de la medida

Se llena la medida con agua a temperatura constante para posteriormente cubrir con la placa de vidrio eliminando las burbujas atrapadas y el exceso de agua, luego se procedió a determinar el peso de agua en la medida.

Se midió la temperatura del agua y posterior a ello se calcula su densidad, se calcula el volumen dividiendo el peso del agua entre su densidad.

Los instrumentos de medida serán calibrados por lo mínimo una vez al año

Procedimiento

Se procede a elegir el molde de dimensiones adecuadas.

Al agregado será colocado al recipiente en tres capas aproximadamente de igual cantidad hasta colmar el recipiente

Cada capa fue emparejada con la mano y apisonado con 25 golpes con la varilla

Al momento de apisonar la primera capa se procede a evitar que la varilla golpee el fondo del recipiente y para las siguientes capas el apisonado solo se realizará para la respectiva capa

Una vez llenada el recipiente se enrasa la superficie con la varilla para luego determinar su peso del recipiente lleno

Para el cálculo del peso unitario suelto el procedimiento es similar con la diferencia que en este caso no se requiere del apisonado descargando el material de una altura no menor a 50 mm del borde hasta colmarlo.

Datos Obtenidos:

Tabla N° 7: Peso unitario del agregado fino y agregado grueso con 0% ACR

Tipo de Agregado	Tipo de Peso Unitario	N° Muestr a	Peso Material + Molde	Peso del Molde	Peso del Material	Volumen del Molde	Peso Unitario (Ton/m3)	Peso Unitario Promedio (Ton/m3)
	Peso	1	10080.0	6700.0	3380.0	2124.0	1.591	
	Unitario	2	10010.0	6700.0	3310.0	2124.0	1.558	1.575
FINO	Suelto	3	10050.0	6700.0	3350.0	2124.0	1.577	
FINO	Peso	1	10450.0	6700.0	3750.0	2124.0	1.766	
	Unitario	2	10470.0	6700.0	3770.0	2124.0	1.775	1.770
	Compactado	3	10460.0	6700.0	3760.0	2124.0	1.770	
	Peso	1	9700.0	6700.0	3000.0	2124.0	1.412	
	Unitario	2	9730.0	6700.0	3030.0	2124.0	1.427	1.430
GRUESO	Suelto	3	9780.0	6700.0	3080.0	2124.0	1.450	
0% ACR	Peso	1	10040.0	6700.0	3340.0	2124.0	1.573	
	Unitario	2	10010.0	6700.0	3310.0	2124.0	1.558	1.576
	Compactado	3	10090.0	6700.0	3390.0	2124.0	1.596	

Fuente: GEOSTRUCT
Cálculos:

Peso unitario
$$\left(\frac{ton}{m3}\right) = \frac{A}{B}$$

Donde:

A: Peso del material

B: Volumen del molde

Peso del material = C - D

Donde:

C: Peso del material + Molde

D: Peso del molde

Agregado Fino

Peso unitario suelto

$$Peso\ del\ material = 10080 - 6700$$

$$Peso \ del \ material = 3380$$

Peso unitario
$$\left(\frac{ton}{m3}\right) = \frac{3380}{2124}$$

$$Peso\ unitario\ = 1.591\ ton/m3$$

De igual manera para el resto de las muestras

Resultados:

Muestra 1 = 1.591 ton/m3

Muestra 2 = 1.558 ton/m3

Muestra 3 = 1.577 ton/m3

El promedio de los tres moldes es:

$$\frac{1.591 + 1.558 + 1.577}{3} = 1.575 \ ton/m3$$

Peso unitario compactado

$$Peso\ del\ material = 10450 - 6700$$

$$Peso\ del\ material = 3750$$

Peso unitario
$$\left(\frac{ton}{m3}\right) = \frac{3750}{2124}$$

Peso unitario = 1.766 ton/m3

De igual manera para el resto de las muestras

Resultados:

Muestra 1 = 1.766 ton/m3

Muestra 2 = 1.775 ton/m3

Muestra 3 = 1.770 ton/m3

El promedio de los tres moldes es:

$$\frac{1.766 + 1.775 + 1.770}{3} = 1.770 \ ton/m3$$

Agregado grueso

Agregado Grueso 100% convencional y 0% AGCR

Peso unitario suelto

Peso del material =
$$9700 - 6700$$

Peso del material = 3000

Peso unitario
$$\left(\frac{ton}{m3}\right) = \frac{3000}{2124}$$

Peso unitario = 1.412 ton/m3

De igual manera para el resto de las muestras

Resultados:

Muestra 1 = 1.412 ton/m3

Muestra 2 = 1.427 ton/m3

Muestra 3 = 1.450 ton/m3

El promedio de los tres moldes es:

$$\frac{1.412 + 1.427 + 1.450}{3} = 1.430 \ ton/m3$$

Peso unitario compactado

 $Peso\ del\ material = 10040 - 6700$

Peso del material = 3340

Peso unitario
$$\left(\frac{ton}{m^3}\right) = \frac{3340}{2124}$$

 $Peso\ unitario\ = 1.573\ ton/m3$

De igual manera para el resto de las muestras

Resultados:

Muestra 1 = 1.573 ton/m3

Muestra 2 = 1.558 ton/m3

Muestra 3 = 1.596 ton/m3

El promedio de los tres moldes es:

$$\frac{1.573 + 1.558 + 1.596}{3} = 1.576 \ ton/m3$$

Resultados del 25% y 50% de reemplazo

Tabla N° 8: Peso unitario del agregado fino y agregado Grueso con 25% y 50% de ACR

% de Reemplazo	Tipo de Agregado	Tipo de Peso Unitario	N° Muestra	Peso Material + Molde	Peso del Molde	Peso del Material	Volumen del Molde	Peso Unitario (Ton/m3)	Peso Unitario Promedio (Ton/m3)
		Peso	1	10080.0	6700.0	3380.0	2124.0	1.591	
		Unitario	2	10000.0	6700.0	3300.0	2124.0	1.554	1.571
4000/	FINIO	Suelto	3	10030.0	6700.0	3330.0	2124.0	1.568	
100%	FINO	Peso	1	10440.0	6700.0	3740.0	2124.0	1.761	
Agregado		Unitario	2	10430.0	6700.0	3730.0	2124.0	1.756	1.761
Fino, 75%		Compactado	3	10450.0	6700.0	3750.0	2124.0	1.766	
Agregado Grueso		Peso	1	9700.0	6700.0	3000.0	2124.0	1.412	
Convencional		Unitario	2	9730.0	6700.0	3030.0	2124.0	1.427	1.430
Y 25% ACR	GRUESO 25% ACR	Suelto	3	9780.0	6700.0	3080.0	2124.0	1.450	
1 23/0 ACK		Peso	1	10040.0	6700.0	3340.0	2124.0	1.573	
		Unitario	2	10010.0	6700.0	3310.0	2124.0	1.558	1.576
		Compactado	3	10090.0	6700.0	3390.0	2124.0	1.596	
		Peso	1	10092.0	6700.0	3392.0	2124.0	1.597	
		Unitario	2	9980.0	6700.0	3280.0	2124.0	1.544	1.569
4000/	FINO	Suelto	3	10024.0	6700.0	3324.0	2124.0	1.565	
100%	FINO	Peso	1	10430.0	6700.0	3730.0	2124.0	1.756	
Agregado Fino, 50%		Unitario	2	10442.0	6700.0	3742.0	2124.0	1.762	1.760
•		Compactado	3	10441.0	6700.0	3741.0	2124.0	1.761	
Agregado		Peso	1	9700.0	6700.0	3000.0	2124.0	1.412	
Y 50% ACK		Unitario	2	9730.0	6700.0	3030.0	2124.0	1.427	1.430
	GRUESO	Suelto	3	9780.0	6700.0	3080.0	2124.0	1.450	
	50% ACR	Peso	1	10040.0	6700.0	3340.0	2124.0	1.573	
		Unitario	2	10010.0	6700.0	3310.0	2124.0	1.558	1.576
		Compactado	3	10090.0	6700.0	3390.0	2124.0	1.596	

Fuente: GEOSTRUCT

4.1.2.4. Análisis Del Peso Específico Y Porcentaje De Absorción

Este ensayo se realizó de acuerdo al ASTM C127-C128 (NTP 400.021-400.022) Peso específico y porcentaje de absorción.

Equipos y Herramientas Utilizados en el Ensayo.

- Balanza con capacidad $\geq a 5000 g$
- Dispositivo para la suspensión del material una vez sumergida.
- Canastilla metálica con el fin de funcionar como recipiente para las muestras en las sumergidas.
- Depósito de agua para sumergir la cesta con el material.
- Tamiz de 4.75 mm (N° 4) de acuerdo con la NTP 350.001

Estufa capaz de mantener la temperatura a 110 °C ± 5 °C

Preparación de la muestra

Se procede a mezclar completamente el agregado, seguido de ello se cuartea hasta obtener un aproximado a la cantidad mínima requerida para este ensayo.

Las cantidades necesarias para el ensayo son indicadas en el anexo 33.

Procedimiento

Se procede a secar la muestra a peso constante a una temperatura de $110\,^{\circ}\text{C} \pm 5\,^{\circ}\text{C}$, posterior a ello se procedió a ventilar la muestra en un lugar fresco a temperatura ambiente entre 1-3 horas, posterior a ello se procedió a sumergir el agregado en agua a temperatura ambiente por un periodo de 24 h \pm 4 h.

Pasado los 24 h \pm 4 h se procede a remover la muestra del agua para hacerla rodar en un paño grande y absorbente hasta el punto de hacer desaparecer toda la película de agua visible teniendo mucho cuidado en evitar la evaporación, se obtiene el peso de la muestra con el nombre de saturación con superficie seca.

Después de pesar la muestra se colocó de inmediato la muestra saturada con superficie seca en la cesta y se determinó su peso e agua a una temperatura entre 23 °C \pm 1.7 °C teniendo cuidado con remover el aire atrapado al sumergir el recipiente.

Luego se procedió a secar la muestra hasta un peso constante a una temperatura de 100 °C \pm 5 °C, posterior a ello se dejó enfriar a temperatura ambiente entre 1-3 h hasta que fuera cómodo al tacto.

4.1.2.4.1. Peso Específico.

Datos Obtenidos:

Tabla N° 9: Peso específico del agregado fino y agregado Grueso con 0%, 25% y 50% AGCR

AGREGADO	FINO	GRUESO 0% AGR	GRUESO 25% AGCR	GRUESO 50% AGCR
Tamaño Max. De la Muestra	Malla N° 4	3/4	3/4	3/4
Tipo de Frasco Utilizado	Fiola 500 ml	Prob. 1000 ml	Prob. 1000 ml	Prob. 1000 ml
Peso Frasco + Agua	682.700	1567.400	1570.000	1572.000
Peso Material Sup Seca al Aire	200.000	500.000	500.000	500.000
Peso Material Saturado + Agua + Frasco	882.700	2067.400	2070.000	2072.000
Peso Global con Desp. De Volumen	807.300	1897.200	1895.000	1898.000
Peso Vol. Masa + Vol. Vacíos	75.400	170.200	175.000	174.000
Peso Específico	2.65	2.94	2.86	2.87

Fuente: GEOSTRUCT

Cálculos:

Peso específico
$$\left(\frac{ton}{m^3}\right) = \frac{A}{B+A-C}$$

Donde:

A: Peso Material Sup. Seca al Aire

B: Peso Frasco + Agua

C: Peso Global con Desp. De Volumen

Agregado Fino

$$Peso \ espec \'ifico = \frac{200.000}{682.700 + 200.000 - 807.300}$$

$$Peso \ espec \'ifico = 2.65$$

Agregado Grueso

Agregado Grueso 100% convencional y 0% AGCR

$$Peso \ específico = \frac{500.000}{1567.400 + 500.000 - 1897.200}$$

$$Peso \ específico = 2.94$$

Agregado Grueso

Agregado Grueso 75% convencional y 25% AGCR

$$Peso \ específico = \frac{500.000}{1570.000 + 500.000 - 1895.000}$$

$$Peso \ específico = 2.86$$

Agregado Grueso

Agregado Grueso 50% convencional y 50% AGCR

$$Peso \ espec \'ifico = \frac{500.000}{1572.000 + 500.000 - 1898.000}$$

$$Peso \ espec \'ifico = 2.87$$

4.1.2.4.2. Porcentaje de Absorción.

Datos Obtenidos:

Tabla N° 10: Porcentaje de absorción del agregado fino y agregado Grueso con 0%, 25% y 50% AGCR

AGREGADO	FINO	GRUESO 0% AGCR	GRUESO 25% AGCR	GRUESO 50% AGCR
N° Recipiente	2.000	6.000	6.000	6.000
Peso Recip. + Material Sup. Seca en Aire	140.200	143.900	143.600	143.600
Peso Recip. + Material Secado en Estufa	137.900	142.600	142.290	142.288
Peso del Agua	2.300	1.300	1.310	1.312
Peso del Recip.	31.200	32.200	32.200	32.200
Peso Material Secado en Estufa	106.700	110.400	110.090	110.088
% de Absorción	2.156	1.178	1.190	1.192

Fuente: GEOSTRUCT Cálculos:

Porcentaje de Absorción = $\left(\frac{A}{B}\right) * 100$

Donde:

A: Peso del Agua

B: Peso Material Secado en Estufa

Peso del Agua = C - D

Donde:

C: Peso Recip. + Material Sup. Seca en Aire

D: Peso Recip. + Material Secado en Estufa

Peso Material Secado en Estufa = D - E

Donde:

D: Peso Recip. + Material Secado en Estufa

E: Peso del Recipiente

Agregado Fino

$$Peso\ del\ Agua = 140.200 - 137.9$$

$$Peso\ del\ Agua=2.300$$

Peso Material Secado en Estufa = 137.900 - 31.200

Peso Material Secado en Estufa = 106.700

Porcentaje de Absorción =
$$\left(\frac{2.300}{106.700}\right) * 100$$

Porcentaje de Absorción = 2.160

Agregado grueso

Agregado Grueso 100% convencional y 0% AGCR

$$Peso\ del\ Agua = 143.900 - 142.600$$

$$Peso\ del\ Agua=1.300$$

Peso Material Secado en Estufa = 142.600 - 32.200

Peso Material Secado en Estufa = 110.400

Porcentaje de Absorción =
$$\left(\frac{1.300}{110.400}\right) * 100$$

Porcentaje de Absorción = 1.18

Agregado Grueso 75% convencional y 25% AGCR

$$Peso\ del\ Agua = 143.600 - 142.290$$

$$Peso\ del\ Agua = 1.310$$

Peso Material Secado en Estufa = 142.290 - 32.200

Peso Material Secado en Estufa = 110.090

Porcentaje de Absorción =
$$\left(\frac{1.31}{110.090}\right) * 100$$

Porcentaje de Absorción = 1.19

Agregado Grueso 50% convencional y 50% AGCR

$$Peso\ del\ Agua = 143.600 - 142.288$$

$$Peso\ del\ Agua = 1.312$$

Peso Material Secado en Estufa = 142.288 - 32.200

Peso Material Secado en Estufa = 110.088

Porcentaje de Absorción =
$$\left(\frac{1.312}{110.088}\right) * 100$$

Porcentaje de Absorción = 1.19

4.1.2.5. Análisis De Resistencia Al Desgaste Del Agregado Grueso Por Abrasión

Procedimiento:

- Se lavó y seco en el horno la muestra a 110 °C ± 5 °C para posteriormente separar cada fracción del material y recombinar a la gradación A
- Se procedió a registrar la masa de la muestra antes del ensayo
- > Para la gradación A la carga fue de 12 esferas
- Se procede a colocar la muestra junto con la carga en la máquina de los ángeles para posterior a ello rotarla a una velocidad de 30 a 33 rpm por 500 Rev.
- ➤ Luego se descargó la muestra de la maquia para realizar una separación preliminar de la muestra sobre el tamiz N° 12 para luego lavar el material retenido por este para posteriormente secarlo en el horno y poder pesarlo

Datos obtenidos:

Tabla N° 11: Resistencia al Desgaste del Agregado Grueso Por Abrasión

IDENTIFICACIÓN	CONVENCIONAL	RECICLADO
Muestra	M1	M1
Clasificación AASHTO		
Clasificación SUCS		
Graduación	А	Α
Peso Mat. Antes del Ensayo	5000	5000
Peso Mat/Ret. En la Malla N° 12	3020.000	3810.000
Peso Mat. Que pasa Malla N° 12	1980.000	1190.000
Porcentaje de Desgaste (%)	39.60%	23.80%

Fuente: GEOSTRUCT

Cálculos:

Porcentaje de Desgaste (%) =
$$\frac{A}{B}$$
 * 100

Donde:

A: Peso Mat. Que Pasa por Malla N° 12 (gr)

B: Peso Mat. Antes del Ensayo (gr)

Peso Mat. que Pasa por Malla N° 12 = B - D

Donde:

B: Peso Mat. Antes del Ensayo (gr)

D: Peso Mat./Ret. En la Malla N° 12 Lavada y secada en horno (gr)

Convencional

Peso Mat. que Pasa por Malla N°
$$12 = 5000 - 3020$$

Peso Mat. que Pasa por Malla N° $12 = 1980$ gr
Porcentaje de Desgaste (%) $= \frac{1980}{5000} * 100$
Porcentaje de Desgaste (%) $= 39.60\%$

Reciclado

Peso Mat. que Pasa por Malla N° 12 =
$$5000 - 3810$$

Peso Mat. que Pasa por Malla N° 12 = 1190 gr
Porcentaje de Desgaste (%) = $\frac{1190}{5000} * 100$
Porcentaje de Desgaste (%) = 23.80%

4.1.2.6. Diseño De Concreto Método ACI.

Tabla N° 12: Resumen del diseño de mezcla por el Método ACI en volumen.

Material	Reem.	Reem.	Reem.	Unidad	
iviateriai	0%	25%	50%	Omada	
Cemento	1.000	1.000	1.000	Bolsa	
Arena	2.080	1.980	2.030	р3	
Piedra	Piedra 2.650		2.650	р3	
Agua	21.850	22.480	22.680	Litros	

Fuente: Elaboración Propia

El diseño de mezcla se detalla en los anexos N° 14 concreto convencional, N° 20 concreto con el 25% de reemplazo, N° 26 concreto con el 50% de reemplazo y el anexo N° 35 pasos seguidos para el diseño de mezcla.

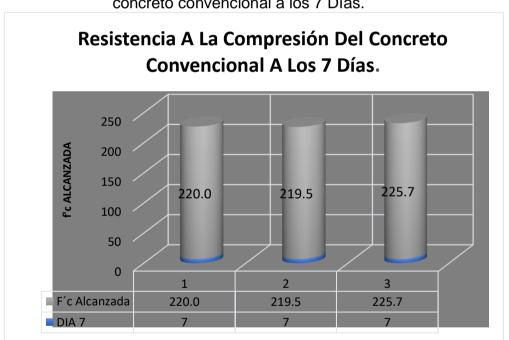

4.1.3. Resultados Según Objetivo Específico 02: Determinar el esfuerzo a la compresión del concreto convencional a los 7, 14, 21 y 28 días del concreto de f'c 210 kg/cm2 usando cemento portland tipo 1.

