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Abstract

The resource optimization of ultra-dense networks (UDNs) is critical to meet the huge demand
of users for wireless data traffic. But the mainstream optimization algorithms have many problems,
such as the poor optimization effect, and high computing load. This paper puts forward a wireless
resource allocation algorithm based on deep reinforcement learning (DRL), which aims to maximize
the total throughput of the entire network and transform the resource allocation problem into a deep
Q-learning process. To effectively allocate resources in UDNs, the DRL algorithm was introduced to
improve the allocation efficiency of wireless resources; the authors adopted the resource allocation
strategy of the deep Q-network (DQN), and employed empirical repetition and target network to
overcome the instability and divergence of the results caused by the previous network state, and
to solve the overestimation of the Q value. Simulation results show that the proposed algorithm
can maximize the total throughput of the network, while making the network more energy-efficient
and stable. Thus, it is very meaningful to introduce the DRL to the research of UDN resource
allocation.

Keywords: ultra-dense networks (UDNs), deep reinforcement learning (DRL), resource allo-
cation, throughput, energy efficiency
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1 Introduction
In recent years, wireless resource allocation has become an important issue, with the proliferation

of long-term evolution (LTE) systems and fifth generation (5G) communication systems. Meanwhile,
the recent surge in business demand of users poses severe challenges to resource optimization. The
White Papers of Cisco show that the amount of wireless network data is increasing exponentially, and
is expected to grow by 1000% in the next decade.

To improve the service quality and business experience of the network, scholars have shifted their
attention towards ultra-dense networks (UDNs). With the rapid development of network technology,
lots of small cells could now be deployed on UDNs [8]. However, the growing density of base stations
increases the total power consumption of base stations, intensify the interference between small base
stations in the network, and make these base stations more unstable [27]. To solve the problems
arising from the largescale deployment of small cell base stations, it is of great significance to allocate
wireless resources by improving the energy efficiency and stability of the UDNs.

The existing research on UDN wireless resource allocation mainly focuses on increasing the total
network throughput and improving network energy efficiency. Liu [17] maximized the total network
capacity with a distributed resource allocation algorithm, satisfied the requirement on quality of service
(QoS), and optimized the sub-channel allocation and power allocation through geometric program-
ming. Wang et al. [30] adopted a non-cooperative game model with penalty factors, proposed a way
to virtualize the local information of small cells for power allocation, and optimized network energy
efficiency through effective control of small cell base stations, in the light of their load conditions.
Drawing on Nash bargaining and cooperative game theory, Zhang et al. [36], Zhang et al. [35], and
Zhang [34] studied the power allocation of sub-channels in small cell networks, and solved the game
model by the Lagrangian dual decomposition method. In this way, the model converged to the Pareto
optimal solution, maximizing the energy efficiency of the entire system.

In the above research, the wireless resources are mostly allocated by traditional methods, which
involve a huge computing load during implementation. In the scenario of UDNs, the growing number of
small cell base stations will continuously push up the computing complexity. To simplify the algorithm,
many researchers have resorted to wireless resource allocation through reinforcement learning (RL).

So far, fruitful results have been achieved in the application of RL in wireless communication. Amiri
et al. [3] applied RL to power allocation of wireless networks, allocated the power of network base
stations reasonably through online learning, and thus maximized the total throughput of the network.
Chen et al. [6] integrated wireless network with RL, and implemented Q-learning to rationalize the
allocation of spectrum resources and increase network throughput. However, these two RL approaches
can only optimize network throughput, failing to consider the energy efficiency of the network.

Nevertheless, the RL could not effectively handle the ultra-large state space of UDNs. This gives
prominence to deep reinforcement learning (DRL). Many scholars have probed extensively into the
DRL [21]. For example, Chang et al. [5] developed a DRL-based architecture for fog network, which
offloads the transcoding tasks in network services to fog nodes under the dynamics of wireless networks,
strikes a balance between high QoS and low delay, and thereby offers the best user experience. Xiong
[32] investigated the slice-level resource reservation and physical resource allocation based on the DRL
algorithm, and constructed an automatic resource management system for wireless virtual networks;
the constructed system can maximize the resource utilization of the whole system, without sacrificing
the quality of user services. He et al. [11] discussed the actual channel state under the interference
alignment mechanism, and obtained the optimal user selection strategy under the cache condition,
using the DRL algorithm; their strategy eliminates the interference to the signal, and significantly
improves the total throughput and energy efficiency of the network.

Currently, the UDNs mainly face the following problems due to the dense deployment of small
cell base stations and the huge network space: inter-signal interference, slow algorithm convergence,
and poor signal stability. These problems could be alleviated by coupling the DRL technology with
concepts like empirical repetition and target network.

