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ABSTRACT

Supergravities with Positive Definite Potentials
and AdS PP-Waves. (May 2005)
Johannes Kerimo, B.S.; Umea University

Chair of Advisory Committee: Dr. Christopher N. Pope

Ten-dimensional superstring theory (or the conjectured nonperturbative M-
theory in eleven dimensions) is the most promising candidate for a consistent quan-
tum theory of gravity capable of unifying all known forces of nature. An important
question concerning these fundamental theories is how they compactify to lower di-
mensions and how to obtain a real four dimensional world? In this dissertation we
present new avenues for M /string theory to reduce to lower dimensions as well as to
four dimensions. For example, we show that by performing a generalized Kaluza-Klein
IR reduction on the low-energy field theory of the heterotic string, the resulting lower
dimensional theory compactifies spontaneously on S® to give rise to (Minkowski)g
spacetime. Furthermore, a generalized reduction of M-theory on K3 x IR compacti-
fies spontaneously on S? to give rise to a (Minkowski), spacetime.

The generalized Kaluza-Klein reduction gauges the Cremmer-Julia type global
symmetry and the homogeneous rescaling symmetry of the supergravity equations of
motion by giving the higher dimensional fields an additional dependence on the circle
coordinate. We apply the generalized reduction scheme to half-maximal supergravi-
ties which are obtained from the heterotic string (or the NS-NS sector of the type-II
string) compactified on a (10 — D)-dimensional torus truncated to the pure super-
gravity multiplet. This gives rise to new gauged supergravities in diverse dimensions

with supersymmetric Minkowski x sphere vacua.
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Since two large extra dimensions have received much attention recently, we make
a detailed study of the gauged D = 6, N' = (1, 1) supergravity. In particular, we show
that this theory allows for a consistent sphere reduction on S? to give rise to D = 4,
N = 2 supergravity coupled to a vector multiplet which can further be truncated to
N = 1 supergravity with a chiral multiplet.

We also investigate pp-waves in AdS backgrounds, i.e. pp-waves as solutions
of gauged supergravities with AdS vacua. These solutions generically preserve %
of the supersymmetry. We demonstrate supernumerary supersymmetries for both
purely gravitational pp-waves and pp-waves supported by fields strengths. These new

backgrounds provide interesting novel features of the supersymmetry enhancement for

the dual conformal field theory in the infinite-momentum frame.
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CHAPTER I

INTRODUCTION

In the 20th century, two successful theories emerged in the realm of fundamental
physics. One is Einstein’s general relativity which describes the dynamics of our
spacetime. The other is quantum mechanics that governs the interactions in the
microscopic level. General relativity provides a framework to study large scale physics
such as astronomy and cosmology, whilst quantum mechanics has been established in
studying the microscopic world. In particular, the standard model, which describes
the interaction of three fundamental forces (electromagnetic, weak and strong nuclear
interactions) is a quantum field theory.

Thus it is natural to expect that one should be able to incorporate the quantum
principle in general relativity. This is essential if one would like to unite all the four
fundamental forces in one unified theory. The history of physics suggests the trend
of unifications of fundamental forces. The seemingly different electric and magnetic
forces which were observed in ancient time turned out to be described by the same
set of equations discovered by Maxwell in the second half of the 19th century. The
merger of the electromagnetic interaction with the weak interaction gives rise to the
electro-weak theory (or the Glashow-Salam-Weinberg theory) which in turn when
combined with the strong force is described by the Standard Model with gauge group
SU(3) x SU(2) x U(1). Although the standard model is in excellent agreement with
experiments it is not without drawbacks. For one, it has many arbitrary parameters
which are not explained by the theory. In addition, its constituent gauge groups are

not truly unified since the theory contains three separate gauge coupling parameters.

The journal model is Nuclear Physics B.



An improved version is the Grand Unified Theory (GUT), based on realistic models
with gauge groups SU(5) or SO(10). The coupling parameters of the standard model
run toward a common value and (almost) meet at the GUT scale 10 GeV. An
important prediction of GUTs is the decay of the proton (~ 103% years) (which is
within the reach of experiments). But GUTSs are not free from problems (aside from
all their arbitrary parameters and their incompatibility with gravity). The critics of
this model point out that it predicts no new interactions from 10 GeV down to
the weak scale (an energy range of twelve orders of magnitude). Furthermore, GUTSs
provide no attractive solution to the hierarchy problem where the two energy scales
get mixed at each order in the perturbation series.

Quantum physics has taught us to divide particles into bosons (integer spin)
and fermions (half-integer spin). We would like to describe the bosons and fermions
by some underlying symmetry principle as in the successful cases of general relativ-
ity (general coordinate transformation invariance), the standard model and GUTs.
This is achieved by supersymmetry, which exchanges bosons and fermions. In fact,
supersymmetry is necessary in order to unify the particle spectrum with gravity. Su-
persymmetry was introduced in four dimensions in [1, 2] and existed earlier in two
dimensions [3]. The paper [2], which used a field theoretic approach, began a major
development in theoretical physics.

One attractive feature of supersymmetry is that it is capable of giving us field
theories which are perturbatively finite (for example, D = 4, N” = 4 super Yang-Mills
theory). In a supersymmetric GUT theory the situation with the hierarchy problem
is almost solved in the sense that there is no longer a mixing of the two energy
scales in the perturbation series. However, to achieve this an initial fine tuning is
still required and it cannot be explained by the theory. We mentioned earlier that

in the (nonsupersymmetric) GUT the coupling parameters of the standard model



do not quite meet at a common value. The supersymmetric extension of the model
does however rectify this situation and the coupling parameters remarkably unify at
energies about 10'¢ GeV.

It was hoped that supersymmetry would be able to solve the difficult problem
of the cosmological constant. Observations tells us that its value is less than 1078
GeV?. But the GUT model based on SU(5) (which is the most realistic one) gives
rise from the spontaneous breaking of symmetry to a cosmological constant with a
value 10019 times the limit set by observations. Taking supersymmetry into account
provides no solution to this problem.

Supersymmetry has been around for a fairly long time but there is as yet no
experimental evidence for it. Nevertheless, it is generally believed to be a necessary
ingredient in any unifications of the fundamental forces. The rigid supersymmetry of
Wess and Zumino was gauged in [4, 5]. The remarkable result that came out from this
gauging was that consistent local supersymmetry requires the inclusion of a massless
spin-2 field and its superpartner of spin-3/2. Hence gauged supersymmetry is nothing
but a theory of supergravity. Although much effort was put in the investigations of
supergravities it was soon realized that these theories were not problem free and
their predictive power had limitations. To give one example, the promising N’ = 8
theory in four dimensions does not have a large enough symmetry to contain the
standard model. Another problem is the lack of chirality. We should however add
that it is possible to obtain the gauge group of the standard model by compactifying
eleven-dimensional supergravity (which is also the highest dimension a consistent
supergravity can exist [6]) on a compact manifold [7] but this does not yield chiral
fermions. In addition, supergravities are famously nonrenormalizable. It is clear that
a quantum theory of gravity must go beyond the point particle concept.

The reconciliation of gravity with quantum physics is important not just on



theoretical grounds; a unified description of the fundamental forces is needed to un-
derstand the singularity inside a black hole and the moments after the creation of the
universe. Furthermore, a black hole has a temperature and entropy, and a quantum
theory of gravity is therefore needed to understand these processes fully as the black
hole reaches the final stages of its evolution.

The leading candidate for a quantum theory of gravity is superstring theory,
whose vibrational modes represent the elementary particles. On a historical note the
string was initially introduced to explain hadronic physics. But since the closed string
admits a massless spin-2 particle in its spectrum string theory was recognized instead
as providing a quantum theory of gravity.

The superstring avoids many of the problems and inadequacies of theories based
on particles. For example, an immediate advantage following the introduction of one-
dimensional objects is that the pointlike interaction vertex in a Feynman diagram
of a traditional field theory is now smeared out, and hence no UV-divergence arises.
Although superstrings were introduced already in the early 1970’s, they weren’t taken
too seriously. One of the reasons was that a consistent superstring requires ten di-
mensions (the purely bosonic string requires 26 dimensions) while our world is four-
dimensional. Around 1973 QCD began emergin as a successful theory of the strong
nuclear force and subsequently received much of the attention. In addition, in the
early 1980’s, it was shown that superstring theory was suffering from anomalies. This
all changed completely with the paper [8] where it was shown that the anomalies can-
cel for the group SO(32) (as well as for the group Eg x Eg). In short, the superstring
theory has all the features to be a consistent quantum theory of gravity, with large
enough symmetries to reproduce all known particles and their properties.

As we have already emphasized, supergravities suffer from infinities and have

problems producing chiral fermions. But in string theory supergravitiy does still



play an important role, as the low energy limit of the theory. In the last ten years
supergravity theories have been the focus of much attention. There are many reasons
for this. Some of them are presented below and others elsewhere in this chapter.

One motivation is the yet unsolved problem of how to obtain a real four dimen-
sional world? It is very likely that supergravity will play an important role in its
solution.

Another motivation is the AdS/CFT correspondence [9] which states that a grav-
ity theory in the AdS-bulk is dual to a conformal field theory on the boundary (for
example, type-IIB string theory on AdSs x S% is dual to D = 4, N’ = 4 super Yang-
Mills theory). As we know, the SU(3) theory of QCD becomes nonperturbative at
low energies. Consider instead an SU(N) non-abelian theory. Expanding it in 1/N,
the theory in fact simplifies for large N at low energies. The reason for this simpli-
fication is that only planar diagrams survive in the large N expansion. It turns out
that in the large N limit, a free string theory emerges from the gauge field theory.
Here 1/N can be viewed as a string coupling constant. The equivalence between
gauge fields and free string theories for large N explains why string theory was able
to explain aspects of hadronic physics. By using D3-branes the duality is extended
to ten dimensional superstring theory and so becomes a duality which includes grav-
ity. Evidence for the AdS/CFT correspondence can seen by analysing the low-energy
limit of the Born-Infeld action for D3-branes and the low-energy limit of the D3-brane
solution. In this limit the Born-infeld action for the D3-brane reduces to a free su-
pergravity theory in the bulk, and to a four dimensional gauge field theory on the
brane. These two systems do not interact and so are decoupled. Consider next the
energy excitations of the classical D3-brane solution at low energies. One needs to
analyse two regions: the bulk and the near horizon region of the D3-brane (which is

AdS; x §°). Tt follows that in the bulk, free gravitons dominate, but close to the near



horizon region, string excitations become important. At low energies these two sets
of excitations are decoupled, as indicated by absorption cross section calculations.
This led Maldacena to conjecture the AdS/CFT correspondence. According to this
conjecture, when ¢%,,N > 1, i.e. when the radius of AdS; and S® are very large,
type-1IB supergravity on AdSs; x S® is a good approximation to strongly coupled
N = 4 Yang-Mills theory. If we instead consider the limit N — oo and ¢%,,N=finite,
then string theory is a good approximation for the gauge field theory. Note that N
can be viewed as the radius of AdSs; and S®. There is much evidence for the validity
of the AdS/CFT conjecture. One example is the fact that the symmetries of type-11B
superstring on AdSs x S° are the same as those of N' = 4 super Yang-Mills. See [10]
for details.

Further interest to supergravities lies in the discovery of duality symmetries in
M /superstring theory, which relate the five known consistent string theories to each
other. To test the duality conjectures is not always a straightforward task. Duali-
ties which relate two weakly-coupled superstrings can be proven within the theories
themselves. But dualities that relate the weak-coupling regime of a string theory to
the strong-coupling regime of another are more problematic, since we know how to
define superstrings only perturbatively. Fortunately, the strong/weak duality can be
investigated by analysing the low energy effective field theories obtained by dimen-
sional reduction of the superstrings on certain internal manifolds. An example where
this is done is the duality between type-IIA string theory reduced on K3 and the
heterotic string reduced on the four dimensional torus T%. See [11] for an extensive
discussion of string dualities.

Going from ten to eleven dimensions, the superstring theories find a common
origin in a conjectured nonperturbative theory called M-theory. The low energy limit

of M-theory is eleven-dimensional supergravity [12]. The existence of M-theory is



revealed by reducing it on a small circle S*, where it yields the type-ITA superstring.
Comparing D = 11 supergravity on S! with the low energy limit of type-IIA string
theory, one obtains a relation between the radius of the circle (Ry;) and the string

coupling parameter (g, = ¢<¢>), given by

Ry = (95)2/3- (1-1)

We see why the eleventh dimension is not seen in perturabtive string theory since
small gs, i.e. gs — 0 implies Ry; — 0, and hence the eleventh dimension appears only
in the strong coupling region where R;; — oco.

It is clear that supergravities are central in many developments. In the light of
this we shall discuss new aspects of supergravity theories in this dissertation, and
supersymmetry and spontaneous compactification to four dimensions. The second
part of the dissertation treats pp-waves in an AdS background.

Recent interest in both de Sitter and anti-de Sitter vacua has led to a renewed
study of gauged supergravities, where the gauging of some R-symmetry naturally
leads to a non-trivial potential. Well-known examples include the gauged super-
gravities in four, five and seven dimensions that admit maximally supersymmetric
anti-de Sitter vacua. In addition, there are also gauged supergravities with run-away
potentials. Although such theories do not admit maximally supersymmetric vacua,
they typically allow domain-wall solutions where scalar gradient energy is balanced
against the scalar potential. What has not been achieved, however, is the construction
of conventional gauged supergravities admitting de Sitter vacua. Of course this is not
particularly surprising, since de Sitter spacetime is incompatible with conventional
supersymmetry.

Supergravities with positive-definite (albeit run-away) potentials do neverthe-

less exist. A particularly interesting example is the Salam-Sezgin model, which is a



gauged N = (1,0) supergravity in D = 6 coupled to a tensor and an abelian vec-
tor multiplet [13]. This model has a supersymmetric (Minkowski)y x S? vacuum,
in which the vector has a non-trivial flux on the 2-sphere. This monopole flux,
combined with the single-exponential potential V ~ exp(—y/+/2), is responsible for
a “self-tuning” of the vacuum, in which the positive energy density is confined to
the 2-sphere, thereby ensuring a vanishing 4-dimensional cosmological constant and
correspondingly a (Minkowski)y vacuum. The self-tuning feature of this model has
attracted much attention, especially as a means of protecting the cosmological con-
stant from large corrections even after supersymmetry breaking [14, 15]. It was shown
in [16] that the Salam-Sezgin chiral theory arises from a consistent reduction of ten-
dimensional supergravity on a circle times a hyperbolic 3-space. It was also shown,
in [17], that the Salam-Sezgin model can be consistently reduced on S? to give rise
to D = 4, N' = 1 supergravity coupled to an SU(2) vector multiplet and a scalar
multiplet. There are further aspects of the gauged N' = (1,0) theory which we shall
discuss elsewhere in the dissertation.

We should remark here that there exist other supergravities with a single expo-
nential potential. Such examples can be found in seven and four dimensions but with
their potential being negative definite. The theory in D = 7 and the D = 4, N =4
Freedman-Schwarz model [18], which are of this kind, have been obtained from the
heterotic string by reducing on S? and S® x S® respectively [19, 20].

The attractive features of the Salam-Sezgin model have led us to search for
other possible supergravity theories with positive-definite potentials. This search was
guided by the realization in [21] that a generalized Kaluza-Klein reduction which
gauges a combination of a homogeneous global scaling symmetry together with a
Cremmer-Julia type global symmetry yields a consistent reduction with just such a

positive-definite potential.



The generalized reduction is introduced by giving the higher dimensional fields
an additional dependence on the circle coordinate z. Let us demonstrate this with
an example in type-1IB supergravity. The equations of motion are invariant under
the shift transformation y — x + ¢ of the axion, since is covered by a derivative
everywhere. If we replace ¢ by m z and reduce to nine dimensions with the ansatz
for the axion given as x(z,z) — x(z) + mz, the reduction is consistent since no
z-dependence will appear in the lower dimension. The resulting massive theory [22]
is in fact related by a T-duality to Romans massive theory [23] reduced on a circle.

The generalized reduction scheme was used in [24, 25] to construct a variant D =
6, N = (1, 1) supergravity admitting both (Minkowski), x S? and (Minkowski)z x S3
vacua. Consider the bosonic sector of the D = 7 (ungauged) minimal theory which

is described by the Lagrangian

4 - 2 .
—1p_ f ) A=z 250
é 1£:R—%(8¢)2—$e\/ﬁ Hé)—ie\/ﬁ (F(2>)2, (1.2)

where a = 1,2, 3. The theory possesses the following rigid symmetry

b —d+VI0N,  di*— P de,

B<2> — 672/\1+2/\2 B(2)’ Aa — e*)\1+/\2 Aa

o A (1.3)

The transformations associated with A; leaves the Lagrangian invariant, and
therefore describes a symmetry of the Lagrangian. On the other hand, the trans-
formation associated with Ay which is applied according to the number of spacetime
indices scales the Lagrangian uniformly, and so it is not a symmetry of it or even
the action, but a symmetry of the equations of motion. These symmetries are then
gauged in the dimensional reduction by replacing the A; by m; z. Since the scale trans-

formation is not a symmetry of the Lagrangian, the generalized reduction must be
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performed on the equations of motion rather than the Lagrangian itself. A discussion
of global IR symmetries and those of the torus generally are given in chapter II.

The would-be vector multiplet arising from performing the generalized reduction
of the D = 7 theory may be truncated out by a judicious choice of the gauging pa-
rameters. In this manner, the reduction takes one from a pure (d+ 1)-dimensional su-
pergravity without a potential to a pure d-dimensional supergravity with a (positive-
definite) single-exponential potential. In fact, a further truncation of the bosonic
equations of motion to a subsector is possible, with a Lagrangian description that
turns out to be identical to the bosonic sector of the Salam-Sezgin model, albeit with
a triplet of gauge fields. Although the work of [24, 25] focused on the reduction from
seven to six dimensions, the generalized Kaluza-Klein procedure may be carried out in
arbitrary dimensions. This was done in [26], where the generalized reduction scheme
was performed on the full class of half maximal supergravities in D < 10, and in
this manner variant supergravities in diverse dimensions were obtained. We present
this calculation in chapter ITI. These new gauged supergravities have supersymmetric
Minkowskixsphere vacua. A comment at this stage on the maximal supergravities
is in place. We have omitted them because starting from D = 10 the 4-form field
strength cannot support vacua of the type Minkowskixsphere. For an investigation
of the maximal supergravities see [27, 28, 21, 29, 30].

Note that the D = 7 ungauged theory we discussed above can be obtained from
M-theory compactified on K 3! or, for example, from the heterotic string compactified
on T? with vector multiplets truncated out.

The variant six dimensional supergravity we obtained is different from the Ro-

IThe consistency of the reduction of M-theory on K3 is questionable. It is consis-

tent however if one restricts to the pure supergravity multiplet which does not turn
on the scalars parameterising the K3.
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mans D = 6, N' = (1,1) gauged supergravity [31], in that the four vectors in our
theory are all abelian instead of being SU(2) x U(1) Yang-Mills fields. The super-
symmetric (Minkowski), x S? (or (Minkowski)s x S?) vacua of the new theory can be
uplifted back to D = 11, where it becomes the near-horizon geometry of two inter-
secting Mb5-branes wrapping on a supersymmetric two-cycle of K3. The solution of
the two intersecting Mb5-branes preserve i of the maximal supersymmetry.

In chapter IV we derive the complete supersymmetry transformations of the
variant N' = (1,1) supergravity from D = 7 dimensions. We investigate some of
its spontaneous compactifications. As in the A/ = (1,0) model, we find that it can
also be consistently reduced on a 2-sphere to give rise to four-dimensional N = 2
supergravity coupled to a single vector multiplet. This can further be truncated to
yield N' = 1 supergravity coupled to a chiral multiplet. We further demonstrate
that, in contrast to the AV = (1,0) theory, this model also admits a supersymmetric
(Minkowski)z x S? vacuum. Using the ansatz we uplift supersymmetric dyonic black-
hole solutions of the N' = 2 supergravity to six dimensions. In the following chapter
we continue our studies of supersymmetry by deriving the complete supersymmetry
transformations of the variant supergravity in D = 9.

The M-theory origin of the N'= (1, 1) theory and the vacua (Minkowski)y x S?
are discussed in detail in chapter VI. In chapter VII we derive the Minkowskixsphere
vacua in diverse dimensions of the new gauged supergravities which exist for D < 9.
We demonstrate that these vacua are all supersymmetric by uplifting them to higher
dimensions, where they become the near horizon geometries of certain brane solutions.
A general discussion of (Minkowski)y_, x S™ vacua is included.

The generalized Kaluza-Klein reduction can readily be adapted to the string
frame. In the case of setting the two cosmological parameters equal the generalized

reduction becomes essentially just the standard Kaluza-Klein procedure except for
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a linear z-dependence in the string frame dilaton. In this construction the variant
supergravities take a particularly simple form. The scalar potential of the Einstein
frame becomes a pure cosmological constant in the string frame. This is the topic of
chapter VIII.

In chapter IX we derive a time dependent supersymmetric solution in the nine
dimensional gauged theory with the fluxes turned off. The solution can be viewed
as a dilaton driven cosmological solution in both D =9 and D = 10 dimensions. In
the string frame the solution becomes pure Minkowski spacetime. A further uplift to
D =11 yields a solution describing a pp-wave.

Recently the Penrose limit [32] of spacetime solutions which give rise to pp-waves
has attracted considerable attention. In particular, superstring theory is exactly
solvable [33] on the backgrounds of the maximal supersymmetric pp-waves of the type-
IIB string [34, 35] and M-theory [36]. String theory on a pp-wave background reduces
to a free massive theory in the light-cone gauge. In this description one can now study
the AdS/CFT duality [9, 37, 38] beyond the supergravity approximation by including
string states [39]. The pp-waves of the Penrose limit arise when one focuses on the
geometry close to a null geodesic. These solutions are plane-fronted gravitational
waves with parallell rays, propagating in an asymptotically flat spacetime. On the
dual gauge side the Penrose limit corresponds to sending both the rank of the gauge
group N and the R-charge to infinity [39].

Let us define a pp-wave more precisely. These are spacetime solutions admitting a

covariantly constant null Killing vector. We use the following metric for the pp-wave,
ds* = —4drdr™ — H(x", z) (do™)? + dz; dz . (1.4)

Note that the transverse space can be any Ricci flat metric, but we are here taking

it to be flat. A sub-class of pp-waves are solutions called plane waves. These so-
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lutions have an extra symmetry, i.e. plane symmetry, and are obtained by making
the specialization H(x",z;) = h;;(x1)z'2?. The pp-waves arising from the Penrose
limits of AdSxsphere spacetimes belong to the plane-wave category, but with no -
dependence in h;;. The pp-waves themselves belongs to a wider class of null solutions
[40]. The null solutions we are going to obtain will always be refered to as pp-waves.

