Developing Better Instruction, Better Instructors, and New Investigators Abigail Pyle and Clay Vander Kolk **Taylor University** ### Goals - Implement use of NCTM's Principles to Action Toolkit with other mathematics teacher educators by incorporating these videos into semester-long teacher preparation courses (Developing Better Instruction) - Document our results by measuring any changes in pre-service teachers' commitments toward effective mathematics teaching practices (Developing Better Instructors) - Involve undergraduate mathematics education majors in the analysis of the resulting data (Developing New Investigators) # **Creating the Surveys** - Student (pre-service teacher) surveys - Administered pre-semester and post-semester - o 42 multiple choice questions (rated on a Likert scale) addressing instructional techniques and activities students would be likely to incorporate into their classrooms - o 2 open-answer questions (one for both pre- and post-surveys and one for only post-survey) - Instructor survey - To provide a base of desired teaching practices to which comparisons of student results could be made - o Items identical to student pre-survey # **Gathering and Analyzing Qualitative Data** - Coding student responses to the first open-answer question asking students to explain how they would teach a certain lesson - o Created a Likert scale (1-5) "continuum" from teacher-centered, transmission-based teaching to student-centered, constructivist-based teaching - Coded student responses according to where their answers would fall on the continuum - Observations for first open-answer question - Pre-survey average response was 2.45, post-survey average response was 3.33 - Tended to be more PSTs moving towards student-centered classrooms with constructivist views than PSTs moving towards transmission-based teaching - Coding student responses to second open-answer question asking students how their views on teaching math had changed throughout the course of the semester - o Likert scale (1-4) that consisted of four categories we noticed showed up in the PST's responses about how their views had changed after taking the class - o Could only measure desire to change, not actual commitment to change - · Observations for second open-answer question - o Category 2 "exploration and productive struggle" occurred most often, probably due to its effective use in class and the videos students watched that modeled - o Students mentioned on multiple occasions that their views had changed because of the videos and reflections they were assigned throughout the class # **Gathering and Analyzing Quantitative Data** - Two types of statistical testing of data - 2-sample T-test, n=23 (students' responses considered as a whole from pre- to post-survey for each question) - Paired T-test, n=15 (individual students' responses paired from pre- to post-survey) - · Requirements for deeming categories "statistically significant" - Had to have p-values equal to or below 0.05 in both the 2-sample and paired T-tests - o Had to approach the teacher-educator means, demonstrating desired change - Statistically significant quantitative data - o Category 12: "The teacher is surprised by ideas that students develop during a lesson." -- showed increased commitment - o Category 39: "Explain their reasoning or thinking in solving a problem by using several sentences orally or in writing"--showed increased commitment - o Category 14: "The textbook or worksheets guide the instruction" -- showed decreased commitment ## 2-Sample Test Data Significant Categories (in light blue) | Category | Teacher
Mean | Pre-Survey
Mean | Post-Survey
Mean | P-Value | Wilcoxson
P-Value | |-------------------------------|-----------------|--------------------|---------------------|---------|-----------------------------------| | (1-HW) | 3 | 2.957 | 2.065 | p=0.008 | 0.05 <p<0.10< td=""></p<0.10<> | | (12-Surprised) | 3.25 | 1.391 | 2.022 | p=0.047 | 0.05 <p<0.10< td=""></p<0.10<> | | (39 - Explain orally/writing) | 3.5 | 2.391 | 3.087 | p=0.010 | 0.001 <p<0.005< td=""></p<0.005<> | | (42-Analyze) | 3 | 2.826 | 3.348 | p=0.039 | 0.01 <p<0.02< td=""></p<0.02<> | "There is a need for students to have productive struggle and discourse when learning math." 2-Sample T-test of Category 12 for quantitative data. ### Paired Test Data Significant Categories (in light blue) | Category | Teacher
