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ABSTRACT

A Prototype of a New Class

of Oversampling ADC. (May 2005)

Jun He, B.S., Shanghai Jiao Tong University, Shanghai, China;

M.S., Zhejiang University, Hangzhou, China

Chair of Advisory Committee: Dr. Takis Zourntos

Analog-to-digital (A/D) and digital-to-analog (D/A) converters are important

blocks in signal processing system because they provide the link between the analog

world and digital systems. Compared with Nyquist-rate data converters, oversam-

pling data converters are more desirable for modern submicron technologies with low

voltage supplies. Today, all existing oversampling modulators in popular use are de-

rived from sigma-delta modulation. Stability is the most significant problem in the

sigma-delta modulator, because the ultimate accuracy is limited by stability. As the

aggressiveness of the design increases, the margin of stability diminishes rapidly.

This thesis presents the design and experimental results of the first prototype

circuit implementation of the novel oversampling modulation scheme proposed by

Dr. Takis Zourntos. This new class of oversampling modulators are theoretically

stable. With less stability limitation, the new class of modulators can potentially

achieve higher signal-to-noise ratio (SNR) or less power by designing the modulator

more aggressively. This thesis describes the methods and procedures of how the new

oversampling modulation theory is implemented into a circuit. Some novel circuit

architectures are proposed in this modulator, such as a filter which can provide status

outputs for the controller and realize arbitrary zeros and poles, comparators with

synchronization latches to eliminate the effect of metastability, and a digital-to-analog
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converter (DAC) with current calibration circuits for high linearity.

A third-order continuous-time oversampling modulator employing 4-bit quanti-

zation is implemented in a 0.35-µm double-poly complementary metal oxide semicon-

ductor (CMOS) technology, with a chip area of 2150× 2150 µm2. Simulation results

show it achieves 83.7-dB peak SQNR, 90-dB dynamic range over a 500kHz input

signal bandwidth, and 60 mW power consumption.
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CHAPTER I

INTRODUCTION

A. Background and Motivation

Digital signal processing has proliferated because of its flexibility, reproducibility,

reliability and programmability. With the rapid evolution in modern semiconductor

technology, digital signal processing systems have a lower overall cost compared to

analog systems [1] [2]. In many areas analog circuits are replaced by their digital

counterparts such as wireless communication and digital audio. But as the interface

between the real physical world and virtual digital world, A/D and D/A converters

are always required.

Data converters can be divided into two main types: Nyquist-rate converters

and oversampling converters. Recently, oversampling converters have become popular

with the booming low-power low-voltage CMOS mixed-signal system-on-chip (SoC).

They accomplish analog-to-digital or digital-to-analog conversion but are mainly digi-

tal circuits. They do not require high-precision analog circuitry as traditional Nyquist-

rate converters do. Thus they are more desirable for modern submicron technologies

with low voltage supplies.

Now almost all existed oversampling modulators in popular use are derive from

the sigma-delta modulation. The oversampling sigma-delta modulator, first proposed

by Cutler in 1954 [3], is based on two important concepts, oversampling and noise-

shaping, both of which are understood in the frequency domain.

Some problems exist in practical sigma-delta modulators such as idle tones and

stability. Idle tones result when the quantization noise contains discrete spectral

The journal model is IEEE Transactions on Automatic Control.
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lines. Stability is one of the most significant problems in the sigma-delta modulators,

because the ultimate accuracy is limited by stability. As the aggressiveness of the

design increases, the margin of stability diminishes rapidly [4] [5].

To address the stability problem in sigma-delta modulation, Dr. Takis Zourntos

proposed a new approach to oversampling encoding based on nonlinear control the-

ory [6] [7]. This proposed architecture is inspired by formulating the problem of data

conversion as a tracking-control problem. A stabilizing controller is adopted to min-

imize quantization error and that provides overall converter stability. We will refer

to this new oversampling modulator as the Nonlinear Control-based Oversampling

modulator (NCO modulator).

B. Significance of This Work

This work is significant because this is the first circuit implementation of the NCO

modulator. This oversampling encoding is cost-effectively achieved without the use

of sigma-delta modulation and represents a step towards a more stable oversampling

converter. The NCO modulator can potentially achieve higher signal-to-noise quan-

tization ratio (SQNR) by allowing a more aggressive shaping of quantization noise.

In circuit design, it also means we can use less power for the given specifications

(SQNR, signal bandwidth) by decreasing oversampling ratio (OSR) thus decreasing

the sampling clock frequency.

Also we can expect this novel scheme can be widely used in digital-to-analog

conversion, Class-D power amplifiers, phase-locked loop (PLL) and other signal pro-

cessing devices in which sigma-delta modulators are used. This work can provide

some valuable insights for future work.
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C. Aims of the Research

This thesis introduces the circuit implementation of the NCO modulator. The main

target of this research is to develop a prototype circuit to make the theory practical.

Specifically we:

1. develop and optimize the prototype third-order 4-bit oversampling modulator

for low-pass analog-to-digital conversion in system-level, which is suitable for

IC development;

2. find a practical way to realize all the blocks in system-level into circuits; and

3. propose a hardware prototype of the NCO modulator in 0.35-µm CMOS tech-

nology.

D. Organization of the Thesis

The remaining chapters are organized as follows:

Chapter II introduces the fundamentals of oversampling modulation. Chapter

III gives a plain explanation of the theory of the novel oversampling modulation

proposed by Dr. Takis Zourntos [6] [7]. Chapter IV describes design of the prototype

third-order 4-bit oversampling modulator for low-pass analog-to-digital conversion in

system-level. Chapter V extends circuit design and experimental verification of the

prototype oversampling modulator. Chapter VI introduces the layout design and

provides the post-layout simulation results. Chapter VII summarizes this research

and gives recommendations for future work.
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CHAPTER II

FUNDAMENTALS OF OVERSAMPLING ANALOG-TO-DIGITAL

CONVERSION

Data conversion provides the interface between the real, physical world and the vir-

tual, digital world. A/D conversion is the process of sampling in discrete time and

quantizing in magnitude on an analog input signal. A/D converters often appear as

the bottleneck in mixed signal system.

According to the relationship between sampling frequency and signal bandwidth,

A/D converters can be classified into Nyquist-rate and Oversampling A/D converters.

This chapter introduces the fundamentals of Nyquist-rate and Oversampling A/D

converters. Furthermore, we discuss the advantages and stability problem of sigma-

delta A/D converters.

A. Introduction of Nyquist-Rate A/D Converters

Nyquist-rate A/D converters generate a series of output values in which each value has

a one-to-one correspondence with an analog input signal. The Nyquist-rate defines

the lowest sampling rate that will permit accurate reconstruction of a sampled analog

signal. The sampling frequency of Nyquist-rate A/D converters is at, or slightly

higher, than the Nyquist-rate.

The functional level diagram of Nyquist-rate A/D converters is shown in Figure 1.

An anti-aliasing filter is a filter that attenuates unwanted high-frequency signals

(which otherwise would appear as undesired, aliased frequency components) of an

analog signal prior to its conversion into a digital value. For Nyquist-rate A/D con-

verters, anti-aliasing filters with steep brick wall type roll-off at the transition band

are required because of the narrow transition band.
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Fig. 1. Functional level diagram of Nyquist-rate A/D converters

For a quantizer shown in Figure 2, the equation that relates these signals [5] is

Fig. 2. A block diagram representing a quantizer

Vref (b12
−1 + b22

−2 + · · · + bN2−N) = Vin ± e, (2.1)

where −1
2
VLSB ≤ e ≤ 1

2
VLSB, VLSB ≡ Vref

2N , e is quantization error.

Assuming the quantization error, e, is white noise, the probability density func-

tion, fe(x), for such an error is shown in Figure 3. We can analyze the power of e
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Fig. 3. Probability density function for the quantization error

as

e2 =
∫ +∞

−∞
x2fe(x)dx =

1

VLSB

(∫ +VLSB

−VLSB

x2dx

)
=

V 2
LSB

12
. (2.2)

Assuming the input signal Vin is a sinusoidal waveform between 0 and Vref ,

SQNR = 10log10

(
V 2

ref/8

V 2
LSB/8

)
= 6.02N + 1.76, (2.3)

where N is the number of quantizer bits.