In chapters X and XI, we shall study the pp-waves of gauged AdS supergravities.
Taking the limit of vanishing cosmological constant these solutions reduce to pp-waves
of the corresponding ungauged theories. Before explaining the motivation behind
studying AdS pp-waves, let us first introduce the pp-wave in ungauged supergravity
by working out an example in minimal D = 5 supergravity. The bosonic sector of

this theory is described by the Lagrangian

L=R—-1F2 4+ L _MVPORE (FooAp. (1.5)

1
472 12v/3
The pp-wave ansatz is

ds* = —Addxtdr™ — H(z)(do")? +d2? +dz5 + dz;

Fo, = —pdrt Adz, (1.6)

where 2% = 1(t & x). (In general H has also an arbitrary dependence on x%). If we

1
2
set H = 0, the metric becomes flat Minkowski spacetime. The function H, which is

a harmonic function, is given by

H = Hy+ Hy,
m
Hy, —=
Y @B+ A+ )0
3
M= ez, (1.7
=1

where ¢; + ¢y + c3 = —p?/2. Here Hy is a pure gravitational solution and H; is sup-
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ported by the null flux (). The above solution generically preserve % of the super-
symmetry (standard supersymmetry) with the only condition being that H satisfies
the second order equations of motion. However, if one sets Hy = 0 an enhancement of
the supersymmetry can occur, if the coefficients ¢; are chosen appropriately. If we set
c1 = —p?/3, co = c3 = —pu?/12, the pp-wave supported by the field strength becomes
maximally supersymmetric. (A derivation of the maximal supersymmetric pp-wave
via the Penrose limit is given in chapter X.)

The metric ansatz for a generic pp-wave in the corresponding gauged supergravity

would be given by
ds® = e*P(—ddxtdr™ + H(dxt)? + d2} + dz3) + dp?, (1.8)

where the cosmological constant is related to the gauge coupling constant g as A =
—g* and H(x", p,2,) is a harmonic function on the space of z, and p. If H = 0
the metric describes pure AdS spacetime. The pp-wave with the dependence H(p)
was constructed in four dimensions by Kaigorodov [41], and its higher dimensional
counterparts were obtained in [42]. These solutions have interestingly been shown
to be related to boosted p-branes in higher dimensions [42]. To give one example,
consider the near horizon geometry of the M2-brane, which is AdS, x S7. If we now
perform a singular boost of an BPS M2-brane, then the near horizon geometry of the
boosted brane become (Kaigorodov), x S7. The Kaigorodov metric and its general-
ization to higher dimensions are homogeneous spaces admitting %D(D —3)+3 Killing
vectors, where D is the spacetime dimension. The AdS pp-waves can in fact also be
viewed as plane-fronted solutions. In chapter X we present a detailed investigation
of the supersymmetry of AdS pp-waves. These solutions generically preserve i of
the supersymmetry for any solution H. We show that purely gravitational solutions

can in fact admit supernumerary supersymmetry for appropriately constrained H.
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We demonstrate the same phenomenon in the case of solutions supported by a field
strength in minimal gauged supergravities in D =4 and D = 5.

Some of the reasons that motivate the studies of AdS pp-waves are the follow-
ing. String theory on the (Kaigorodov)s x S° background is dual to D = 4, N' = 4
Yang-Mills theory on an infinitely-boosted frame, with a constant momentum density
background. In our case we turn on a U(1) A, field as well, which is related to the
R-charge of the Yang-Mills. It is of interest to study the effect of turning on the
R-charge.

In chapter XI we investigate AdS pp-waves further by studying the pp-waves of
D =5 and D = 4 gauged supergravities supported by U(1)? and U(1)* gauge fields

respectively. We also study the pp-waves of the Freedman-Schwarz model.
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CHAPTER II

SYMMETRIES IN THE 7" REDUCTION

The topic of dimensional reduction is a vast and diverse one and of great importance
with many applications. In this chapter we shall concentrate just on those Kaluza-
Klein reductions where the internal manifold is a circle S* or product of circles in
the case of n-torus T™. Our focus here is on the torus symmetries which are needed
to introduce the generalized Kaluza-Klein reduction. Since this chapter concerns
only with T™ reductions we have omitted the coset sphere reductions, group mani-
fold reductions, brane world reductions and reductions based on Calabai-Yau or K3

manifolds. The material in this chapter is based on [43].

A. The standard Kaluza-Klein S! reduction

We begin with a discussion of the consistency of the S' reduction and show that the
symmetries of the reduction ansatz makes sense with the lower dimensional equations
of motion. Since in the circle reduction each spacetime point comprises a small circle
we can expand all higher dimensional fields and its symmetries into harmonics of S?.
In essence, if we split the D = d 4+ 1 dimensional coordiantes as =™ = (x#,z), the

Fourier serie of the metric for example would be given by

gMN(xu7 Z) - Z gj(\?l)\,(l‘“) einZ/L (2'1)
n=0

where n is a Fourier mode number and L is the radius of the internal compact mani-
fold. It is clear that there are infinite many fields arising from the harmonic expansions
and each characterized by the mode number n. Fields with an n # 0 are massive

with a mass proportional to n/L and those with n = 0 are massless. If we now sub-
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stitute such a serie expansion in the higher dimensional equations of motion (or the
Lagrangian) then for the dimensional reduction to make sense it is absolute essential
that all massive modes can be subsequently truncated out while keeping only the
massless ones. In fact, a detail analysis shows that the equations of motion for the
n = 0 fields remarkably decouple from the n # 0 equations, and so the massless fields
do not act as sources for the massive fields. This means that one can consistently
set to zero all massive fields. This decoupling of fields in the S! reduction is in fact
nothing but guaranteed by group theoretical arguments. As a definition of a consis-
tent reduction, one can take that when uplifted, all solutions of the lower dimensional
theory become solutions of the original theory. As we have inferred in the prelude of
this chapter, there are rather many types of dimensional reductions and they are all
important, but the internal torus manifold which is extremely utilitarian is clearly
special among them. Lets now work out a simple S! reduction involving just pure
gravity in D dimensions and study the symmetries involved. The ansatz that reduces

from D =d + 1 to d dimensions is given by

d§? = e**ds? + ¥ (dz + Ayy)? (2.2)
where
1
2 _ = —(d—2«. 2.3

The reduction of the Einstein theory
eL, =R (2.4)
yields an Einstein-Maxwell-scalar system described by the Lagrangian

e Ly = R — L(dp)? — Le 2@ Daw 72

(2.5)
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The parameters a and  were determined by the requirement that the Lagrangian
in lower dimensions have a gravity term of the form eR plus a canonical normalized
kinetic term for the dilaton. Note that it is not allowed to set the dilaton to zero
since this would be inconsistent with the (z, z)-component of the higher dimensional
Einstein equation. Lets now look at the symmetries of this simple example. The
lower dimensional theory we obtained has general coordinate covariance, local U(1)

gauge symmetry of the Maxwell field and a constant shift symmetry given by
p—pte, A, —eA, (2.6)

These residual symmetries constitute an infinitesimal amount symmetries surviving
from the higher dimensional general coordinate covariance of the original theory. To
see that these symmetries are consistent with the S reduction ansatz we need to

analyse the general coordinate reparametrization invariance

~

5!13M = _gM ) 6§]MN = éPaPQJVIN + gPNaMéP + gMPaNéP <27)

of the D-dimensional theory where é M depends on all D-dimensional coordinates. It
is clear that the S! reduction ansatz is not preserved under this transformation. An

investigation shows that

~

é“ = &M(z), & =cz+ ANx) (2.8)

is the most general form which leaves the reduction ansatz invariant. Here the £#(z)
and A(z) now depends on the (D — 1)-dimensional coordinates and parameterise local
transformations while the constant c-parameter is associated with a rigid symmetry.

Implementing (2.8) in 6§,y for the S metric ansatz, and if we for now set ¢ = 0, we
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obtain

dp = &0y,
0A, = &P0,A,+ A0, + 0,

59#,/ = gpapg;w + gpuaugp + gupaugp- (2'9)

It is clear from these that the various fields transform properly under the (D — 1)-
dimensional general coordinate transformations and that 4, has U(1) symmetry.
These results are of course in agreement with the Lagrangian (2.5). As mentioned
earlier the Lagrangian also has a rigid symmetry given by (2.6) which we would
like to obtain from the general coordinate transformations (2.7). In order to do
so we need to make use of a conformal symmetry of the D-dimensional equations of
motion. We are here refering to the scaling transformation §,,y — k2. Although
this transformation leaves the equations of motion invariant it is not a symmetry
of the Lagrangian since it is scaled homogeneously. The scaling transformation in
infinitesimal form is 0g,,y = 2ag,~, Where a is an infinitesimal constant parameter.

Now use this together with £7 = ¢z in (2.7) we obtain

Cc

m s 5./4# = _CA“ s 59/_“, = O, (210)

dp = —

and a = —c¢/(D—2). This is precisely the symmetry given in (2.6) after the redefinition
¢ — a(D—2)c. Note that the parameter a was fixed from requiring that the variation
of the metric be inert under the constant shift transformation. In the forthcoming
chapters we are going to make use of these two global symmetries in the S* reduction
and in this way be able to obtain new supergravities.

We are going to skip the discussion of supersymmetry in the standard Kaluza-

Klein theory since we will treat it instead within the generalized Kaluza-Klein reduc-
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tion. However, we should say that the S! reduction preserve all supersymmetry of

the original theory.

B. The torus reduction

In this subsection we shall extend the discussions of the previous section by including
some elementary aspects of the T™ reductions, and continue to focus on the symme-
tries involved. In the 7™ reductions the parameter ¢ discussed in the S' reduction is

now replaced by A’; and the metric reduction ansatz is preserved by
'z, z2) = Mx),  Ex,z) = N2+ N(). (2.11)

We also have

52" = =Nz (2.12)

The elements of the matrix A are real and satisfy det(A) = 1. This form the global
symmetry group SL(n,IR) and acts on all fields of the theory except the metric.
Making use of the homogeneous scaling symmetry (if present) of the equations of
motion the internal SL(n,R) global symmetry can be expanded to the full GL(n, R).
Note that GL(n,R) ~ SL(n,IR) x R. Lets consider a T? reduction of pure Einstein
gravity in D dimensions as an example. The T? reduction gives rise to the (D — 2)-

dimensional theory

_ Or-or Letap(FL )2 — Lemotar(F2 )2, (2.13)

1, _p_ 1 2
¢ L=FR 2(&0) 2(ImT7)%2 ¢

where 7 = x + ie™® and y is an axion field and ¢ = \/(D —2)/(D —4). The field

strengths are defined as

Foy = dAL + xdA Foy = dA?

1> (2) (CON (2'14)
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It is clear that the sector (¢, x) transform under SL(2,IR) and the Lagrangian has
a global shift symmetry ¢ — ¢ + ¢. This yields the group SL(2,1R) x IR. However,
one can show after some calculations that this global symmetry of the scalar sector
of the Lagrangian is remarkably also a symmetry of the full Lagrangian involving
the gauge fields. This discussion applies also if the original Lagrangian contained
higher rank potentials. In summary, the SL(n,R) global symmetry of the torus can
be enlarged to GL(n,R) when combined with a scaling symmetry of the original
theory. We should however also add that in certain cases the SL(n,IR) group can in
fact be enhanced to an even larger group than GL(n,R) due to conspiracies among
scalar fields and field strengths. This occurs in the eleven dimensional supergravity,

type-1I1B supergravity and certain dilatonic supergravities [44].
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CHAPTER III

GAUGED SUPERGRAVITIES WITH POSITIVE DEFINITE POTENTIALS

In general, the various (ungauged) supergravities are quite distinct (especially in their
fermionic sectors). However, it is noteworthy that the bosonic sector of the half-

maximal (16 supercharge) supergravities in D < 10 is universal, with field content

(s Bys 0, A) (3.1)

(a=1,2,...,10,10 — D). This is of course the bosonic content of the heterotic string
(or the NS-NS sector of the Type-II string) compactified on a (10 — D)-dimensional
torus, with vector multiplets truncated out. Owing to this universality of the field
content, we may perform a generalized Kaluza-Klein reduction on the half-maximal
supergravities in arbitrary dimensions and in this manner obtain the full class of (16

supercharge) variant supergravities.

A. The generalized reduction ansatz

The Lagrangian describing the bosonic sector of pure supergravity with 16 super-

charges can be written as

o N A « oA A 1.2 N
L= Ril— 1kdp Ndp — Le™ &Hy N Hig) — 1e2°°%F% N FE

(2) (2) (3'2)

~

where Fg) = dfl?l), Hg = dB(Q) - %Fg) /\/1‘(11), anda=1,2...,(10—D). The constant

a is given by

= ——. (3.3)
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The equations of motion are given by

2
3(D — 2)

A

F(Z))Z gMN)a

A

Ryy = %8M¢38N(£ + ie(w (ﬁMPQ HNPQ - ﬁ(23> §MN)

N
a P
MPFN -

1,300 ( fra
a6 2D —2)

d(e&(g %ﬁ(g)) - 0 5

Lag » tra D+1 _a¢ 1 1 rha
d(ez ¢*F(2)) = (-1) e d)*H(s) NFg,
=2 a agp 4 134 7a
O¢ = Ee ¢H(23)—|—§€2 ¢F(2?. (3.4)

The key observation behind the generalized reduction [21] is the realization that

the equations of motion are invariant under the symmetry

|
¢ — ¢+ = A, ds? — e d§?,
a

> —2X1+2)\2 > Aa —A1+A2 Aa
By —e B, Al —e Al (3.5)

Although the shift of the scalar field by A; is a symmetry of the Lagrangian, the
scaling transformation involving Ay on the metric is not since the Lagrangian will
scale as /—g (R+---) — e@ 2% /Z5(R+4--.).

We now reduce from D dimensions to d = (D — 1), while simultaneously gauging
the above two global symmetries. The D-dimensional pure supergravity multiplet
then reduces to d-dimensional supergravity coupled to a single vector multiplet. This

is achieved by making the following generalized reduction ansatz

ds? = e?me* (620‘“" ds® + 2% (dz + .,4(1))2) ,
Bo = e2memm)z (B(2) + By A dz) )
A2 = elma—m)z <A‘(ll) + X“dz) ,

b= o+zmz, (3.6)



24

where

2 _ 1 _
a B CEER f=—(d-2)a. (3.7)

The standard Kaluza-Klein ansatz for an ungauged S' reduction would correspond
to setting my; = my = 0.

In general, for unequal mass parameters m; and ms, the lower-dimensional equa-
tions of motion are rather complicated. However, a significant simplification occurs
if my; = my. In this case, various exponential factors drop out from (3.6), and one
can consistently truncate out the vector multiplet, owing to conspiracies between the
fields. In this manner, one can obtain variant gauged supergravities with positive-
definite scalar potentials and with half-maximal supersymmetry in d < 9 dimensions.

Before writing out the complete reduction of the bosonic equations of motion, we
first collect some intermediate results. The reduction of the potentials in (3.6) yields

a corresponding reduction on the field strengths:

Hy = M ™3 (Hy + Ho A (dz+ Ag))

Fo = elmemz(pe 4 10 A (dz + Agyy)), (3.8)

where the lower dimensional fields are defined by

Fo = dA, —dx* N A + (me —mp) Al A Ay,

L((l1) = an - (m2 - ml)AZ) : (39)

The Kaluza-Klein potential A, has the standard field strength F, = dA.,. It is

evident at this stage that the vector fields Af,) and the tensor field B, acquire masses

proportional to |ms — m4|, in the process eating the axions x® and the vector By,
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respectively.

B. Untruncated d-dimensional equations

We are now able to write down the full bosonic equations of motion for the variant

d-dimensional gauged supergravity. The bosonic field content is

(gulla #,,,QO,A A) and ( wy X 7¢) (3'10)

corresponding to half-maximal supergravity coupled to a single vector multiplet. This
representation is schematic in the sense that the scalars ¢ and ¢ as well as the 1-form
potentials B, and A, must necessarily be taken as appropriate linear combinations
in the actual multiplets.

We find that the equations of motion for the form fields are given by

V(T ) = (2ma+ (d = 3)my) (71 Hyp AT — HOHE0G, )
v ( €a¢+2(d—3)wGw) = 1 cio—dovfy v
+(2my + (d — 3) my) T2 AV
v ( e%&¢f2a<p F;fv) _ ; ap—Adop H;Wa Fave 4 a¢+2(d73)athwj 1o
+(my + (d—2) mg)(e%d‘ﬁ’Q"‘“"Fg,,A” — e%d‘ﬁ”(d’m“‘f’LZ) ,

Vu(e%d¢+2(d72)a<pl;z) . led¢+2(d73)aapGuy Faky %e%dqﬁanapFiuf’yu

2
+(my + (d—2) mg)e%d¢+2(d’2)““"L2A",
vy(e—2(d—1)a4pf‘wj) _ %e&¢—4a<pH Gl/o’ . e%&¢—2a(pF/izuLau

4
+=ma (90 — mlA ) = 2ma(d — 1) (B0up — maA,)

+ma(d — 1)6—2<d—”w FouA”. (3.11)

The two scalar fields, ¢ and ¢ satisfy similar m; and my dependent equations of
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motion. The scalar coming from the metric satisfies the equation

. Jao—dag - pyav—20p (e 4 d—=3  apra(d-—3)ap G2
_ e — T AT 1) d-1°
© 6d—1) @ 4d—1)" @ 4(d —1) @)
d—2 1a -2 a —eldma
+m62 o2Ad2eg(ra )2 Lo 2(d=1) G (312)

8
—maf(d — 1)A*0,0 — myV A" + m3(d — )_,4(21) m%GQ(d Doy

while the D-dimensional dilaton equation reduces to

/\ /\ A~

_ ap—4a 2 el +2(d—3)« 2 a 5(1 2« a
O¢ = 12 49— QDH“) + 4 ap+2( @G(Z) 8 209~ @(P’(Q))
a 4
+4 o3 00+2(d— 2)a¢(L«(11)) + ma(d — 1).A"0,6 + 5mlvw4u
4 d—1
( a ) mymy (A7) + Aoy, (3.13)

The d-dimensional Einstein equation takes the form

Ry — %RQW = %(QLQO A — %(8@)2 Guv) + %@u‘éaﬂb - %(8925)2 Guv)
+ %6_2((1_1)&@ (]:ucr]:ug - igul/]:é)) + ie&(ﬁ_mw(Hupo H/ — %gungQ

+3e T (B, B — g (F

(2)) ) + %e&¢+2(d_3)a¢(Glt0’GVU - %guyG?g))

+3ea NN (DALY — g, (L))
—amy(d — 1) (A0, gy — A0 — AL0up)
2 8
+ 5 my (-A080¢ g;w A au¢ -A au¢) ( m% (d - 1)m§)“4u“41/

o(d—1)(V, A, +V, A, —2V, A% g,,)
m2
my

l
2
= (5 T amid = D(d - 2)) (A} +V)g,, . (3.14)

Note that the last term is associated with a positive-definite scalar potential.
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C. Truncated d-dimensional equations

The scalars ¢ and ¢ may be disentangled between the supergravity and vector mul-
tiplets of (3.10) by performing a rotation to ¢; (supergravity) and ¢, (vector) given
by

ap — dap = agy dag + ap = aps, (3.15)

where a = /8/(D — 3). When m; = my, the vector multiplet may be further trun-

cated away. This is done by setting
By = Ay = %Au) ) ¢2 =10, L?n =0. (3.16)
The equations of motion for the pure supergravity fields are then given by

V(e H,,) = d}; m (e H, AP — 3%, ) |
1

s d—
VY (e2%F ) = ¢ Hyp P + 7 mez*F,, A",

s d—1
VY (e2Fy,) = 3" Hyp F*77 + .3 mez“?F, A"

d—1
O¢p= ——— H Fa T mA*H
syt m HERS) g A
d—1 V2(d-1)?

———mV, A" — 1A% 4 e739%)
Wm . 77 " AT
2
Ry, = %aﬂqﬁ&,gﬁ (HHPUH 7= 3(d — 2) H2>gm,)
1e39(F, F,” I g sao(po par L (pu
+§€ ( ot v T (d— 2) 2)9;”/) + 6 ( upt v m( (2)) g/ﬂ/)
~m(d—1) m(d — 1) 2
A, 0,0+ A A, A, Alg,
2\/—< 3¢+ 5u¢) 2\/— (V +V, +d 2V gu)
m (d 1) 2 1,
‘f‘m(A(l) + 2e” )glﬂ’ s (317)

1 a
EG) NAL) — 3 F e NAw) s F

2 = F,) = dA,, and we have

(1) ’

rewritten ¢; as ¢. It may be seen that this set of equations cannot be obtained from a
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Lagrangian in terms of the physical fields. This is not altogether surprising, since they
were derived in a generalized reduction that gauged a symmetry of the equations of
motion which was not a symmetry of the Lagrangian. This is demonstrated from the
fact that if there were a Lagrangian, it would from the truncated Einstein equation
of motion have the term m2?A42. On the other hand, the equation of motion for the
A, indicates that such a term should not exist. We furthermore note that all vectors
in our theories are abelian but with the gauge symmetry of A,, broken owing to
the higher-order interactions. This is for example different from the Romans d = 6
gauged supergravity where the four vectors are the SU(2) x U(1) Yang-Mills fields.
By examining the linearized equations of motion, it can be seen that A, is a
massless gauge potential. This gauge field can in fact be consistently set to zero. In

this case, the remaining equations of motion can then be obtained from the Lagrangian

eI =R~ 1(09)? — Le®H? — 1e39(Fa)? — (d— 1) mPe 39, (3.18)

where e = /—g. Thus we see once again that the scalar potential is positive def-
inite. The supergravities we have obtained have all vacuum solutions of the type
Minkowskix sphere.

A few remarks are needed at this stage. Owing to the overall z-dependent scaling
factor in the ansétze (3.6), the coordinate z cannot be viewed as a circle coordinate.
Thus the theory is not compactified. To resolve such a problem, it was proposed in
[28, 45] that one can modify the original supergravity by introducing an auxiliary field
associated with the gauging of the scaling symmetry, which can be identified with the
reduction coordinate in the dimensional reduction. The auxiliary field always appear
in the equations through a derivative in the modified theory, and can therefore be
defined as a circle coordinate in the reduction. Locally, this approach is the same

as our generalized circular reduction, but globally, the internal direction is a circle
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instead of a real line. In fact, if we consider in our example the string frame, then
there is no z-dependence in the metric when m; = ms, and so z can be viewed as a
circular coordinate at least from the metric point of view. An alternative approach is
to introduce a delta function singularity a la Randall-Sundrum. We can then replace

—2m 2|

the prefactor in the metric €™ by e By doing this, the volume of the internal
direction will be finite even though z is a non-compact coordinate. Consequently, the
gravity will be localized on the brane located at z = 0. The exponential nature of
the warp factor in the conformal-frame metric implies that the effect of localization is
strong with a mass gap. It would be interesting to study further if the delta function
singularity in this procedure can be smoothed out.