This paper proposes a network resource allocation algorithm based on DRL in the context of UDNs,
aiming to increase network throughput and speed up convergence. Firstly, a model was established to
maximize the total system capacity response to the interference caused by the dense deployment of
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small cells in UDN. Next, the DRL algorithm was adopted to make the allocation of wireless resources
more efficient, with the goal to solve the complex resource allocation problem in UDN. Finally, the
deep Q-network (DQN) was employed for resource allocation, and the concepts of empirical repetition
and target network were introduced. Our algorithm stores all operation processes in the memory pool,
and randomly selects the data in the memory pool for training. This effectively solves the correlations
between samples, and overcomes the instability and divergence of the results caused by the previous
network state, thereby improving stability [5]. In the iterative process, the estimation network is
updated iteratively at any time according to the current state and action. Then, at every interval,
the estimation network assigns the network parameters to the target network, such as to avoid the
overestimation of the Q-value [32].

The research contents are detailed in four parts below: First, a small cell network scenario was
summarized, and the relevant hypotheses and model were established for the scenario. Next, the DRL
was introduced to convert the research problem, and to analyze the corresponding algorithm. After-
wards, an application scenario was created to simulate the algorithm, and to compare our algorithm
with other algorithms; the simulation results were analyzed reasonably. Finally, several findings were
drawn from the whole process of the research.

2 Hypotheses and modeling
This paper summarizes the system model of an ultra-dense small cell network as Figure 1.

Figure 1: System model

As shown in Figure 1, the base stations are distributed densely, so that the networks of the same
frequency cannot be used by users in the same cell, but by those in other cells. On the architecture
of communication network, the network system should consider the interference caused by all base
stations to users, due to the dense distribution of multiple base stations.

Suppose a core controller can collect relevant information in the entire network, including transmis-
sion power and signal-to-noise ratio (SNR); each user can transmit location information, interference,
and transmission rate to the core controller through pilot signals, and make a unified plan for spectrum
allocation.

Let n = {1, 2, 3, . . . , N} be the nsmall cells in the system, each of which uses k subcarriers k =
{1, 2, 3, . . . ,K}. The distribution of base stations follows the Poisson point process model, multiplexing
k orthogonal subcarriers. During the access to the base station, each cell user adopts the transmission
power of Pnt . At time t, the cell user can only connect to one base station; each subcarrier can only
be allocated to one user.

At time t, in the small cell n, the signal to interference plus noise ratio (SINR) on the k-th
subcarrier can be expressed as:

SINKk
n = GknP

(n,k)
t∑

n6=ńG
k
ńP

(ń,k)
t + σ2

(1)

where, P (n,k)
t is the total transmission power of small cell n on subcarrier k; Gkn is the channel gain;

σ2 is white Gaussian noise (WGN). Hence, the channel capacity of small cell n on channel k can be
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obtained as:
Rk=
n

B

K
log2

(
1 + SINKk

n

)
(2)

where, B is the total bandwidth of the system. Thus, the maximum total throughput of the system
can be expressed as:

argmaxR =
N∑
n=1

K∑
k=1

Rknb
k
n

s.t.C1: P (n,k)
t ≥ Pmin,∀n, k

C2:
∑
n,k

P
(n,k)
t ≤ Pmax,∀n, k

(3)

where, bkn = 1 or 0 is an indicator of whether the small cell base station n allocates subcarrier k to
the user (if bkn = 1, the subcarrier k of small cell nis occupied; if bkn = 0, the subcarrier k of small cell
n is not occupied); Pmin and Pmax are the minimum and maximum transmission powers required by
the subcarrier, respectively. The overall capacity of the entire system can be enhanced by adjusting
the transmission power P (n,k)

t of the base stations on the subcarriers. Note that the water injection
algorithm was adopted to allocate the initial power between the subcarriers, for this algorithm can
maximize the transmission rate by reasonably allocating the transmission power as per the planned
criteria and the real-time channel conditions [11].

During channel allocation, the power consumption of each small cell base station is divided into
two parts: the minimum fixed power consumed to maintain the operation of the station, and the
power consumed to serve users. In the period t, the power consumption of the small cell base station
n can be expressed as:

P ′(t,n) = P opn + P
(n,k)
t bkn (4)

where, P opn is the fixed operating loss of small cell base station n; P (n,k)
t is the transmission power of

small cell base station n in period t. Energy efficiency, as the ratio of total throughput to the total
power consumption, can effectively measure the network performance. Therefore, the total energy
efficiency of the system at time t can be expressed as:

EEttotal = maxRt∑N
n=1 P

′
(t,n)

(5)

To optimize the energy efficiency of the network, it is necessary to control the carrier allocation
and transmission power of small cell base stations. However, this non-convex optimization problem
cannot be efficiently solved by traditional algorithms in a short time. What is worse, the traditional
algorithms cannot make real-time adjustment according to the network environment. To solve the
problem, artificial intelligence (AI) techniques like DRL provides a possible tool to intelligently and
effectively enhance user satisfaction with QoS and the utilization rate of network resources [25].