Tabla 13: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de los 3 testigos con concreto convencional.

RELACIÓN	f´c DE			EDAD	ÁRFΔ	CARGA	f′с		TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA				ALCANZADA (kg/cm2)	% f´c/f'cd	ROTURA O FALLA
0.53	210	08/09/2020	15/09/2020	7	176.7	38870	220.0	104.8	TIPO "C"
0.53	210	08/09/2020	15/09/2020	7	176.7	38788	219.5	104.5	TIPO "C"
0.53	210	08/09/2020	15/09/2020	7	176.7	39880	225.7	107.5	TIPO "C"
PROMEDIO			7	176.7	39179	221.7	105	.6	

Fuente: Base de datos de los tesistas, Octubre – 2020

Figura 3: Resistencia a la Compresión Alcanzada de los 3 testigos con concreto convencional a los 7 Días.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 7 del primer testigo llegó a 220.0 kg/cm2 con rotura tipo "C" y del 2do testigo llego a 219.5

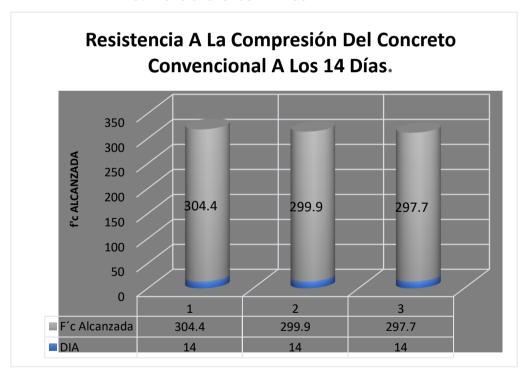

kg/cm2 con rotura tipo "C", del 3ro a 225.7 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 14: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de los 3 testigos con concreto convencional.

RELACIÓN	f´c DE	FEC	CHA	EDAD	ÁDΕΛ	CARGA	ťс		TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	(Días)		(kg)	ALCANZADA (kg/cm2)	% f´c/f'cd	ROTURA O FALLA
0.53	210	08/09/2020	22/09/2020	14	176.7	53790	304.4	145.0	TIPO "C"
0.53	210	08/09/2020	22/09/2020	14	176.7	53000	299.9	142.8	TIPO "C"
0.53	210	08/09/2020	22/09/2020	14	176.7	52600	297.7	141.8	TIPO "C"
	PROMEDIO			14	176.7	53130	300.7	143.	.2

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 4: Resistencia a la Compresión Alcanzada de los 3 testigos con concreto convencional a los 14 Días.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg fuerza) y la resistencia de diseño alcanzada para el día 14 del primer testigo

llego a 304.4 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 299.9 kg/cm2 con rotura tipo "C", del 3ro a 297.7 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 15: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de los 3 testigos con concreto convencional.

REI ACIÓN	RELACIÓN FÉCHA		CHA	EDAD	ÁREA	CARGA	ťс		TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	(Días)			ALCANZADA (kg/cm2)	% f´c/f'cd	ROTURA O FALLA
0.53	210	09/09/2020	30/09/2020	21	176.7	53460	302.5	144.1	TIPO "C"
0.53	210	09/09/2020	30/09/2020	21	176.7	55485	314.0	149.5	TIPO "C"
0.53	210	09/09/2020	30/09/2020	21	176.7	54254	307.0	146.2	TIPO "C"
PROMEDIO			21	176.7	54400	307.9	146.	6	

Fuente: Base de datos de los tesistas, Octubre - 2020.

Figura 5: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 21 del primer testigo llegó

a 302.5 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 314.0 kg/cm2 con rotura tipo "C", del 3ro a 307.0 kg/cm2 con rotura tipo "C", del 2do testigo, el 1er testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 16: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de los 3 testigos con concreto convencional.

REI ACIÓN	RELACIÓN f'c DE FECHA		EDAD	ÁREA	CARGA	ťс		TIPO DE	
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	(Días)	(cm2)	(kg)	ALCANZADA (kg/cm2)	% f´c/f'cd	ROTURA O FALLA
0.53	210	09/09/2020	07/10/2020	28	176.7	70170	397.1	189.1	TIPO "C"
0.53	210	09/09/2020	07/10/2020	28	176.7	69854	395.3	188.3	TIPO "C"
0.53	210	09/09/2020	07/10/2020	28	176.7	69785	394.9	188.1	TIPO "C"
PROMEDIO			28	176.7	69936	395.8	188.	5	

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 6: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y

rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 28 del primer testigo llego a 397.1 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 395.3 kg/cm2 con rotura tipo "C", del 3ro a 394.9 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

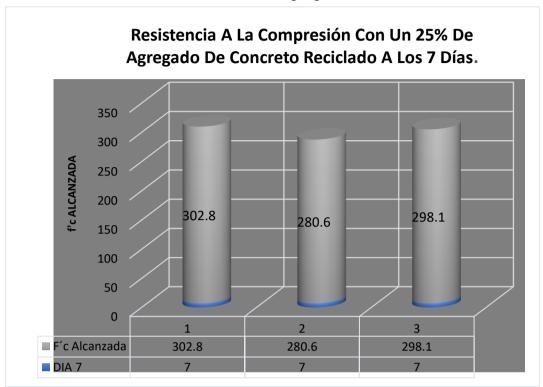

4.1.4. Resultados Según Objetivo Específico 03: Determinar la influencia de ACR en 25% y 50% de reemplazo del agregado grueso sobre la compresión a los 7, 14, 21 y 28 días del concreto 210 kg/cm2 de esfuerzo a la compresión usando cemento portland tipo 1.

Tabla 17: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de los 3 testigos con un 25% de agregado de concreto reciclado.

DEI ACIÓN	RELACIÓN f'c DE	FEC	FECHA		EDAD	ÁREA	CARGA	f'c	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	% ACR	(Días)		(kg)	ALCANZADA (kg/cm2)	f´c/f'cd	ROTURA O FALLA
0.53	210	17/09/2020	24/09/2020	25%	7	176.7	53510	302.8	144.2	TIPO "C"
0.53	210	17/09/2020	24/09/2020	25%	7	176.7	49580	280.6	133.6	TIPO "C"
0.53	210	17/09/2020	24/09/2020	25%	7	176.7	52680	298.1	142.0	TIPO "C"
	PROMEDIO			25%	7	176.7	51923	293.9	13	39.9

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 7: Resistencia a la Compresión Alcanzada de los 3 testigos de los 7 Días con un 25% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

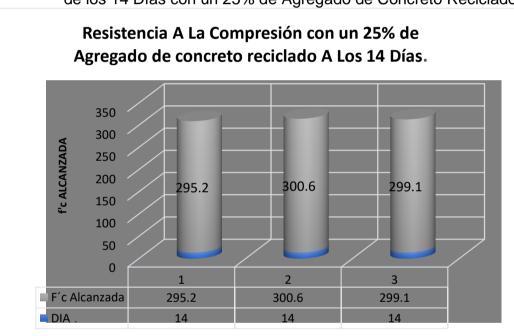

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 7 del primer testigo llego a 302.8 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 280.6 kg/cm2 con rotura tipo "C", del 3ro a 298.1 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 18: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de los 3 testigos con un 25% de agregado de concreto Reciclado.

RELACIÓN	f´c DE	FEC	% EDA		EDAD ÁREA		ťс	%	TIPO DE	
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	ACR		(cm2)		ALCANZADA (kg/cm2)	f'c/f'cd	ROTURA O FALLA
0.53	210	17/09/2020	01/10/2020	25%	14	176.7	52160	295.2	140.6	TIPO "B"
0.53	210	17/09/2020	01/10/2020	25%	14	176.7	53110	300.6	143.1	TIPO "B"
0.53	210	17/09/2020	01/10/2020	25%	14	176.7	52856	299.1	142.4	TIPO "C"
	PROMEDIO			25%	14	176.7	52709	298.3	14	12.0

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 8: Resistencia a la Compresión Alcanzada de los 3 testigos de los 14 Días con un 25% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 7 del primer testigo llego a 295.2 kg/cm2 con rotura tipo "B" y del 2do testigo llegó a 300.6 kg/cm2 con rotura tipo "B", del 3ro a 299.1 kg/cm2 con rotura tipo "C". del 2do testigo, el 1er testigo y el 3er testigo, bajó la resistencia esto

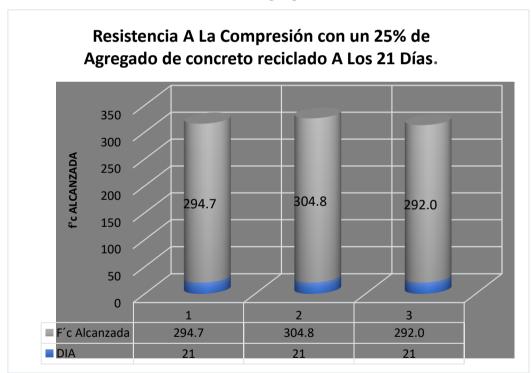

es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 19: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de los 3 testigos con un 25% de Agregado de Concreto Reciclado.

RELACIÓN	f´c DE	FECHA			EDAD	ÁREA (cm2)		ťс	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	% ACR	ALCANZADA (kg/cm2)			f´c/f'cd	ROTURA O FALLA	
0.53	210	18/09/2020	09/10/2020	25%	21	176.7	52080	294.7	140.4	TIPO "C"
0.53	210	18/09/2020	09/10/2020	25%	21	176.7	53851	304.8	145.1	TIPO "C"
0.53	210	18/09/2020	09/10/2020	25%	21	176.7	51598	292.0	139.1	TIPO "C"
	PROMEDIO			25%	21	176.7	52510	297.2	14	11.5

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 9: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días con un 25% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 21 del primer testigo llegó

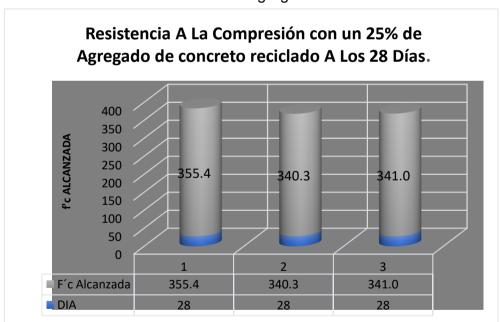

a 294.7 kg/cm2 con rotura tipo "C" y del 2do testigo llego a 304.8 kg/cm2 con rotura tipo "C", del 3ro a 292.0 kg/cm2 con rotura tipo "C" del 2do testigo, el 1er testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 20: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de los 3 testigos con un 25% de agregado de concreto Reciclado.

RELACIÓN	f´c DE	FEC	FECHA		EDAD	ÁDEA	CARGA	ťс	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	% ACR		(cm2)	(kg)	ALCANZADA (kg/cm2)	f'c/f'cd	ROTURA O FALLA
0.53	210	18/09/2020	16/10/2020	25%	28	176.7	62800	355.4	169.2	TIPO "C"
0.53	210	18/09/2020	16/10/2020	25%	28	176.7	60125	340.3	162.0	TIPO "C"
0.53	210	18/09/2020	16/10/2020	25%	28	176.7	60248	341.0	162.4	TIPO "C"
PROMEDIO			25%	28	176.7	61058	345.5	16	4.5	

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 10: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días con un 25% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la

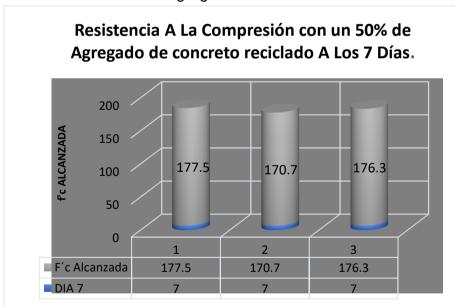

resistencia de diseño alcanzada para el día 28 del primer testigo llegó a 355.4 kg/cm2 con rotura tipo "C" y del 2do testigo llego a 340.3 kg/cm2 con rotura tipo "C", del 3ro a 341.0 kg/cm2 con rotura tipo "C". del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 21: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 7 Días de los 3 testigos con un 50% de agregado de concreto Reciclado.

RELACIÓN	f´c DE	FECHA		% EDAD		ÁDΕΛ	CARGA	f'c	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA		(Días)		(kg)	ALCANZADA (kg/cm2)	f´c/f'cd	ROTURA O FALLA
0.53	210	19/09/2020	26/09/2020	50%	7	176.7	31370	177.5	84.54	TIPO "C"
0.53	210	19/09/2020	26/09/2020	50%	7	176.7	30169	170.7	81.30	TIPO "C"
0.53	210	19/09/2020	26/09/2020	50%	7	176.7	31158	176.3	83.97	TIPO "C"
PROMEDIO				50%	7	176.7	30899	174.9	8	3.3

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 11: Resistencia a la Compresión Alcanzada de los 3 testigos de los 7 Días con un 50% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la

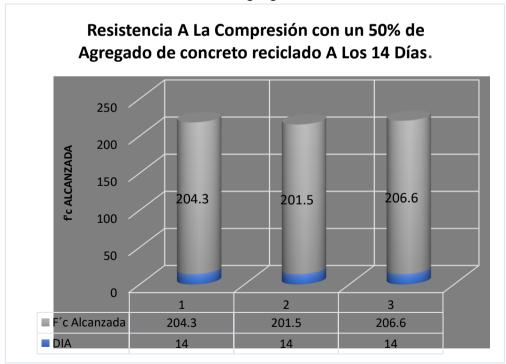

resistencia de diseño alcanzada para el día 7 del primer testigo llego a 177.5 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 170.7 kg/cm2 con rotura tipo "C", del 3ro a 176.3 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 22: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 14 Días de los 3 testigos con un 50% de agregado de concreto Reciclado.

RELACIÓN	f´c DE			%	EDAD	ÁREA	CARGA	f'c	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	ACR		(cm2)	(kg)	ALCANZADA (kg/cm2)	f'c/f'cd	ROTURA O FALLA
0.53	210	19/09/2020	04/10/2020	50%	14	176.7	36100	204.3	97.29	TIPO "B"
0.53	210	19/09/2020	04/10/2020	50%	14	176.7	35600	201.5	95.94	TIPO "B"
0.53	210	19/09/2020	04/10/2020	50%	14	176.7	36500	206.6	98.36	TIPO "C"
	PROMEDIO			50%	14	176.7	36100	204.1	9	7.3

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 12: Resistencia a la Compresión Alcanzada de los 3 testigos de los 14 Días con un 50% Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre - 2020.

Descripción:

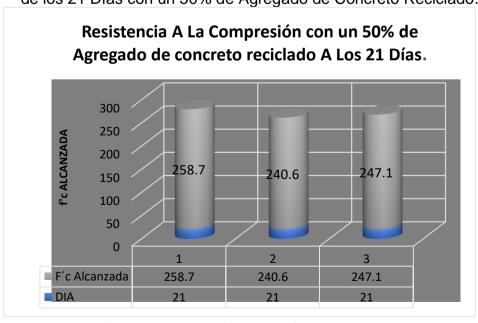

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 14 del primer testigo llego a 204.3 kg/cm2 con rotura tipo "B" y del 2do testigo llegó a 201.5 kg/cm2 con rotura tipo "B", del 3ro a 206.6 kg/cm2 con rotura tipo "C". del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 23: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 21 Días de los con un 50% de agregado de concreto Reciclado.

RELACIÓN	RELACIÓN f'c DE		FECHA		% EDAD		CARGA	ťс	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA		(Días)			ALCANZADA (kg/cm2)	f´c/f'cd	ROTURA O FALLA
0.53	210	20/09/2020	11/10/2020	50%	21	176.7	45710	258.7	123.18	TIPO "C"
0.53	210	20/09/2020	11/10/2020	50%	21	176.7	42512	240.6	114.57	TIPO "C"
0.53	210	20/09/2020	11/10/2020	50%	21	176.7	43654	247.1	117.64	TIPO "C"
PROMEDIO			50%	21	176.7	43959	248.8	11	L 8. 5	

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 13: Resistencia a la Compresión Alcanzada de los 3 testigos de los 21 Días con un 50% de Agregado de Concreto Reciclado.

Fuente: Elaboración propia, Octubre – 2020.

Descripción:

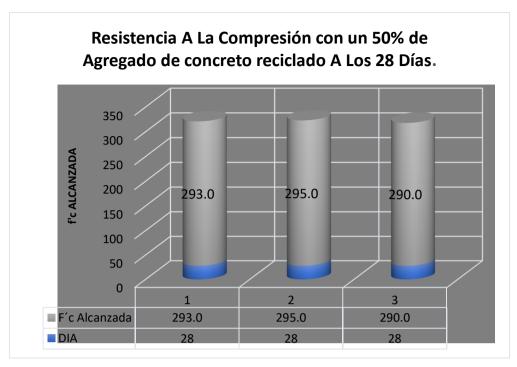
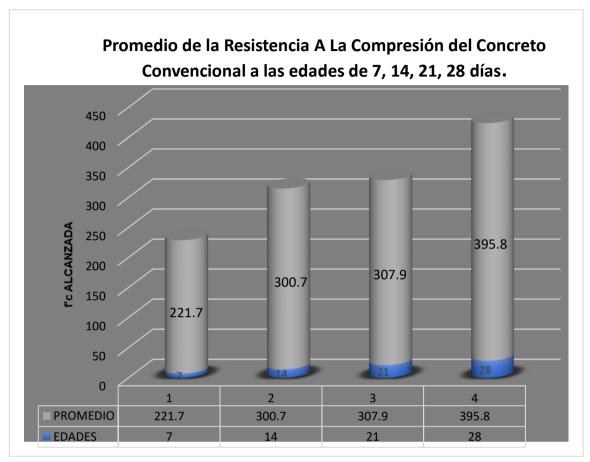

En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 21 del primer testigo llego a 258.7 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 240.6 kg/cm2 con rotura tipo "C", del 3ro a 247.1 kg/cm2 con rotura tipo "C", del 1er testigo, el 2do testigo y el 3er testigo, bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Tabla 24: Resumen de datos obtenidos para F'c 210 Kg/Cm2 a los 28 Días de los 3 testigos con un 50% de agregado de Concreto Reciclado.

RELACIÓN	f´c DE	FEC	CHA	%	EDAD	ÁDΕΛ	CARGA	f'c	%	TIPO DE
A/C	DISEÑO (kg/cm2)	MOLDEO	ROTURA	ACR		(cm2)		ALCANZADA (kg/cm2)	f´c/f'cd	ROTURA O FALLA
0.53	210	20/09/2020	18/10/2020	50%	28	176.7	51780	293.0	139.54	TIPO "C"
0.53	210	20/09/2020	18/10/2020	50%	28	176.7	52131	295.0	140.49	TIPO "C"
0.53	210	20/09/2020	18/10/2020	50%	28	176.7	51245	290.0	138.10	TIPO "C"
PROMEDIO			50%	28	176.7	51719	292.7	13	39.4	

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 14: Resistencia a la Compresión Alcanzada de los 3 testigos de los 28 Días con un 50% de Agregado de Concreto Reciclado.