With the derivation of the bosonic equations of motion completed, we now turn
to a consideration of the supersymmetry. Although we have obtained new gauged
supergravities in dimensions d < 10 we are going to derive the supersymmetry trans-
formations in just d = 6 and d = 9 dimensions. We begin by investigating the

supersymmetry of the d = 6, N' = (1, 1) theory, and its spontaneous compactification

to d = 4.
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CHAPTER IV

N = (1,1) GAUGED SUPERGRAVITY AND (MINKOWSKI), x S? VACUA
A. Supersymmetry of the generalized reduction

The bosonic field content of half-maximum supergravity in seven dimensions com-
prises a metric gy, a scalar qﬁ, an antisymmetric tensor B(2> and three vectors A(l)

The Lagrangian in the bosonic sector is [46, 47|

~ ~ A ~ 4 7 ~ A~
L= Ré1— 12dd A dd— LeV%5H ) A Hy) — LeTo%5F0 A BC

2) (2)7 (4' 1)

where F% = dA% and Hy = dB, — 1F% A A°

) (). The generalized Kaluza-Klein

reduction of this theory was worked out in the previous chapter.

1. The supersymmetry transformations

The fermionic sector consists of a pair of symplectic-Majorana gravitinos Q&Mi as well
as a pair of dilatinos 5\1-, where ¢ = 1,2 is an Sp(1) index. The three vectors form a
triplet under Sp(1), and may equivalently be written as A,/ = A(1>( )7 where
7% are the usual Pauli matrices. In this form, the supersymmetry transformations on

the fermions are given by

> - . Lad £ .
5¢MZ- — [VM _ %(,YMNPQ 951\1 PQ) egad)HNPQ]ei
; ~ ~ 1a0 7 i A
+ ﬁ[(/yMNP - 851\]\;7P)64Q¢FNPi]€j7

~

MN »~

b7 A o i tad g
o = [~ 2f7M8M¢+ 12v5° ¢HMNP7MNP]51‘ ~ ¢! ¢FMN2]'V &, (4.2)

where a = 4/+/10.
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In addition, the transformations on the bosonic fields have the form

~ —

5BMN = —%A[MijéAN}ji - %6_%d¢<¢i[1w’3/N] - % iﬁ/MN)gh (43)

where in the transformation for A,,;7, the Sp(1) indices ¢ and j are to be taken
in the triplet combination. In particular, this may be enforced by the projection
(6769, — 1676%,) which removes the trace. Note that the transformation for 6B,y is
given in a dualized form compared to that of [46].

The above fermionic (4.2) and bosonic (4.3) supersymmetries are normalized

according to
01, 02)= = iéMaMé + (local Lorentz) + (general coordinate) + (gauge), (4.4)

where £ = €,4™éy;. Furthermore, when working with the fermions, it is often con-

venient to make use of the Majorana flip conditions

=i o n, i -
X P)/M1]\{2~-ani - (_) (0 Vv yy gy X

;(jr)/MlM?»-ani = (_)n+1¢j7MnMn,1-»-le(i> (4'5)
for the singlet and triplet combinations, respectively.

2. The bosonic reduction ansatz

As demonstrated in [24], the generalized S! reduction ansatz is given on the bosonic

fields by

2 = € (e2%dst + e (dz + Ay))?) |
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B(g) _ 62(7712—7711)2(3(2) + B(l) A dz),
A?l) = e(mQ_ml)Z(A‘(ll) + ®%z),
¢ = ¢+V10myz, (4.6)
where o? = % and 0 = —4a. The resulting reduction yields the six-dimensional

fields (g, Aq), Al By ¢1) and (B, o, ¢) corresponding to the bosonic content
of N = (1, 1) supergravity coupled to a vector multiplet. Note that the Sp(1) singlet
graviphoton and the matter vector are in actuality given by linear combinations of

A,y and B;,. However, the scalars ¢, and ¢, given by the rotated combinations

(bl = %(b_ %307

are diagonal between multiplets.

3. The fermionic reduction

Working out the fermion reduction is straightforward, although somewhat tedious.
Since the resulting D = 6 theory contains a vector multiplet in addition to the pure
supergravity multiplet, the D = 7 fermions Q/AJ wri and )\; must reduce to yield a D =6
gravitino and dilatino (¢, A;) as well as a gaugino ;. The reduction from seven to

six dimensions is facilitated by the fact that the D = 7 symplectic-Majorana condition

~

P = —€ 1$]TCA’ continues to apply in D = 6, yielding a trivial reduction on the spinors.
Examination of the supersymmetry transformations on the fermions, (4.2), indi-

cates that the proper fermionic reduction is given by

1 1
~ gMm2z o3P

& = ez €i
5\ - 1 —%mzz —%acp 2\
i = e e 2% (x; +2N),
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wzi

(S]]

e%mzze(ﬁf%a)wfw@xi —\),

i = Rl + (el A — §57,)(2x — M) (48)
In this case, the resulting D = 6 fermions have supersymmetry transformations

5 R \V4 _ 5 I/A 1 %fbl vpo _ 3§V APT 5 %¢2—ﬁ¢1
w,ul = [ w T gM2YuY A — 35€ (7 u ) vpo T gMae Y7

— e (0, = 600 e (AP By + € VB F e,
32 12 I 7 vp vp 7

i 1 . i 1 v v 1
+[- Qf/ieﬁ@%@uij + 16\/562\/5(]51 (" = 60,77 ) Eup e,
1
N = [— 2\/7 “Oupr + 5 (4my + ma) At + ieﬁd)IHWPVWP
1 1 1 1
+ iemd’lwvw(eﬁ@ffw + efﬁm]iw) — 1 (4my + mz)eﬁd)rmmW]ei

é1 v j
ﬂe%f Fiej,

1

SR
oxi = [—ﬁw b2 + 5 (my — ma) Ayt — 5 (my — my)e Vi aE ",

1 5v3 01 J5¢2 —5¢2 i T5b2u j
—ge22 iy (—evi® Hy,, + e V2 fw)]ei—rﬁe\/ﬁ Yy Qui'e;. (4.9)

Here we recall that the D = 6 field strengths are given by

Hy = dBg — 3F% NAY —dByy A Ayy — 2(my — ma) By A Ay + 3P°F5 A Ag),
Hu = dBu, — 20°F% +3Q% AN A% — 30°Q% A Ay + 2(ms — my) B,
FG = dA(, —dd* A Ay + (ma —ma) AL A Ag,

¢ = do* — (my —my)AY, (4.10)

with Q) = QF,(—=7%);;, etc. The gravitino transformation in (4.9) demonstrates
that the Sp(1) singlet graviphoton arises as a linear combination of H,, and F,,.
Note, further, that these transformations reduce to those of ordinary ungauged N =

(1,1) supergravity coupled to a vector multiplet in the limit of vanishing m; and m..
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4. Generalized supersymmetry in six dimensions

Given the bosonic (4.6) and fermionic (4.8) reductions, it is now a matter of substi-

tuting these expressions into (4.3) to obtain the D = 6 bosonic transformations. We

find

opr = 2\[6 ENi,

dpy = —ﬁEiXi;

09 = 3EVEUv)is

0A, = ie’ﬁ‘“*%d’z[ 7(WYpi + 37A) + Evrrxils

bA = —BI6A, — T TENE (g + byuh),

57 = —ie_ﬁmij%@u (4.11)

V2
By = WAL 54 14,50
1 —5sb1— =2y 1 gt
e 23TV G 77(¢W' + §7u>\i) — € ’Y;/WXZ']:

L . ) Ll
0By = —3AuI0 0A) = 2B A, — SALI0A, ;) — LeT AN E (Vb + FrmN)-

This result, combined with (4.9) yield the complete (lowest order) supersymmetry
transformations of the variant A" = (1, 1) supergravity coupled to a vector multiplet.
Note that in obtaining (4.9) and (4.11), it was crucial that the ansatz (4.8) allowed a
consistent reduction from seven to six dimensions, in which the dependence on the z
coordinate cancelled in the seven-dimensional transformation rules. This guarantees
that the resulting six-dimensional supersymmetry transformations are symmetries of
the six-dimensional variant supergravity.

As noted in [24], the vector multiplet may be truncated away by setting m; = my

as well as

By =0, o =0, B,=A,= %A, i = 0. (4.12)
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In this case, the D = 6 field strengths of (4.10) simplify to

The resulting six dimensional theory has field content (g,., Ay, AL By, 01, Yy, i)

and supersymmetry transformations

i = [V Zgmnn’ Ay — 4¢3 (1,77 = 36,7°7) Hopo
— e eTE (1 — 6827 e Fyp + Sme” WAy ey
+ 125 (1 — 6607 Fypie;,
N = [— 2\ffy 8u¢1+4fmAM’y —|——e\f¢1H AP
+ ﬁerﬁmvw%]’w — %me_ﬁm%]ei 8fe2f¢1’y“”F#m €,
01 = —55E N,
09 = 3EVEUv)is
0A, = ﬁémmgi%(%iﬂL%w%)y
0A. = \/56 Tt T (i + 27u i)y
0B = —AubAy — SALISA — e AR (i + B ). (4.14)

These transformations reduce to those of [31] when m — 0.

On the other hand, for m # 0, the generalized reduction yields additional terms in
01,; and dA;. Furthermore, these m-dependent terms do not have the usual structure
for a gauged supergravity. In particular, the gauge potential A, does not appear in
01,; as a minimal coupling term D, =V, +igA, to a charged spinor, yet shows up
as a bare potential term in d);. This is consistent with A, showing up as well in the

bosonic equations of motion [24]. For this reason, it is natural to suspect that the
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local supersymmetry algebra satisfied by this theory is necessarily modified. To see

this, we may examine, e.g., the double variation on ¢;. We find
g
(01, 02)¢p1 = 36" Db — ﬁm(\%f“Au —e 2ﬂ¢1(€§7761i))7 (4.15)

where £# = &~*¢y;. The additional terms vanish when m = 0.

B. The (Minkowski), x S? reduction

The D = 6 theory obtained in [24] does not admit a Lagrangian formulation since the
bare potential A, appears directly in the equations of motion. This is also apparent
from the supersymmetry variations obtained in the previous section. However, for
field configurations with vanishing A,,, the resulting bosonic equations of motion may

be obtained from the Lagrangian

L= R&l— L5dd N d — LeP5H ) A Hy) — Le®%F2 A FS —8g%e %1, (4.16)

We have now introduced carets to denote six-dimensional fields, in anticipation of a
subsequent reduction to four dimensions. Furthermore, we have defined $ =V2¢
to simplify the subsequent expressions and have defined 5m = 2v/2 g.

Curiously, this bosonic Lagrangian is identical to that of the Salam-Sezgin model,
with the exception that there are three vector fields instead of one. As a result, this
model clearly admits a bosonic M, x S? reduction, where M, denotes four-dimensional
Minkowski spacetime. On the other hand, the supersymmetry of the reduction must
still be verified, as the supersymmetry transformations of the variant N' = (1,1)
theory differ from that of the gauged N' = (1,0) model. In order to investigate
the supersymmetry, it is useful to rewrite the six-dimensional symplectic-Majorana

spinors using a Dirac notation. A symplectic-Majorana spinor satisfies the reality
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condition (z@z)* = —¢¥ CA’%@/AJJ», where the charge conjugation matrix C satisfies CT = ¢
and CTC' =1. We may now form the Dirac combination 1& = 121 + il/AJQ, with complex
conjugate 1&* = —ié’%(iﬁl - mﬁg) Equivalently, these definitions may be inverted to
yield

Uy = 3 — 5CT0Y), hy = L (4 +i4CT0). (4.17)
As a result, for fl(l) = 0, the supersymmetry transformations (4.14) may be rewritten

as

~

5772,11 = [vu_ 2 (’A}/ul/pg 3(51/,pr) Vpa‘l’ \[ge 44)'7;177}

J Lo ~w V2 ~ * ok
et (0 — 60447) (F2,e — (B, — iFS)30C ),

cpn 4 b7 s 1421
N = {—i’y“@ucﬁ—kzﬁeﬁHwﬂ“ p—%ge 4¢’y7}e

— ety (B2 e — (B, —iF3)5007¢), (4.18)
for the fermions, and
5p = —L1EA+Ad,

6gw/ = %[E’Y(y%)—w(u%)ﬁ],

0A), = —3ise 4¢Im[ Oy + 53],

0L = —gime ¥ [+ 130) — (D, — 3,

04, = —55¢ " Re[€"C(tu+ 37uM)]

0B, = —Af5AY —Lem T E (AL + ) + (A — 2N, (4.19)

for the bosons. While we have set flu = 0, it is important to retain its supersymmetry
variation so that it is possible to check later for consistency. These expressions serve

as the starting point for the subsequent analysis.
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1. Supersymmetry of the M, x S? vacuum

The bosonic theory, given by (4.16), admits an M, x S? solution given by

1
dsg = n,datdz” + 8—g2dQ§,

A

1
F(2) = %Q@)v (4'20)

where Q) = sinfdf A dp is the volume form on the unit S?. Note that we have
singled out the 2-component of the Sp(1) triplet gauge fields for convenience. While
this choice is a natural one corresponding to the Dirac combination in (4.18), any
other choice would yield the same result.

To examine the supersymmetry of the vacuum, we insert (4.20) into (4.18) to

obtain

0o = [0+ J5994P1le,
0ba = [Va—iV20%aAn)E + J59%37Pré,
O\ = —V2g4:P.é (4.21)

where Py = 1(1 & 15%4;) is a half-BPS projection. These equations vanish for
¢ = P_éy where ¢y solves the Killing spinor equation on the round 2-sphere, [V, —
V29 5aa5)é0 = 0.

To be more precise, we decompose the six-dimensional Dirac matrices according

to

Yo = Yo ® 03, Y1 =1® o1, Y5 = 1® o9,

A

A1 =% % =7 © 03, C=C0C®oy (4.22)

where C' is now the four-dimensional charge conjugation matrix and +* = ivyy1727s.

Six dimensional spinors é may then be written in terms of M, and S? spinors as
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€ = Y r€; ® ny where 7y is taken to be commuting. In this case, the Killing spinor
equation on S? becomes [V, ++v/2g 0,03]n; = 0, and yields two independent solutions.
Corresponding to the above choice of Dirac matrices, we find that in the basis e* =

(2v29)71df, ¢® = (2v/2g)" sinfdy, the two independent Killing spinors can be

cos 50 i sin 50 ;
m = e2?, Ny = e 2%, (4.23)

1 1
sin 5(9 CoS 59

written as

It is easily seen that these satisfy the conditions
_ T 2 x _ : 2
nims = or, Nypo Ny = —tery, Np =10 ergng. (4.24)

Note that 7; = 77}. Using the decomposition (4.22), the half-BPS projection operator
takes the form Py = (1 F 5). As a result, the Killing spinors in the My x S?

background are given by
€= €er ® nr (6[ = ’}/561), (425)

where the €; are a pair of constant D = 4 Weyl spinors.

2. Reduction to D = 4, N’ = 2 supergravity

The existence of a supersymmetric vacuum suggests that a consistent Kaluza-Klein
reduction on S? is possible, yielding a Poincaré theory in four dimensions. Since
the six-dimensional N' = (1,1) theory has 16 real supersymmetries, and the vacuum
breaks exactly half of them, the resulting theory corresponds to N' = 2 supersymmetry
in four dimensions.

The basic N' = 2 supergravity multiplet consists of a graviton g,,, graviphoton
A,y and a pair of Majorana gravitinos ;. In addition, N' = 2 vector multiplets are

given by a vector A, two real scalars ¢ and a, and a pair of Majorana gauginos ;.
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We find that the six dimensional field content reduces to yield N = 2 supergravity

coupled to a single vector multiplet. The reduction ansatz for the bosons is given by

1
32 = e29ds? + 8—926—%%93,

= 2ge2%e ¢ A&,  Fl = F! 3 — 3

o2
E (2) (2) 7 @ T@>

(2)

Hyy = Hey 6 =—0. (4.26)

Note that the graviphoton and matter vector field strengths are given by a combina-
tion of F} and Fj, (up to duality) as will be apparent below. The use of the 1- and
3-components of the Sp(1) triplet in the Kaluza-Klein reduction is dictated by the

choice of turning on F2, flux on the sphere.

@)
It is straightforward to verify the consistency of the bosonic reduction. The

resulting four-dimensional equations of motion may be obtained from the Lagrangian

L= Rx1— %*d¢ A d¢ _ %6_2¢*H(3) A H(g) _ %€_¢(*F1

1 3 3
o N Fo) +xFo) A F

e ) (4.27)

The fermion reduction ansatz may be obtained by substituting the bosonic fields
(4.26) into the six-dimensional gravitino and dilatino transformations (4.18). Starting

with the latter, we see that

SN = V2gei®P. ® o3¢ + e’i‘ﬁ[i’y’@ugﬁ + o6 P H V"] @ 03€

. _1 _1 . v * Ak
—573¢ (e 2¢(F/}V — iF )"0 C*] @ 0309€". (4.28)

The first term vanishes on chiral spinors P, é = 0, while the remaining terms combine
to yield the four-dimensional gaugino transformation.

Turning to the gravitino variation, as usual the D = 6 variation splits into a
D = 4 gravitino term, 51[1&, as well as two internal variations, &ﬂa. Since the S?

symmetry is unbroken by the bosonic ansatz, the two internal components of the
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gravitino variation are related by symmetry. In fact, provided € is decomposed in
terms of Killing spinors on the sphere, the &ﬂa variation has identical content as that
of & (This is not in general true, but holds in the present case.) As a result, we

find the fermionic reduction ansatz to have the form

1¢
€ = e8 €[®77[,
1
A= e x ®o3n,

~

r‘/}a = eiéd)[wal + %Vaxl] @ nr, wa = eiégb(_%xl) ® 040311 - (429)

Inserting this ansatz into (4.28) as well as the gravitino variations yields the

four-dimensional supersymmetry transformations

_ Y _1 . v e
oxr = [17"0u0 + gz “HuwpV"’ler — ige 2 (Fyy, — iF, 7" 0 C ers€l,
- vpo -1 . v * *
0 = [Vu— ie ‘157“ P Hypol€r — ﬁe 2 (Fylp — ZFEP)’V Py Crersey. (4.30)

To obtain this result, we had to make use of the n; relation in (4.24). At this
stage, we note that the gauge fields may be dualized in four dimensions, so that

F " = —ixF " 75. Since the four-dimensional spinors are given in a Weyl basis
P+€[:0, P+waI:07 P_XIZO, (431)

where Py = 1(1F 75), the above supersymmetry variations may be rewritten as

— v _1 v * *
Oxi = [57"0u + gz¢” Huwo"Jer = g5e7 2" (Fy + #F0,)7" 10C €€,
- vpo -1 12 * *
oY1 = [Vu— 21—46 9" H, pol€r — —8\1/56 2qﬁ(Fylp - *Fg’p)fy Py Crersey. (4.32)

_ 1 1,
This highlights the nature of the N' = 2 graviphoton, F<(2/)\/_2) = 6_2¢F(12) + €2¢F(?;>,

3 _ —¢, 3
where Fj = e %xF7, .

Having completed the fermion reduction and supersymmetry variations, we now
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turn to the reduction of the bosonic variations, (4.19). The six-dimensional dilaton
variation 8¢ readily yields d¢ = %E]X[. Similarly, the four-dimensional components

of 0g,, yield dg,, = 5€vuy) 1, while the internal components reduce to give the

2
identical d¢ transformation. This is a result of setting the internal components of the
six-dimensional gravitino equal to the dilatino in the reduction.

In general, one obtains non-trivial vector field variations from the mixed compo-
nents of the metric, §g,;, as well as directly from 614#. However, these terms vanish
identically based on the P, chiralities of the four-dimensional spinors. Likewise, 5121/%
vanishes for the same reason. On the other hand, the additional complex conjuga-

tion appearing in 5121; and 5/12 prevents these transformations from vanishing. The

resulting four-dimensional variations then have the form

09w = LEVutv) 1 — Yprmer,
0 = ilerxs+ xuerl,
0B, = —iedj [ErYutu 1 + 15[“ V€L + €Y X1 — X1Vl
SAL = Fmer®ersReld C(thuy + 310)),

1
04, = —gimerPerslmlef Cy + 57x0)]- (4.33)

We have verified that all variations of fields initially set to zero vanish, either iden-
tically or through four-dimensional chirality. This verifies the consistency of the
supersymmetric reduction to N/ = 2 supergravity coupled to a single vector multi-

plet.

3. Truncation to D = 4, N' = 1 supergravity

While we have retained AN/ = 2 supersymmetry in the above reduction, there is a

natural truncation to N/ = 1. This may be accomplished by removing one of the
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two supersymmetry parameters by setting ¢; = nye where n; is any constant unit
vector. At the same time, it is necessary to truncate the N = 1 gravitino and vector
multiplets, leaving N/ = 1 supergravity coupled to a chiral multiplet. In the bosonic
sector, this corresponds to setting A}L = Ai = (0. The resulting bosonic Lagrangian is
given by

L= Rxl— ixdp Ndp — s **xH A Hy), (4.34)

while the relevant supersymmetry transformations are

ox = [%’y“@ugb + 2*146_¢HW,07WP]€’
Yy = [Vu— ?Ze_¢7uypaHVpa]€>
0Gu = i[@(uwﬂ - @(u%)e],

06 = glEx+ xel,

53”,, = _ie(ﬁ[?y[uwv] + QZ[}LVV]E + VX — Xf)/pwe]' (435)

C. BPS solutions

The bosonic Lagrangian (4.27) admits a dyonic black hole solution where F(12) is

electric and F?

) is magnetic (or vice versa). The solution is given by

ds? = —(HyHs) L dt® + Hy Hs(dr? + 12 dQ32),
FlL = dtndHi', F3=q3Qq),
¢ = —log(Hi/Hs), (4.36)

where Hy; = 14 ¢ /r and Hz = 1+ ¢3/r are two harmonic functions in the Euclidean
three-dimensional transverse space. It becomes the standard Reissner-Nordstrom

black hole when H; = H3. We can easily lift the solution back to D = 6 dimensions,



44

and it becomes

1
8g?

== dt VAN dH;l , }%(3;) = (3 Q(Q) 5

1 ~
ds? = (Hi/Hs)2 [~H72dt* + H3 (dr? + 2 dO3) + — d03]

2 . 1 -1 all
Foy = 397 Qo E

¢ = log(Mi/Hs). (4.37)

In the near horizon limit, the geometry becomes AdS, x S? x S2. For ‘H; = Hs, the
metric is the direct product of an S? and the Reissner-Nordstrom black hole. In the

string frame, the metric is given by

ds?

str

~ 1
= —H2dt* + H; (dr®* +r*dQ3) + & 3 (4.38)

D. (Minkowski)s x S* vacuum

The variant N' = (1, 1) six-dimensional supergravity has the unusual feature that it
admits not only a supersymmetric (Minkowski)s x S? vacuum, but also a supersym-
metric (Minkowski); x S? vacuum. This is quite different from the situation in the
Salam-Sezgin theory; although the Salam-Sezgin model admits a (Minkowski)s x S®
solution as well as a supersymmetric (Minkowski), x S? solution, the former is non-
supersymmetric.