Nyquist-rate converters are often difficult to implement in modern submicron

technologies because they need precise analog components, and their circuits can be

vulnerable to noise and interference.
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B. Introduction of Oversampling A/D Converters

The sampling frequency of oversampling A/D converters is much higher than Nyquist-

rate (typically 20 to 512 times [5]). The functional level diagram of oversampling A/D

converters is shown in Figure 4.

Fig. 4. Functional level diagrams of oversampling A/D converters

We use the following concepts in our discussion of oversampling A/D converters.

• OSR (oversampling ratio): OSR ≡ fs/2fb

where fs is the sampling rate, fb is the input signal bandwidth.

• SQNR (signal to quantization noise ratio):

SQNR ≡ 10log (signal power/quantization noise power)

• SNDR (Signal to noise and distortion ratio ):

SNDR ≡ 10log(signal power/(quantization noise power+harmonic power))

• DR (dynamic range): The range, in dB, between the noise floor of a device and

its defined maximum output level.
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Compared with Nyquist-rate A/D converters, oversampling A/D converters can

achieve high resolution with relatively coarse analog components. The realization of

high-resolution analog circuitry is complicated by low power-supply voltages and poor

transistor output impedance (caused by short-channel effects) for modern submicron

technologies [5]. State-of-the-art low-cost semiconductor fabrication technologies usu-

ally provide 10-bit matching accuracy. However, oversampling converters can achieve

better than 20-bit resolution with such technologies at the expense of lower frequency

bandwidth and more complicated digital circuitry.

A second advantage of oversampling converters is that they simplify the require-

ment placed on the analog anti-aliasing filters. We can see it very clearly in Figure 5.

Another advantage of oversampling converters is that the sample-and-hold stage is

usually not required. Furthermore, the programmability of oversampling converters

is better than that of Nyquist-rate converters. Oversampling converters can be con-

figured conveniently for wider bandwidth with less resolution or narrower bandwidth

with higher resolution.

C. Introduction of Sigma-Delta Modulation

Now almost all existed oversampling modulators in popular use are derive from the

sigma-delta modulation. The block diagram of a sigma-delta modulator is shown in

Figure 6 [6].

The basic concept of sigma-delta modulation is the use of feedback for improving

the effective resolution of a coarse quantizer [5]. The effect of sigma-delta modulation

can be estimated through the use of a pseudo-linear model, shown in Figure 7.

In this model a nonlinear operation, quantization, is replaced by the addition of

a noise signal. In many practical situations, the linear model is accurate. But when
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Fig. 5. Anti-alias filter requirements for (a) Nyquist-rate and (b) oversampling [8]

the noise no longer meets the white noise assumption, the linear model breaks down.

Failures of the linear model cause problems such as idle-channel tones and instability

in the modulator [4].

The most two important concepts in sigma-delta modulation are oversampling

and noise-shaping.

1. Oversampling

Let’s begin by modelling a quantizer. When the input x(n) is very active, the quanti-

zation error, e(n), can be approximated as an independent random number uniformly
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Fig. 6. Diagram of sigma-delta modulator

distributed between ±VLSB/2, where VLSB equals the difference between two adja-

cent quantization levels. Thus the quantization noise power is given by V 2
LSB/12. The

spectral density of e(n) is shown in Figure 8.

Assuming the input signal bandwidth is f0, and the sampling rate is fs, we define

the oversampling ratio, OSR, as OSR ≡ fs/2f0. The quantization noise power in the

signal band is

Pe =
∫ +fs/2

−fs/2
S2

e (f)df =
V 2

LSB

12 × OSR
(2.4)

Therefore, doubling OSR decreases the quantization noise power by one-half or,

equivalently, 3dB.
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Fig. 7. Pseudo-linear model of sigma-delta modulator

2. Noise-Shaping

The pseudo-linear model of a general noise-shaping sigma-delta modulator is shown

in Figure 7. The noise transfer function (NTF) is :

NTF =
1

1 + H
. (2.5)

To shape the quantization noise, we choose H such that its magnitude is large

from 0 to f0. With such a choice, the NTF will be approximately zero over the signal

band. The high frequency noise is not reduced by the feedback as there is a little

loop gain at high frequencies. However, additional post filtering can remove the out

of band quantization noise with little effect on the desired signal.

As an example, let’s consider a first-order noise shaping in which [5]

H(z) =
1

z − 1
. (2.6)
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Fig. 8. Spectral density of e(n)

So

NTF (z) =
1

1 + 1/(z − 1)
= 1 − z−1. (2.7)

Let z = ejωT = ej2πf/fs , and we have

NTF (f) = sin

(
πf

fs

)
× 2je−jωf/fs (2.8)

and

Pe =
∫ +fs/2

−fs/2
Se2(f)|NTF (f)|df ≈ π2V 2

LSB

36

(
1

OSR

)3

. (2.9)

Assume the input signal is a sinusoidal wave. For full-scale input, the signal

power is

Pe =

(
2NVLSB

2
√

2

)2

=
22NV 2

LSB

8
. (2.10)

Then the maximum SNQR is given by

SQNRmax = 10log
(

Ps

Pe

)
= 6.02N + 1.76 − 5.17 + 30log(OSR). (2.11)
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Therefore, doubling OSR decreases the quantization noise power by one-eight or,

equivalently, 9dB. The maximum SQNR can be further increased as a function of OSR

by using higher order filtering [4] [5]. This is an important property of sigma-delta

modulators.

3. Stability Problem of Sigma-Delta Modulators

A stable modulator is defined as one in which the input to the quantizer remains

bounded such that the quantizer does not become overloaded and the filter states are

bounded.

The linear model of the sigma-delta modulator shown in Figure 7 is based on

the assumption that quantization error, e, is white noise. When the assumption

fails, the linear model breaks down. Failures of the linear model cause problems

such as idle-channel tones and instability in the modulator. Tones result when the

quantization noise contains discrete spectral lines. Stability is the most significant

problem in sigma-delta modulators because it limits the ultimate accuracy. As the

aggressiveness of the design increases, the margin of stability diminishes rapidly.

In sigma-delta modulation, the objective is to design the NTF to push the noise

power from the signal band to high frequencies. The more aggressively the NTF

is designed, the higher the achievable resolution. But the modulator may become

unstable when the NTF increases. So there is a trade-off between the aggressiveness

of the NTF and modulator stability. As a general rule of thumb, keeping NTF less

than 1.5 often leads to a stable modulator with a 1-bit internal quantizer [5]. For this

reason, the practical sigma-delta modulator can not achieve the maximum dynamic

range predicted by theory.
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4. Discrete-Time and Continuous-Time Sigma-Delta Modulators

The discrete-time sigma-delta modulators utilizing switched-capacitor circuit tech-

niques are the majority of sigma-delta modulators. It is an attractive solution be-

cause the design of a switched-capacitor modulator is more straight forward and the

loop parameters are tightly controlled due to the excellent matching of on-chip ca-

pacitors [4] [9].

There are also some disadvantages of switched-capacitor modulators. There are

settling time constraints so that the switched-capacitor modulators can not achieve

high operation speed. It requires high accuracy sampling network. The clock feed-

through and sampling distortion can not be attenuate by feedback. And the power

consumption is high [10].

In contrast to a switched-capacitor modulator, a continuous-time modulator can

potentially achieve higher sample rate or less power consumption because no settling

behavior is involved. The accuracy requirement of sampling network is relaxed. In

addition, the continuous-time modulator is intrinsic anti-alias filtering [11].
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CHAPTER III

THEORY OF THE PROPOSED NOVEL OVERSAMPLING MODULATION

SCHEME

This chapter summarizes content appearing in the papers by Dr. Takis Zourn-

tos [6] [7]. It provides a simplified explanation of the theory to help the reader

gain insight into the operation of the NCO modulator [12] [13] [14].

