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ABSTRACT

Supergravities with Positive Definite Potentials

and AdS PP-Waves. (May 2005)

Johannes Kerimo, B.S., Umea University

Chair of Advisory Committee: Dr. Christopher N. Pope

Ten-dimensional superstring theory (or the conjectured nonperturbative M-

theory in eleven dimensions) is the most promising candidate for a consistent quan-

tum theory of gravity capable of unifying all known forces of nature. An important

question concerning these fundamental theories is how they compactify to lower di-

mensions and how to obtain a real four dimensional world? In this dissertation we

present new avenues for M/string theory to reduce to lower dimensions as well as to

four dimensions. For example, we show that by performing a generalized Kaluza-Klein

IR reduction on the low-energy field theory of the heterotic string, the resulting lower

dimensional theory compactifies spontaneously on S3 to give rise to (Minkowski)6

spacetime. Furthermore, a generalized reduction of M-theory on K3 × IR compacti-

fies spontaneously on S2 to give rise to a (Minkowski)4 spacetime.

The generalized Kaluza-Klein reduction gauges the Cremmer-Julia type global

symmetry and the homogeneous rescaling symmetry of the supergravity equations of

motion by giving the higher dimensional fields an additional dependence on the circle

coordinate. We apply the generalized reduction scheme to half-maximal supergravi-

ties which are obtained from the heterotic string (or the NS-NS sector of the type-II

string) compactified on a (10 − D)-dimensional torus truncated to the pure super-

gravity multiplet. This gives rise to new gauged supergravities in diverse dimensions

with supersymmetric Minkowski × sphere vacua.
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Since two large extra dimensions have received much attention recently, we make

a detailed study of the gauged D = 6, N = (1, 1) supergravity. In particular, we show

that this theory allows for a consistent sphere reduction on S2 to give rise to D = 4,

N = 2 supergravity coupled to a vector multiplet which can further be truncated to

N = 1 supergravity with a chiral multiplet.

We also investigate pp-waves in AdS backgrounds, i.e. pp-waves as solutions

of gauged supergravities with AdS vacua. These solutions generically preserve 1
4

of the supersymmetry. We demonstrate supernumerary supersymmetries for both

purely gravitational pp-waves and pp-waves supported by fields strengths. These new

backgrounds provide interesting novel features of the supersymmetry enhancement for

the dual conformal field theory in the infinite-momentum frame.
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CHAPTER I

INTRODUCTION

In the 20th century, two successful theories emerged in the realm of fundamental

physics. One is Einstein’s general relativity which describes the dynamics of our

spacetime. The other is quantum mechanics that governs the interactions in the

microscopic level. General relativity provides a framework to study large scale physics

such as astronomy and cosmology, whilst quantum mechanics has been established in

studying the microscopic world. In particular, the standard model, which describes

the interaction of three fundamental forces (electromagnetic, weak and strong nuclear

interactions) is a quantum field theory.

Thus it is natural to expect that one should be able to incorporate the quantum

principle in general relativity. This is essential if one would like to unite all the four

fundamental forces in one unified theory. The history of physics suggests the trend

of unifications of fundamental forces. The seemingly different electric and magnetic

forces which were observed in ancient time turned out to be described by the same

set of equations discovered by Maxwell in the second half of the 19th century. The

merger of the electromagnetic interaction with the weak interaction gives rise to the

electro-weak theory (or the Glashow-Salam-Weinberg theory) which in turn when

combined with the strong force is described by the Standard Model with gauge group

SU(3)× SU(2)× U(1). Although the standard model is in excellent agreement with

experiments it is not without drawbacks. For one, it has many arbitrary parameters

which are not explained by the theory. In addition, its constituent gauge groups are

not truly unified since the theory contains three separate gauge coupling parameters.

The journal model is Nuclear Physics B.
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An improved version is the Grand Unified Theory (GUT), based on realistic models

with gauge groups SU(5) or SO(10). The coupling parameters of the standard model

run toward a common value and (almost) meet at the GUT scale 1015 GeV. An

important prediction of GUTs is the decay of the proton (∼ 1032 years) (which is

within the reach of experiments). But GUTs are not free from problems (aside from

all their arbitrary parameters and their incompatibility with gravity). The critics of

this model point out that it predicts no new interactions from 1015 GeV down to

the weak scale (an energy range of twelve orders of magnitude). Furthermore, GUTs

provide no attractive solution to the hierarchy problem where the two energy scales

get mixed at each order in the perturbation series.

Quantum physics has taught us to divide particles into bosons (integer spin)

and fermions (half-integer spin). We would like to describe the bosons and fermions

by some underlying symmetry principle as in the successful cases of general relativ-

ity (general coordinate transformation invariance), the standard model and GUTs.

This is achieved by supersymmetry, which exchanges bosons and fermions. In fact,

supersymmetry is necessary in order to unify the particle spectrum with gravity. Su-

persymmetry was introduced in four dimensions in [1, 2] and existed earlier in two

dimensions [3]. The paper [2], which used a field theoretic approach, began a major

development in theoretical physics.

One attractive feature of supersymmetry is that it is capable of giving us field

theories which are perturbatively finite (for example, D = 4, N = 4 super Yang-Mills

theory). In a supersymmetric GUT theory the situation with the hierarchy problem

is almost solved in the sense that there is no longer a mixing of the two energy

scales in the perturbation series. However, to achieve this an initial fine tuning is

still required and it cannot be explained by the theory. We mentioned earlier that

in the (nonsupersymmetric) GUT the coupling parameters of the standard model
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do not quite meet at a common value. The supersymmetric extension of the model

does however rectify this situation and the coupling parameters remarkably unify at

energies about 1016 GeV.

It was hoped that supersymmetry would be able to solve the difficult problem

of the cosmological constant. Observations tells us that its value is less than 10−84

GeV2. But the GUT model based on SU(5) (which is the most realistic one) gives

rise from the spontaneous breaking of symmetry to a cosmological constant with a

value 100100 times the limit set by observations. Taking supersymmetry into account

provides no solution to this problem.

Supersymmetry has been around for a fairly long time but there is as yet no

experimental evidence for it. Nevertheless, it is generally believed to be a necessary

ingredient in any unifications of the fundamental forces. The rigid supersymmetry of

Wess and Zumino was gauged in [4, 5]. The remarkable result that came out from this

gauging was that consistent local supersymmetry requires the inclusion of a massless

spin-2 field and its superpartner of spin-3/2. Hence gauged supersymmetry is nothing

but a theory of supergravity. Although much effort was put in the investigations of

supergravities it was soon realized that these theories were not problem free and

their predictive power had limitations. To give one example, the promising N = 8

theory in four dimensions does not have a large enough symmetry to contain the

standard model. Another problem is the lack of chirality. We should however add

that it is possible to obtain the gauge group of the standard model by compactifying

eleven-dimensional supergravity (which is also the highest dimension a consistent

supergravity can exist [6]) on a compact manifold [7] but this does not yield chiral

fermions. In addition, supergravities are famously nonrenormalizable. It is clear that

a quantum theory of gravity must go beyond the point particle concept.

The reconciliation of gravity with quantum physics is important not just on
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theoretical grounds; a unified description of the fundamental forces is needed to un-

derstand the singularity inside a black hole and the moments after the creation of the

universe. Furthermore, a black hole has a temperature and entropy, and a quantum

theory of gravity is therefore needed to understand these processes fully as the black

hole reaches the final stages of its evolution.

The leading candidate for a quantum theory of gravity is superstring theory,

whose vibrational modes represent the elementary particles. On a historical note the

string was initially introduced to explain hadronic physics. But since the closed string

admits a massless spin-2 particle in its spectrum string theory was recognized instead

as providing a quantum theory of gravity.

The superstring avoids many of the problems and inadequacies of theories based

on particles. For example, an immediate advantage following the introduction of one-

dimensional objects is that the pointlike interaction vertex in a Feynman diagram

of a traditional field theory is now smeared out, and hence no UV-divergence arises.

Although superstrings were introduced already in the early 1970’s, they weren’t taken

too seriously. One of the reasons was that a consistent superstring requires ten di-

mensions (the purely bosonic string requires 26 dimensions) while our world is four-

dimensional. Around 1973 QCD began emergin as a successful theory of the strong

nuclear force and subsequently received much of the attention. In addition, in the

early 1980’s, it was shown that superstring theory was suffering from anomalies. This

all changed completely with the paper [8] where it was shown that the anomalies can-

cel for the group SO(32) (as well as for the group E8×E8). In short, the superstring

theory has all the features to be a consistent quantum theory of gravity, with large

enough symmetries to reproduce all known particles and their properties.

As we have already emphasized, supergravities suffer from infinities and have

problems producing chiral fermions. But in string theory supergravitiy does still
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play an important role, as the low energy limit of the theory. In the last ten years

supergravity theories have been the focus of much attention. There are many reasons

for this. Some of them are presented below and others elsewhere in this chapter.

One motivation is the yet unsolved problem of how to obtain a real four dimen-

sional world? It is very likely that supergravity will play an important role in its

solution.

Another motivation is the AdS/CFT correspondence [9] which states that a grav-

ity theory in the AdS-bulk is dual to a conformal field theory on the boundary (for

example, type-IIB string theory on AdS5 × S5 is dual to D = 4, N = 4 super Yang-

Mills theory). As we know, the SU(3) theory of QCD becomes nonperturbative at

low energies. Consider instead an SU(N) non-abelian theory. Expanding it in 1/N ,

the theory in fact simplifies for large N at low energies. The reason for this simpli-

fication is that only planar diagrams survive in the large N expansion. It turns out

that in the large N limit, a free string theory emerges from the gauge field theory.

Here 1/N can be viewed as a string coupling constant. The equivalence between

gauge fields and free string theories for large N explains why string theory was able

to explain aspects of hadronic physics. By using D3-branes the duality is extended

to ten dimensional superstring theory and so becomes a duality which includes grav-

ity. Evidence for the AdS/CFT correspondence can seen by analysing the low-energy

limit of the Born-Infeld action for D3-branes and the low-energy limit of the D3-brane

solution. In this limit the Born-infeld action for the D3-brane reduces to a free su-

pergravity theory in the bulk, and to a four dimensional gauge field theory on the

brane. These two systems do not interact and so are decoupled. Consider next the

energy excitations of the classical D3-brane solution at low energies. One needs to

analyse two regions: the bulk and the near horizon region of the D3-brane (which is

AdS5×S5). It follows that in the bulk, free gravitons dominate, but close to the near
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horizon region, string excitations become important. At low energies these two sets

of excitations are decoupled, as indicated by absorption cross section calculations.

This led Maldacena to conjecture the AdS/CFT correspondence. According to this

conjecture, when g2
YMN � 1, i.e. when the radius of AdS5 and S5 are very large,

type-IIB supergravity on AdS5 × S5 is a good approximation to strongly coupled

N = 4 Yang-Mills theory. If we instead consider the limit N →∞ and g2
YMN=finite,

then string theory is a good approximation for the gauge field theory. Note that N

can be viewed as the radius of AdS5 and S5. There is much evidence for the validity

of the AdS/CFT conjecture. One example is the fact that the symmetries of type-IIB

superstring on AdS5 × S5 are the same as those of N = 4 super Yang-Mills. See [10]

for details.

Further interest to supergravities lies in the discovery of duality symmetries in

M/superstring theory, which relate the five known consistent string theories to each

other. To test the duality conjectures is not always a straightforward task. Duali-

ties which relate two weakly-coupled superstrings can be proven within the theories

themselves. But dualities that relate the weak-coupling regime of a string theory to

the strong-coupling regime of another are more problematic, since we know how to

define superstrings only perturbatively. Fortunately, the strong/weak duality can be

investigated by analysing the low energy effective field theories obtained by dimen-

sional reduction of the superstrings on certain internal manifolds. An example where

this is done is the duality between type-IIA string theory reduced on K3 and the

heterotic string reduced on the four dimensional torus T 4. See [11] for an extensive

discussion of string dualities.

Going from ten to eleven dimensions, the superstring theories find a common

origin in a conjectured nonperturbative theory called M-theory. The low energy limit

of M-theory is eleven-dimensional supergravity [12]. The existence of M-theory is
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revealed by reducing it on a small circle S1, where it yields the type-IIA superstring.

Comparing D = 11 supergravity on S1 with the low energy limit of type-IIA string

theory, one obtains a relation between the radius of the circle (R11) and the string

coupling parameter (gs = e<φ>), given by

R11 = (gs)
2/3. (1.1)

We see why the eleventh dimension is not seen in perturabtive string theory since

small gs, i.e. gs → 0 implies R11 → 0, and hence the eleventh dimension appears only

in the strong coupling region where R11 →∞.

It is clear that supergravities are central in many developments. In the light of

this we shall discuss new aspects of supergravity theories in this dissertation, and

supersymmetry and spontaneous compactification to four dimensions. The second

part of the dissertation treats pp-waves in an AdS background.

Recent interest in both de Sitter and anti-de Sitter vacua has led to a renewed

study of gauged supergravities, where the gauging of some R-symmetry naturally

leads to a non-trivial potential. Well-known examples include the gauged super-

gravities in four, five and seven dimensions that admit maximally supersymmetric

anti-de Sitter vacua. In addition, there are also gauged supergravities with run-away

potentials. Although such theories do not admit maximally supersymmetric vacua,

they typically allow domain-wall solutions where scalar gradient energy is balanced

against the scalar potential. What has not been achieved, however, is the construction

of conventional gauged supergravities admitting de Sitter vacua. Of course this is not

particularly surprising, since de Sitter spacetime is incompatible with conventional

supersymmetry.

Supergravities with positive-definite (albeit run-away) potentials do neverthe-

less exist. A particularly interesting example is the Salam-Sezgin model, which is a
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gauged N = (1, 0) supergravity in D = 6 coupled to a tensor and an abelian vec-

tor multiplet [13]. This model has a supersymmetric (Minkowski)4 × S2 vacuum,

in which the vector has a non-trivial flux on the 2-sphere. This monopole flux,

combined with the single-exponential potential V ∼ exp(−ϕ/
√

2), is responsible for

a “self-tuning” of the vacuum, in which the positive energy density is confined to

the 2-sphere, thereby ensuring a vanishing 4-dimensional cosmological constant and

correspondingly a (Minkowski)4 vacuum. The self-tuning feature of this model has

attracted much attention, especially as a means of protecting the cosmological con-

stant from large corrections even after supersymmetry breaking [14, 15]. It was shown

in [16] that the Salam-Sezgin chiral theory arises from a consistent reduction of ten-

dimensional supergravity on a circle times a hyperbolic 3-space. It was also shown,

in [17], that the Salam-Sezgin model can be consistently reduced on S2 to give rise

to D = 4, N = 1 supergravity coupled to an SU(2) vector multiplet and a scalar

multiplet. There are further aspects of the gauged N = (1, 0) theory which we shall

discuss elsewhere in the dissertation.

We should remark here that there exist other supergravities with a single expo-

nential potential. Such examples can be found in seven and four dimensions but with

their potential being negative definite. The theory in D = 7 and the D = 4, N = 4

Freedman-Schwarz model [18], which are of this kind, have been obtained from the

heterotic string by reducing on S3 and S3 × S3 respectively [19, 20].

The attractive features of the Salam-Sezgin model have led us to search for

other possible supergravity theories with positive-definite potentials. This search was

guided by the realization in [21] that a generalized Kaluza-Klein reduction which

gauges a combination of a homogeneous global scaling symmetry together with a

Cremmer-Julia type global symmetry yields a consistent reduction with just such a

positive-definite potential.
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The generalized reduction is introduced by giving the higher dimensional fields

an additional dependence on the circle coordinate z. Let us demonstrate this with

an example in type-IIB supergravity. The equations of motion are invariant under

the shift transformation χ → χ + c of the axion, since is covered by a derivative

everywhere. If we replace c by mz and reduce to nine dimensions with the ansatz

for the axion given as χ(x, z) → χ(x) + mz, the reduction is consistent since no

z-dependence will appear in the lower dimension. The resulting massive theory [22]

is in fact related by a T -duality to Romans massive theory [23] reduced on a circle.

The generalized reduction scheme was used in [24, 25] to construct a variant D =

6, N = (1, 1) supergravity admitting both (Minkowski)4×S2 and (Minkowski)3×S3

vacua. Consider the bosonic sector of the D = 7 (ungauged) minimal theory which

is described by the Lagrangian

ê−1L̂ = R̂− 1
2
(∂φ̂)2 − 1

12
e

4√
10
φ̂
Ĥ2

(3) − 1
4
e

2√
10
φ̂
(F̂ a

(2))
2 , (1.2)

where a = 1, 2, 3. The theory possesses the following rigid symmetry

φ̂→ φ̂+
√

10λ1 , dŝ2 → e2λ2 dŝ2 ,

B̂(2) → e−2λ1+2λ2 B̂(2) , Âa(1) → e−λ1+λ2 Âa(1) . (1.3)

The transformations associated with λ1 leaves the Lagrangian invariant, and

therefore describes a symmetry of the Lagrangian. On the other hand, the trans-

formation associated with λ2 which is applied according to the number of spacetime

indices scales the Lagrangian uniformly, and so it is not a symmetry of it or even

the action, but a symmetry of the equations of motion. These symmetries are then

gauged in the dimensional reduction by replacing the λi bymi z. Since the scale trans-

formation is not a symmetry of the Lagrangian, the generalized reduction must be
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performed on the equations of motion rather than the Lagrangian itself. A discussion

of global IR symmetries and those of the torus generally are given in chapter II.

The would-be vector multiplet arising from performing the generalized reduction

of the D = 7 theory may be truncated out by a judicious choice of the gauging pa-

rameters. In this manner, the reduction takes one from a pure (d+1)-dimensional su-

pergravity without a potential to a pure d-dimensional supergravity with a (positive-

definite) single-exponential potential. In fact, a further truncation of the bosonic

equations of motion to a subsector is possible, with a Lagrangian description that

turns out to be identical to the bosonic sector of the Salam-Sezgin model, albeit with

a triplet of gauge fields. Although the work of [24, 25] focused on the reduction from

seven to six dimensions, the generalized Kaluza-Klein procedure may be carried out in

arbitrary dimensions. This was done in [26], where the generalized reduction scheme

was performed on the full class of half maximal supergravities in D ≤ 10, and in

this manner variant supergravities in diverse dimensions were obtained. We present

this calculation in chapter III. These new gauged supergravities have supersymmetric

Minkowski×sphere vacua. A comment at this stage on the maximal supergravities

is in place. We have omitted them because starting from D = 10 the 4-form field

strength cannot support vacua of the type Minkowski×sphere. For an investigation

of the maximal supergravities see [27, 28, 21, 29, 30].

Note that the D = 7 ungauged theory we discussed above can be obtained from

M -theory compactified on K31 or, for example, from the heterotic string compactified

on T 3 with vector multiplets truncated out.

The variant six dimensional supergravity we obtained is different from the Ro-

1The consistency of the reduction of M -theory on K3 is questionable. It is consis-
tent however if one restricts to the pure supergravity multiplet which does not turn
on the scalars parameterising the K3.
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mans D = 6, N = (1, 1) gauged supergravity [31], in that the four vectors in our

theory are all abelian instead of being SU(2) × U(1) Yang-Mills fields. The super-

symmetric (Minkowski)4×S2 (or (Minkowski)3×S3) vacua of the new theory can be

uplifted back to D = 11, where it becomes the near-horizon geometry of two inter-

secting M5-branes wrapping on a supersymmetric two-cycle of K3. The solution of

the two intersecting M5-branes preserve 1
4

of the maximal supersymmetry.

In chapter IV we derive the complete supersymmetry transformations of the

variant N = (1, 1) supergravity from D = 7 dimensions. We investigate some of

its spontaneous compactifications. As in the N = (1, 0) model, we find that it can

also be consistently reduced on a 2-sphere to give rise to four-dimensional N = 2

supergravity coupled to a single vector multiplet. This can further be truncated to

yield N = 1 supergravity coupled to a chiral multiplet. We further demonstrate

that, in contrast to the N = (1, 0) theory, this model also admits a supersymmetric

(Minkowski)3×S3 vacuum. Using the ansatz we uplift supersymmetric dyonic black-

hole solutions of the N = 2 supergravity to six dimensions. In the following chapter

we continue our studies of supersymmetry by deriving the complete supersymmetry

transformations of the variant supergravity in D = 9.

The M-theory origin of the N = (1, 1) theory and the vacua (Minkowski)4 × S2

are discussed in detail in chapter VI. In chapter VII we derive the Minkowski×sphere

vacua in diverse dimensions of the new gauged supergravities which exist for D ≤ 9.

We demonstrate that these vacua are all supersymmetric by uplifting them to higher

dimensions, where they become the near horizon geometries of certain brane solutions.

A general discussion of (Minkowski)d−n × Sn vacua is included.

The generalized Kaluza-Klein reduction can readily be adapted to the string

frame. In the case of setting the two cosmological parameters equal the generalized

reduction becomes essentially just the standard Kaluza-Klein procedure except for
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a linear z-dependence in the string frame dilaton. In this construction the variant

supergravities take a particularly simple form. The scalar potential of the Einstein

frame becomes a pure cosmological constant in the string frame. This is the topic of

chapter VIII.

In chapter IX we derive a time dependent supersymmetric solution in the nine

dimensional gauged theory with the fluxes turned off. The solution can be viewed

as a dilaton driven cosmological solution in both D = 9 and D = 10 dimensions. In

the string frame the solution becomes pure Minkowski spacetime. A further uplift to

D = 11 yields a solution describing a pp-wave.

Recently the Penrose limit [32] of spacetime solutions which give rise to pp-waves

has attracted considerable attention. In particular, superstring theory is exactly

solvable [33] on the backgrounds of the maximal supersymmetric pp-waves of the type-

IIB string [34, 35] and M-theory [36]. String theory on a pp-wave background reduces

to a free massive theory in the light-cone gauge. In this description one can now study

the AdS/CFT duality [9, 37, 38] beyond the supergravity approximation by including

string states [39]. The pp-waves of the Penrose limit arise when one focuses on the

geometry close to a null geodesic. These solutions are plane-fronted gravitational

waves with parallell rays, propagating in an asymptotically flat spacetime. On the

dual gauge side the Penrose limit corresponds to sending both the rank of the gauge

group N and the R-charge to infinity [39].

Let us define a pp-wave more precisely. These are spacetime solutions admitting a

covariantly constant null Killing vector. We use the following metric for the pp-wave,

ds2 = −4dx+dx− −H(x+, zi) (dx+)2 + dzi dzi . (1.4)

Note that the transverse space can be any Ricci flat metric, but we are here taking

it to be flat. A sub-class of pp-waves are solutions called plane waves. These so-
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lutions have an extra symmetry, i.e. plane symmetry, and are obtained by making

the specialization H(x+, zi) = hij(x
+)zizj. The pp-waves arising from the Penrose

limits of AdS×sphere spacetimes belong to the plane-wave category, but with no x+-

dependence in hij. The pp-waves themselves belongs to a wider class of null solutions

[40]. The null solutions we are going to obtain will always be refered to as pp-waves.

In chapters X and XI, we shall study the pp-waves of gauged AdS supergravities.

Taking the limit of vanishing cosmological constant these solutions reduce to pp-waves

of the corresponding ungauged theories. Before explaining the motivation behind

studying AdS pp-waves, let us first introduce the pp-wave in ungauged supergravity

by working out an example in minimal D = 5 supergravity. The bosonic sector of

this theory is described by the Lagrangian

L = R− 1
4
F 2

(2) + 1
12
√

3
εMNPQRFMNFPQAR . (1.5)

The pp-wave ansatz is

ds2 = −4dx+dx− −H(zi)(dx
+)2 + dz2

1 + dz2
2 + dz2

3 ,

F(2) = −µ dx+ ∧ dz1 , (1.6)

where x± = 1
2
(t± x). (In general H has also an arbitrary dependence on x+). If we

set H = 0, the metric becomes flat Minkowski spacetime. The function H, which is

a harmonic function, is given by

H = H0 +H1 ,

H0 =
m

(z2
1 + z2

2 + z2
3)

1/2
,

H1 =
3∑
i=1

ciz
2
i , (1.7)

where c1 + c2 + c3 = −µ2/2. Here H0 is a pure gravitational solution and H1 is sup-
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ported by the null flux (µ). The above solution generically preserve 1
2

of the super-

symmetry (standard supersymmetry) with the only condition being that H satisfies

the second order equations of motion. However, if one sets H0 = 0 an enhancement of

the supersymmetry can occur, if the coefficients ci are chosen appropriately. If we set

c1 = −µ2/3, c2 = c3 = −µ2/12, the pp-wave supported by the field strength becomes

maximally supersymmetric. (A derivation of the maximal supersymmetric pp-wave

via the Penrose limit is given in chapter X.)

The metric ansatz for a generic pp-wave in the corresponding gauged supergravity

would be given by

ds2 = e2gρ(−4dx+dx− +H(dx+)2 + dz2
1 + dz2

2) + dρ2 , (1.8)

where the cosmological constant is related to the gauge coupling constant g as Λ =

−g2 and H(x+, ρ, za) is a harmonic function on the space of za and ρ. If H = 0

the metric describes pure AdS spacetime. The pp-wave with the dependence H(ρ)

was constructed in four dimensions by Kaigorodov [41], and its higher dimensional

counterparts were obtained in [42]. These solutions have interestingly been shown

to be related to boosted p-branes in higher dimensions [42]. To give one example,

consider the near horizon geometry of the M2-brane, which is AdS4 × S7. If we now

perform a singular boost of an BPS M2-brane, then the near horizon geometry of the

boosted brane become (Kaigorodov)4 × S7. The Kaigorodov metric and its general-

ization to higher dimensions are homogeneous spaces admitting 1
2
D(D−3)+3 Killing

vectors, where D is the spacetime dimension. The AdS pp-waves can in fact also be

viewed as plane-fronted solutions. In chapter X we present a detailed investigation

of the supersymmetry of AdS pp-waves. These solutions generically preserve 1
4

of

the supersymmetry for any solution H. We show that purely gravitational solutions

can in fact admit supernumerary supersymmetry for appropriately constrained H.
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We demonstrate the same phenomenon in the case of solutions supported by a field

strength in minimal gauged supergravities in D = 4 and D = 5.

Some of the reasons that motivate the studies of AdS pp-waves are the follow-

ing. String theory on the (Kaigorodov)5 × S5 background is dual to D = 4,N = 4

Yang-Mills theory on an infinitely-boosted frame, with a constant momentum density

background. In our case we turn on a U(1) Aµ field as well, which is related to the

R-charge of the Yang-Mills. It is of interest to study the effect of turning on the

R-charge.

In chapter XI we investigate AdS pp-waves further by studying the pp-waves of

D = 5 and D = 4 gauged supergravities supported by U(1)3 and U(1)4 gauge fields

respectively. We also study the pp-waves of the Freedman-Schwarz model.
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CHAPTER II

SYMMETRIES IN THE T n REDUCTION

The topic of dimensional reduction is a vast and diverse one and of great importance

with many applications. In this chapter we shall concentrate just on those Kaluza-

Klein reductions where the internal manifold is a circle S1 or product of circles in

the case of n-torus T n. Our focus here is on the torus symmetries which are needed

to introduce the generalized Kaluza-Klein reduction. Since this chapter concerns

only with T n reductions we have omitted the coset sphere reductions, group mani-

fold reductions, brane world reductions and reductions based on Calabai-Yau or K3

manifolds. The material in this chapter is based on [43].

A. The standard Kaluza-Klein S1 reduction

We begin with a discussion of the consistency of the S1 reduction and show that the

symmetries of the reduction ansatz makes sense with the lower dimensional equations

of motion. Since in the circle reduction each spacetime point comprises a small circle

we can expand all higher dimensional fields and its symmetries into harmonics of S1.

