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ABSTRACT

Greedy Randomized Adaptive Search Procedure for Traveling Salesman Problem.

(May 2005)

Seung Ho Lee, B.E., Korea University

Chair of Advisory Committee: Dr. Sergiy Butenko

In this thesis we use greedy randomize adaptive search procedure (GRASP) to solve

the traveling salesman problem (TSP). Starting with nearest neighbor method to

construct the initial TSP tour, we apply the 2-opt and the path-relinking method

for the initial tour improvement. To increase 2-opt search speed, fixed-radius near

neighbor search and don′t− look bit techniques are introduced. For the same reason

a new efficient data structure, the reverse array, is proposed to represent the TSP

tour. Computational results show that GRASP gives fairly good solutions in a short

time.
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CHAPTER I

INTRODUCTION

The traveling salesman problem (TSP) is one of the most common problems in com-

binatorial optimization. A number of prominent researchers have tried to attack this

problem. The role of the TSP in the field is underlined by the fact that it is commonly

accepted as the representative combinatorial optimization problem. Its practical im-

portance is one of the reasons of such status. In fact, many significant real world

problems can be formulated as instances of the TSP. The well known applications of

the TSP include vehicle routing, circuit wiring, network connection, job sequencing.

The definition of the TSP can be simply stated without any mathematical notation

as follows. A salesman has to visit n cities once and only once and finish where he

started. Given the cost of travel between each pair of cities, the salesman wants to

find the minimum cost tour of cities. At a glance, the salesman’s problem looks very

straightforward and easy. However, the difficulty is revealed if the number of possible

tours is considered. For an n-city symmetric problem (with the same pairwise dis-

tances regardless of the travel direction), there are (n−1)!
2

possible tours. Hence, for

only n = 10, there exist more than 106 tours. In 1979, Garey and Johnson [9] proved

that TSP is an NP -hard problem that can not yet be solved in polynomial time. Thus

it is infeasible to follow complete enumeration of large size real-world TSP instances.

Even if there is an exact method that guarantees an optimal solution, its running

time is prohibitively excessive for large-scale problems. In order to handle such large

problems, many heuristic methods have been developed.

An heuristic method, by definition, is any solution method involving computa-

This thesis follows the style and format of SIAM Journal of Computing.
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tionally efficient strategies that should produce a solution at least close to the optimal

one, even if it does not find the optimum. Though they do not necessarily find op-

timal solutions, heuristic methods give fairly good results. According to Feo and

Resende, “The effectiveness of these methods depends on their ability to adapt to a

particular realization, avoid entrapment at local optima, and exploit the basic struc-

ture of the problem, such as a network or a natural ordering among its components.

Furthermore, restart procedures, controlled randomization, efficient data structures,

and preprocessing are also beneficial” [6]. Combined with rapid development of com-

puter technology, more successful heuristic methods are being introduced at a high

pace. Heuristic algorithms for the TSP can be classified into two categories, tour con-

struction algorithms and local search algorithms. The first tries to construct a good

initial tour, and the second attempts to improve the tour already constructed. Near-

est neighbor, insertion methods, greedy, and Christofides algorithm are some of the

most promising known heuristics for the tour construction algorithm. 2-opt, 3-opt,

simulated annealing, genetic algorithms, and Lin-Kernighan are the most competitive

local search algorithms [4, 12].

Starting from any city, the nearest neighbor (NN) algorithm always takes the

nearest not-yet-visited city. When there is no such city left, it means that all cities

have been visited and the starting city has to be visited next. The running time of

NN is O(n2), and Rosenkrantz, Stearns, and Lewis [18] show that if the costs between

cities are nonnegative and satisfy the triangle inequality, the length of NN tour is less

than 1
2
dlog n + 1e+ 1

2
times the optimum.

Insertion methods start a tour construction by joining any two cities, and select

the next city by the insertion rule. There are three different insertion methods de-

pending on the insertion rule, farthest, nearest, and random insertion. The farthest

insertion method always chooses the farthest city from any city in the current tour.
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Similarly, the nearest insertion method picks the nearest city. The random insertion

method inserts the city in random order. Rosenkrantz, Stearns, and Lewis [18] claim

that the insertion methods have the tour cost less than dlog ne + 1 times the cost of

the optimum.