A. Introduction

As we discussed in the last chapter, one of the most significant problems in sigma-delta

modulators is stability. The achievable signal-to-noise quantization ratio (SQNR) of

sigma-delta modulator is often substantially lower than the known theoretical value

because of stability constraints. The block diagram of a sigma-delta modulator is

shown in Figure 6.

The principle of sigma-delta modulators is best understood in the frequency

domain. Oversampling and noise-shaping are used to attenuate the noise power in

the signal band. We do this by designing the signal transfer function (STF) and

the noise transfer function (NTF) as shown in Figure 9 [6]. The STF is defined as

H/(1 + H). The NTF is defined as 1/(1 + H).

From a time domain point of view, the accuracy of the modulator is proportional

to the difference between the input, r, and the output, y. The quantization error is

equal to y − r. So our purpose is to minimize the average quantization error. This

inspired Dr. Zourntos to consider it as a control problem. An appropriate controller

can be designed to minimize the quantization error. In other words, the understanding

of the modulator is transferred from the view point of a coding problem to the view

point of a tracking-control problem.
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Fig. 9. STF and NTF for sigma-delta modulator

Based on the architecture of the sigma-delta modulator shown in Figure 6, a

controller is inserted, which is used to minimize the conversion error, eo = H(r − y)

in magnitude and provide overall system stability. If the size of eo is made sufficiently

small, the digital output signal y represents the signal r to within any desired accuracy.

The new system architecture is shown in Figure 10.

Based on nonlinear control theory Dr. Zourntos found a novel oversampling

architecture which can achieve high resolution and improve system stability. The

overall architecture is shown in Figure 11.

A controller C is inserted between the output of the filter H and the quantizer
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Fig. 10. Oversampling modulator with controller

Q.

B. Controller Design

Let’s begin with some definitions and assumptions. We can express a filter in state

space model as:

Filter :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax + bu

y = cx
(3.1)

where x denotes the state vector of the filter, y denotes the output of the filter, u is

input. A, b and c are the state-model matrices of the filter. In Figure 11 the filter H

can be expressed as:

H :

⎧⎪⎪⎨
⎪⎪⎩

ė = Ae + br

eo = ce
(3.2)

where e denotes the state vector of H, eo denotes the output of H, r is input. A, b

and c are the state-model matrices of H.

The design of the controller is based on the methods of variable-structure theory,
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Fig. 11. Proposed oversampling modulator

in which a switching (nonlinear) control law is selected to ensure that the time-

derivative of a Lyapunov-like function is negative.

Let’s start with the noise power

V =
1

2
e2

o (3.3)

where both sides are function of time t.

We want to design a controller such that we establish the condition V̇ < 0.

Therefore the conversion error eo would be minimized in magnitude.

Differentiate both sides of Eq. (3.3) with respect to time to obtain

V̇ = eoėo. (3.4)

Substituting Eq. (3.2) into Eq. (3.4) results in

V̇ = eoc(Ae + b(r − y)) = eocAe + eocbr − eocby. (3.5)
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We write

y = yc + yq (3.6)

in which yc denotes our controller output and yq the (bounded) quantization error.

Then we can get

V̇ = eocAe + eocbr − eocbyc − eocbyq. (3.7)

If we set

yc = r +
1

cb
(ksgn(eo) + cAe) (3.8)

and substitute into Eq. (3.7), it yields

V̇ = −eocbyq − keosgn(eo) = −eocbyq − k|eo|. (3.9)

Here yq can be positive or negative. But if we set k, where k > 0, large enough, this

helps to ensure V̇ < 0. Notice |yq| < Mq, where Mq (0 < Mq < ∞) is a bound on

the magnitude of the quantization error. Then we can obtain from Eq. (3.9)

V̇ < |eo||cb|Mq − k|eo| = −|eo|(k − |cb|Mq). (3.10)

We set k = |cb|Mq + εk where εk is a non-zero positive constant. Then

V̇ < −|eo|εk < 0. (3.11)

From the above deduction, we get the design of controller shown in Figure 12.

It can be proved that the proposed oversampling modulator is stable and the

magnitude of conversion error, eo, is made small under such assumptions (the reader

can refer to [6]):

1. The sampling rate of the system is infinite;

2. The initial condition, e(0), satisfies e(0) ∈ Rn;
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Fig. 12. Proposed nonlinear controller

3. The matrices A and c constitute a controllable pair;

4. The product cb is non-zero;

5. All zeros of H are in the open left-half plane;

6. The states of H are accessible;

7. The quantizer element, Q, does not saturate, and the magnitude of the quanti-

zation error is less than Mq ∈ R 0 < Mq < 1;

8. The disturbance v is less than δ ∈ R, δ > 0 in magnitude for all t ≥ 0.



21

CHAPTER IV

DESIGN OF THE PROTOTYPE NCO MODULATOR AT THE SYSTEM LEVEL

In this chapter we introduce the design of the prototype third-order 4-bit NCO mod-

ulator for low-pass analog-to-digital conversion at the system-level.

A. Design Methodology

Figure 13 shows the block diagram of the NCO modulator.

Fig. 13. Block diagram of the NCO modulator system

1. Introduction of System Parameters and Their Effects on the System

Before introducing the system-level modulator design, we will introduce the system

parameters which is defined in the MATLAB scripts provided by Dr. Zourntos. We

use these scripts to do system-level design.

fs: Sampling rate (Hz). Signal band frequency fb = fs/(2 ∗ OSR).
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OSR: Oversampling ratio. Increasing OSR yields improved SNR.

N : Order of H. Increasing order yields improved SNR.

Rs: Minimum stop-band attenuation of H (Elliptical Filter). Critical for perfor-

mance. Increasing Rs yields improved SNR. However there’s a limitation on

Rs. The system becomes unstable if Rs is too high.

Rp: Passband ripple of H.

shift: This is the amount that we shift the zeros away from jw-axis. The value of

shift should be between 1/10 to 1/100 of fs. Based on the simulation results we

suggest select shift as follows [6]:

H =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

shift=0.015625fs for 3rd order 1-bit

0.25fs for 3rd order 3,5-bit

0.075fs for 5th order

(4.1)

sat lim: Quantizer saturation limit.

nlevels: Number of levels in quantizer. Increasing nlevels yields improved SNR.

qi: Quantization interval size. qi = (2 ∗ sat lim)/nlevels

k: Gain of sgn() block. It should be around cb ∗ qi.

2. How to Optimize the Parameters for Highest Peak SQNR

Dr. Zourntos proposed the system-level design methodology of the NCO modulator in

[6] [7]. The procedure to optimize the system for highest peak SQNR is summarized

as follows:
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1. Specify fs, OSR, N, nlevels (The default value: sat lim = 1, k = cb ∗ qi, Rp=2

or 3);

2. Set Rs as a low value such as 30dB; set shift according to Eq (4.1);

3. Simulate the system and obtain the SQNR while increasing the magnitude of

input sinusoid signal from -20dB to 0dB . Obtain the peak SQNR.

4. Increase Rs. Then do Step 3 again. If the new peak SNR is higher than last

one, continue return to Step 3. If the new peak SNR is lower than last one,

then we choose the last value of Rs. Go to Step 5.

5. Adjust shift around the original value. Return to Step 3 and find the highest

peak SNR.

B. Characteristics of the NCO Modulator

Figure 14 shows the typical time domain behavior of the NCO modulator. The top

plot is the input sinusoidal signal. The middle plot is the conversion error eo. The

bottom plot is the quantizer output, which is also the modulator output.

We do a FFT on the modulator output data and get the spectrum plots shown

in Figure 15. The top plot shows the spectrum up to one-half of sampling rate. The

bottom plot shows spectrum in signal-band.

After optimizing the system we get the relationship between SQNR and OSR.