In essence, if we split the D = d + 1 dimensional coordiantes as xM = (xµ, z), the

Fourier serie of the metric for example would be given by

ĝMN(xµ, z) =
∞∑
n=0

g(n)
MN(xµ) ei nz/L (2.1)

where n is a Fourier mode number and L is the radius of the internal compact mani-

fold. It is clear that there are infinite many fields arising from the harmonic expansions

and each characterized by the mode number n. Fields with an n 6= 0 are massive

with a mass proportional to n/L and those with n = 0 are massless. If we now sub-
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stitute such a serie expansion in the higher dimensional equations of motion (or the

Lagrangian) then for the dimensional reduction to make sense it is absolute essential

that all massive modes can be subsequently truncated out while keeping only the

massless ones. In fact, a detail analysis shows that the equations of motion for the

n = 0 fields remarkably decouple from the n 6= 0 equations, and so the massless fields

do not act as sources for the massive fields. This means that one can consistently

set to zero all massive fields. This decoupling of fields in the S1 reduction is in fact

nothing but guaranteed by group theoretical arguments. As a definition of a consis-

tent reduction, one can take that when uplifted, all solutions of the lower dimensional

theory become solutions of the original theory. As we have inferred in the prelude of

this chapter, there are rather many types of dimensional reductions and they are all

important, but the internal torus manifold which is extremely utilitarian is clearly

special among them. Lets now work out a simple S1 reduction involving just pure

gravity in D dimensions and study the symmetries involved. The ansatz that reduces

from D = d+ 1 to d dimensions is given by

dŝ2
D = e2αϕds2

d + e2βϕ(dz +A(1))
2 (2.2)

where

α2 =
1

2(d− 1)(d− 2)
, β = −(d− 2)α . (2.3)

The reduction of the Einstein theory

ê−1L̂D = R̂ (2.4)

yields an Einstein-Maxwell-scalar system described by the Lagrangian

e−1Ld = R− 1
2
(∂ϕ)2 − 1

4
e−2(d−1)αϕF2

(2) . (2.5)



18

The parameters α and β were determined by the requirement that the Lagrangian

in lower dimensions have a gravity term of the form eR plus a canonical normalized

kinetic term for the dilaton. Note that it is not allowed to set the dilaton to zero

since this would be inconsistent with the (z, z)-component of the higher dimensional

Einstein equation. Lets now look at the symmetries of this simple example. The

lower dimensional theory we obtained has general coordinate covariance, local U(1)

gauge symmetry of the Maxwell field and a constant shift symmetry given by

ϕ→ ϕ+ c , Aµ → ec(d−1)αAµ . (2.6)

These residual symmetries constitute an infinitesimal amount symmetries surviving

from the higher dimensional general coordinate covariance of the original theory. To

see that these symmetries are consistent with the S1 reduction ansatz we need to

analyse the general coordinate reparametrization invariance

δx̂M = −ξ̂M , δĝMN = ξ̂P∂P ĝMN + ĝPN∂M ξ̂
P + ĝMP∂N ξ̂

P (2.7)

of the D-dimensional theory where ξ̂M depends on all D-dimensional coordinates. It

is clear that the S1 reduction ansatz is not preserved under this transformation. An

investigation shows that

ξ̂µ = ξµ(x) , ξ̂z = c z + λ(x) (2.8)

is the most general form which leaves the reduction ansatz invariant. Here the ξµ(x)

and λ(x) now depends on the (D−1)-dimensional coordinates and parameterise local

transformations while the constant c-parameter is associated with a rigid symmetry.

Implementing (2.8) in δĝMN for the S1 metric ansatz, and if we for now set c = 0, we
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obtain

δϕ = ξρ∂ρϕ ,

δAµ = ξρ∂ρAµ +Aρ∂µξρ + ∂µλ ,

δgµν = ξρ∂ρgµν + gρν∂µξ
ρ + gµρ∂νξ

ρ. (2.9)

It is clear from these that the various fields transform properly under the (D − 1)-

dimensional general coordinate transformations and that Aµ has U(1) symmetry.

These results are of course in agreement with the Lagrangian (2.5). As mentioned

earlier the Lagrangian also has a rigid symmetry given by (2.6) which we would

like to obtain from the general coordinate transformations (2.7). In order to do

so we need to make use of a conformal symmetry of the D-dimensional equations of

motion. We are here refering to the scaling transformation ĝMN −→ k2ĝMN . Although

this transformation leaves the equations of motion invariant it is not a symmetry

of the Lagrangian since it is scaled homogeneously. The scaling transformation in

infinitesimal form is δĝMN = 2aĝMN , where a is an infinitesimal constant parameter.

Now use this together with ξ̂z = c z in (2.7) we obtain

δϕ = − c

α(D − 2)
, δAµ = −cAµ , δgµν = 0 , (2.10)

and a = −c/(D−2). This is precisely the symmetry given in (2.6) after the redefinition

c→ α(D−2)c. Note that the parameter a was fixed from requiring that the variation

of the metric be inert under the constant shift transformation. In the forthcoming

chapters we are going to make use of these two global symmetries in the S1 reduction

and in this way be able to obtain new supergravities.

We are going to skip the discussion of supersymmetry in the standard Kaluza-

Klein theory since we will treat it instead within the generalized Kaluza-Klein reduc-
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tion. However, we should say that the S1 reduction preserve all supersymmetry of

the original theory.

B. The torus reduction

In this subsection we shall extend the discussions of the previous section by including

some elementary aspects of the T n reductions, and continue to focus on the symme-

tries involved. In the T n reductions the parameter c discussed in the S1 reduction is

now replaced by Λi
j and the metric reduction ansatz is preserved by

ξ̂µ(x, z) = ξµ(x) , ξ̂i(x, z) = Λi
jz
j + λi(x) . (2.11)

We also have

δzi = −Λi
jz
j . (2.12)

The elements of the matrix Λ are real and satisfy det(Λ) = 1. This form the global

symmetry group SL(n, IR) and acts on all fields of the theory except the metric.

Making use of the homogeneous scaling symmetry (if present) of the equations of

motion the internal SL(n, IR) global symmetry can be expanded to the full GL(n, IR).

Note that GL(n, IR) ∼ SL(n, IR)× IR. Lets consider a T 2 reduction of pure Einstein

gravity in D dimensions as an example. The T 2 reduction gives rise to the (D − 2)-

dimensional theory

e−1L = R− 1
2
(∂ϕ)2 − ∂τ · ∂τ̄

2(Im τ)2
− 1

4
eφ+qϕ(F1

(2))
2 − 1

4
e−φ+qϕ(F2

(2))
2, (2.13)

where τ = χ + ie−φ and χ is an axion field and q =
√

(D − 2)/(D − 4) . The field

strengths are defined as

F1
(2) = dA1

(1) + χdA2
(1) , F2

(2) = dA2
(1). (2.14)
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It is clear that the sector (φ, χ) transform under SL(2, IR) and the Lagrangian has

a global shift symmetry ϕ → ϕ + c. This yields the group SL(2, IR) × IR. However,

one can show after some calculations that this global symmetry of the scalar sector

of the Lagrangian is remarkably also a symmetry of the full Lagrangian involving

the gauge fields. This discussion applies also if the original Lagrangian contained

higher rank potentials. In summary, the SL(n, IR) global symmetry of the torus can

be enlarged to GL(n, IR) when combined with a scaling symmetry of the original

theory. We should however also add that in certain cases the SL(n, IR) group can in

fact be enhanced to an even larger group than GL(n, IR) due to conspiracies among

scalar fields and field strengths. This occurs in the eleven dimensional supergravity,

type-IIB supergravity and certain dilatonic supergravities [44].
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CHAPTER III

GAUGED SUPERGRAVITIES WITH POSITIVE DEFINITE POTENTIALS

In general, the various (ungauged) supergravities are quite distinct (especially in their

fermionic sectors). However, it is noteworthy that the bosonic sector of the half-

maximal (16 supercharge) supergravities in D ≤ 10 is universal, with field content

(gµν , Bµν , φ, A
a
µ) (3.1)

(a = 1, 2, ..., 10, 10−D). This is of course the bosonic content of the heterotic string

(or the NS-NS sector of the Type-II string) compactified on a (10−D)-dimensional

torus, with vector multiplets truncated out. Owing to this universality of the field

content, we may perform a generalized Kaluza-Klein reduction on the half-maximal

supergravities in arbitrary dimensions and in this manner obtain the full class of (16

supercharge) variant supergravities.

A. The generalized reduction ansatz

The Lagrangian describing the bosonic sector of pure supergravity with 16 super-

charges can be written as

L̂ = R̂∗̂1l− 1
2
∗̂dφ̂ ∧ dφ̂− 1

2
eâφ̂ ∗̂Ĥ(3) ∧ Ĥ(3) − 1

2
e

1
2
âφ̂ ∗̂F̂ a

(2) ∧ F̂ a
(2) , (3.2)

where F̂ a
(2) = dÂa(1), Ĥ(3) = dB̂(2)− 1

2
F̂ a

(2)∧ Âa(1), and a = 1, 2 . . . , (10−D). The constant

â is given by

â2 =
8

D − 2
. (3.3)
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The equations of motion are given by

R̂MN = 1
2
∂M φ̂ ∂N φ̂+ 1

4
eâφ̂

(
ĤMPQ H

PQ

N − 2

3(D − 2)
Ĥ2

(3) ĝMN

)
+ 1

2
e

1
2
âφ̂

(
F̂ a

MP F̂
a P

N − 1

2(D − 2)
(F̂ a

(2))
2 ĝMN

)
,

d(eâφ̂ ∗̂Ĥ(3)) = 0 ,

d(e
1
2
âφ̂ ∗̂F̂ a

(2)) = (−1)D+1eâφ̂ ∗̂Ĥ(3) ∧ F̂ a
(2) ,

̂ φ̂ =
â

12
eâφ̂Ĥ2

(3) +
â

8
e

1
2
âφ̂ F̂ a2

(2) . (3.4)

The key observation behind the generalized reduction [21] is the realization that

the equations of motion are invariant under the symmetry

φ̂→ φ̂+
1

â
λ1 , dŝ2 → e2λ2 dŝ2 ,

B̂(2) → e−2λ1+2λ2 B̂(2) , Âa(1) → e−λ1+λ2 Âa(1) . (3.5)

Although the shift of the scalar field by λ1 is a symmetry of the Lagrangian, the

scaling transformation involving λ2 on the metric is not since the Lagrangian will

scale as
√
−ĝ (R̂ + · · ·) −→ e(D−2)λ2

√
−ĝ (R̂ + · · ·) .

We now reduce from D dimensions to d = (D−1), while simultaneously gauging

the above two global symmetries. The D-dimensional pure supergravity multiplet

then reduces to d-dimensional supergravity coupled to a single vector multiplet. This

is achieved by making the following generalized reduction ansatz

dŝ2 = e2m2z
(
e2αϕ ds2 + e2β ϕ (dz +A(1))

2
)
,

B̂(2) = e2(m2−m1)z
(
B(2) +B(1) ∧ dz

)
,

Âa(1) = e(m2−m1)z
(
Aa(1) + χadz

)
,

φ̂ = φ+
4

â
m1 z , (3.6)
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where

α2 =
1

2(d− 1)(d− 2)
, β = −(d− 2)α . (3.7)

The standard Kaluza-Klein ansatz for an ungauged S1 reduction would correspond

to setting m1 = m2 = 0.

In general, for unequal mass parameters m1 and m2, the lower-dimensional equa-

tions of motion are rather complicated. However, a significant simplification occurs

if m1 = m2. In this case, various exponential factors drop out from (3.6), and one

can consistently truncate out the vector multiplet, owing to conspiracies between the

fields. In this manner, one can obtain variant gauged supergravities with positive-

definite scalar potentials and with half-maximal supersymmetry in d ≤ 9 dimensions.

Before writing out the complete reduction of the bosonic equations of motion, we

first collect some intermediate results. The reduction of the potentials in (3.6) yields

a corresponding reduction on the field strengths:

Ĥ(3) = e2(m2−m1)z(H(3) +H(2) ∧ (dz +A(1))) ,

F̂ a
(2) = e(m2−m1)z(F a

(2) + La(1) ∧ (dz +A(1))) , (3.8)

where the lower dimensional fields are defined by

H(3) = dB(2) − 1
2
F a

(2)∧Aa(1) − dB(1) ∧ A(1) − 2(m2 −m1)B(2) ∧ A(1) + 1
2
χaF a

(2) ∧ A(1) ,

G(2) = dB(1) − 1
2
χa F a

(2) + 1
2
La(1) ∧ Aa(1) − 1

2
χaLa(1) ∧ A(1) + 2(m2 −m1)B(2) ,

F a
(2) = dAa(1) − dχa ∧ A(1) + (m2 −m1)A

a
(1) ∧ A(1) ,

La(1) = dχa − (m2 −m1)A
a
(1) . (3.9)

The Kaluza-Klein potential A(1) has the standard field strength F(2) = dA(1). It is

evident at this stage that the vector fields Aa(1) and the tensor field B(2) acquire masses

proportional to |m2 − m1|, in the process eating the axions χa and the vector B(1)
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respectively.

B. Untruncated d-dimensional equations

We are now able to write down the full bosonic equations of motion for the variant

d-dimensional gauged supergravity. The bosonic field content is

(gµν , Bµν , ϕ, A
a
µ,Aµ) and (Bµ, χ

a, φ) , (3.10)

corresponding to half-maximal supergravity coupled to a single vector multiplet. This

representation is schematic in the sense that the scalars φ and ϕ as well as the 1-form

potentials B(1) and A(1) must necessarily be taken as appropriate linear combinations

in the actual multiplets.

We find that the equations of motion for the form fields are given by

∇σ(eâφ−4αϕHµνσ) = (2m1 + (d− 3)m2)
(
eâφ−4αϕHµνσAσ − eâφ+2(d−3)αϕGµν

)
,

∇ν(eâφ+2(d−3)αϕGµν) = 1
2
eâφ−4αϕHµνσFνσ

+ (2m1 + (d− 3)m2)e
âφ+2(d−3)αϕGµν Aν ,

∇ν(e
1
2
âφ−2αϕF a

µν) = 1
2
eâφ−4αϕHµνσF

aνσ + eâφ+2(d−3)αϕGµνL
aν

+ (m1 + (d− 2)m2)
(
e

1
2
âφ−2αϕF a

µνAν − e
1
2
âφ+2(d−2)αϕLaµ

)
,

∇µ(e
1
2
âφ+2(d−2)αϕLaµ) = − 1

2
eâφ+2(d−3)αϕGµν F

aµν + 1
2
e

1
2
âφ−2αϕF a

µνFµν

+ (m1 + (d− 2)m2)e
1
2
âφ+2(d−2)αϕLaµAµ,

∇ν(e−2(d−1)αϕFµν) = 1
2
eâφ−4αϕHµνσG

νσ − e
1
2
âφ−2αϕF a

µνL
aν

+
4

â
m1(∂µφ−

4

â
m1Aµ)− 2m2(d− 1) (β∂µϕ−m2Aµ)

+m2(d− 1)e−2(d−1)αϕFµνAν . (3.11)

The two scalar fields, φ and ϕ satisfy similar m1 and m2 dependent equations of
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motion. The scalar coming from the metric satisfies the equation

−β ϕ = − eâφ−4αϕ

6(d− 1)
H2

(3) −
e

1
2
âφ−2αϕ

4(d− 1)
(F a

(2))
2 +

d− 3

4(d− 1)
eâφ+2(d−3)αϕG2

(2)

+
d− 2

2(d− 1)
e

1
2
âφ+2(d−2)αϕ(La(1))

2 − 1
4
e−2(d−1)αϕF2

(2) (3.12)

−m2β(d− 1)Aµ∂µϕ−m2∇µAµ +m2
2(d− 1)A2

(1) +
8

â2
m2

1e
2(d−1)αϕ ,

while the D-dimensional dilaton equation reduces to

φ =
â

12
eâφ−4αϕH2

(3) +
â

4
eâφ+2(d−3)αϕG2

(2) +
â

8
e

1
2
âφ−2αϕ(F a

(2))
2

+
â

4
e

1
2
âφ+2(d−2)αϕ(La(1))

2 + m2(d− 1)Aµ∂µφ+
4

â
m1∇µAµ

−4(d− 1)

â
m1m2 (A2

(1) + e2(d−1)αϕ) . (3.13)

The d-dimensional Einstein equation takes the form

Rµν − 1
2
Rgµν = 1

2
(∂µϕ∂νϕ− 1

2
(∂ϕ)2 gµν) + 1

2
(∂µφ ∂νφ− 1

2
(∂φ)2 gµν)

+ 1
2
e−2(d−1)αϕ (FµσF σ

ν − 1
4
gµνF2

(2)) + 1
4
eâφ−4αϕ(HµρσH

ρσ
ν − 1

6
gµνH

2
(3))

+ 1
2
e

1
2
âφ−2αϕ(F a

µσ F
a σ
ν − 1

4
gµν(F

a
(2))

2) + 1
2
eâφ+2(d−3)αϕ(GµσG

σ
ν − 1

4
gµνG

2
(2))

+ 1
2
e

1
2
âφ+2(d−2)αϕ (LaµL

a
ν − 1

2
gµν (La(1))

2)

−αm2(d− 1)(Aσ∂σϕ gµν −Aµ∂νϕ−Aν∂µϕ)

+
2

â
m1(Aσ∂σφ gµν −Aµ∂νφ−Aν∂µφ) +

( 8

â2
m2

1 − (d− 1)m2
2

)
AµAν

− 1
2
m2(d− 1)(∇µAν +∇νAµ − 2∇σAσ gµν)

−
(4m2

1

â2
+ 1

2
m2

2(d− 1)(d− 2)
)

(A2
(1) + e2(d−1)αϕ)gµν . (3.14)

Note that the last term is associated with a positive-definite scalar potential.
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C. Truncated d-dimensional equations

The scalars φ and ϕ may be disentangled between the supergravity and vector mul-

tiplets of (3.10) by performing a rotation to φ1 (supergravity) and φ2 (vector) given

by

âφ− 4αϕ = aφ1 , 4αφ+ âϕ = aφ2 , (3.15)

where a =
√

8/(D − 3). When m1 = m2, the vector multiplet may be further trun-

cated away. This is done by setting

B(1) = A(1) ≡ 1√
2
A(1) , φ2 = 0 , La(1) = 0 . (3.16)

The equations of motion for the pure supergravity fields are then given by

∇ρ
(
eaφHµνρ

)
=
d− 1√

2
m

(
eaφHµνρA

ρ − e
1
2
aφFµν

)
,

∇ν
(
e

1
2
aφFµν

)
= 1

2
eaφHµνρF

νρ +
d− 1√

2
me

1
2
aφFµν A

ν ,

∇ν
(
e

1
2
aφF a

µν

)
= 1

2
eaφHµνρ F

a νρ +
d− 1√

2
me

1
2
aφF a

µν A
ν ,

φ =
eaφ

3
√

2(d− 2)
H2

(3) +
e

1
2
aφ

2
√

2(d− 2)
(F 2

(2) + (F a
(2))

2) +
d− 1√

2
mAµ ∂µφ

+
d− 1√
d− 2

m∇µA
µ −
√

2 (d− 1)2

√
d− 2

m2(1
2
A2

(1) + e−
1
2
aφ) ,

Rµν = 1
2
∂µφ∂νφ+ 1

4
eaφ(HµρσH

ρσ
ν − 2

3(d− 2)
H2

(3)gµν)

+1
2
e

1
2
aφ(FµρF

ρ
ν −

1

2(d− 2)
F 2

(2)gµν) + 1
2
e

1
2
aφ(F a

µρF
a ρ
ν −

1

2(d− 2)
(F a

(2))
2gµν)

−m(d− 1)

2
√
d− 2

(Aµ∂νφ+ Aν∂µφ)− m(d− 1)

2
√

2
(∇µAν +∇νAµ +

2

d− 2
∇ρA

ρgµν)

+
m2(d− 1)2

2(d− 2)
(A2

(1) + 2e−
1
2
aφ)gµν , (3.17)

where H(3) = dB(2)− 1
2
F a

(2) ∧Aa(1)− 1
2
F(2) ∧A(1) , F

a
(2) = dAa(1) , F(2) = dA(1) and we have

rewritten φ1 as φ. It may be seen that this set of equations cannot be obtained from a
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Lagrangian in terms of the physical fields. This is not altogether surprising, since they

were derived in a generalized reduction that gauged a symmetry of the equations of

motion which was not a symmetry of the Lagrangian. This is demonstrated from the

fact that if there were a Lagrangian, it would from the truncated Einstein equation

of motion have the term m2A2. On the other hand, the equation of motion for the

A(1) indicates that such a term should not exist. We furthermore note that all vectors

in our theories are abelian but with the gauge symmetry of A(1) broken owing to

the higher-order interactions. This is for example different from the Romans d = 6

gauged supergravity where the four vectors are the SU(2)× U(1) Yang-Mills fields.

By examining the linearized equations of motion, it can be seen that A(1) is a

massless gauge potential. This gauge field can in fact be consistently set to zero. In

this case, the remaining equations of motion can then be obtained from the Lagrangian

e−1L = R− 1
2
(∂φ)2 − 1

12
eaφH2

(3) − 1
4
e

1
2
aφ(F a

(2))
2 − (d− 1)2m2e−

1
2
aφ , (3.18)

where e =
√
−g. Thus we see once again that the scalar potential is positive def-

inite. The supergravities we have obtained have all vacuum solutions of the type

Minkowski× sphere.

A few remarks are needed at this stage. Owing to the overall z-dependent scaling

factor in the ansätze (3.6), the coordinate z cannot be viewed as a circle coordinate.

Thus the theory is not compactified. To resolve such a problem, it was proposed in

[28, 45] that one can modify the original supergravity by introducing an auxiliary field

associated with the gauging of the scaling symmetry, which can be identified with the

reduction coordinate in the dimensional reduction. The auxiliary field always appear

in the equations through a derivative in the modified theory, and can therefore be

defined as a circle coordinate in the reduction. Locally, this approach is the same

as our generalized circular reduction, but globally, the internal direction is a circle
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instead of a real line. In fact, if we consider in our example the string frame, then

there is no z-dependence in the metric when m1 = m2, and so z can be viewed as a

circular coordinate at least from the metric point of view. An alternative approach is

to introduce a delta function singularity à la Randall-Sundrum. We can then replace

the prefactor in the metric e2mz by e−2m |z|. By doing this, the volume of the internal

direction will be finite even though z is a non-compact coordinate. Consequently, the

gravity will be localized on the brane located at z = 0. The exponential nature of

the warp factor in the conformal-frame metric implies that the effect of localization is

strong with a mass gap. It would be interesting to study further if the delta function

singularity in this procedure can be smoothed out.

With the derivation of the bosonic equations of motion completed, we now turn

to a consideration of the supersymmetry. Although we have obtained new gauged

supergravities in dimensions d < 10 we are going to derive the supersymmetry trans-

formations in just d = 6 and d = 9 dimensions. We begin by investigating the

supersymmetry of the d = 6, N = (1, 1) theory, and its spontaneous compactification

to d = 4.
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CHAPTER IV

N = (1, 1) GAUGED SUPERGRAVITY AND (MINKOWSKI)4 × S2 VACUA

A. Supersymmetry of the generalized reduction

The bosonic field content of half-maximum supergravity in seven dimensions com-

prises a metric ĝMN , a scalar φ̂, an antisymmetric tensor B̂(2) and three vectors Âa(1).

The Lagrangian in the bosonic sector is [46, 47]

L̂ = R̂∗̂1l− 1
2
∗̂dφ̂ ∧ dφ̂− 1

2
e

4√
10
φ̂∗̂Ĥ(3) ∧ Ĥ(3) − 1

2
e

2√
10
φ̂∗̂F̂ a

(2) ∧ F̂ a
(2), (4.1)

where F̂ a
(2) = dÂa(1) and Ĥ(3) = dB̂(2) − 1

2
F̂ a

(2) ∧ Âa(1). The generalized Kaluza-Klein

reduction of this theory was worked out in the previous chapter.

1. The supersymmetry transformations

The fermionic sector consists of a pair of symplectic-Majorana gravitinos ψ̂Mi as well

as a pair of dilatinos λ̂i, where i = 1, 2 is an Sp(1) index. The three vectors form a

triplet under Sp(1), and may equivalently be written as Â(1) i
j = Âa(1)(−τa)ij where

τa are the usual Pauli matrices. In this form, the supersymmetry transformations on

the fermions are given by

δψ̂Mi = [∇̂M − 1
60

(γ̂M
NPQ − 9

2
δN

M γ̂
PQ) e

1
2
âφ̂ĤNPQ]ε̂i

+ i
20
√

2
(γ̂M

NP − 8δN

M γ̂
P )e

1
4
âφ̂F̂NP i

j ε̂j,

δλ̂i = [− 1
2
√

2
γ̂M∂M φ̂+ 1

12
√

5
e

1
2
âφ̂ĤMNP γ̂

MNP ]ε̂i − i
4
√

10
e

1
4
âφ̂F̂MNi

j γ̂MN ε̂j, (4.2)

where â = 4/
√

10.
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In addition, the transformations on the bosonic fields have the form

δφ̂ = − 1
2
√

2
¯̂εiλ̂i,

δĝMN = 1
2
¯̂εiγ̂(M ψ̂N) i,

δÂM i
j = i√

2
e−

1
4
âφ̂(

¯̂
ψjM − 1√

5

¯̂
λj γ̂M)ε̂i,

δB̂MN = −1
2
Â[M i

jδÂN] j
i − 1

2
e−

1
2
âφ̂(

¯̂
ψi[M γ̂N] − 1√

5

¯̂
λiγ̂MN)ε̂i, (4.3)

where in the transformation for ÂM i
j, the Sp(1) indices i and j are to be taken

in the triplet combination. In particular, this may be enforced by the projection

(δi
′
i δ

j
j′ − 1

2
δji δ

i′
j′) which removes the trace. Note that the transformation for δB̂MN is

given in a dualized form compared to that of [46].

The above fermionic (4.2) and bosonic (4.3) supersymmetries are normalized

according to

[δ1, δ2]Ξ̂ = 1
4
ξ̂M∂MΞ̂ + (local Lorentz) + (general coordinate) + (gauge), (4.4)

where ξ̂M = ¯̂εi2γ̂
M ε̂1i. Furthermore, when working with the fermions, it is often con-

venient to make use of the Majorana flip conditions

¯̂χiγM1M2···Mn
ψ̂i = (−)n

¯̂
ψiγMnMn−1···M1

χ̂i,

¯̂χjγM1M2···Mn
ψ̂i = (−)n+1 ¯̂

ψjγMnMn−1···M1
χ̂i, (4.5)

for the singlet and triplet combinations, respectively.

2. The bosonic reduction ansatz

As demonstrated in [24], the generalized S1 reduction ansatz is given on the bosonic

fields by

dŝ2
7 = e2m2z

(
e2αϕds2

6 + e2βϕ(dz +A(1))
2
)
,
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B̂(2) = e2(m2−m1)z(B(2) +B(1) ∧ dz),

Âa(1) = e(m2−m1)z(Aa(1) + Φadz),

φ̂ = φ+
√

10m1z, (4.6)

where α2 = 1
40

and β = −4α. The resulting reduction yields the six-dimensional

fields (gµν ,A(1), A
a
(1), B(2), φ1) and (B(1), φ2,Φ

a) corresponding to the bosonic content

of N = (1, 1) supergravity coupled to a vector multiplet. Note that the Sp(1) singlet

graviphoton and the matter vector are in actuality given by linear combinations of

A(1) and B(1). However, the scalars φ1 and φ2, given by the rotated combinations

φ1 = 2√
5
φ− 1√

5
ϕ,

φ2 = 1√
5
φ+ 2√

5
ϕ, (4.7)

are diagonal between multiplets.

3. The fermionic reduction

Working out the fermion reduction is straightforward, although somewhat tedious.

Since the resulting D = 6 theory contains a vector multiplet in addition to the pure

supergravity multiplet, the D = 7 fermions ψ̂M i and λ̂i must reduce to yield a D = 6

gravitino and dilatino (ψµ i, λi) as well as a gaugino χi. The reduction from seven to

six dimensions is facilitated by the fact that theD = 7 symplectic-Majorana condition

¯̂
ψi = −εijψ̂Tj Ĉ continues to apply in D = 6, yielding a trivial reduction on the spinors.