In the greedy algorithm, the elements to be considered are not the cities but the

edges between two cities. So the tour is built up by adding the shortest edge which

does not create a degree 3 vertex or a cycle of length less than n. The straightforward

implementation of the greedy algorithm requires O(n2 log n) for the running time, but

Bentley [1] reports O(n log n) time for the uniform inputs. With the assumption that

all edges satisfy the triangle inequality, Ong and Moore [15] claim that the length of

the greedy tour is less than 1
2
dlog ne+ 1 times the optimum.

The algorithm of Cristofides [2] has the smallest worst-case bound among the

mentioned algorithms, 3
2

times the optimum. It starts with finding a minimum span-

ning tree T and constructing a minimum perfect matching M of the cities which have

odd degree in T . Then E(T ) ∪M will be a connected multi-graph in which every

vertex has even degree. Since this graph contains an Euler tour, a TSP tour can be

found by taking shortcuts to avoid multiple visits. A modified Cristofides algorithm

of Gabow and Tarjan [8] guarantee the O(n2.5) running time.

2-opt is one of the most famous simple local search algorithms that was first pro-

posed by Croes [5]. It deletes two edges, thus breaking the tour into two separated

paths, and then reconnects these two paths to form another possible tour. Simi-

larly, 3-opt exchanges three edges of the tour thus reforming the tour with 3 paths.

The running time of the 2-opt consists of the improving move search time and the

movement performing time. In the worst case, the improving move search time takes

O(n2). However, the movement performing time can be reduced to O(1) using some

efficient data structures.
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Lin-Kernighan [14] can be considered a special tabu search algorithm and a

variable λ-opt algorithm. It uses a tabu list but has a much higher complexity. At each

step, starting with λ = 2, λ edges from the current tour will be exchanged to make

another possible tour. If better tour is found, then λ is increased by 1 and the search

is continued to find another tour improvement. Generally, Lin-Kernighan algorithm

is considered as one of the most effective methods. The modified Lin-Kernighan

algorithm of Helsgaun [11] shows that the average running time is approximately

O(n2.2).

Feo and Resende [6] introduced an iterative restart approach called the greedy

randomized adaptive search procedures (GRASP). Each iteration consists of two

phases, a construction phase and a local search phase. The best solution found

during the iteration will be reported as the final solution. The detailed procedure of

GRASP will be discussed more in Chapter IV of this thesis. GRASP is one of the

most promising heuristic methods and is a common approach used for solving many

combinatorial optimization problems. It has been successfully applied to the various

combinatorial optimization problems, such as set covering, production planning and

scheduling, graph problems, and location problems. Festa and Resende [7] provide

an annotated bibliography of the GRASP from 1989 to 1999.

Path-relinking, originally introduced by Glover [10], is a deterministic search

process to examine neighbors between good solutions. PR method is based on the

belief that the neighbor of a good solution can be also a good solution. By selecting

each element of the starting solution as the guiding good solution, near neighbors

could be considered. If some near neighbor solution is better than the starting solu-

tion, we will save it as new solution candidate and continue the search to the next

near neighbor. When the search reaches the guiding solution, best solution found so

far will be recorded as the new solution.
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Recently, Laguna and Mart́ı [13] showed that path-relinking intensifies the GRASP

procedure. Many extensions, improvements, and applications have been reported for

this hybrid heuristic method. In this thesis, GRASP with path-relinking is applied to

solve the traveling salesman problem. Since GRASP has not been used for the TSP

yet, this thesis can give a guideline of GRASP’s efficiency in solving the TSP.
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CHAPTER II

QUICK 2-OPT SEARCH TECHNIQUES

A. Steiglitz and Weiner technique

The Steiglitz and Weiner technique was introduced by Steiglitz and Weiner [20] based

on the simple observation. In order to illustrate this technique, the following several

notations need to be defined. A pair (x, y) represents the fact that x is the immediate

predecessor of y in the tour order. The notation < t1, t2, t3, t4 > denotes four cities

involved in the 2-opt move, where the edges {t2, t3} and {t1, t4} replace the edges

(t1, t2) and (t4, t3). Then we can write each 2-opt move of those four cities in two

different notations, < t1, t2, t3, t4 > and < t4, t3, t2, t1 > depending on where the

tour starts. As shown in Figure 1, under the counterclockwise orientation, we can

express the 2-opt move as < t1, t2, t3, t4 > starting from t1. In the same way, if the

tour starts from t4, the move can be denoted by < t4, t3, t2, t1 >. In both of the

two different notations, to be the improving move, it must be the case that either