Fuente: Elaboración propia, Octubre – 2020.

Descripción:

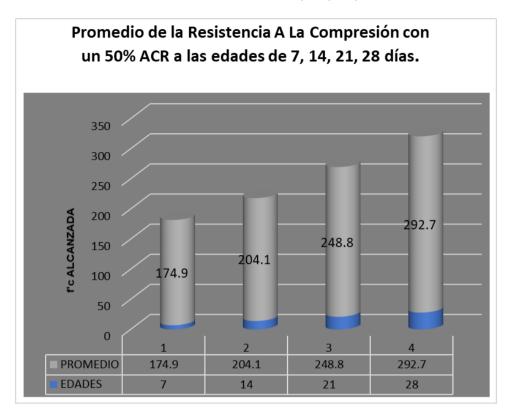
En el anexo 28, se observa la relación a/c que es de 0.53 también se observa la resistencia de diseño que es de 210, fechas del moldeo y rotura, el área de los moldes, la carga máxima soportada en (kg) y la resistencia de diseño alcanzada para el día 28 del primer testigo llego a 293.0 kg/cm2 con rotura tipo "C" y del 2do testigo llegó a 295.0 kg/cm2 con rotura tipo "C", del 3ro a 290.0 kg/cm2 con rotura tipo "C", del 3er testigo bajaron la resistencia el 1er testigo, el 2do testigo, esto es debido a las chuzeadas o también a los golpes con el martillo de goma, Según se muestra en los (Anexos 28, 29 y 32).

Figura 15: Promedio de la Resistencia A La Compresión del Concreto Convencional a las edades de 7, 14, 21, 28 días.

Fuente: Elaboración propia, Octubre – 2020

Descripción: En la figura observamos el promedio de las tres probetas para cada día, para el día 7 el promedio de resistencia alcanzada es 221.7 kg/cm2 y para el día 14 es 300.7, día 21 es 307.9 kg/cm2 y por último el día 28 kg/cm2 que logró alcanzar una resistencia de 395.8 kg/cm2.

Figura 16: Promedio de la Resistencia A la Compresión con un 25% de Agregado de concreto reciclado a las edades de 7, 14, 21, 28 días.



Fuente: Elaboración propia, Octubre - 2020

Descripción:

En la figura observamos el promedio de las tres probetas para cada día, para el día 7 el promedio de resistencia alcanzada es 293.9 kg/cm2 y para el día 14 es 298.3, día 21 es 297.2 kg/cm2 y por último el día 28 kg/cm2 que logró alcanzar una resistencia de 345.5 kg/cm2, el promedio de los testigo del día 21 bajo la resistencia esto es debido a las chuzeadas o también a los golpes con el martillo de goma para las burbujas de aire de la mezcla en este caso la probeta del día 14 se realizó una buena chuzeada.

Figura 17: Promedio de la Resistencia A La Compresión con un 50% de ACR a las edades de 7, 14, 21, 28 días.

Fuente: Elaboración propia, Octubre – 2020

Descripción: En la figura observamos el promedio de las tres probetas para cada día, para el día 7 el promedio de resistencia alcanzada es 174.9 kg/cm2 y para el día 14 es 204.1, día 21 es 248.8 kg/cm2 y por último el día 28 kg/cm2 que logró alcanzar una resistencia de 292.7 kg/cm2.

4.1.5. Resultados Según Objetivo Específico 04: Analizar el costo de producción del concreto convencional en un 25% y 50% de reemplazo de agregado grueso por el ACR.

Tabla 25: Análisis del costo de producción del concreto convencional, con un 25% y 50% de reemplazo del agregado grueso por el ACR

Reemplazo	/ Probeta	/Bolsa de Cemento	/m3
0%	S/1.664	S/34.436	S/313.708
25%	S/1.635	S/33.837	S/308.257
50%	S/1.607	S/33.256	S/302.960

Fuente: Base de datos de los tesistas, Octubre – 2020.

Figura 18: Análisis del costo de producción del concreto convencional, con un 25% y 50% de reemplazo del agregado grueso por el ACR

Fuente: Elaboración propia, Octubre – 2020

Descripción:

En la tabla 25 y figura 18 podemos observar el resumen del análisis de costo que se realizó obteniendo los siguientes resultados:

Para una probeta los precios obtenidos fueron de S/.1.664, S/.1.635 y S/.1.607, el precio por una bolsa de cemento es de S/.34.436,

S/.33.837 y S/.33.256 y por último los precios obtenidos para un cubo de concreto fueron de S/.313.708, S/.308.257 y S/.302.960 para un 0%, 25% y 50% de reemplazo de agregado grueso convencional por un ACR.

El análisis del costo de producción del concreto convencional, con un 0%, 25% y 50% de reemplazo del agregado grueso por el ACR se detallan en el (Anexo 32).

V. DISCUSIÓN

Para la realización de la tesis "Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado Grueso A La Compresión Y Costo Del Concreto – Huaraz, 2020", se trabajó de manera Aplicada - cuasi Experimental - cuantitativo (cantidades). En la cual se señaló todos los aspectos comprendidos entre: resultados, antecedentes y marco teórico, Presentaremos en detalle los resultados del análisis de la tesis.

El Objetivo General de la tesis es Determinar la influencia del agregado de concreto reciclado en reemplazo del agregado grueso a la compresión y costo del concreto.

Influye positivamente el agregado de concreto reciclado en reemplazo del agregado grueso a una resistencia de 210 kg/cm², porque su calidad de este agregado viene a ser porosa y menos resistente que el agregado grueso, en cuanto a las roturas de probetas obtuvimos resistencias aceptables. De tal sentido concordarnos con los autores Jordan y Viera (2014).

Objetivo Específico 01: "Determinar las propiedades mecánicas del agregado grueso mediante el ensayo de Contenido de Humedad, Granulometría, Peso Unitario, Peso Específico, Porcentaje de Absorción y la Resistencia a la Abrasión"

En los anexos (9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, y 25) observamos el resumen de todos los ensayos realizados, asimismo los resultados obtenidos son:

- ➤ El contenido de humedad para un 0%, 25% y 50% de reemplazo de agregado grueso convencional por el ACR es del 1.24%, 1.22% y 1.15% respectivamente.
- ➤ Los resultados obtenidos por el tamizado nos indicaron que el tamaño máximo del agregado grueso con el 0%, 25% y 50% fue de ¾" y el TMN también fue de ¾" así como el módulo de finesa fue de 7.11, 7.03 y 7.17 respectivamente para cada porcentaje de reemplazo.
- ➤ Los resultados del peso unitario del agregado grueso suelto y compacto fueron para el 0% de reemplazo 1.43 y 1.576 tn/m3

respectivamente, para el 25% de reemplazo 1.43 y 1.576 tn/m3 respectivamente y para el 50% de reemplazo fue de 1.430 y 1.576 tn/m3 respectivamente.

- ➤ Los resultados obtenidos por el ensayo de peso específico fueron de 2.94, 2.86 y 2.87 para un 0%, 25% y 50% de reemplazo de agregado grueso convencional por un ACR.
- ➤ Los resultados obtenidos por el ensayo de porcentaje de absorción fueron de 1.178, 1.190 y 1.192 para un 0%, 25% y 50% de reemplazo de agregado grueso convencional por un ACR.
- Y por último el ensayo de la resistencia al desgaste del agregado grueso por abrasión nos arrojó los siguientes resultados, para el agregado grueso convencional el resultado fue del 39.60% y para el agregado de concreto reciclado un 23.80%.

(Girio, 2015), podemos mostrar que los resultados obtenidos para el agregado grueso con un 25% de reemplazo de ACR tienen mucha similitud con los resultados obtenidos en su tesis por el dicho autor.

Objetivo Específico 02: Determinar el esfuerzo a la compresión del concreto convencional a los 7, 14, 21 y 28 días del concreto de f'c 210 kg/cm2 usando cemento portland tipo 1.

En el anexo (28 y 29) observamos el resumen de todo lo contenido de las roturas de las probetas a los 7, 14, 21 y 28 días, asimismo los resultados obtenidos son: a los 7 días el promedio de los 3 testigos con una resistencia alcanzada es de 221.7 kg/cm2, a los 14 días el promedio de los 3 testigos con una resistencia alcanzada es de 300.7 kg/cm2, a los 21 días el promedio de los 3 testigos con una resistencia alcanzada es 307.9 kg/cm2, a los 28 días el promedio de los 3 testigos con una resistencia alcanzada es de 395.8 kg/cm2. De acuerdo a los resultados podemos apreciar que el testigo patrón sobrepasó el porcentaje de resistencia especifica requerida a los 7, 14, 21 y 28 días, por lo tanto, es una muestra patrón aceptable.

Jordan y Viera (2014), podemos mostrar que tiene coherencia con nuestros resultados, ya que las roturas de probetas sobrepasaron el porcentaje de resistencia requerida a los 7, 14, 21 y 28 con concreto convencional (0% de agregado Reciclado).

Objetivo Específico 03: Determinar la influencia de ACR en 25% y 50% de reemplazo del agregado grueso sobre la compresión a los 7, 14, 21 y 28 días del concreto 210 kg/cm2 de esfuerzo a la compresión usando cemento portland tipo 1.

En el anexo (28 y 29) observamos el resumen de todo lo contenido de las roturas de las probetas a los 7, 14, 21 y 28 días, asimismo los resultados obtenidos con 25% de reemplazo de ACR son: a los 7 días el promedio de los 3 testigos con una resistencia alcanzada es de 293.9 kg/cm2, a los 14 días el promedio de los 3 testigos con una resistencia alcanzada es de 298.3 kg/cm2, a los 21 días el promedio de los 3 testigos con una resistencia alcanzada es 297.2 kg/cm2, a los 28 días el promedio de los 3 testigos con una resistencia alcanzada es de 345.5 kg/cm2.

Nuestros resultados se asemejan a la investigación que realizó Ratcliffe (2016), obtuvo que el concreto reciclado sí lograba obtener propiedades similares a las que estaban elaboradas con concreto convencional, comparando, sí hemos logrado resultados similares más favorables con agregado reciclado con un porcentaje de sustitución de 25% de concreto Reciclado.

Jordan y Viera (2014), obtuvieron dentro de sus resultados que las probetas con agregado reciclado con sustitución de 25% llegaban a la resistencia requerida sobrepasando con un porcentaje menor a la de nosotros a diferencia de ellos, en la tesis sí se logró las resistencias deseadas, incluso se superaron las resistencias de diseño.

Bedoya y Dzul (2016), Los resultados de estudio presentado se asemejan con los resultados con agregado reciclado con sustitución de 25%, en este caso concordamos con el autor que a un 25% de ACR es similar al concreto convencional.

Los resultados presentados anteriormente por los autores concuerdan con la tesis realizada.

En el anexo (28 y 29) observamos el resumen de todo lo contenido de las roturas de las probetas a los 7, 14, 21 y 28 días, asimismo los resultados obtenidos con 50% de reemplazo de ACR son: a los 7 días el promedio de los 3 testigos con una resistencia alcanzada es de 174.9 kg/cm2, a los 14 días el promedio de los 3 testigos con una resistencia alcanzada es de 204.3

kg/cm2, a los 21 días el promedio de los 3 testigos con una resistencia alcanzada es 248.8 kg/cm2, a los 28 días el promedio de los 3 testigos con una resistencia alcanzada es de 292.7 kg/cm2.

Huamán (2018), para 50% de reemplazo llegó a alcanzar un 111.00% de resistencia deseada, Los resultados de estudio presentado se asemejan con los resultados con agregado reciclado con sustitución de 50%, el de nosotros llego a un 139.4% a los 28 días, en este caso concordamos con el autor que a un 50% de ACR si sobrepasa a la resistencia de diseño.

Jordan y Viera (2014), en sus resultados las probetas con agregado reciclado no llegaban a la resistencia deseada a los 28 días, a diferencia de ellos, sí se logró la resistencia deseada a los 28 días, pero a los 7, 14 días no se obtuvo la resistencia deseada, pero a los 28 días incluso supero la resistencia de diseño con un porcentaje bajo, con sustitución de 50% de agregado de concreto reciclado.

Objetivo Específico 04: Analizar el costo de producción del concreto convencional en un 25% y 50% de reemplazo de agregado grueso por el ACR

En el anexo (30) se puede apreciar el análisis realizado para la determinación del precio para la producción de concreto para un metro cubico de concreto obteniendo como resultado S/.313.708, S/.308.257 y S/.302.960, por una bolsa de cemento S/.34.436, S/.33.837 y S/.33.256 y para una probeta S/.1.664, S/.1.635 y S/.1.607 para un 0%, 25% y 50% de reemplazo del agregado grueso convencional por el ACR respectivamente. Podemos observar que los resultados obtenidos por (Girio, 2015) se asemejan a los resultados obtenidos en la presente investigación ya que la diferencia de los precios de producción de concreto para un 0%, 25% y 50% son mínimas así como lo muestra dicho autor en su tesis.

Contrastación de la hipótesis: Se mencionó, Si remplazamos por 25%, 50% al agregado grueso por el ACR con un concreto de 210 kg/cm² de resistencia obtendremos resistencias más altas a la compresión, así como también costos menores de acorde al porcentaje de reemplazo. Como resultado se obtuvo con un porcentaje de sustitución de 25% se logra

obtener mayores resistencias y menores costos unitarios y para un porcentaje de sustitución de 50% logramos sobrepasar el diseño de Resistencia de 210 kg/cm^2 y el costo es menor que la elaboración del 25% de reemplazo del ACR.

VI. CONCLUSIONES

- 1. Se determinó que el agregado de concreto reciclado en reemplazo del agregado grueso a una resistencia de 210 kg/cm² - Huaraz, 2020, Influye positivamente, porque su calidad de este agregado viene a ser porosa, aunque menos resistente que el agregado grueso, en cuanto a las roturas de probetas obtuvimos resistencias aceptables tanto para 25% y 50% de agregado de concreto reciclado en reemplazo de agregado grueso.
- 2. Se logró determinar las propiedades mecánicas del agregado grueso mediante el ensayo de Contenido de Humedad, Granulometría, Peso Unitario, Peso Específico, Porcentaje de Absorción y la Resistencia a la Abrasión obteniendo buenos resultados las cuales se adecuan de una buena manera para un buen diseño de mezcla.
- 3. Se determinó la resistencia a la compresión del concreto elaborado con agregado natural de la cantera de Tacllan, cemento sol tipo I y agua potable, logramos obtener resistencias altas de las roturas de las probetas para las edades de 7, 14, 21 y 28 días, el testigo patrón sobrepasó el porcentaje de resistencia específica a los 28 días, el promedio de los 3 testigos con una resistencia alcanzada de 395.8 kg/cm2, por lo tanto, es una muestra patrón aceptable.
- 4. De los ensayos realizados sustituyendo un 25% de agregado de concreto reciclado se obtuvo buenos resultados de la resistencia a la compresión, a los 28 días de logró obtener en promedio una resistencia de 345.5 kg/cm2 en comparación al agregar el 50% de agregado de concreto reciclado el promedio a los 28 días tuvo una resistencia de 292.7 kg/cm2.
- 5. Se determinó el precio de producción de concreto por un metro cúbico así llegando a concluir que a mayor porcentaje de reemplazo de agregado convencional por el ACR los precios de producción son menores al de un concreto con el 100% de agregado grueso convencional.

VII. RECOMENDACIONES

- Se recomienda tener en cuenta el origen, función y antigüedad del concreto reciclado para garantizar el uso del mismo como agregado reciclado.
- 2. Para futuras investigaciones en esta rama se recomienda el usa de aditivos, así como evaluar la resistencia a la adherencia y la flexión para un mejor análisis del comportamiento del ACR.
- Para futuras investigaciones se recomienda someter las muestras a condiciones de campo para una mejor evaluación del comportamiento que tiene el ACR antes de la prueba de la resistencia a la compresión.
- 4. El concreto con un 25% de reemplazo del agregado grueso convencional por el ACR con una resistencia de 210 kg/cm2 en casos especiales su uso en columnas es recomendable siempre teniendo en cuenta el TMN del agregado y el espaciamiento del acero de refuerzo, así como de los estribos, también es recomendable su uso en estructuras de pavimentos (pavimento rígido)
- Es recomendable el uso del concreto reciclado con un 25% de reemplazo de agregado convencional por el ACR para concretos no estructurales como veredas y falso piso.

REFERENCIAS

ARGOS 360. 360 EN CONCRETO. [En línea] [Citado el: 14 de Setiembre de 2020.] https://www.360enconcreto.com/blog/detalle/calidad-y-aspectos-tecnicos/diseno-de-mezclas-de-concreto.

ASTM C127-C128 NTP 440.021- 400.022. Peso específico y porcentaje de absorción. [En línea] https://es.slideshare.net/alan314/peso-especificoyabsorcion-de-agregado-grueso.

ASTM C131/C131M-14. 2006. Método de prueba estándar para la resistencia a la degradación de agregado grueso de tamaño pequeño por abrasión e impacto en la máquina de Los Ángeles. [En línea] 2006. [Citado el: 14 de Setiembre de 2020.] http://www.astm.org/cgi-bin/resolver.cgi?C131C131M.

ASTM C136 NTP 400.012. 2001. Agregados. [En línea] 2001. https://es.scribd.com/document/343664826/NTP-400-017-2011-Agregados-Metodo-de-Ensayo-Para-Determinar-El-Peso-Unitario-Del-Agregado.

ASTM C29 NTP 400.017. 2001. Peso unitario de agregados finos y gruesos. [En línea] 2001. https://es.slideshare.net/williamhuachacatorres/norma-tecnica-peruana-agregadoa-400012.

ASTM C29/C29M-07. p.1. Peso unitario. [En línea] p.1. https://www.astm.org/DATABASE.CART/HISTORICAL/C29C29M-07-SP.htm.

ASTM C566 NTP 339.185. 2013. [En línea] 2013. [Citado el: 18 de Mayo de 2020.] https://es.scribd.com/document/375184167/NTP-339-185-CONTENIDO-DE-HUMEDAD-DE-AGREGADOS-pdf.

Bedoya y Dzul. 2016. El Concreto con Agregados Reciclados (CAR) como proyecto de viabilidad para el ecosistema urbano. Colombia: Rev. ing. constr. vol.30, 2016. ISSN 0718-5073.

BOOKCIVIL. BOOKCIVIL. [En línea] [Citado el: 14 de Setiembre de 2020.] https://bookcivil.com/diseno-de-mezclas.html.