Examination of the supersymmetry transformations on the fermions, (4.2), indi-

cates that the proper fermionic reduction is given by

ε̂i = e
1
2
m2ze

1
2
αϕεi,

λ̂i = 1√
5
e−

1
2
m2ze−

1
2
αϕ(χi + 2λi),
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ψ̂z i = 2
5
e

1
2
m2ze(β−

1
2
α)ϕγ7(2χi − λi),

ψ̂µ i = e
1
2
m2ze

1
2
αϕ[ψµ i + (2

5
e(β−α)ϕAµγ7 − 1

10
γµ)(2χi − λi)]. (4.8)

In this case, the resulting D = 6 fermions have supersymmetry transformations

δψµ i = [∇µ − 5
8
m2γµγ

νAν − 1
48
e

1√
2
φ1(γµ

νρσ − 3δνµγ
ρσ)Hνρσ + 5

8
m2e

1√
2
φ2− 1

2
√

2
φ1γµγ7

− 1
32
e

1

2
√

2
φ1(γµ

νρ − 6δνµγ
ρ)γ7(e

1√
2
φ2Hνρ + e

− 1√
2
φ2Fνρ)]εi

+[− i
2
√

2
e

1√
2
φ2γ7Qµ i

j + i
16
√

2
e

1

2
√

2
φ1(γµ

νρ − 6δνµγ
ρ)Fνρ i

j]εj,

δλi = [− 1
2
√

2
γµ∂µφ1 + 1

4
(4m1 +m2)Aµγµ + 1

24
e

1√
2
φ1Hµνργ

µνρ

+ 1
16
e

1

2
√

2
φ1γµνγ7(e

1√
2
φ2Hµν + e

− 1√
2
φ2Fµν)− 1

4
(4m1 +m2)e

1√
2
φ2− 1

2
√

2
φ1γ7]εi

− i
8
√

2
e

1

2
√

2
φ1γµνFµν i

jεj,

δχi = [− 1
2
√

2
γµ∂µφ2 + 1

2
(m1 −m2)Aµγµ − 1

2
(m1 −m2)e

1√
2
φ2− 1

2
√

2
φ1γ7

−1
8
e

1

2
√

2
φ1γµνγ7(−e

1√
2
φ2Hµν + e

− 1√
2
φ2Fµν)]εi − i

2
√

2
e

1√
2
φ2γµγ7Qµ i

jεj. (4.9)

Here we recall that the D = 6 field strengths are given by

H(3) = dB(2) − 1
2
F a

(2) ∧ Aa(1) − dB(1) ∧ A(1) − 2(m2 −m1)B(2) ∧ A(1) + 1
2
ΦaF a

(2) ∧ A(1),

H(2) = dB(1) − 1
2
ΦaF a

(2) + 1
2
Qa

(1) ∧ Aa(1) − 1
2
ΦaQa

(1) ∧ A(1) + 2(m2 −m1)B(2),

F a
(2) = dAa(1) − dΦa ∧ A(1) + (m2 −m1)A

a
(1) ∧ A(1),

Qa
(1) = dΦa − (m2 −m1)A

a
(1), (4.10)

with Q(1) i
j = Qa

(1)(−τa)ij, etc. The gravitino transformation in (4.9) demonstrates

that the Sp(1) singlet graviphoton arises as a linear combination of Hµν and Fµν .

Note, further, that these transformations reduce to those of ordinary ungauged N =

(1, 1) supergravity coupled to a vector multiplet in the limit of vanishing m1 and m2.



34

4. Generalized supersymmetry in six dimensions

Given the bosonic (4.6) and fermionic (4.8) reductions, it is now a matter of substi-

tuting these expressions into (4.3) to obtain the D = 6 bosonic transformations. We

find

δφ1 = − 1
2
√

2
ε̄iλi,

δφ2 = − 1
2
√

2
ε̄iχi,

δgµν = 1
2
ε̄iγ(µψν) i,

δAµ = 1
4
e
− 1

2
√

2
φ1+ 1√

2
φ2 [ε̄iγ7(ψµ i +

1
2
γµλi) + ε̄iγµγ7χi],

δAµ i
j = −Φi

jδAµ − i√
2
e
− 1

2
√

2
φ1 ε̄j(ψµ i +

1
2
γµλi),

δΦi
j = − i√

2
e
− 1√

2
φ2χ̄jγ7εi, (4.11)

δBµ = 1
4
Φi

j(δAµ j
i + Φj

iδAµ)− 1
4
Aµ i

jδΦj
i

+1
4
e
− 1

2
√

2
φ1− 1√

2
φ2 [ε̄iγ7(ψµ i +

1
2
γµλi)− ε̄iγµγ7χi],

δBµν = −1
2
A[µ i

jΦj
iδAν] − 2B[µδAν] − 1

2
A[µ i

jδAν] j
i − 1

2
e
− 1√

2
φ1 ε̄i(γ[µψν] i +

1
2
γµνλi).

This result, combined with (4.9) yield the complete (lowest order) supersymmetry

transformations of the variant N = (1, 1) supergravity coupled to a vector multiplet.

Note that in obtaining (4.9) and (4.11), it was crucial that the ansatz (4.8) allowed a

consistent reduction from seven to six dimensions, in which the dependence on the z

coordinate cancelled in the seven-dimensional transformation rules. This guarantees

that the resulting six-dimensional supersymmetry transformations are symmetries of

the six-dimensional variant supergravity.

As noted in [24], the vector multiplet may be truncated away by setting m1 = m2

as well as

φ2 = 0, Φi
j = 0, Bµ = Aµ = 1√

2
Aµ, χi = 0. (4.12)
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In this case, the D = 6 field strengths of (4.10) simplify to

H(3) = dB(2) − 1
2
F a

(2) ∧ Aa(1) − 1
2
F(2) ∧ A(1),

F(2) = dA(1), F a
(2) = dAa(1). (4.13)

The resulting six dimensional theory has field content (gµν , Aµ, A
a
µ, Bµν , φ1, ψµ i, λi)

and supersymmetry transformations

δψµ i = [∇µ − 5
8
√

2
mγµγ

νAν − 1
48
e

1√
2
φ1(γµ

νρσ − 3δνµγ
ρσ)Hνρσ

− 1
16
√

2
e

1

2
√

2
φ1(γµ

νρ − 6δνµγ
ρ)γ7Fνρ + 5

8
me

− 1

2
√

2
φ1γµγ7]εi

+ i
16
√

2
e

1

2
√

2
φ1(γµ

νρ − 6δνµγ
ρ)Fνρ i

jεj,

δλi = [− 1
2
√

2
γµ∂µφ1 + 5

4
√

2
mAµγ

µ + 1
24
e

1√
2
φ1Hµνργ

µνρ

+ 1
8
√

2
e

1

2
√

2
φ1γµνγ7Fµν − 5

4
me

− 1

2
√

2
φ1γ7]εi − i

8
√

2
e

1

2
√

2
φ1γµνFµν i

jεj,

δφ1 = − 1
2
√

2
ε̄iλi,

δgµν = 1
2
ε̄iγ(µψν) i,

δAµ = 1
2
√

2
e
− 1

2
√

2
φ1 ε̄iγ7(ψµ i +

1
2
γµλi),

δAµ i
j = − i√

2
e
− 1

2
√

2
φ1 ε̄j(ψµ i +

1
2
γµλi),

δBµν = −A[µδAν] − 1
2
A[µ i

jδAν] j
i − 1

2
e
− 1√

2
φ1 ε̄i(γ[µψν] i +

1
2
γµνλi). (4.14)

These transformations reduce to those of [31] when m→ 0.

On the other hand, form 6= 0, the generalized reduction yields additional terms in

δψµ i and δλi. Furthermore, these m-dependent terms do not have the usual structure

for a gauged supergravity. In particular, the gauge potential A(1) does not appear in

δψµ i as a minimal coupling term Dµ = ∇µ + igAµ to a charged spinor, yet shows up

as a bare potential term in δλi. This is consistent with A(1) showing up as well in the

bosonic equations of motion [24]. For this reason, it is natural to suspect that the
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local supersymmetry algebra satisfied by this theory is necessarily modified. To see

this, we may examine, e.g., the double variation on φ1. We find

[δ1, δ2]φ1 = 1
4
ξµ∂µφ1 − 5

4
√

2
m

(
1√
2
ξµAµ − e−

1

2
√

2
φ1(ε̄i2γ7ε1i)

)
, (4.15)

where ξµ = ε̄i2γ
µε1i. The additional terms vanish when m = 0.

B. The (Minkowski)4 × S2 reduction

The D = 6 theory obtained in [24] does not admit a Lagrangian formulation since the

bare potential A(1) appears directly in the equations of motion. This is also apparent

from the supersymmetry variations obtained in the previous section. However, for

field configurations with vanishing A(1), the resulting bosonic equations of motion may

be obtained from the Lagrangian

L = R̂∗̂1l− 1
4
∗̂dφ̂ ∧ dφ̂− 1

2
eφ̂∗̂Ĥ(3) ∧ Ĥ(3) − 1

2
e

1
2
φ̂∗̂F̂ a

(2) ∧ F̂ a
(2) − 8g2e−

1
2
φ̂∗̂1l. (4.16)

We have now introduced carets to denote six-dimensional fields, in anticipation of a

subsequent reduction to four dimensions. Furthermore, we have defined φ̂ =
√

2φ1

to simplify the subsequent expressions and have defined 5m = 2
√

2 g.

Curiously, this bosonic Lagrangian is identical to that of the Salam-Sezgin model,

with the exception that there are three vector fields instead of one. As a result, this

model clearly admits a bosonic M4×S2 reduction, where M4 denotes four-dimensional

Minkowski spacetime. On the other hand, the supersymmetry of the reduction must

still be verified, as the supersymmetry transformations of the variant N = (1, 1)

theory differ from that of the gauged N = (1, 0) model. In order to investigate

the supersymmetry, it is useful to rewrite the six-dimensional symplectic-Majorana

spinors using a Dirac notation. A symplectic-Majorana spinor satisfies the reality
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condition (ψ̂i)
∗ = −εijĈγ̂0ψ̂j, where the charge conjugation matrix Ĉ satisfies ĈT = Ĉ

and Ĉ† Ĉ = 1. We may now form the Dirac combination ψ̂ = ψ̂1 + iψ̂2, with complex

conjugate ψ̂∗ = −iĈγ̂0(ψ̂1 − iψ̂2). Equivalently, these definitions may be inverted to

yield

ψ̂1 = 1
2
(ψ̂ − iγ̂0Ĉ

∗ψ̂∗), ψ̂2 = 1
2i

(ψ̂ + iγ̂0Ĉ
∗ψ̂∗). (4.17)

As a result, for Â(1) = 0, the supersymmetry transformations (4.14) may be rewritten

as

δψ̂µ =
[
∇̂µ − 1

48
e

1
2
φ̂(γ̂µ

νρσ − 3δνµγ̂
ρσ)Ĥνρσ + 1

2
√

2
ge−

1
4
φ̂γ̂µγ̂7

]
ε̂

+ i
16
√

2
e

1
4
φ̂(γ̂µ

νρ − 6δνµγ̂
ρ)

(
F̂ 2
νρε̂− (F̂ 1

νρ − iF̂ 3
νρ)γ̂0Ĉ

∗ε̂∗
)
,

δλ̂ =
[
−1

4
γ̂µ∂µφ̂+ 1

24
e

1
2
φ̂Ĥµνργ̂

µνρ − 1√
2
ge−

1
4
φ̂γ̂7

]
ε̂

− i
8
√

2
e

1
4
φ̂γ̂µν

(
F̂ 2
µν ε̂− (F̂ 1

µν − iF̂ 3
µν)γ̂0Ĉ

∗ε̂∗
)
, (4.18)

for the fermions, and

δφ̂ = −1
4
[̄ε̂λ̂+

¯̂
λε̂],

δĝµν = 1
2
[̄ε̂γ̂(µψ̂ν) −

¯̂
ψ(µγ̂ν)ε̂],

δÂµ = 1
4
√

2
e−

1
4
φ̂ [̄ε̂γ̂7(ψ̂µ + 1

2
γ̂µλ̂)− (

¯̂
ψµ − 1

2

¯̂
λγ̂µ)γ̂7ε̂],

δÂ1
µ = − 1

2
√

2
e−

1
4
φ̂ Im[ε̂TĈ(ψ̂µ + 1

2
γ̂µλ̂)],

δÂ2
µ = − i

4
√

2
e−

1
4
φ̂ [̄ε̂(ψ̂µ + 1

2
γ̂µλ̂)− (

¯̂
ψµ − 1

2

¯̂
λγ̂µ)ε̂],

δÂ3
µ = − 1

2
√

2
e−

1
4
φ̂ Re[ε̂TĈ(ψ̂µ + 1

2
γ̂µλ̂)],

δB̂µν = −Âa[µδÂaν] − 1
4
e−

1
2
φ̂ [̄ε̂(γ̂[µψ̂ν] +

1
2
γ̂µνλ̂) + (

¯̂
ψ[µγ̂ν] − 1

2

¯̂
λγ̂µν)ε̂], (4.19)

for the bosons. While we have set Âµ = 0, it is important to retain its supersymmetry

variation so that it is possible to check later for consistency. These expressions serve

as the starting point for the subsequent analysis.
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1. Supersymmetry of the M4 × S2 vacuum

The bosonic theory, given by (4.16), admits an M4 × S2 solution given by

dŝ2
6 = ηµνdx

µdxν +
1

8g2
dΩ2

2,

F̂ 2
(2) =

1

2g
Ω(2), (4.20)

where Ω(2) = sin θ dθ ∧ dϕ is the volume form on the unit S2. Note that we have

singled out the 2-component of the Sp(1) triplet gauge fields for convenience. While

this choice is a natural one corresponding to the Dirac combination in (4.18), any

other choice would yield the same result.

To examine the supersymmetry of the vacuum, we insert (4.20) into (4.18) to

obtain

δψ̂α = [∂α + 1√
2
g γ̂αγ̂7P+]ε̂,

δψ̂a = [∇a − i
√

2g γ̂aγ̂45]ε̂+ 1√
2
gγ̂aγ̂7P+ε̂,

δλ̂ = −
√

2g γ̂7P+ε̂ (4.21)

where P± = 1
2
(1 ± iγ̂45γ̂7) is a half-BPS projection. These equations vanish for

ε̂ = P−ε̂0 where ε̂0 solves the Killing spinor equation on the round 2-sphere, [∇a −

i
√

2g γ̂aγ̂45]ε̂0 = 0.

To be more precise, we decompose the six-dimensional Dirac matrices according

to

γ̂α = γα ⊗ σ3, γ̂4 = 1l⊗ σ1, γ̂5 = 1l⊗ σ2,

γ̂7 = γ̂0γ̂1 · · · γ̂5 = γ5 ⊗ σ3, Ĉ = C ⊗ σ2 (4.22)

where C is now the four-dimensional charge conjugation matrix and γ5 = iγ0γ1γ2γ3.

Six dimensional spinors ε̂ may then be written in terms of M4 and S2 spinors as
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ε̂ =
∑
I εI ⊗ ηI where ηI is taken to be commuting. In this case, the Killing spinor

equation on S2 becomes [∇a+
√

2g σaσ3]ηI = 0, and yields two independent solutions.

Corresponding to the above choice of Dirac matrices, we find that in the basis e4 =

(2
√

2g)−1 dθ, e5 = (2
√

2g)−1 sin θ dϕ, the two independent Killing spinors can be

written as

η1 =

 cos 1
2
θ

− sin 1
2
θ

 e
i
2
ϕ , η2 =

 sin 1
2
θ

cos 1
2
θ

 e−
i
2
ϕ . (4.23)

It is easily seen that these satisfy the conditions

η̄IηJ = δIJ , ηTI σ
2ηJ = −iεIJ , η∗I = iσ2εIJηJ . (4.24)

Note that η̄I ≡ η†I . Using the decomposition (4.22), the half-BPS projection operator

takes the form P± = 1
2
(1 ∓ γ5). As a result, the Killing spinors in the M4 × S2

background are given by

ε̂ = εI ⊗ ηI (εI = γ5εI), (4.25)

where the εI are a pair of constant D = 4 Weyl spinors.

2. Reduction to D = 4, N = 2 supergravity

The existence of a supersymmetric vacuum suggests that a consistent Kaluza-Klein

reduction on S2 is possible, yielding a Poincaré theory in four dimensions. Since

the six-dimensional N = (1, 1) theory has 16 real supersymmetries, and the vacuum

breaks exactly half of them, the resulting theory corresponds toN = 2 supersymmetry

in four dimensions.

The basic N = 2 supergravity multiplet consists of a graviton gµν , graviphoton

A(1) and a pair of Majorana gravitinos ψµ i. In addition, N = 2 vector multiplets are

given by a vector A(1), two real scalars φ and a, and a pair of Majorana gauginos χi.
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We find that the six dimensional field content reduces to yield N = 2 supergravity

coupled to a single vector multiplet. The reduction ansatz for the bosons is given by

dŝ2
6 = e

1
2
φds2

4 +
1

8g2
e−

1
2
φdΩ2

2,

F̂ 2
(2) = 2ge

1
2
φεabê

a ∧ êb, F̂ 1
(2) = F 1

(2) , F̂ 3
(2) = F 3

(2) ,

Ĥ(3) = H(3) , φ̂ = −φ. (4.26)

Note that the graviphoton and matter vector field strengths are given by a combina-

tion of F 1
(2) and F 3

(2) (up to duality) as will be apparent below. The use of the 1- and

3-components of the Sp(1) triplet in the Kaluza-Klein reduction is dictated by the

choice of turning on F 2
(2) flux on the sphere.

It is straightforward to verify the consistency of the bosonic reduction. The

resulting four-dimensional equations of motion may be obtained from the Lagrangian

L = R∗1l− 1
2
∗dφ ∧ dφ− 1

2
e−2φ∗H(3) ∧H(3) − 1

2
e−φ(∗F 1

(2) ∧ F 1
(2) + ∗F 3

(2) ∧ F 3
(2)). (4.27)

The fermion reduction ansatz may be obtained by substituting the bosonic fields

(4.26) into the six-dimensional gravitino and dilatino transformations (4.18). Starting

with the latter, we see that

δλ̂ =
√

2ge
1
4
φP+ ⊗ σ3ε̂+ e−

1
4
φ[1

4
γµ∂µφ+ 1

24
e−φHµνργ

µνρ]⊗ σ3ε̂

− i
8
√

2
e−

1
4
φ[e−

1
2
φ(F 1

µν − iF 3
µν)γ

µνγ0C
∗]⊗ σ3σ2ε̂

∗. (4.28)

The first term vanishes on chiral spinors P+ε̂ = 0, while the remaining terms combine

to yield the four-dimensional gaugino transformation.

Turning to the gravitino variation, as usual the D = 6 variation splits into a

D = 4 gravitino term, δψ̂α, as well as two internal variations, δψ̂a. Since the S2

symmetry is unbroken by the bosonic ansatz, the two internal components of the
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gravitino variation are related by symmetry. In fact, provided ε̂ is decomposed in

terms of Killing spinors on the sphere, the δψ̂a variation has identical content as that

of δλ̂. (This is not in general true, but holds in the present case.) As a result, we

find the fermionic reduction ansatz to have the form

ε̂ = e
1
8
φεI ⊗ ηI ,

λ̂ = e−
1
8
φχI ⊗ σ3ηI ,

ψ̂α = e−
1
8
φ[ψα I + 1

2
γαχI ]⊗ ηI , ψ̂a = e−

1
8
φ(−1

2
χI)⊗ σaσ3ηI . (4.29)

Inserting this ansatz into (4.28) as well as the gravitino variations yields the

four-dimensional supersymmetry transformations

δχI = [1
4
γµ∂µφ+ 1

24
e−φHµνργ

µνρ]εI − 1
4
√

2
e−

1
2
φ(F 1

µν − iF 3
µν)γ

µνγ0C
∗εIJε

∗
J ,

δψµ I = [∇µ − 1
24
e−φγµ

νρσHνρσ]εI − 1
8
√

2
e−

1
2
φ(F 1

νρ − iF 3
νρ)γ

νργµγ0C
∗εIJε

∗
J . (4.30)

To obtain this result, we had to make use of the η∗I relation in (4.24). At this

stage, we note that the gauge fields may be dualized in four dimensions, so that

Fµνγ
µν = −i∗F µνγ

µνγ5. Since the four-dimensional spinors are given in a Weyl basis

P+ εI = 0, P+ ψα I = 0, P− χI = 0, (4.31)

where P± = 1
2
(1∓ γ5), the above supersymmetry variations may be rewritten as

δχI = [1
4
γµ∂µφ+ 1

24
e−φHµνργ

µνρ]εI − 1
4
√

2
e−

1
2
φ(F 1

µν + ∗F 3
µν)γ

µνγ0C
∗εIJε

∗
J ,

δψµ I = [∇µ − 1
24
e−φγµ

νρσHνρσ]εI − 1
8
√

2
e−

1
2
φ(F 1

νρ − ∗F 3
νρ)γ

νργµγ0C
∗εIJε

∗
J . (4.32)

This highlights the nature of the N = 2 graviphoton, F
(N=2)
(2) = e−

1
2
φF 1

(2) + e
1
2
φF̃ 3

(2),

where F̃ 3
(2) = e−φ∗F 3

(2).

Having completed the fermion reduction and supersymmetry variations, we now
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turn to the reduction of the bosonic variations, (4.19). The six-dimensional dilaton

variation δφ̂ readily yields δφ = 1
2
ε̄IχI . Similarly, the four-dimensional components

of δĝµν yield δgµν = 1
2
ε̄Iγ(µψν) I , while the internal components reduce to give the

identical δφ transformation. This is a result of setting the internal components of the

six-dimensional gravitino equal to the dilatino in the reduction.

In general, one obtains non-trivial vector field variations from the mixed compo-

nents of the metric, δĝµi, as well as directly from δÂµ. However, these terms vanish

identically based on the P± chiralities of the four-dimensional spinors. Likewise, δÂ2
µ

vanishes for the same reason. On the other hand, the additional complex conjuga-

tion appearing in δÂ1
µ and δÂ3

µ prevents these transformations from vanishing. The

resulting four-dimensional variations then have the form

δgµν = 1
4
[ε̄Iγ(µψν) I − ψ̄(µ Iγν)εI ],

δφ = 1
4
[ε̄IχI + χ̄IεI ],

δBµν = −1
4
eφ [ε̄Iγ[µψν] I + ψ̄[µ Iγν]εI + ε̄IγµνχI − χ̄IγµνεI ],

δA1
µ = 1

2
√

2
e

1
2
φεIJRe[εTI C(ψµ J + 1

2
γµχJ)],

δA3
µ = − 1

2
√

2
e

1
2
φεIJIm[εTI C(ψµ J + 1

2
γµχJ)]. (4.33)

We have verified that all variations of fields initially set to zero vanish, either iden-

tically or through four-dimensional chirality. This verifies the consistency of the

supersymmetric reduction to N = 2 supergravity coupled to a single vector multi-

plet.

3. Truncation to D = 4, N = 1 supergravity

While we have retained N = 2 supersymmetry in the above reduction, there is a

natural truncation to N = 1. This may be accomplished by removing one of the
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two supersymmetry parameters by setting εI = n̂Iε where n̂I is any constant unit

vector. At the same time, it is necessary to truncate the N = 1 gravitino and vector

multiplets, leaving N = 1 supergravity coupled to a chiral multiplet. In the bosonic

sector, this corresponds to setting A1
µ = A3

µ = 0. The resulting bosonic Lagrangian is

given by

L = R∗1l− 1
2
∗dφ ∧ dφ− 1

2
e−2φ∗H(3) ∧H(3), (4.34)

while the relevant supersymmetry transformations are

δχ = [1
4
γµ∂µφ+ 1

24
e−φHµνργ

µνρ]ε,

δψµ = [∇µ − 1
24
e−φγµ

νρσHνρσ]ε,

δgµν = 1
4
[ε̄γ(µψν) − ψ̄(µγν)ε],

δφ = 1
4
[ε̄χ+ χ̄ε],

δBµν = −1
4
eφ[ε̄γ[µψν] + ψ̄[µγν]ε+ ε̄γµνχ− χ̄γµνε]. (4.35)

C. BPS solutions

The bosonic Lagrangian (4.27) admits a dyonic black hole solution where F 1
(2) is

electric and F 3
(2) is magnetic (or vice versa). The solution is given by

ds2
4 = −(H1H3)

−1 dt2 +H1H3(dr
2 + r2 dΩ̃2

2) ,

F 1
(2) = dt ∧ dH−1

1 , F 3
(2) = q3 Ω̃(2) ,

φ = − log(H1/H3) , (4.36)

where H1 = 1 + q1/r and H3 = 1 + q3/r are two harmonic functions in the Euclidean

three-dimensional transverse space. It becomes the standard Reissner-Nordström

black hole when H1 = H3. We can easily lift the solution back to D = 6 dimensions,
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and it becomes

ds2
6 = (H1/H3)

1
2

[
−H−2

1 dt2 +H2
3 (dr2 + r2 dΩ̃2

2) +
1

8g2
dΩ2

2

]
,

F̂ 2
(2) = 1

2
g−1 Ω(2) , F̂ 1

(2) = dt ∧ dH−1
1 , F̂ 3

(2) = q3 Ω̃(2) ,

φ̂ = log(H1/H3) . (4.37)

In the near horizon limit, the geometry becomes AdS2 × S2 × S2. For H1 = H3, the

metric is the direct product of an S2 and the Reissner-Nordström black hole. In the

string frame, the metric is given by

ds2
str = −H−2

1 dt2 +H2
3 (dr2 + r2 dΩ̃2

2) +
1

8g2
dΩ2

2 (4.38)

D. (Minkowski)3 × S3 vacuum

The variant N = (1, 1) six-dimensional supergravity has the unusual feature that it

admits not only a supersymmetric (Minkowski)4 × S2 vacuum, but also a supersym-

metric (Minkowski)3 × S3 vacuum. This is quite different from the situation in the

Salam-Sezgin theory; although the Salam-Sezgin model admits a (Minkowski)3 × S3

solution as well as a supersymmetric (Minkowski)4 × S2 solution, the former is non-

supersymmetric.

To construct the supersymmetric (Minkowski)3×S3 solution in the variant N =

(1, 1) supergravity, we make a standard Freund-Rubin type ansatz in which

dŝ2
6 = dxµ dxµ + ds2

3 , Ĥ(3) = q ε(3) , φ̂ = 0 , (4.39)

where ds2
3 is the metric on a round S3, with volume form ε(3), and all other fields are

set to zero. We find that this solves the six-dimensional equations of motion if

q = 2
√

2 g . (4.40)
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The S3 metric has Ricci tensor given by Rij = 4g2 gij.

To establish the supersymmetry of the solution, we decompose the six dimen-

sional Dirac matrices as

γ̂µ = γµ ⊗ 1l⊗ σ2 , γ̂i = 1l⊗ γi ⊗ σ1 , γ̂7 = 1l⊗ 1l⊗ σ3 . (4.41)

Writing ε̂ = ε⊗η⊗ν, we find from the transformation rules (4.18) that supersymmetry

is preserved if ε is a constant spinor in the (Minkowski)3 spacetime, σ2 ν = ν and if η

is a Killing spinor on S3, satisfying

∇i η =
i g√

2
γi η . (4.42)

Thus the solution has three-dimensional N = 4 supersymmetry.

E. Discussion

In this chapter we have presented the complete supersymmetry of the new gauged

N = (1, 1) theory. This theory differs from the conventional supergravities with

gauged R-symmetry in the sense that the bare vector potential terms in (4.14) do

not correspond to the usual minimal coupling to charged fermions. For a vanishing

Sp(1) singlet, the N = (1, 1) theory reduces in its bosonic sector to the Salam-

Sezgin N = (1, 0) model, albeit with a triplet of gauge fields. In this truncation the

supersymmetry transformation rules of the N = (1, 1) theory do not give rise to the

supersymmetry of the gauged N = (1, 0) model. The reason for this is because the

singlet and triplet gauge fields of the N = (1, 1) supergravity reside in the gravitino

multiplet, and not a vector multiplet, as would be necessary for obtaining a Salam-

Sezgin truncation. This implies that, although our theory admits similar solutions to

the Salam-Sezgin model, their supersymmetry can be drastically different.
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We have shown that the variant N = (1, 1) supergravity admits a consistent S2

reduction giving rise to D = 4, N = 2 supergravity coupled to a single vector mul-

tiplet which can be truncated further to N = 1 supergravity with a chiral mulitplet.

Although we have used a Weyl notation for the four-dimensional fermions, and there

is a presence of ’left-handed’ gravitinos in (4.31), this itself is not an indication of

actual chirality. We should emphasize that the M4×S2 reduction of the Salam-Sezgin

model likewise is non-chiral. This is understod by that a smooth Kaluza-Klein re-

duction in the gravitational sector cannot lead to a chiral theory in four dimensions

[48]. However, [48] goes on to indicate that chirality may be obtained by starting

with chiral fermions coupled to gauge fields in the higher dimensional theory, pro-

vided the gauge reduction is non-trivial. In particular, reductions with a monopole

flux such as [49] could in principle give rise to four dimensional chirality. This would

suggest that the Salam-Sezgin model is chiral, since it precisely involves turning on

such a U(1) monopole flux, with all fermions charged under this U(1). However, as

emphasized in [14, 17], the U(1) does not survive the reduction to four dimensions.

The resulting theory contains only SU(2) gauge fields and uncharged fermions, and

is hence non-chiral.
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CHAPTER V

GAUGED SUPERGRAVITY IN NINE DIMENSIONS

In this chapter we continue our study of the supersymmetry in the generalized Kaluza-

Klein reduction. We shall present the results for two cases. The first is the variant ten-

dimensional massive gauged supergravity obtained in [21] by performing a generalized

reduction of eleven-dimensional supergravity.1 The reduction in this case involves

just the global scaling symmetry of the D = 11 equations of motion. Then, we

shall consider the nine-dimensional massive gauged theory obtained from massless

D = 10, N = 1 supergravity, using the generalized reduction involving the two global

symmetries that we discussed in chapter III.