Figure 16 and Figure 17 show the results for the third-order and fifth-order modula-

tors. We see that the peak SQNR ramps up linearly with the (logarithm) of OSR,

around 20dB/octave for the 3rd-order modulator and 30dB/octave for the 5th-order

modulator.
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Fig. 14. Typical time domain behavior of the NCO modulator

Fig. 15. Output spectrum of the NCO modulator
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Fig. 16. Peak SQNR vs. OSR for third-order modulator

Fig. 17. Peak SQNR vs. OSR for fifth-order modulator
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C. Design of the Prototype Modulator in System Level

1. Considerations for the Prototype Circuit Design

A main objective of this thesis is to make the theory practical in order to verify

that this novel oversampling modulator can be implemented in a real circuit. We

plan to develop a prototype circuit in 0.35-µm CMOS technology according to the

system architecture in SIMULINK. As the first implementation, the complexity of

the design is kept to a minimum. We aim to achieve high performance, in other

words, wide bandwidth and high SNR (>80dB). This is done to demonstrate the

practicality of the new oversampling modulation theory. We design the modulator

in continuous-time because the original proposed oversampling modulation scheme

is continuous-time. We choose the order of filter as three. For this proof-of-concept

IC, a third order filter represents a non-trivial but lower complexity choice that can

achieve high SQNR levels. We want to specify the signal bandwidth as high as

possible. But for continuous-time modulators, it can be difficult to achieve a wide

signal bandwidth (we explain this later). We choose 500kHz signal bandwidth as

a conservative specification. To achieve a high SQNR, we choose OSR=32 and the

internal quantizer resolution as 4-bit.

Thus, we’ll design a prototype circuit of the NCO modulator in 0.35-µm CMOS

technology as an OSR of 32, 3rd-order and 4-bit.

2. Simulation Results of Ideal Prototype Modulator

We build a 3rd-order 4-bit prototype oversampling modulator with an OSR of 32 in

SIMULINK. In accordance with the design methodology discussed above, the parame-

ters are adjusted to achieve the highest possible peak SQNR of the ideal oversampling

modulator. The final parameters are:
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• fs = 32e6

• N = 3

• Rp = 3

• Rs = 75

• shift = 8e6

• sat lim = 1

• nlevels = 16

• qi = (2 ∗ sat lim)/nlevels

• k = 1.04 ∗ abs(cm ∗ bm) ∗ qi

Figure 18 shows the dynamic range of the modulator in SIMULINK.

We can see from the plot that peak SQNR is 101.1 when input is -5dB . Dynamic

range is around 108dB.

3. Stability Discussion

For fixed OSR, filter order and number of quantizer bits, increasing Rs yields improved

SNR. But we can not design the filter too aggressively. The system becomes unstable

when Rs is too high. Figure 19 and Figure 20 show the stable case and unstable

case. The upper part of the figure shows the time-domain behavior of conversion

error, eo in Figure 13. The lower part of the figure shows the time-domain behavior

of quantizer input.

We can see the system becomes unstable when Rs, the minimum stop-band

attenuation of the filter, increase from 68dB to 72dB. From above figures we can find
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Fig. 18. Dynamic range of the ideal oversampling modulator

the conversion error, eo, is very small (in the order of 10−4) when the system is stable.

It becomes more than ten thousand times larger when system becomes unstable. The

same happens with the magnitude of the quantizer input.

We will introduce in a later section that the system would become unstable when

the feedback loop delay is too large if the system is a continuous-time modulator.

4. Simulations for Effect of Non-Idealities

To do the simulations on effect of non-idealities, a new prototype modulator system

in SIMULINK was created to introduce the errors on voltage references and delays

of blocks.
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Fig. 19. Time domain behavior of system when OSR=8, N=5, nlevel=32, Rs=68dB

a. Errors on Voltage References

To introduce the errors on the voltage references, we use the function rand() in MAT-

LAB to produce a 16*1 error vector which is added to the reference voltage of the

quantizer.

For the ideal modulator, SQNR=99.7dB (input=-6dB). We performed several

simulations using different random error vectors. The resulting SQNRs did not vary

more than 3dB from ideal case. The results show that errors on voltage references

should not affect the system too much.

b. Feedback Loop Delay

As shown in Figure 13, there are feedback loop delays which come from the sgn()

block, internal ADC and DAC [15]. By simulation we find that non-zero feedback
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Fig. 20. Time domain behavior of system when OSR=8, N=5, nlevel=32, Rs=72dB

loop delay would degrade SQNR performance of the modulator or even cause the

modulator to become unstable.

We did a series of simulations to study the effect of non-zero feedback loop delay

on the system.

The setup is:

• fs = 32e6

• N = 3

• Rp = 2

• Rs = 72

• shift = 8e6
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Table I. Typical simulation data with different feedback loop delay(Rs=72, in-

put=-6dB)

Delay 0 ∗ Ts 0.1 ∗ Ts 0.14 ∗ Ts 0.16 ∗ Ts

SQNR(dB) 94.5 92.6 85.0 65.4

• sat lim = 1

• nlevels = 16

• qi = (2 ∗ sat lim)/nlevels

• k = 1.04 ∗ abs(cm ∗ bm) ∗ qi

• Input = -6dB

We add a time delay block after the quantizer output. Then we do simulations

to get SQNR. Data is shown in Table I.

Here Ts = 1/fs.

The above data show that the performance of the modulator degrades when the

feedback loop delay becomes large. The system even becomes unstable if the feedback

loop delay is too large. Then we try to study if we can make the system be more

tolerable to feedback loop delay. Finally we found that lower values of Rs of the filter

can make the system more tolerable for non-zero feedback loop delay.

Consider the following data in Table II. Here, Rs equals 66dB. Other parameters

are the same as last setup.

We find that a decrease in Rs makes the system more robust to non-zero feedback

loop delay. But also we found that decreasing Rs 6dB results in the peak SQNR

degrade for 2dB.

To simulate the system more realistically, a 5ns delay is introduced after the

sgn() block. We decrease the Rs to 61dB. The simulation results are in Table III.
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Table II. Typical simulation data with different feedback loop delay(Rs=66, in-

put=-6dB)

Delay 0 ∗ Ts 0.1 ∗ Ts 0.2 ∗ Ts 0.3 ∗ Ts

SQNR(dB) 92.5 92.2 90.8 83.8

Table III. Typical simulation data with different feedback loop delay(Rs=61, in-

put=-6dB)

Delay of quantizer 0.0 ∗ Ts 0.1 ∗ Ts 0.2 ∗ Ts 0.3 ∗ Ts 0.4 ∗ Ts 0.5 ∗ Ts

Delay of sign(ns) 0 5 5 5 5 5

SNR(dB) 90.2 86.4 84.7 84.2 81.9 79.2

Finally we get a proper filter design for the 3rd-order 4-bit prototype modula-

tor. Please notice our design is very conservative because this is the first time that

we implement this novel oversampling modulator. We leave a large safety margin,

otherwise we can get better performance.

5. Ultimate System-Level Simulation Results of the Prototype Oversampling

Modulator

The parameters are shown below:

• fs = 32e6

• N = 3

• Rp = 2

• Rs = 61

• shift = 8e6

• sat lim = 1
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• nlevels = 16

• qi = (2 ∗ sat lim)/nlevels

• k = 1.04 ∗ abs(cm ∗ bm) ∗ qi

Figure 21 shows the dynamic range of the modulator in SIMULINK.

Fig. 21. Dynamic range of the prototype oversampling modulator

The above plot shows that peak SNR is 92 when input is -5dB. Dynamic range

is around 99dB.
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CHAPTER V

CIRCUIT DESIGN AND IMPLEMENTATION

This chapter describes the circuit-level design of the prototype third-order four-bit

continuous-time NCO modulator. This design is implemented in a 0.35-µm double-

poly CMOS technology (TSMC35 P2) from TSMC. Fully differential structure is used

to maximize noise rejection and increasing dynamic range [16].

Based on the system-level simulation results, the preliminary design specifications

of this research are shown in Table IV.