Castro y Paredes. 2018. "Diseño de concreto estructural de resistencia mayores a 210 kg / cm^2 .con materiales reciclados de concreto. Tesis (Titulo para ingeniero Civil):Lima. [En línea] 2018. [Citado el: 25 de Abril de 2020.] https://hdl.handle.net/20.500.12692/36871.

CONSISTENCIA. NTP 339.035. [En línea]

Girio. 2015. Fabricación de concreto de resistencia a la compresión 210 y 280 kg / cm^2 , empleando como agregado grueso concreto desechado de obras, y sus costos unitarios vs concreto con agregado natural, Barranca - 2015. Tesis (Titulo para ingeniero Civil). [En línea] 2015. [Citado el: 25 de Abril de 2020.] http://repositorio.unasam.edu.pe/handle/UNASAM/1974.

Huamán. 2018. Resistencia de concreto fc=210 kg / cm^2 , sustituyendo agregado grueso en 10%, 30% y 50% por material reciclado, Huaraz. Tesis (Titulo para ingeniero Civil). [En línea] 2018. [Citado el: 25 de Abril de 2020.] http://repositorio.usanpedro.edu.pe/handle/USANPEDRO/5478.

Jordan y Viera. 2014. Estudio de la resistencia del concreto, utilizando como agregado el concreto reciclado de obra. Tesis (Titulo para ingeniero Civil):Chimbote. [En línea] 2014. [Citado el: 25 de Abril de 2020.] http://repositorio.uns.edu.pe/handle/UNS/2084.

Kareema, et al. 2019. Performance of hot-mix asphalt produced with double coated recycled concrete aggregates. Construction and Building Materials. [En línea] 2019. [Citado el: 25 de Abril de 2020.] http://link.galegroup.com/apps/doc/A584328739/AONE?u=univcv&sid=AONE&xid=ec5b80d4.

LEON, Juan Pablo. 2017. El Comercio. En Lima se generan 19 mil toneladas de desmonte al día y el 70% va al mar o ríos. [En línea] 26 de Agosto de 2017. [Citado el: 23 de Abril de 2020.] https://elcomercio.pe/lima/sucesos/lima-generan-19-mil-toneladas-desmonte-dia-70-mar-rios-noticia-453274-noticia/.

López, Enrique Rivva. 2005, Pág.8. Diseño de Mezclas. Lima: s.n., 2005, Pág.8.

López, Enrrique Rivva. 2000,159. Contenido de humedad. 2000,159.

-. 2000. Contenido de Humedad. Lima, perú: s.n., 2000.

Luis. 2004, p.1. [En línea] 2004, p.1. http://187.191.86.244/rceis/registro/Metodologia%20de%20la%20Investigacion%20Manual%20para %20el%20Desarrollo%20de%20Personal%20de%20Salud.pdf.

Mendoza, I., & Chavez, S. 2017. [En línea] 2017. Residuos de construcción y demolición como agregado de concreto hidráulico nuevo. Ingeniería Civil..

NORMA E.060. 2009, p.14. [En línea] 2009, p.14. [Citado el: 25 de Abril de 2020.] https://www.charlyepc.com/2019/06/norma-e060-concreto-armado.html.

NTP 339.047. 2006, p.3. Agregados. Lima. [En línea] 2006, p.3. https://es.scribd.com/document/229973045/NTP-339-047-2006.

NTP 339.034. 2008. Resistencia a la compresión del concreto . [En línea] 2008. [Citado el: 18 de Marzo de 2020.] https://es.slideshare.net/ERICKSA2/ntp-339034-2008.

NTP 339.047. 2006, p.9. [En línea] 2006, p.9. [Citado el: 25 de Abril de 2020.] https://es.scribd.com/document/229973045/NTP-339-047-2006.

NTP 339.185. 2013. AGREGADOS. [En línea] 2013. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima: Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias - INDECOPI..

NTP 339.209. hormigón, agregados y otros. [En línea] [Citado el: 18 de Marzo de 2020.] https://www.inacal.gob.pe/repositorioaps/data/1/1/6/jer/resoluciones-directorales/files/2018-RD48.pdf.

NTP 400.021. 2013. AGREGADOS. [En línea] 2013. Método de ensayo normalizado para peso específico y absorcíon del agregado grueso. Lima: Comisión reglamentos técnicos y comerciales - INDECOPI.

NTP 400.037. 2014. [En línea] 2014. Espesificaciones normalizadas para agregados en concreto. Lima: Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias - INDECOPI..

Otzen y Manterola . 2017, p.2. [En línea] 2017, p.2. [Citado el: 26 de Abril de 2020.] https://scielo.conicyt.cl/scielo.php?pid=S0717-95022017000100037&script=sci_abstract.

Palacio, Chávez y Velásquez. 2016. Revista Tecnura, 21(53). [En línea] 2016. [Citado el: 25 de Abril de 2020.] https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8195/13446.

Ratcliffe. 2016. The use of crushed recycled concrete as an alternative concrete aggregate. Tesis (Titulo para ingeniero Civil). [En línea] 2016. https://core.ac.uk/download/pd f/47206376.pdf.

RNE. E.060. 2006. [En línea] 2006. [Citado el: 16 de Setiembre de 2020.] https://www.urbanistasperu.org/rne/pdf/RNE parte%2009.pdf.

RNE. NORMA E.060. 2009, p.19. Concreto Armado. [En línea] 2009, p.19. [Citado el: 25 de Marzo de 2020.] https://es.slideshare.net/ninomanuelpe/norma-e060-concreto-armado.

Sandhu et al. 2019, p.1. los agregados. [En línea] 2019, p.1. [Citado el: 25 de Abril de 2020.] https://www.sciencedirect.com/science/article/abs/pii/S0921800907002790.

Seara; Gonzalez; Martinez, Eiras. 2018. . Flexural performance of reinforced concrete beams made with recycled concrete coarse aggregate. London : Springer Verlag, 2018. pág. 351. 978-1-4471-4539-4.

Sumari. 2016. Estudio del concreto de mediana a alta resistencia elaborado con residuos de concreto y cemento Portland tipo I. [En línea] 2016. http://cybertesis.uni.edu.pe/bitstream/uni/5379/1/sumari_rj.pdf .

Valderrama. 2015, **p.233**. [En línea] 2015, p.233. http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/984/valderramaneyra_leonor.pdf?sequence= 1&isAllowed=y.

Vargas y Konny. 2018. "Concreto reciclado en el aporte estructural para la fabricación. de ladrillos King Kong tipo 14. Tesis (Titulo para ingeniero Civil):Tarapoto. [En línea] 2018. [Citado el: 25 de Abril de 2020.] https://hdl.handle.net/20.500.12692/27093.

Villegas, V. R. 2015. [En línea] 2015. Fabricación de concreto de resistencia a la compresión 210 y 280 Kg/M2, empleando como agregado grueso concreto desechado de obras, y sus Costos Unitarios vs Concreto con Agregado Natural, Barranca - 2015. (Tesis de pregrado), UNASAM.

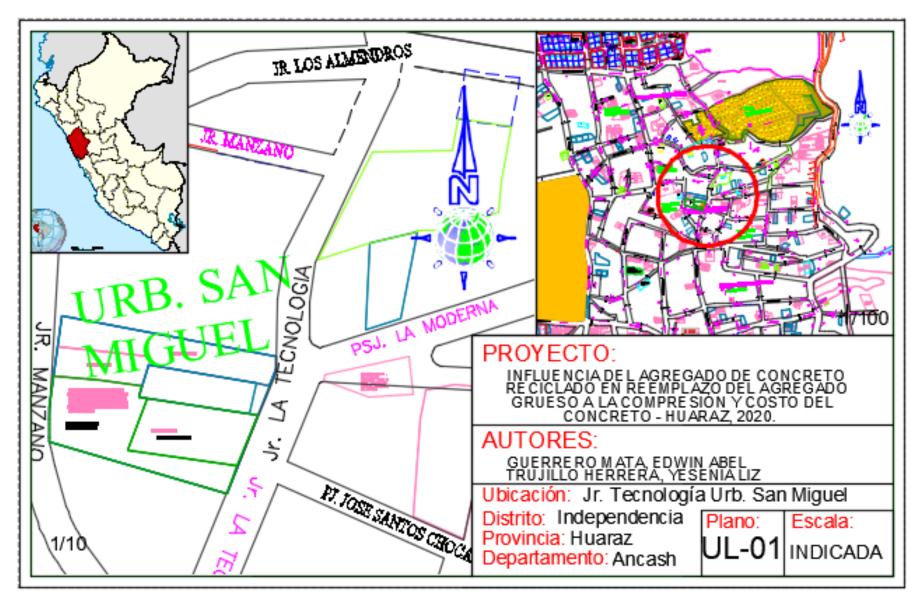
ANEXOS

ANEXO 1: Matriz De Consistencia.

Titulo	Formulación Del Problema	Objetivos	Hipótesis	Variables	Tipo y Diseño De Investigación
		General		Independiente	Tipo
	. Cáma influe	Determinar la influencia del agregado de concreto reciclado en reemplazo del agregado grueso a la compresión y costo del concreto.		Concreto reciclado	Aplicada
Influencia Del Agregado De	¿Cómo influye el agregado de	Específicos	Si remplazamos por	Dependientes	Diseño
Concreto Reciclado En Reemplazo Del Agregado Grueso A La Compresión Y Costo Del Concreto – Huaraz, 2020.	concreto reciclado en un 0%, 25% y 50% de reemplazo del agregado grueso a la compresión y costo del concreto de f'c 210 kg/cm2?	 Determinar las propiedades mecánicas del agregado grueso mediante el ensayo de Contenido de Humedad, Granulometría, Peso Unitario, Peso Específico, Porcentaje de Absorción y la Resistencia al Desgaste por Abrasión. Determinar el esfuerzo a la compresión del concreto convencional a 7, 14, 21 y 28 días del concreto de f'c 210 kg/cm2 usando cemento portland tipo 1. Determinar la influencia de ACR en 25% y 50% de reemplazo del agregado grueso sobre la compresión a los 7, 14, 21 y 28 días del concreto 210 kg/cm2 de esfuerzo a la compresión usando cemento portland tipo 1 Analizar el costo de producción del concreto convencional en un 25% y 50% de reemplazo de agregado grueso por el ACR. 	25% y 50% al agregado grueso por el ACR a un concreto de 210 kg/cm2 de resistencia obtendremos resistencias más altas a la compresión, así como también costos menores de acorde al porcentaje de reemplazo.	 Resistencia a la compresión. Costo del concreto. 	Cuasi experimental

ANEXO 2: Matriz De Operacionalización De Variables.

Variable Independiente	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Escala De Medición
				 Contenido De Humedad. 	Razón
				 Granulometría. 	Intervalo
				 Peso Unitario 	Razón
	"Son agregados derivados	1 - (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	 Agregado 	Peso Específico	Razón
	de materiales procesados, previamente usados en un	La técnica que se empleará será la observación y como	Grueso.	 Porcentaje de Absorción. 	Razón
Concreto reciclado	producto y/o en construcción" (Kareema, et al, 2019).	instrumento se aplicará la guía de observación y las fichas técnicas de las		 Resistencia al desgaste por Abrasión. 	Intervalo
	3. d., 20.10).	pruebas de laboratorio	Dosificación del concreto reciclado	Porcentaje a dosificar • 0% • 25% • 50%	Razón
Variables Dependientes	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Escala De Medición
Resistencia a la compresión	"Es la suficiencia para soportar un peso por unidad de área, y se expresa en cláusulas de esfuerzo, ordinariamente y se expresa, kg/cm², MPa y psi" (Cemex, 2019, p.1).	La técnica será aplicada de tal forma que mediante la observación de los datos recopilados en la ficha técnica del ensayo de esfuerzo a la compresión el cual nos dará el resultado deseado (el esfuerzo a la compresión aumenta a medida que se incrementa el porcentaje de reemplazo)	Compresión	 Resistencia a la compresión a los 7,14, 21 y 28. 	Razón


Costo del concreto	El costo es el precio relativo de los materiales que se requieren para la preparación del concreto.	La técnica será aplicada de tal forma que mediante la observación de los datos recopilados de los precios de cada material a utilizar para la preparación del concreto se procederá a comparar dichos resultados del concreto con agregado de concreto reciclado con respecto al costo de elaboración del agregado convencional para el cual se espera obtener los resultados esperados.	Precio del concreto	Costos unitarios por m3 de concreto de los materiales a utilizar para la preparación del concreto.	Razón
-----------------------	--	--	---------------------	--	-------

ANEXO 3: Instrumento De Recolección De Datos.

FICHA DE RECOLECCIÓN DE DATOS				
Clave de la muestra:				
Hora: 9:30 am	Fecha: 02/09/2020			
Nombre del sitio: Jr. Tecnología				
Ubicación: San Miguel - Independen	cia			
Departamento: Ancash				
Provincia: Huaraz				
Distrito: Independencia				
Jirón: Tecnología-Urb. San Miguel				
	nadas UTM			
ESTE : 223158.473	NORTE: 8947040.767			
Descripción de la superficie:				
No presenta fallas				
No presenta desgaste				
Uso Principal: Pavimento				
Color: Plomizo				
Textura: Porosa y uniforme	CONTRACTOR OF THE PARTY OF THE			
Cantidad: 100 kg	of CS Top			
Comentarios:	Je de la marchine de			

Fuente: Elaboración propia

ANEXO 4: Plano de ubicación del Material Reciclado

ANEXO 5: Contenido De Humedad Del agregado fino y grueso.

Página 2 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN

UBIC. CANTERA: FECHA:

TACLLAN 4/09/2020

CONTENIDO DE HUMEDAD

ASTM C 566 (NTP 339.185)

AGREGADO:

Muestra	M-	-01
Recipiente N°	8	10
Peso Húmedo + Recipiente (gr)	197.80	198.40
Peso Seco + Recipiente (gr)	193.10	193.40
Peso recipiente	20.40	20.20
Peso del agua (gr)	4.70	5.00
Peso Suelo Seco (gr)	172.70	173.20
Contenido de Humedad (%)	2.72	2.89

Humedad Promedio (%)	2.81
----------------------	------

AGREGADO: GRUESO

Muestra	M-	M-01	
Recipiente N°	2	4	
Peso Húmedo + Recipiente (gr)	142.90	154.70	
Peso Seco + Recipiente (gr)	141.50	153.10	
Peso recipiente	24.40	26.70	
Peso del agua (gr)	1.40	1.60	
Peso Suelo Seco (gr)	117.10	126.40	
Contenido de Humedad (%)	1.20	1.27	

CERT: 200744 Humedad Promedio (%)

ANEXO 6: Análisis Granulométrico Por Tamizado Agregado Grueso.

Página 3 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN

UBIC. CANTERA: TACLLAN FECHA:

4/09/2020

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM C136 (NTP 400.012)

AGREGADO:

GRUESO

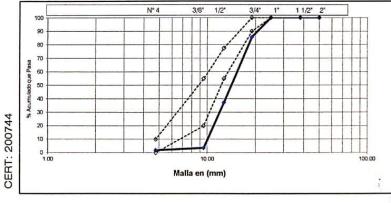
PESO INICIAL SECO:

3115.00 grs

% Pasa N° 4:

1.70

PESO LAVADO SECO:


3062.00 grs

Peso Retenido 2" (gr):

0.00

TAMIZ	ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2	pa .	50.000	. 0.00	0.00	0.00	100.00
11,	/2"	38.100	0.00	0.00	0.00	100.00
1		25.000	0.00	0.00	0.00	100.00
3/-	4"	19.000	448.40	14.39	14.39	85.61
1/:	2"	12.700	1505.20	48.32	62.72	37.28
3/	8"	9.500	1054.20	33.84	96.56	3.44
N°	4	4.760	54.20	1.74	98.30	1.70

3062.00

OBSERVACION:

El agregado grueso esta compuesto por piedra chancada

ANEXO 7: Análisis Granulométrico Por Tamizado Agregado Fino.

Página 4 de 6

PROYECTO

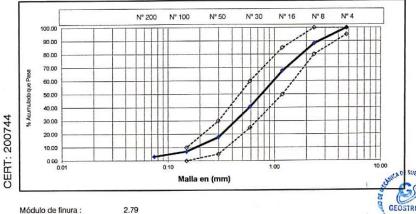
INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

HUARAZ-ANCASH LUGAR: TACLLAN CANTERA:

UBIC. CANTERA: TACLLAN 04/09/2020 FECHA:


ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM C 136 (NTP 400.012)

AGREGADO: A. FINO 3.10 % Pasa Nº 200: PESO INICIAL SECO: 3150.00 grs PESO LAVADO SECO: 3052.30 grs Peso Retenido Nº 4 (gr): 0.00

TAMIZ	ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
N°	4	4.780	0.00	0.00	0.00	100.00
N°	8	2.360	375.40	11.92	11.92	88.08
Ν°	16	1.190	645.30	20.49	32.40	67.60
Ν°	30	0.590	850.30	26.99	59.40	40.60
Ν°	50	0.297	720.30	22.87	82.26	17.74
N°	100	0.149	340.80	10.82	93.08	6.92
No.	200	0.074	120.20	3.82	96.90	3.10

3052.30

Módulo de finura:

OBSERVACION:

ANEXO 8: Peso Unitario Agregado Fino Y Agregado Grueso.