3 Problem transformation and algorithm analysis

3.1 Basic model of RL

The RL is an important tool widely used to solve Markov dynamic programming and other prob-
lems [39]. During the RL, the learner can acquire the optimal strategy by interacting with the complex
environment. According to the network state, the learner takes an action by a certain strategy. Once
taken, the action will change the network state, and receive a reward. Then, the strategy will be
further optimized. This process will be repeated until the strategy is optimal. Hence, network state,
action, and reward are three key factors of the RL framework. In this paper, the three factors are
defined as follows:

(1) State space
The state space is defined as S(t) =

{
B

(t)
1 , C

(t)
1 , P

(t)
1 , . . . , B

(t)
n , C

(t)
n , P

(t)
n

}
, where B(t)

1 is the traffic
volume of small cell base station at time t; C(t)

1 is the channel state at time t; P (t)
1 is the transmission
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power of small cell base station at time t. To reduce the complexity of the algorithm and the state
space of the network, the transmission power of the base station needs to be discretized by:

P
(t)
n = τ(

P fmax −Aτ
)
≤
∑k
k=0 P

(n,k)
t <

(
P fmax −Aτ+1

) (6)

where, τ ∈ {0, 1, 2, 3, 4, 5}; A0 = P fmax; A6 = 0; A1 ∼ A5 are arbitrary thresholds.
(2) Action space
The action space is defined as A(t) =

{
U

(t)
in , P

(t)
in , T

(t)
nk | n ∈ N, k ∈ K

}
, where U (t)

in is the indicator of
whether small cell base station needs to be connected with user i at time t; P (t)

in is the power allocation
by small cell base station n to user i at time t; T (t)

nk is the adjusted value of the energy efficiency on
the k-th subcarrier of base station n at time t.

(3) Reward
To optimize energy efficiency, the reward function can be set as the energy efficiency at time t:

rt = EEttotal = maxRt∑N
n=1 P

′
(t,n)

(7)

3.2 DRL strategy

To maximize the throughput of the entire network, it is a must to maximize the cumulative reward
by choosing a suitable method for allocating network resources. The Q-learning presents an effective
way for RL, and has been widely applied by researchers [29]. The significance of Q-learning is to
search for the optimal strategy π∗ that maximizes the cumulative discount return in the long term.

In each period t, the learner belongs to the state of S(t), and executes the action A(t) = π
(
S(t)

)
corresponding to strategy π. He/she will be rewarded with rt

(
S(t), A(t)

)
, depending on the current

state and action. Then, the next state will be obtained. The strategy will be optimized through
iterative learning by the small cell base station.

Based on strategy π, the expected long-term return V π
(
S(t), A(t)

)
of the state-action strategy can

be expressed as:

V π
(
S(t), A(t)

)
= Eπ

[
I∑
i=1

λiri
(
S(i), A(i)

)
| S(1) = S(t), A(1) = A(t)

]
(8)

where, ri
(
S(i), A(i)

)
is the instant reward generated by performing action A(i) in state S(i); λ is a

discount factor (0 < λ < 1).
To maximize the long-term return V π

(
S(t), A(t)

)
, the optimal state value function can be expressed

as:
π∗
(
S(t)

)
= max Q

(
S(t), A(t)

)
(9)

The optimal strategy can be obtained through iterative update of the optimal Q value:

Q
(
S(t), A(t)

)
←
(
1− α)Q

(
S(t), A(t)

)
+ α

[
rt
(
S(t), A(t)

)
+ λmax Q

(
S(t+1), A(t+1)

)]
(10)

where, α is the learning rate that affects the update speed of Q value (0 < α < 1).

4 DQN
In the real-world UDN, both state space and action space are huge. It is difficult for Q-learning to

achieve desirable results. Therefore, the DQN algorithm that combines deep learning with Q-learning
can effectively overcome this defect. Apart from the DQN, the authors also introduced two novel
concepts: empirical repetition and target network.
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During Q-learning, the Q-value might be overestimated, for the strategy selection and update
are based on the same Q function table [2]. The target network was introduced to prevent the
overestimation. There are two neural networks with different parameters in DQN. One of them is
an estimation network, i.e., an optimal value function Q

(
S(t), A(t) | θ

)
≈ Q

(
S(t), A(t)

)
, with network

weight θ, fitted from the currently inputted state and action; the other is the target network, whose
target value can be calculated by:

r = rt
(
S(t), A(t)

)
+ λmax Q

(
S(t+1), A(t+1) | θ−

)
(11)

where, θ− is the parameter of the target network. Any small deviation of the function value will affect
the entire strategy. To stabilize Q

(
S(t), A(t) | θ

)
, the estimation network needs to be trained in each

step to minimize the loss function, so as to approximate the actual Q
(
S(t), A(t)

)
. Thus, the deviation

between Q values of the target network and estimation network can be minimized by gradient descent:

Loss(θ) = E
[(

r−Q
(
S(t), A(t) | θ

))2
]

(12)

During the training, only the estimation network is trained, and updated to the target network
through multiple online trainings. In this way, the correlation between the two Q values is greatly
weakened, avoiding the overestimation of Q value.