(a) d(t1, t2) > d(t2, t3) or (b) d(t3, t4) > d(t4, t1), or both, where d(t1, t2) denotes the

distance between t1 and t2. To make the search fast, we can reduce our attention to the

case satisfying (a) d(t1, t2) > d(t2, t3) without missing any improving move. Suppose

we have an improving move with the four cities < c1, c2, c3, c4 >. Suppose further that

d(c1, c2) < d(c2, c3) is satisfied. Then this improving move will be missed at the first

scan, because we considered only one condition d(c1, c2) > d(c2, c3). However, when

the same four cities are encountered starting with c4, which is the other notation

< c4, c3, c2, c1 >, we check the condition d(c4, c3) > d(c2, c3). Since < c1, c2, c3, c4 >

(or < c4, c3, c2, c1 >) is an improving move, at least one of those conditions should

be satisfied. With this property, we only need to find allowable candidates for t3
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1t

4t3t

2t

Fig. 1. 2-opt movement

satisfying (a) d(t1, t2) > d(t2, t3). Steiglitz and Weiner [20] proposed storing a list

of remaining cities for each city c in order of increasing distance from c. Then we

can easily find all candidates x for t3, which are cities from the beginning of t2’s list

until d(t2, x) ≥ d(t1, t2) is met. The drawback of this technique is that there are

overhead O(n2 log n) time and O(n2) space for sorting and saving the list. Johnson

and McGeoch [12] reduced those overheads to O(n2 log k) time and O(nk) space by

including only k nearest neighbors for each city.

B. Don’t-look bit technique

In addition to the Steiglitz and Weiner technique, Bentley [1] proposed the don’t-

look bit technique. Let us consider the notation < t1, t2, t3, t4 > and < t4, t3, t2, t1 >

again. We are now looking for t3 satisfying (a) d(t1, t2) > d(t2, t3) as introduced in

the previous section. The basic idea of this method is that if no such improving
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move for a given t1 has been found, and the neighbors of t1 have not changed, then

there is only a low probability to find an improving move for t1 even on the next

search. Thus, on the next search, t1 will not be considered as a candidate for the

improving move. Bentley [1] exploits this idea with a flag, called don’t-look bit, for

each city. At first, we start the improving move search with these flags all turned

off. Whenever a search having t1 = c fails to find an improving move, the flag for

the city c is turned on. Thus if its neighbors were not changed, c will be skipped

for the t1 candidates. However, when edges are deleted for the improving move, the

flags of the corresponding 4 cities are turned off. Thus, when an edge having c as an

endpoint is deleted, c can be considered as the candidate for t1 again. An intuitive

implementation of this don’t-look bit technique is an array structure of the flag.
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CHAPTER III

EFFICIENT 2-OPT DATA STRUCTURES

The data structure for the 2-opt search should support three operations, Prev, Next,

and Swap. Prev(t2) and Next(t1) operations find the previous and the next city

of t2 and t1, respectively. The other operation Swap(t1, t2, t3, t4) is the realization

of the notation < t1, t2, t3, t4 > which is defined in Chapter II. It means that the

edges {t2, t3}, {t1, t4} substitute the edges (t1, t2), (t4, t3) in the tour. Suppose that

we adopted an array or a linked list representation for the data structure. Then for

the each Swap operation, a path between t2 and t4 or a path between t1 and t3 should

be reversed. However, since we are using an array structure, the only way to reverse

the path is to exchange the cities in the path iteratively. In the worst case, the Swap

operation takes Θ(n) time. Therefore some appropriate data structure is required for

the more efficient operation. In this chapter, we will review some previously proposed

data structures, which enhance the Swap operation to reduce overall running time.

A. Splay tree

Splay tree was invented by Sleator and Tarjan [19]. This data structure is essentially a

binary tree having a city at each vertex. Splay tree has a special reversal bit indicating

the direction of the subtree rooted at a vertex. Sleator and Tarjan [19] showed that

the splay tree performs the worst-case Swap operation in O(log n) time. However,

the splay tree representation has not proved competitive in practice, because of its

high overhead cost.
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B. 2-level tree

The idea of 2-level tree was introduced by Chrobak, Szmacha, and Krawczyk [3].