Página 5 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN

UBIC. CANTERA: TACLLAN FECHA:

4/09/2020

PESO UNITARIO AGREGADO FINO ASTM C29 (NTP 400.017)

TIPO DE PESO UNITARIO	Peso Unitario Suelto		Peso U	nitario Comp	oactado	
MUESTRA N°	1	2	3	1	2	3
Peso Material + Molde	10080.00	10010.00	10050.00	10450.00	10470.00	10460.00
Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
Peso del Material	3380.00	3310.00	3350.00	3750.00	3770.00	3760.00
Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
Peso Unitario(Ton/m3)	1.591	1.558	1.577	1.766	1.775	1.77
Peso Unitario Promedio (Ton/m3)	1.575		39	1.77		

PESO UNITARIO AGREGADO GRUESO ASTM C29 (NTP 400.017)

TIPO DE PESO UNITARIO	Pes	o Unitario S	uelto	Peso U	Initario Comp	oactado
MUESTRA N°	1	2	3	1	2	3
Peso Material + Molde	9700.00	9730.00	9780.00	10040.00	10010.00	10090.00
Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
Peso del Material	3000.00	3030.00	3080.00	3340.00	3310.00	3390.00
Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
Peso Unitario(Ton/m3)	1.412	1.427	1.45	1.573	1.558	1.596
Peso Unitario Promedio (Ton/m3)		1.43			1.576	

ANEXO 9: Peso Específico Y Porcentaje De Absorción Del Agregado Fino y Grueso

Página 6 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO -

HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA: UBIC. CANTERA: TACLLAN

TACLLAN

FECHA:

04/09/2020

PESO ESPECIFICO ASTM C127-C128 (NTP 400.021-400.022)

AGREGADO	FINO	GRUESO
Tamaño Maximo de la muestra	Malla Nº 4	3/4"
Tipo de Frasco Utilizado	Fiola 500 ml	Prob. 1000 ml
Peso Frasco+ Agua	682.70	1567.40
Peso Material Sup Seca al aire	200.00	500.00
Peso Material Saturado + Agua +Frasco	882.70	2067.40
Peso Global con desp. de Volumen	807.30	1897.20
Peso Vol. Masa + Vol Vacios	75.40	170.20
Peso Específico	2.65	2.94

PORCENTAJE DE ABSORCION ASTM C127-C128 (NTP 400.021-400.022)

	AGREGADO	FINO	GRUESO
	N° Recipiente	2	6
44	Peso Recipiente + Material Sup. Seca en Aire	140.20	143.90
2007	Peso Recip. + Material Secado en Estufa	137.90	142.60
20	Peso del Agua	2.30	1.30
	Peso del Recipiente	31.20	32.20
ERT:	Peso Material Secado en estufa	106.70	110.40
Ö	Porcentaje de absorción	2.16	1.18

ANEXO 10: Resistencia al desgaste del Agregado Grueso por Abrasión

Página 1 de 1

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ SOLICITANTE:

CANTERA TACLLAN TACLLAN UBIC. CANTERA: FECHA: 4/09/2020

OBRA:

RESISTENCIA AL DESGASTE DEL AGREGADO GRUESO POR ABRASION

ASTM C131-C535 (NTP 400.019-400.020) AASHTO T-96

TAMAÑO	MALLA	1000	PES	O DE LOS TAM	MAÑOS INDICA	ADOS EN GRA	MOS	
PASA EL TAMIZ	RETENIDO EN EL TAMIZ	GRADO "A" (12)	GRADO "B" (11)	GRADO "C" (8)	GRADO "D" (6)	GRADO "1" (12)	GRADO "2" (12)	GRADO "3" (12)
3"	21/2"					2500 gr		
2 1/2"	2"					2500 gr		
2*	1 1/2"	-1				2500 gr	5000 grs	
1 1/2"	1"	1250 gr					5000 grs	5000 grs
1"	3/4"	1250 gr						5000 grs
3/4"	1/2"	1250 gr	2500 gr					
1/2"	3/8"	1250 gr	2500 gr					
3/8"	Nº 3			2500 gr				
Nº 3	Nº 4			2500 gr				
Nº 4	Nº 8				5000 grs			

Nota: Los números entre parentesis indican la cantidad de esferas

IDENTIFICACION	
Muestra	M-1
Clasificación AASHTO	
Clasificación SUCS	
Graduación	"A"
Peso Mat/Ret. en la Malla № 12(gr)	3020
Peso Mat que Pasa Malla № 12(gr)	1980
Porcentaje Desgaste (%)	39.6

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado de sistema de calidad de la entidad que la produce (Resolución Nº 0002-98/INDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpretación del 1 mismo de exclusiva responsabilidad del usuario

INDECOPI REGISTRO N° 00078368 RUC N° 10316289652 RNP: C7390 SO386686

Página 1 de 1

DE SUELOS

OBRA:

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO

A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR: HUARAZ-ANCASH

CANTERA UBIC. CANTERA:

TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

FECHA: 24/09/2020

RESISTENCIA AL DESGASTE DEL AGREGADO GRUESO POR ABRASION

ASTM C131-C535 (NTP 400.019-400.020) AASHTO T-96

TAJ	MAÑO M	ALLA		PES	O DE LOS TAN	MAÑOS INDIC	ADOS EN GRA	MOS	
PASA TAMIZ	EL	RETENIDO EN EL TAMIZ	GRADO "A" (12)	GRADO "B" (11)	GRADO "C" (8)	GRADO "D" (6)	GRADO "1" (12)	GRADO "2" (12)	GRADO "3" (12)
3"		2 1/2"					2500 gr		
2 1/2"		2"					2500 gr		
2"		1 1/2"					2500 gr	5000 grs	
1 1/2"		1"	1250 gr					5000 grs	5000 grs
1"		3/4"	1250 gr						5000 grs
3/4"		1/2"	1250 gr	2500 gr					
1/2"		3/8"	1250 gr	2500 gr		,			
3/8"		Nº 3			2500 gr				
Nº 3		Nº 4			2500 gr				
Nº 4		Nº 8				5000 grs			

Los números entre parentesis indican la cantidad de esferas Nota:

IDENTIFICACION	
Muestra	M-1
Clasificación AASHTO	
Clasificación SUCS	
Graduación	"A"
Peso Mat/Ret. en la Malla № 12(gr)	3810
Peso Mat que Pasa Malla Nº 12(gr)	1190 - 🔀
Porcentaje Desgaste (%)	23.8

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado de sistema de calidad de la entidad que la produce (Resolución 0002-98/INDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpreta mismo de exclusiva responsabilidad del usuario

ANEXO 11: Diseño de mezcla de concreto (ACI 211).

Estudios de Mecánica de Suelos Control de calidad en campo Consultoría en Ingeniería Estructural Oria en Ingeniería Geotécnica

INDECOPI REGISTRO Nº 00078368 RUC Nº 10316289652 RNP: C7390 SO386686

Página 1 de 6

DISEÑO DE MEZCLAS DE CONCRETO

ACI 211

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

IACLLAN

UBIC. CANTERA: FECHA: TACLLAN

4/09/2020

DATOS TECNICOS:

210 Kg/cm2

fc de diseño :

AGREGADO FINO

Módulo de fineza: Contenido de Humedad(%):

Absorción(%):

 2.79
 Peso específico (Ton/m3):
 2.65

 2.81
 Peso Seco Suelto (Kg/m3):
 1575

 2.16
 Peso seco Compactado(Kg/m3):
 1770

Peso seco Compactado(Kg/m3):

AGREGADO GRUESO:

Contenido de Humedad(%) : Absorción(%) : 1.24 Peso específico (Ton/m3):
1.18 Peso Seco Suelto (Kg/m3):

VALORES DE DISEÑO

Resistencia a la compresión(Kg/cm2): Tamaño Máximo nominal (Pulg): 210 Peso específico del cemento (Tipo I):
3/4" Revenimiento(pulg):
205 Aire atrapado (%):

Agua de mezclado (Lts) Relación a/c

0.53 Volumen de agregado grueso:

CANTIDAD DE MATERIALES POR M3 DE CONCRETO

 MATERIAL
 KG/M3

 Cemento:
 387.00

 Arena:
 867.00

 Piedra:
 989.00

 Agua:
 198.93

THE SULLOS FERE

2.94

1430

1576

3.11

3"-4"

2.0

0.62

Bolsas/m3

	PROPORCIONES	
MATERIAL	PESO	VOLUMEN
Cemento	1	1
Arena	2.24	2.08
Piedra	2.56	2.65
Agua	0.51	21.85

It/saco

OBSERVACION:

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado de sistema de calidad de la entidad que la produce (Resolución Nº 0002-98/INDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpretacion del mismo de exclusiva responsabilidad del usuario

0074

THE PERSON

ANEXO 12: Material a utilizar para el preparado de las 12 probetas con 100% de piedra chancada, con el 5% de desperdicios.

Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado grueso a la compresión y costo del concreto – Huaraz, 2020. Materiales a Utilizar Para el Preparado de las 12 Probetas con el 5% de Desperdicios

Cantidad de material para 1 m3 de concreto

Material	Kg/m3
Cemento	387.00
Agregado Fino	867.00
Agregado Grueso	989.00
Agua	198.93

f'c = 210.00 kg

Fuente: Geostruct

AF:	100%
AGC:	100%
AGR:	0%

PROBETA

Cantidad: 12.000 und
Diametro: 0.150 m
Altura: 0.300 m
Área: 0.018 m2
Volumen: 0.005 m3

Volumen de concreto a utilizar para 12 probetas con 5% de desperdicios:

 Vol./12prob.:
 0.064 m3

 Desperdicios:
 5%

 Vol. Desperdicios:
 0.003 m3

 Vol. Total:
 0.067 m3

Materiales para 0.067 m3 de concreto:

Material	Kg/(0.067 m3)
Cemento	25.851
Agregado Fino	57.914
Agregado Grueso	66.063
Agua	13.288

Materiales para una probeta:

Material	Kg/probeta
Cemento	2.154
Agregado Fino	4.826
Agregado Grueso	5.505
Agua	1.107

% de Reemplazo		Agregado Fino (kg)		Concreto Reciclado (kg)	Agua (It)
0%	2.154	4.826	5.505	0.000	1.107

ANEXO 13: Contenido De Humedad con 75% de piedra chancada y 25% de concreto reciclado.

Página 2 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA UZ

LUGAR:

FECHA:

HUARAZ-ANCASH

CANTERA: UBIC. CANTERA:

Humedad Promedio (%)

TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO

25/09/2020

CONTENIDO DE HUMEDAD ASTM C 566 (NTP 339.185)

FINO AGREGADO:

Muestra	M	-01
Recipiente N°	8	10
Peso Húmedo + Recipiente (gr)	202.40	217.20
Peso Seco + Recipiente (gr)	199.20	213.20
Peso recipiente	40.00	40.10
Peso del agua (gr)	3.20	4.00
Peso Suelo Seco (gr)	159.20	173.10
Contenido de Humedad (%)	2.01	2.31

AGREGADO: GRUESO

2.16

Muestra	M-O8		
Recipiente N°	2	4	
Peso Húmedo + Recipiente (gr)	152.30	154.20	
Peso Seco + Recipiente (gr)	150.60	153.20	
Peso recipiente	40.00	40.40	
Peso del agua (gr)	1.70	1.00	
Peso Suelo Seco (gr)	110.60	112.80	
Contenido de Humedad (%)	1.54	0.89	

Humedad Promedio (%) 1.22

CERT: 200819

ANEXO 14: Análisis Granulométrico Por Tamizado con 75% de piedra chancada y 25% de concreto reciclado.

Página 3 de 6

PROYECTO

CANTERA:

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO UBIC. CANTERA: TACLLAN 75% PIEDRA CHANCADA: 25% CONCRETO RECICLADO

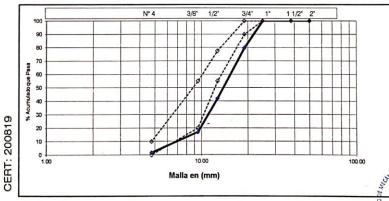
FECHA: 25/09/2020

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM C136 (NTP 400.012)

GRUESO AGREGADO:

PESO INICIAL SECO: PESO LAVADO SECO:


3237.00 grs 3185.00 grs % Pasa N° 4:

1.61

0.00 Peso Retenido 2" (gr):

TAMIZ	ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2	-	50.000	0.00	0.00	0.00	100.00
11,	/2"	38.100	0.00	0.00	0.00	100.00
1		25.000	0.00	0.00	0.00	100.00
3/	4"	19.000	657.00	20.30	20.30	79.70
1/	2"	12.700	1218.00	37.63	57.92	42.08
3/	8"	9.500	813.00	25.12	83.04	16.96
N°	4	4.760	497.00	15.35	98.39	1.61

3185.00

OBSERVACION: El agregado grueso esta compuesto por piedra chancada

ANEXO 15: Peso Unitario con 75% de piedra chancada y 25% de concreto reciclado.

Página 5 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERREHO MATA EDWIN ABEL - THUJILLO HERHEHA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO UBIC. CANTERA: TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO

PESO UNITARIO AGREGADO FINO ASTM C29 (NTP 400.017)

TIPO DE PESO UNITARIO	Peso Unitario Suelto			Peso Unitario Compactado		
MUESTRA N°	1	2	3	1	2	3
Peso Material + Molde	10080.00	10000.00	10030.00	10440.00	10430.00	10450.00
Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
Peso del Material	3380.00	3300.00	3330.00	3740.00	3730.00	3750.00
Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
Peso Unitario(Ton/m3)	1.591	1.554	1.568	1.761	1.756	1.766
Peso Unitario Promedio (Ton/m3)	1.571			1.761		

PESO UNITARIO AGREGADO GRUESO ASTM C29 (NTP 400.017)

	TIPO DE PESO UNITARIO	Peso Unitario Suelto			Peso Unitario Compacta		pactado
	MUESTRA N°	1	2	3	1	2	3
5	Peso Material + Molde	9700.00	9730.00	9780.00	10040.00	10010.00	10090.00
081	Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
Š	Peso del Material	3000.00	3030.00	3080.00	3340.00	3310.00	3390.00
Ë.	Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
ERT:	Peso Unitario(Ton/m3)	1.412	1.427	1.45	1.573	1.558	ن, 1.596
$\ddot{\circ}$	Peso Unitario Promedio (Ton/m3)		1.43			1.576	2

ANEXO 16: Peso Específico Y Porcentaje De Absorción con 75% de piedra chancada y 25% de concreto reciclado.

Página 6 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO -

HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO UBIC. CANTERA: TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO

FECHA: 25/09/2020

PESO ESPECIFICO ASTM C127-C128 (NTP 400.021-400.022)

AGREGADO	FINO	GRUESO
Tamaño Maximo de la muestra	Malla Nº 4	3/4"
Tipo de Frasco Utilizado	Fiola 500 ml	Prob. 1000 ml
Peso Frasco+ Agua	682.70	1570.00
Peso Material Sup Seca al aire	200.00	500.00
Peso Material Saturado + Agua +Frasco	882.70	2070.00
Peso Global con desp. de Volumen	807.30	1895.00
Peso Vol. Masa + Vol Vacios	75.40	175.00
Peso Específico	2.65	2.86

PORCENTAJE DE ABSORCION ASTM C127-C128 (NTP 400.021-400.022)

	AGREGADO	FINO	GRUESO
	N° Recipiente	2	6
200819	Peso Recipiente + Material Sup. Seca en Aire	140.20	143.60
80	Peso Recip. + Material Secado en Estufa	137.90	142.29
20	Peso del Agua	2.30	1.31
	Peso del Recipiente	31.20	32.20
ERT:	Peso Material Secado en estufa	106.70	110.09
2	Porcentaje de absorción	2.16	1.19

ANEXO 17: Diseño de mezcla de concreto (ACI 211) con 75% de piedra chancada y 25% de concreto reciclado.

Página 1 de 6

CERT: 200819

DISEÑO DE MEZCLAS DE CONCRETO

ACI 211

PROYECTO INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL

AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR: HUARAZ-ANCASH

CANTERA: IACLLAN 75% PIEDHA CHANCADA- 25% CONCHETO HECICLADO
UBIC. CANTERA: TACLLAN 75% PIEDRA CHANCADA- 25% CONCRETO RECICLADO

FECHA: 25/09/2020

DATOS TECNICOS:

fc de diseño: 210 Kg/cm2

AGREGADO FINO

 Módulo de fineza:
 2.79
 Peso específico (Ton/m3):
 2.65

 Contenido de Humedad(%):
 2.16
 Peso Seco Suelto (Kg/m3):
 1571

 Absorción(%):
 2.16
 Peso seco Compactado(Kg/m3):
 1761

AGREGADO GRUESO:

 Contenido de Humedad(%):
 1.22
 Peso específico (Ton/m3):
 2.86

 Absorción(%):
 1.19
 Peso Seco Suelto (Kg/m3):
 1430

 Peso seco Compactado(Kg/m3):
 1576

 VALORES DE DISEÑO

Resistencia a la compresión(Kg/cm2): 210 Peso específico del cemento (Tipo I): Tamaño Máximo nominal (Pu/g) : 3/4" Revenimiento(pu/g):

Agua de mezclado (Lts) : 205 Aire atrapado (%):

Relación a/c : 0.53 Volumen de agregado grueso:

CANTIDAD DE MATERIALES POR M3 DE CONCRETO

MATERIAL KG/M3
Cemento: 387.00
Arena: 821.00
Piedra: 1005.00
Agua: 204.70

PROPORCIONES

PROPORCIONES			
MATERIAL	PESO	VOLUMEN	
Cemento	1	1	
Arena	2.12	1.98	
Piedra	2.60	2.69	
Agua	0.53	22.48	

Bolsas/m3

3.11

3"-4"

2.0

0.63

9.11

OBSERVACION:

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de produce (Resolución Nº 0002-98/INDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpretacion del mismo de exclusiva responsabilidad del usuario

ANEXO 18: Material a utilizar para el preparado de las 12 probetas con 75% de piedra chancada y 25% de concreto reciclado.

Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado grueso a la compresión y costo del concreto – Huaraz, 2020. Materiales a Utilizar Para el Preparado de las 12 Probetas con el 5% de Desperdicios

Cantidad de material para 1 m3 de concreto

Material	Kg/m3
Cemento	387.00
Agregado Fino	821.00
Agregado Grueso	1005.00
Agua	204.70

f'c = 210.00 kg/cm2

Fuente: Geostruct

AF:	100%
AGC:	75%
AGR:	25%

PROBETA

Cantidad:	12.000	und
Diametro:	0.150	m
Altura:	0.300	m
Área:	0.018	m2
Volumen:	0.005	m3

Volumen de concreto a utilizar para 12 probetas con 5% de desperdicios:

Vol./12prob.:	0.064	m3
Desperdicios:	5%	
Vol. Desperdicios:	0.003	m3
Vol. Total:	0.067	m3

Materiales para 0.067 m3 de concreto:

Material	Kg/(0.067 m3)		
Cemento	25.851		
Agregado Fino	54.841		
Agregado Grueso	67.132		
Agua	13.674		

Materiales para una probeta:

Material	Kg/probeta
Cemento	2.154
Agregado Fino	4.570
Agregado Grueso	5.594
Agua	1.139

% de Reemplazo	Cemento (kg)	Agregado Fino (kg)		Concreto Reciclado (kg)	Agua (It)
25%	2.154	4.570	4.196	1.399	1.139

ANEXO 19: Contenido De Humedad con 50% de piedra chancada y 50% de concreto reciclado.

Página 2 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

UBIC. CANTERA:

CONTENIDO DE HUMEDAD ASTM C 566 (NTP 339.185)

FINO AGREGADO:

Muestra	M-01		
Recipiente N°	8	10	
Peso Húmedo + Recipiente (gr)	216.20	221.40	
Peso Seco + Recipiente (gr)	213.40	217.10	
Peso recipiente	39.00	40.40	
Peso del agua (gr)	2.80	4.30	
Peso Suelo Seco (gr)	174.40	176.70	
Contenido de Humedad (%)	1.61	2.43	

Humedad Promedio (%)	2.02	

AGREGADO: GRUESO

Muestra	M-01		
Recipiente N°	2	4	
Peso Húmedo + Recipiente (gr)	161.40	155.40	
Peso Seco + Recipiente (gr)	160.00	154.10	
Peso recipiente	40.00	38.40	
Peso del agua (gr)	1.40	1.30	
Peso Suelo Seco (gr)	120.00	115.70	
Contenido de Humedad (%)	1.17	1.12	

Humedad Promedio (%)

CERT: 200820

200820

ANEXO 20: Análisis Granulométrico Por Tamizado con 50% de piedra chancada y 50% de concreto reciclado.