To construct the supersymmetric (Minkowski)s x S solution in the variant ' =

(1,1) supergravity, we make a standard Freund-Rubin type ansatz in which

~

dst = dat dx,, + ds? Hao = qeg, b=0, (4.39)

where ds? is the metric on a round S?, with volume form €, and all other fields are

set to zero. We find that this solves the six-dimensional equations of motion if

qg=2V2g. (4.40)
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The S? metric has Ricci tensor given by R;; = 4¢% g;;.
To establish the supersymmetry of the solution, we decompose the six dimen-

sional Dirac matrices as
Y= ®l®o, ¥=107%®0, 7=191®o0;3. (4.41)

Writing ¢ = e@n®v, we find from the transformation rules (4.18) that supersymmetry
is preserved if € is a constant spinor in the (Minkowski)s spacetime, oo v = v and if n

is a Killing spinor on S3, satisfying

19
Vin= ﬁ Yin- (4-42)

Thus the solution has three-dimensional N' = 4 supersymmetry.

E. Discussion

In this chapter we have presented the complete supersymmetry of the new gauged
N = (1,1) theory. This theory differs from the conventional supergravities with
gauged R-symmetry in the sense that the bare vector potential terms in (4.14) do
not correspond to the usual minimal coupling to charged fermions. For a vanishing
Sp(1) singlet, the A/ = (1,1) theory reduces in its bosonic sector to the Salam-
Sezgin N' = (1,0) model, albeit with a triplet of gauge fields. In this truncation the
supersymmetry transformation rules of the N' = (1,1) theory do not give rise to the
supersymmetry of the gauged A/ = (1,0) model. The reason for this is because the
singlet and triplet gauge fields of the N' = (1, 1) supergravity reside in the gravitino
multiplet, and not a vector multiplet, as would be necessary for obtaining a Salam-
Sezgin truncation. This implies that, although our theory admits similar solutions to

the Salam-Sezgin model, their supersymmetry can be drastically different.
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We have shown that the variant A" = (1,1) supergravity admits a consistent S*
reduction giving rise to D = 4, N' = 2 supergravity coupled to a single vector mul-
tiplet which can be truncated further to N’ = 1 supergravity with a chiral mulitplet.
Although we have used a Weyl notation for the four-dimensional fermions, and there
is a presence of ’left-handed’ gravitinos in (4.31), this itself is not an indication of
actual chirality. We should emphasize that the M, x S? reduction of the Salam-Sezgin
model likewise is non-chiral. This is understod by that a smooth Kaluza-Klein re-
duction in the gravitational sector cannot lead to a chiral theory in four dimensions
[48]. However, [48] goes on to indicate that chirality may be obtained by starting
with chiral fermions coupled to gauge fields in the higher dimensional theory, pro-
vided the gauge reduction is non-trivial. In particular, reductions with a monopole
flux such as [49] could in principle give rise to four dimensional chirality. This would
suggest that the Salam-Sezgin model is chiral, since it precisely involves turning on
such a U(1) monopole flux, with all fermions charged under this U(1). However, as
emphasized in [14, 17], the U(1) does not survive the reduction to four dimensions.
The resulting theory contains only SU(2) gauge fields and uncharged fermions, and

is hence non-chiral.
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CHAPTER V

GAUGED SUPERGRAVITY IN NINE DIMENSIONS

In this chapter we continue our study of the supersymmetry in the generalized Kaluza-
Klein reduction. We shall present the results for two cases. The first is the variant ten-
dimensional massive gauged supergravity obtained in [21] by performing a generalized
reduction of eleven-dimensional supergravity.! The reduction in this case involves
just the global scaling symmetry of the D = 11 equations of motion. Then, we
shall consider the nine-dimensional massive gauged theory obtained from massless
D =10, N' = 1 supergravity, using the generalized reduction involving the two global

symmetries that we discussed in chapter III.

A. Massive type-ITA supergravity from D = 11

The supersymmetry transformations in D = 11 are

5éMA = éfS/A'(;M y 5AMNP = SE;Y[]\/IN&P} y
&;M = §AI€ - ﬁFNPQR<’AVMNPQR - 8’7PQR51]C;)67 (5'1)
where in our conventions
{&A/AYB} = 2M4p (5.2)

and the metric signature is (— + +---+). The equations of motion of the eleven-
dimensional theory are invariant under a scaling symmetry, which was used in [21]
in a generalized reduction to obtain the bosonic sector of a massive ten-dimensional
supergravity. Here, we extend that discussion to include the fermionic sector. This

Note that this massive type-ITA supergravity [28, 21] is not the same as the
massive ITA theory obtained by Romans [23].
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variant maximal supersymmetric D = 10 massive theory [28, 21] has also been consid-

ered in [30]. The corresponding ansatz for the generalized reduction of the fermions

18

€ = eémzzei‘pe,
~ 1 1
¢11 = ¥€_§m2z6_ﬂ@7n/\ )
~ 1 1
e = e 2" 3P (Y, — Y27,N) . (5.3)

Performing the reduction of the fermionic transformation rules, we obtain

_ 1 o 1 —lgo uvop 1 l(p uvo 2
0N = —357€hp — 1573 P EuweY e+ 5152 Flno" Yine

3 -3 TS 3 u 304
TV A Fu V" € — 4\/§m2(“4u'7 — e )e,
oY, = V,e— L(i_i‘PF vaop _ 20§V~a0p) e ieé‘pF YoP — 95 ~P ) A, €
1 - 1 256 vaop '7# 3 ’u,ry 96 vop VM ’u,ry 711

-3 vo v.o\z2 v 3 A
— €T oo (1,7 = 148077 ) e — Fma(Ayy” — 1P e (5.4)
The supersymmetry transformation rules for the bosons are

e, =&Y, 6 =—V2EN,
3 _n
5-/4“ = 64%711(@0# - ¥7u)‘) )
N RN
5A;w =e 2¢e’yll(2’y[uwy] + %%u/)‘) ,

8 Ay = 3e1%€(Yu s — Y2YupA) + 3AROA,,) - (5.5)

As was shown in [21] this theory admits a de Sitter vacuum solution, which
necessarily breaks all supersymmetry. Note that the ten dimensional field strengths

are those defined in [21]. References for massless type-IIA supergravity are [50, 51, 52].
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B. Reduction of D = 10, /' = 1 supersymmetry

Since we have obtained the transformation rules for the type-IIA massive gauged
supergravity in section A, it is convenient to make use of these here in order to
establish our conventions and notation for the transformation rules of the standard
massless N' = 1 supergravity in ten dimensions. These are obtained by setting the
mass parameter me = 0 in (5.4), and in addition making the chiral projection that

reduces the N = 2 supersymmetry to N' = 1:
’A}/ne =€, fAVuQ/}a =1, and ’3/11)\ = -\ (56)

The chirality condition is consistent with setting to zero both the 3-form potential
and the Kaluza-Klein vector. This yields the ten-dimensional N' = 1 supersymmetry

transformation rules [53, 54]

AMNP ~

~ 17 A
(5)\ — _ﬁ'y 66A1¢+ mez(;SHIMNP’Y E,
> = A 172~ ~ ~ ~
0y = V€ — %eQ‘ﬁHNPQ(WMNPQ —9’)/PQ(51\1/\[7)6,
(5é]\/}4 - %’?A@E]\/[7 6& - _\/§ES\7

~

dByn = _e_%éé (2/3/[1»177;N] + %'AVMN/\) . (5'7)

We can now use these standard A/ = 1 results in a generalized circle reduction to
d =9. We shall focus just on the pure supergravity multiplet in d = 9, by performing
a (consistent) truncation of the matter multiplet. The required reduction ansatz is
obtained from the arbitrary-dimension ansatz of appendix B by setting m; = my = m

and ¢, = 0 = y. This gives

>
|

1 _ 1
e2™e Tovii ¥t €,

ps
I

1 1 ~
%efimze mm‘z’l)\,
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h _1 —L_ %1~
Yy = _ge zmzewmm'ﬁo)\;

_ Ly L1/ 7 1 % 3
Yo = e 2MFersvi (%Jrgfﬁ%)\),

6 = Yo +dmz. (5.8)

The tildes signify that the fermions and the Dirac matrices are still ten-dimensional.

These can be related to the nine-dimensional quantities as follows:

Ya = Va X 01, Yo = 1% 0y and =1%oy,

E=€exn, A=AXon and Vo =0 X 17, (5.9)

where 7 is a 2-component constant spinor. The chiral projections (5.6) imply that we
must have o;n = 7. We present in the subsection below the supersymmetry obtained

from the above reduction ansatz applied to the ten dimensional chiral supergravity.

1. D =9 supersymmetry

Reducing the D = 10, ' = 1 transformation rules, and setting G ,, = F,) = % F),

we obtain the following nine-dimensional supersymmetry transformation rules:

2 vo v
N = —ﬁ’y“e@u¢+%ﬁe\/}z’ng’y“ €+ ref‘bF e
+ %m (%V“A - ie_ﬁ(ﬁ)e,

2 vo V.0 1 L‘b vo v.o
5w,u = v,ue - ie\/:(b}]-lja'p(f)/p, P— %5;1,7 P)€ - 76@ FVU(’}/M - 126;1,’7 )6

28v/2
4 ——=¢
— 7fmA,/yH'y €+ 4 me VLT €,
de,t = ey, S = —V2EN,
04, = iV2e vii’e (v + \[’Yu)

0B, = —6_\/?¢€(2V[M¢V} +

2%

)~ Ay, (510
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where we have dropped the “1” subscript on the scalar field. The field strengths are
H,., = 30,8, — %A[HFW] and Fy, = 20,,A,). This theory is an Abelian gauged
version of D = 9, N' = 1 supergravity. We shall show that it admits a supersym-
metric (Minkowski)g X S? vacuum solution. We shall also obtain a time-dependent

supersymmetric cosmological solution in this theory.
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CHAPTER VI

M-THEORY INTERPRETATION OF THE GAUGED N = (1,1)
SUPERGRAVITY AND THE VACUA (MINKOWSKI), x S?

In chapter IV we showed that the new D = 6, N/ = (1,1) supergravity admits a
consistent sphere reduction to D = 4 giving rise to N’ = 2 supergravity coupled to a
single vector multiplet. In this chapter we shall discuss the higher dimensionsl origin
of the N' = (1,1) theory and the vacua (Minkowski), x S?. The vacuum solution is
given by

1

2
25m?2 s,

ds® = datdz"n,, +

V2
Foy = %Q(zw ¢=0, (6.1)

where we have turned on one of the three vector field strengths F . Lifting this
solution back to D = 7, it becomes the near-horizon limit of a 3-brane supported by

one of the vector field strengths Fa . To see this, let us start with the 3-brane, given

(2)°
by

ds? = H_% dxt dx” 5 2 2402
7 = N + H5 (dr® +1r°dQ3) ,
2

A

where H = 1+ @/r. In the decoupling (or near-horizon) limit, we have H = Q/r.
Taking the charge parameter Q to be @ = (5m)~!, and making a coordinate trans-

formation Q/r = e=®"* the solution (6.2) becomes



93

This fits exactly the reduction ansatz (4.6), giving rise to precisely the lower dimen-
sional solution (6.1). It is worth mentioning that the solution (6.3) can also be viewed
as a domain wall with a (Minkowski), x S? world-volume.

We can further lift the solution back to D = 11, where it becomes the near-
horizon structure of two intersecting M5-branes. As in the above, we start with the

two intersecting Mb5-branes in D = 11:

dsty = (HyHp)™"/* (da’ da n, + Hy (d2} + dz3) + H, (d23 + d2})
+Hy Hy (dr” + 12 dD3))

Fuy = (Qidzz Ndzy+ Qadzy Ad2a) A Q) (6.4)

with H; = 1+ Q;/r. Setting @1 = Q2 = @, the solution in the near-horizon limit

becomes

f dp? 1
ds%l = p2/5 (dmudxunuy+Q2pp2+Q2 dQQ)_i_pdeSZ?

Foy = QJoy ANy (6.5)

Here we can replace the 4-torus ds? by a Ricci-flat K3 manifold, and .J,, is a self-dual
harmonic 2-form in the K3. It is straightforward to see that the D = 11 solution
(6.5) becomes (6.1) in D = 6 by first reducing on the K3 manifold followed by the
generalized Kaluza-Klein reduction.

It is interesting to note that only by taking the decoupling or near-horizon limit
does the brane solution fit the reduction ansatz. This is different from the usual
Kaluza-Klein circle reduction where the whole solution can be reduced instead of just
the near-horizon limit. Thus the standard S! reduction can be viewed as a special
case of a DeWitt group-manifold reduction, whose consistency is guaranteed, whilst

the generalized Kaluza-Klein reduction can be viewed as a special case of a Pauli
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sphere reduction, where the consistency requires conspiracies. (A discussion of the
terminology is contained in [55].)

Of course, the N' = 1 supergravity in D = 7 can also be obtained from a 73
reduction of the heterotic string theory, which is S-dual to M-theory on K3. The
vector field strengths F{ in the minimal D = 7 supergravity come from setting equal
the three Kaluza-Klein and the three winding vectors. It follows that the 3-brane in
D =T can be lifted to the D = 10 heterotic theory as an intersection of the heterotic
b-brane and Taub-NUT.

We conclude this chapter by adding that in [56] a proof was constructed demon-
strating that the Salam-Sezgin vacuum solution is unique among all nonsingular so-
lutions with a four-dimensional Poincare, de Sitter or anti-de Sitter invariance. The
proof of uniqueness applies of course also to the N/ = (1, 1) supergravity.

We should also mention that in [57], a general class of dyonic strings were ob-
tained in the D = 6, N' = (1,0) gauged supergravity preserving i of the supersym-
metry. The near-horizon limit of the dyonic strings, gives rise to AdSs x S®. Here S3
is a homogeneously squashed 3-sphere. The AdSs; x S® solution which is supported
by both 2-form and 3-form charges contains a nontrivial free adjustable parameter
associated with the squashing of the sphere. In the limit when this parameter goes

to zero (or for a vanishing 3-form charge) one recover the (Minkowski)s x S? vacua.
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CHAPTER VII

SUPERSYMMETRIC M, 3 x S* AND My 5 x S? VACUA

The generalized Kaluza-Klein reduction gives rise to gauged supergravities that admit
supersymmetric vacuum solutions of the form Minkowskixsphere [26]. The nine-
dimensional theory admits just a (Minkowski)s x S vacuum of this kind, supported
by the H s, flux. The theories in lower dimensions admit (Minkowski)y_3 x S% vacua
supported by H,, and (Minkowski); » X S? vacua supported by a 2-form F,. In

this chapter, we shall show that these vacua are all supersymmetric.

A, My 35 x S? vacua

Consider first the (Minkowski)y_3 x S? solution supported by the H, field. This is

given by
2 v 2
de = dx"dx ymy + m ng s
8

If we lift the solution back to D dimensions using the generalized reduction ansatz,
it becomes the near-horizon geometry of a (D — 5)-brane supported by the field H 3)-

To see this, we start with the (D — 5)-brane in D dimensions, given by
A2 = H o2 da da’ 1, + Ho 2 (dr® + 12 dQ2)
Hy = 2QQ, o¢=—talogH, H=1+Q/r. (7.2)

In the near-horizon limit, the additive constant 1 in H is dropped. Making the

coordinate transformation r2/Q = eP~2™2 and letting Q = 4/((D — 2)?m?), we
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obtain

4
A2 _ 2mz v 2 2
dSD = € (dl‘“ dx my +dz* + m dQ3) s
A 8 ~ 4
Ho = Samp—gpter  2=5™m (73)

which fits the reduction ansatz precisely, giving rise to the lower-dimensional solution
(7.1).

The supersymmetry of the (Minkowski)g_3 x S? solution is easily established.
Firstly, since its lift to D = d + 1 dimensions gives the near-horizon limit of the
(D — 5)-brane, as discussed above, it is manifest that qua D-dimensional solution,
it will preserve one half of the D-dimensional supersymmetry. This halving of su-
persymmetry comes about from the usual projection condition for supersymmetry of
the (D — b)-brane, € = I « €, where f* is built from the product of Dirac matrices in
the world-volume of the (D — 5)-brane. As is well known, for any of the BPS brane

solutions with metric given by
ds? = e** da* dx,, + €*F dy™ dy™, (7.4)

the Killing spinors are given by

>

A 0> f‘* é\0 - é\0 ) (75)

M™>
I

QN
Pl

where € is a constant spinor. We see from (7.3) that A = mz, and hence the Killing

spinors in D dimensions take the form
E=e2™ ¢, (7.6)

Since this z dependence matches precisely the z dependence for € in the generalized

reduction ansatz (5.8), it immediately follows that the (Minkowski)y_3 X S® solution
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will be supersymmetric qua solution of the d-dimensional gauged supergravity.

B. M, 5 x 52 vacua

Another class of supersymmetric vacuum is of the form (Minkowski)y o x S2, sup-

ported by one of the two-form field strengths F . It is given by
ds? = daz"dz” n,, + L dQ3
nv m 29
Foy = ——= Qo p=0. (7.7)

Lifting this solution back to D dimensions, it becomes the near-horizon limit of the

(D —4)-brane supported by one of the field strengths F

& - The (D —4)-brane solution

is given by

2(D—3)
D—2

A2 = H 72 datda’ ny,, + H (dr? + 12 dQ2),

Foy = V2QQu, d=-lalogH, H=1+Q/r. (7.8)

In the near-horizon limit, the constant 1 in H is dropped. Making the coordinate

transformation r/Q = e?~2™* and setting Q = 1/(m (D — 2)) we have

1
A2 _ 2mz v 2 2
dSD = € (d$'u dx ymy +dz" + m dQ2> s
) NG )
F(Q) m Q(g) y (b = 5 mz. (79)

This clearly fits the reduction ansatz exactly to give rise to (7.7).

Again, the supersymmetry of the solution as a lifted D-dimensional configura-
tion is manifest, since it is just the near-horizon limit of a BPS (D — 4)-brane. Its
supersymmetry as a solution in the d = D — 1 dimensional gauged supergravity itself

is again easily seen, from the general form (7.5) of the Killing spinors in the lifted
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(D — 4)-brane. Thus we again find that the D-dimensional Killing spinors are of the
form (7.6), and so comparison with the generalized reduction ansatz (5.8) for é shows
that the (Minkowski)y_o x S? solution will be supersymmetric in the d-dimensional

gauged supergravity.

C. A general discussion of My_,, x S™ vacua

In this section we show that the brane world interpretation of the generalized Kaluza-
Klein reduction presented above is unique to half-maximal supergravities and it can-
not be applied for example to type-IIA supergravity. For this discussion we need the
p-brane solutions in D dimensions of supergravities. These solutions involves beside
the metric, a dilaton and an n-index antisymmetric tensor Fy, .., where n < D/2.

The Lagrangian describing this set of fields is given by

_ 1,
e 'L, =R—1(0¢) - 51° CFGy - (7.10)

The p-branes were obtained in [58] and are given by

ad 4d
_4d__ k
) (D=22 gt da¥n,, + (1 + Ti) P22 (dr? + r?dQ5, 4 ),
r

ds? = (1+

bl

ﬁ&:‘ wﬁ z‘ S

v = (1+=)%, (7.11)
where 2#(u =0, ...,d — 1) are the brane volume coordinates and

d+d=D—2. (7.12)

The constant k is defined as k = %\/K)\ / d and the dilaton coupling a is given by

2n—=1)(D—n—-1)

2
—A—
@ D—2

(7.13)
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Examples of values on A that arise in supergravity theories are A = 4 for n # 2, and
A =4 and 2 for n = 2. (Note that eq.(7.13) is valid also for cases with no scalar field
but with a now set to zero.) Consider the near horizon limit of the p-brane metric
given by

__4d 4d? 4 . 4d ,dr2
ds% — L~ (D=2)A . (D-2)A [nuydx“dxy + kAar® A (% + dQ%_d_l)} , (7.14)
r

where we have made use of the relation (7.12). Now to make contact with the gener-
alized reduction ansatz the r-dependence inside the bracked must drop out and this
gives the condition

2d = A (7.15)

Making use of the relation d =n — 1 we obtain

A =2

!

A=14

I

(7.16)

This result which is independent of the spacetime dimension D is clearly the field
content of the NS-NS sector of Type-II string and its torus reduction with vector
multiplets truncated out. At the same time the R-R sector has been ruled out by
(7.15). Note that the hodge dual field strengths F(p_s) and F{p_g) of course also

satisfies the condition (7.15).
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CHAPTER VIII

GENERALIZED KALUZA-KLEIN REDUCTION IN THE STRING FRAME AND
o-MODEL ACTION

A. o-model action

For many purposes it is advantageous to perform the Weyl rescaling of the metric that
transforms from the Einstein frame that we used in the previous section to the string
frame. One reason is because the half-maximal supergravities that we are considering
have a direct relation to the heterotic string, or the NS-NS sector of the Type-II
string. Another reason is that many of the formulae become considerably simpler
when expressed in the string frame. We shall consider only the case m; = my = m.
Consistent string propagation demands world-sheet conformal invariance, and
hence the vanishing of the beta functions for the background spacetime fields. In
this manner one obtains supergravity equations of motion which arise naturally in
the string frame. The corresponding equations may be derived from the string-frame
Lagrangian
eTIL = e (R4 4(09)2 — LH? — L(Fe)?), (8.1)
taken here to have been compactified on a (10 — D)-dimensional torus (with the
additional truncation of (10 — D) vector multiplets). It is to be understood that
all fields in this section are labelled with a suppressed tilde (g, , ﬁ(g,), etc.) unless
otherwise indicated, to distinguish them from the Einstein frame fields. The complete

transformation between the two frames in dimensions D < 10 is given in appendix C.