2-level tree divides the tour into approximately
√

n segments whose members contain

a pointer to their parent node. The parent node contains a reversal bit indicating

whether the segment traverses in forward or reverse direction. Each member of the

segment is maintained as a doubly-linked list and contains the index of the city it

represents. By changing the reversal bit, we can reverse a path represented by the

segment in constant time. Hence, the running time for the Swap operation is O(
√

n).

C. Satellite list

As another efficient data structure for 2-opt, Osterman and Rego [16] designed the

satellite list. Figure 2 describes the basic concept of the satellite list structure and

its Swap operation. The satellite list maintains two linked lists which indicate the

clockwise and counterclockwise orientations of the tour. For example, suppose that

1-2-3-4-5-6-7 is a path of the TSP tour. Therefore the two linked lists indicating

both orientations of the tour are the paths 1-2-3-4-5-6-7 (clockwise) and 7-6-5-4-3-2-1

(counterclockwise) as described in the first illustration of Figure 2. In the illustration,

the two nodes connected with a dashed line indicate the same city and they are called

complement satellites to each other. Suppose further Swap(1, 2, 7, 6) is performed;

the edges {2, 7}, {1, 6} substitute the edges (1, 2), (6, 7). This operation is a 180◦

flip of the linked lists as described in the second and third illustrations of Figure 2.

The last illustration represents the reconstruction of the new tour path. In the C

implementation, we can perform this Swap operation by changing the pointers of four

linked list nodes (clockwise 1, clockwise 6, counterclockwise 2, counterclockwise 7) in

a constant time. Osterman and Rego [16] designed a special array structure combining
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Fig. 2. Logical satellite list representation
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those two linked lists. This satellite list array is the one dimensional array with length

of 2n, where n is the total number of cities. In the array, each of the evenly indexed

element contains the next city’s index starting from 0, and each of the oddly indexed

element has the previous city’s index. In this way, the satellite list array can be

initially constructed representing both orientations of the TSP tour. The ith element

in the array indicates the index of the next or the previous city from the city d i
2
e.

If i mod 2 is 0, then the element represents the next city. Otherwise it denotes the

index of previous city from the city d i
2
e. For example, the 4th element in the satellite

list array will be the next city’s index of the city 2, and the 5th element will be the

previous city’s index of the city 2. Those 4th and 5th elements are the complement

satellites which have the neighbor information of city 2. Under this convention, the

tour 0-1-2-3-4 can be constructed to the satellite list array 2-9-4-1-6-3-8-5-0-7. In

order to change the tour to the new tour 0-3-2-1-4, the edges (0,1), (3,4) should

be removed and the edges {0,3}, {1,4} should be added. The concept of the Swap

operation in the satellite list array is as follows. The satellite list array contains two

tour representations of both orientations, which are (a) 0-1-2-3-4 and (b) 4-3-2-1-0.

If we use the separated two linked list representation, the Swap operation will be

the exchange of pointers. That is exchanging the pointer of 0 in tour (a) and the

pointer of 4 in tour (b), and the pointer of 3 in (a) and the pointer of 1 in (b).

Then the new two linked list will be (a) 0-3-2-1-4 and (b) 4-1-2-3-0. Similarly, in the

satellite list array structure, the exchanges between array elements make the same

tour reconstruction. Those are the swap between the even element of city 0 and the

odd element of city 4, and the swap between the odd element of city 1 and the even

element of city 3. Figure 3 demonstrates the above satellite list array Swap operation.

After the swap operation, we can see that not all the even elements represent the next

city’s index. We should follow each element index to track the tour without knowing
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2 3

Index

2 9 4 1 6 3 8Satellite

0

(a) Tour0-1-2-3-4

5 0 7

1 2 3 4 5 6 7 8 9

City 0 1 2 3 4

Index

7 9 4 8 6 3 1Satellite

0

(b) Tour0-3-2-1-4

5 0 2

1 2 3 4 5 6 7 8 9

City 0 1 4

Fig. 3. Physical satellite list representation
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the orientation. By this reason, the satellite list is limited to the symmetric TSP. The

splay tree (Sleator and Tarjan [19]) is claimed to handle the 2-opt movement operation

in O(log n) time and the 2-level tree (Chrobak, Szymacha and Krawczyk [3]) is proved

to have O(
√

n) Swap running time. Because of its symmetric design, the satellite list

performs this operation easily in constant time, O(1).