A. Building Blocks

According to the block diagram of the NCO modulator, which is shown in Fig-

ure 13, we divide the circuits into a number of building blocks, including filter,

controller, internal ADC, DAC, DAC current calibration and clock generation cir-

cuit [17] [18] [19] [20].

The block diagram of the prototype NCO modulator in circuit-level is shown in

Figure 22.

B. Third-Order Continuous-Time Filter

The filter block is illustrated in Figure 23. The two inputs are input analog signal

and current feedback from DAC. Outputs are conversion error, eo, and state outputs

of the filter, e1, e2, e3. All inputs and outputs are fully differential signals. According

to the requirements of the filter in system-level, our main considerations are:

1. It is a third-order continuous-time filter.

2. It has two inputs: the input analog voltage and feedback current from internal
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Table IV. Preliminary design specifications of this research

Signal Bandwidth 500KHz

Sampling Frequency 32MHz

OSR 32

Dynamic Range >84dB

Supply Voltage ±1.65V

Power Consumption < 200mW

Area < 3mm*3mm

Process 0.35-µm CMOS (TSMC35 P2)

DAC, and four voltage outputs: the conversion error, eo, and state outputs, e1,

e2 and e3.

3. This structure should be able to realize arbitrary zeros and poles of the filter.

4. High linearity and high SNR.

5. Low cost. In other words, lessen the number of opamps used in this filter.

6. Robust to process variation.
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Fig. 22. Block diagram of the prototype NCO modulator in circuit-level

Fig. 23. Third-order filter block
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Table V. Comparison of filter structures

Cascade Leapfrog FLF

Opamps needed Fewer More More

Sensitivity High Low Medium

Tunability Easy Difficult Easy

1. Proposed Structure

After studying many filters [21] [22] [23], we decide to choose the FLF (Follow the

Leader Feedback) structure [24] [25]. The optimized FLF design has been shown to

be the most practical multiple-loop feedback design based on sensitivity, dynamic

range, and noise performance [22] [26].

It can fulfill all the requirements we list above. Another advantage of the FLF

filter is that it is easy to tune. Table V shows a comparison between the most popular

structures, cascade connection of second-order sections, Leapfrog and FLF.

The third-order FLF filter topology is shown in Figure 24. The transfer function

of the FLF filter is [22]:

H(s) = K0
B0(s + k)3 + B1k(s + k)2 + B2k

2(s + k) + B3
3

(s + k)3 + F2k2(s + k) + F3k3

= K0
B1ks2 + (2B1k + B2k

2)s + (B1 + B2 + B3)k
3

s3 + 3ks2 + (3k2 + F2k2)s + (1 + F2 + F3)k3
(5.1)

Here B0 = 0, K1 = K2 = K3 = 1.

Eq. (5.1) shows for a filter with given arbitrary zeros and poles, we can realize

it by the FLF structure.

From the FLF filter topology, we get the state-space matrix of the filter shown

below. Here we define the nodes voltage, e1, e2, e3, as state outputs.
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Fig. 24. The third-order FLF filter topology

ė3 = −ke3 + K3ke2 (5.2)

ė2 = −ke2 + K2ke1 (5.3)

ė1 = −ke1 + K1ke0 (5.4)

e0 = K0Vin − F3e3 − F2e2 (5.5)
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From the above equations we deduce that:

⎡
⎢⎢⎢⎢⎢⎢⎣

ė3

ė2

ė1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−k K3k 0

0 −k K2k

−F3K1k −F2K1k −k

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

e3

e2

e1

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

K0K1kVin (5.6)

Vout =
[

B3 B2 B1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

e3

e2

e1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.7)

where B0 = 0.

The matrices obtained would be used to design the controller.

2. The Maximizing of Filter Dynamic Range

To reduce noise in the filter circuit, we need to maximize dynamic range of each stage

of filter. In Eq. (5.1) we assume K1 = K2 = K3 = 1. To maximize dynamic range,

the gain of the filter, K0, is distributed to the gain of each stage, k1, k2, k3. Thus the

signal amplitude at the output of each stage have equal maximum value.

The transfer function of the third stage of the filter is

H3(s) = K0
s3

s3 + 3ks2 + (3k2 + F2k2)s + (1 + F2 + F3)k3
. (5.8)

Let a = k
s+k

. Then the transfer function of each stage is:

H2(s) = H3(s)
a

H1(s) = H2(s)
a

H0(s) = H1(s)
a

From the BODE simulation in MATLAB, the frequency response spectrum of

each stage is obtained. And the maximum gain of each stage is obtained as:

Vo,max = max(|H(s)|)
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V3,max = max(|H3(s)|)
V2,max = max(|H2(s)|)
V1,max = max(|H1(s)|)
V0,max = max(|H0(s)|)
K1, K2 and K3 are obtained by the relations:

K1 = V0,max

V1,max

K2 = V1,max

V2,max

K3 = V2,max

V3,max

This implies the feedback and feed-forward coefficients should be readjusted as:

F ′
2 = F2/K1K2

F ′
3 = F3/K1K2K3

B′
1 = B1K2K3

B′
2 = B2K3

B′
3 = B3

3. Parameter Calculation

The power supply voltage used is 3.3V. Considering the maximum signal swing and

circuit design, the full scale of the signal is defined as ±600mV (0dB signal).

On simulating in system-level, we observe that the magnitude of the output of

the filter is small, approximately 10−4V. That would make the design of sgn() block

(shown in Figure 13) difficult. To solve this problem, a gain of 200 is introduced to

the filter. First, we get original transfer function of the filter from system-level design.

H(s) =
3.065 ∗ 104s2 + 4.904 ∗ 1011s + 1.032 ∗ 1019

s3 + 2.313 ∗ 106s2 + 1.012 ∗ 1013s + 1.032 ∗ 1019 (5.9)

Zeros and Poles of the filter are:
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Zeros=

−8.0000 ∗ 106 + 1.6516 ∗ 107i

−8.0000 ∗ 106 − 1.6516 ∗ 107i

Poles=

−5.6868 ∗ 105 + 2.9087 ∗ 106i

−5.6868 ∗ 105 − 2.9087 ∗ 106i

−1.1752 ∗ 106

Equating the transfer functions shown in Eq. (5.1) and Eq. (5.9), all the coeffi-

cients are calculated. The dynamic range is then maximized. The results are:

k = 7.71 ∗ 105

K1 = 20

K2 = 20

K3 = 4

F2 = 0.70122

F3 = 0.093662

B1 = 3.9754 ∗ 10−1

B2 = 3.7273 ∗ 10−1

B3 = 2.7165

Figure 25 shows the frequency response spectrum of the filter. Please note that

in this figure, the gain of the filter is divided by 200 to make the observation more

clear.
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Fig. 25. Frequency response spectrum of the filter
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Table VI. The SQNR performance under time constant variations (input=-6dB)

RC time constant Variation SQNR(dB)

0 90.2

+10% 88.1

-10% 90.2

+20% 89.3

-20% 86.0

4. Effect of Time Constant Variation in the Filter

Simulations are performed to see how much the variation will affect the performance.

The RC time constant, k, of each stage of the filter is changed in system model in

SIMULINK. And simulations are run to get the SQNR performance of the modulator

system. The results are shown in Table VI.

From the simulation data we can see that the FLF filter is quite robust for the

time constant variation in the system.

5. Schematic of the Filter

In this section we will describe the schematic design of the filter.

To realize the integrator in the filter, two popular structures are considered:

active-RC and Gm-C integrator, as shown in Figure 26 and Figure 27.

Active-RC structure is choosen for the reasons detailed below:

1. It has higher close-loop linearity.

2. It has larger output swing.

3. The virtual ground of the opamp is ideal as a current feedback point for the

feedback DAC.
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Fig. 26. Active-RC integrator circuit structures

Based on block diagram of the filter shown in Figure 24, the fully differential

third-order continuous-time filter circuit is design as shown in Figure 28.