The equations of motion following from the Lagrangian (8.1) are

17a ftaP
§FMPFN )

RJMN - _Z/V\M/V\Nci) + %HMPQI:INPQ +
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d(e2%F0) = (1P e 2%, A FY

A

00 = 200)* - LH2 — L(FS)” (8.2)

By tracing the Einstein equation and substituting in the dilaton equation, we may

obtain an expression for the Ricci scalar:

R=—-400) + ZH2 +3(F2)> (8.3)

In D dimensions, the Einstein-frame and the string-frame metrics are related by

A2 lag 40 1329 ;.9
dsg, = €2°9dss,, = e 27 dss,, (8.4)

where we have defined ¢ = —é/ a and (E is the Einstein-frame dilaton field. For the
case where m; = may, the reduction ansatz (3.6) converted to the string frame is

rather simple, namely

sy, = dsi, + e_ﬂcp(dz +Aw)?,
Ba = B+ By Adz,
b = @—%gp—%(d—l)mz. (8.5)

In other words, the reduction is exactly the same as a standard Kaluza-Klein reduc-
tion, except for a linear z-dependence in the dilaton d. The string frame reduction
ansatz can be obtained by using in D-dimensions the Ricci tensor for a Weyl trans-

formed metric §,,n = €2 §ay which yields

Run = Run + (D — 2)(8,,0050 — V1,080 — GuinG"20p0000) — Gunlo.  (8.6)
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It follows that the o-model action for this generalized circle reduction is given by

1 . . A
I = / do dr[\/777 0,X" 0;X" Gy + €7 0,X" 0,X" B,

4 o

+a/R(® - §(D - 2)mz2)],

where ®, g, and B/w are independent of z, and X° (the circle coordinate) is given
by X° = z. However, the z dependence of the string action implies that T-duality
is now broken. This can also be seen from the low-energy effective action obtained
in chapter III, where the Kaluza-Klein vector A, and the winding vector B, are

clearly not on a parallel footing.

B. Untruncated d-dimensional string-frame equations

We give here the complete set of bosonic equations of motion for the untruncated
system, expressed in the string frame. It will be seen that these are considerably
simpler than the previous expressions that were obtained in the Einsten frame.

For the form fields in the string frame we find

V(e *H,, = m(d-—1) (e’zq’ijg.A" - e’zq’*‘/ﬁ“’Gw) )
V(e Y%G,,) = L H, FU 4 m(d - 1)e 2HVG,, A7
Vu(ef2¢’Fﬁy) — %efQQH#VUFauU 4 672¢’+\/§¢G!U/Lau
+m(d—1) (e_mF;fl,A” — 6_2¢+‘/§“’LZ) :
Vh(e 20 HV2epa) = Lempe g Lem2tV2eq pom
+m(d — 1)e 2PHV2epa g
v —LSD —i%’ 1 vo a 7av —i%’ 1 v
V(e Vi F,) = € Vi (AH,ueG" — Fo,L%) + 2¢Vi%(0,8 — L0,9)F,

tm(d—1)(V2e V00 + e VIPA'F,,). (8.7)
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For the scalar fields, we find

Oy = ﬁ(e\@“’Gé) — eiﬁg"fé)) + %eﬁw(Lfl))Q + 20,000 +m(d —1)A"0,p,
00 = — LH2 — L(F8)? — L(eV?*G + e V¥ F2)) +2(00)? (8.8)

+2m(d — 1)A* 8,8 — Lm(d — 1)V, A" + Im?(d — 1)2(A%, + V).
The Einstein equation in the string frame is given by

Ru = L0up0,0 —2V,0,® + 1H, o H” + V%G, G P + Le V2 F,, F.r

+1Fe For 4 1V Las — Im(d — 1)(V,A, + V,A,) . (8.9)

25 up v
C. Truncated d-dimensional string-frame equations

In the string frame, we may again truncate out the vector multiplet by setting ¢ = 0,

La

¢y =0and A, = B, = Ay /v/2. The equations of motion for the bosonic fields of

the pure supergravity multiplet now become

VUHILVU = QHNVUMU - % m<d - 1)FNV’
V'F, = YH,,F"0 4 2F,, M,
VYE = LH,,F*"" +2F° M”

VHM, = 2MZ — LH] — YH(F2 + (FS

1 3 (2) (2))2) + %m2(d - 1)27

Ry = =V,M, =V, M, + iHupoHupa + %(FMP E"+ F/:lp Fyr), (8.10)

where we have introduced the field

m(d—1)
2v2

It is evident that the massive field M, arises because the dilaton ® is eaten by the

gauge field A, .



64

As in the Einstein frame, these equations cannot be obtained from a Lagrangian.
However, if we set A, to zero, the equations of motion for the remaining fields can

be obtained from a Lagrangian, given by

e 'L =e?? (R +4(0®)* — LHY —

(3) i(F((;) —(d - 1)2m2) . (8.12)

Although this truncation is consistent within the bosonic theory, it cannot be consis-
tent with the full supergravity, as it would be incompatible with the structure of the
supermultiplets. Nevertheless, we see from (8.12) that in the string frame the scalar

potential becomes a pure positive cosmological constant.

D. Supersymmetry in the string frame

The supersymmetry transformation rules for the fermions are readily expressed in

terms of the fields of the string frame, using the formulae given in appendix C.
1. D=6
The transformation formulae in six dimensions is

gul/ — €_¢ gMV s F = F(C;) , B(Q) == B(Q) s d¢ ‘I— QIMA(U M(l) 5 (813)

F(Z):ﬁ(2)7 ¢1:_\/§¢a e:@_zd)g’ )\:ez(b:\’ @bu:e_z(bqﬁlt;

The supersymmetric variations for the fermions take the form

5/\1 = [ M/L/y + 24H Vp,?p,up + ﬁ’?uyqﬁFp‘u - gm/y'?]gz - 8\1./5,’?#” ,u,l/ijgja

577[];” = [/v/u iM ’3/ ’?V é(’y 35”’71)0) Vpa+ m’)/u’77

- ﬁ\@(ryuyp - 65,117))'77}7’@]51‘ + ;[(’?MVP — 60,y ) vpi e] (8.14)
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It is of interest to note that the gravitino variation for the shifted gravitino, ¥, =

o
15# + %% A, given by
0 = |Vt $Huwo + 5557 1w & — 3557 Fu i, (8.15)
does not depend on m.
2. D=9
In nine dimensions the transformation formulae is
5. - — .
Guv = e\/;(blg;w ) Foy=Fy, Hgs = H, d® + \/gmAu) = M,
_ 8 @ _ ﬁ¢1~ )\ _ _Qjﬁ(bl’)v\ _ 2\}ﬁ¢1 7 8 16
¢l__ 7 ) €=¢€ €, =e ) wu_e @b;u ( )

The supersymmetric fermionic transformation in the string frame then take the form

N 1 a7 ~ 1 771 ~ uvo i o~y 4i
N = (WMM’YM + T\/?H/uxa’yu + me/’yu - \ﬁm)ea
&;u = ( uw %MV:Y//?V - 8*14Hl/0p(:)/uyap - %55’?0;))

— o5 Fuo(3,77 = 120737) + $m, ). (8.17)
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CHAPTER IX

SUPERSYMMETRIC TIME-DEPENDENT SOLUTIONS AND PP-WAVES

In this chapter we construct a time-dependent solution of the new gauged nine-
dimensional supergravity, and we show that it is supersymmetric. It can be thought of
as a cosmological solution in the gauged supergravity. The solution is of a form anal-
ogous to a standard domain wall, except that here the “transverse space coordinate”

is timelike rather than spatial.

A. Cosmological solutions and pp-waves

It is easily seen that the configuration

dsy = —dt*+ (3mt)’da'ds’,
evi? = Smt. (9.1)

solves the nine-dimensional equations of motion that follow from (3.18). Note that
the form-fields are all zero in this solution.

The fermionic transformation rules (5.10) in this background reduce to

N = —Q—\IEFM(@MQZ)) €— \%me_\/%(be,
5¢M == V]we-}_ %/’frle_\/%(¢> FME, (92)

and it is easily verified that (9.1) is supersymmetric.
In the string frame, the metric in the solution (9.1) becomes simply the Minkowski

; 2 M J,N
metric dss, = nuxdz™dz™, where

t =exp(8ma?). (9.3)
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The dilaton is a linear function of the redefined time; ® = —4ma°+ constant.

The solution (9.1) is straightforwardly lifted to ten dimensions, where it gives

ds’, = esz[ — (%mt)_l/A‘clt2 + (%mt)7/4(alz2 + dxidzi)} ,

e = e4mz(§mt)7/2. (9.4)

This can again be viewed as a time-dependent supersymmetric cosmological solution,
driven purely by the dilaton. In the string frame the metric is again Minkowskian,

but now the dilaton is linearly proportional to the light-cone coordinate z:

ds?

str

= 2dzt dx™ + da* da’ o=z, (9.5)

A metric-dilaton configuration of this kind was also discussed in [59]. It is straight-
forward to see that the solution preserves half of the supersymmetry, with the Killing
spinor given by 'y, ¢y where ¢ is a constant spinor.

A further uplift to D = 11 using the standard Kaluza-Klein formula
ds?, = e%";dsfo + e 3%dy? (9.6)
yields the Ricci-flat solution
ds®, = —r*dt® + t*dr® + r*t’dz’ds’ + v~ dy?, (9.7)

where we have changed from the ten-dimensional coordinate z to a new coordinate
r defined by r = e%mz(gm t)1/6 . The metric (9.7) is a pp-wave. To see this, we

introduce new coordinates X, and X_ defined by

r?t? =X, , — = 2% (9.8)
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in terms of which (9.7) becomes
ds?, = dX dX_ + X do'dx’ + X *dy® . (9.9)

Thus, we conclude that in eleven dimensions the solution describes a pp-wave.
The metric (9.9) is a particular example of a more general class of pp-waves,

contained within the ansatz
dsp = dX dX_ + X' dz™ da™ + X[2dy™ dy™ + X"3dz"3d2" + -+ . (9.10)
Here, we take the index ranges to be
1<m; <py, p1+1<my <p+ps, etc. , (9.11)

and so the total dimension is D = 2 + p; 4+ py + - - -. The only non-vanishing vielbein

components of the Riemann tensor for (9.10) are given by
R, 4my+ = —3hi(hi —2) X 6mim, - (9.12)

Thus (9.10) is Ricci-flat if
0="> pihi(h; —2). (9.13)
i=1
The pp-wave (9.9) that resulted from lifting our time-dependent cosmological solution

to D = 11 is the special case with
p1:8, hlzl, pgzl, h2:—2, (914)

which clearly satisfies (9.13).
It is possible to consider a generalization of the solution (9.1) by introducing a

nonflat metric for the transerse space as

dsy = —dt* + (8mt)*v;;(x)dx'da’ (9.15)
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with the dilaton still given by (9.1). In order for (9.15) to be a solution, the metric

~i; must be Ricci flat. The Killing spinor in this case is given by
e(t,x) = tY%¢(x) (9.16)
where €(x) is a Killing spinor which solves the equation
Vie(z) =0 (9.17)

in the background «;;. The solution with the curved metric «;; will be supersymmetric
as long as we use Ricci flat manifolds that admit Killing spinors. See [60] where the
supermembrane in eleven dimensions is treated, and see also [61, 62]. For a discussion
of nonflat world volume metrics see [63] where the D8-brane of Romans massive theory
is studied. We should emphasize that solutions with the transverse space allowed to

be curved always have less supersymmetry than in the flat transverse space case.
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CHAPTER X

AdS PP-WAVES I

The pp-waves in M-theory and type-1I1B supergravity in general have 16 ”standard”
Killing spinors, that is half of the maximum supersymmetry. A large class of these
solutions were studied in [64, 65, 66]. For appropriate choices of field strengths and
integration constants, supernumerary Killing spinors beyond the 16 standard ones
could also arise [64, 65, 66, 67, 68, 69]. These include all of those from the Pen-
rose limits of AdSxsphere arising from non-dilatonic p-branes and/or intersecting
p-branes, and of AdSxspherexsphere, arising from non-standard brane intersections
[70].

It is natural to study the pp-waves in AdS background. As mentioned in the
introduction the effect of introducing a pp-wave in such a background can be viewed
as performing an infinite boost on the boundary conformal field theory [42, 71]. The

supersymmetry of the purely gravitational pp-wave in AdS, of Kaigorodov [41] and

1

its higher dimensional counterparts were discussed in [42]. These metrics preserve ;

of the supersymmetry, consisting with the fact that in the dual conformal field theory,
the original supersymmetry as well as the superconformal symmetry are broken by
the boost [42]. Generalizations of the Kaigorodov metric to inhomogeneous solutions
were obtained in [72, 73, 74]. For a discussion of the Kaigorodov spacetime see [75].

In this chapter, we show that purely gravitational AdS pp-waves can in fact
admit supernumerary supersymmetries [76] for appropriately constrained harmonic
functions associated with the pp-waves, extending the result of [71], where only %
supersymmetric solutions were discussed.

AdS pp-waves can also be supported by a field strength. Their supersymmetry
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has been studied in [77, 78, 79, 76]. See also [80]. In the case of charged pp-waves
of minimum gauged supergravities in D = 4 and D = 5, it was shown [79, 76]
that supernumerary supersymmetry can arise again for appropriately constrained
harmonic functions. The new solutions preserve % of the supersymmetry, double the
number of standard Killing spinors associated with the general pp-wave solutions
including the Kaigorodov metric. For pp-waves with % supersymmetry in D = 3 see

81).

A. Purely gravitational pp-waves

In this section, we consider pure gravitational pp-waves in Einstein gravity with a

negative cosmological constant in arbitrary dimensions. The Lagrangian is given by
e 'L=R+(D—-1)(D~-2)g (10.1)
where e = (— det(gy, N))l/ ?. The Killing spinor in this theory satisfies the equation
V€ = —%g | (10.2)
We study AdS pp-waves using the metric ansatz
ds? = e (—ddrtdx~ + H(dx")? + dz; dz) + dp? (10.3)

where the function H depends on ™, p and z; coordinates. The Einstein equations

of motion reduce to

D-3
OH = (8] +9(D —1)d, + ¢ Y 97)H =0, (10.4)

i=1
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where the index 7 stands here for z;. To discuss the Killing spinor equations, we make

a natural choice for the vielbein basis
et =e¥dat, e =e¥(=2dz” +1HdaT), € =e%d, " =dp, (10.5)

such that we have ds? = 2eTe™ +e*e*+-efe”. In this tangent basis, the spin connections

are given by
u)_p:geJr, Wy = %e’gp(?,-He*, w+p:g€7+%H/€+7 wip:gei7 (106)

where the prime denotes the derivative d,. Note that for the metric in this basis we
have ny_ = 1 and nyy = n__ = 0. In the following we use the notation that all
derivatives are with respect to the curved metric and all indices on gamma matrices

are vielbein indices. The Killing spinor equations are given by

[0y +39¢” T (T, + 1)+ 39e”HT_(T, +1) + eH'T_,
—1& Dz_:?)@-H [_le=0,

0.~ geT (T, + e =0,

[0; + 1ge? Ty(Ty + 1)]e =0, i=1,2,---,D—3,

9, + 19 T,Je =0, (10.7)

where we have I'}, =T2 =0 and {I';,T'_} = 2. Thus, we see that a generic pp-wave
in a pure Einstein theory with a cosmological constant preserves i of the maximally

allowed supersymmetry. The projections are given by
T, +1)e=0=T"_k€. (10.8)

We are interested in finding solutions that preserve more supersymmetry. One

might expect that it would be helpful in this case first to analyse the integrability
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conditions [0, ,dy|e = 0 among the Killing spinor equations. This calculation yields

0 = [04,0]e=—1[ge"H'T; + €O, H'T, + > 0,0, HT;]I'_e,
J

0 = [64-78{7]6:_

1
4

[e??(H" +2gH"\T, + Y 0;H'I';]T _e. (10.9)

The integrability conditions are satisfied provided that I'_e = 0. This is an example

where integrability conditions are not enough for the existence of the Killing spinors.

To see whether the metrics can admit more supersymmetry than the i, let us

use the less restrictive projection condition
gL'y +1De=1ifTI"_e, (10.10)

where f = f(z™T, p, z;) is to be determined. Substitute this projection into the Killing

spinor equations, we have

05 + e fT T = §(e”H' + Y Ti0:H)T—|e = 0, (10.11)

O_e=0, 0; + $e9?f T, T_]e=0, 0,4+ 3fT_ —1gle=0.
The integrability conditions [0,, ,dy]e = 0 among these equations are

0 = [0;,0)e = —3e9(T; 0if —T;0;f)T e,
0 = [0;,9le=5[(e”f) Ti = 9, fIT e,
0 = [0s,0)e=—}[ie(L;0.f — T4 0if) + 2" f2T
+ie9,H' + éDf T0;0H|T e,
i

0 = [04,0,)e=—3[i0pf + e f> —i(e”f) T + 1Y TidiH'

+1e9(H" + gH')|T_e. (10.12)

From these integrability conditions we see that if we insist on more supersymmetry
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than the usual i we must set
We then have
(e?f)Y = 0, (10.14)
0, f+e”f*+Le0,0,H = 0, i=1,2,---,D—3, (10.15)
0, f+ e f+Le(H"+gH') = 0. (10.16)

The conditions in (10.13), together with (10.4), implies that H is given by

D-3 —2gp D-3 (D
_ 1 2 1)g
H=73) cz+ 202(D = 3) § ci+be (10.17)

where ¢; and b are functions depending on 2" only. Equation (10.15) implies that all
¢;’s are equal, and hence we let ¢; = ¢(z™). From eqs.(10.14) and (10.16) it follows

that we must set b = 0. It is straightforward to solve for f, given by
f=eU(z"), (10.18)
where U satisfies the following first-order non-linear equation

dU
— 4+ U*+1c=0. 10.19
ldx+ + + ( )

Making use of eq.(10.19) together with the solutions for f and H we can now solve

the Killing spinor equations given in (10.12). The Killing spinor solution is

D—3
€ = e%gp<1—;U;ZiF¢F_>( i _lfF )

x[1-3(1- e—ifUdﬁ)m e, (10.20)

2

where ¢ is a constant spinor satisfying (I',+1)ep = 0. Thus, the metric preserves % of
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the supersymmetry. It is important that the final result of our Killing spinors (10.20)
satisfy the projection condition (10.10), which can be easily verified to be true.
Note that the special case of ¢ = 0, b # 0 is the Kaigorodov metric. The above
analysis implies that it preserves i of the supersymmetry. In order to have % BPS
solutions, it is necessary to set the Kaigorodov component to zero.
Note that in general ¢ is any function depending on z*. The simplest case is
that ¢ is a constant. The ™ dependence of ¢ has no effect on the existence of the

Killing spinors, but only modifies the explicit Killing spinor solutions.

B. PP-waves in D = 4 gauged supergravity

1. The solution

In this section we continue our investigations of supernumerary supersymmetry by
including a U(1) charge. We start with gauged N' = 2 Einstein-Maxwell AdS super-

gravity, whose Lagrangian for the bosonic sector is given by

e 'Ly=R—1F% +6g% (10.21)

T

where Fi, = dA,. The supersymmetry transformation rule for the complex gravitino

U, = Ul +i02 is [82, 83]
0Wy = (Vi = 39Au + Fus T T + 39T e (10.22)
We consider the following pp-wave ansatz

ds* = e*P(—4dx" dx™ + H(dxt)? + dz?) + dp?,

Ay = ¢ 'S(1—e %) dat, (10.23)

where H = H(xz™, p, z) and S is here a function of 2. The equations of motion imply
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that H satisfies

OH =H"+3gH +e *9°H = —S%e " (10.24)

The solution can be expressed as
H= 52(%c g (Reem0P — Lt 4 be_?’g”)) + Hy, (10.25)

where b and ¢ are functions of ™ and Hj satisfies OHy, = 0. (Note that the terms
associated with b and ¢ actually belong to Hy. We extract them since they are
necessary for the solution to reduce under g — 0 to the pp-wave that is the Penrose
limit of AdS, x S? of the corresponding ungauged theory.)

If we turn off the field strength by setting S = 0, and let Hy depend only on p,

namely Hy = ¢y + be 397, then we recover the Kaigorodov metric.

2. Standard supersymmetry

Here we investigate the supersymmetry of the “charged” pp-wave we derived. The

Killing spinor equations in this background are given by
[0 + 1ge? T (T, + 1)+ g HT (T, + 1) + T _.0.H + LeH'T_,
+58(e™% — 1)+ 1e ST, I_T']e=0,
[0_ —ge’*’T_(I',+1)]e=0,
0. 4+ 39¢” T.(T, 4+ 1) + 27 9°ST,,I_Je =0,
[0, — 1e72"ST_+ 1gT,Je=0. (10.26)

Imposing the following projections

(T,+1)e=0, T_e=0, (10.27)
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the Killing spinor equations become
[0, —3Sle=0, O_e=0, D.e=0, [0, — 39le=0. (10.28)
Thus the Killing spinor is given by
e — eaortySint e (10.29)

where ¢ is a constant spinor satisfying (I') + 1)eg = 0 and I'_¢y = 0. The solution
therefore preserves i of the supersymmetry. We follow the literature [64, 65] and call
these spinors the standard Killing spinors, since there is no further requirement on

the function H for the existence of the €, as long as H satisfies the equation of motion

(10.24).

3. Supernumerary supersymmetry

When the integration constants of H satisfy further conditions, there can arise addi-
tional Killing spinors, which are called supernumerary Killing spinors in [64, 65].
In order to obtain these Killing spinors, we consider the integrability conditions

[0y, Ox]e = 0. We find that

0 = [0., 9,Je=1ge ST, T_(I', + 1)e,
0 = [04,0-]e=—3gST_(I', + 1)e,
0 = [04,0:.)e=19SB =20, T).(T,+ 1)e — 1790, ST,,T_e

—1e90,H'T,T_e — 1[ge*PH' + 02H + e S|, T _e,
0 = [04,0,)e=—1ge9SB—T,T_)(T,+1)e+ 1e799, ST e

—10.H'T.T_e+ 1e%[gH' + e *07H + Le 9P S*T, T _e. (10.30)
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To arrive at the last integrability condition we made use of equation (10.24) for H.
It is clear that the integrability conditions are satisfied with the projections given
in (10.27). However, we now show that it is possible to relax these projections. We
find that the integrability conditions can also be satisfied, with the following less
restrictive projection

g, +1)e=1ifT"_e (10.31)

where f = f(x™, p, z). This gives the projected Killing spinor equations

(04 = 38 = 397 e ST+ 5(ef + e S0y T
—1(e”H +T,0,H)I_le=0, 0_e=0,
(0. + 1(e9f+ 1e79S)[.T_Je =0,

0+ 307 = 3 ST~ Ll =0. (10:32)

The integrability conditions among these equations are

0 = [0.,0,)e = —i[.0.F — (% f) + Lge 9 S|T. T _e,

_i
2

0 = [04,0.) = —L[i(e%0, f + Le 90, S)T, — (1% T, — g e 8)0. f

1

2
+(€gpf + %679p5)2 Fz —+ %(egpaZH/ 4 angH)]F,E,

0 = [0s,9,)e = —3li(0:f — 3¢ 20.5) + g~'S(e™"f)

_i((egpf)/ N %ge_gpS)F+ + %egp(H// + gH/> + %Fzng/

+e(f* — Le719PS?)T e (10.33)

It is clear from these expressions that if we want more supersymmetry than i we need
again to impose 0, f = 0 = 9,H’. The vanishing of the integrability conditions in this

case then yields the equations

(e”f) = 39¢77S =0,
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(0, f + %6_2‘(]’08_,_5) + %e—gpag[_] e (f + %e—Qgps)Q ~0,
(04 — 170,8) + g S Y + 3 (H" + gH)

+eIf?—LeTP5% = 0. (10.34)
From the first of eqs.(10.34) we obtain
f=—1ePS e U, (10.35)

where U = U(z™") is in general a complex function. Note that S is a real function.