A. Massive type-IIA supergravity from D = 11

The supersymmetry transformations in D = 11 are

δê A

M = ˆ̄εγ̂Aψ̂M , δÂMNP = 3ˆ̄εγ̂[MN ψ̂P ] ,

δψ̂M = ∇̂M ε̂− 1
288
F̂NPQR(γ̂ NPQR

M − 8γ̂PQRδN

M)ε̂ , (5.1)

where in our conventions

{γ̂A, γ̂B} = 2η̂AB (5.2)

and the metric signature is (− + + · · ·+). The equations of motion of the eleven-

dimensional theory are invariant under a scaling symmetry, which was used in [21]

in a generalized reduction to obtain the bosonic sector of a massive ten-dimensional

supergravity. Here, we extend that discussion to include the fermionic sector. This

1Note that this massive type-IIA supergravity [28, 21] is not the same as the
massive IIA theory obtained by Romans [23].
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variant maximal supersymmetric D = 10 massive theory [28, 21] has also been consid-

ered in [30]. The corresponding ansatz for the generalized reduction of the fermions

is

ε̂ = e
1
2
m2ze

1
24
ϕ ε ,

ψ̂11 = 2
√

2
3
e−

1
2
m2ze−

1
24
ϕγ̂11λ ,

ψ̂a = e−
1
2
m2ze−

1
24
ϕ(ψa −

√
2

12
γaλ) . (5.3)

Performing the reduction of the fermionic transformation rules, we obtain

δλ = − 1
2
√

2
γµε ∂µϕ− 1

192
√

2
e−

1
4
ϕFµνσργ

µνσρε+ 1
24
√

2
e

1
2
ϕFµνσγ

µνσγ̂11ε

− 3
16
√

2
e−

3
4
ϕFµνγµν γ̂11ε− 3

4
√

2
m2(Aµγµ − e

3
4
ϕγ̂11)ε ,

δψµ = ∇µε− 1
256
e−

1
4
ϕFνασρ

(
γ νασρ
µ − 20

3
δνµγ

ασρ
)
ε− 1

96
e

1
2
ϕFνσρ

(
γ νσρ
µ − 9δνµγ

σρ
)
γ̂11ε

− 1
64
e−

3
4
ϕFνσ

(
γ νσ
µ − 14δνµγ

σ
)
γ̂11ε− 9

16
m2(Aνγµγν − e

3
4
ϕγµγ̂11)ε . (5.4)

The supersymmetry transformation rules for the bosons are

δe a
µ = ε̄γaψµ , δφ = −

√
2 ε̄ λ ,

δAµ = e
3
4
φε̄γ̂11(ψµ − 3

√
2

4
γµλ) ,

δAµν = e−
1
2
φε̄γ̂11(2γ[µψν] +

1√
2
γµνλ) ,

δAµνρ = 3e
1
4
φε̄(γ[µνψρ] −

√
2

12
γµνρλ) + 3A[µδAνρ] . (5.5)

As was shown in [21] this theory admits a de Sitter vacuum solution, which

necessarily breaks all supersymmetry. Note that the ten dimensional field strengths

are those defined in [21]. References for massless type-IIA supergravity are [50, 51, 52].
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B. Reduction of D = 10, N = 1 supersymmetry

Since we have obtained the transformation rules for the type-IIA massive gauged

supergravity in section A, it is convenient to make use of these here in order to

establish our conventions and notation for the transformation rules of the standard

massless N = 1 supergravity in ten dimensions. These are obtained by setting the

mass parameter m2 = 0 in (5.4), and in addition making the chiral projection that

reduces the N = 2 supersymmetry to N = 1:

γ̂11ε = ε , γ̂11ψa = ψa and γ̂11λ = −λ . (5.6)

The chirality condition is consistent with setting to zero both the 3-form potential

and the Kaluza-Klein vector. This yields the ten-dimensional N = 1 supersymmetry

transformation rules [53, 54]

δλ̂ = − 1
2
√

2
γ̂M ε̂ ∂M φ̂+ 1

24
√

2
e

1
2
φ̂ ĤMNP γ̂

MNP ε̂ ,

δψ̂M = ∇̂M ε̂− 1
96
e

1
2
φ̂ĤNPQ

(
γ̂ NPQ

M − 9 γ̂PQδ N

M

)
ε̂ ,

δê A

M = ˆ̄εγ̂Aψ̂M , δφ̂ = −
√

2 ˆ̄ε λ̂ ,

δB̂MN = −e−
1
2
φ̂ˆ̄ε (2γ̂[M ψ̂N] +

1√
2
γ̂MN λ̂) . (5.7)

We can now use these standard N = 1 results in a generalized circle reduction to

d = 9. We shall focus just on the pure supergravity multiplet in d = 9, by performing

a (consistent) truncation of the matter multiplet. The required reduction ansatz is

obtained from the arbitrary-dimension ansatz of appendix B by setting m1 = m2 = m

and φ2 = 0 = χ. This gives

ε̂ = e
1
2
mze

− 1

16
√

14
φ1 ε̃ ,

λ̂ =
√

7
8
e−

1
2
mze

1

16
√

14
φ1λ̃ ,
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ψ̂10 = −
√

7
8
e−

1
2
mze

1

16
√

14
φ1 γ̃10λ̃ ,

ψ̂a = e−
1
2
mze

1

16
√

14
φ1

(
ψ̃a + 1

8
√

7
γ̃aλ̃

)
,

φ̂ =
√

14
4
φ1 + 4mz . (5.8)

The tildes signify that the fermions and the Dirac matrices are still ten-dimensional.

These can be related to the nine-dimensional quantities as follows:

γ̃a = γa × σ1 , γ̃10 = 1l× σ2 and γ̂11 = 1l× σ3 ,

ε̃ = ε× η , λ̃ = λ× σ1η and ψ̃a = ψa × η , (5.9)

where η is a 2-component constant spinor. The chiral projections (5.6) imply that we

must have σ3η = η. We present in the subsection below the supersymmetry obtained

from the above reduction ansatz applied to the ten dimensional chiral supergravity.

1. D = 9 supersymmetry

Reducing the D = 10, N = 1 transformation rules, and setting G(2) = F(2) = 1√
2
F(2),

we obtain the following nine-dimensional supersymmetry transformation rules:

δλ = − 1
2
√

2
γ µε ∂µφ+ 1

12
√

7
e
√

2
7
φHµνσγ

µνσε+ i
4
√

14
e

1√
14
φ
Fµνγ

µνε

+ 4√
7
m

(
1√
2
γ µAµ − ie

− 1√
14
φ
)
ε ,

δψµ = ∇µε− 1
84
e
√

2
7
φHνσρ(γ

νσρ
µ − 15

2
δνµγ

σρ)ε− i
28
√

2
e

1√
14
φ
Fνσ(γ

νσ
µ − 12δνµγ

σ)ε

− 4
7
√

2
mAνγµγ

νε+ 4i
7
me

− 1√
14
φ
γµε ,

δe a
µ = ε̄γaψµ , δφ = −

√
2 ε̄ λ ,

δAµ = i
√

2e
− 1√

14
φ
ε̄(ψµ + 1√

7
γµλ) ,

δBµν = −e−
√

2
7
φε̄(2γ[µψν] +

2√
7
γµνλ)− A[µδAν] , (5.10)
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where we have dropped the “1” subscript on the scalar field. The field strengths are

Hµνρ = 3∂[µBνρ] − 3
2
A[µFνρ] and Fµν = 2∂[µAν] . This theory is an Abelian gauged

version of D = 9, N = 1 supergravity. We shall show that it admits a supersym-

metric (Minkowski)6 × S3 vacuum solution. We shall also obtain a time-dependent

supersymmetric cosmological solution in this theory.
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CHAPTER VI

M-THEORY INTERPRETATION OF THE GAUGED N = (1, 1)

SUPERGRAVITY AND THE VACUA (MINKOWSKI)4 × S2

In chapter IV we showed that the new D = 6, N = (1, 1) supergravity admits a

consistent sphere reduction to D = 4 giving rise to N = 2 supergravity coupled to a

single vector multiplet. In this chapter we shall discuss the higher dimensionsl origin

of the N = (1, 1) theory and the vacua (Minkowski)4 × S2. The vacuum solution is

given by

ds2 = dxµ dxν ηµν +
1

25m2
dΩ2

2 ,

F(2) =

√
2

5m
Ω(2) , φ = 0 , (6.1)

where we have turned on one of the three vector field strengths F a
(2). Lifting this

solution back to D = 7, it becomes the near-horizon limit of a 3-brane supported by

one of the vector field strengths F̂ a
(2). To see this, let us start with the 3-brane, given

by

dŝ2
7 = H−2

5 dxµ dxν ηµν +H
8
5 (dr2 + r2 dΩ2

2) ,

F̂2 =
√

2QΩ(2) , eφ = H
− 2√

10 , (6.2)

where H = 1 + Q/r. In the decoupling (or near-horizon) limit, we have H = Q/r.

Taking the charge parameter Q to be Q = (5m)−1, and making a coordinate trans-

formation Q/r = e−5mz, the solution (6.2) becomes

dŝ2
7 = e2mz(dxµ dxν ηµν +

1

25m2
dΩ2

2 + dz2) ,

F̂(2) =

√
2

5m
Ω(2) , φ̂ =

√
10mz . (6.3)
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This fits exactly the reduction ansatz (4.6), giving rise to precisely the lower dimen-

sional solution (6.1). It is worth mentioning that the solution (6.3) can also be viewed

as a domain wall with a (Minkowski)4 × S2 world-volume.

We can further lift the solution back to D = 11, where it becomes the near-

horizon structure of two intersecting M5-branes. As in the above, we start with the

two intersecting M5-branes in D = 11:

ds2
11 = (H1H2)

−1/3
(
dxµ dxν ηµν +H2 (dz2

1 + dz2
2) +H1 (dz2

3 + dz2
4)

+H1H2 (dr2 + r2 dΩ2
2)

)
,

F(4) = (Q1 dz3 ∧ dz4 +Q2 dz1 ∧ dz2) ∧ Ω(2) , (6.4)

with Hi = 1 + Qi/r. Setting Q1 = Q2 = Q, the solution in the near-horizon limit

becomes

ds2
11 = ρ2/3 (dxµ dxν ηµν +Q2 dρ

2

ρ2
+Q2 dΩ2) + ρ−

1
3 ds2

4 ,

F(4) = QJ(2) ∧ Ω(2) . (6.5)

Here we can replace the 4-torus ds2
4 by a Ricci-flat K3 manifold, and J(2) is a self-dual

harmonic 2-form in the K3. It is straightforward to see that the D = 11 solution

(6.5) becomes (6.1) in D = 6 by first reducing on the K3 manifold followed by the

generalized Kaluza-Klein reduction.

It is interesting to note that only by taking the decoupling or near-horizon limit

does the brane solution fit the reduction ansatz. This is different from the usual

Kaluza-Klein circle reduction where the whole solution can be reduced instead of just

the near-horizon limit. Thus the standard S1 reduction can be viewed as a special

case of a DeWitt group-manifold reduction, whose consistency is guaranteed, whilst

the generalized Kaluza-Klein reduction can be viewed as a special case of a Pauli
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sphere reduction, where the consistency requires conspiracies. (A discussion of the

terminology is contained in [55].)

Of course, the N = 1 supergravity in D = 7 can also be obtained from a T 3

reduction of the heterotic string theory, which is S-dual to M-theory on K3. The

vector field strengths F a
(2) in the minimal D = 7 supergravity come from setting equal

the three Kaluza-Klein and the three winding vectors. It follows that the 3-brane in

D = 7 can be lifted to the D = 10 heterotic theory as an intersection of the heterotic

5-brane and Taub-NUT.

We conclude this chapter by adding that in [56] a proof was constructed demon-

strating that the Salam-Sezgin vacuum solution is unique among all nonsingular so-

lutions with a four-dimensional Poincare, de Sitter or anti-de Sitter invariance. The

proof of uniqueness applies of course also to the N = (1, 1) supergravity.

We should also mention that in [57], a general class of dyonic strings were ob-

tained in the D = 6, N = (1, 0) gauged supergravity preserving 1
4

of the supersym-

metry. The near-horizon limit of the dyonic strings, gives rise to AdS3×S3. Here S3

is a homogeneously squashed 3-sphere. The AdS3 × S3 solution which is supported

by both 2-form and 3-form charges contains a nontrivial free adjustable parameter

associated with the squashing of the sphere. In the limit when this parameter goes

to zero (or for a vanishing 3-form charge) one recover the (Minkowski)4 × S2 vacua.
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CHAPTER VII

SUPERSYMMETRIC Md−3 × S3 AND Md−2 × S2 VACUA

The generalized Kaluza-Klein reduction gives rise to gauged supergravities that admit

supersymmetric vacuum solutions of the form Minkowski×sphere [26]. The nine-

dimensional theory admits just a (Minkowski)6 × S3 vacuum of this kind, supported

by the H(3) flux. The theories in lower dimensions admit (Minkowski)d−3 × S3 vacua

supported by H(3), and (Minkowski)d−2 × S2 vacua supported by a 2-form F(2). In

this chapter, we shall show that these vacua are all supersymmetric.

A. Md−3 × S3 vacua

Consider first the (Minkowski)d−3 × S3 solution supported by the H(3) field. This is

given by

ds2
d = dxµ dxν ηµν +

4

m2 (d− 1)2
dΩ2

3 ,

H(3) =
8

m2 (d− 1)2
Ω(3) , φ = 0 . (7.1)

If we lift the solution back to D dimensions using the generalized reduction ansatz,

it becomes the near-horizon geometry of a (D− 5)-brane supported by the field Ĥ(3).

To see this, we start with the (D − 5)-brane in D dimensions, given by

dŝ2
D = H− 2

D−2 dxµ dxν ηµν +H
D−4
D−2 (dr2 + r2 dΩ2

3) ,

Ĥ(3) = 2QΩ(3) , φ̂ = −1
2
â logH , H = 1 +Q/r2 . (7.2)

In the near-horizon limit, the additive constant 1 in H is dropped. Making the

coordinate transformation r2/Q = e(D−2)mz, and letting Q = 4/((D − 2)2m2), we
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obtain

dŝ2
D = e2mz

(
dxµ dxν ηµν + dz2 +

4

m2 (D − 2)2
dΩ2

3

)
,

Ĥ(3) =
8

m2 (D − 2)2
Ω(3) , φ̂ =

4

â
mz , (7.3)

which fits the reduction ansatz precisely, giving rise to the lower-dimensional solution

(7.1).

The supersymmetry of the (Minkowski)d−3 × S3 solution is easily established.

Firstly, since its lift to D = d + 1 dimensions gives the near-horizon limit of the

(D − 5)-brane, as discussed above, it is manifest that qua D-dimensional solution,

it will preserve one half of the D-dimensional supersymmetry. This halving of su-

persymmetry comes about from the usual projection condition for supersymmetry of

the (D − 5)-brane, ε̂ = Γ̂∗ ε̂, where Γ̂∗ is built from the product of Dirac matrices in

the world-volume of the (D − 5)-brane. As is well known, for any of the BPS brane

solutions with metric given by

dŝ2 = e2A dxµ dxµ + e2B dym dym , (7.4)

the Killing spinors are given by

ε̂ = e
1
2
A ε̂0 , Γ̂∗ ε̂0 = ε̂0 , (7.5)

where ε̂0 is a constant spinor. We see from (7.3) that A = mz, and hence the Killing

spinors in D dimensions take the form

ε̂ = e
1
2
mz ε̂0 . (7.6)

Since this z dependence matches precisely the z dependence for ε̂ in the generalized

reduction ansatz (5.8), it immediately follows that the (Minkowski)d−3 × S3 solution
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will be supersymmetric qua solution of the d-dimensional gauged supergravity.

B. Md−2 × S2 vacua

Another class of supersymmetric vacuum is of the form (Minkowski)d−2 × S2, sup-

ported by one of the two-form field strengths F a
(2). It is given by

ds2
d = dxµ dxν ηµν +

1

m2 (d− 1)2
dΩ2

2 ,

F(2) =

√
2

m (d− 1)
Ω(2) , φ = 0 . (7.7)

Lifting this solution back to D dimensions, it becomes the near-horizon limit of the

(D−4)-brane supported by one of the field strengths F̂ a
(2). The (D−4)-brane solution

is given by

dŝ2
D = H− 2

D−2 dxµ dxν ηµν +H
2(D−3)

D−2 (dr2 + r2 dΩ2
2) ,

F̂(2) =
√

2QΩ(2), φ̂ = −1
2
â logH , H = 1 +Q/r . (7.8)

In the near-horizon limit, the constant 1 in H is dropped. Making the coordinate

transformation r/Q = e(D−2)mz and setting Q = 1/(m (D − 2)) we have

dŝ2
D = e2mz

(
dxµ dxν ηµν + dz2 +

1

m2 (D − 2)2
dΩ2

2

)
,

F̂(2) =

√
2

m (D − 2)
Ω(2) , φ̂ =

4

â
mz . (7.9)

This clearly fits the reduction ansatz exactly to give rise to (7.7).

Again, the supersymmetry of the solution as a lifted D-dimensional configura-

tion is manifest, since it is just the near-horizon limit of a BPS (D − 4)-brane. Its

supersymmetry as a solution in the d = D− 1 dimensional gauged supergravity itself

is again easily seen, from the general form (7.5) of the Killing spinors in the lifted
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(D − 4)-brane. Thus we again find that the D-dimensional Killing spinors are of the

form (7.6), and so comparison with the generalized reduction ansatz (5.8) for ε̂ shows

that the (Minkowski)d−2 × S2 solution will be supersymmetric in the d-dimensional

gauged supergravity.

C. A general discussion of Md−n × Sn vacua

In this section we show that the brane world interpretation of the generalized Kaluza-

Klein reduction presented above is unique to half-maximal supergravities and it can-

not be applied for example to type-IIA supergravity. For this discussion we need the

p-brane solutions in D dimensions of supergravities. These solutions involves beside

the metric, a dilaton and an n-index antisymmetric tensor FM1···Mn where n ≤ D/2.

The Lagrangian describing this set of fields is given by

e−1LD = R− 1
2
(∂φ)2 − 1

2n!
e−aφF 2

(n) . (7.10)

The p-branes were obtained in [58] and are given by

ds2
D =

(
1 +

k

rd̃

)− 4d̃
(D−2)∆dxµdxνηµν +

(
1 +

k

rd̃

) 4d
(D−2)∆ (dr2 + r2dΩ2

D−d−1) ,

eφ =
(
1 +

k

rd̃

) 2a
∆ , (7.11)

where xµ(µ = 0, ..., d− 1) are the brane volume coordinates and

d+ d̃ = D − 2. (7.12)

The constant k is defined as k = 1
2

√
∆λ/d̃ and the dilaton coupling a is given by

a2 = ∆− 2(n− 1)(D − n− 1)

D − 2
. (7.13)
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Examples of values on ∆ that arise in supergravity theories are ∆ = 4 for n 6= 2, and

∆ = 4 and 2 for n = 2. (Note that eq.(7.13) is valid also for cases with no scalar field

but with a now set to zero.) Consider the near horizon limit of the p-brane metric

given by

ds2
D = k

− 4d̃
(D−2)∆ r

4d̃2

(D−2)∆
[
ηµνdx

µdxν + k
4
∆ r2−4d̃

∆

(dr2

r2
+ dΩ2

D−d−1

)]
, (7.14)

where we have made use of the relation (7.12). Now to make contact with the gener-

alized reduction ansatz the r-dependence inside the bracked must drop out and this

gives the condition

2d̃ = ∆ . (7.15)

Making use of the relation d̃ = n− 1 we obtain

∆ = 2 =⇒ n = 2 ,

∆ = 4 =⇒ n = 3 . (7.16)

This result which is independent of the spacetime dimension D is clearly the field

content of the NS-NS sector of Type-II string and its torus reduction with vector

multiplets truncated out. At the same time the R-R sector has been ruled out by

(7.15). Note that the hodge dual field strengths F(D−2) and F(D−3) of course also

satisfies the condition (7.15).
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CHAPTER VIII

GENERALIZED KALUZA-KLEIN REDUCTION IN THE STRING FRAME AND

σ-MODEL ACTION

A. σ-model action

For many purposes it is advantageous to perform the Weyl rescaling of the metric that

transforms from the Einstein frame that we used in the previous section to the string

frame. One reason is because the half-maximal supergravities that we are considering

have a direct relation to the heterotic string, or the NS-NS sector of the Type-II

string. Another reason is that many of the formulae become considerably simpler

when expressed in the string frame. We shall consider only the case m1 = m2 = m.

Consistent string propagation demands world-sheet conformal invariance, and

hence the vanishing of the beta functions for the background spacetime fields. In

this manner one obtains supergravity equations of motion which arise naturally in

the string frame. The corresponding equations may be derived from the string-frame

Lagrangian

ê−1L̂ = e−2Φ̂(R̂ + 4(∂Φ̂)2 − 1
12
Ĥ2

(3) − 1
4
(F̂ a

(2))
2) , (8.1)

taken here to have been compactified on a (10 − D)-dimensional torus (with the

additional truncation of (10 − D) vector multiplets). It is to be understood that

all fields in this section are labelled with a suppressed tilde (g̃µν , H̃(3), etc.) unless

otherwise indicated, to distinguish them from the Einstein frame fields. The complete

transformation between the two frames in dimensions D ≤ 10 is given in appendix C.

The equations of motion following from the Lagrangian (8.1) are

R̂MN = −2∇̂M∇̂NΦ̂ + 1
4
ĤMPQĤ

PQ

N + 1
2
F̂ a

MP F̂
a P

N ,
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d(e−2Φ̂∗̂Ĥ(3)) = 0 ,

d(e−2Φ̂∗̂F̂ a
(2)) = (−1)D+1 e−2Φ̂∗̂Ĥ(3) ∧ F̂ a

(2) ,

̂ Φ̂ = 2(∂Φ̂)2 − 1
12
Ĥ2

(3) − 1
8
(F̂ a

(2))
2. (8.2)

By tracing the Einstein equation and substituting in the dilaton equation, we may

obtain an expression for the Ricci scalar:

R̂ = −4(∂ Φ̂)2 + 5
12
Ĥ2

(3) + 3
4
(F̂ a

(2))
2. (8.3)

In D dimensions, the Einstein-frame and the string-frame metrics are related by

dŝ2
Ein = e

1
2
âφ̂ dŝ2

str = e−
1
2
â2Φ̂ dŝ2

str , (8.4)

where we have defined Φ̂ = −φ̂/â and φ̂ is the Einstein-frame dilaton field. For the

case where m1 = m2, the reduction ansatz (3.6) converted to the string frame is

rather simple, namely

dŝ2
str = ds2

str + e−
√

2ϕ(dz +A(1))
2,

B̂(2) = B(2) +B(1) ∧ dz ,

Φ̂ = Φ− 1√
8
ϕ− 1

2
(d− 1)mz . (8.5)

In other words, the reduction is exactly the same as a standard Kaluza-Klein reduc-

tion, except for a linear z-dependence in the dilaton Φ̂. The string frame reduction

ansatz can be obtained by using in D-dimensions the Ricci tensor for a Weyl trans-

formed metric ĝMN = e2σg̃MN which yields

R̂MN = R̃MN + (D − 2)(∂Mσ∂Nσ − ∇̃M∂Nσ − g̃MN g̃
PQ∂Pσ∂Qσ)− g̃MN

˜σ. (8.6)
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It follows that the σ-model action for this generalized circle reduction is given by

I =
1

4π α′

∫
dσ dτ

[√
γ γij ∂iX

µ ∂jX
ν ĝµν + εij ∂iX

µ ∂jX
ν B̂µν

+α′R̂ (Φ− 1
2
(D − 2)mz)

]
,

where Φ, ĝµν and B̂µν are independent of z, and X0 (the circle coordinate) is given

by X0 = z. However, the z dependence of the string action implies that T -duality

is now broken. This can also be seen from the low-energy effective action obtained

in chapter III, where the Kaluza-Klein vector A(1) and the winding vector B(1) are

clearly not on a parallel footing.

B. Untruncated d-dimensional string-frame equations

We give here the complete set of bosonic equations of motion for the untruncated

system, expressed in the string frame. It will be seen that these are considerably

simpler than the previous expressions that were obtained in the Einsten frame.

For the form fields in the string frame we find

∇ρ(e−2ΦHµνρ) = m(d− 1)
(
e−2ΦHµνσAσ − e−2Φ+

√
2ϕGµν

)
,

∇ν(e−2Φ+
√

2ϕGµν) = 1
2
e−2ΦHµνσFνσ +m(d− 1)e−2Φ+

√
2ϕGµνAν ,

∇ν(e−2ΦF a
µν) = 1

2
e−2ΦHµνσF

a νσ + e−2Φ+
√

2ϕGµνL
a ν

+m(d− 1)
(
e−2ΦF a

µνAν − e−2Φ+
√

2ϕLaµ
)
,

∇µ(e−2Φ+
√

2ϕLaµ) = 1
2
e−2ΦF a

µνFµν − 1
2
e−2Φ+

√
2ϕGµνF

aµν

+m(d− 1)e−2Φ+
√

2ϕLaµAµ ,

∇ν(e
− 3√

2
ϕFµν) = e

− 1√
2
ϕ
(1

2
HµνσG

νσ − F a
µνL

aν) + 2e
− 3√

2
ϕ
(∂νΦ− 1√

8
∂νϕ)F ν

µ

+m(d− 1)(
√

2 e
− 1√

2
ϕ
∂µϕ+ e

− 3√
2
ϕAνFµν) . (8.7)
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For the scalar fields, we find

ϕ = 1
2
√

2
(e
√

2ϕG2
(2) − e−

√
2ϕF2

(2)) + 1√
2
e
√

2ϕ(La(1))
2 + 2∂µϕ∂

µΦ +m(d− 1)Aµ∂µϕ ,

Φ = − 1
12
H2

(3) − 1
8
(F a

(2))
2 − 1

8
(e
√

2ϕG2
(2) + e−

√
2ϕF2

(2)) + 2(∂Φ)2 (8.8)

+2m(d− 1)Aµ ∂µΦ− 1
2
m(d− 1)∇µAµ + 1

2
m2(d− 1)2(A2

(1) + e
√

2ϕ) .

The Einstein equation in the string frame is given by

Rµν = 1
2
∂µϕ∂νϕ− 2∇µ∂νΦ + 1

4
HµρσH

ρσ
ν + 1

2
e
√

2ϕGµρG
ρ
ν + 1

2
e−

√
2ϕFµρF ρ

ν

+ 1
2
F a
µρ F

a ρ
ν + 1

2
e
√

2ϕLaµL
a
ν − 1

2
m(d− 1)(∇µAν +∇νAµ) . (8.9)

C. Truncated d-dimensional string-frame equations

In the string frame, we may again truncate out the vector multiplet by setting ϕ = 0,

La(1) = 0 and A(1) = B(1) ≡ A(1)/
√

2. The equations of motion for the bosonic fields of

the pure supergravity multiplet now become

∇σHµνσ = 2HµνσM
σ − 1√

2
m(d− 1)Fµν ,

∇νFµν = 1
2
HµνσF

νσ + 2FµνM
ν ,

∇νF a
µν = 1

2
HµνσF

a νσ + 2F a
µνM

ν ,

∇µMµ = 2M2
(1) − 1

12
H2

(3) − 1
8
(F 2

(2) + (F a
(2))

2) + 1
2
m2(d− 1)2 ,

Rµν = −∇µMν −∇νMµ + 1
4
HµρσH

ρσ
ν + 1

2
(Fµρ F

ρ
ν + F a

µρ F
a ρ
ν ) , (8.10)

where we have introduced the field

M(1) = dΦ +
m(d− 1)

2
√

2
A(1) . (8.11)

It is evident that the massive field M(1) arises because the dilaton Φ is eaten by the

gauge field A(1) .
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As in the Einstein frame, these equations cannot be obtained from a Lagrangian.

However, if we set A(1) to zero, the equations of motion for the remaining fields can

be obtained from a Lagrangian, given by

e−1L = e−2Φ
(
R + 4(∂Φ)2 − 1

12
H2

(3) − 1
4
(F a

(2))
2 − (d− 1)2m2

)
. (8.12)

Although this truncation is consistent within the bosonic theory, it cannot be consis-

tent with the full supergravity, as it would be incompatible with the structure of the

supermultiplets. Nevertheless, we see from (8.12) that in the string frame the scalar

potential becomes a pure positive cosmological constant.

D. Supersymmetry in the string frame

The supersymmetry transformation rules for the fermions are readily expressed in

terms of the fields of the string frame, using the formulae given in appendix C.