Página 3 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

UBIC. CANTERA: TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

FECHA: 25/09/2020

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM C136 (NTP 400.012)

AGREGADO: **GRUESO**

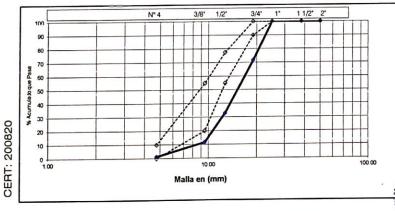
PESO INICIAL SECO:

3096.00 grs

% Pasa Nº 4:

1.23

PESO LAVADO SECO:


3058.00 grs

Peso Retenido 2" (gr):

0.00

TAMIZ	ASTM	ABERTURA (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% ACUMULADO QUE PASA
2'		50.000	0.00	0.00	0.00	100.00
11/	2"	38.100	0.00	0.00	0.00	100.00
1'		25.000	0.00	0.00	0.00	100.00
3/4	4"	19.000	878.00	28.36	28.36	71.64
1/2	2º ·	12./00	1200.00	38./6	6/.12	32.88
3/8		9.500	656.00	21.19	88.31	11.69
Nº	4	4.760	324.00	10.47	98.77	1.23

3058.00

OBSERVACION:

El agregado grueso esta compuesto por piedra chancada 50 % - concreto reciclado 50%

ANEXO 21: Peso Unitario con 50% de piedra chancada y 50% de concreto reciclado.

Página 5 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO

GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE:

GUERRERO MATA EDWIN ABEL - TRUJILLO HERHERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA: TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO UBIC. CANTERA: TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

FECHA: 25/0

PESO UNITARIO AGREGADO FINO ASTM C29 (NTP 400.017)

TIPO DE PESO UNITARIO	Peso Unitario Suelto			Peso Unitario Compactado		
MUESTRA N°	1	2	3	1	2	3
Peso Material + Molde	10092.00	9980.00	10024.00	10430.00	10442.00	10441.00
Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
Peso del Material	3392.00	3280.00	3324.00	3730.00	3742.00	3741.00
Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
Peso Unitario(Ton/m3)	1.597	1.544	1.565	1.756	1.762	1.761
Peso Unitario Promedio (Ton/m3)		1.569			1.76	

PESO UNITARIO AGREGADO GRUESO ASTM C29 (NTP 400.017)

	TIPO DE PESO UNITARIO	Pes	o Unitario Si	uelto	Peso Unitario Compactado		
	MUESTRA N°	1	2	3	1	2	3
20	Peso Material + Molde	9700.00	9730.00	9780.00	10040.00	10010.00	10090.00
800	Peso del Molde	6700.00	6700.00	6700.00	6700.00	6700.00	6700.00
20	Peso del Material	3000.00	3030.00	3080.00	3340.00	3310.00	3390.00
٠.	Volumen del Molde	2124.00	2124.00	2124.00	2124.00	2124.00	2124.00
ER	Peso Unitario(Ton/m3)	1.412	1.427	1.45	1.573	1.558	1.596
	Peso Unitario Promedio (Ton/m3)		1.43			1.576	730

ANEXO 22: Peso Específico Y Porcentaje De Absorción con 50% de piedra chancada y 50% de concreto reciclado.

Página 6 de 6

PROYECTO

INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO -

HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR:

HUARAZ-ANCASH

CANTERA:

TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO UBIC. CANTERA: TACLLAN 50% PIEDRA CHANCADA: 50% CONCRETO RECICLADO

PESO ESPECIFICO ASTM C127-C128 (NTP 400.021-400.022)

AGREGADO	FINO	GRUESO
Tamano Maximo de la muestra	Malla Nº 4	3/4"
Tipo de Frasco Utilizado	Fiola 500 ml	Prob. 1000 ml
Peso Frasco+ Agua	682.70	1572.00
Peso Material Sup Seca al aire	200.00	500.00
Peso Material Saturado + Agua +Frasco	882.70	2072.00
Peso Global con desp. de Volumen	807.30	1898.00
Peso Vol. Masa + Vol Vacios	75.40	174.00
Peso Específico	2.65	2.87

PORCENTAJE DE ABSORCION ASTM C127-C128 (NTP 400.021-400.022)

AGREGADO	FINO	GRUESO
N° Recipiente	2	6
Peso Recipiente + Material Sup. Seca en Aire	140.20	143.60
Peso Recip. + Material Secado en Estufa	137.90	142.29
Peso del Agua	2.30	1.31
Peso del Recipiente	31.20	32.20
Peso Material Secado en estufa	106.70	110.09
Porcentaje de absorción	2.16	1.19

ANEXO 23: Diseño de mezcla de concreto (ACI 211) con 50% de piedra chancada y 50% de concreto reciclado.

Página 1 de 6

DISEÑO DE MEZCLAS DE CONCRETO ACI 211

PROYECTO INFLUENCIA DEL AGHEGADO DE CONCHETO HECICLADO EN HEEMPLAZO DEL

AGREGADO GRUESO A LA COMPRESION Y COSTO DEL CONCRETO - HUARAZ 2020

SOLICITANTE: GUERRERO MATA EDWIN ABEL - TRUJILLO HERRERA YESENIA LIZ

LUGAR: HUARAZ-ANCASH
CANTEHA: IACLLAN 50% PIEDHA CHANCADA- 50% CONCHETO HECICLADO

UBIC. CANTERA: TACLLAN 50% PIEDRA CHANCADA- 50% CONCRETO RECICLADO

FECHA: 25/09/2020

DATOS TECNICOS:

fc de diseño: 210 Kg/cm2

 AGREGADO FINO

 Módulo de fineza:
 2.79
 Peso específico (Ton/m3):
 2.65

 Contenido de Humedad(%):
 2.02
 Peso Seco Suelto (Kg/m3):
 1569

 Absorción(%):
 2.16
 Peso seco Compactado(Kg/m3):
 1760

AGREGADO GRUESO:

 Contenido de Humedad (%):
 1.15
 Peso específico (Ton/m3):
 2.87

 Absorción (%):
 1.19
 Peso Seco Suelto (Kg/m3):
 1430

 Peso seco Compactado (Kg/m3):
 1576

VALORES DE DISEÑO

Resistencia a la compresión(Kg/cm2): 210 Peso específico del cemento (Tipo I): 3.11
Tamaño Máximo nominal (Pulg): 3/4" Revenimiento(pulg): 3"-4"
Agua de mezclado (Lts): 205 Aire atrapado (%): 2.0
Relación a/c: 0.53 Volumen de agregado grueso: 0.62

CANTIDAD DE MATERIALES POR M3 DE CONCRETO

MATERIAL KG/M3
Cemento: 387.00 9.11 Bolsas/m3
Arena: 838.00
Piedra: 988.00
Agua: 206.54

PROPORCIONES

THOTOTOTOTES				
MATERIAL	PESO	VOLUMEN		
Cemento	1	1		
Arena	2.17	2.03		
Piedra	2.55	2.65		
Agua	0.53	22.68		

GEOSTRUCT

OBSERVACION:

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado de sistema de calidad de la entidad que la produce (Resolución Nº 0002-98/MDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpretacion del mismo de exclusiva exerconspilidad del justicio.

Oficina: Jr. Hualcan N° 240 - Huaraz - Telf.: 043509230 - 943048865 - 942918776 - WhatsApp: 943048865 - 942918776

Email: geostructura@gmail.com - jbarretop@gmail.com - informes@geostruct.com.pe

www.geostruct.com.pe

ANEXO 24: Material a utilizar para el preparado de las 12 probetas con 50% de piedra chancada y 50% de concreto reciclado

Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado grueso a la compresión y costo del concreto – Huaraz, 2020. Materiales a Utilizar Para el Preparado de las 12 Probetas con el 5% de Desperdicios

Cantidad de material para 1 m3 de concreto

Material	Kg/m3
Cemento	387.00
Agregado Fino	838.00
Agregado Grueso	988.00
Agua	206.54

f'c = 210.00 kg/cm2

-	0	-	
Fuent	6.	Geost	ruc

AF:	100%
AGC:	50%
AGR:	50%

PROBETA

Cantidad: 12.000 und
Diametro: 0.150 m

Altura: 0.300 m

Área: 0.018 m2

Volumen: 0.005 m3

Volumen de concreto a utilizar para 12 probetas con 5% de desperdicios:

 Vol./12prob.:
 0.064 m3

 Desperdicios:
 5%

 Vol. Desperdicios:
 0.003 m3

 Vol. Total:
 0.067 m3

Materiales para 0.067 m3 de concreto:

Material	Kg/(0.067 m3)				
Cemento	25.851				
Agregado Fino	55.977				
Agregado Grueso	65.997				
Agua	13.796				

Materiales para una probeta:

Material	Kg/probeta			
Cemento	2.154			
Agregado Fino	4.665			
Agregado Grueso	5.500			
Agua	1.150			

% de Reemplazo		Agregado Fino (kg)		Concreto Reciclado (kg)	Agua (It)
50%	2.154	4.665	2.750	2.750	1.150

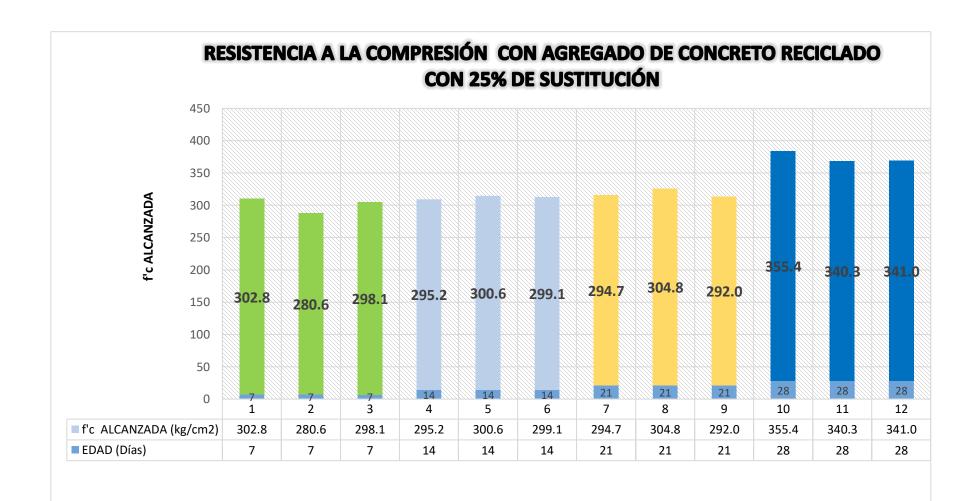
ANEXO 25: Ensayo de la Resistencia a la Compresión de las 36 Probetas.

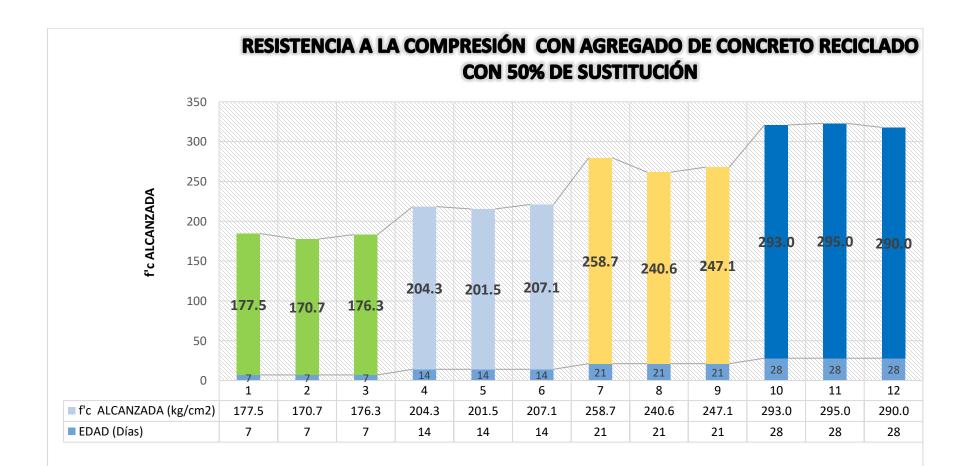
Real Street	ENSAYO DE RESISTENCIA A LA COMPRESIÓN (NTP 339.034-2013)
TESIS	Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado grueso a la compresión y costo del
	concreto – Huaraz, 2020.
TESISTAS	GUERRERO MATA, Edwin Abel
TESIS IAS	TRUJILLO HERRERA, Yesenia Liz
	AGREGADO GRUESO NATURAL: Tacilan
CANTERA	AGREGADO GRUESO RECICLADO: Obras realizadas por QUAVII en el Jr. Tecnología - Urbanización San Miguel-
CANTERA	Independencia - Huaraz
	AGREGADO FINO: Tacllan

NOMBRE	A/C	f'c de Diseño	FEC	CHA	% ACR	EDAD	DIAMETRO	ÁREA	CARGA	f'c ALCANZADA	% f'c/f'cd	TIPO DE FALLA
		(Kg/cm2)	Moldeo	Rotura	70.7.0	(Días)	(cm)	(cm2) A	(kg) P	(kg/cm2)	- 42	O ROTURA
T1-100%P	0.53	210	8/09/20	15/09/20	0%	7	15-0	176.7	38870	220.0	104.76	TIPO"C" (COND Y CORTE).
T2-100%P	0.53	2 10	8109120	15/09/20	0%	7	15-0	176-7	38788	219.5	104.52	TIPO"C" (CONO Y CORTE).
T3-100%P	0.53	2 10	8/09/20	15/09/20	0%	7	15.0	146.7	39880	225.7	107.48	TIPO "C" (CONO Y CORTE).
T1- 100%P	0.53	2 10	8/09/20	22/09/20	0%	14	15.0	176.7	53790	304 • 4	145.00	TIPO "C" (CONO Y CORTE).
T2-100%P	0-53	210	8/09/20	22/09/20	0%	14	15-0	146.7	53000	299.9		TIPO "C" (CONO Y CORTE).
T3-100%P	0.53	210	8109120	22/09/20	0%	14	15.0	176.7	52600	297.7	141.80	TIPO "C" (COND Y CORTE).
T1- 100%P	0.53	210	9/09/20	30/09/20	0%	21	15.0	176.7	53460	302.5	144.10	TIPO"C" (CONO Y CORTE).
T2-100%P	0-53		9109120	30/09/20	0%	21	15.0	176.7	55 485	314.0	149.5	Tipo"c" (CONO Y CORTE).
T3-100%P	0-53	2 10	9/09/20	30/09/20	0%	21	15.0	176.7	54254	307.0	146.2	TIPO"C" (CONO Y CORTE).
T1-100%P	0.53	210	9109120	7/10/20	0%	28	15.0	176-7	70170	397.1	189.1	Tipo "C" (GNO Y CORTE).
72-100%P	0.53	210	9109120	7/10/20	0%	28	15.0	176.7	69854	395-3	188.3	TIPO"C" (COND Y CORTE)
T3-100%P	0.53		9/09/20	7/10/20	0%	28	15.0	176.7	69785	394.9	188.1	TIPO'C" (COND Y CORTE).
T1-25%CR	0-53	210	17/09/20	24/09/20	25%	7	15-0	176.7	53510	303.0	144-29	TIPO"C" (COND Y CORTE)
T2-25%CR	0.53	210	17/09/20	24/09/20	25%	7	15.0	176.7	49 580	280.6	133.69	TIPO "C" (COND Y CORTE)
T3-25%CR	0.53	210	17/09/20	24/09/20	25%	7	15.0	176.7	52680	298.1	141.97	
T1-25%CR	0.53	210	17/09/20	01/10/20	25%	14	15.0	176.7	52160	295.2	140-60	
T2-25%CR	0.53			01/10/20		14	15.0	176.7	53110	300.6		TIPO "B" (COND Y CUARTED
T3-25%CR	0.53	210	17/09/20	01/10/20	25%	14	15.0	176.7	52856	299-1		TIPO"C" (COND Y CORTE).

	ENSAYO DE RESISTENCIA A LA COMPRESIÓN (NTP 339.034-2013)								
TESIS	Influencia Del Agregado De Concreto Reciclado En Reemplazo Del Agregado grueso a la compresión y costo del concreto – Huaraz, 2020.								
TESISTAS	GUERRERO MATA, Edwin Abel TRUJILLO HERRERA,Yesenia Liz								
CANTERA	AGREGADO GRUESO NATURAL: Tacllan AGREGADO GRUESO RECICLADO: Obras realizadas por QUAVII en el Jr. Tecnología - Urbanización San Miguel - Independencia - Huaraz AGREGADO FINO: Tacllan								

NOMBRE	A/C	f'c de Diseño	FE	CHA	% ACR	EDAD	DIAMETRO	ÁREA	CARGA	f'c ALCANZADA	% f'c/f'cd	TIPO DE FALLA
NONIBRE	2	(Kg/cm2)	Moldeo	Rotura	70 ACI	(Días)	(cm)	(cm2) A	(kg)	(kg/cm2)	701 671 64	O ROTURA
T1-25/cr	0.53	210	18/09/20	9/10/20	25%	21	15-0	176-7	52080	294.7	140.4	TIPO "C" (CONO Y CORTE).
2-25%CR	0.53	210	18/09/20	9/10/20	25%	21	15.0	176-7	53851	304.8		TIPO"C" (CONO Y CORTE).
3-25%CR		210	18/09/20	9/10/20	25%	21	15.0	176.7	51598	292.0		TIPO "C" (CONO Y CORTE).
1-25/CR	0.53	210	18/09/20	16/10/20	25%	28	15.0	176.7	62 8 0 0	355-4	169.2	TIPO "C" (COND Y CORTE).
2-25%CR	0.53	210	18/09/20	16/10/20	25%	28	15.0	176.7	60125	3 40.3	162.0	TIPO"C" (CONO Y CORTE).
3-25/-CR		210	18109120	16/10/20	25%	28	15.0	176-7	60248	341.0	162.4	TIPO "C" (CONO Y CORTE).
1-50%CR		210	19/09/20	26/09/20	50%	7	15.0	176.7	31370	177.5	84.29	TIPO (CONO Y CORTE)
2-50-CR	0.53	210	19/09/20	26/09/20	50%	7	15.0	176-7	30169	170.7	81.29	TIPO"C" (CONO Y CORTE)
3-50%CR	0.53	210	19/09/20	26109120	50./-	7	15.0	176.7	31158	176.3	83-95	TIPO "C" (CONO Y CORTE).
1-50%-CR	0.53	210	19/09/20	4 /to L20	50 <i>·l</i> ·	14	15.0	176.7	36100	204.3	97.29	TI POB" (CONO Y CUARTEO).
2-50%CR	0.53		19/09/20		50 ·/ ·	14	15.0	176.7	35600	201.5	95.94	TIPO'B" (CONO Y CUARTEO).
3-50-/-CR	0-53	210	19/09/20	4/10/20	50 <i>·l</i> ·	14	15.0	176.7	36600	207.1	98.63	TIPO "C" (CONO Y CORTE).
1-50/CR	0.53	210	20/09/20	11/10/20	50%	21	15.0	176.7	45710	258-7	123.18	TIPO "C" (CONO Y CORTE).
2-50/cR	0-53	210	20/09120	11/10/20	50%	21	15.0	176.7	42512	240.6	114.57	TIPO "C" (CONO YCORTE).
3-50·/-CR	0.53	210	20/09/20	11/10/20	50%	21	15.0	176.7	43654	247.1	117.64	TIPO "C" (CONO YCORTE)
T1-50%CR		210	20/09/20	18/10/20	50%	28	15.0	176.7	51780	293.0	139.54	T. DO YCH (LAND MODEL)
[2-50·/·CR	0.53	210	20/09/20	18/10/20	50%	28	15.0	176.7	52131	295.0	140.49	TIPO CH (COND Y CORTE)
「3 <i>−5</i> 0′/-CR	0.53	210	20/09/20	18/10/20	50%	28	15.0	176.7	51245	290.0	138-10	
												\$ GEO.3


ANEXO 26: Tipos De Roturas O Fallas De Probetas Cilíndricas


TIPOS DE ROTURAS O FALLAS DE PROBETAS CILÍNDRICAS										
Α	В	С	D	E						
CONO	CONO Y CUARTEO	CONO Y CORTE	CORTE	COLUMNAR						

Fuente: GEOSTRUCT

ANEXO 27: Resumen de las roturas de probetas de concreto convencional y con agregado de concreto reciclado con 25% y 50% de sustitución.