Using the solution for f and the equation for H the remaining two equations in (10.34)

gives
AU 2, 192
ds
i - e79S% + 35U + ge*PH' + e99°H = 0. (10.36)
x

Since the functions S and U depends only on " we need to check that the p de-
pendence in the equation for S drops out before we can proceed. For this we need
to make use of the solution for H, which is given by (10.25). Setting Hy = 0, and

substituting H into eqs.(10.36) we have!

_dS AU,

In order to solve these equations we rewrite U into an real and imaginary part U =

u + iv. Egs.(10.37) then yield the following set of equations:

dS du
R — e _ 2 = — —
der—l—BUS 0, dx++ uv =20, S(u—bS)=0,

Tt is straightforward to verify that in general supernumeary supersymmetry re-
quires that Hy be given by (10.17), which is not the most general solution for
DHO - O .
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d
dx—”++v2—u2—§c52 ~0. (10.38)

We have four equations for the five functions S, u, v, b and ¢, and so one function will
be left arbitrary. We present the solution to eqs.(10.38) in terms of the function b.

The solution is given by

ki k ., db
S = p YT VT e

20° ¢ d%b k?
A - (10.39)

where £ is an arbitrary constant and we have taken S # 0. (The case with S = 0 was

considered in section 2.) Note that the original generic i supersymmetric solution
depending on the three functions b, ¢ and S now only have one independent function
in order for the solution to have the enhanced % supersymmetry.

We next turn to presenting the explicit Killing spinors. The Killing spinor equa-

tions are

[0, — 35— 297 e fST_+iUT T_ — 1(eH + ¢z S°T.)I_]e=0,

O_e=0, 0.4+ iUT.T_Je=0, [0, — sg7' f'T_ — 1gle =0, (10.40)

where f is given by (10.35). The third equation of the above implies ¢ = (1 —
%z UT,T_) x x(p,z"). Substituting this into the fourth equation yields the solution
X = e%g’o(l + 297 fT_)n(z™). The equation for 1 can be obtained from the first
equation of (10.40) after making use of eqs.(10.37). We have

-

s JS—=UT T Jn=0. (10.41)

Note that it requires conspiracy for the z and p dependent terms to drop out. Finally,
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we arrive at the Killing spinor, given by

Lo+ [Sdnt i i—
e = e29rt3)Sd (1-3zUT.T)(1+4g'fT-) x

x[1— 11— e Va6 (10.42)

where €, is a constant spinor, satisfying the projection
(I'y+1)e =0. (10.43)

There are two special cases that are worth considering. The first case is that b
is set to a constant, implying that v = 0. It follows then that the functions S and u
are constants as well, and ¢ = —2b%. Assuming S = p the Killing spinor in this case

is given by

1 i . .
e = 2t (1 Eup DT ) (14197 fT) x

x[1= 31— e 0 T e (10.44)

where € is a constant spinor, satisfying the projection (I', + 1)e; = 0. Thus after
imposing the condition ¢ = —2b%, the solution has % of the supersymmetry instead of
the i for a generic pp-wave solution. The standard Killing spinors are those with an
additional projection I'_¢y = 0, in which case, € of (10.44) becomes that in (10.29).
The supernumerary Killing spinors are the remaining half with I'_¢y # 0.

The function H, for the pp-wave with supernumerary supersymmetry, is given

by

H = —,u2 V22— g2 f? = —,u2 (b2z2 + g_2(b2 e~29r 4 %6_49‘7 — be_3gp)) ,

f = —iu(e™? —2be ). (10.45)

If we set b = 1, we have H = —p [12% + g~%sinh*(1gp) e72”]. We can then take
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the ¢ — 0 limit and obtain a pp-wave in ungauged D = 4, N’ = 2 Einstein Maxwell

supergravity. The solution is given by

ds* = —dda"da™ — 1P (2% + p?) (da)? + d2® + dp?,

F, = —pdzt Adp. 10.46
(2)

This is precisely the pp-wave arising from the Penrose limit of AdS, x S2, which is
known to have supernumerary supersymmetries [64, 65].

Note that in the ansatz (10.23), we could instead have used A, = pzdz™.
The metric in this case is identical to that with A, given in (10.23). However, we
verified that the solution would be non-supersymmetric, because of the explicit A,
dependence in the supersymmetry transformation rule.

Charged pp-waves with ¢ = 0 were also obtained in [80], by performing an infinite
boost of the AdS charged black holes. It can be deduced from the above analysis that
the solution with ¢ = 0 has only the standard supersymmetry. We can also obtain
pure gravitional %—supersymmetric pp-waves by setting b = l;/ i and then sending

pw— 0.

In [78] a general class of pp-waves that preserve i of the supersymmetry were
given. PP-waves with % of the supersymmetry were also obtained in [79], where
the Killing spinors were given in component language, while ours are presented in an
elegant form, in terms of constant spinors satisfying a single gamma matrix projection.

The second special case corresponds to the absence of the Kaigorodov component

b which can be achieved by taking a degenerate limit of (10.39). It is worth examing

on its own. In this case we have the coupled system

ds d
4308 =0, M—Zﬂ?—;cﬁzo. (10.47)
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This implies a relation between the metric functions ¢ and .S, given by

S + §S*4(

de+? 9

o2

__20-3
c= 35 =

(10.48)

Making use of these equations together with the solutions for H and f the Killing

spinor equations (10.40) yield the solution

1 i .
e = el ST (1L Ly T )(14+ig7'fT ) x

x[1—11—el" ", T_|e (10.49)

where ¢ is a constant spinor satisfying (I', 4+ 1)eg = 0. For the functions H and f we

have

H = 1s° [c 22+ g0 (20 — e’29p)} ,

[ o= —1eS ie . (10.50)

We can consider a special case of eqs.(10.47) by setting ¢ = constant and v = kS

where k is a (real) constant. In this case the equations fixes kto k2 = —ic with

¢ < 0. The equation for S is

s -
s kS? =0, (10.51)

with the solution given by S(z*) = 1/(1 + ka™).
C. PP-waves in D = 5 gauged supergravity

1. The solution

For simplicity, we consider simple gauged supergravity in D = 5. The Lagrangian for

the bosonic sector is given by [84]

e Ls =R — 1o + g Fun FroAg + 12¢°, (10.52)
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Analogous to the D = 4 discussion, we use the following pp-wave ansatz

ds® = e (—4dx" dr~ + H(dx")? + dz} + d23) + dp?,

Ag = Lg7'5(1 — e ) da™, (10.53)
where S = S(x1). The supergravity equations of motion then reduce to the following

2
OH = H" +4gH' + 72 > 0?H = —e "S> (10.54)
=1

The solution is given by
H =S 12} + ez3) + g7 (Aer + o) e — Le™ %9 4 he™"97)] + Hy,  (10.55)

where ¢; and b are functions of 7 and OHy = 0. The generalized Kaigorodov-type
metric is obtained by setting S = 0 and Hy = ¢y + be %9 with ¢y and b now being

constants.
2. Supersymmetry
The supersymmetry transformation on the gravitino is given by

0, = [V, — %QAM _ Fap (Ty T4% =374 T,) + 19T Je, (10.56)

i
16v/3
where € is a complex symplectic spinor. For our pp-wave background, the Killing

spinor equations are given by

(04 + 59¢ T (T, +1) + 19e” HT (T, +1) + (e H'T_,

2
‘|‘% le“_,&H + 4?\)/155(6_29/) — 1)

+ime 2P ST, (T T +30_T,)e =0,

[0- —ge?*T_(I',+1)]e=0,

[0; + 39¢7 (T + 1) + 75 STy, T Je =0,  i=1,2,
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00 — 5i5¢7*ST_ + 39T,Je = 0. (10.57)

As in the case of D = 4, the standard Killing spinors, which exist for all H satisfying
(10.54), arise with the following projections (I', 4+ 1)e = 0 and I'_e = 0. The Killing

spinor equations become
0y —i¥Sle=0, 9_e=0, de=0, [9,—igle=0. (10.58)

Thus, the generic pp-waves we considered preserve i of the standard supersymmetry.
In [77], a general class of null solutions with i of the supersymmetry were obtained,
however the issue of supernumerary supersymmetry was not addressed. We demon-
strate below that, as in the case of D = 4, supernumerary Killing spinors can also
arise.

To obtain the supernumerary Killing spinor and the corresponding conditions on

H, we impose the following projection on the spinors
g, +1)e=1ifT_€. (10.59)

The Killing spinor equations become

01 = TRS+ 3 4 e ST T — LT 0

4
— L H +V3g e f ST Je=0, 0. e=0,
[0+ $(e7f + 5Lee P T _Je = 0,

[0+ 3(f — 5e "SI — 3gle=0. (10.60)
The integrability conditions among these equations are
0 = [0;,0,)e=—30if — (e”f)' T + %gefzg”S [0 e,

0 = [04,0;]e=—3[i(e?0, f + ﬁeﬁg”&ré’)lﬂi — (19T, — 2—%9716729”5)3#
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+%€g”8iH' + % Z I‘J@@H + (egpf + T\l/ge—QgpS)Q Fi]F_E s
J
0 = (00,30 = 3OS — F5eT0S) + 5lg0” Sl W) + § 0K
—i((e”f) — J5ge**S)Ty + 3¢ (H" + gH')

Hf = e S () + e ). (10.61)

To have more supersymmetry than the % we need to set
The integrability conditions then implies

f=—gleeS 40U,

dU 2 192 .
1d$7++U 3H:0 221,2,

dS dU _
(dxi - \% . +) g 163gps(e 2gpf>/_ %64gp(H”+gH/)

—%ES‘WU(JC i %6—39PS) — 07 (1063)

where U = U(x™). Substituting in the solution for H, given by (10.55), we find that it
is necessary to have that ¢; = ¢y = ¢, and that Hy is given by (10.17). For simplicity,
we set Hy = 0 here since the H, represents the pure gravitational component, which

was discussed in section 2. The equations for S and U are then given by

ds aw =, )
1dx—+—45(\/§bS—U):0, 1d7++U+ cS?=0. (10.64)

Substituting U = u + iv into the above yields the equations

ds du

D s = L guw = - -

T TwS=0, - +2uv=0, S V3b8) =0,

d

2= 1S =0, (10.65)

dxTt
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The solution to these equations is

S = — U=—-", V= ———

@b
e = qalgm o) | -6 (10.66)

where k is an arbitrary constant and we have taken S # 0. Note that as in the case of

D = 4, the original generic i—supersymmetric metric depending on the four functions

b, ¢1, co and S now only have one independent function in order for the solution to

have the enhanced % supersymmetry.

The Killing spinor is calculated from the equations

04 — 258 — 559 e PP fST_+ JUT, T

4V/3
—L(eH +cS*(z1T1 + 22 1))T_]e =0, (10.67)
J_e=0, [0;+iUT;T_Je=0, [0, — sg7 ' f'T_ — Lgle=0.

The solution is

1 .V3 . .
e = eI SET (U (s Dy 4+ 2Tl )(1+ 5g7 f T2) x

x[1= 31— e VBT T e, (10.68)

where € is a constant spinor satisfying (I') + 1)ep = 0. As in D = 4 we consider two
special cases. The first corresponds to v = 0, which implies that b, ¢ and S are all

constants, with ¢ = —6b%. Letting S = u the Killing spinor in this case is given by

1 ..V3 .
e = eartigpat (1 — i? pb(21 Ty + 22 T) F—)(l +3g7 1 fT) %

x[1— 31— e V3T T e, (10.69)

where ¢, is a constant spinor satisfying (I', + 1)ep = 0. Thus the solution preserves

half of the supersymmetry. Among all the Killing spinors, the standard ones are those
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with I' _¢y = 0, whilst the remaining half with I'_¢y # 0 are the supernumerary ones.

The function H for the pp-waves with supernumerary supersymmetry is given by
H = =3u°0*(z +25) — g2 f?
= —p2[3b% (27 4 22) + g 2 (3b% e 2P 4 %e_(;g" —be 9P,

f= =

‘ -

(e 39 — 6be ) . (10.70)

S

If we further let b = 1, we have H = —L/2(2} + 23 + 49~ ?sinh®(gp) e~ *¢). This
enables us to take the limit ¢ — 0, giving rise to a pp-wave in the corresponding

ungauged D = 5 supergravity, given by

ds* = —Adatdz” — 5p7 (27 + 25 + 4p%) (da™)? + d2f + d2f + dp?,
F, = —pdxt Ndp. (10.71)
This pp-wave can also arise from the Penrose limit of AdSs x S? or AdS, x S3,
which have supernumerary supersymmetries. Let us work out the Penrose limit of
the maximal supersymmetric vacuum solution AdSs; x S? which is given by
ds® = 4R*(—cosh®x dt* 4+ dx? + sinh® y dp?®) + R?*(d#* + cos® 0 d¢?)

Fo = V3R cosOdiAdp. (10.72)

Performing the substitution

3 - 1
uRde — dt — Ldg,

and taking the limit R — oo we obtain exactly the pp-wave (10.71).
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The second case is that of b = 0, and hence eqgs.(10.65) reduces to

d d
djwwszo, dx—v++v2—5c82=0. (10.74)

The Killing spinor is then given by

e = eaeir/Sd +(1+%’u(211ﬂ1—l—zﬂ})lﬂ)(l%—ég FT) x

x[1 -1 —e/" " 1 ]e, (10.75)

where ¢ is a constant spinor satisfying (I', + 1)y = 0 and

H = 1$° {c (22 4+ 23) + 29 2 29" (c — %674@)] ,
o= _ﬁef?)gpg +ie~ 9y . (10.76)

If we specialize to v = kS and ¢ = —6k? where k is a constant, the system (10.74)
simplifies to
ds

.
T+ ARST =0 (10.77)

D. PP-wavesin D=6and D=7

1. D=6

Our next example is in the Romans six-dimensional gauged N' = (1, 1) supergravity
[31]. The bosonic field content comprises the metric, a dilaton ¢, a 2-form potential,

a U(1) potential and the gauge potentials A, of SU(2) Yang-Mills. The Lagrangian

)
describing the bosonic sector is [85]
L = Rx1-— %*dqb Ado+ (267 X% + %gngX_2 — %g%X‘G) x1
— SX"%F A Fo — X 72 (xGpy A Gy + xF) AFG) (10.78)

— A A (3dBuy ANdByy + $92Au) N dB, + %QSA(m NAo +3F4 NFS),
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1
—_—— ¢ a a

AC

(- The fermions of this theory comprise symplectic-Majorana gravitinos ¥,,; and

dilatinos A\; where ¢ = 1,2 is an SP(1) index. The supersymmetry transformations

are given by [86]

oW,y = [DIM - %XzFABc rase FMF7 - 4%/5(91)( + %92X_3) F]M}Ei

+T1\/§(FM FAB - 2FAB FM)X_I(GAB 5ij - iF7FABij)F75j )

5)\1' = [_ﬁFM@MQS + iX2FABC rase F7 + %ﬂ(ng - gQX_3)]€i
s X (Gapd? —iTTFup ) T T (10.79)

The gauge covariant derivative is defined as Dye; = V€ + 591 Ay A €; where A,, J=

~—

A? (—0%)7 with the field strength given by Fy,n/ = Oy Axi’ + %glAMikANkj —(m =~
and o are the usual Pauli matrices.

In this chapter, we consider pp-wave solutions supported by only one field
strength. Owing to the Chern-Simons modifications to various field strengths, we
find that this can only be done with a U(1) vector field coming from the SU(2) Yang-
Mills. Thus we consistently set all the remaining form fields to zero, and also without
loss of generality (while insisting on AdS background) take g; = g, = —3¢g/+/2. This

leads to the pp-wave ansatz

ds® = e*P(—4dr" dv~ + H(dx%)* + dz] + dzs + dz3) + dp?,

Ay = 3977501 — ) dat, (10.80)
where S = S(z™). The equations of motion reduce to

3
OH = H" +5gH +e ) 97H = —e % 5%, (10.81)

=1
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and the solution for H is given by
H = SQ[ Zczzl +9 % 1+ ¢y + c3)e” 2P — ie’&"p + be’E’gp)} + Hy, (10.82)

where OHy = 0. The b and ¢; are functions of z™*.

We now investigate the supersymmetry of the pp-waves. This is more conve-
niently done if we rewrite the symplectic Majorana spinors using a Dirac notation.
(See [25] for details.) The Killing spinor equations from the gravitino transformation

rule are given by

[04 —

S M e S T - LY DOHT
2f<g_1 —3gpfS+ eng)F ] =0, 0_e=0,
[8i+%(egpf+ﬁe_3gp5)rir_]6:O, 1= 172a37

0+ 37 = glge S0~ bale =0, (1053

where we have made use of the projection condition g(I', + 1)e = if I'_e and where
f = f(xt,p,z). The integrability conditions [0,,,0y]e = 0 among these projected

Killing spinor equations are

0 = [0,9,)e=—3[0f — (" f + 115e7 7 S) Tl e,
0 = [04.0]c = — (%, f + {Ige 70, 9T QZFﬁﬁH
+3ePO;H' + (e9°f + 4—\1/?9_3‘”&9)2 ; — (1% F+ — ﬁg_le_?’gpS)@if}F_e
0 = (04,05l = —3[i(0+f — {25e7"°04S) + 5 D L0, H'
—i(e9f + ﬁe‘SgpS)’ I, + kg_lS(e_‘gglpf)'

(] = e ) + pe S) + Y (HY + gHT €. (1084)
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As before it is required that we set

and ¢; = c¢. The integrability conditions yields after using the solution for H the

following results

f — __1 —4gpS+ e—gﬂU

aU 9 2 _
1dx7++U + CS
. dS

St 25¢ S[S(T — 2400 €%%) 4+ 60v2*7 U] = 0. (10.86)

In the case of S = 0, corresponding to purely-gravitational waves, discussed in section
2, the last equation is trivially satisfied. When S # 0, due to the p dependence, we
conclude that no supersymmetry enhancement can occur here. This is expected, since
in ungauged D = 6, N' = (1,1) supergravity, the pp-waves supported by a 2-form
field strength also have no supernumerary supersymmetry. The solution does have

standard supersymmetry though. The Killing spinor is given by
1 i
e =2 maliEt (10.87)

where (I') + 1)ep = 0 = I'_¢g. It is easy to verify that the Killing spinor equations
associated with both the gravitino and dilatino transformation rules are satisfied.

Thus the solution preserves % of the supersymmetry.

2. D=7

The Lagrangian for the bosonic sector of half-maximum supergravity in seven dimen-

sions [46] can be written as follows [87]

L = Rxl—1xdpNdp—IX*«F, AFy — X2 «xF4 ANFS
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+(207 X% + 20192 X 0 — 195X %) +1 (10.88)

L
where X = ¢ VI0°, F, = dAy, and F2 = dA% + Lgieae A% A A, In addition

(CON

there is a "self-duality” condition that must be imposed, given by

where w, is defined as w;, = AL A FEG,) — 691 €abe Afy N AN AC

) W - This theory has a

pair of symplectic-Majorana gravitinos v,,; and a pair of dilatinos \;, where i = 1,2

is an SP(1) index. The fermionic supersymmetry transformations are given by [86]

51/JMi = Vye& + %Q1Amj€j + 960X2FABCD(FA{ 48P 4 praBer FM)Q

_401\/5 _I(SFM FAB - 5FAB FM)FABijEj B ﬁ(ng + ngX_Zl)FMei ’

0N =[5m0 0ne + X Fapen TP )6 — s X7 Fp? TP
+o5(01X = 92X e, (10.90)

where A,/ = A% (—0?)/. Owing to the odd-dimensional self-duality condition for
the A, our standard ansatz for the pp-wave metric does not work for A . We thus
consider the pp-wave supported only by the U(1) subsector of the SU(2) Yang-Mills.

The pp-wave solution is given by

ds® = e*P(—4dr" dr~ + H(dx")? + dz} + dzs + dz3 + dz3) + dp?,

Ay = Lg7'S(1—eP)da™, (10.91)
where S = S(z") and H satisfies

4
OH =H"+6gH +e Y 97H = —e %97 S>, (10.92)

i=1
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Here we have set g; = go = —2v/2¢. The function H can be solved, given by
4
H=S81Y cz?+g7? Zcz 20— Len10% 4 pem99)| 4 (10.93)

with OHy = 0 and b and ¢; are functions of z*.
The projected Killing spinor equations from the gravitino transformation rule

are given by

0 5 4+ g WIS R
_ﬁ(g_l _4gpf5+ eng)F ] =0, O_e=0,
04+ KPS+ e WL e, im 1234

0+ 3(f — 53¢ ST~ — 3gle=0. (10.94)
The integrability conditions

0 = [82 ) ap}ﬁ - _%[alf - (69Pf + ﬁe_élgps)/ Fi]r—Gv
0 = [0y,0]e= %[(69p3+f+5f e 499, ST ZF@@H
+3ePPO,H + (9 f + 57\1/56745”)5)2 I'; — (ie%” F+ — %gil e 19785)0, f]T _e,
0 = [0+,0))e= %[((‘L 4 e 99, S) + 1 ZF@H’
(] 4 e SY T 4 g (e ey
+(f — %e_sgPS)(eg"f + ﬁe“lgpS) + se9(H" + gH')|T _e, (10.95)
imply that there is no supernumerary Killing spinors in this case. This should be ex-
pected since in D = 7, even in ungauged supergravities, there is no pp-wave supported

by a 2-form field strength that has supernumerary supersymmetry. The solution does

have % of standard supersymmetry, with the Killing spinor given by

Lo e
e =222 Jsd +€0 , (10.96)
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where (I') + 1)eg =0 =T"_¢.

E. Uplifting to M/string theory

In this appendix we uplift the supersymmetric solutions supported by the U(1) charge
to ten and eleven dimensions. In the case of the four and five dimensional solutions
we uplift those with S being a constant. The four and seven dimensional solutions
are embedded in M-theory and the solutions in D = 5 and D = 6 are uplifted to

type-1IB supergravity and to Romans massive theory, respectively.

1. D =4 oxidized to D =11

The embedding formulae to eleven dimensions were obtained in [88] or we can also

use the ansatz in [89] after truncating to our case. We obtain

ds; = e*[—ddxtdx — uQ(izQ + g2 sinh2(%gp)e’39p)(dx+)2 + d2?] + dp?