Mean | Pre-Survey
Mean | Post-Survey
Mean | P-Value | |----------------------------------|-----------------|--------------------|---------------------|---------| | (2-On own) | 2.25 | 2.196 | 1.739 | p=0.016 | | (12-Surprised) | 3.25 | 1.391 | 2.022 | p=0.047 | | (14-Textbook as guide) | 0.25 | 1.391 | 0.783 | p=0.005 | | (17-Invent) | 2.75 | 1.587 | 1.913 | p=0.027 | | (22-Topics taught separately) | 0.75 | 2.174 | 1.739 | p=0.045 | | (25-Topic Jumping) | 3.5 | 2.565 | 2.978 | p=0.005 | | (26-Watch Teacher) | 1.75 | 2.609 | 2.304 | p=0.007 | | (28-Computate) | 2 | 2.370 | 2.130 | p=0.041 | | (38-Solve
non-routine) | 3.25 | 2.261 | 2.630 | p=0.010 | | (39 - Explain
orally/writing) | 3.5 | 2.391 | 3.087 | p=0.001 | | (41-Estimate) | 3.75 | 2.913 | 3.283 | p=0.015 | | (42-Analyze) | 3 | 2.826 | 3.348 | p=0.003 | # **Conclusions** - Quantitative data: Statistical testing showed significant evidence to suggest change and growth towards Teacher Educator Means in PSTs - The professor implemented effective practices - Students experienced benefit of constructivist teaching - o Videos demonstrated correct methods and reflections allowed for analysis of those correct methods - Qualitative data - We saw a general movement/trend from more teacher-centered, transmission-based teaching to more student-centered, constructivist-based teaching. - Pre-service teachers reported growth or desire towards implementing many of NCTM's Effective Mathematics Teaching Practices. - o On a whole, preservice teachers frequently cited the instructor, in-class experience, and the assigned videos as the catalysts for their changed thinking. ### References - Barlow, A.T. and Cates, J.M. (2006), The Impact of Problem Posing on Elementary Teachers' Beliefs About Mathematics and Mathematics Teaching. School Science and Mathematics, 106: 64-73. - Bull, Bernard. "A 9-Stage Continuum of Teacher-Centered to Learner-Led Classrooms & Communities." Etale Exploring Futures & Innovations in Education with Dr. Bernard Bull, 17 Nov. 2019, etale org/main/. Accessed December 18, 2020 (no longer available) Carney, M. B., Brendefur, J. L., Highles, G. R., & Thiesda bis, (2015). Developing a mathematics instructional practice survey. Considerations and evidence. Mathematics Teacher Education, 4(1), 93-118. Enochs, L. G., Swith, P. L., & Hughles, D. (2000). Establishing factorial validity of the mathematics storing efficacy believes instrument. School School and American Education and School an - Enones, L. G., Smith, P. L., & Hullinker, D. (2000). Establishing factorial visically of the mathematics activities and each great energy of the mathematics and each great energy of the programment. Scrool Socience and mathematics, 70(4), 194-202. Hart, L. C., Auslander, S. S., Wenqui, O., Lambert, R. G., Pugalee, D. K., & Johnson, S. (2019). A review of research on affect of elementary prospective feachers in university mathematics. The Mathematics Educator, 22(2). Pourdavoor, R. G., & Liu, X. (2017). Pre-service elementary teachers' experiences, expectations, beliefs, and attitudes teaching and learning. International Journal of Learning, Teaching and Educational Research, 16(11), 1-27. Swan, M. (2006). Designing and using research instruments to describe the beliefs and practices of mathematics teachers. Research in Education, 75(1), 58-70. Swars, S., Hart, L. C., Smith, S., & Tolar, T. (2077). A longitudinal study of elementary pre-service teachers "mathematics beliefs and content knowledge. School Science and Mathematics, 107(8), 325-335. Wisconsin Center for Education Research, 2021. Survey of instructional Practices, Teacher Survey, Grades K-12, Mathematics. [online] Programs.ccsso.org. Available at: http://programs.ccsso.org/content/pdfs/K12mlhSurvey31407.pdf. Accessed 8 February 2021. ### Contact Abigail Pyle (abigail pyle@taylor.edu) Clay Vander Kolk (clayton_vanderkiolk@taylor.edu) Patrick Eggleton (patrick_eggleton@taylor.edu)