1. D = 6

The transformation formulae in six dimensions is

gµν = e−φ g̃µν , F a
(2) = F̃ a

(2) , B(2) = B̃(2) , dφ+ 5
2
√

2
mA(1) = M̃(1) , (8.13)

F(2) = F̃(2) , φ1 = −
√

2φ , ε = e−
1
4
φ ε̃ , λ = e

1
4
φ λ̃ , ψµ = e−

1
4
φ ψ̃µ ,

The supersymmetric variations for the fermions take the form

δλ̃i = [1
2
M̃µ γ̃

µ + 1
24
H̃µνργ̃

µνρ + 1
8
√

2
γ̃µνγ7F̃µν − 5

4
mγ7]ε̃i − i

8
√

2
γ̃µνF̃µν i

j ε̃j,

δψ̃µ i = [∇̃µ − 1
4
M̃ν γ̃µγ̃

ν − 1
48

(γ̃µ
νρσ − 3δνµγ̃

ρσ)H̃νρσ + 5
8
mγ̃µγ7

− 1
16
√

2
(γ̃µ

νρ − 6δνµγ̃
ρ)γ7F̃νρ]ε̃i +

i
16
√

2
(γ̃µ

νρ − 6δνµγ̃
ρ)F̃νρ i

j ε̃j . (8.14)
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It is of interest to note that the gravitino variation for the shifted gravitino,
˜̃
ψµ =

ψ̃µ + 1
2
γ̃µ λ̃ , given by

δ
˜̃
ψµ i =

[
∇̃µ + 1

8
H̃µνργ̃

νρ + 1
2
√

2
γ̃νγ7F̃µν

]
ε̃i − i

2
√

2
γ̃νF̃µν i

j ε̃j , (8.15)

does not depend on m.

2. D = 9

In nine dimensions the transformation formulae is

gµν = e
√

2
7
φ1 g̃µν , F(2) = F̃(2) , H(3) = H̃(3) , dΦ +

√
8mA(1) = M̃(1) ,

φ1 = −
√

8
7
Φ , ε = e

1

2
√

14
φ1 ε̃ , λ = e

− 1

2
√

14
φ1λ̃ , ψµ = e

1

2
√

14
φ1ψ̃µ , (8.16)

The supersymmetric fermionic transformation in the string frame then take the form

δλ̃ =
(

1√
7
M̃µγ̃

µ + 1
12
√

7
H̃µνσγ̃

µνσ + i
4
√

14
F̃µν γ̃

µν − 4i√
7
m

)
ε̃ ,

δψ̃µ =
(
∇̃µ − 1

7
M̃ν γ̃µγ̃

ν − 1
84
H̃νσρ(γ̃

νσρ
µ − 15

2
δνµγ̃

σρ)

− i
28
√

2
F̃νσ(γ̃

νσ
µ − 12δνµγ̃

σ) + 4i
7
mγ̃µ

)
ε̃ . (8.17)
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CHAPTER IX

SUPERSYMMETRIC TIME-DEPENDENT SOLUTIONS AND PP-WAVES

In this chapter we construct a time-dependent solution of the new gauged nine-

dimensional supergravity, and we show that it is supersymmetric. It can be thought of

as a cosmological solution in the gauged supergravity. The solution is of a form anal-

ogous to a standard domain wall, except that here the “transverse space coordinate”

is timelike rather than spatial.

A. Cosmological solutions and pp-waves

It is easily seen that the configuration

ds2
9 = −dt2 + (8

7
mt)2dxidxi ,

e
1√
14
φ

= 8
7
mt . (9.1)

solves the nine-dimensional equations of motion that follow from (3.18). Note that

the form-fields are all zero in this solution.

The fermionic transformation rules (5.10) in this background reduce to

δλ = − 1
2
√

2
ΓM(∂Mφ) ε− 4i√

7
me

− 1√
14
φ
ε ,

δψM = ∇M ε+ 4i
7
me

− 1√
14
φ
ΓM ε , (9.2)

and it is easily verified that (9.1) is supersymmetric.

In the string frame, the metric in the solution (9.1) becomes simply the Minkowski

metric ds2
str = ηMNdx

MdxN , where

t = exp(8
7
mx0) . (9.3)
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The dilaton is a linear function of the redefined time; Φ = −4mx0+ constant.

The solution (9.1) is straightforwardly lifted to ten dimensions, where it gives

ds2
10 = e2mz

[
− (8

7
mt)−1/4dt2 + (8

7
mt)7/4(dz2 + dxidxi)

]
,

eφ̂ = e4mz(8
7
mt)7/2 . (9.4)

This can again be viewed as a time-dependent supersymmetric cosmological solution,

driven purely by the dilaton. In the string frame the metric is again Minkowskian,

but now the dilaton is linearly proportional to the light-cone coordinate x+:

ds2
str = 2dx+ dx− + dxi dxi , Φ = x+ . (9.5)

A metric-dilaton configuration of this kind was also discussed in [59]. It is straight-

forward to see that the solution preserves half of the supersymmetry, with the Killing

spinor given by Γ+ ε0 where ε0 is a constant spinor.

A further uplift to D = 11 using the standard Kaluza-Klein formula

ds2
11 = e

1
6
φ̂ds2

10 + e−
4
3
φ̂dy2 (9.6)

yields the Ricci-flat solution

ds2
11 = −r2dt2 + t2dr2 + r2t2dxidxi + r−4t−4dy2 , (9.7)

where we have changed from the ten-dimensional coordinate z to a new coordinate

r defined by r = e
4
3
mz(8

7
mt)1/6 . The metric (9.7) is a pp-wave. To see this, we

introduce new coordinates X+ and X− defined by

r2 t2 = X+ ,
r

t
= e2X− , (9.8)
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in terms of which (9.7) becomes

ds2
11 = dX+dX− +X+dx

idxi +X−2
+ dy2 . (9.9)

Thus, we conclude that in eleven dimensions the solution describes a pp-wave.

The metric (9.9) is a particular example of a more general class of pp-waves,

contained within the ansatz

dsD = dX+dX− +Xh1
+ dxm1dxm1 +Xh2

+ dym2dym2 +Xh3
+ dzm3dzm3 + · · · . (9.10)

Here, we take the index ranges to be

1 ≤ m1 ≤ p1 , p1 + 1 ≤ m2 ≤ p1 + p2 , etc. , (9.11)

and so the total dimension is D = 2 + p1 + p2 + · · · . The only non-vanishing vielbein

components of the Riemann tensor for (9.10) are given by

Rmi +mj + = −1
2
hi(hi − 2)X−2

+ δmi mj
. (9.12)

Thus (9.10) is Ricci-flat if

0 =
∑
i=1

pihi(hi − 2) . (9.13)

The pp-wave (9.9) that resulted from lifting our time-dependent cosmological solution

to D = 11 is the special case with

p1 = 8 , h1 = 1 , p2 = 1 , h2 = −2 , (9.14)

which clearly satisfies (9.13).

It is possible to consider a generalization of the solution (9.1) by introducing a

nonflat metric for the transerse space as

ds2
9 = −dt2 + (8

7
mt)2γij(x)dx

idxi (9.15)
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with the dilaton still given by (9.1). In order for (9.15) to be a solution, the metric

γij must be Ricci flat. The Killing spinor in this case is given by

ε(t, x) = t1/2ε(x) (9.16)

where ε(x) is a Killing spinor which solves the equation

∇i ε(x) = 0 (9.17)

in the background γij. The solution with the curved metric γij will be supersymmetric

as long as we use Ricci flat manifolds that admit Killing spinors. See [60] where the

supermembrane in eleven dimensions is treated, and see also [61, 62]. For a discussion

of nonflat world volume metrics see [63] where the D8-brane of Romans massive theory

is studied. We should emphasize that solutions with the transverse space allowed to

be curved always have less supersymmetry than in the flat transverse space case.
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CHAPTER X

AdS PP-WAVES I

The pp-waves in M-theory and type-IIB supergravity in general have 16 ”standard”

Killing spinors, that is half of the maximum supersymmetry. A large class of these

solutions were studied in [64, 65, 66]. For appropriate choices of field strengths and

integration constants, supernumerary Killing spinors beyond the 16 standard ones

could also arise [64, 65, 66, 67, 68, 69]. These include all of those from the Pen-

rose limits of AdS×sphere arising from non-dilatonic p-branes and/or intersecting

p-branes, and of AdS×sphere×sphere, arising from non-standard brane intersections

[70].

It is natural to study the pp-waves in AdS background. As mentioned in the

introduction the effect of introducing a pp-wave in such a background can be viewed

as performing an infinite boost on the boundary conformal field theory [42, 71]. The

supersymmetry of the purely gravitational pp-wave in AdS4 of Kaigorodov [41] and

its higher dimensional counterparts were discussed in [42]. These metrics preserve 1
4

of the supersymmetry, consisting with the fact that in the dual conformal field theory,

the original supersymmetry as well as the superconformal symmetry are broken by

the boost [42]. Generalizations of the Kaigorodov metric to inhomogeneous solutions

were obtained in [72, 73, 74]. For a discussion of the Kaigorodov spacetime see [75].

In this chapter, we show that purely gravitational AdS pp-waves can in fact

admit supernumerary supersymmetries [76] for appropriately constrained harmonic

functions associated with the pp-waves, extending the result of [71], where only 1
4

supersymmetric solutions were discussed.

AdS pp-waves can also be supported by a field strength. Their supersymmetry
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has been studied in [77, 78, 79, 76]. See also [80]. In the case of charged pp-waves

of minimum gauged supergravities in D = 4 and D = 5, it was shown [79, 76]

that supernumerary supersymmetry can arise again for appropriately constrained

harmonic functions. The new solutions preserve 1
2

of the supersymmetry, double the

number of standard Killing spinors associated with the general pp-wave solutions

including the Kaigorodov metric. For pp-waves with 1
2

supersymmetry in D = 3 see

[81].

A. Purely gravitational pp-waves

In this section, we consider pure gravitational pp-waves in Einstein gravity with a

negative cosmological constant in arbitrary dimensions. The Lagrangian is given by

e−1L = R + (D − 1)(D − 2)g2, (10.1)

where e = (− det(gMN))1/2. The Killing spinor in this theory satisfies the equation

∇Mε = −1
2
g ΓMε . (10.2)

We study AdS pp-waves using the metric ansatz

ds2
D = e2gρ(−4dx+dx− +H(dx+)2 + dzi dzi) + dρ2 (10.3)

where the function H depends on x+, ρ and zi coordinates. The Einstein equations

of motion reduce to

H ≡
(
∂2
ρ + g(D − 1)∂ρ + e2gρ

D−3∑
i=1

∂2
i

)
H = 0 , (10.4)
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where the index i stands here for zi. To discuss the Killing spinor equations, we make

a natural choice for the vielbein basis

e+ = egρdx+ , e− = egρ(−2dx− + 1
2
H dx+) , ei = egρdzi , eρ = dρ , (10.5)

such that we have ds2 = 2e+e−+ezez+eρeρ. In this tangent basis, the spin connections

are given by

ω−ρ = g e+ , ω+i = 1
2
e−gρ ∂iH e+ , ω+ρ = g e− + 1

2
H ′ e+ , ωiρ = g ei , (10.6)

where the prime denotes the derivative ∂ρ . Note that for the metric in this basis we

have η+− = 1 and η++ = η−− = 0. In the following we use the notation that all

derivatives are with respect to the curved metric and all indices on gamma matrices

are vielbein indices. The Killing spinor equations are given by

[∂+ + 1
2
gegρ Γ+(Γρ + 1) + 1

4
gegρH Γ−(Γρ + 1) + 1

4
egρH ′ Γ−ρ

+1
4

D−3∑
i

∂iH Γ−i]ε = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ε = 0 ,

[∂i +
1
2
gegρ Γi(Γρ + 1)]ε = 0 , i = 1, 2, · · · , D − 3,

[∂ρ + 1
2
g Γρ]ε = 0 , (10.7)

where we have Γ2
+ = Γ2

− = 0 and {Γ+,Γ−} = 2. Thus, we see that a generic pp-wave

in a pure Einstein theory with a cosmological constant preserves 1
4

of the maximally

allowed supersymmetry. The projections are given by

(Γρ + 1)ε = 0 = Γ−ε . (10.8)

We are interested in finding solutions that preserve more supersymmetry. One

might expect that it would be helpful in this case first to analyse the integrability
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conditions [∂M , ∂N ]ε = 0 among the Killing spinor equations. This calculation yields

0 = [∂+ , ∂i]ε = −1
4
[ge2gρH ′ Γi + egρ∂iH

′ Γρ +
∑
j

∂j∂iH Γj]Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
4
[egρ(H ′′ + 2gH ′)Γρ +

∑
i

∂iH
′ Γi]Γ−ε . (10.9)

The integrability conditions are satisfied provided that Γ−ε = 0. This is an example

where integrability conditions are not enough for the existence of the Killing spinors.

To see whether the metrics can admit more supersymmetry than the 1
4
, let us

use the less restrictive projection condition

g(Γρ + 1)ε = if Γ−ε , (10.10)

where f = f(x+, ρ, zi) is to be determined. Substitute this projection into the Killing

spinor equations, we have

[
∂+ + i

2
egρf Γ+ Γ− − 1

4

(
egρH ′ +

∑
i

Γi∂iH
)
Γ−

]
ε = 0 , (10.11)

∂− ε = 0 , [∂i +
i
2
egρf Γi Γ−] ε = 0 , [∂ρ + i

2
f Γ− − 1

2
g]ε = 0 .

The integrability conditions [∂M , ∂N ]ε = 0 among these equations are

0 = [∂i , ∂j]ε = − i
2
egρ(Γj ∂if − Γi ∂jf)Γ−ε ,

0 = [∂i , ∂ρ]ε = i
2
[(egρf)′ Γi − ∂if ]Γ−ε ,

0 = [∂+ , ∂i]ε = −1
2

[
iegρ(Γi ∂+f − Γ+ ∂if) + e2gρf 2 Γi

+1
2
egρ∂iH

′ + 1
2

D−3∑
j=1

Γj∂j∂iH
]
Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
2

[
i∂+f + egρf 2 − i(egρf)′ Γ+ + 1

2

∑
i

Γi∂iH
′

+1
2
egρ(H ′′ + gH ′)

]
Γ−ε . (10.12)

From these integrability conditions we see that if we insist on more supersymmetry
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than the usual 1
4

we must set

∂if = 0 = ∂iH
′ and ∂i∂jH = 0 , i 6= j . (10.13)

We then have

(egρf)′ = 0 , (10.14)

i∂+f + egρf 2 + 1
2
e−gρ∂i∂iH = 0 , i = 1, 2, · · · , D − 3 , (10.15)

i∂+f + egρf 2 + 1
2
egρ(H ′′ + gH ′) = 0 . (10.16)

The conditions in (10.13), together with (10.4), implies that H is given by

H = 1
2

D−3∑
i=1

ciz
2
i +

e−2gρ

2g2(D − 3)

D−3∑
i=1

ci + b e−(D−1)gρ , (10.17)

where ci and b are functions depending on x+ only. Equation (10.15) implies that all

ci’s are equal, and hence we let ci = c(x+). From eqs.(10.14) and (10.16) it follows

that we must set b = 0. It is straightforward to solve for f , given by

f = e−gρU(x+) , (10.18)

where U satisfies the following first-order non-linear equation

i
dU

dx+
+ U2 + 1

2
c = 0 . (10.19)

Making use of eq.(10.19) together with the solutions for f and H we can now solve

the Killing spinor equations given in (10.12). The Killing spinor solution is

ε = e
1
2
gρ

(
1− i

2
U

D−3∑
i=1

zi Γi Γ−
)(

1 + i
2
g−1f Γ−

)
×

×
[
1− 1

2

(
1− e−i

∫
Udx+

)
Γ+ Γ−

]
ε0 , (10.20)

where ε0 is a constant spinor satisfying (Γρ+1)ε0 = 0. Thus, the metric preserves 1
2

of
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the supersymmetry. It is important that the final result of our Killing spinors (10.20)

satisfy the projection condition (10.10), which can be easily verified to be true.

Note that the special case of c = 0, b 6= 0 is the Kaigorodov metric. The above

analysis implies that it preserves 1
4

of the supersymmetry. In order to have 1
2

BPS

solutions, it is necessary to set the Kaigorodov component to zero.

Note that in general c is any function depending on x+. The simplest case is

that c is a constant. The x+ dependence of c has no effect on the existence of the

Killing spinors, but only modifies the explicit Killing spinor solutions.

B. PP-waves in D = 4 gauged supergravity

1. The solution

In this section we continue our investigations of supernumerary supersymmetry by

including a U(1) charge. We start with gauged N = 2 Einstein-Maxwell AdS super-

gravity, whose Lagrangian for the bosonic sector is given by

e−1L4 = R− 1
4
F 2

(2) + 6g2, (10.21)

where F(2) = dA(1). The supersymmetry transformation rule for the complex gravitino

ΨM = Ψ1
M + iΨ2

M is [82, 83]

δΨM =
[
∇M − i

2
gAM + i

8
FAB ΓAB ΓM + 1

2
g ΓM

]
ε . (10.22)

We consider the following pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz2) + dρ2,

A(1) = g−1S(1− e−gρ) dx+, (10.23)

where H = H(x+, ρ, z) and S is here a function of x+. The equations of motion imply
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that H satisfies

H ≡ H ′′ + 3g H ′ + e−2gρ∂2
zH = −S2e−4gρ . (10.24)

The solution can be expressed as

H = S2
(

1
2
c z2 + g−2 (1

2
c e−2gρ − 1

4
e−4gρ + b e−3gρ)

)
+H0 , (10.25)

where b and c are functions of x+ and H0 satisfies H0 = 0. (Note that the terms

associated with b and c actually belong to H0 . We extract them since they are

necessary for the solution to reduce under g → 0 to the pp-wave that is the Penrose

limit of AdS2 × S2 of the corresponding ungauged theory.)

If we turn off the field strength by setting S = 0, and let H0 depend only on ρ,

namely H0 = c0 + b e−3gρ, then we recover the Kaigorodov metric.

2. Standard supersymmetry

Here we investigate the supersymmetry of the “charged” pp-wave we derived. The

Killing spinor equations in this background are given by

[∂+ + 1
2
gegρ Γ+(Γρ + 1) + 1

4
gegρH Γ−(Γρ + 1) + 1

4
Γ−z∂zH + 1

4
egρH ′ Γ−ρ

+ i
2
S(e−gρ − 1) + i

4
e−gρS Γρ Γ− Γ+]ε = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ε = 0 ,

[∂z + 1
2
gegρ Γz(Γρ + 1) + i

4
e−gρS Γzρ Γ−]ε = 0 ,

[∂ρ − i
4
e−2gρS Γ− + 1

2
g Γρ]ε = 0 . (10.26)

Imposing the following projections

(Γρ + 1)ε = 0 , Γ−ε = 0 , (10.27)
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the Killing spinor equations become

[∂+ − i
2
S]ε = 0 , ∂− ε = 0 , ∂z ε = 0 , [∂ρ − 1

2
g]ε = 0 . (10.28)

Thus the Killing spinor is given by

ε = e
1
2
gρ+

i
2

∫
S dx+

ε0 , (10.29)

where ε0 is a constant spinor satisfying (Γρ + 1)ε0 = 0 and Γ−ε0 = 0. The solution

therefore preserves 1
4

of the supersymmetry. We follow the literature [64, 65] and call

these spinors the standard Killing spinors, since there is no further requirement on

the function H for the existence of the ε, as long as H satisfies the equation of motion

(10.24).

3. Supernumerary supersymmetry

When the integration constants of H satisfy further conditions, there can arise addi-

tional Killing spinors, which are called supernumerary Killing spinors in [64, 65].

In order to obtain these Killing spinors, we consider the integrability conditions

[∂M , ∂N ]ε = 0. We find that

0 = [∂z , ∂ρ]ε = i
4
ge−gρS Γz Γ−(Γρ + 1)ε ,

0 = [∂+ , ∂−]ε = − i
2
gS Γ−(Γρ + 1)ε ,

0 = [∂+ , ∂z]ε = i
4
gS(3− 2Γ+ Γ−)Γz(Γρ + 1)ε− i

4
e−gρ∂+S Γzρ Γ−ε

−1
4
egρ∂zH

′ Γρ Γ−ε− 1
4
[ge2gρH ′ + ∂2

zH + 1
2
e−2gρS2]Γz Γ−ε ,

0 = [∂+ , ∂ρ]ε = − i
4
ge−gρS(3− Γ+ Γ−)(Γρ + 1)ε+ i

4
e−2gρ∂+S Γ−ε

−1
4
∂zH

′ Γz Γ−ε+ 1
4
egρ[gH ′ + e−2gρ∂2

zH + 1
2
e−4gρS2]Γρ Γ−ε . (10.30)
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To arrive at the last integrability condition we made use of equation (10.24) for H.

It is clear that the integrability conditions are satisfied with the projections given

in (10.27). However, we now show that it is possible to relax these projections. We

find that the integrability conditions can also be satisfied, with the following less

restrictive projection

g(Γρ + 1)ε = if Γ−ε (10.31)

where f = f(x+, ρ, z) . This gives the projected Killing spinor equations

[∂+ − i
2
S − 1

2
g−1e−gρfS Γ− + i

2
(egρf + 1

2
e−gρS)Γ+ Γ−

−1
4
(egρH ′ + Γz∂zH)Γ−]ε = 0 , ∂− ε = 0 ,

[∂z + i
2
(egρf + 1

2
e−gρS)Γz Γ−]ε = 0 ,

[∂ρ + i
2
(f − 1

2
e−2gρS)Γ− − 1

2
g]ε = 0 . (10.32)

The integrability conditions among these equations are

0 = [∂z , ∂ρ]ε = − i
2
[Γz∂zf − (egρf)′ + 1

2
ge−gρS]Γz Γ−ε ,

0 = [∂+ , ∂z]ε = −1
2
[i(egρ∂+f + 1

2
e−gρ∂+S)Γz − (iegρ Γ+ − g−1e−gρS)∂zf

+(egρf + 1
2
e−gρS)2 Γz + 1

2
(egρ∂zH

′ + Γz∂
2
zH)]Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
2
[i(∂+f − 1

2
e−2gρ∂+S) + g−1S(e−gρf)′

−i((egρf)′ − 1
2
ge−gρS)Γ+ + 1

2
egρ(H ′′ + gH ′) + 1

2
Γz∂zH

′

+egρ(f 2 − 1
4
e−4gρS2)]Γ−ε . (10.33)

It is clear from these expressions that if we want more supersymmetry than 1
4

we need

again to impose ∂zf = 0 = ∂zH
′. The vanishing of the integrability conditions in this

case then yields the equations

(egρf)′ − 1
2
ge−gρS = 0 ,
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i(∂+f + 1
2
e−2gρ∂+S) + 1

2
e−gρ∂2

zH + egρ(f + 1
2
e−2gρS)2 = 0 ,

i(∂+f − 1
2
e−2gρ∂+S) + g−1S(e−gρf)′ + 1

2
egρ(H ′′ + gH ′)

+ egρf 2 − 1
4
e−3gρS2 = 0 . (10.34)

From the first of eqs.(10.34) we obtain

f = −1
2
e−2gρS + e−gρU , (10.35)

where U = U(x+) is in general a complex function. Note that S is a real function.

Using the solution for f and the equation forH the remaining two equations in (10.34)

gives

i
dU

dx+
+ U2 + 1

2
∂2
zH = 0 ,

i
dS

dx+
− e−gρS2 + 3S U + ge3gρH ′ + egρ∂2

zH = 0 . (10.36)

Since the functions S and U depends only on x+ we need to check that the ρ de-

pendence in the equation for S drops out before we can proceed. For this we need

to make use of the solution for H, which is given by (10.25). Setting H0 = 0, and

substituting H into eqs.(10.36) we have1

i
dS

dx+
− 3S(b S − U) = 0 , i

dU

dx+
+ U2 + 1

2
c S2 = 0 . (10.37)

In order to solve these equations we rewrite U into an real and imaginary part U =

u+ iv. Eqs.(10.37) then yield the following set of equations:

dS

dx+
+ 3v S = 0 ,

du

dx+
+ 2u v = 0 , S(u− b S) = 0 ,

1It is straightforward to verify that in general supernumeary supersymmetry re-
quires that H0 be given by (10.17), which is not the most general solution for
H0 = 0 .
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dv

dx+
+ v2 − u2 − 1

2
c S2 = 0 . (10.38)

We have four equations for the five functions S, u, v, b and c , and so one function will

be left arbitrary. We present the solution to eqs.(10.38) in terms of the function b.

The solution is given by

S =
k

b3
, u =

k

b2
, v = b−1 db

dx+
,

c =
2b5

k2

[ d2b

dx+2
− k2

b3

]
, (10.39)

where k is an arbitrary constant and we have taken S 6= 0. (The case with S = 0 was

considered in section 2.) Note that the original generic 1
4

supersymmetric solution

depending on the three functions b, c and S now only have one independent function

in order for the solution to have the enhanced 1
2

supersymmetry.

We next turn to presenting the explicit Killing spinors. The Killing spinor equa-

tions are

[∂+ − i
2
S − 1

2
g−1e−gρfS Γ− + i

2
U Γ+ Γ− − 1

4
(egρH ′ + c z S2 Γz)Γ−]ε = 0 ,

∂− ε = 0 , [∂z + i
2
U Γz Γ−]ε = 0 , [∂ρ − i

2
g−1f ′ Γ− − 1

2
g]ε = 0 , (10.40)

where f is given by (10.35). The third equation of the above implies ε = (1 −
i
2
z U Γz Γ−)× χ(ρ, x+). Substituting this into the fourth equation yields the solution

χ = e
1
2
gρ(1 + i

2
g−1f Γ−)η(x+) . The equation for η can be obtained from the first

equation of (10.40) after making use of eqs.(10.37). We have

dη

dx+
− i

2
[S − U Γ+ Γ−]η = 0 . (10.41)

Note that it requires conspiracy for the z and ρ dependent terms to drop out. Finally,
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we arrive at the Killing spinor, given by

ε = e
1
2
gρ+

i
2

∫
S dx+

(1− i
2
z U Γz Γ−)(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e−i

∫
Udx+

)Γ+ Γ−
]
ε0 (10.42)

where ε0 is a constant spinor, satisfying the projection

(Γρ + 1)ε0 = 0 . (10.43)

There are two special cases that are worth considering. The first case is that b

is set to a constant, implying that v = 0. It follows then that the functions S and u

are constants as well, and c = −2b2. Assuming S = µ the Killing spinor in this case

is given by

ε = e
1
2
gρ+

i
2
µx+

(1− i
2
µb z Γz Γ−)(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e−iµbx+

)Γ+ Γ−
]
ε0 (10.44)

where ε0 is a constant spinor, satisfying the projection (Γρ + 1)ε0 = 0. Thus after

imposing the condition c = −2b2, the solution has 1
2

of the supersymmetry instead of

the 1
4

for a generic pp-wave solution. The standard Killing spinors are those with an

additional projection Γ−ε0 = 0, in which case, ε of (10.44) becomes that in (10.29).

The supernumerary Killing spinors are the remaining half with Γ−ε0 6= 0.

The function H, for the pp-wave with supernumerary supersymmetry, is given

by

H = −µ2 b2z2 − g−2f 2 = −µ2
(
b2z2 + g−2(b2 e−2gρ + 1

4
e−4gρ − b e−3gρ)

)
,

f = −1
2
µ(e−2gρ − 2b e−gρ) . (10.45)

If we set b = 1
2
, we have H = −µ2 [1

4
z2 + g−2 sinh2(1

2
gρ) e−3gρ]. We can then take
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the g → 0 limit and obtain a pp-wave in ungauged D = 4, N = 2 Einstein Maxwell

supergravity. The solution is given by

ds2 = −4dx+ dx− − 1
4
µ2(z2 + ρ2) (dx+)2 + dz2 + dρ2,

F(2) = −µ dx+ ∧ dρ . (10.46)

This is precisely the pp-wave arising from the Penrose limit of AdS2 × S2, which is

known to have supernumerary supersymmetries [64, 65].

Note that in the ansatz (10.23), we could instead have used A(1) = µz dx+.

The metric in this case is identical to that with A(1) given in (10.23). However, we

verified that the solution would be non-supersymmetric, because of the explicit A(1)

dependence in the supersymmetry transformation rule.

Charged pp-waves with c = 0 were also obtained in [80], by performing an infinite

boost of the AdS charged black holes. It can be deduced from the above analysis that

the solution with c = 0 has only the standard supersymmetry. We can also obtain

pure gravitional 1
2
-supersymmetric pp-waves by setting b = b̃/µ and then sending

µ→ 0.

In [78] a general class of pp-waves that preserve 1
4

of the supersymmetry were

given. PP-waves with 1
2

of the supersymmetry were also obtained in [79], where

the Killing spinors were given in component language, while ours are presented in an

elegant form, in terms of constant spinors satisfying a single gamma matrix projection.