+Ag72dE + g0 (07 + 03+ h2) + 57 (57 + 53+ h2)],

F, = —6ge’Pdat Nda™ ANdp ANdz — pg 3[scdé Aas + %6201 A 09
—scdé NG3+ 35761 A oo Adat Adz, (10.97)
where o; are the three left-invariant 1-forms on S? satisfying do; = —%eijkaj A oy .

They are given by oy + ioy = e ¥(df + isin0dyp) and o3 = dip + cosfdy in terms
of the Euler angles. The &; are left-invariant 1-forms on a second S®. We have also

defined

c=cosé, s =siné,
hy = o3 — (1 — e 9)da, hy = 63 — (1 — e 9)da,

6(3):0'1/\0'2/\}13, €<3) :5'1/\5'2/\133. (1098)
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In this pp-wave, the internal S7 is twisted but not flattened. Analogous solution but
with untwisted round S” can be found in [90)].
2. D =5 oxidized to type-1IB

Using the uplifting formulae to type I1B in [88, 91] we obtain for the metric

dsly = ¥ [—ddaTdr™ — L P (2] + 25 + 4g 2 sinh®(gp) e ") (dz)?
3
+da + dz3) + dp® + g7 Y ldpd + i (doy
i=1

+oygh(l — e ) dat)? ] (10.99)

and for the 5-form field strength Fi5) = G5y + %G 5),

3
G = —8ge*dat Ndx™ Ndp Nd*z — ﬁug_2 > d(pg) Ndgs Adat AdPz . (10.100)

i=1
The p; are parameterised as
py = siné, o = cos @ siny, 3 = cos B cosp, (10.101)
in terms of the angles on a 2-sphere.

3. D = 6 oxidized to Romans massive theory

The bosonic sector of Romans massive theory [23] is described by the Lagrangian

. N A 34 . . 2 A .
Lig = Rl — Jid N dp — §e2%Fp) A Fioy — g~ % Fg) A Fig)

1. . . ~ . . . .
~ 5
—Lm?(A)° — ImPe2%i1, (10.102)

where the field strengths are defined as

F@) = dA(m + mfiu) ) F(3) = dfim ;
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F(4) = dA(s) + A(l) A dA(z) + %mA(z) A A(z) . (10.103)
Note that the Bianchi identities in this theory are given by
dﬁ(‘l) = EQ) A F(Zi) 5 dp(s) - 07 dEz) = mﬁ(g) . (10104)

Using the embedding formulae obtained in [85] we can lift our six dimensional solution

to a solution of the above theory. It is given by (with m = g)

1
dsly = s12 [dsg + 5972dE* + §97°¢% (07 + 05 + h3)],
F = 0673133 dE N €y — ﬁg’Qe’?’g”S[sl/B’c o3 A dE
— 143 oy Nao] Adat A dp,

2

F(3) =0, F(z) =0, 6(2) = 5_5/6, (10.105)

where ds? is given by (10.80) and (10.82), and s, ¢, €5, and o; have the same definitions

as before and hy = 03 — 755(1 — e7%9)da™.

4. D =T oxidized to D =11

Using the embedding ansatz in [87] we obtain

s = dsj+ g %€’ + {7 (o + o3 + h3), (10.106)
A(s) = 6%19_3(25 + s C2)6(3> + 87\1/59_25 e s dxt A dp N\ o3,

where ds? is given by (10.91) and (10.93). The field strength F,) = dA is

F(4> - 6149_303 dE N € + 8—\1/§g_25 e 9Pcda™ Ndp A dE N oy

+ﬁ\/§g_25 e sctdat Ndp Aoy Aoy, (10.107)

where s,c, €, and o; have the same definitions as before and hs = o3 — %S (1—

e 19P)dx .
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CHAPTER XI

AdS PP-WAVES II

In this chapter we continue our investigations of AdS pp-waves by studying the pp-
waves of D = 5 and D = 4 gauged supergravities supported respectively by U(1)3
and U(1)* gauge fields [92]. We present a detailed analysis of the supersymmetry. In
particular, we show that supernumerary supersymmetry can arise beyond the usual
%. We also study the pp-waves of the Freedman-Schwarz model. The supersymmetry
enhancement discussed in this chapter forces the solutions to be independent of the

light-cone coordinate z.

A. PP-waves in five dimensions

Our first example treats D = 5 gauged supergravity truncated to the U(1)? subgroup
of SO(6). The bosonic sector of this truncated theory is described by the Lagrangian
[33]

e 'Ls =R — L09) + 4¢° ZX;l - iZX{Z(F(;'))Q + LeMNreRpl FROAS . (11.1)

where

61 = (%7 \/5)7 _)2 = (%7 _\/§)> 63 = <_%70) ) (112)

and the field strengths are defined as F!

&y = dAj, . The equations of motion are

Ryy = %aMSa' Onp — %g2gJWN ZXZ'_I

+% ZXz_g(F]LZIPFJ\ZfP - %(F(ig))QgMN) )
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VM(Xi_Q-FZL'JMN) — ieNPQRSFgQF;fS? Z%]?ﬁk‘,
Og = 42 X2(FL)? — 29 ZalX ! (11.3)

The supersymmetry transformations for the fermions are given by

5\IJM = VM - QQZA 69 FM ZXZ - %(FMFAB - 3FABFM) ZXz‘_lexB]ev

N = [— ZFMaMgo+ LN @ X F, — ngaz i (11.4)

1. The solution
We use the following pp-wave metric ansatz
dsp = 2 (—4dada™ + H(dx")? + d2?) + *Pdr? a=1,2---,D—3, (11.5)

in arbitrary dimensions. The functions A and B depends on r only while H depends
on 7, 2, and r coordinates. If we set H = 0, the pp-waves reduce to AdS-domain

wall solutions [93]. It is natural to choose the following vielbein basis
et =eldat, e =e(—2dx +iHdxt), e*=edz", e =ePdr  (11.6)

such that we have ds* = 2eTe™ + e%® + e¢"e”. The vielbein components of the spin

connections are

w_, = AePet, w,,= %e‘Aé?aH et
wy, = AePem +1H e Pet w, =AePe. (11.7)
where the prime denotes the derivative with respect to r. Note that for the metric

in this basis we have n,_ = 1 and .y = n__ = 0. The derivatives are always

with respect to the curved metric. The vielbein components of the Ricci tensor in
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D-dimensions are given by

Ry = —1e?P[H"+H(D-1)A4—B)]— %Y 0.,0,H] = —10H,
R, = —e2BA+A(D-1)A"-B)], Ru=Ri_ du,
R, = —(D—=1)e?B[A"+A(A - B). (11.8)

It is straightforward to verify that in five dimensions the following

02
e = (gr)?[H H.Hs]'®,  Hy=1+-%,
T
1
2B __ B . 5
er = (gr)2 [HyHyH3 23" X; = H; '[H HyH;)'
A, = g 'S - B dat (11.9)

satisfies the equations of motion with H(z™",r, z,) obeying the equation
H" + (4A' — B')H' + ¢ 2A=D) Za Oa H+ ‘GAZSQE“H 2=0. (11.10)
Here the S; are functions of z ™.

2. Standard supersymmetry

The Killing spinor equations following from the fermionic transformations are given

by

(04 + S4BT, 4 SHT)(T, +1) — LA PH'T, T

o~

—i(ﬁlH Ty + 9 H )l — ;(Zsiu —H )T +1)
(ZSEQ )F I,T_le=0,
[0 — A'eA_B I (T, +1)]e=0,

[0, + LA A BT, (D, + 6r2(ZS£2 e, T Je=0,
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0, + é(Z HOT, + ?jrge_SA(; Si?H; )T Je =0,
[ie?’A(ZaliHi_l)(Fr +1) + g(ZaliSM?Hi_l>FT I le=0,

i (Y aniH ) (T +1) + g( Y amSiZH )T, T e =0, (11.11)

where we have I'2 = T2 =0 and {I'y ,I'_} = 2. The last two equations comes from
the dilatino transformations. To arrive at these equations we have made use of the

solution (11.9). The above Killing spinor equations have the solution
627’1/2 [HngHg]%EO (1112)

where €, is a constant spinor satisfying (I'; + 1)eg = 0 and I'_¢y = 0. The solution
therefore preserves i of the supersymmetry. The Killing spinor for the i supersym-

metry exist for arbitrary solutions to eq.(11.10).

3. Supernumerary supersymmetry

To investigate the supernumerary supersymmetry we use the less restrictive projection
condition

(T, +De=ifT_e (11.13)
where the function f = f(x™,r, z,) is to be determined. Making use of this projection
in the Killing spinor equations they become

. 1 1

i ' A-B A—B ry/
04 + 1(Ae f_ﬁ/\/z)r+r,+4—r2(2f/\/t—r2@ H')I'_

—1(OHT1 4+ 9,HT5)I'_Je=0,

. 1

(00 + 3 (A€ Pf = o5 M)TLT Je =0, de=0,
T

1 -1 —3A 1 -1 —

{ar—l—Gr(f%:Hi +2ge M)F_—&Ei H'e=0,

[e3AfZabiH;1 - gZabiSiein—l}F_e =0, b=1,2 (11.14)
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where M = ¥, Si/?H;'. We analyse these equations by calculating the integrability
conditions [0y, , dy|e = 0 among them. The integrability [0, , 0,]e = 0 yields a solution

for f with the requirement 0, f = 0. We have

1
T 324 ¢

f ~A=B(M + 372U (7)), (11.15)

where the function U is in general complex. From the integrability [0, ,0,)e = 0 we
obtain an equation for U after imposing some restrictions on the pp-wave function

H(x*%,r, z,). The result is

o,H =0, 0, 00H =0 for a#b,

. dU
1d:T++U2+%8a8aH:O, a=1,2. (11.16)

The equation for U then requires 0,0, H = 0:0: H. Investigating the pair of equations
given in the last line of eqs.(11.14) we find that they are satisfied provided that the
functions S; and U satisfy two equations among them. Without loss of generality we

give the solutions in terms of S3 and U. They are given by
S1 =280 — (11— )U), Sy =L%(Ss5 — (63— 3)U). (11.17)

In order to analyse the final integrability [0y ,0,]e = 0 we need to make use of the
solution for H. Taking into account the conditions on H given above the solution is

given by

g4H(I'+, r, Za) - %094('2% + Z%) + %|6ij| Kijk('r—‘r?r) )
G2 p4
(GG — )& — G)(r* +£7)

1 4 22 p2\(p2 _ 2
+2(€%_€?)2(€?_€z)2 {(bg +C€i)(€i gj)(&‘ gk)

F2S70H (207 — € — 67) — 2530502 — 07) — 2506 — e?)] In(r® + £7),

Kijk(x+7 T) = —

(11.18)




103

where b = b(z") and ¢ = ¢(z™). Then [0y ,0,]e = 0 yields an equation for S3 given

by

1353._(2@9—2wg4+.0@_+2U(U(@-+£@-—2€a25%4—U)H==0- (11.19)

We proceed next by making use of the information that S;, b and ¢ are real functions.
Eqgs.(11.17) implies that U must also be real. This has the consequence in eq.(11.16)
that U and ¢ must be constants with ¢ being given by ¢ = —2U?. Egs.(11.19) and
(11.17) in turn implies that S; and b must also be constants. Eliminating U from

eqs.(11.17) and setting S; = u; we obtain
€iji il (0 — 03) = 0. (11.20)

Without loss of generality we solve for p; in terms of the other two charges. The

function H which gives % supersymmetric pp-wave is given by

B - )
1 HER |
2(p2l3 — pal3) (paly — psls — 3(pz — pi3) (305 + G (pal3 — p3l3))
9" (63 — 63)* ’

h = —

22ty — pat3)?
(G—6)32

H = je(sd+2) - 17,

_ (mal — psl3)r® + (2 — pa) (543 (11.21)
PG = BPHHH? |

The projected Killing spinor equations become
[0y — 2%/5(—0)1/2(ilﬂr — /P- = fc(z1l 4 20)T-]e =0,

[611 - 2\1/5(_0)1/2 Ly F_]E =0, 0-€ = 0,

0, — s/ T — éZHi—l]e =0. (11.22)
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The Killing spinor is easily obtained given by

1

e = rP[HHyHy)12 (14 5i5(=c) (21T + 209)0 ) (1+ 5 f T ),

dn i
S = (YT g, (11.23)

Solving for n we have

1

e = r'PHHyH3)12 (14 5is(—¢)'* (21T + 209)T ) (14 5T x

(o2
[1— 11— V3TN0 T e, (11.24)

where € is a constant spinor satisfying (I', +1)ey = 0. The solution thus preserve % of
the supersymmetry. Note that if we set p;¢7 = p (which is consistent with eq.(11.20))
we obtain b = c = 0.

To conclude, demanding supernumerary supersymmetry puts very strong restric-
tions on the pp-waves with the functions S, b and ¢ (and U) which initially all being
functions of ™ reduces now to constants. This is not the case for minimal gauged

supergravity where supernumerary supersymmetry does allow the various functions

to have ™ dependence.

B. PP-waves in four dimensions

In this section we consider a subsector of the SO(8) gauged supergravity where the
bosonic fields comprises the metric, four commuting U(1) gauge potentials and three

dilatons. The Lagrangian describing this set of fields is [94]
e \Li=R—3(09) -1 D X(F,) -V, (11.25)
where

1. .
Xi = 675&7;.('0, X1X2X3X4 =1 s (1126)
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a= (1,11, d=01,-1,-1), d3=(-1,1,-1), as=(-1,-1,1),
and the field strengths are defined as F{, = dA{,. The potential is given by

3
V=-4¢>) X;X; = —8¢°> coshy;. (11.27)
i=1

i< j
The N = 8 supersymmetry transformations in this bosonic background were also

presented in [94]. They are given by
oV = Ve 4 Z [—ig QAL + 1Qu X FL DT, + 19X T, ], (11.28)
o = [\}EPMaMng“ — 55 2 QX LT V20 Y fi Qo X,
k k,m
where we have rewritten them by introducing complex fermions ¥, = ¥+ iW0} .

etc and made the substitutions g — v/2g and A, — —ﬁAﬁU . Note that i # j in the

spin 1/2 transformations. The three dilatons are given by the following identifications

pr=02=0¢", =90 =0¢",  p3=0¢"=¢", (11.29)
and note also that ¢ = ¢/*. The function f;;; is defined as

|€ijk| for iajuk%lu
fijk = 6 for i=1, (11.30)

00 for j57=1,

and the matrix {2 is given by

1 1 1 1
o1 o1 4
O=- (11.31)
211 -1 1 -1
1 -1 -1 1
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1. The solution

The four charge pp-wave is given by

ds?L = eZA(—4dx+dx_ + H(d$+)2 + sz) + €2Bd7,27 (11.32)
where
2A 4 1/2 62
= () [HUHH3HU'?, Hi= 1+ 5,
1
2B _ »
- X;=H; |HiH,H;H ,
’ (gr)2 [HyHyHz Hy)' /2’ '[H\HyHs H]
Ay = g 'Sl - HYdat (11.33)

and S; = S;(«™1). The function H(z",r, z) satisfies the equation
H" +(3A - B)H + 248900 LA ‘4A252€4H 2 = (11.34)

The solution to this equation is similar to the solution in D = 5. The four charged

pp-wave can be specialized to one, two and three active charges respectively.

2. Supersymmetry

The N = 8 supersymmetry have four different sectors. We begin by analysing the
Killing spinor equations for the sector €. The supersymmetry transformations are

given by

4
5\1111\/[ = Ve + Z [— %QAL + %XiilFXBFABFAI + igXiFM]E(U?

ON? = [T 0upr — g (X7 + X5 — X5 FS, — XFy,)

+959(X1 + Xo — X3 — Xy)]e,
5)\13 - [%FA{aN[@Q

\I[FAB<X1_1F,13 - X2_1F3B + XB»_IFEB - XZIFﬁB

+%9(X1 — Xo+ X35 — X4)]€(1),
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oA = [\%QFMaMSDig 4\1fFAB(X1_1FjB - X2_1F313 - X?,_leB + X4_1F;51B
+059(X1 = Xo — Xg + Xy))e®. (11.35)

The Killing spinor equations are readily written down and take the form

04+ JA'A BT, + LHT )T, +1) = LH'eAP T, T~ 1. HT.T_
i ) : 1
_5(251‘(1 — H; 1))(Fr +1)+ @(ZMi)Frnr T e =0,
i=1 i
[0 — A PT_ (I, + 1)]e™ =0,

A-B I _
0. + LAA BT, + 1) 4r2(2/\4)r I, [_]e® =0,

g (S A o (ZM)P R =0
(X, + X0 = Xy = X004 1) e (Mo + Mo — M,
— ML, T_]e™ =0,
lig(X1 — Xo+ X3 — X)), +1) + : AM; — My + M;
_M4)Fr F_]G(l) =0,
ig(X7 — Xo — X5+ Xy)(T +1) + Tl AMy — My — Ms

+ ML, T =0, (11.36)
where we have defined M; = S;¢2H; . These equations have the solution

(1) = T[H1H2H3H4]8 60 (1137)

(1)

where ¢ is a constant spinor satisfying (I, + 1)e)” = 0 = T'_¢’. Thus 1 of the

1
supersymmetry of the € sector is preserved (standard supersymmetry). It is easy to
see that the same amount of supersymmetry is preserved simultaneously in the other

sectors. The pp-wave therefore preserves overall i of the N' = 8 supersymmetry.

Now let us examine whether the solution admits supernumerary supersymmetry.
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We again make use of the ansatz
(T, + 1) =ify T_e™. (11.38)

A similar analysis of the integrability conditions among the projected Killing spinor
equations as in five dimensions shows that the functions S;(z™"), U(z"), b(z") and
c(x™) must again be constants. In D = 4 there are now two conditions that must be
satisfied among the charges for there to be supernumerary supersymmetry. Hence the
pp-wave solution will depend on just two charge parameters. The constraints among

the charges are given by

6%&21(63 - 5%)(#1 - M4) = @eg(@ - gi)(/@ - M3) )

(63 = €3) (] — pal) = (6 — ) (2l — psls) (11.39)

where we have set S; = ;. Solving for p; and po in terms of the other two charges

the function H is given by

e — pal3(05 — 03) — pal3 (€2 — 43) C a=12.
(03 — 03)
B 2(#3@ - /146421)
95(63 — £3)?
~ 8(ualy — patd)?
(G- 7
H = %022 — f12,
fo= - (nsls — pal)r® + (s — pa) (303 (11.40)
! (B — Gyl [H Hy HyHy) 2 |

(s 05(0F + €5 + 05 — 50) — paly (63 + 05 — 505 + 03)],

The projected Killing spinor equations are given by

[0 — 5= (=c)2(iTy — fi)T- — LeoT, T Je® =0,

2v2

0. — 5i5(=0)'PT.T JeV =0, 0.V =0,
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. 1
0 = 3Ail- —p L ATV =0, (11.41)
L

The solution for the Killing spinor is

oo

€V = r[HiHyHsHyJs (14 5i5(=¢)?2T.T ) (1 4+ S AiT) x

1/2,+

[1—11—ev2™ N, T e, (11.42)

(1)
0

where € is a constant spinor satisfying (T, + 1)e}’ = 0. The pp-wave with H given

above therefore preserves % of the supersymmetry of the ¢ sector. Consider next

the remaining sectors. For this we use the ansatz A’ = g~ 'n; p;(1 — H; Ydx™. To

€))

preserve % supersymmetry in the four respective sectors then requires the sign choices:

L om= T2 = N3 = 1
2: m=m= —m= -1
' ’ ’ ! (11.43)
3: m= —m= N3 = —M4
4d: m= —m= —m= m

Because of the difference in signs the four charge solution will preserve % of the
supersymmetry of just one sector and i of the supersymmetry of each of the remaining
sectors.

Although we have focused on solutions with four active charges one can easily
also analyse the supersymmetry of solutions with one, two or three active charges.
In the following table we present the overall amount of the N/ = 8 supersymmetry

preserved in the various cases.



C. PP-waves in the Freedman-Schwarz model

No. of active Standard Enhanced
charges supersymmetry supersymmetry
1 i L+i+i+i=d
2 i i+t +t=2
3 T
4 i tEk+E+i=3
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The Lagrangian describing the bosonic sector of the Freedman-Schwarz model is [18]

where

Ly

sX(F4 NEG + Gl NG,

dé A dp —

(2) (2)

(2) (2) (2)

= Rx1-— = 5 *
2

Fé) = dA?l)

G¢ = dB°®

(2) (1)

\/igl EabcA A A?

ﬁQQGabCB N B,

—Le ?(xF4 NFS +#Go AGY)

(1>

(1~

The supersymmetry transformations for the fermions are given by

5\111\4

P

[VM -

BNaiAg

i a na
- ﬁgQQQBM -

ieqﬁ ['50ux

1e*? xdx N dx + 4(g7 + g3)e?

a=1,23,

*1

(11.44)

(11.45)

1 .
+8¢432¢(?FZB—dIgagGZBﬂ“BFM—+%eT%g1—ngﬂ%)FMk,

[ 75 (0 —

~iv2 €5¢(91 +1igoT5) e,

1 .
ie? D50, )™ + ie_2¢(a‘1’F§B +1iT5a5G4 )T

(11.46)
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where T's = il\['1T'5I'3 such that T2 = 1. The af and a§ are two sets Pauli matrices.
The gravitino, the dilatino and the (Majorana) spinor e carry a suppressed indice
which runs from one to four. In the following we turn off two of the fields F, and

G4, each. For a vanishing axion (x = 0) the pp-wave in this theory is given by

ds® = (gr)*(—4dztdx™ + H(dx™)? + dz*) + dr?,
Ho— 1.2 b cllgr)  g3Si+grSs
29 29193 (gr)"

By, = gy Sa(zt)((gr)7* = 1)da™, (11.47)

where g = (g7 + g3)"/2. Now lets look at the supersymmetry of this solution. The

Killing spinor equations are given by

0y + 3oy + JHT )T, + ) — 5(5 + S2)((gr) > — 1)
—%czfz I_—grH' T, T_ —iAT_T,T,Je=0,
0 — gT (T, + a)le =0,

0. 4+ 390.(Ty +a) +IAL.T_T,Je = 0,

iA 1
—T_+ — (g1 —igal's)T,Je =
[0 + e + 29T<91 igol's)T,Je = 0,
(T, +a)+2ig 'T_AT,]Je=0, (11.48)

where

_ 9251 —1g15215
2v/2g192(g? + g3)1/?r?

a=g (g1 +1igsl's) and (11.49)

It follows from these equations that to obtain the usual i supersymmetry for the

pp-wave we need surprisingly to impose g5.5; = ¢3S . The Killing spinor can then be
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obtained and it is given by

¢ — e_ﬁ f(51+52)da:+r1/2€0 7 (1150)

where ¢y is a constant spinor satisfying the projections (I, + a)e = 0 = I'_e. To

investigate the supernumerary supersymmetry we use the projection condition
(I +a)e=1ifT_e. (11.51)
The projected Killing spinor equations are given by

[01 + J5(S1 + S2) +il4 (39f —aM)l- — ez, T-

1 !
VI gage 195~ S0 + (2Af — JagrHI_Je =0,
[8z+irz(%gf—d/_\)l—‘_]e: 0, d_e=0,
YA+ lapr — e —
[8r+r(9 A+ saf)l- QT]E_O,
[f =29 'aA]T_e = 0. (11.52)

Here a and A are just a and A but with I's replaced by —I's. We analyse these
projected equations by calculating the integrability conditions among them. The

condition [0, , d,]e = 0 requires d,f = 0 and yields a solution for f given by
f=2¢""aA +297'U(z™). (11.53)

The integrability [0, ,d.]e = 0 provides an equation for U(z™) which is given by

dU
id?—zzﬂ— 1e=0. (11.54)

From the last line of egs.(11.52) we have f — 2g~'aA = 0. This equation forces U

in the solution for f to vanish. From the equation for U we must in turn set ¢ = 0.