The components values are calculated as follows:

Let C = 50pF

Then R = 1/k ∗ C = 25.94k

R1 = R/K1 = 1.297k

R2 = R/K2 = 1.297k

R3 = R/K3 = 6.485k

RF2 = R/F2 = 36.992k

For RF3, here is a trick. As the above method, the value of RF3 should be

calculated as RF3 = R/F3 = 276.953k. It’s too large compared with other transistors,

thus difficult for layout. Two additional resistors are used to split the coefficient F3

as 0.1 ∗ 0.93662. Thus RF3 = R/0.93662 = 27.695k. To get the coefficient 0.1, the

value of R8 and R9 are chosen as 0.2k and 1.8k.

Let R7 = 3k
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Fig. 27. Gm-C integrator circuit structures

Then R4 = R7/B1 = 7.546k

R5 = R7/B2 = 8.048k

R6 = R7/B3 = 1.104k

In Figure 28 it is observed that four stages are used in the filter. The first three

stages correspond to the three stage first-order integrators in Figure 24. The last

stage is the summer stage. Two kinds of opamps are used here. Opamp2 is used

in integrator stages. Opamp1 is used in summer stage. We’ll introduce these two

opamps in the next section.

In Figure 28 the adjustable capacitor C is realized by a capacitor bank for filter

tuning. The RC time constant varies around 30% under the TSMC 0.35µm technology

in fabrication. Although the FLF filter is robust for the process variation, the RC

time constant tuning circuit is used in the design to ensure the high performance of

the system in worst case.

In the filter, vi± is the input analog signal. Ii is the feedback current from
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Fig. 28. Schematic of the fully-differential third-order continuous-time FLF filter

DAC. The four inputs, tune 1, tune 2, tune 3, and tune 4, are control signals for the

capacitor bank. There are four pairs of output. vo± is output voltage of the filter.

x1, x2 and x3 are status output voltages of the filter.

The AC analysis of the filter is performed in Cadence and the frequency response

plot is obtained as shown in Figure 29. As compared with the frequency response

plot shown in Figure 25 which is from MATLAB simulation, it is observed that they

are almost the same.

6. Opamps

There are two kinds of opamps in the filter. Opamp1 is used in the summer stage.

Opamp2 is used in all integrator stages. For the summer stage, the main requirement

is that the settling time should be short. Thus a high GBW and high slew rate for
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Fig. 29. Frequency response spectrum of the filter

Opamp1 is needed.

For integrator stages, a high DC gain for Opamp2 is needed to get high close-loop

linearity.

The specifications of Opamp1 and Opamp2 are shown in Table VII.

A typical two-stage opamp structure employing Miller compensation is choosen

for both Opamp1 and Opamp2 [16]. The topology of the opamp is shown in Figure 30.

The transistor sizes of Opamp1 are given in Table VIII. The transistor sizes of

Opamp2 are given in Table IX.

Usually there is a buffer stage in the opamp to drive the resistance load. By
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Table VII. Specifications of Opamp1 and Opamp2

Opamp1 Opamp2

DC gain(dB) 50 55

GBW(MHz) 500 40

PM(degree) 70 70

Slew Rate(V/s) 5 ∗ 109 108

Table VIII. Transistor sizes of Opamp1

Transistors Size m(W/L) (µm)

M0, M9 10(18/0.6)

M1, M2, M10, M11 10(12/0.6)

M3, M4, M12, M13 5(6/0.6)

M5, M6 10(18/0.6)

M7, M8 10(6/0.6)

Table IX. Transistor sizes of Opamp2

Transistors Size m(W/L) (µm)

M0, M9 20(14/2)

M1, M2, M10, M11 10(4.1/2)

M3, M4, M12, M13 10(7/2)

M5, M6 30(18/0.4)

M7, M8 30(9/0.4)
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Fig. 30. Schematic of the opamp

simulations it’s observed that the buffer stage needs a lot of current and restricts

the output swing. Hence this stage is removed. To keep the open loop gain without

buffer, the resistance load is carefully designed to be large enough for every opamp

used in the system.

We can see a differential OTA stage in the right of Figure 30. That is the

common-mode feedback circuit. It’s necessary for the fully differential opamps. In

this system the supply voltage is ±1.65V. The common-mode output voltage is set

as 0V.

Table X shows the Cadence simulation results for the two opamps. When we do

the simulations, the load of Opamp1 is 2KΩ resistance. The load of Opamp2 is 50pF

capacitance//1KΩ resistance. .
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Table X. Cadence simulation results for Opamp1 and Opamp2

Opamp1 Opamp2

DC gain(dB) 49 55.8

GBW(MHz) 540 41

PM(degree) 70 78

Slew Rate(V/s) 5.1 ∗ 109 1.1 ∗ 108

Power Consumption(mW) 10.8 11.1

C. Controller

The circuit-level implementation of the controller is shown in Figure 31. An opamp

and resistors are used instead of the gain and sum blocks in Figure 13.

1. Comparator

Figure 32 shows the block diagram of the sgn() block. It is divided into three parts.

The comparator part is to compare the input differential signal and generate the

digital output.

The synchronization latch part synchronizes the digital output. When the input

signal of the comparator is very small, the regeneration time of the comparator will

be quite long and uncertain. This phenomenon is called ”metastability” [27] [28].

The synchronization latch circuit is necessary to eliminate the effect of metastability.

The schematic of the synchronization latch circuit is shown in Figure 33. In this

figure, clk3 is the clock to synchronize the digital output. calib ctr is the control

signal to forbid the digital output during the DAC calibration.

The output of the comparator would be added to the output by a coefficient k.

This function is realized by the 1-bit DAC circuit. The schematic of the 1-bit DAC
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Fig. 31. Schematic of the controller

is shown in Figure 34.

The comparator block is a crucial block in the system. It is necessary to minimize

the delay of the comparator as much as possible. Large feedback loop delay degrades

the performance of the modulator, even causes the modulator to become unstable.

For the sgn() block, the accuracy is also important. Thus we need design a

high-speed comparator with reasonable accuracy.

The comparator circuit consists of a differential pair, a track-and-latch stage and

an S-R latch. The schematic of the comparator is shown in Figure 35 [28] [29].
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Fig. 32. Block diagram of the sgn() block

Fig. 33. Schematic of the synchronization latch circuit
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Fig. 34. Schematic of the 1-bit DAC

Fig. 35. Schematic of the comparator
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Table XI. Transistor sizes of the comparator in sgn() block

Transistors Size m(W/L) (µm)

M0 2(4.5/0.4)

M1, M2 3(2.4/0.4)

M3, M4 2(1.5/0.4)

M5, M6 2(4.5/0.4)

M7, M8 1(1.2/0.4)

M9 1(1.2/0.4)

M10, M11 1(3.6/0.4)

The transistor sizes of the comparator are given in Table XI.

The comparator operates in two phases: tracking phase and latch phase. In track

phase, clk1=low and clk2=high. M9 is on and the upper half of second stage is off.

The input voltage is amplified and appears on point X and Y . In the same phase,

M3 and M4 pull the output to VDD.

The voltage between X and Y is [29]:

V =
gm0,1Ron,19

2 − gm15,16Ron,19

Vin (5.10)

In latch mode, clk1=high and clk2=low. M9 is off. M7, M8 are on. The

regeneration due to positive feedback takes place. The voltage V is soon amplified to

a voltage swing nearly equal to the power supply voltages.

For proper operation, clk1 and clk2 are complementary. But it is important that

clk2 turns off M9 before clk1 turns on M7 and M8. The clock phases are shown in

Figure 36. Topology of the circuit generating clk1 and clk2 is shown in Figure 37.

To optimize the comparator to operate at maximum comparison speed, minimum

channel length transistors should be used, and the following ratio between widths W
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Fig. 36. Clock phases of clk1 and clk2

is recommended [29].

W19 = 1
3
W15

W1 = 2W15

W13 = W19

W9 = 2.5W19

W10 = 2.5W15

The comparator is simulated with a SR-latch load. Simulations show the res-

olution of the comparator is 75µV. The regeneration time is 0.7ns (90% accuracy).