To prevent the target strategy from falling into the local optimum trap and search for a better
Q value, the ε-greedy strategy was introduced to the DQN. The random selection of the ε-greedy
strategy was employed to find the action with the greatest value.

However, a huge amount of data is needed for neural network fitting [10, 13, 16, 22, 24, 26, 38].
Besides, it may take a long time for the action taken under a strategy to produce benefits. Thus,
empirical repetition was implemented to store each step of computation into a preset memory pool.
Then, the stored data were extracted from the pool for training:

At time t, the algorithm belongs to the state S(t). The corresponding action A(t) is chosen as per
the optimal function π∗

(
S(t)

)
. Then, the instant reward rt and the next state S(t+1) will be obtained.

Next, the data
(
S(t), A(t), rt, S(t+1)

)
will be stored in the memory pool with the capacity of N . After

the sample size accumulates to a certain level, the DQN will randomly select data from the pool
for iterative computation, and then update the parameters of the estimation network. After certain
iterations, the estimation network parameters will be synced to the target network [7, 9, 12, 15, 19, 28].
This approach helps to alleviate the instability and divergence of the results caused by the past states,
thereby improving the algorithm stability.

5 Simulation and results analysis
Our simulation was carried out under a UDN with 11 macro base stations and 80 small cell base

stations. The area of UDN is 1,000m × 1,000m, and each base station has a radius of 250 m. The
users are uniformly distributed within the coverage areas. Each user is allocated at least one channel
[18, 23, 31, 37]. If one base station is interrupted, then the service of the user connected to this
base station will be interrupted. During the simulation, the power of the small cell base stations was
discretized and divided into 5 levels, corresponding to P = {10, 15, 20, 25, 30}. A neural network with
two hidden layers was designed, with 200 hidden layer nodes. Meanwhile, the memory pool capacity
N, number of selected samples S, and learning rate α were set to 10,000, 300, and 0.0005, respectively.

Due to the instability of UDN, the energy efficiencies obtained by simulation were all mean values.
To verify the DQN performance, Q-learning algorithm was selected as the contrastive algorithm. The
simulation results are shown in Figure 2.

In the first 600 iterations, DQN performed poorer than Q-learning, for the DQN requires a pre-
liminary training and applies function fitting to training. At the initial phase of training, the DQN
has a much poorer fitting effect than the table look-up method of Q-learning.
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Figure 2: Simulation results

After the 600-th iteration, DQN far outperformed Q-learning, owing to the following reason: Q-
learning relies on the table look-up method; In the UDN, however, not all scenarios are stored in
the table; thus, Q-learning involves lots of random explorations, which drag down its performance
[1, 4, 14, 20, 33, 40].

In addition, the number of base stations has an impact on the overall energy efficiency of the
system. Table 3 compares the energy efficiency of base stations at different numbers of base stations.
Note that the random power algorithm was introduced as another contrastive algorithm against DQN
algorithm.

Figure 3: Energy efficiency at different numbers of base stations

As shown in Figure 3, the overall energy efficiency of the system increased with the number of
base stations under the DQN algorithm. This is because more small cell base stations mean the
algorithm controls more targets, making the scheme more flexible; a flexible scheme pushes up the
overall efficiency. By contrast, under Q-learning, the growing number of base stations led to an
exponential rise in the number of candidate strategies; then, it is much harder to find the optimal
strategy. That is why the Q-learning algorithm had a decline in learning performance. Figure 4
presents the convergence curves of DQN algorithm and Q-learning algorithm.

As shown in Figure 4, our algorithm achieved faster convergence and better energy efficiency than
Q-learning.
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Figure 4: Network convergence

6 Conclusions
This paper proposes a network resource allocation algorithm based on DRL to increase network

throughput and energy efficiency of the UDN. Drawing on the theories on deep learning, a long-
term reward function was constructed with energy efficiency as the reward. The weight parameters
of neural network were updated through repeated training. Simulation results show that, with the
growing number of iterations, our algorithm could optimize system energy efficiency more effectively
than other algorithms, and provide an effective solution to resource allocation under dynamic complex
network environment. The future research will further refine the details and improve the performance
of the optimization algorithm, carry out simulations on a larger scale, and apply the algorithm in
real-world scenarios.
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