113

Considering next the integrability condition [0, ,d,]e = 0 we first note that

cr? —4b

7)2(91 —igol's) . (11.55)

2MAf — jagrH' = S

It follows that the functions S; and S must be constants. We need furthermore also
to set b = 0 (as well as imposing ¢25; = ¢3.9,). Setting S; = y; the projected Killing

spinor equations become

[8++f(:u’1+,u2)]6_0 8—6207 826207

r 1
{(97«—1 g1 — 1G9 5fF_—2

AR Je=o0. (11.56)

The Killing spinor solution is

. —L(m-i-uz)ﬂff+ 1/2 1 91 192F5

where ¢ is a constant spinor. Inserting the Killing spinor in the projection condition

(11.51) and using
V20i(gt + g3)1/2 12

we obtain (I', + a)ey = 0. Thus, the pp-wave preserves % of the supersymmetry with

(11.58)

H given by
It
291 (g7 + g3)r

H = _f2 — _ (11.59)

D. PP-waves in six dimensions

In this section we investigate the supersymmetry of pp-waves in Romans theory [31].
We use the conventions of [86]. We consider a subsector of the theory by truncating
the 2-form potential and the U(1) potential. The Lagrangian describing the remaining

fields is given by

e 'L=R—3(0p) — X THFL) +44°(X* + 3X 2 — X9 (11.60)
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where X = e 2\7 and F¢ = dA®

@ ) ﬁgEabcA N AL

(CON

We have here set g = go = —v/2¢ in [86]. The supersymmetry transformations are

oV, = [DM -+ ig(X -+ %X*E’)FM]GZ‘ — lﬁf(r TAB — OTABT )XﬁlFABij€j7
0N =[5l = 39(X = X )]ei — g 5T X T Flapile (11.61)

where D,,¢; = V6 — %gAMijej. To obtain the pp-wave we turn off two of the SU(2)

fields. The solution is given by

62
T S
1
o5 _ 1L N
ALy = g S (- Hy ) dat (11.62)

and the pp-wave function H(z™,r, z,) satisfies the equation

oA 453204
H" + (5A' — B)H' + ¢724=B) zajaaaaH + WI);/?’H% =0. (11.63)

The Killing spinor equations are given by

0, + SAAP(T, + LHT (T, +1) — LA PHT, T~ 1S 0,HT, T

i i S0
—ﬁsl(l— (T, +1)+Fﬁr Ty Je=0,

[0_ — Ae*BI_(T, +1)]e=0,

_ i S
[Ga‘i‘%A/eA Bra<Fr+1) - MTZHZ arrr—]ezoa
o, + LAy L SO
TU12r3H, T 42 ¢?rtH? T ’
i Sy
r.+1 — >0, '_|e=0. 11.64
0(F, + 1)+ 5 o T T (1164)

It is clear from these equations that the pp-waves preserve i of the supersymmetry

but there is no supernumerary supersymmetry.
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E. PP-waves in seven dimensions

In this section we consider gauged D = 7, N/ = 2 supergravity where we retain only the
metric, two U(1) gauge potentials and two scalars. The other fields are consistently
set to zero. This reduced set of fields are described by the Lagrangian

2

e'L=R—-105)7—1> X *(F,

(2)
i=1

¥ -V, (11.65)
where

1. .
Xi = eiiai%pa 61 = <\/§7 %) ) _»2 = ( - \/57 \/2)7

V=1 (X X - 8X X — 4XT X —AXTIXG ). (11.66)
The supersymmetry transformations are given by

Yy = [Vau+ 2 X7 P T+ X3 2 Ta)Y + 19X X5° T,
FHXTT OV X 4+ X3P 0yXo) DT + 2g(AL T e + A2 Ts4)]e,
oA = [—1(3X{'OuX1 4 2X5 0 Xo) I — LXTTE TP Ty
+39(X1 — X12X5 e
oy = [—E2X70u X1 +3X5 0y Xo) TV — L X5 TF2 TP Ty,

+19(Xo — X72X5 e (11.67)

For more details see [95]. The domain wall solution is given by

1 2
e = (gr)|Hy*H H,)5 Hi=1+ 3,
1 2
2P = . X, = H;'[Hy"H Hs)5 (11.68)

4
(gr)2[Hy* Hy Hy]5

where Hy = 1+ ¢2/r?. The ansatz for the 1-form potential is

Al =g7'S(1— H ) dat (11.69)
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and the function H(xT,r, z,) satisfies the equation
H" + (6A' — B )H' 4 ¢72A=B) Za Oa H+ ’10AZSQ£4H 2=0. (11.70)

The Killing spinor equations are given by

[a++4rH0 By + AT )0, +1) — e PH'T, T - 1N 0,HT, T
5(51(1 — )Flg + Sg(l — )F34)(Fr + 1)]6 = 0,
1
[0 — oL B (I, +1)]e=0,
[aa + 47"H0 eAiB FG(FT + 1)]6 = 07
1 1 _ _
[0r — 5o + p L= 5-ge SANSLPH Ty + Sol2Hy ' T )T _Je =0,

[g(C2 — YH' X, (T, + 1) + Sy 2H 'e T, T, T ]e = 0,

[g(02 — ) H ' Xo(T, +1) + Sol2Hy le A T3y T, T Je = 0. (11.71)

supersymmetry but no

It is clear from these equations that the pp-waves have i

supernumerary supersyminetry.
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CHAPTER XII

CONCLUSION

In his dissertation we have discussed new gauged supergravities in diverse dimensions
from generalized Kaluza-Klein reductions of the low-energy effective actions of string
theory involving the metric, the dilaton, a 3-form field strength and a 2-form field
strength. The generalized reduction gauges two global symmetries, namely the homo-
geneous scaling symmetry (conformal symmetry) of the equations of motion, and also
the dilaton shift symmetry of the Lagrangian. The gauged supergravity resulting from
this construction has a positive scalar potential, in the form of a single-exponential
of the lower-dimensional dilaton. We showed that the reduction is supersymmetric,
by explicitly deriving the lower-dimensional supersymmetry transformation rules.
We should emphasize that the generalized reductions of the kind we have con-
sidered are in fact related by a U-duality to more conventional reductions considered
extensively in the past. As we already mentioned in the first chapter, performing a
generalized reduction involving the global shift symmetry of the axion in the type-11B
theory one can establish a T-duality between the type-IIB theory and the massive
type-ITA theory [22]. The S-duality of the type-IIB theory implies that one should also
consider SL(2,R)-related generalized reductions [96], which will involve the global
shift symmetry of the dilaton. When one extends the discussion of non-perturbative
dualities to lower dimensions, the underlying global Cremmer-Julia type symmetries
can only be interpreted as strictly internal symmetries if one also make use of the scal-
ing symmetry of the equations of motion that homogeneously scales the Lagrangian.
Thus it is very natural to consider generalized reductions of the kind we have studied

in this dissertation.



118

The new supergravities have the interesting feature that they all admit super-
symmetric vacuum solutions of the form (Minkowski)xS®, and in some cases also
(Minkowski)x S?. These solutions provide novel compactifications of higher dimen-
sional string theories. We have studied in detail the compactifications of the variant
D = 6, N = (1,1) theory. In particular we have demonstrated that its S? reduc-
tion yields D = 4, N/ = 2 supergravity coupled to a vector multiplet which can be
further truncated to N/ = 1 supergravity coupled to a chiral multiplet. Although
we cannot obtain a chiral theory from the M, x S? reduction, chirality might still
survive in brane models [15] where chiral families live solely on the branes and not
in the bulk. In fact, from a braneworld perspective, the present model provides an
alternative framework to the Salam-Sezgin model, where the bulk solution preserves
N = 2 supersymmetry, and it is the branes themselves that provide both chirality
and an additional halving of supersymmetry to N' = 1. It would be of interest to
study the resulting braneworld models constructed from the present theory.

We have discussed in detail the embedding of the vacua in brane solutions. In
fact, we made us of this connection to the branes to prove the supersymmetry of the
vacuum solutions in diverse dimensions. For example, the (Minkowski)s x S? vacua
embeds in the 3-brane in seven dimensions which itself can be viewed as intersecting
Mb-branes wrapping on a supersymmetric two-cycle of K3 in D=11. Note that, the
orders of the reductions of the 3-brane can be reversed, by performing the S? reduction
first, which gives rise to a D=5 domain wall, with a (Minkowski), world-volume. We
finally arrive at the four-dimensional Minkowski spacetime by performing a brane-
world Kaluza-Klein reduction introduced in [97]. (See also, [98, 99, 100, 101, 86].)
Instead of reducing on a specific solution as the above we can reduce on the theory
itself after truncating out the 2-form field strengths. First, we expect that there

should be a consistent reduction of the minimal D = 7 supergravity on S?. To
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see this, we can study the global symmetry of the theory reduced on T2. If we for
simplicity set two of the three vector fields in D = 7 to zero, then the resulting D =5
theory has a global O(2,3) T-duality symmetry, with the scalars parameterising the
coset 0(2,3)/(SO(2) x SO(3)). Clearly, we can gauge the SO(3) maximal compact
subgroup, which is exactly the isometry group of S?. This is indicative of a consistent
S? reduction of the D = 7 theory [44]. The resulting gauged D = 5 supergravity will
have a negative exponential scalar potential which can support a domain wall solution.
We can then perform the brane-world Kaluza-Klein reduction to D = 4.

It is also interesting to note that in our earlier approach, the lower dimensional
theory arises first from the generalized Kaluza-Klein reduction on R, and then a stan-
dard sphere (52 or S?) reduction, in which case, the reduction makes use of a gauging
of the homogeneous scaling symmetry. If we instead perform sphere reduction first,
and then the brane-world reduction, it would appear that we do not need to appeal to
the homogeneous scaling symmetry. Clearly, the two approaches are equivalent. One
feature in common is that in both approaches, the reduction involves warp factors.
Thus our first approach is nothing more than giving a symmetry interpretation of
the warp factor in the reduction ansatz. In fact, the near-horizon structure of the
(D —5)-branes (or the (D — 4)-branes) given by (7.3) (or (7.9)) in D dimensions can
be viewed as domain walls written in the conformal frame, with the world-volume be-
ing (Minkowski)y_3 x S (or (Minkowski)y_» x S?). Thus the generalized dimensional
reduction can be viewed as a special case of the brane-world reduction.

In this dissertation we have also studied in detail the supersymmetry of pp-waves
in AdS backgrounds. The introduction of a pp-wave in the AdS background can be
viewed as performing an infinite boost in the strong coupled dual conformal field
theory with a finite momentum density. The non-vanishing momentum breaks the

original supersymmetry and superconformal symmetry, and hence the supersymme-
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try is now i of the unboosted theory. With an appropriate choice for the integration
constants, we have shown that purely gravitational pp-waves admit supernumerary
supersymmetry in which the solutions double its supersymmetry. We have also stud-
ied U(1)-charged pp-waves and shown that supernumerary supersymmetry can arise
in four and five dimensions. This indicates a novel supersymmetry enhancement as-
sociated with the R-charge in the dual three and four dimensional field theories. It
is of interest to discover such a phenomenon in the dual quantum field theory in the
infinite momentum frame.

There are a number of immediate unsolved issues with pp-waves in an AdS
background. First, how does one obtain an AdS pp-wave from a Penrose limit?
Second, for a charged solution, supersymmetry enhancement might also occur in six
dimensions, since the Penrose limit of AdS; x S® is known to have supernumerary
supersymmetry. One would in this case set in Romans F'(4) theory the dilaton and
the SU(2) fields to zero leaving a 2-form and a 1-form potential. We have not been

able to obtain the pp-wave solution in this case.
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APPENDIX A
BOSONIC REDUCTION ANSATZ; EINSTEIN FRAME

We begin by reducing the D = d + 1 dimensional Ricci tensor to d dimensions

by using the metric ansatz in (3.6). We choose the natural vielbein basis
e" = eMFtavet &% = e (A + Ay (A.1)

Thus we have

The determinant of the metric is

\/jg = eldtmezt(G+da)e, /=g — (d+mazt2a, /70 (A.3)

Using the first Cartan structure equation with zero torsion, de* = —&*, Aé”, we

obtain the spin connections

(D“b = w“b + 67(m22+a¢) ((a@bw — mzAb) et — (a@a@ — mQ.A“) éb>
—ye e (A.4)

o8 — 67(m2z+a<p) (mzAa . ﬁaa(p) 6% — %efmgz+(ﬁf2a)cpfab éb + m267(m22+64p)éa )

From the curvature 2-forms 04, = do?z + 0o A0 = zR*5.p0€° A €P, we obtain
C C 9

1
2
the Ricci tensor with vielbein components

+amy(d — 1)(A°Dcp Nap — AuOpp — ApOatp)

+%m2(d - 1)<va-/4b + vb~’4a) + m2chcnab
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+m3(d — 1)(AuAy — A2 0ap) )
_ m%(d _ 1)6—2(mzz+ﬁs0)nab _ 56—2(m22+da¢)fa0fbc’
R,. = e_2m22+(d_3)a‘p(%Vb(e_Q(d_l)wfab) + ma(d — 1)(B0ap — mQAa))
— %mg(d — 1)6’2m2z*(d+1)°‘“@4b.7:ab ,
R.. = e 2m=o9)( = B0p + myVeA® + mofB(d — 1) A'dyp — m3(d — 1) A%))

4 i672(m22+da¢)]:<22) ) (A.5)

The Ricci scalar is

A

R = e 2(meztay) (R — 200y — 1(9p)* + 2mad V,A* — mid (d — 1)A(21))

. €—2m2z(m§ d(d o 1)672&0 + iedeaLp}“éJ . (A.G)

The reduced Ricci components in (A.5) have been simplified through use of the rela-
tions (3.7).
The Laplacian operator acting on the D-dimensional dilaton is given by

~ n 4 4
e2m2z+2a<p D(b — D¢—m2(d—1) (Auaﬂ(b_g my (A<21>+€2(d71)a§0))_ 5 mlv,uAM’ (A?)

where ¢ = ¢ + %mlz, as given by (3.6).
The vielbein components of the various D-dimensional antisymmetric tensors

reduce according to

]:Llr"a = 6_(m2+(n_1)m1)2_"0‘90 H

al--Qan

A

Hopap = e metmUmostd-n—lap g (A.8)
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APPENDIX B

FERMIONIC REDUCTION ANSATZ IN D < 10; EINSTEIN FRAME

In this appendix we provide an arbitrary dimensional generalized ansatz that
reduces the fermions in D = d + 1 to d dimensions. The generalized ansatz we are
constructing is such that the standard S* reduction (m; = 0 = my) reduces canonical

fermionic kinetic terms with a normalization as
eV L = k(T Y T+ MMV LA (B.1)
to canonical kinetic terms
e 'L = k(U A"V, Y, + APV A+ X7V LX) + test . (B.2)

Here k is an arbitrary coefficient. Performing the split of the gravitino as Yy =

(1@@, z@D) an ansatz that accomplishes this is

R 1 1
€ = e2M¥Fe2%¢
A = et VD3,

Loz _—la
Vv, = e 2" 2 ‘P(qpa_m'w(vD—SX—)\)),
¢ = \/%ﬁbl-l—ﬁ%-f—\/?(l)—%ml%

¢ = — =t D (B.3)

Note that, here and elsewhere in this dissertation our convention is always a > 0.
A consistent truncation of the matter multiplet can be obtained by setting m; = ms

and ¢ =0 = y.
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APPENDIX C
EINSTEIN-FRAME TO STRING-FRAME CONVERSION

The D-dimensional Lagrangian in the Einstein frame is given by

e%dqb(Fa

e 'L = R—3(0¢)° — e H; °

1 2 1.7 MNP
"1 )T = UV,

—%5\ YV A — ﬁX’yN’yM\PN&V@ +oeee, (C.1)

where a = ,/% , and where we have omitted additional interaction and four-fermi

terms. This may be mapped to the string frame Lagrangian

e = e (R+4(09) — LHZ — L(Fg)? - L, 7V T,

= a

AV A — (T 3N —
Y M ( N 2\/§

i?N’?M@N)aA{(P + R ) 9 (C.2)
by the transformations

a a ra ~
gun = €277 Gun, Hynp = MNP 5 FMN = FMN, Qb = —aCI),

€ = esde, A =e 590N\ U, = es®Q,, . (C.3)

Note that v,, = e10® Yu 1. v4 = 4. Furthermore, we have made use of the D-
dimensional Majorana flip properties vy = —xy™ and py"¥Fy = Yy P for
any two anti-commuting spinors v and .

The bosonic reduction ansétze in the string frame are considerably simpler than
their Einstein-frame counterparts. The reduction of the D = d + 1 dimensional Ricci

tensor is given by

Rab = Rab + %Vaab@ — %aa(,@ab(p — %6_\/5<Pfac Fbc ,

~

Raz = %6\/550 vb(e_%wfab)a
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Rzz - % DSD - %(890)2 + iei\/ipf(%) )
R = R+V20p — (9p)? - ie’ﬂ“’fé) . (C.4)

Some useful formulae for the reduction of the scalar fields are:

0é =0( WD =2mz) = O - LOp— L(0.p0"0 — J(0p)?)

— m(d — 1)(L ADup — VA", (C5)

_ v
V8

2

(09)? = (09)* + L(9p)? — 25 0up 0P + m(d — 1) A*(9,® — F=0,0)

Fim?(d - 1)2(A2) + V), (C.6)

6,6 Vy0x® = V.00 — J5Va0hp + im(d — 1)(Vad, + VipA)

~ Mas N7 5 _l—LSO b _ 1 N — 7%
6, e "V 0n® = —ge VITF.(0,® \/gabgp) 2\/im(al Dev20,p
— Ip(d — 1) VEPAF,,,
e NV 0x® = — 50" (0,® — J2Oup) — sam(d — DA, (CT)
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APPENDIX D

KILLING SPINORS ON THE SPHERE

In this appendix we give expressions for the Killing spinors on S™ derived in [102] and
the decomposition of Dirac matrices on product spaces also given there. The Clifford
algebra is

{Ta,Tp} = 210 (D.1)
where the sign convention for the flat metric is 7., = (—, +...+). The metric for an

n-sphere with the radius a is

ds? = a”*(df2 + +sin®0,ds>_,), (D.2)

n—1

with ds7 = df% and the Ricci tensor for the sphere is given by R;; = a®(n—1)g;;. The

solution to the Killing spinor equation

Ver = i%afiei (D.3)
is
g (T —lor,
€L =e 2" "<H6_2J N“)eo, (D.4)
j=1

where the I matrices satisfy {I';,I';} = 2J;;. The exponential factors can be written

as
nin 1 1 - it g+l — 4. — .. m =0 -
e2 = lcos 50, +il', sin 50, , e 277t = Tcos 50; — Iy 418in560;.  (D.5)
The above are valid in all dimensions, but in the case of n is even the equation

iji = %CL’)/*FjEi (D6)
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can also be considered. Here ~, is the chirality operator on the sphere and satisfies
72 = 1. The solution in this case is given by

: n—1 1
e — ei%en’Y*Fn( 11 €—§9jl“j,j+1)60‘ (D.7)

Jj=1

A

The decomposition of the D = m + n dimensional gamma matrices I', in terms of

the lower dimensional spacetime M, and the internal space K, is performed as

(m,n) = (even,odd) : T,=T,®1, I, =T.®l;,
(odd,even) : T, =T, @, I=1®T1;,
(eveneven : I,=T,®1, [=T.9T,
or fa:Fa®V*, fiz]l®rz’7

(oddodd) : T,=0®C, @1, Ti=celel;, (DS8)

where I, is the chirality matrix in an even lower-dimensional spacetime, and 7, is
the chirality matrix in an even dimensional internal space. The o, and oy are Pauli

matrices and the chirality operator in the total space is I, =030 1.
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APPENDIX E
A GENERAL CLASS OF PP-WAVES

In this appendix we present the AdS pp-waves supported by an arbitrary n-form

field strength in any dimensions D. The Lagrangian for such a system is given by

1
e 'L=R— ﬁan) + (D - 1)(D — 2)g? (E.1)

where the field strength is defined as F{,,) = dA,—1). Our pp-wave ansatz is

e?9P(—4dx™ dx™ + H (dx™)* + d2?) + dp?,

Sg(il? ) (D_ _
) — (D—2n+1)gp + n—2
(le(x ) ( o 1)(6 1)) drT™ ANd" 2. (E2)

The field strength and its dual are

A1)

Fiy — Sy dat Adz" Tt 4 See” PN Gy A dat A dP 2z,

*Fn) S1eP=2n=D9eqp A dat A dP 2z — Sydat AdP Tz (E.3)

Thus the equation of motion dxF{,) = 0 is trivially satisfied. The Einstein equation
implies

OH = S 20  §e-20-naw,
D-3
a = 82 +g(D —1)9, + e 29° > o7, (E.4)
i=1
with the solution given by
—2gp D-3 52 €—2ngp
H(xt ) = he—(P—gp e ’ 1
(@7 p ) = atbe 22D —3) & T 22D —2n 1)
822 6—2(D—n)gp . D-3 )
+35 >z (E.5)
202 (D —n)(D-2n+1) ? &=
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The a, b and ¢; are functions of . This solution is not valid for D = 2n — 1 or
D = 2n + 1 which have to be considered separately. We find that

— 2(n—1
e 2gp (n—1)

HD=2n+1,2%pz)=a+be "+ ——— i
( n+ 1,z 7p72) atoe +4gz(n_1) — &
S%(zngp + 1) —2ngp 522 —2(n+1)gp + 1 2(nz_1) 2 (E 6)
—_ ——=c¢ 2 cizi .
An?g? 4g*(n + 1) 2O Z

and H(D = 2n — 1) can be obtained from H(D = 2n+ 1) by making the substitution
n—n-—1 and Sp — 5. (E.7)

(This substitution is not performed on the field strength.)
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