D. New efficient data structure, reverse array

For the 2-opt movement, the satellite list showed a good performance. However,

the satellite list lost its advantage when it was used with the Steiglitz and Weiner

technique. As described in Chapter II, the Steiglitz and Weiner technique stores a list

of remaining cities for each city c in order of increasing distance from c. Then it finds

all candidates x for t3, which are cities of the t2’s sorted list. Since the Steiglitz and

Weiner technique selects a candidate for t3 from the stored sorting list sequentially,

those candidates are not placed on the consecutive positions of the tour. Because of

the satellite list’s structure, it is impossible to find t4 directly which is an immediate

predecessor of randomly selected t3 in the tour. Therefore O(n) running time should

be added to find t4 for each candidate. Thus, we introduce the reverse array which

shares the basic idea with the satellite list (Osterman and Rego [16]). In the reverse

array, the two lists which denote both orientations of the tour will not be merged.

The two arrays, the original array and the reverse array, are maintained separately.

There is one more array which is named map array. The map array stores each city’s

index in the original array. For example, in Figure 4, the city 5 is stored at the index 2

of the original array, thus the 6th element of the map array will be 2. Using this map

array, every city of the original tour can be accessed directly. We can perform the

2-opt move with those 3 arrays. At first, one candidate x for t3 is selected from the
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5
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0 2 5 1 4 3 6Original

Position
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0 3 1 5 4 2 6Map

0 1 2 3 4 5 6

(a)

Fig. 4. 2-opt move and the reverse array representation
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t2’s sorted list. Then x’s index in the original array will be the value of xth element in

the map array and t4 will be the (x− 1)th element. Because we select the candidate

elements for t1 from the tour sequentially, the index of t1 and t2 are the number of

iteration i and i + 1. To complete the Swap operation, every element between t2 and

t4 should be switched. In the reverse array, Swap can be done by the simple memory

block swapping. The path between t2 and t4 is the memory block between the (i+1)th

and the (x − 1)th elements of the original array. The path is also the memory block

between the {n− (x− 1) + 1}th and the {n− (i + 1)}th elements of the reverse array

where n is the size of the tour. By swapping these two memory blocks, the original

and reverse array exactly represent the new tour and the running time is O(1). This

memory block copy operation is described in Figure 4. For a linked list structure,

Swap operation has O(n) running time and O(log n) for splay tree [19], and O(
√

n)

for 2-level tree [3].

The only problem is the map array. Since the memory blocks between the original

and reverse array have been exchanged, the map array has an incorrect information

about the original array. To fix this problem, we use the map correction algorithm

named fix-and-follow. The fix-and-follow algorithm corrects the invalid elements of

the map array one by one. For example, we want to find the city c1’s index in the

original array. First, we can get the c1’s index pc1 from the map array which is the

c th
1 element of the map array. If the city c1 is swapped before, the value of the p th

c1

element in the original array may be different from c1. Otherwise, pc1 is taken as

the c1’s index. In the first case, suppose that c2 is the value of the p th
c1

element in

the original array. We know that the index information of c2 in the map array is

also incorrect and the actual index of c2 is pc1 . Thus, we can fix the index of c2 by

changing the value pc2 , which is the c th
2 element of the map array, to pc1 . We keep

following c3, which is the p th
c2

element in the original array, until cn = c1. Algorithm 1
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Data: City c1

Result: Index of c1 in the original array

c1 ← map[c1]

while original[i3] 6= t3 do

swap(i3, map[Original[i3]])

end

map[original[i3]] ← i3

Algorithm 1: Fix-and-follow

is the pseudo-code of the fix-and-follow algorithm. As shown above, the fix-and-

follow does not correct every swapped element of the map array, but it fixes only the

elements that we already know and that we need to know. Therefore, the running

time can be saved, and at the same time, the efficiency can be increased. Table 1

shows the average number of nodes corrected by the fix-and-follow procedure during

a single 2-opt Swap operation of some selected instances from TSPLIB. From the

computational results, the average number of corrected nodes for an n size instance

is about 0.048n. The correlation coefficient between the node size and the number of

corrected nodes is 0.994. Thus we can say that there is a linear relationship.
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Table 1. Average number of nodes corrected by fix-and-follow