EDAD (DIAS)

ANEXO 28: Costos de la elaboración de concreto convencional y reciclado.

COSTO PARA LA PRODUCCIÓN DEL CONCRETO

A) CANTIDAD DE MATERIAL Y PRECIO

F'c = 210 kg/cm2

Tabla N° 1: Precio del material por una unidad.

Material	Cantidad	Precio	Unidad
Cemento	1.000	S/24.30	bolsa
Agregado Fino	1.000	S/50.00	m3
Agregado Grueso	1.000	S/90.00	m3
Concreto Reciclado	1.000	S/60.00	m3
Agua	1.000	S/0.02	Litros

Fuente: Elaboración propia

B) CEMENTO PARA 1 M3

9.11 bolsas

C) DISEÑO DE MEZCLA

Tabla N° 2: Resumen del diseño de mezcla.

Material	Reem.	Reem.	Reem.	Unidad
Material	0%	25%	50%	Unidad
Cemento	1.000	1.000	1.000	Bolsa
Arena	2.080	1.980	2.030	р3
Piedra	2.650	2.690	2.650	р3
Agua	21.850	22.480	22.680	Litros

Fuente: Elaboración propia

Tabla N° 3: Diseño de mezcla con agregado grueso convencional.

Material	Reem.	Unidad	Reem.	Unidad
Material	0%	Unidad	0%	Unidad
Cemento	1.000	Bolsa	1.000	Bolsa
Arena	2.080	р3	0.059	m3
Piedra	2.650	р3	0.075	m3
Con. Rec.	0.000	р3	0.000	m3
Agua	21.850	Litros	21.850	Litros

Tabla N° 4: Diseño de mezcla con el 25% de reemplazo del agregado grueso convencional por el ACR.

Material	Reem.	Unidad	Reem.	Unidad
Material	25%	Ullidad	25%	Ullidad
Cemento	1.000	Bolsa	1.000	Bolsa
Arena	1.980	р3	0.056	m3
Piedra	2.018	р3	0.057	m3
Con. Rec.	0.673	р3	0.019	m3
Agua	22.480	Litros	22.480	Litros

Fuente: Elaboración propia.

Tabla N° 5: Diseño de mezcla con el 50% de reemplazo del agregado grueso convencional por el ACR.

Material	Reem.	Unidad	Reem.	Unidad
Material	50%	Ullidad	50%	Ullidad
Cemento	1.000	Bolsa	1.000	Bolsa
Arena	2.030	р3	0.057	m3
Piedra	1.325	р3	0.038	m3
Con. Rec.	1.325	р3	0.038	m3
Agua	22.680	Litros	22.680	Litros

Fuente: Elaboración propia.

D) PRECIO DEL MATERIAL

Tabla N° 6: Costo de producción del concreto por una probeta, una bolsa de cemento y un m3 de concreto con agregado grueso convencional.

09/	0% Material / M	/ Material / Material /	Material /	Unidad	Precio /	Precio /	Drasia / m2	Precio
U%	Probeta	Bolsa	m3	Ullidad	Probeta	Bolsa	Precio / m3	/Probeta
Cemento	0.048	1.000	9.110	Bolsa	S/1.1736	S/24.300	S/221.373	S/1.664
Arena	0.003	0.059	0.537	m3	S/0.1422	S/2.945	S/26.829	/ Bolsa
Piedra	0.004	0.075	0.684	m3	S/0.3262	S/6.754	S/61.525	S/34.436
Con. Rec.	0.000	0.000	0.000	m3	S/0.0000	S/0.0000	S/0.0000	/ m3
Agua	1.107	21.850	199.054	Litros	S/0.0221	S/0.437	S/3.981	S/313.708

Tabla N° 7: Costo de producción del concreto por una probeta, una bolsa de cemento y un m3 de concreto con el 25% de reemplazo del agregado grueso convencional por el ACR.

25%	Material /	Material /	Material /	Unidad	Precio /	Precio /	Precio / m3	Precio
2370	Probeta	Bolsa	m3	Omaaa	Probeta	Bolsa	11000 / 1113	/Probeta
Cemento	0.048	1.000	9.110	Bolsa	S/1.1736	S/24.300	S/221.373	S/1.635
Arena	0.003	0.056	0.511	m3	S/0.1354	S/2.803	S/25.539	/ Bolsa
Piedra	0.003	0.057	0.520	m3	S/0.2483	S/5.142	S/46.840	S/33.837
Con. Rec.	0.001	0.019	0.173	m3	S/0.0552	S/1.143	S/10.409	/ m3
Agua	1.139	22.480	204.793	Litros	S/0.0228	S/0.450	S/4.096	S/308.257

Fuente: Elaboración propia.

Tabla N° 8: Costo de producción del concreto por una probeta, una bolsa de cemento y un m3 de concreto con el 50% de reemplazo del agregado grueso convencional por el ACR.

50%	Material /	Material /	Material /	Unidad	Precio /	Precio /	Precio / m3	Precio
3070	Probeta	Bolsa	m3	Officac	Probeta	Bolsa	Trecto / III3	/Probeta
Cemento	0.048	1.000	9.110	Bolsa	S/1.1736	S/24.300	S/221.373	S/1.607
Arena	0.003	0.057	0.524	m3	S/0.1388	S/2.874	S/26.184	/ Bolsa
Piedra	0.002	0.038	0.342	m3	S/0.1631	S/3.377	S/30.763	S/33.256
Con. Rec.	0.002	0.038	0.342	m3	S/0.1087	S/2.251	S/20.508	/ m3
Agua	1.150	22.680	206.615	Litros	S/0.0230	S/0.454	S/4.132	S/302.960

Fuente: Elaboración propia.

E) RESUMEN DE PRECIOS

Tabla N° 9: Resumen de los precios de producción.

Reemplazo	/ Probeta	/Bolsa de Cemento	/m3
0%	S/1.664	S/34.436	S/313.708
25%	S/1.635	S/33.837	S/308.257
50%	S/1.607	S/33.256	S/302.960

F) FIGURAS

PRECIO POR 1 PROBETA S/1.2000 S/1.0000 S/0.8000 \$/0.6000 \$/0.4000 S/0.2000 S/-Arena Piedra Con. Rec. Agua S/1.1736 S/0.1422 S/0.3262 S/0.0000 S/0.0221 **0**% 25% S/1.1736 S/0.1354 S/0.2483 \$/0.0552 S/0.0228 **■**50% S/1.1736 S/0.1388 S/0.1631 S/0.1087 S/0.0230 PRECIO DE MATERIALES

Figura N° 1: Precio por una probeta.

Fuente: Elaboración propia.

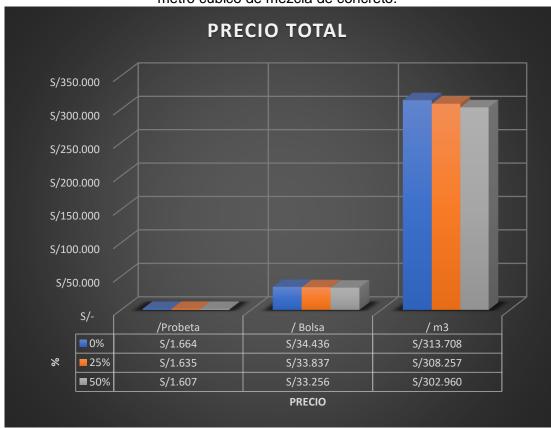

Figura N° 2: Precio por 1 bolsa de cemento.

Figura N° 3: Precio por m3 de mezcla de concreto.

Figura N° 4: Resumen de los precios de producción por 1 bolsa de cemento y por un metro cubico de mezcla de concreto.

PANEL FOTOGRÁFICO

Se observa la cantera de Tacllan de donde se compró los agregados.

Fotografía N° 02

Agregados trasladados al lugar donde realizaremos los ensayos respectivos.

Recojo del material reciclado posteriormente para el traslado a la chancadora de Tacllan.

Fotografía N° 04

Se procede a echar en costales los 10 kilos de cada agregado tanto como el grueso y fino para su posterior ensayo.

Para el **Contenido de humedad** tenemos los materiales y las taras y el horno y la balanza, se procede a pesar las taras en la balanza.

Fotografía N° 06

Se procede a tomar una porción de los materiales y ponerlos al horno por 24 horas después las retiramos y las pesamos y se lava el material y nuevamente lo secamos y lo volvemos a pesar después del lavado.

Después del lavado se procede poner al horno por 24 horas después las retiramos y las pesamos.

Fotografía N° 08

Después se procede a tomar las anotaciones de cada material tanto para el agregado grueso y agregado fino.

Para el **análisis granulométrico** se lava los materiales y colocamos los tamices, para el agregado grueso se utilizará los tamices de 2" hasta el numero 4 es considerado agregado grueso y todo lo que pasa el N°4 al N°200 es considerado agregado fino.

Fotografía N° 10

Luego se procede a tamizar el agregado grueso y agregado fino y tomar las anotaciones de cada material.

Para el **peso unitario** se pesa el molde y se saca el volumen del molde se hace 3 mestras tanto para el peso unitario suelto y compactado de los materiales de agregado grueso como para el agregado fino.

Fotografía N° 12

Después se pesa el material con el molde y se procede a sacar el promedio del peso unitario tanto para el agregado grueso y agregado fino.

Para el análisis del **peso específico** se procede a pesar la probeta de 1000ml para el agregado grueso y para el agregado fino se utilizará la fiola de 500ml.

Fotografía N° 14

Para el analisis del **Porcentaje de absorsión** cogemos una cierta cantidad de agregado grueso la cual lavaremos y la dejaremos sumergida en el agua durante 24, una vez lavada la muestra tomaremos una parte de la muestra y la otra sera eliminada solo las particulas grandes del agregado seran secadas con un trapo , asi tendremos la muestra parcialmente seca, se procede a pesar la muestra seca con la balanza de estabilidad, luego colocar en el balde de agua la canastilla con la muestra y se anota el valor obtenido , finalmente colocar la muestra en un recipiente la cual se llevará al horno por 24 horas , despúes sacar la muestra y pesarla.

La prueba consiste en hacer golpear una muestra de material con una carga abrasiva dentro de un tambor metálico giratorio, a una determinada velocidad, en nuestra prueba de ensayo utilizamos 12 bolas de acero como carga abrasiva y dentro del tambor cilíndrico electrónico especialmente diseñado para este tipo de pruebas, además se programó para que el mismo de un total de 500 vueltas como medida estándar para determinar el desgaste del material agregado. Al final salió un porcentaje de desgaste de 39.6.

Fotografía N° 16

Se procedió a tamizar el agregado reciclado para mayor precisión por la malla ¾ despúes de trasladarlo de la chancadora y obtuvimos el material requerido para la realización de las probetas.

Se procedió a realizar la mezcla para realizar el slump la primera capa debemos apisonarla con la barrila un total de 25 veces penetrando toda la profundidad de esta capa "para la segunda capa deberemos llenar el molde hasta la mitad igual con 25 golpes El llenado de la tercera capa es igual al de la segunda hasta que esté lleno y lo enrasaremos con la ayuda de la varilla, Luego que levantamos el molde lo volteamos alrevez y lo ponemos junto al concreto, y colocamos la varilla sobre el molde y procedemos a medir determinando el asentamiento para el concreto convencional salió 4".

Fotografía N° 18

Luego de realizar la mezcla para cada probeta se procedió a echar en los moldes con 3 capas y cada capa con 25 golpes y se utilizó un martillo con cabeza de goma para golpear el molde suavemente y liberar las burbujas de aire.

Procedemos a desmoldar las probetas pasado las 24 horas de realizarlo.

Fotografía N° 20

Después de haber sido desmoldadas, se procede a colocar las probetas inmediatamente, en recipientes con agua potable, para su curado durante los 7 días sumergidos en el agua.

Observamos el agregado fino lavado, para su posterior mezcla para la realización de las probetas.

Se procede a realizar la mezcla para el agregado convencional de 14 y 28 días 3 probetas de cada una.

Se procedió a realizar la mezcla para realizar el slump la primera capa debemos apisonarla con la barrila un total de 25 veces penetrando toda la profundidad de esta capa ,para la segunda capa deberemos llenar el molde hasta la mitad igual con 25 golpes.

Fotografía N° 24

El llenado de la tercera capa es igual al de la segunda hasta que esté lleno y lo enrasaremos con la ayuda de la varilla, Luego que levantamos el molde lo volteamos alrevez y lo ponemos junto al concreto, y colocamos la varilla sobre el molde y procedemos a medir determinando el asentamiento para el concreto convencional de 14 días y 28 salió 4".

Luego de realizar la mezcla para cada probeta se procedió a echar en los moldes con 3 capas y cada capa con 25 golpes y se utilizó un martillo con cabeza de goma para golpear el molde suavemente y liberar las burbujas de aire.

Fotografía N° 26

Se observa los moldes llenados de 14 y 28 días del concreto convencional.

Procedemos a desmoldar las probetas pasado las 24 horas de realizarlo.

Fotografía N° 28

Se procede a desmoldear las probetas

Se observa las probetas desmoldeadas.

Fotografía N° 30

Después de haber sido desmoldadas, se procede a colocar las probetas inmediatamente, en recipientes con agua potable para su curado durante los 7 días sumergidos en el agua.

Se procedió a realizar la mezcla para realizar el slump con el porcentaje de agregado reciclado de 25%.

Fotografía N° 32

La primera capa debemos apisonarla con la barrila un total de 25 veces penetrando toda la profundidad de esta capa, para la segunda capa deberemos llenar el molde hasta la mitad igual con 25 golpes.

El llenado de la tercera capa es igual al de la segunda hasta que esté lleno y lo enrasaremos con la ayuda de la varilla.

Fotografía N° 34

Luego que levantamos el molde lo volteamos alrevez y lo ponemos junto al concreto, y colocamos la varilla sobre el molde y procedemos a medir determinando el asentamiento para el concreto reciclado de 14 días y 28 salió 3".

Luego de realizar la mezcla para cada probeta se procedió a echar en los moldes con 3 capas y cada capa con 25 golpes y se utilizó un martillo con cabeza de goma para golpear el molde suavemente y liberar las burbujas de aire.

Fotografía N° 36

Después de haber sido desmoldadas, se procede a colocar las probetas inmediatamente, en recipientes con agua potable para su curado durante los 7 días sumergidos en el agua.

Se procedió a realizar la mezcla para realizar el slump la primera capa debemos apisonarla con la barrila un total de 25 veces penetrando toda la profundidad de esta capa ,para la segunda capa deberemos llenar el molde hasta la mitad igual con 25 golpes El llenado de la tercera capa es igual al de la segunda hasta que esté lleno y lo enrasaremos con la ayuda de la varilla, Luego que levantamos el molde lo volteamos alrevez y lo ponemos junto al concreto, y colocamos la varilla sobre el molde y procedemos a medir determinando el asentamiento para el concreto con porcentaje de concreto reciclado de 50% salió 3".

Fotografía N° 38

Se observa los moldes llenados del concreto reciclado con un porcentaje de sustitución de 50%.

Se observa las probetas desmoldeadas.

Fotografía N° 40

Después de haber sido desmoldadas, se procede a colocar las probetas inmediatamente, en recipientes con agua potable para su curado durante los 7 días sumergidos en el agua.

Se procedió a realizar la mezcla para realizar el slump, Luego que levantamos el molde lo volteamos alrevez y lo ponemos junto al concreto, y colocamos la varilla sobre el molde y procedemos a medir determinando el asentamiento para el concreto con porcentaje de concreto reciclado de 50% salió 4".

Fotografía N° 42

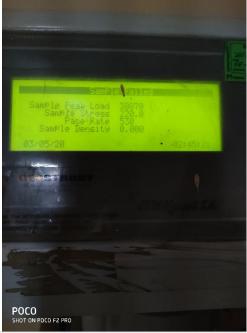
Se procede a llenar la mezcla en los últimos 6 moldes en total completando las 36 probetas.

Se observa los moldes llenados del concreto reciclado con un porcentaje de sustitución de 50% de los 14 y 28 días, completando las 36 probetas.

Fotografía N° 44

Después de haber sido desmoldadas, se procede a colocar las probetas inmediatamente, en recipientes con agua potable para su curado durante los 7 días sumergidos en el agua, completando las 36 probetas.

ANEXO 30: Fotografías De Las Roturas De Probetas.



1er testigo a los 7 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

Fotografía N° 46

2do testigo a los 7 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte), 3er testigo a los 7 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

1er testigo a los 14 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

Fotografía N° 48

2do testigo a los **14** días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte), 3er testigo a los 14 días con agregado grueso teniendo un tipo de rotura C (cono y corte).

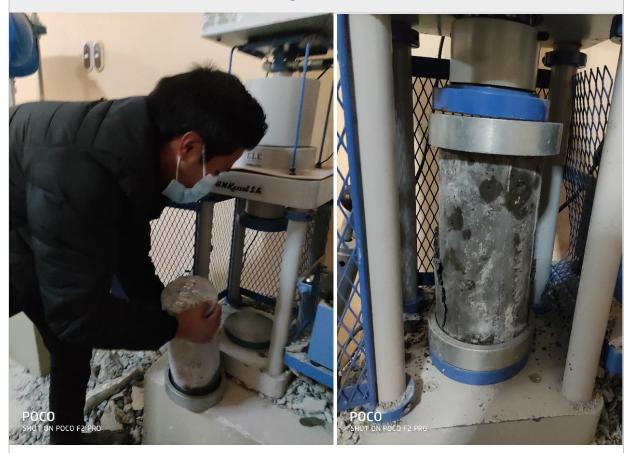
1er testigo a los 21 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

Fotografía N° 50

2do testigo a los **21** días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte). 3er testigo a los 21 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

1er testigo a los 28 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

Fotografía N° 52



2do testigo a los **28** días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte). 3er testigo a los 28 días con agregado grueso convencional teniendo un tipo de rotura C (cono y corte).