Meets the requirements.

D. 4-bit Internal Flash ADC

We design a 4-bit internal flash ADC to work as the quantizer in system-level de-

sign [30] [31] [32] [33]. The diagram of the flash ADC is shown in Figure 38.
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Fig. 37. Topology of the clock generation circuit

We choose flash topology because of its high speed, which means that the feed-

back loop delay would be quite small. The resolution requirement is only 4-bit, quite

suitable for flash ADC [28]. Below are the main considerations when we design the

flash ADC:

1. Speed. It should work as fast as possible with acceptable power consumption.

2. The whole input capacitive loading of the flash ADC must be minimized. There

are 16 comparators parallel connected in the 4-bit ADC. So it’s important to

carefully design the input stage of the comparator otherwise the large input par-

asitic capacitance would limit the speed of the comparator and usually requires

a strong and power-hungry buffer to drive it.

3. Minimal power consumption.
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Fig. 38. Diagram of the flash ADC
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Figure 39 shows the detailed schematic of the comparator block in the flash ADC.

It is similar to the comparator in sgn() block. But there are also some differences:

Fig. 39. Schematic of the comparator block in the flash ADC

Two fully differential pairs are used as the input stage for the fully differential

input and voltage reference. The NMOS input gates are used instead of PMOS input

gate in comparator in ”sgn()” block. This arrangement minimize the size of input

devices thus minimize the input parasitic loading. It is a well known fact that to get

a given transconductance, the size of PMOS transistor should be three times of the

size of NMOS transistor. PMOS current mirrors (M16, M17, M18, M19) are used

to provide both gain and isolation from latch stage, to reduce kick-back noise.
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Table XII. Transistor sizes of the comparator in the flash ADC

Transistors Size m(W/L) (µm)

M1, M2 2(1.5/0.4)

M12, M13, M14, M15 1(2/0.4)

M16, M17 3(2/0.4)

M18, M19 3(3/0.4)

M3, M4 1(2.5/0.4)

M5, M6 1(7.5/0.4)

M7, M8 1(1/0.4)

M9 1(1/0.4)

M10, M11 1(3/0.4)

The transistor sizes of the comparator are given in Table XII. The comparator

is simulated with a SR-latch load. Simulations show the resolution of the comparator

is 210µV. The regeneration time is 0.7ns (90% accuracy). Meets the requirements.

Please notice there is also a synchronization latch after a comparator. It’s more

important here to add this block, because there are 16 comparators in the 4-bit

flash ADC. The large glitch would exist on the output of the ADC without the

synchronization latches. Simulations show the SQNR performance degrades 5dB

without the synchronization latches.

There is a delay between the synchronization clock used in flash ADC and the

synchronization clock used in sgn() block. That is because a short settling time is

needed when the output current of the 1-bit DAC in sgn() block is added on the sum

block before the flash ADC.
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E. 4-bit DAC and Current Calibration Circuit

1. 4-bit DAC

The current-steering architecture is chosen for the DAC design because it’s the most

suitable candidate for high-speed operation. The reason is current-steering DAC can

drive resistive loads directly. It doesn’t require high-speed opamp at the output and

hence is potentially faster than other types of DACs [28]. Another advantage of

current-steering DAC is the convenience to interface the DAC output current with

the continuous-time filter.

The DAC structure diagram is shown in Figure 40. There are 16 binary weighted

Fig. 40. DAC structure diagram
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current sources and 16 switches. The switches are dependent on the digital input,

and they determine which current source should be directed to which output.

Figure 41 shows the schematic of an unit current source. The unit current source

Fig. 41. Schematic of an unit current source

consists of two cascode NMOS transistors. The cascode structure is used to increase

output impedance.

Differential switches are used so that the current source can always deliver cur-

rent. Otherwise if the current source is turned off, the voltage at the output of current

source will move to the supply voltage. When the current source is turned on again,
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the voltage between the output of current source and the DAC output would be large.

This will cause big glitch [34].

In Figure 41 the input cal 1 and cal 2 are used for current calibration. We’ll

introduce it in next section.

2. Current Calibration Circuit

We need to consider the linearity problem of the multi-bit internal DAC. For the

normal CMOS technology, the smallest component mismatch that can be achieved is

on the order of 0.1% − 0.5%. So the non-linearity of the multi-bit internal DAC can

not be neglected.

To study the effect of the non-linearity from DAC on the modulator system,

the non-linearity in the modulator is modelled as additive noise sources, as shown

in Figure 42. In Figure 42, v1 represents the errors before the quantizer such as

non-linearity generated by the filter H or by the gain blocks of the controller. v2

represents the errors of the internal DAC. Similar with the sigma-delta modulator,

all the errors before the quantizer would be suppressed by the modulator [6]. However,

the non-linearity of the internal DAC is fed to the system input directly. Thus the

errors can not be reduced by the negative feedback [4].

So the ultimate linearity of the modulator is no better than the linearity of the

multi-bit internal DAC.

In this project a 14-bit resolution is needed. Low-cost CMOS technologies usu-

ally offer 10-bit matching accuracy. Several approaches can be used to improve the

linearity performance of the DAC. One approach is to use dynamic element matching

(DEM) to randomize the nonlinearity caused by mismatch. Another approach is to

calibrate each unit current source by using a master reference. We choose the latter

one, current calibration, to improve the matching accuracy of the current sources.
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Fig. 42. Block diagram of the modulator with non-linearity effect from feedback DAC

The current calibration principle is illustrated in Figure 43 [28]. This technique

makes each unit current source equal to the reference current IREF , thus canceling

errors due to mismatch.

During calibration mode, S1 and S2 are closed. The current difference between

the reference current IREF and the drain current of M1, I1, is forced to flow through

M2, thus generating a voltage drop VGS on M2. IREF = I1 + I2. In work mode, S1

and S2 are opened. As VGS of M2 is stored on CH , the drain current of M2 remains

the same I2. Thus the total output of the unit current source keeps as IREF .

The key point in this circuit is to control I1 as 99% of the total current, IREF

because when I2 is quite small, M2 can be a long device to attain better matching

and lower sensitivity to charge injection at its gate.
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Fig. 43. Principle topology of the current calibration circuit

The circuit of Figure 43 has two drawbacks. First, it requires a large CH to

suppress the effect of feed-through due to S2 because the adjustable current source

has single-ended control. Second, if I1 > IREF , calibration circuit fails to operate.

But it’s difficult to ensure that I1 is less than IREF by only 1%.

Figure 44 shows a differential bi-directional current calibration circuit which can

overcomes the above drawbacks [28].

The OTA formed by M5, M6, M7 and M8 can source and sink output current.

The differential structure can overcome the feed-through errors.
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Fig. 44. Schematic of the differential bidirectional current calibration circuit

3. Calibration Control Circuit

When the circuit is initialized by switching the power on, the chip will calibrate the

16 unit current sources first. To control the operation of calibration, we design a

calibration control circuit. My friend Nebu John Mathai helped me in this digital

block design.

The output sequence of calibration control circuit is shown in Figure 45. In the

first clock cycle, all control output are low except A1 is high, which calibrates the

first unit current source by closing the switches S1 and S2 in this current source (see

Figure 43). In the second clock circle, A2 is high · · ·. The unit current sources would

be calibrated one by one in this way.

Figure 46 shows the topology of the calibration control circuit. It consists of
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Fig. 45. Output sequence of calibration control circuit

four D-latches, one adder and one binary-to-thermometer decoder [35] [36] [37]. The

output of the decoder is the output signal to control the calibration sequence.
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Fig. 46. Topology of the calibration control circuit
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The schematic of the adder block is shown in Figure 47.