Instance Size of instance Number of corrected node

burma14 14 0.6

gr17 17 0

gr21 21 0

fri26 26 0

bayg29 29 0.17

bays29 29 0.64

dantzig42 42 1.53

att48 48 1.16

gr48 48 0.85

hk48 48 1.2

eil51 51 1.23

berlin52 52 1.21

brazil58 58 1.67

eil76 76 2.06

gr96 96 2.32

eil101 101 2.54

gr120 120 2.84

bier127 127 3.79

ch130 130 3.57

gr137 137 3.83

ch150 150 4.47

d198 198 4.93

gr202 202 5.44
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Table 1. Continued.

Instance Size of instance Number of corrected node

gr229 229 6.46

gil262 262 7.42

a280 280 7.26

fl417 417 9.41

gr431 431 14.49

d493 493 15.93

att532 532 15.28

ali535 535 15.88

d657 657 23.03

gr666 666 23.13

pr1002 1002 36.57

d1291 1291 58.27

fl1400 1400 37.33

fl1577 1577 67.99

d1655 1655 73.84

d2103 2103 106.56

pr2392 2392 106.16

fl3795 3795 180.5

fnl4461 4461 214.99
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CHAPTER IV

GRASP PROCEDURE

The GRASP(Feo and Resende [6]) is an iterative procedure, where each iteration has

two phases, the construction phase and the local search phase. In the construction

phase, a feasible solution is constructed by choosing the next element randomly in

the restricted candidate list (RCL). RCL contains only the r best elements selected

by the greedy function. This RCL technique makes it possible to obtain a different

solution at each iteration, while it does not compromise the power of adaptive greedy

component. Since the solutions generated by the GRASP construction phase are not

guaranteed to be the local optimum, it is recommended to apply the local search

phase which is the second phase of the GRASP. In this thesis, the 2-opt search and

the path-relinking (PR) method are applied for the local search phase. At the end of

each GRASP iteration, the better solution substitutes the old solution to become the

final solution when the given termination criterion is reached. The overall procedure

of the GRASP is shown in Algorithm 2. The input data for Algorithm 2 include

the stopping criteria. It can be the maximum number of iterations or the threshold

value of the tour cost, or the running time. The output of Algorithm 2 is the best

tour found during the iterations. Algorithm 3 is the detailed greedy randomized tour

construction which is the construction phase of the GRASP. Selection of the r best

elements for the RCL construction has been achieved by the nearest neighbor search

method. The r number of nearest cities from the last selected city constitute the RCL.

The size of RCL r is the input data for Algorithm 3. On the mark 1 of Algorithm 3,

the variable r controls the number of candidate cities, which are the nearest cities.

Thus, by adjusting the value of r, we can change the initially constructed tour quality.

The smaller r we input, the better initial tour is constructed. In Chapter VI, we will
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Data: Stop criterion

Result: Best tour t∗

while Stop criterion unsatisfied do

t← GreedyRandomized()

t← 2-optSearch(t)

if E (Elite Set) not Filled then1

if t is not in E then

E ← E ∪ t

end

else

t′ ← RandomSelect(E)2

t← PathRelinking(t, t′)

if Distance(t) < MaxDistance(E) then

t′′ ← MostSimilar(E, t)

E ← (E\{t′′}) ∪ t

end

t∗ ← Minimum(E)

end

end

Algorithm 2: GRASP
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Data: Number of elements in RCL r

Result: Initial tour t

t1 ← 0

for i = 1, . . . , Number of Nodes-1 do

for j = 0, . . . , r − 1 do1

RCL[j]← NearestNodeNotYetChosen(tiSortedList)

end

ti+1 ← RandomSelect(RCL)

end

Algorithm 3: Greedy randomized construction

find the optimal size of r experimentally. After finishing the initial tour construc-

tion, the GRASP moves to the second phase, the local search phase. As mentioned

before, we use the 2-opt search and the path-relinking method in the local search

phase. Since the 2-opt search has high computational load, two advanced techniques

and a specially designed data structure have been employed for the efficient implemen-

tation. Those are the Steiglitz and Weiner (Steiglitz and Weiner [20]), the don’t-look

bit (Bentley [1]) technique, and the reverse array data structure. These techniques

are described in Algorithm 4. For the Steiglitz and Weiner technique, we need to keep

the lists of remaining cities for each city c in order of increasing distance from c. This

approach need the Θ(n2) space and the Θ(n2 log n) setup time. Thus, Johnson and

McGeoch [12] suggested to reduce those overheads by storing only k nearest neighbors

for each city. The size of k is a control variable for the 2-opt improved tour quality.
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Data: Initial tour t, Nearest neighbor to check k