The second special case corresponds to the absence of the Kaigorodov component

b which can be achieved by taking a degenerate limit of (10.39). It is worth examing

on its own. In this case we have the coupled system

dS

dx+
+ 3v S = 0 ,

dv

dx+
+ v2 − 1

2
c S2 = 0 . (10.47)
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This implies a relation between the metric functions c and S, given by

c = −2
3
S−3 d

2S

dx+2 + 8
9
S−4

( dS
dx+

)2
. (10.48)

Making use of these equations together with the solutions for H and f the Killing

spinor equations (10.40) yield the solution

ε = e
1
2
gρ e

i
2

∫
S dx+

(1 + 1
2
z v Γz Γ−)(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e

∫
v dx+

)Γ+ Γ−
]
ε0 (10.49)

where ε0 is a constant spinor satisfying (Γρ + 1)ε0 = 0. For the functions H and f we

have

H = 1
2
S2

[
c z2 + 1

2
g−2e−2gρ(2c− e−2gρ)

]
,

f = −1
2
e−2gρS + ie−gρv . (10.50)

We can consider a special case of eqs.(10.47) by setting c ≡ constant and v = k̃S

where k̃ is a (real) constant. In this case the equations fixes k̃ to k̃2 = −1
4
c with

c < 0. The equation for S is

dS

dx+
+ k̃S2 = 0 , (10.51)

with the solution given by S(x+) = 1/(1 + k̃ x+) .

C. PP-waves in D = 5 gauged supergravity

1. The solution

For simplicity, we consider simple gauged supergravity in D = 5. The Lagrangian for

the bosonic sector is given by [84]

e−1L5 = R− 1
4
F 2

(2) + 1
12
√

3
εMNPQRFMNFPQAR + 12g2. (10.52)
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Analogous to the D = 4 discussion, we use the following pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz2
1 + dz2

2) + dρ2,

A(1) = 1
2
g−1S(1− e−2gρ) dx+, (10.53)

where S = S(x+). The supergravity equations of motion then reduce to the following

H ≡ H ′′ + 4gH ′ + e−2gρ
2∑
i=1

∂2
iH = −e−6gρS2. (10.54)

The solution is given by

H = S2[1
2
(c1z

2
1 + c2z

2
2) + g−2(1

4
(c1 + c2) e

−2gρ − 1
12
e−6gρ + b e−4gρ)] +H0 , (10.55)

where ci and b are functions of x+ and H0 = 0. The generalized Kaigorodov-type

metric is obtained by setting S = 0 and H0 = c0 + b e−4gρ with c0 and b now being

constants.

2. Supersymmetry

The supersymmetry transformation on the gravitino is given by

δΨM = [∇M − 3 i
2
√

3
gAM − i

16
√

3
FAB (ΓM ΓAB − 3 ΓAB ΓM) + 1

2
g ΓM ]ε , (10.56)

where ε is a complex symplectic spinor. For our pp-wave background, the Killing

spinor equations are given by

[∂+ + 1
2
gegρ Γ+(Γρ + 1) + 1

4
gegρH Γ−(Γρ + 1) + 1

4
egρH ′ Γ−ρ

+1
4

2∑
i=1

Γ−i∂iH + 3 i
4
√

3
S(e−2gρ − 1)

+ i
8
√

3
e−2gρS Γρ(Γ+ Γ− + 3Γ− Γ+)]ε = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ε = 0 ,

[∂i +
1
2
gegρ Γi(Γρ + 1) + i

4
√

3
e−2gρS Γiρ Γ−]ε = 0 , i = 1, 2,
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[∂ρ − i
2
√

3
e−3gρS Γ− + 1

2
g Γρ]ε = 0 . (10.57)

As in the case of D = 4, the standard Killing spinors, which exist for all H satisfying

(10.54), arise with the following projections (Γρ + 1)ε = 0 and Γ−ε = 0. The Killing

spinor equations become

[∂+ − i
√

3
4
S]ε = 0 , ∂− ε = 0 , ∂i ε = 0 , [∂ρ − 1

2
g]ε = 0 . (10.58)

Thus, the generic pp-waves we considered preserve 1
4

of the standard supersymmetry.

In [77], a general class of null solutions with 1
4

of the supersymmetry were obtained,

however the issue of supernumerary supersymmetry was not addressed. We demon-

strate below that, as in the case of D = 4, supernumerary Killing spinors can also

arise.

To obtain the supernumerary Killing spinor and the corresponding conditions on

H, we impose the following projection on the spinors

g(Γρ + 1)ε = if Γ−ε . (10.59)

The Killing spinor equations become

[∂+ − 3i
4
√

3
S + i

2
(egρf + 1

2
√

3
e−2gρS)Γ+ Γ− − 1

4

∑
i

Γi Γ−∂iH

−1
4
(egρH ′ +

√
3g−1e−2gρf S)Γ−]ε = 0 , ∂− ε = 0 ,

[∂i +
i
2
(egρf + 1

2
√

3
e−2gρS)Γi Γ−]ε = 0 ,

[∂ρ + i
2
(f − 1√

3
e−3gρS)Γ− − 1

2
g]ε = 0 . (10.60)

The integrability conditions among these equations are

0 = [∂i , ∂ρ]ε = − i
2
[∂if − (egρf)′ Γi +

1√
3
ge−2gρS Γi]Γ−ε ,

0 = [∂+ , ∂i]ε = −1
2
[i(egρ∂+f + 1

2
√

3
e−2gρ∂+S)Γi − (iegρ Γ+ − 3

2
√

3
g−1e−2gρS)∂if
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+1
2
egρ∂iH

′ + 1
2

∑
j

Γj∂j∂iH + (egρf + 1
2
√

3
e−2gρS)2 Γi]Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
2
[i(∂+f − 1√

3
e−3gρ∂+S) + 3

2
√

3
g−1S(e−2gρf)′ + 1

2

∑
i

Γi∂iH
′

−i((egρf)′ − 1√
3
ge−2gρS)Γ+ + 1

2
egρ(H ′′ + gH ′)

+(f − 1√
3
e−3gρS)(egρf + 1

2
√

3
e−2gρS)]Γ−ε . (10.61)

To have more supersymmetry than the 1
4

we need to set

∂if = 0 = ∂iH
′ and ∂j∂iH = 0 , i 6= j . (10.62)

The integrability conditions then implies

f = − 1
2
√

3
e−3gρS + e−gρU ,

i
dU

dx+
+ U2 + 1

2
∂2
iH = 0 , i = 1, 2,

i
( dS
dx+
− 2√

3
e2gρ

dU

dx+

)
− g−1e3gρS(e−2gρf)′ − 1√

3
e4gρ(H ′′ + gH ′)

− 2√
3
e3gρU(f − 1√

3
e−3gρS) = 0 , (10.63)

where U = U(x+). Substituting in the solution for H, given by (10.55), we find that it

is necessary to have that c1 = c2 ≡ c, and that H0 is given by (10.17). For simplicity,

we set H0 = 0 here since the H0 represents the pure gravitational component, which

was discussed in section 2. The equations for S and U are then given by

i
dS

dx+
− 4S(

√
3 b S − U) = 0 , i

dU

dx+
+ U2 + 1

2
c S2 = 0 . (10.64)

Substituting U = u+ iv into the above yields the equations

dS

dx+
+ 4v S = 0 ,

du

dx+
+ 2u v = 0 , S(u−

√
3 b S) = 0 ,

dv

dx+
+ v2 − u2 − 1

2
c S2 = 0 . (10.65)
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The solution to these equations is

S =
k

b2
, u =

√
3 k

b
, v =

1

2b

db

dx+
,

c =
b3

k2

[ d2b

dx+2
− 1

2b

( db

dx+

)2 ]
− 6 b2, (10.66)

where k is an arbitrary constant and we have taken S 6= 0. Note that as in the case of

D = 4, the original generic 1
4
-supersymmetric metric depending on the four functions

b, c1, c2 and S now only have one independent function in order for the solution to

have the enhanced 1
2

supersymmetry.

The Killing spinor is calculated from the equations

[∂+ − 3 i
4
√

3
S − 3

4
√

3
g−1e−2gρfS Γ− + i

2
U Γ+ Γ−

−1
4
(egρH ′ + c S2(z1 Γ1 + z2 Γ2))Γ−]ε = 0 , (10.67)

∂− ε = 0 , [∂i +
i
2
U Γi Γ−]ε = 0 , [∂ρ − i

2
g−1f ′ Γ− − 1

2
g]ε = 0 .

The solution is

ε = e
1
2
gρ+i

√
3

4

∫
S dx+

(1− i
2
U (z1 Γ1 + z2 Γ2)Γ−)(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e−i

∫
Udx+

)Γ+ Γ−
]
ε0 , (10.68)

where ε0 is a constant spinor satisfying (Γρ + 1)ε0 = 0. As in D = 4 we consider two

special cases. The first corresponds to v = 0 , which implies that b, c and S are all

constants, with c = −6b2. Letting S = µ the Killing spinor in this case is given by

ε = e
1
2
gρ+i

√
3

4
µx+

(
1− i

√
3

2
µb(z1 Γ1 + z2 Γ2) Γ−

)
(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e−i

√
3µbx+

)Γ+ Γ−
]
ε0 , (10.69)

where ε0 is a constant spinor satisfying (Γρ + 1)ε0 = 0. Thus the solution preserves

half of the supersymmetry. Among all the Killing spinors, the standard ones are those
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with Γ−ε0 = 0, whilst the remaining half with Γ−ε0 6= 0 are the supernumerary ones.

The function H for the pp-waves with supernumerary supersymmetry is given by

H = −3µ2b2(z2
1 + z2

2)− g−2f 2

= −µ2[3b2(z2
1 + z2

2) + g−2(3b2 e−2gρ + 1
12
e−6gρ − b e−4gρ)] ,

f = − 1
2
√

3
µ(e−3gρ − 6b e−gρ) . (10.70)

If we further let b = 1
6
, we have H = − 1

12
µ2(z2

1 + z2
2 + 4g−2 sinh2(gρ) e−4gρ). This

enables us to take the limit g → 0, giving rise to a pp-wave in the corresponding

ungauged D = 5 supergravity, given by

ds2 = −4dx+dx− − 1
12
µ2 (z2

1 + z2
2 + 4ρ2) (dx+)2 + dz2

1 + dz2
2 + dρ2,

F(2) = −µdx+ ∧ dρ . (10.71)

This pp-wave can also arise from the Penrose limit of AdS3 × S2 or AdS2 × S3,

which have supernumerary supersymmetries. Let us work out the Penrose limit of

the maximal supersymmetric vacuum solution AdS3 × S2 which is given by

ds2 = 4R2(− cosh2 χdt2 + dχ2 + sinh2 χdϕ2) +R2(dθ2 + cos2 θ dφ2) ,

F(2) =
√

3R cos θ dθ ∧ dφ . (10.72)

Performing the substitution

µ√
3
dx+ = dt+ 1

2
dφ ,

√
3

µR2
dx− = dt− 1

2
dφ ,

χ =
z

2R
, θ =

ρ

R
, (10.73)

and taking the limit R→∞ we obtain exactly the pp-wave (10.71).
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The second case is that of b = 0, and hence eqs.(10.65) reduces to

dS

dx+
+ 4v S = 0 ,

dv

dx+
+ v2 − 1

2
c S2 = 0 . (10.74)

The Killing spinor is then given by

ε = e
1
2
gρ ei

√
3

4

∫
S dx+

(1 + 1
2
v(z1 Γ1 + z2 Γ2)Γ−)(1 + i

2
g−1f Γ−)×

×
[
1− 1

2
(1− e

∫
v dx+

)Γ+ Γ−
]
ε0 , (10.75)

where ε0 is a constant spinor satisfying (Γρ + 1)ε0 = 0 and

H = 1
2
S2

[
c (z2

1 + z2
2) + 2g−2e−2gρ(c− 1

12
e−4gρ)

]
,

f = − 1
2
√

3
e−3gρS + ie−gρv . (10.76)

If we specialize to v = k̃S and c = −6k̃2 where k̃ is a constant, the system (10.74)

simplifies to

dS

dx+
+ 4k̃S2 = 0 . (10.77)

D. PP-waves in D = 6 and D = 7

1. D = 6

Our next example is in the Romans six-dimensional gauged N = (1, 1) supergravity

[31]. The bosonic field content comprises the metric, a dilaton φ, a 2-form potential,

a U(1) potential and the gauge potentials Ai(1) of SU(2) Yang-Mills. The Lagrangian

describing the bosonic sector is [85]

L = R ∗ 1l− 1
2
∗dφ ∧ dφ+ (2g2

1X
2 + 8

3
g1g2X

−2 − 2
9
g2
2X

−6) ∗1l

− 1
2
X4 ∗F(3) ∧ F(3) − 1

2
X−2

(
∗G(2) ∧G(2) + ∗F a

(2) ∧ F a
(2)

)
(10.78)

− A(2) ∧ (1
2
dB(1) ∧ dB(1) + 1

3
g2A(2) ∧ dB(1) + 2

27
g2
2A(2) ∧ A(2) + 1

2
F a

(2) ∧ F a
(2)) ,
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where X ≡ e
− 1

2
√

2
φ
, F(3) = dA(2) , G(2) = dB(1) + 2

3
g2A(2) , F

a
(2) = dAa(1) + 1

2
g1εabcA

b
(1) ∧

Ac(1). The fermions of this theory comprise symplectic-Majorana gravitinos ΨMi and

dilatinos λi where i = 1, 2 is an SP (1) index. The supersymmetry transformations

are given by [86]

δΨMi = [DM − 1
48
X2FABC ΓABC ΓMΓ7 − 1

4
√

2
(g1X + 1

3
g2X

−3) ΓM ]εi

+ 1
16
√

2
(ΓM ΓAB − 2ΓAB ΓM)X−1(GAB δi

j − i Γ7FAB i
j)Γ7εj ,

δλi = [− 1
2
√

2
ΓM∂Mφ+ 1

24
X2FABC ΓABC Γ7 + 1

2
√

2
(g1X − g2X

−3)]εi

+ 1
8
√

2
X−1(GAB δi

j − i Γ7FAB i
j) ΓAB Γ7εj . (10.79)

The gauge covariant derivative is defined as DMεi = ∇Mεi+
i
2
g1AM i

jεj where AM i
j ≡

AaM(−σa)ij with the field strength given by FMNi
j = ∂MANi

j+ i
2
g1AMi

kANk
j−(M ↔ N)

and σa are the usual Pauli matrices.

In this chapter, we consider pp-wave solutions supported by only one field

strength. Owing to the Chern-Simons modifications to various field strengths, we

find that this can only be done with a U(1) vector field coming from the SU(2) Yang-

Mills. Thus we consistently set all the remaining form fields to zero, and also without

loss of generality (while insisting on AdS background) take g1 = g2 = −3g/
√

2. This

leads to the pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz2
1 + dz2

2 + dz2
3) + dρ2,

A(1) = 1
3
g−1S(1− e−3gρ) dx+, (10.80)

where S = S(x+). The equations of motion reduce to

H ≡ H ′′ + 5gH ′ + e−2gρ
3∑
i=1

∂2
iH = −e−8gρS2, (10.81)
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and the solution for H is given by

H = S2
[

1
2

3∑
i=1

cizi + g−2(1
6
(c1 + c2 + c3)e

−2gρ − 1
24
e−8gρ + b e−5gρ)

]
+H0 , (10.82)

where H0 = 0. The b and ci are functions of x+.

We now investigate the supersymmetry of the pp-waves. This is more conve-

niently done if we rewrite the symplectic Majorana spinors using a Dirac notation.

(See [25] for details.) The Killing spinor equations from the gravitino transformation

rule are given by

[∂+ − i
2
√

2
S + i

2
(egρf + 1

4
√

2
e−3gρS)Γ+ Γ− − 1

4

∑
i

Γi∂iH Γ−

− 1
2
√

2
(g−1e−3gρfS + 1√

2
egρH ′)Γ−]ε = 0 , ∂− ε = 0 ,

[∂i +
i
2
(egρf + 1

4
√

2
e−3gρS)Γi Γ−]ε = 0 , i = 1, 2, 3,

[∂ρ + i
2
(f − 3

4
√

2
e−4gρS)Γ− − 1

2
g]ε = 0 , (10.83)

where we have made use of the projection condition g(Γρ + 1)ε = if Γ−ε and where

f = f(x+, ρ, zi). The integrability conditions [∂M , ∂N ]ε = 0 among these projected

Killing spinor equations are

0 = [∂i , ∂ρ]ε = − i
2
[∂if − (egρf + 1

4
√

2
e−3gρS)′ Γi]Γ−ε ,

0 = [∂+ , ∂i]ε = −1
2
[i(egρ∂+f + 1

4
√

2
e−3gρ∂+S)Γi +

1
2

∑
j

Γj∂j∂iH

+1
2
egρ∂iH

′ + (egρf + 1
4
√

2
e−3gρS)2 Γi − (iegρ Γ+ − 1√

2
g−1e−3gρS)∂if ]Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
2
[i(∂+f − 3

4
√

2
e−4gρ∂+S) + 1

2

∑
i

Γi∂iH
′

−i(egρf + 1
4
√

2
e−3gρS)′ Γ+ + 1√

2
g−1S(e−3gρf)′

+(f − 3
4
√

2
e−4gρS)(egρf + 1

4
√

2
e−3gρS) + 1

2
egρ(H ′′ + gH ′)]Γ−ε . (10.84)
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As before it is required that we set

∂if = 0 = ∂iH
′ and ∂j∂iH = 0 , i 6= j , (10.85)

and ci = c . The integrability conditions yields after using the solution for H the

following results

f = − 1
4
√

2
e−4gρS + e−gρ U,

i
dU

dx+
+ U2 + 1

2
c S2 = 0 ,

i
dS

dx+
+ 1

12
√

2
e−3gρS[S(7− 240b e3gρ) + 60

√
2 e3gρ U ] = 0 . (10.86)

In the case of S = 0, corresponding to purely-gravitational waves, discussed in section

2, the last equation is trivially satisfied. When S 6= 0, due to the ρ dependence, we

conclude that no supersymmetry enhancement can occur here. This is expected, since

in ungauged D = 6, N = (1, 1) supergravity, the pp-waves supported by a 2-form

field strength also have no supernumerary supersymmetry. The solution does have

standard supersymmetry though. The Killing spinor is given by

ε = e
1
2
gρ+

i
2
√

2

∫
S dx+

ε0 , (10.87)

where (Γρ + 1)ε0 = 0 = Γ−ε0. It is easy to verify that the Killing spinor equations

associated with both the gravitino and dilatino transformation rules are satisfied.

Thus the solution preserves 1
4

of the supersymmetry.

2. D = 7

The Lagrangian for the bosonic sector of half-maximum supergravity in seven dimen-

sions [46] can be written as follows [87]

L = R ∗1l− 1
2
∗dφ ∧ dφ− 1

2
X4 ∗F(4) ∧ F(4) − 1

2
X−2 ∗F a

(2) ∧ F a
(2)
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+1
2
F a

(2) ∧ F a
(2) ∧ A(3) − 1

2
√

2
g2F(4) ∧ A(3)

+(2g2
1X

2 + 2g1g2X
−3 − 1

4
g2
2X

−8) ∗1l (10.88)

where X = e
− 1√

10
φ
, F(4) = dA(3) and F a

(2) = dAa(1) + 1
2
g1εabcA

b
(1) ∧ Ac(1). In addition

there is a ”self-duality” condition that must be imposed, given by

X4 ∗F(4) = − 1√
2
g2A(3) + 1

2
ω(3) , (10.89)

where ω(3) is defined as ω(3) = Aa(1) ∧F a
(2)− 1

6
g1 εabcA

a
(1) ∧Ab(1) ∧Ac(1) . This theory has a

pair of symplectic-Majorana gravitinos ψMi and a pair of dilatinos λi, where i = 1, 2

is an SP (1) index. The fermionic supersymmetry transformations are given by [86]

δψMi = ∇Mεi +
i
2
g1AMi

jεj + 1
960
X2FABCD(ΓM ΓABCD + 5ΓABCD ΓM)εi

− i
40
√

2
X−1(3ΓM ΓAB − 5ΓAB ΓM)FABi

jεj − 1
5
√

2
(g1X + 1

4
g2X

−4)ΓMεi ,

δλi = [− 1
2
√

2
ΓM∂Mφ+ 1

48
√

5
X2FABCD ΓABCD]εi − i

4
√

10
X−1FABi

j ΓABεj

+ 1√
10

(g1X − g2X
−4)εi , (10.90)

where AMi
j ≡ AaM(−σa)ij. Owing to the odd-dimensional self-duality condition for

the A(3), our standard ansatz for the pp-wave metric does not work for A(3). We thus

consider the pp-wave supported only by the U(1) subsector of the SU(2) Yang-Mills.

The pp-wave solution is given by

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz2
1 + dz2

2 + dz2
3 + dz2

4) + dρ2,

A(1) = 1
4
g−1S(1− e−4gρ) dx+, (10.91)

where S = S(x+) and H satisfies

H ≡ H ′′ + 6gH ′ + e−2gρ
4∑
i=1

∂2
iH = −e−10gρS2. (10.92)
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Here we have set g1 = g2 = −2
√

2 g. The function H can be solved, given by

H = S2
[

1
2

4∑
i=1

ciz
2
i + g−2(1

8

4∑
i=1

ci e
−2gρ − 1

40
e−10gρ + b e−6gρ)

]
+H0 , (10.93)

with H0 = 0 and b and ci are functions of x+.

The projected Killing spinor equations from the gravitino transformation rule

are given by

[∂+ − i
2
√

2
S + i

2
(egρf + 1

5
√

2
e−4gρS)Γ+ Γ− − 1

4

∑
i

Γi∂iH Γ−

− 1
2
√

2
(g−1e−4gρfS + 1√

2
egρH ′)Γ−]ε = 0 , ∂− ε = 0 ,

[∂i +
i
2
(egρf + 1

5
√

2
e−4gρS)Γi Γ−]ε = 0 , i = 1, 2, 3, 4,

[∂ρ + i
2
(f − 4

5
√

2
e−5gρS)Γ− − 1

2
g]ε = 0 . (10.94)

The integrability conditions

0 = [∂i , ∂ρ]ε = − i
2
[∂if − (egρf + 1

5
√

2
e−4gρS)′ Γi]Γ−ε ,

0 = [∂+ , ∂i]ε = −1
2
[i(egρ∂+f + 1

5
√

2
e−4gρ∂+S)Γi +

1
2

∑
j

Γj∂j∂iH

+1
2
egρ∂iH

′ + (egρf + 1
5
√

2
e−4gρS)2 Γi − (iegρ Γ+ − 1√

2
g−1e−4gρS)∂if ]Γ−ε ,

0 = [∂+ , ∂ρ]ε = −1
2
[i(∂+f − 4

5
√

2
e−5gρ∂+S) + 1

2

∑
i

Γi∂iH
′

−i(egρf + 1
5
√

2
e−4gρS)′ Γ+ + 1√

2
g−1S(e−4gρf)′

+(f − 4
5
√

2
e−5gρS)(egρf + 1

5
√

2
e−4gρS) + 1

2
egρ(H ′′ + gH ′)]Γ−ε , (10.95)

imply that there is no supernumerary Killing spinors in this case. This should be ex-

pected since inD = 7, even in ungauged supergravities, there is no pp-wave supported

by a 2-form field strength that has supernumerary supersymmetry. The solution does

have 1
4

of standard supersymmetry, with the Killing spinor given by

ε = e
1
2
gρ+

i
2
√

2

∫
S dx+

ε0 , (10.96)
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where (Γρ + 1)ε0 = 0 = Γ−ε0 .

E. Uplifting to M/string theory

In this appendix we uplift the supersymmetric solutions supported by the U(1) charge

to ten and eleven dimensions. In the case of the four and five dimensional solutions

we uplift those with S being a constant. The four and seven dimensional solutions

are embedded in M-theory and the solutions in D = 5 and D = 6 are uplifted to

type-IIB supergravity and to Romans massive theory, respectively.

1. D = 4 oxidized to D = 11

The embedding formulae to eleven dimensions were obtained in [88] or we can also

use the ansatz in [89] after truncating to our case. We obtain

dŝ11 = e2gρ[−4dx+dx− − µ2(1
4
z2 + g−2 sinh2(1

2
gρ)e−3gρ)(dx+)2 + dz2] + dρ2

+4g−2dξ + g−2[c2 (σ2
1 + σ2

2 + h2
3) + s2 (σ̃2

1 + σ̃2
2 + h̃2

3)] ,

F̂(4) = −6ge3gρdx+ ∧ dx− ∧ dρ ∧ dz − µg−2[s c dξ ∧ σ3 + 1
2
c2σ1 ∧ σ2

−s c dξ ∧ σ̃3 + 1
2
s2 σ̃1 ∧ σ̃2] ∧ dx+ ∧ dz , (10.97)

where σi are the three left-invariant 1-forms on S3 satisfying dσi = −1
2
εijkσj ∧ σk .

They are given by σ1 + iσ2 = e−iψ(dθ + i sin θ dϕ) and σ3 = dψ + cos θ dϕ in terms

of the Euler angles. The σ̃i are left-invariant 1-forms on a second S3. We have also

defined

c ≡ cos ξ , s ≡ sin ξ ,

h3 ≡ σ3 − 1
2
µ(1− e−gρ)dx+, h̃3 ≡ σ̃3 − 1

2
µ(1− e−gρ)dx+,

ε(3) = σ1 ∧ σ2 ∧ h3 , ε̃(3) = σ̃1 ∧ σ̃2 ∧ h̃3 . (10.98)
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In this pp-wave, the internal S7 is twisted but not flattened. Analogous solution but

with untwisted round S7 can be found in [90].

2. D = 5 oxidized to type-IIB

Using the uplifting formulae to type IIB in [88, 91] we obtain for the metric

dŝ2
10 = e2gρ [−4dx+dx− − 1

12
µ2(z2

1 + z2
2 + 4g−2 sinh2(gρ) e−4gρ)(dx+)2

+dz2
1 + dz2

2 ] + dρ2 + g−2
3∑
i=1

[dµ2
i + µ2

i (dφi

+ 1
2
√

3
µ(1− e−2gρ)dx+)2 ] , (10.99)

and for the 5-form field strength F(5) = G(5) + ∗G(5),

G(5) = −8ge4gρdx+ ∧ dx− ∧ dρ∧ d2z − 1
2
√

3
µg−2

3∑
i=1

d(µ2
i )∧ dφi ∧ dx+ ∧ d2z . (10.100)

The µi are parameterised as

µ1 = sin θ , µ2 = cos θ sinψ , µ3 = cos θ cosψ , (10.101)

in terms of the angles on a 2-sphere.

3. D = 6 oxidized to Romans massive theory

The bosonic sector of Romans massive theory [23] is described by the Lagrangian

L10 = R̂∗̂1l− 1
2
∗̂dφ̂ ∧ dφ̂− 1

2
e

3
2
φ̂∗̂F̂(2) ∧ F̂(2) − 1

2
e−φ̂∗̂F̂(3) ∧ F̂(3)

−1
2
e

1
2
φ̂∗̂F̂(4) ∧ F̂(4) − 1

2
dÂ(3) ∧ dÂ(3) ∧ Â(2) − 1

6
mdÂ(3) ∧ (Â(2))

3

− 1
40
m2(Â(2))

5 − 1
2
m2e

5
2
φ̂∗̂1l , (10.102)

where the field strengths are defined as

F̂(2) = dÂ(1) +mÂ(2) , F̂(3) = dÂ(2) ,
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F̂(4) = dÂ(3) + Â(1) ∧ dÂ(2) + 1
2
mÂ(2) ∧ Â(2) . (10.103)

Note that the Bianchi identities in this theory are given by

dF̂(4) = F̂(2) ∧ F̂(3) , dF̂(3) = 0 , dF̂(2) = mF̂(3) . (10.104)

Using the embedding formulae obtained in [85] we can lift our six dimensional solution

to a solution of the above theory. It is given by (with m = g)

dŝ2
10 = s

1
12 [ds2

6 + 4
9
g−2dξ2 + 1

9
g−2c2 (σ2

1 + σ2
2 + h2

3)] ,

F̂(4) = 10
81
g−3s1/3c3 dξ ∧ ε(3) − 2

9
√

2
g−2e−3gρS[s1/3c σ3 ∧ dξ

−1
2
s4/3c2 σ1 ∧ σ2] ∧ dx+ ∧ dρ ,

F̂(3) = 0 , F̂(2) = 0 , eφ̂ = s−5/6, (10.105)

where ds2
6 is given by (10.80) and (10.82), and s, c, ε(3) and σi have the same definitions

as before and h3 = σ3 − 1√
2
S(1− e−3gρ)dx+.