Fig. 47. Schematic of the adder block

The illustration topology of the binary-to-thermometer decoder is shown in Fig-

ure 48. The input signals are s0, s1, s2 and s3. The output signals are A1, A2, · · ·,
A16. The logic between input and output is:

A1=Nor(s3, s2, s1, s0)

A2=Nor(s3, s2, s1, ns0)

A3=Nor(s3, s2, ns1, s0)
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Fig. 48. Illustration topology of the binary-to-thermometer decoder

A4=Nor(s3, s2, ns1, ns0)

A5=Nor(s3, ns2, s1, s0)

A6=Nor(s3, ns2, s1, ns0)

A7=Nor(s3, ns2, ns1, s0)

A8=Nor(s3, ns2, ns1, ns0)

A9=Nor(ns3, s2, s1, s0)

A10=Nor(ns3, s2, s1, ns0)

A11=Nor(ns3, s2, ns1, s0)

A12=Nor(ns3, s2, ns1, ns0)

A13=Nor(ns3, ns2, s1, s0)

A14=Nor(ns3, ns2, s1, ns0)

A15=Nor(ns3, ns2, ns1, s0)

A16=Nor(ns3, ns2, ns1, ns0)
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Here

ns0=Not(s0)

ns1=Not(s1)

ns2=Not(s2)

ns3=Not(s3)

To reduce the propagation delay of the digital circuit, we design the size of

the transistors carefully. When sizing the transistors in a gate with multiple fan-

in’s, we should pick the combination of inputs that triggers the worst-case condi-

tions [35] [36] [37].

For example, for a NAND gate, which is shown in Figure 49, to have the same

pull-down delay as a minimum sized inverter (i.e., NMOS: 0.6µm/0.4µm and PMOS:

1.8µm/0.4µm), the NMOS devices in the NAND stack must be made twice as large

(i.e., NMOS of NAND should be 1.2µm/0.4µm) so that the equivalent resistance

the NAND pull-down is the same as the inverter. The PMOS device can remain

unchanged.
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Fig. 49. Schematic of a NAND gate



72

CHAPTER VI

LAYOUT DESIGN AND POST-LAYOUT SIMULATION RESULTS

A prototype circuit of the novel oversampling modulator proposed in previous chap-

ters is implemented in a 0.35-µm double-poly CMOS technology process (TSMC35 P2)

through MOSIS. Figure 50 shows the layout of the chip. The dimensions of the design

are 2150 × 2150µm2 without pads and 2850 × 2850µm2 with pads.

For a high-quality layout, there are mainly two important issues that should be

considered: matching and noise issues [38] [39]. For good matching, symmetric struc-

tures are adopted for most of the cells, including transistors, resistors and capacitors.

Dummy cells are also used in the sensitive parts to eliminate the boundary effects.

To reduce coupling of noise, such layout technologies are adopted:

• The sensitive analog blocks and noisy digital blocks are separated in terms of

physical positioning. As shown in Figure 50, the most sensitive analog blocks,

such as the filter and the controller, are placed far away from digital blocks, such

as the clock generation circuits and the current calibration control circuits.

• Separate analog and digital power supplies are used to reduce the interference

from digital circuits to analog circuits due to the large glitch injected on the

digital supply when the digital gates change states.

• The analog and digital circuits are separated by guard rings and wells connected

to the power-supply voltages to reduce substrate coupling. For the mixed signal

blocks, flash ADC and DAC, the analog cells are also separated by guard rings

and wells from digital cells.



73

Fig. 50. Layout of the prototype oversamping modulator
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• Enough ties to the power supplies are placed near the transistors to minimize

voltage drops.

• Unused areas are filled with capacitors for decoupling power supplies.

• Crossing routing is used to avoid parasitic capacitances.

The diagram of the on-chip voltage buffer is shown in Figure 51.

Fig. 51. Diagram of the on-chip voltage buffer

To inspect the node voltage, the switch in the buffer is closed. The voltage is led

off-chip by the unity gain buffer. To minimize the effect of the buffer, the switch is

kept open in normal simulations.

Because the accuracy requirement for the buffer is not very high, the opamp in

this buffer is designed as a simple one-stage amplifier.

Because the post-layout simulation is especially time-consuming, we only did 5

simulations for different input amplitudes. The dynamic range plot of the modulator

is shown in Figure 52.

The performance of the prototype oversampling modulator obtained by post-

layout simulation is summarized as shown in Table XIII.
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Fig. 52. Dynamic range of the prototype oversampling modulator in post-layout sim-

ulation

Testing results are currently in progress and we aim for completion before May

2005.

Table XIV shows the performance of two most recent continous-time sigma-delta

publications [9] [40].

The data show that the performance of our work is close to the performance of

the recent sigma-delta modulators, even though this is the first circuit implementation

of the NCO modulator, while the sigma-delta modulation already developed for fifty
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Table XIII. Performance of the prototype oversampling modulator obtained by

post-layout simulation

Signal Bandwidth 500KHz

Sampling Frequency 32MHz

OSR 32

Peak SQNR 83.7dB

Dynamic Range 90dB

Supply Voltage ±1.65V

Power Consumption 60mW

Area 2150 × 2150µm2

Process 0.35-µm CMOS (TSMC35 P2)

Table XIV. Performance of two most recent continous-time sigma-delta publications

[9](Jan. 2004) [40] (Nov. 2004)

Signal Bandwidth 1.1MHz 1.23MHz

Sampling Frequency 35.2MHz 2GHz

OSR 16 813

Peak SNR 84dB 79dB

Supply Voltage 3.3V 1.8V

Power Consumption 62mW 18mW

Area 2.4 × 2.4mm2 0.89 mm2

Process 0.5-µm CMOS 0.18-µm CMOS
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years. This prototype NCO modulator circuit is designed very conservatively. Higher

performance, such as higher SQNR, wider signal bandwidth or less power, can be

achieved by optimizing the design of the modulator.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

This work is the first circuit implementation of the NCO modulator proposed by

Dr. Takis Zourntos. It shows that this novel oversampling modulation theory can

be cost-effectively realized into circuits with good performance. This is an exciting

result because this novel oversampling modulation theory is theoretically stable. With

a reduced stability constraint, the NCO modulator may potentially achieve higher

SNR or less power by designing the modulator more aggressively.

The simulation results show that 90dB dynamic range over a 500kHz input signal

bandwidth is achieved by this third-order continuous-time oversampling modulator

with 4-bit internal quantization realized in a 0.35-µm double-poly CMOS technology

process.

The principal contributions of this work are:

1. The characteristics of the NCO modulator is further explored, especially the

effect of the non-idealities, errors on voltage reference and feedback loop delay.

2. A new filter circuit is proposed to realize the filter with the special requirements:

a series of filter state outputs for the controller, realizing arbitrary zeros and

poles, high linearity and robustness to process variation.

3. Two types of comparators with synchronization latches to eliminate the effect

of metastability are proposed for the sgn() block and internal flash ADC.

4. A new DAC with current calibration circuits for high linearity is proposed.
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5. A deliberate clock scheme is used to overwhelm the effect of the non-ideal time

delay of comparators.

6. Most importantly, the first prototype circuit of the novel oversampling modu-

lator is implemented. Simulation results show it achieves 83.7-dB peak SQNR,

90-dB dynamic range over a 500kHz input signal bandwidth, and 60 mW power

consumption. These results are quite good because most of the blocks are de-

signed very conservatively. Higher performance, such as higher SQNR, higher

signal bandwidth or less power, can be achieved by optimizing the design of the

modulator.

B. Suggestions for Future Work

This is the first step to implement the NCO modulator. There are a lot of choices

to further develop this new class of oversampling modulators. Below are some of the

possibilities:

• Optimize the design of the modulator for higher performance. Also the different

OSR, order and internal quantizer resolution can be investigated for different

performance requirement. It is possible that some unexplored advantages exist.

• Develop the new oversampling modulation theory for discrete-time applications.

Then the switched-capacitor techniques can be used to implement the modu-

lator. The majority of the sigma-delta modulators employ switched-capacitor

loop integrators. That would be a good choice for developing this NCO modu-

lator.

• Develop this novel oversampling modulation scheme for other applications such

as digital-to-analog conversion, PLL, Class-D power amplifiers, and other signal
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processing devices in which sigma-delta modulators are used.
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