1er testigo a los 7 días con agregado grueso Reciclado con porcentaje de sustitución 25% teniendo un tipo de rotura C (cono y corte).

Fotografía N° 54

2do testigo a los **7** días con agregado grueso Reciclado con porcentaje de sustitución 25% teniendo un tipo de rotura "C (cono y corte), 3er testigo con agregado grueso Reciclado con porcentaje de sustitución 25% teniendo un tipo de rotura C (cono y corte).

1er testigo a los **14** días con agregado grueso Reciclado con porcentaje de sustitución 25% con tipo de rotura "B", 2do testigo teniendo un tipo de rotura "B" (cono y cuarteo), 3er testigo teniendo un tipo de rotura "C" (cono y corte).

Fotografía N° 56

1er testigo a los **21** días con agregado grueso Reciclado con porcentaje de sustitución 25% con tipo de rotura "C", 2do testigo teniendo un tipo de rotura "C", 3er testigo teniendo un tipo de rotura "C" (cono y corte).

1er testigo a los **28** días con agregado grueso Reciclado con porcentaje de sustitución 25% con tipo de rotura "C", 2do testigo teniendo un tipo de rotura "C", 3er testigo teniendo un tipo de rotura "C" (cono y corte).

Fotografía N° 58

1er testigo a los **7** días con agregado grueso Reciclado con porcentaje de sustitución 50% con tipo de rotura "C", 2do testigo teniendo un tipo de rotura "C", 3er testigo teniendo un tipo de rotura "C" (cono y corte).

Fotografía N° 59

Rotura del 1er testigo de probeta a los 14 días con agregado grueso Reciclado con porcentaje de sustitución 50% teniendo un tipo de rotura B (cono y cuarteo).

Fotografía N° 60

2do testigo a los **14** días con agregado grueso Reciclado con porcentaje de sustitución 50% teniendo un tipo de rotura B (cono y cuarteo), 3er testigo a los 14 días con agregado grueso Reciclado con porcentaje de sustitución 50% teniendo un tipo de rotura C (cono y corte).

Fotografía N° 61

1er testigo a los **21** días con agregado grueso Reciclado con porcentaje de sustitución 50% con tipo de rotura "C", 2do testigo teniendo un tipo de rotura "C", 3er testigo teniendo un tipo de rotura "C" (cono y corte).

Fotografía N° 62

1er testigo a los **28** días con agregado grueso Reciclado con porcentaje de sustitución 50% con tipo de rotura "C", 2do testigo teniendo un tipo de rotura "C", 3er testigo teniendo un tipo de rotura "C" (cono y corte).

ANEXO 31: Cantidad mínima de la muestra de agregado grueso y global

TAMAÑO		CANTIDAD DE LA MUESTRA
NOM		DE ENSAYO
ABERT CUADE		MÍNIMO
mm	pulg	Kg (lb)
9,5	3/8	1 (2)
12,5	1/2	2 (4)
19,0	3/4	5 (11)
25,0	1	10 (22)
37,5	1 1/2	15 (33)
50,0	2	20 (44)
63,0	2 1/2	35 (77)
75,0	3	60 (130)
90,0	3 1/2	100 (220)
100,0	4	150 (330)
125,0	5	300 (660)

Fuente: NTP 400.012

ANEXO 32: Cantidad de material para el ensayo de acuerdo al TMN

TAMAÑO MÁXI	MO NOMINAL	CANTIDAD MÍNIMA DE MUESTRA
mm	(pulg)	Kg
Hasta 12,5	1/2	2
19,0	3/4	3
25,0	1	4
37,5	1 1/2	5
50,0	2	8
63,0	2 1/2	12
75,0	3	18
90,0	3 1/2	25

Fuente: PESO ESPECIFICO Y ABSORCIÓN DE AGREGADOS GRUESOS MTC E 206-2000 NTP 400.021

ANEXO 33: Requisitos granulométricos de los agregados gruesos

											ΔV				
	Tomore and almos		Porcentaje que pasa por los tamices normalizados												
Huso	Tamaño máximo nominal	100 mm (4 pulg)	90 mm (3 ½ pulg)	75 mm (3 pulg)	63 mm (2 ½ pulg)	50 mm (2 pulg)	37,5 mm (1 ½ pulg)	25,0 mm (1 pulg)	19,0 mm (3/4 pulg)	12,5 mm (1/2 pulg)	9,5 mm (3/8 pulg)	4,75 mm (No. 4)	2,36 mm (No. 8)	1,18 mm (No. 16)	300 μm (No. 50)
1	90 mm a 37,5mm (3 ½ pulg a 1 ½ pulg)	100	90 a 100		25 a 60		0 a 15		0 a 5	0	•••	1			
2	63 mm a 37,5 mm (2 ½ pulg a 1 ½ pulg)			100	90 a 100	35 a 70	0 a 15		0 a 5	V	***		***		
3	50 mm a 25,0 mm (2 pulg a 1 pulg)		***		100	90 a 100	35 a 70	0 a 15		0 a 5			***		
357	50 mm a 4,75 mm (2 pulg a No. 4)	••			100	95 a 100		35 a 70		10 a 30		0 a 5			
4	37,5 mm a 19,0 mm (1 ½ pulg a ¾ pulg)	••			:	100	90 a 100	20 a 55	0 a 5		0 a 5		**		
467	37,5 mm a 4,75 mm (1 ½ pulg a No. 4)				:	100	95 a 100		35 a 70		10 a 30	0 a 5	***	***	
5	25,0 mm a 12,5mm (1 pulg a ½ pulg)				**		100	90 a 100	20 a 55	0 a 10	0 a 5		***	***	
56	25,0 mm a 9,5 mm (1 pulg a 3/8 pulg)				***		100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5			
57	25,0 mm a 4,75mm (1 pulg a No. 4)					-0.	100	95 a 100	***	25 a 60	***	0 a 10	0 a 5		
6	19,0 mm a 9,5 mm (3/4 pulg a 3/8 pulg)							100	90 a 100	20 a 55	0 a 15	0 a 5			
67	19,0 mm a 4 mm (3/4 pulg a No. 4)		•••		Q			100	90 a 100	***	20 a 55	0 a 10	0 a 5		
7	12,5 mm a 4,75 mm (1/2 pulg a No. 4)	•••						***	100	90 a 100	40 a 70	0 a 15	0 a 5	***	
8	9,5 mm a 2,36 mm (3/8 pulg a No. 8)	•••	***				***	***	***	100	85 a 100	10 a 30	0 a 10	0 a 5	
89	12,5 mm a 9,5 mm (1/2 pulg a 3/8 pulg)	•••		(Q)					•••	100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9 ^A	4,75 mm a 1,18 mm (No. 4 a No. 16)	••)	•••				***	***	100	85 a 100	10 a 40	0 a 10	0 a 5

Fuente: (NTP 400.037,2014)

ANEXO 34: Diseño de mezcla por el Método ACI

DISEÑO DE CONCRETO MÉTODO ACI

CONCRETO CONVENCIONAL

Condiciones Generales

Cemento:

Marca: Sol

Tipo : I

Peso Específico: 3.11Tn/m3.

Agua:

Agua Potable de la Red Publica

Peso Específico: 1000.00 kg/cm2

Características del Concreto:

Resistencia Especificada: 210 kg/cm2

Asentamiento: 3"-4"

Condiciones Ambientales y de Exposición durante el vaciado:

Temperatura promedio Ambiente: 20°C

Humedad Relativa: 80%

Condiciones a la cual estará Expuesta

Normales

Tabla N° 1: Datos de los Agregados empleados.

Agregado	Fino	Grueso
Cantera	Tacllan	Tacllan
Perfil		Chancada
Peso Unitario Suelto	1575 kg/m3	1430 kg/m3
Peso Unitario Compactado	1770 kg/m3	1576 kg/m3
Peso Específico Seco	2.65 kg/m3	2.94 kg/m3
Módulo de Fineza	2.79	7.11
% de Absorción	2.16	1.18
Cont. De Humedad	2.81	1.24
TNM		3/4"

Fuente: Elaboración propia

a) DETERMINACIÓN DE LA RESISTENCIA PROMEDIO REQUERIDA F'CR:

Tabla N° 2: Resistencia promedio requerida.

F'c	F'cr
Menor de 210	F'c+70
210-350	F'c+84
Mayor a 350	F'c+98

Fuente: Comité 211 del ACI

$$f'cr = f'c + 84$$

f'cr = 310 kg/cm2

Se consideró un factor de seguridad de 16 kg más según el laboratorio

b) CONTENIDO DE AIRE EN MEZCLA

Tabla N° 3: Contenido de aire en mezcla.

TMN Agregado Grueso	Aire Atrapado
3/8"	3.00%
1/2"	2.50%
3/4"	2.00%
1"	1.50%
1 1/2"	1.00%
2"	0.50%
3"	0.30%
4"	0.20%

Fuente: Comité 211 del ACI

Para el caso el aire atrapado es de 2.00%.

c) CÁLCULO CONTENIDO DE AGUA

Determinación de la cantidad de agua por m3

Tabla N° 4: Contenido de agua.

Asentamiento	Tamaño Máximo del Agregado Grueso							
Asentamiento	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
	C	oncreto S	Sin Aire II	ncorpor	ado			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	1
	Concreto Con Aire Incorporado							
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

Fuente: Tablas de Diseño de Mezclas - Método ACI

Para el tamaño máximo del agregado y un asentamiento de 3" a 4" el contenido de agua es:

Volumen de Agua = 205 lt/m3.

d) RELACIÓN AGUA-CEMENTO

Tabla N° 5: Relación agua/cemento

f'c	Relación Agua / (Cemento en peso
(kg/cm2)	Concreto sin aire	Concreto con aire
	incorporado	incorporado
150	0.8	0.71
200	0.7	0.61
250	0.62	0.53
300	0.55	0.46
350	0.48	0.4
400	0.43	
450	0.38	

Fuente: Tablas de Diseño de Mezclas - Método ACI

Se procedió a interpolar los datos de la tabla

a/c = 0.53

e) CÁLCULO DEL CONTENIDO DE CEMENTO

Entonces tenemos que el cemento es el agua entre la relación a/c

Cemento = 205/0.53 = 387 kg

Bolsas de cemento = 9.11bolsas/m3

f) PESO DEL AGREGADO GRUESO

Tabla N° 6: Peso del agregado grueso por unidad de volumen del concreto

TMN AG	Módulo de fineza del Agregado Fino						
TIVIN AG	2.4	2.6	2.8	3			
3/8"	0.5	0.48	0.46	0.44			
1/2"	0.59	0.57	0.55	0.53			
3/4"	0.66	0.64	0.62	0.6			
1"	0.71	0.69	0.67	0.65			
1 1/"	0.76	0.74	0.72	0.7			
2"	0.78	0.76	0.74	0.72			
3"	0.81	0.79	0.77	0.75			
6"	0.87	0.85	0.83	0.81			

Fuente: Tablas de Diseño de Mezclas - Método ACI

Se procede a interpolar los datos de la tabla para:

X = 0.62

Peso del agregado compactado = 1576 kg/m3

Peso del agregado grueso = 1576*0.62 = 977 kg/m

g) CÁLCULO DEL PESO DEL AGREGADO FINO

Tabla N° 7: Resumen De los Materiales

Material	Peso (kg)	P. E	Vol. Abs.
Cemento	387.000	3110.000	0.124
Agua	205.000	1000.000	0.205
Aire	0.020		0.020
A. G	1008.412	2940.000	0.332
Total			0.682

Fuente: Elaboración propia

Volumen del agregado fino = 1 – Vol. Total

Volumen del agregado fino = 1 - 0.682 = 0.318

Peso del Agregado Fino = Vol. AF * Peso Específico agregado fino

Peso del Agregado Fino = $0.318 \times 2650 = 843 \text{ kg}$

Tabla N° 8: Resumen Peso Seco de Materiales por m3.

Materiales	Peso Seco (kg)
Cemento	387
Agua	205
AG	977
AF	843
Aire	2.00%
Total	2412

Fuente: Elaboración propia.

h) CORRECCIÓN POR HUMEDAD DE LOS AGREGADOS

> Agregado Fino

Peso Húmedo AF = Agregado fino en estado seco* (Contenido de humedad/100+1)

Peso Húmedo AF = 843*(1+2.81/100) = **867 kg**

> Agregado Grueso

Peso Húmedo AG = Agregado grueso en estado seco* (Contenido de humedad/100+1)

Peso Húmedo AG = 977*(1+1.24/100) = 989 kg

i) CÁLCULO DEL APORTE DE AGUA DE LOS AGREGADOS

> Agregado Fino

Aporte Agua = Peso Seco*(% C.H - % Abs)/100

Aporte Agua = 843*(2.81-2.16) /100 = **5.52 lt**

> Agregado Grueso

Aporte Agua = Peso Seco*(% C.H - % Abs)/100

Aporte Agua = 977*(1.24-1.18) /100 = 0.60 lt

El aporte de humedad de los agregados es:

5.52 lt + 0.60 lt = 6.11 lt.

j) CÁLCULO DEL AGUA EFECTIVA

Agua efectiva = Agua diseño - Aporte Humedad

Agua efectiva = 205 - 6.11 = 198.9 lt

Tabla N° 9: Resumen Peso Húmedo de Materiales por m3.

MATERIALES	PESO HÚMEDO (KG)
Cemento	387
Agua	198.9
AG	989
AF	867
Aire	2.00%
Total	2442

Fuente: Elaboración propia.

Tabla N° 10: Proporciones para la dosificación.

PROPORCIONES			
MATERIAL	Peso	Volumen	
Cemento	1.00	1.00	
Arena	2.24	2.08	
Piedra	2.56	2.65	
Agua	0.51	21.85	lt/saco
Fuente: Elaboración propia.			

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ACTA DE SUSTENTACION DE TESIS

Siendo las 10:30 horas del 22/12/2020, el jurado evaluador se reunió para presenciar el acto de sustentación de Tesis titulada: "INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESIÓN Y COSTO DEL CONCRETO – HUARAZ, 2020.", presentado por los autores GUERRERO MATA EDWIN ABEL, TRUJILLO HERRERA YESENIA LIZ estudiantes de la escuela profesional de INGENIERÍA CIVIL.

Concluido el acto de exposición y defensa de Tesis, el jurado luego de la deliberación sobre la sustentación, dictaminó:

Autor	Dictamen
EDWIN ABEL GUERRERO MATA	Unanimidad

Firmado digitalmente por: KDEPAZC el 07 Mar 2021 23:03:59

KIKO FELIX DEPAZ CELI
PRESIDENTE

Firmado digitalmente por: CGPOMAP el 07 Mar 2021 21:41:02

CARLA GRISELLE POMA GONZALEZ
SECRETARIO

Firmado digitalmente por: PLMARINC el 11 Ene 2021 12:55:27

PERCY LETHELIER MARIN CUBAS
VOCAL

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ACTA DE SUSTENTACION DE TESIS

Siendo las 10:30 horas del 22/12/2020, el jurado evaluador se reunió para presenciar el acto de sustentación de Tesis titulada: "INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESIÓN Y COSTO DEL CONCRETO – HUARAZ, 2020.", presentado por los autores GUERRERO MATA EDWIN ABEL, TRUJILLO HERRERA YESENIA LIZ estudiantes de la escuela profesional de INGENIERÍA CIVIL.

Concluido el acto de exposición y defensa de Tesis, el jurado luego de la deliberación sobre la sustentación, dictaminó:

Autor	Dictamen
YESENIA LIZ TRUJILLO HERRERA	Unanimidad

Firmado digitalmente por: KDEPAZC el 07 Mar 2021 23:03:59

KIKO FELIX DEPAZ CELI PRESIDENTE

Firmado digitalmente por: CGPOMAP el 07 Mar 2021 21:41:02

CARLA GRISELLE POMA GONZALEZ
SECRETARIO

Firmado digitalmente por: PLMARINC el 11 Ene 2021 12:55:27

PERCY LETHELIER MARIN CUBAS
VOCAL

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Autorización de Publicación en Repositorio Institucional

Nosotros, GUERRERO MATA EDWIN ABEL, TRUJILLO HERRERA YESENIA LIZ identificados con DNIs N° 72956966, 76169628, (respectivamente) estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA y de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - HUARAZ, autorizamo (X), no autorizamo () la divulgación y comunicación pública de nuestra Tesis: "INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESIÓN Y COSTO DEL CONCRETO – HUARAZ, 2020.".

En el Repositorio Institucional de la Universidad César Vallejo, según esta estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33.

Fundamentación en caso o	de NO autorización:	

HUARAZ, 04 de Abril del 2021

Apellidos	y Nombres del Autor	Firma
TRUJIL	LO HERRERA YESENIA LIZ	
DNI:	72956966	Firmado digitalmente por: YTRUJILLOHE el 04-04- 2021 21:05:54
ORCID	0000-0001-5292-334X	
GUERR	ERO MATA EDWIN ABEL	
DNI:	76169628	Firmado digitalmente por: EGUERREROMA el 09-04-
ORCID	0000-0002-3504-0542	2021 16:33:45

Código documento Trilce: INV - 0131617

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, MARIN CUBAS PERCY LETHELIER, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - HUARAZ, asesor de Tesis titulada: "INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESIÓN Y COSTO DEL CONCRETO – HUARAZ, 2020.", cuyos autores son GUERRERO MATA EDWIN ABEL, TRUJILLO HERRERA YESENIA LIZ, constato que la investigación cumple con el índice de similitud establecido, y verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

HUARAZ, 08 de Enero del 2021

Apellidos y Nombres del Asesor:	Firma
MARIN CUBAS PERCY LETHELIER	Firmado digitalmente por:
DNI : 26692689	PLMARINC el 08-01-2021
ORCID 0000-0002-9103-9490	12:55:29

Código documento Trilce: TRI - 0108916

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, GUERRERO MATA EDWIN ABEL, TRUJILLO HERRERA YESENIA LIZ estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - HUARAZ, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "INFLUENCIA DEL AGREGADO DE CONCRETO RECICLADO EN REEMPLAZO DEL AGREGADO GRUESO A LA COMPRESIÓN Y COSTO DEL CONCRETO – HUARAZ, 2020.", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
TRUJILLO HERRERA YESENIA LIZ DNI: 72956966 ORCID 0000-0001-5292-334X	Firmado digitalmente por: YTRUJILLOHE el 04-04- 2021 21:05:59
GUERRERO MATA EDWIN ABEL DNI: 76169628 ORCID 0000-0002-3504-0542	Firmado digitalmente por: EGUERREROMA el 09-04- 2021 16:33:49

Código documento Trilce: INV - 0131620