4. D = 7 oxidized to D = 11

Using the embedding ansatz in [87] we obtain

dŝ11 = ds2
7 + 1

4
g−2dξ2 + 1

16
g−2c2(σ2

1 + σ2
2 + h2

3) , (10.106)

Â(3) = 1
64
g−3(2s+ s c2)ε(3) + 1

8
√

2
g−2S e−4gρs dx+ ∧ dρ ∧ σ3 ,

where ds2
7 is given by (10.91) and (10.93). The field strength F̂(4) = dÂ(3) is

F̂(4) = 3
64
g−3c3 dξ ∧ ε(3) + 1

8
√

2
g−2S e−4gρc dx+ ∧ dρ ∧ dξ ∧ σ3

+ 1
16
√

2
g−2S e−4gρ s c2 dx+ ∧ dρ ∧ σ1 ∧ σ2 , (10.107)

where s, c, ε(3) and σi have the same definitions as before and h3 = σ3 − 1√
2
S(1 −

e−4gρ)dx+.
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CHAPTER XI

AdS PP-WAVES II

In this chapter we continue our investigations of AdS pp-waves by studying the pp-

waves of D = 5 and D = 4 gauged supergravities supported respectively by U(1)3

and U(1)4 gauge fields [92]. We present a detailed analysis of the supersymmetry. In

particular, we show that supernumerary supersymmetry can arise beyond the usual

1
4
. We also study the pp-waves of the Freedman-Schwarz model. The supersymmetry

enhancement discussed in this chapter forces the solutions to be independent of the

light-cone coordinate x+.

A. PP-waves in five dimensions

Our first example treats D = 5 gauged supergravity truncated to the U(1)3 subgroup

of SO(6). The bosonic sector of this truncated theory is described by the Lagrangian

[88]

e−1L5 = R− 1
2
(∂~ϕ)2 + 4g2

∑
i

X−1
i − 1

4

∑
i

X−2
i (F i

(2))
2 + 1

4
εMNPQRF 1

MNF
2
PQA

3
R , (11.1)

where

Xi = e−
1
2
~ai·~ϕ , X1X2X3 = 1 ,

~a1 = ( 2√
6
,
√

2) , ~a2 = ( 2√
6
,−
√

2) , ~a3 = (− 4√
6
, 0) , (11.2)

and the field strengths are defined as F i
(2) = dAi(1). The equations of motion are

RMN = 1
2
∂M ~ϕ · ∂N ~ϕ− 4

3
g2gMN

∑
i

X−1
i

+1
2

∑
i

X−2
i (F i

MPF
i P

N − 1
6
(F i

(2))
2gMN) ,
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∇M(X−2
i FMN

i ) = 1
4
εNPQRSF j

PQF
k
RS , i 6= j 6= k ,

~ϕ = 1
4

∑
i

~aiX
−2
i (F i

(2))
2 − 2g2

∑
i

~aiX
−1
i . (11.3)

The supersymmetry transformations for the fermions are given by

δΨM = [∇M − i
2
g

∑
i

AiM + 1
6
g ΓM

∑
i

Xi − i
48

(ΓMΓAB − 3ΓABΓM)
∑
i

X−1
i F i

AB]ε ,

δ~λ = [− i
4
ΓM∂M ~ϕ+ 1

16
ΓAB

∑
i

~aiX
−1
i F i

AB − i
4
g

∑
i

~aiXi]ε . (11.4)

1. The solution

We use the following pp-wave metric ansatz

dsD = e2A(−4dx+dx− +H(dx+)2 + dz2
a) + e2Bdr2 , a = 1, 2, · · · , D − 3, (11.5)

in arbitrary dimensions. The functions A and B depends on r only while H depends

on x+, za and r coordinates. If we set H = 0, the pp-waves reduce to AdS-domain

wall solutions [93]. It is natural to choose the following vielbein basis

e+ = eAdx+ , e− = eA(−2dx− + 1
2
Hdx+) , ea = eAdza , er = eBdr (11.6)

such that we have ds2 = 2e+e− + eaea + erer . The vielbein components of the spin

connections are

ω−r = A′e−Be+ , ω+a = 1
2
e−A∂aH e+ ,

ω+r = A′e−Be− + 1
2
H ′e−Be+ , ωar = A′e−Bea . (11.7)

where the prime denotes the derivative with respect to r. Note that for the metric

in this basis we have η+− = 1 and η++ = η−− = 0. The derivatives are always

with respect to the curved metric. The vielbein components of the Ricci tensor in
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D-dimensions are given by

R++ = −1
2
e−2B [H ′′ +H ′((D − 1)A′ −B′)]− 1

2
e−2A

∑
a

∂a∂bH] = −1
2

H ,

R+− = −e−2B [A′′ + A′((D − 1)A′ −B′)] , Rab = R+− δab ,

Rrr = −(D − 1)e−2B [A′′ + A′(A′ −B′)] . (11.8)

It is straightforward to verify that in five dimensions the following

e2A = (gr)2 [H1H2H3]
1/3 , Hi = 1 +

`2i
r2
,

e2B =
1

(gr)2 [H1H2H3]2/3
, Xi = H−1

i [H1H2H3]
1/3 ,

Ai(1) = g−1Si(1−H−1
i ) dx+ (11.9)

satisfies the equations of motion with H(x+, r, za) obeying the equation

H ′′ + (4A′ −B′)H ′ + e−2(A−B)
∑
a

∂a∂aH +
4g2

r2
e−6A

∑
i

S2
i `

4
iH

−2
i = 0 . (11.10)

Here the Si are functions of x+.

2. Standard supersymmetry

The Killing spinor equations following from the fermionic transformations are given

by

[∂+ + 1
2
A′eA−B(Γ+ + 1

2
HΓ−)(Γr + 1)− 1

4
eA−BH ′ Γr Γ−

−1
4
(∂1H Γ1 + ∂2H Γ2)Γ− − i

2

( ∑
i

Si(1−H−1
i )

)
(Γr + 1)

+
i

6r2

( ∑
i

Si`
2
iH

−1
i

)
Γr Γ+ Γ−]ε = 0 ,

[∂− − A′eA−B Γ−(Γr + 1)]ε = 0 ,

[∂a + 1
2
A′eA−B Γa(Γr + 1)− i

6r2

( ∑
i

Si`
2
iH

−1
i

)
Γa Γr Γ−]ε = 0 ,
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[∂r +
1

6r

( ∑
i

H−1
i

)
Γr +

i

3r
ge−3A

( ∑
i

Si`
2
iH

−1
i

)
Γ−]ε = 0 ,

[ie3A
( ∑

i

a1iH
−1
i

)
(Γr + 1) + g

( ∑
i

a1iSi`
2
iH

−1
i

)
Γr Γ−]ε = 0 ,

[ie3A
( ∑

i

a2iH
−1
i

)
(Γr + 1) + g

( ∑
i

a2iSi`
2
iH

−1
i

)
Γr Γ−]ε = 0 , (11.11)

where we have Γ2
+ = Γ2

− = 0 and {Γ+ ,Γ−} = 2. The last two equations comes from

the dilatino transformations. To arrive at these equations we have made use of the

solution (11.9). The above Killing spinor equations have the solution

ε = r1/2 [H1H2H3]
1
12 ε0 (11.12)

where ε0 is a constant spinor satisfying (Γr + 1)ε0 = 0 and Γ−ε0 = 0. The solution

therefore preserves 1
4

of the supersymmetry. The Killing spinor for the 1
4

supersym-

metry exist for arbitrary solutions to eq.(11.10).

3. Supernumerary supersymmetry

To investigate the supernumerary supersymmetry we use the less restrictive projection

condition

(Γr + 1)ε = if Γ−ε (11.13)

where the function f = f(x+, r, za) is to be determined. Making use of this projection

in the Killing spinor equations they become

[∂+ + i
2
(A′eA−Bf − 1

3r2
M)Γ+ Γ− +

1

4r2
(2fM− r2eA−BH ′)Γ−

−1
4
(∂1H Γ1 + ∂2H Γ2)Γ−]ε = 0 ,

[∂a + i
2
(A′eA−Bf − 1

3r2
M)Γa Γ−]ε = 0 , ∂−ε = 0 ,[

∂r +
i

6r

(
f

∑
i

H−1
i + 2ge−3AM

)
Γ− −

1

6r

∑
i

H−1
i

]
ε = 0 ,[

e3Af
∑
i

abiH
−1
i − g

∑
i

abiSi`
2
iH

−1
i

]
Γ−ε = 0 , b = 1, 2 (11.14)
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whereM≡ ∑
i Si`

2
iH

−1
i . We analyse these equations by calculating the integrability

conditions [∂M , ∂N ]ε = 0 among them. The integrability [∂a , ∂r]ε = 0 yields a solution

for f with the requirement ∂af = 0. We have

f =
1

3r2A′ e
−(A−B)(M+ 3r2U(x+)) , (11.15)

where the function U is in general complex. From the integrability [∂+ , ∂a]ε = 0 we

obtain an equation for U after imposing some restrictions on the pp-wave function

H(x+, r, za). The result is

∂aH
′ = 0 , ∂a∂bH = 0 for a 6= b ,

i
dU

dx+
+ U2 + 1

2
∂a∂aH = 0 , a = 1, 2 . (11.16)

The equation for U then requires ∂1∂1H = ∂2∂2H. Investigating the pair of equations

given in the last line of eqs.(11.14) we find that they are satisfied provided that the

functions Si and U satisfy two equations among them. Without loss of generality we

give the solutions in terms of S3 and U . They are given by

S1 = `−2
1 (S3`

2
3 − (`21 − `23)U) , S2 = `−2

2 (S3`
2
3 − (`22 − `23)U) . (11.17)

In order to analyse the final integrability [∂+ , ∂r]ε = 0 we need to make use of the

solution for H. Taking into account the conditions on H given above the solution is

given by

g4H(x+, r, za) = 1
2
c g4(z2

1 + z2
2) + 1

2
|εijk|Kijk(x

+, r) ,

Kijk(x
+, r) = − S2

i `
4
i

(`2i − `2j)(`2i − `2k)(r2 + `2i )
(11.18)

+
1

2(`2i − `2j)2(`2i − `2k)2

[
(bg4 + c `2i )(`

2
i − `2j)(`2i − `2k)

+2S2
i `

4
i (2`

2
i − `2j − `2k)− 2S2

j `
4
j(`

2
i − `2k)− 2S2

k`
4
k(`

2
i − `2j)

]
ln(r2 + `2i ),



103

where b = b(x+) and c = c(x+). Then [∂+ , ∂r]ε = 0 yields an equation for S3 given

by

i
dS3

dx+
− (2`3)

−2[bg4 + c `23 + 2U(U(`21 + `22)− 2`23(2S3 + U))] = 0 . (11.19)

We proceed next by making use of the information that Si, b and c are real functions.

Eqs.(11.17) implies that U must also be real. This has the consequence in eq.(11.16)

that U and c must be constants with c being given by c = −2U2 . Eqs.(11.19) and

(11.17) in turn implies that Si and b must also be constants. Eliminating U from

eqs.(11.17) and setting Si = µi we obtain

εijk µi`
2
i (`

2
j − `2k) = 0 . (11.20)

Without loss of generality we solve for µ1 in terms of the other two charges. The

function H which gives 1
2

supersymmetric pp-wave is given by

µ1 =
µ2`

2
2(`

2
1 − `23)− µ3`

2
3(`

2
1 − `22)

`21(`
2
2 − `23)

,

b = −2(µ2`
2
2 − µ3`

2
3)(µ2`

4
2 − µ3`

4
3 − 3(µ2 − µ3)`

2
2`

2
3 + `21(µ2`

2
2 − µ3`

2
3))

g4(`22 − `23)2
,

c = −2(µ2`
2
2 − µ3`

2
3)

2

(`22 − `23)2
,

H = 1
2
c (z2

1 + z2
2)− f 2 ,

f = −(µ2`
2
2 − µ3`

2
3)r

2 + (µ2 − µ3)`
2
2`

2
3

g2(`22 − `23)r3[H1H2H3]1/2
. (11.21)

The projected Killing spinor equations become

[∂+ − 1
2
√

2
(−c)1/2(i Γ+ − f)Γ− − 1

4
c (z1Γ1 + z2Γ2)Γ−]ε = 0 ,

[∂a − i
2
√

2
(−c)1/2 Γa Γ−]ε = 0 , ∂−ε = 0 ,

[∂r − i
2
f ′ Γ− −

1

6r

∑
i

H−1
i ]ε = 0 . (11.22)
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The Killing spinor is easily obtained given by

ε = r1/2[H1H2H3]
1
12 (1 + i

2
√

2
(−c)1/2(z1Γ1 + z2Γ2)Γ−)(1 + i

2
f Γ−)η ,

dη

dx+
= i

2
√

2
(−c)1/2 Γ+ Γ− η . (11.23)

Solving for η we have

ε = r1/2[H1H2H3]
1
12 (1 + i

2
√

2
(−c)1/2(z1Γ1 + z2Γ2)Γ−)(1 + i

2
f Γ−)×

×[1− 1
2
(1− e

i√
2
(−c)1/2x+

)Γ+ Γ−]ε0 , (11.24)

where ε0 is a constant spinor satisfying (Γr+1)ε0 = 0 . The solution thus preserve 1
2

of

the supersymmetry. Note that if we set µi`
2
i = µ (which is consistent with eq.(11.20))

we obtain b = c = 0.

To conclude, demanding supernumerary supersymmetry puts very strong restric-

tions on the pp-waves with the functions S, b and c (and U) which initially all being

functions of x+ reduces now to constants. This is not the case for minimal gauged

supergravity where supernumerary supersymmetry does allow the various functions

to have x+ dependence.

B. PP-waves in four dimensions

In this section we consider a subsector of the SO(8) gauged supergravity where the

bosonic fields comprises the metric, four commuting U(1) gauge potentials and three

dilatons. The Lagrangian describing this set of fields is [94]

e−1L4 = R− 1
2
(∂~ϕ)2 − 1

4

∑
i

X−2
i (F i

(2))
2 − V , (11.25)

where

Xi = e−
1
2
~ai·~ϕ , X1X2X3X4 = 1 , (11.26)
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~a1 = (1, 1, 1) , ~a2 = (1,−1,−1) , ~a3 = (−1, 1,−1) , ~a3 = (−1,−1, 1) ,

and the field strengths are defined as F i
(2) = dAi(1). The potential is given by

V = −4g2
∑
i< j

XiXj = −8g2
3∑
i=1

coshϕi . (11.27)

The N = 8 supersymmetry transformations in this bosonic background were also

presented in [94]. They are given by

δΨi
M = ∇Mε

(i) +
∑
j

[− igΩijA
j
M + i

8
ΩijX

−1
j F j

ABΓABΓM + 1
4
gXjΓM ]ε(i),(11.28)

δλij = [ i√
2
ΓM∂Mφ

ij − 1
2
√

2

∑
k

ΩjkX
−1
k F k

ABΓAB + i
√

2g
∑
k,m

fijkΩkmXm]ε(i),

where we have rewritten them by introducing complex fermions Ψi
M = Ψi

1M + iΨi
2M ,

etc and made the substitutions g →
√

2g and Ai(1) → − 1
2
√

2
Ai(1) . Note that i 6= j in the

spin 1/2 transformations. The three dilatons are given by the following identifications

ϕ1 = φ12 = φ34 , ϕ2 = φ13 = φ24 , ϕ3 = φ14 = φ23 , (11.29)

and note also that φij = φji. The function fijk is defined as

fijk =


|εijk| for i, j, k 6= 1 ,

δjk for i = 1 ,

δik for j = 1 ,

(11.30)

and the matrix Ω is given by

Ω =
1

2



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


(11.31)
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1. The solution

The four charge pp-wave is given by

ds2
4 = e2A(−4dx+dx− +H(dx+)2 + dz2) + e2Bdr2, (11.32)

where

e2A = (gr)4 [H1H2H3H4]
1/2 , Hi = 1 +

`2i
r2
,

e2B =
1

(gr)2 [H1H2H3H4]1/2
, Xi = H−1

i [H1H2H3H4]
1/4 ,

Ai(1) = g−1Si(1−H−1
i ) dx+ (11.33)

and Si = Si(x
+). The function H(x+, r, z) satisfies the equation

H ′′ + (3A′ −B′)H ′ + e−2(A−B)∂z∂zH +
4g2

r2
e−4A

∑
i

S2
i `

4
iH

−2
i = 0 . (11.34)

The solution to this equation is similar to the solution in D = 5. The four charged

pp-wave can be specialized to one, two and three active charges respectively.

2. Supersymmetry

The N = 8 supersymmetry have four different sectors. We begin by analysing the

Killing spinor equations for the sector ε(1). The supersymmetry transformations are

given by

δΨ1
M = ∇Mε

(1) +
4∑
i=1

[− i
2
gAiM + i

16
X−1
i F i

ABΓABΓM + 1
4
gXiΓM ]ε(1),

δλ12 = [ i√
2
ΓM∂Mϕ1 − 1

4
√

2
ΓAB(X−1

1 F 1
AB +X−1

2 F 2
AB −X−1

3 F 3
AB −X−1

4 F 4
AB)

+ i√
2
g(X1 +X2 −X3 −X4)]ε

(1),

δλ13 = [ i√
2
ΓM∂Mϕ2 − 1

4
√

2
ΓAB(X−1

1 F 1
AB −X−1

2 F 2
AB +X−1

3 F 3
AB −X−1

4 F 4
AB

+ i√
2
g(X1 −X2 +X3 −X4)]ε

(1),
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δλ14 = [ i√
2
ΓM∂Mϕ3 − 1

4
√

2
ΓAB(X−1

1 F 1
AB −X−1

2 F 2
AB −X−1

3 F 3
AB +X−1

4 F 4
AB

+ i√
2
g(X1 −X2 −X3 +X4)]ε

(1). (11.35)

The Killing spinor equations are readily written down and take the form

[∂+ + 1
2
A′eA−B(Γ+ + 1

2
HΓ−)(Γr + 1)− 1

4
H ′eA−B Γr Γ− − 1

4
∂zH Γz Γ−

− i

2

( 4∑
i=1

Si(1−H−1
i )

)
(Γr + 1) +

i

4r2

( ∑
i

Mi

)
Γr Γ+ Γ−]ε(1) = 0 ,

[∂− − A′eA−B Γ−(Γr + 1)]ε(1) = 0 ,

[∂z + 1
2
A′eA−B Γz(Γr + 1)− i

4r2

( ∑
i

Mi

)
Γz Γr Γ−]ε(1) = 0 ,

[∂r +
1

4r

( ∑
i

H−1
i

)
Γr +

i

4r
ge−2A

( ∑
i

Mi

)
Γ−]ε(1) = 0 ,

[ig(X1 +X2 −X3 −X4)(Γr + 1) +
1

r2
e−A(M1 +M2 −M3

−M4)Γr Γ−]ε(1) = 0 ,

[ig(X1 −X2 +X3 −X4)(Γr + 1) +
1

r2
e−A(M1 −M2 +M3

−M4)Γr Γ−]ε(1) = 0 ,

[ig(X1 −X2 −X3 +X4)(Γr + 1) +
1

r2
e−A(M1 −M2 −M3

+M4)Γr Γ−]ε(1) = 0 , (11.36)

where we have definedMi ≡ Si`
2
iH

−1
i . These equations have the solution

ε(1) = r[H1H2H3H4]
1
8 ε(1)0 (11.37)

where ε(1)0 is a constant spinor satisfying (Γr + 1)ε(1)0 = 0 = Γ−ε
(1)

0 . Thus 1
4

of the

supersymmetry of the ε(1) sector is preserved (standard supersymmetry). It is easy to

see that the same amount of supersymmetry is preserved simultaneously in the other

sectors. The pp-wave therefore preserves overall 1
4

of the N = 8 supersymmetry.

Now let us examine whether the solution admits supernumerary supersymmetry.
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We again make use of the ansatz

(Γr + 1)ε(1) = if1 Γ−ε
(1). (11.38)

A similar analysis of the integrability conditions among the projected Killing spinor

equations as in five dimensions shows that the functions Si(x
+), U(x+), b(x+) and

c(x+) must again be constants. In D = 4 there are now two conditions that must be

satisfied among the charges for there to be supernumerary supersymmetry. Hence the

pp-wave solution will depend on just two charge parameters. The constraints among

the charges are given by

`21`
2
4(`

2
2 − `23)(µ1 − µ4) = `22`

2
3(`

2
1 − `24)(µ2 − µ3) ,

(`22 − `23)(µ1`
2
1 − µ4`

2
4) = (`21 − `24)(µ2`

2
2 − µ3`

2
3) , (11.39)

where we have set Si = µi. Solving for µ1 and µ2 in terms of the other two charges

the function H is given by

µα =
µ3`

2
3(`

2
α − `24)− µ4`

2
4(`

2
α − `23)

`2α(`
2
3 − `24)

, α = 1, 2 ,

b = −2(µ3`
2
3 − µ4`

2
4)

g6(`23 − `24)2
[µ3`

2
3(`

2
1 + `22 + `23 − 5`24)− µ4`

2
4(`

2
1 + `22 − 5`23 + `24)] ,

c = −8(µ3`
2
3 − µ4`

2
4)

2

(`23 − `24)2
,

H = 1
2
c z2 − f 2

1 ,

f1 = −(µ3`
2
3 − µ4`

2
4)r

2 + (µ3 − µ4)`
2
3`

2
4

g3(`23 − `24)r4[H1H2H3H4]1/2
. (11.40)

The projected Killing spinor equations are given by

[∂+ − 1
2
√

2
(−c)1/2(i Γ+ − f1)Γ− − 1

4
c zΓz Γ−]ε(1) = 0 ,

[∂z − i
2
√

2
(−c)1/2 Γz Γ−]ε(1) = 0 , ∂−ε

(1) = 0 ,
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[∂r − i
2
f ′1 Γ− −

1

4r

∑
i

H−1
i ]ε(1) = 0 . (11.41)

The solution for the Killing spinor is

ε(1) = r[H1H2H3H4]
1
8 (1 + i

2
√

2
(−c)1/2z Γz Γ−)(1 + i

2
f1 Γ−)×

×[1− 1
2
(1− e

i√
2
(−c)1/2x+

)Γ+ Γ−]ε(1)0 , (11.42)

where ε(1)0 is a constant spinor satisfying (Γr + 1)ε(1)0 = 0 . The pp-wave with H given

above therefore preserves 1
2

of the supersymmetry of the ε(1) sector. Consider next

the remaining sectors. For this we use the ansatz Ai(1) = g−1ηi µi(1 − H−1
i )dx+. To

preserve 1
2

supersymmetry in the four respective sectors then requires the sign choices:

1 : η1 = η2 = η3 = η4

2 : η1 = η2 = −η3 = −η4

3 : η1 = −η2 = η3 = −η4

4 : η1 = −η2 = −η3 = η4

(11.43)

Because of the difference in signs the four charge solution will preserve 1
2

of the

supersymmetry of just one sector and 1
4

of the supersymmetry of each of the remaining

sectors.

Although we have focused on solutions with four active charges one can easily

also analyse the supersymmetry of solutions with one, two or three active charges.

In the following table we present the overall amount of the N = 8 supersymmetry

preserved in the various cases.
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No. of active Standard Enhanced

charges supersymmetry supersymmetry

1 1
4

1
8

+ 1
8

+ 1
8

+ 1
8

= 1
2

2 1
4

1
8

+ 1
8

+ 1
16

+ 1
16

= 3
8

3 1
4

1
8

+ 1
16

+ 1
16

+ 1
16

= 5
16

4 1
4

1
8

+ 1
16

+ 1
16

+ 1
16

= 5
16

C. PP-waves in the Freedman-Schwarz model

The Lagrangian describing the bosonic sector of the Freedman-Schwarz model is [18]

L4 = R ∗1l− 1
2
∗dφ ∧ dφ− 1

2
e2φ ∗dχ ∧ dχ+ 4(g2

1 + g2
2)e

φ ∗1l

−1
2
e−φ( ∗F a

(2) ∧ F a
(2) + ∗Ga

(2) ∧Ga
(2))

−1
2
χ(F a

(2) ∧ F a
(2) +Ga

(2) ∧Ga
(2)) , (11.44)

where

F a
(2) = dAa(1) − 1√

2
g1εabcA

b
(1) ∧ Ac(1) , a = 1, 2, 3,

Ga
(2) = dBa

(1) − 1√
2
g2εabcB

b
(1) ∧Bc

(1) . (11.45)

The supersymmetry transformations for the fermions are given by

δΨM = [∇M − i√
2
g1α

a
1A

a
M − i√

2
g2α

a
2B

a
M − i

4
eφ Γ5∂Mχ

+ i
8
√

2
e−

1
2
φ(αa1F

a
AB − i Γ5α

a
2G

a
AB)ΓABΓM + 1

2
e

1
2
φ(g1 − ig2Γ5)ΓM ]ε ,

δλ = [ i√
2
(∂Mφ− ieφ Γ5∂Mχ)ΓM + 1

4
e−

1
2
φ(αa1F

a
AB + i Γ5α

a
2G

a
AB)ΓAB

−i
√

2 e
1
2
φ(g1 + ig2Γ5)]ε , (11.46)
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where Γ5 = iΓ0Γ1Γ2Γ3 such that Γ2
5 = 1. The αa1 and αa2 are two sets Pauli matrices.

The gravitino, the dilatino and the (Majorana) spinor ε carry a suppressed indice

which runs from one to four. In the following we turn off two of the fields F a
MN and

Ga
MN each. For a vanishing axion (χ = 0) the pp-wave in this theory is given by

ds2 = (gr)2(−4dx+dx− +H(dx+)2 + dz2) + dr2 ,

H = 1
2
c z2 − b

(gr)2
− c ln(gr)

2g2
− g2

2S
2
1 + g2

1S
2
2

2g2
1g

2
2(gr)

4
,

φ = −2 ln(gr) ,

A(1) = g−1
1 S1(x

+)((gr)−2 − 1)dx+,

B(1) = g−1
2 S2(x

+)((gr)−2 − 1)dx+, (11.47)

where g = (g2
1 + g2

2)
1/2. Now lets look at the supersymmetry of this solution. The

Killing spinor equations are given by

[∂+ + 1
2
g(Γ+ + 1

2
HΓ−)(Γr + a)− i√

2
(S1 + S2)((gr)

−2 − 1)

−1
4
c zΓz Γ− − 1

4
grH ′ Γr Γ− − iΛ Γ− Γ+ Γr]ε = 0 ,

[∂− − gΓ−(Γr + a)]ε = 0 ,

[∂z + 1
2
gΓz(Γr + a) + iΛΓz Γ− Γr]ε = 0 ,

[∂r +
iΛ

gr
Γ− +

1

2gr
(g1 − ig2Γ5)Γr]ε = 0 ,

[(Γr + a) + 2ig−1Γ− Λ Γr]ε = 0 , (11.48)

where

a = g−1(g1 + ig2Γ5) and Λ =
g2S1 − ig1S2Γ5

2
√

2g1g2(g2
1 + g2

2)
1/2r2

. (11.49)

It follows from these equations that to obtain the usual 1
4

supersymmetry for the

pp-wave we need surprisingly to impose g2
2S1 = g2

1S2 . The Killing spinor can then be
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obtained and it is given by

ε = e
− i√

2

∫
(S1+S2)dx+

r1/2ε0 , (11.50)

where ε0 is a constant spinor satisfying the projections (Γr + a)ε = 0 = Γ−ε . To

investigate the supernumerary supersymmetry we use the projection condition

(Γr + a)ε = if Γ−ε . (11.51)

The projected Killing spinor equations are given by

[∂+ + i√
2
(S1 + S2) + iΓ+(1

2
gf − āΛ̄)Γ− − 1

4
c z Γz Γ−

− 1

2
√

2g1g2g2r2
(S1g

2
2 − S2g

2
1)Γ5 + (2Λf − 1

4
a grH ′)Γ−]ε = 0 ,

[∂z + iΓz(
1
2
gf − āΛ̄)Γ−]ε = 0 , ∂−ε = 0 ,

[∂r +
i

r
(g−1Λ + 1

2
āf)Γ− −

1

2r
]ε = 0 ,

[f − 2g−1āΛ̄]Γ−ε = 0 . (11.52)

Here ā and Λ̄ are just a and Λ but with Γ5 replaced by −Γ5. We analyse these

projected equations by calculating the integrability conditions among them. The

condition [∂z , ∂r]ε = 0 requires ∂zf = 0 and yields a solution for f given by

f = 2g−1āΛ̄ + 2g−1U(x+) . (11.53)

The integrability [∂+ , ∂z]ε = 0 provides an equation for U(x+) which is given by

i
dU

dx+
− 2U2 − 1

4
c = 0 . (11.54)

From the last line of eqs.(11.52) we have f − 2g−1āΛ̄ = 0. This equation forces U

in the solution for f to vanish. From the equation for U we must in turn set c = 0.
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Considering next the integrability condition [∂+ , ∂r]ε = 0 we first note that

2Λf − 1
4
a grH ′ =

c r2 − 4b

8(gr)2
(g1 − ig2Γ5) . (11.55)

It follows that the functions S1 and S2 must be constants. We need furthermore also

to set b = 0 (as well as imposing g2
2S1 = g2

1S2). Setting Si = µi the projected Killing

spinor equations become

[∂+ + i√
2
(µ1 + µ2)]ε = 0 , ∂−ε = 0 , ∂zε = 0 ,[

∂r −
i

2

g1 − ig2Γ5

(g2
1 + g2

2)
1/2
f ′ Γ− −

1

2r

]
ε = 0 . (11.56)

The Killing spinor solution is

ε = e
− i√

2
(µ1+µ2)x+

r1/2
[
1 +

i

2

g1 − ig2Γ5

(g2
1 + g2

2)
1/2
f Γ−

]
ε0 , (11.57)

where ε0 is a constant spinor. Inserting the Killing spinor in the projection condition

(11.51) and using

f =
µ1√

2g2
1(g

2
1 + g2

2)
1/2 r2

(11.58)

we obtain (Γr + a)ε0 = 0. Thus, the pp-wave preserves 1
2

of the supersymmetry with

H given by

H = −f 2 = − µ2
1

2g4
1(g

2
1 + g2

2)r
4
. (11.59)

D. PP-waves in six dimensions

In this section we investigate the supersymmetry of pp-waves in Romans theory [31].

We use the conventions of [86]. We consider a subsector of the theory by truncating

the 2-form potential and the U(1) potential. The Lagrangian describing the remaining

fields is given by

e−1L = R− 1
2
(∂ϕ)2 − 1

4
X−2(F a

(2))
2 + 4g2(X2 + 4

3
X−2 − 1

9
X−6) (11.60)
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where X = e
− 1

2
√

2
ϕ

and F a
(2) = dAa(1) − 1√

2
g εabcA

b
(1) ∧ Ac(1).

We have here set g1 = g2 = −
√

2g in [86]. The supersymmetry transformations are

δΨMi = [DM + 1
4
g(X + 1

3
X−3)ΓM ]εi − i

16
√

2
(ΓMΓAB − 2ΓABΓM)X−1FABi

jεj ,

δλi = [− 1
2
√

2
ΓM∂Mϕ− 1

2
g(X −X−3)]εi − i

8
√

2
ΓABX−1FABi

jεj . (11.61)

where DMεi = ∇Mεi− i√
2
gAMi

jεj. To obtain the pp-wave we turn off two of the SU(2)

fields. The solution is given by

e2A = (gr)4/3H
1/2
1 , H1 = 1 +

`21
r2
,

e2B =
1

(gr)2H
3/2
1

, e
√

2ϕ = H1 ,

A1
(1) = g−1S1(x

+)(1−H−1
1 ) dx+ , (11.62)

and the pp-wave function H(x+, r, za) satisfies the equation

H ′′ + (5A′ −B′)H ′ + e−2(A−B)
∑
a

∂a∂aH +
4S2

1`
4
1

g2r6(gr)4/3H4
1

= 0 . (11.63)

The Killing spinor equations are given by

[∂+ + 1
2
A′eA−B(Γ+ + 1

2
HΓ−)(Γr + 1)− 1

4
eA−BH ′ Γr Γ− − 1

4

∑
a

∂aH Γa Γ−

− i√
2
S1(1−H−1

1 )(Γr + 1) +
i

4
√

2

S1`
2
1

r2H1

Γr Γ+ Γ−]ε = 0 ,

[∂− − A′eA−B Γ−(Γr + 1)]ε = 0 ,

[∂a + 1
2
A′eA−B Γa(Γr + 1)− i

4
√

2

S1`
2
1

r2H1

Γa Γr Γ−]ε = 0 ,

[∂r +
`21 + 4r2

12r3H1

Γr +
3i

4
√

2

S1`
2
1(gr)

1/3

g2r4H2
1

Γ−]ε = 0 ,

[g(Γr + 1) +
i√
2

S1

(gr)2/3H1

Γr Γ−]ε = 0 . (11.64)

It is clear from these equations that the pp-waves preserve 1
4

of the supersymmetry

but there is no supernumerary supersymmetry.
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E. PP-waves in seven dimensions

In this section we consider gaugedD = 7,N = 2 supergravity where we retain only the

metric, two U(1) gauge potentials and two scalars. The other fields are consistently

set to zero. This reduced set of fields are described by the Lagrangian

e−1L = R− 1
2
(∂~ϕ)2 − 1

4

2∑
i=1

X−2
i (F i

(2))
2 − V , (11.65)

where

Xi = e−
1
2
~ai·~ϕ , ~a1 = (

√
2,

√
2
5
) , ~a2 = (−

√
2,

√
2
5
) ,

V = 1
2
g2(X−4

1 X−4
2 − 8X1X2 − 4X−1

1 X−2
2 − 4X−2

1 X−1
2 ) . (11.66)

The supersymmetry transformations are given by

δψM = [∇M + 1
4
(X−1

1 F 1
MNΓ12 +X−1

2 F 2
MNΓ34)Γ

N + 1
4
gX−2

1 X−2
2 ΓM

+1
4
(X−1

1 ∂NX1 +X−1
2 ∂NX2)ΓMΓN + 1

2
g(A1

MΓ12 + A2
MΓ34)]ε ,

δλ1 = [−1
8
(3X−1

1 ∂MX1 + 2X−1
2 ∂MX2)Γ

M − 1
16
X−1

1 F 1
ABΓAB Γ12

+1
4
g(X1 −X−2

1 X−2
2 ]ε ,

δλ2 = [−1
8
(2X−1

1 ∂MX1 + 3X−1
2 ∂MX2)Γ

M − 1
16
X−1

2 F 2
ABΓAB Γ34

+1
4
g(X2 −X−2

1 X−2
2 ]ε . (11.67)

For more details see [95]. The domain wall solution is given by

e2A = (gr)[H
1/2
0 H1H2]

1
5 , Hi = 1 +

`2i
r2
,

e2B =
1

(gr)2[H
1/2
0 H1H2]

4
5

, Xi = H−1
i [H

1/2
0 H1H2]

2
5 , (11.68)

where H0 = 1 + `20/r
2. The ansatz for the 1-form potential is

Ai(1) = g−1Si(1−H−1
i ) dx+ (11.69)
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and the function H(x+, r, za) satisfies the equation

H ′′ + (6A′ −B′)H ′ + e−2(A−B)
∑
a

∂a∂aH +
4g2

r2
e−10A

∑
i

S2
i `

4
iH

−2
i = 0 . (11.70)

The Killing spinor equations are given by

[∂+ +
1

4rH0

eA−B(Γ+ + 1
2
HΓ−)(Γr + 1)− 1

4
eA−BH ′ Γr Γ− − 1

4

∑
a

∂aH Γa Γ−

+1
2
(S1(1−H−1

1 )Γ12 + S2(1−H−1
2 )Γ34)(Γr + 1)]ε = 0 ,

[∂− −
1

2rH0

eA−B Γ−(Γr + 1)]ε = 0 ,

[∂a +
1

4rH0

eA−B Γa(Γr + 1)]ε = 0 ,

[∂r − 1
2
√

10
ϕ′2 +

1

4rH0

Γr −
1

2r
ge−5A(S1`

2
1H

−1
1 Γ12 + S2`

2
2H

−1
2 Γ34)Γ−]ε = 0 ,

[g(`20 − `21)H−1
0 X1(Γr + 1) + S1`

2
1H

−1
1 e−A Γ12 Γr Γ−]ε = 0 ,

[g(`20 − `22)H−1
0 X2(Γr + 1) + S2`

2
2H

−1
2 e−A Γ34 Γr Γ−]ε = 0 . (11.71)

It is clear from these equations that the pp-waves have 1
4

supersymmetry but no

supernumerary supersymmetry.
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CHAPTER XII

CONCLUSION

In his dissertation we have discussed new gauged supergravities in diverse dimensions

from generalized Kaluza-Klein reductions of the low-energy effective actions of string

theory involving the metric, the dilaton, a 3-form field strength and a 2-form field

strength. The generalized reduction gauges two global symmetries, namely the homo-

geneous scaling symmetry (conformal symmetry) of the equations of motion, and also

the dilaton shift symmetry of the Lagrangian. The gauged supergravity resulting from

this construction has a positive scalar potential, in the form of a single-exponential

of the lower-dimensional dilaton. We showed that the reduction is supersymmetric,

by explicitly deriving the lower-dimensional supersymmetry transformation rules.

We should emphasize that the generalized reductions of the kind we have con-

sidered are in fact related by a U-duality to more conventional reductions considered

extensively in the past. As we already mentioned in the first chapter, performing a

generalized reduction involving the global shift symmetry of the axion in the type-IIB

theory one can establish a T-duality between the type-IIB theory and the massive

type-IIA theory [22]. The S-duality of the type-IIB theory implies that one should also

consider SL(2, IR)-related generalized reductions [96], which will involve the global

shift symmetry of the dilaton. When one extends the discussion of non-perturbative

dualities to lower dimensions, the underlying global Cremmer-Julia type symmetries

can only be interpreted as strictly internal symmetries if one also make use of the scal-

ing symmetry of the equations of motion that homogeneously scales the Lagrangian.

Thus it is very natural to consider generalized reductions of the kind we have studied

in this dissertation.
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The new supergravities have the interesting feature that they all admit super-

symmetric vacuum solutions of the form (Minkowski)×S3, and in some cases also

(Minkowski)×S2. These solutions provide novel compactifications of higher dimen-

sional string theories. We have studied in detail the compactifications of the variant

D = 6, N = (1, 1) theory. In particular we have demonstrated that its S2 reduc-

tion yields D = 4, N = 2 supergravity coupled to a vector multiplet which can be

further truncated to N = 1 supergravity coupled to a chiral multiplet. Although

we cannot obtain a chiral theory from the M4 × S2 reduction, chirality might still

survive in brane models [15] where chiral families live solely on the branes and not

in the bulk. In fact, from a braneworld perspective, the present model provides an

alternative framework to the Salam-Sezgin model, where the bulk solution preserves

N = 2 supersymmetry, and it is the branes themselves that provide both chirality

and an additional halving of supersymmetry to N = 1. It would be of interest to

study the resulting braneworld models constructed from the present theory.

We have discussed in detail the embedding of the vacua in brane solutions. In

fact, we made us of this connection to the branes to prove the supersymmetry of the

vacuum solutions in diverse dimensions. For example, the (Minkowski)4 × S2 vacua

embeds in the 3-brane in seven dimensions which itself can be viewed as intersecting

M5-branes wrapping on a supersymmetric two-cycle of K3 in D=11. Note that, the

orders of the reductions of the 3-brane can be reversed, by performing the S2 reduction

first, which gives rise to a D=5 domain wall, with a (Minkowski)4 world-volume. We

finally arrive at the four-dimensional Minkowski spacetime by performing a brane-

world Kaluza-Klein reduction introduced in [97]. (See also, [98, 99, 100, 101, 86].)

Instead of reducing on a specific solution as the above we can reduce on the theory

itself after truncating out the 2-form field strengths. First, we expect that there

should be a consistent reduction of the minimal D = 7 supergravity on S2. To
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see this, we can study the global symmetry of the theory reduced on T 2. If we for

simplicity set two of the three vector fields in D = 7 to zero, then the resulting D = 5

theory has a global O(2, 3) T-duality symmetry, with the scalars parameterising the

coset O(2, 3)/(SO(2) × SO(3)). Clearly, we can gauge the SO(3) maximal compact

subgroup, which is exactly the isometry group of S2. This is indicative of a consistent

S2 reduction of the D = 7 theory [44]. The resulting gauged D = 5 supergravity will

have a negative exponential scalar potential which can support a domain wall solution.

We can then perform the brane-world Kaluza-Klein reduction to D = 4.

It is also interesting to note that in our earlier approach, the lower dimensional

theory arises first from the generalized Kaluza-Klein reduction on R, and then a stan-

dard sphere (S2 or S3) reduction, in which case, the reduction makes use of a gauging

of the homogeneous scaling symmetry. If we instead perform sphere reduction first,

and then the brane-world reduction, it would appear that we do not need to appeal to

the homogeneous scaling symmetry. Clearly, the two approaches are equivalent. One

feature in common is that in both approaches, the reduction involves warp factors.

Thus our first approach is nothing more than giving a symmetry interpretation of

the warp factor in the reduction ansatz. In fact, the near-horizon structure of the

(D− 5)-branes (or the (D− 4)-branes) given by (7.3) (or (7.9)) in D dimensions can

be viewed as domain walls written in the conformal frame, with the world-volume be-

ing (Minkowski)d−3×S3 (or (Minkowski)d−2×S2). Thus the generalized dimensional

reduction can be viewed as a special case of the brane-world reduction.

In this dissertation we have also studied in detail the supersymmetry of pp-waves

in AdS backgrounds. The introduction of a pp-wave in the AdS background can be

viewed as performing an infinite boost in the strong coupled dual conformal field

theory with a finite momentum density. The non-vanishing momentum breaks the

original supersymmetry and superconformal symmetry, and hence the supersymme-
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try is now 1
4

of the unboosted theory. With an appropriate choice for the integration

constants, we have shown that purely gravitational pp-waves admit supernumerary

supersymmetry in which the solutions double its supersymmetry. We have also stud-

ied U(1)-charged pp-waves and shown that supernumerary supersymmetry can arise

in four and five dimensions. This indicates a novel supersymmetry enhancement as-

sociated with the R-charge in the dual three and four dimensional field theories. It

is of interest to discover such a phenomenon in the dual quantum field theory in the

infinite momentum frame.

There are a number of immediate unsolved issues with pp-waves in an AdS

background. First, how does one obtain an AdS pp-wave from a Penrose limit?

Second, for a charged solution, supersymmetry enhancement might also occur in six

dimensions, since the Penrose limit of AdS3 × S3 is known to have supernumerary

supersymmetry. One would in this case set in Romans F (4) theory the dilaton and

the SU(2) fields to zero leaving a 2-form and a 1-form potential. We have not been

able to obtain the pp-wave solution in this case.
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[65] M. Cvetič, H. Lü, C.N. Pope, M-theory pp-waves, Penrose limits and supernu-

merary supersymmetries, Nucl. Phys. B 644 (2002) 65, hep-th/0203229.

[66] J.P. Gauntlett, C.M. Hull, pp-waves in 11-dimensions with extra supersymmetry,

JHEP 0206 (2002) 013, hep-th/0203255.

[67] I. Bena, R. Roiban, Supergravity pp-wave solutions with 28 and 24 supercharges,

Phys. Rev. D 67 (2003) 125014, hep-th/0206195.

[68] J. Michelson, (Twisted) toroidal compactification of pp-waves, Phys. Rev. D 66

(2002) 066002, hep-th/0203140.

[69] J. Michelson, A pp-wave with 26 supercharges, Class. Quant. Grav. 19 (2002)

5935, hep-th/0206204.
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APPENDIX A

BOSONIC REDUCTION ANSATZ; EINSTEIN FRAME

We begin by reducing the D = d + 1 dimensional Ricci tensor to d dimensions

by using the metric ansatz in (3.6). We choose the natural vielbein basis

êa = em2z+αϕea, êz = em2z+βϕ(dz +A(1)) . (A.1)

Thus we have

ê A

M = em2z

 eαϕe a
µ eβϕAµ

0 eβϕ

 , ê M

A = e−m2z

 e−αϕe µ
a −e−αϕAa

0 e−βϕ

 . (A.2)

The determinant of the metric is

√
−ĝ = e(d+1)m2z+(β+dα)ϕ√−g = e(d+1)m2z+2αϕ√−g . (A.3)

Using the first Cartan structure equation with zero torsion, dêA = −ω̂A
B ∧ êB, we

obtain the spin connections

ω̂ab = ωab + e−(m2z+αϕ)
(
(α∂bϕ−m2Ab) êa − (α∂ aϕ−m2Aa) êb

)
−1

2
e−m2z+(β−2α)ϕFab êz, (A.4)

ω̂az = e−(m2z+αϕ)(m2Aa − β∂ aϕ) êz − 1
2
e−m2z+(β−2α)ϕFab êb +m2e

−(m2z+βϕ)êa .

From the curvature 2-forms Θ̂A
B = dω̂A

B + ω̂A
C ∧ ω̂C

B = 1
2
R̂A

BCDê
C ∧ êD, we obtain

the Ricci tensor with vielbein components

R̂ab = e−2(m2z+αϕ)
(
Rab − 1

2
∂aϕ∂bϕ− αηab ϕ

+αm2(d− 1)(Ac∂ cϕηab −Aa∂bϕ−Ab∂aϕ)

+1
2
m2(d− 1)(∇aAb +∇bAa) +m2∇cAcηab
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+m2
2(d− 1)(AaAb −A2

(1)ηab)
)

− m2
2(d− 1)e−2(m2z+βϕ)ηab − 1

2
e−2(m2z+dαϕ)FacFbc ,

R̂az = e−2m2z+(d−3)αϕ
(

1
2
∇b(e−2(d−1)αϕFab) +m2(d− 1)(β∂aϕ−m2Aa)

)
− 1

2
m2(d− 1)e−2m2z−(d+1)αϕAbFab ,

R̂zz = e−2(m2z+αϕ)
(
− β ϕ+m2∇cAc +m2β(d− 1)Ab∂bϕ−m2

2(d− 1)A2
(1)

)
+ 1

4
e−2(m2z+dαϕ)F2

(2) . (A.5)

The Ricci scalar is

R̂ = e−2(m2z+αϕ)
(
R− 2α ϕ− 1

2
(∂ϕ)2 + 2m2d∇aAa −m2

2d (d− 1)A2
(1)

)
− e−2m2z

(
m2

2 d (d− 1)e−2βϕ + 1
4
e−2dαϕF2

(2)

)
. (A.6)

The reduced Ricci components in (A.5) have been simplified through use of the rela-

tions (3.7).

The Laplacian operator acting on the D-dimensional dilaton is given by

e2m2z+2αϕ ̂ φ̂ = φ−m2(d−1)
(
Aµ∂µφ−

4

â
m1 (A2

(1)+e
2(d−1)αϕ)

)
− 4

â
m1∇µAµ , (A.7)

where φ̂ = φ+ 4
â
m1z, as given by (3.6).

The vielbein components of the various D-dimensional antisymmetric tensors

reduce according to

Ĥa1···an = e−(m2+(n−1)m1)z−nαϕHa1···an ,

Ĥa1···an−1z = e−(m2+(n−1)m1)z+(d−n−1)αϕHa1···an−1 . (A.8)
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APPENDIX B

FERMIONIC REDUCTION ANSATZ IN D ≤ 10; EINSTEIN FRAME

In this appendix we provide an arbitrary dimensional generalized ansatz that

reduces the fermions in D = d + 1 to d dimensions. The generalized ansatz we are

constructing is such that the standard S1 reduction (m1 = 0 = m2) reduces canonical

fermionic kinetic terms with a normalization as

ê−1L̂ = κ( ˆ̄ΨM γ̂
MNP∇̂NΨ̂P + ˆ̄λγ̂M∇̂M λ̂) (B.1)

to canonical kinetic terms

e−1L = κ(Ψ̄µγ
µνρ∇νΨρ + λ̄γµ∇µλ+ χ̄γµ∇µχ) + rest . (B.2)

Here κ is an arbitrary coefficient. Performing the split of the gravitino as ψ̂A =

(ψ̂a, ψ̂D) an ansatz that accomplishes this is

ε̂ = e
1
2
m2ze

1
2
αϕ ε ,

λ̂ = 1√
D−2

e−
1
2
m2ze−

1
2
αϕ(χ+

√
D − 3λ) ,

ψ̂D =
√
D−3
D−2

e−
1
2
m2ze−

1
2
αϕγD(

√
D − 3χ− λ) ,

ψ̂a = e−
1
2
m2ze−

1
2
αϕ(ψa − 1

(D−2)
√
D−3

γa(
√
D − 3χ− λ)) ,

φ̂ =
√

D−3
D−2

φ1 + 1√
D−2

φ2 +
√

2(D − 2)m1z ,

ϕ = − 1√
D−2

φ1 +
√

D−3
D−2

φ2 . (B.3)

Note that, here and elsewhere in this dissertation our convention is always α > 0 .

A consistent truncation of the matter multiplet can be obtained by setting m1 = m2

and φ2 = 0 = χ .
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APPENDIX C

EINSTEIN-FRAME TO STRING-FRAME CONVERSION

The D-dimensional Lagrangian in the Einstein frame is given by

e−1L = R− 1
2
(∂φ)2 − 1

12
eâφH2

(3) − 1
4
e

1
2
âφ(F a

(2))
2 − 1

2
Ψ̄Mγ

MNP∇NΨP

−1
2
λ̄ γM∇Mλ− 1

2
√

2
λ̄γNγMΨN∂Mφ+ · · · , (C.1)

where â =
√

8
D−2

, and where we have omitted additional interaction and four-fermi

terms. This may be mapped to the string frame Lagrangian

ẽ−1L̃ = e−2Φ
(
R̃ + 4(∂Φ)2 − 1

12
H̃2

(3) − 1
4
(F̃ a

(2))
2 − 1

2
¯̃ΨM γ̃

MNP∇̃NΨ̃P

−1
2

¯̃λ γ̃M∇̃M λ̃− ( ¯̃ΨN γ̃
NΨ̃M − â

2
√

2

¯̃λγ̃N γ̃MΨ̃N)∂MΦ + · · ·
)
, (C.2)

by the transformations

gMN = e
1
2
âφ g̃MN , HMNP = H̃MNP , F a

MN = F̃ a
MN , φ = −âΦ ,

ε = e
1
8
âφ ε̃ , λ = e−

1
8
âφλ̃ , ΨM = e

1
8
âφΨ̃M . (C.3)

Note that γM = e
1
4
âφ γ̃M i.e. γA = γ̃A . Furthermore, we have made use of the D-

dimensional Majorana flip properties ψ̄γMχ = −χ̄γMψ and ψ̄γMNPχ = χ̄γMNPψ for

any two anti-commuting spinors ψ and χ.

The bosonic reduction ansätze in the string frame are considerably simpler than

their Einstein-frame counterparts. The reduction of the D = d+ 1 dimensional Ricci

tensor is given by

R̂ab = Rab + 1√
2
∇a∂bϕ− 1

2
∂aϕ∂bϕ− 1

2
e−

√
2ϕFacF c

b ,

R̂az = 1
2
e
√

2ϕ∇b(e
− 3√

2
ϕFab) ,
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R̂zz = 1√
2

ϕ− 1
2
(∂ϕ)2 + 1

4
e−

√
2ϕF 2

(2) ,

R̂ = R +
√

2 ϕ− (∂ϕ)2 − 1
4
e−

√
2ϕF 2

(2) . (C.4)

Some useful formulae for the reduction of the scalar fields are:

̂ Φ̂ = ̂ (
Φ− ϕ√

8
− 1

2
(D − 2)mz

)
= Φ− 1√

8
ϕ− 1√

2
(∂µϕ∂

µΦ− 1√
8
(∂ϕ)2)

− 1
2
m(d− 1)( 1√

2
Aµ∂µϕ−∇µAµ) , (C.5)

(∂Φ̂)2 = (∂Φ)2 + 1
8
(∂ϕ)2 − 1√

2
∂µϕ∂

µΦ +m(d− 1)Aµ(∂µΦ− 1√
8
∂µϕ)

+ 1
4
m2(d− 1)2(A2

(1) + e
√

2ϕ) , (C.6)

ê M

a ê N

b ∇̂M∂NΦ̂ = ∇a∂bΦ− 1√
8
∇a∂bϕ+ 1

4
m(d− 1)(∇aAb +∇bAa) ,

ê M

a ê N

z ∇̂M∂NΦ̂ = − 1
2
e
− 1√

2
ϕF b

a (∂bΦ− 1√
8
∂bϕ)− 1

2
√

2
m(d− 1)e

1√
2
ϕ
∂aϕ

− 1
4
m(d− 1)e

− 1√
2
ϕAbFab ,

ê M

z ê N

z ∇̂M∂NΦ̂ = − 1√
2
∂ µϕ (∂µΦ− 1√

8
∂µϕ)− 1

2
√

2
m(d− 1)Aµ∂µϕ . (C.7)
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APPENDIX D

KILLING SPINORS ON THE SPHERE

In this appendix we give expressions for the Killing spinors on Sn derived in [102] and

the decomposition of Dirac matrices on product spaces also given there. The Clifford

algebra is

{Γa,Γb} = 2ηab (D.1)

where the sign convention for the flat metric is ηab = (−,+ . . .+). The metric for an

n-sphere with the radius a is

ds2
n = a−2(dθ2

n + + sin2 θnds
2
n−1) , (D.2)

with ds2
1 = dθ2

1 and the Ricci tensor for the sphere is given by Rij = a2(n−1)gij. The

solution to the Killing spinor equation

∇jε± = ± i
2
aΓiε± (D.3)

is

ε± = e±
i
2
θnΓn

( n−1∏
j=1

e−
1
2
θjΓj,j+1

)
ε0 , (D.4)

where the Γ matrices satisfy {Γi,Γj} = 2δij. The exponential factors can be written

as

e
i
2
θnΓn = 1l cos 1

2
θn + iΓn sin 1

2
θn , e−

1
2
θjΓj,j+1 = 1l cos 1

2
θj − Γj,j+1 sin 1

2
θj . (D.5)

The above are valid in all dimensions, but in the case of n is even the equation

∇jε± = 1
2
aγ∗Γjε± (D.6)
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can also be considered. Here γ∗ is the chirality operator on the sphere and satisfies

γ2
∗ = 1. The solution in this case is given by

ε± = e±
i
2
θnγ∗Γn

( n−1∏
j=1

e−
1
2
θjΓj,j+1

)
ε0 . (D.7)

The decomposition of the D = m + n dimensional gamma matrices Γ̂A in terms of

the lower dimensional spacetime Mm and the internal space Kn is performed as

(m,n) = (even,odd) : Γ̂a = Γa ⊗ 1l , Γ̂i = Γ∗ ⊗ Γi ,

(odd,even) : Γ̂a = Γa ⊗ γ∗ , Γ̂i = 1l⊗ Γi ,

(even,even : Γ̂a = Γa ⊗ 1l , Γ̂i = Γ∗ ⊗ Γi ,

or Γ̂a = Γa ⊗ γ∗ , Γ̂i = 1l⊗ Γi ,

(odd,odd) : Γ̂a = σ1 ⊗ Γa ⊗ 1l , Γ̂i = σ2 ⊗ 1l⊗ Γi , (D.8)

where Γ∗ is the chirality matrix in an even lower-dimensional spacetime, and γ∗ is

the chirality matrix in an even dimensional internal space. The σ1 and σ2 are Pauli

matrices and the chirality operator in the total space is Γ̂∗ = σ3 ⊗ 1l.
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APPENDIX E

A GENERAL CLASS OF PP-WAVES

In this appendix we present the AdS pp-waves supported by an arbitrary n-form

field strength in any dimensions D. The Lagrangian for such a system is given by

e−1L = R− 1

2n!
F 2

(n) + (D − 1)(D − 2)g2 (E.1)

where the field strength is defined as F(n) = dA(n−1). Our pp-wave ansatz is

ds2 = e2gρ(−4dx+ dx− +H (dx+)2 + dz2) + dρ2 ,

A(n−1) =
(
zS1(x

+)− S2(x
+)

g(D − 2n+ 1)
(e−(D−2n+1)gρ − 1)

)
dx+ ∧ dn−2z . (E.2)

The field strength and its dual are

F(n) = −S1 dx
+ ∧ dzn−1 + S2e

−(D−2n+1)gρdρ ∧ dx+ ∧ dn−2z ,

∗F(n) = S1e
(D−2n−1)gρdρ ∧ dx+ ∧ dD−n−2z − S2dx

+ ∧ dD−n−1z . (E.3)

Thus the equation of motion d∗F(n) = 0 is trivially satisfied. The Einstein equation

implies

H = −S2
1e

−2ngρ − S2
2e

−2(D−n)gρ ,

= ∂2
ρ + g(D − 1)∂ρ + e−2gρ

D−3∑
i=1

∂2
i , (E.4)

with the solution given by

H(x+, ρ, zi) = a+ b e−(D−1)gρ +
e−2gρ

2g2(D − 3)

D−3∑
i=1

ci +
S2

1 e
−2ngρ

2g2n(D − 2n− 1)

− S2
2 e

−2(D−n)gρ

2g2(D − n)(D − 2n+ 1)
+ 1

2

D−3∑
i=1

ciz
2
i . (E.5)
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The a, b and ci are functions of x+. This solution is not valid for D = 2n − 1 or

D = 2n+ 1 which have to be considered separately. We find that

H(D = 2n+ 1, x+, ρ, zi) = a+ b e−2ngρ +
e−2gρ

4g2(n− 1)

2(n−1)∑
i=1

ci

+
S2

1(2ngρ+ 1)

4n2g2
e−2ngρ − S2

2

4g2(n+ 1)
e−2(n+1)gρ + 1

2

2(n−1)∑
i=1

ciz
2
i , (E.6)

and H(D = 2n−1) can be obtained from H(D = 2n+1) by making the substitution

n→ n− 1 and S1 ←→ S2 . (E.7)

(This substitution is not performed on the field strength.)
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