Result: Improved tour t′

Set Bit[ ] = 1

for i = 0, . . . , Number of Nodes −1 do

if Bit[i] is 1 then

for j = 0, . . . , k − 1 do
c1 ← ti

c2 ← ti+1

c3 ← tiSortedList[j]

p3 ← Fix-and-Follow(c3)

c4 ← tp3+1

t′ ←ReverseList((c1, c2), {c3, c4})

if Cost(t′)<Cost(t) then

return 2-optSearch(t′) /* Call 2-optSearch recursively

*/

end

end

Bit[i] ← 0

end

end

Algorithm 4: 2-opt search
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Data: Tour t, Guide solution t∗

Result: Improved tour t′′

t′ ← t

t′′ ← t

for i = 0, . . . , Number of Nodes −1 do

if t∗i = t′i then

continue to next i

end

p← Map[t∗i ]

t′p ↔ t′i

if Cost(t′)<Cost(t′′) then

t′′ ← t′

end

end

Algorithm 5: Path-relinking

Johnson and McGeoch [12] claimed that k = 40 is the point of diminishing for TSPLIB

instances. We will also determine the optimal size of k in Chapter VI of this thesis.

The path-relinking uses the 2-opt neighborhood as a part of local search procedure.

To keep the good guide solutions, we made a set of solutions which is called elite

set. The size of elite set is another control variable. At first, the solutions from

each end of iteration fill up the elite set. When the elite set is loaded, the path-

relinking is performed between the current tour and the randomly selected guide

solution from the elite set. As we can see at Algorithm 5, the path-relinking changes

the position of each node to the position where it is placed in the guide tour. Indeed
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the path-relinking move is the same as the 2-swap move. The better solution found

during the process is kept as an improved tour t′′. If the cost of new tour t′′ is

smaller than the maximum cost of elite set solutions, the new tour t′′ substitutes

the most similar elite solution in the elite set. Thus, the number of solutions in the

elite set is kept constantly, while the quality of the elite set is getting better. The

whole process of the path-relinking is described at the mark 1 and 2 of Algorithm 2.

The overall GRASP procedure is repeated until the given terminal conditions are

satisfied. According to the computational results of Resende and Ribeiro [17], the

GRASP indeed benefits greatly from the use of the path-relinking. We will see how

the path-relinking intensifies the solution in Chapter VI of this thesis.
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CHAPTER V

IMPLEMENTATION

To perform numerical experiments, the GRASP algorithm is coded in the C program-

ming language. Since the program is written in ANSI C, it is portable to the multiple

computer platforms. To implement the Steiglitz and Weiner technique, as introduced

in Chapter II, Steiglitz and Weiner [20] proposed to store the list of remaining cities for

each city c in order of increasing distance from c. Because O(n2) space is required to

store the sorted list, it might be infeasible for the large problems. However, this space

can be reduced to the size of O(n) by limiting the number of the nearest neighbors

stored in the sorted list. For the sorting, we applied the quick sort algorithm, which

has the O(n log n) running time. The test instances are adopted from TSPLIB (http:

//www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/). There are sev-

eral types of the distance data in the TSPLIB instances. If the distance data is not

given explicitly, appropriate distance computations are required whose functions are

introduced at TSPLIB. In this thesis, the distances between each pairs of cities are

calculated once and saved in the memory during the preparation step. Thus, we can

get the distance without further computation for the GRASP iteration. It helps to

reduce the running time, but again it is impractical to save the distance data for the

large instances (> 5,000 cities). The following sections describe the C implementa-

tions of the reverse array data structure and the fix-and-follow technique employed

in this thesis.

A. Reverse array

The reverse array operates the 2-opt improving move by swapping memory blocks

between the original array and the reverse array. The memory block copy is executed
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int tOrig[]; // Original array
int tReve[]; // Reverse array int
tTemp[]; // Temporary array for swap

tReveStartNode = tSizeofNode - tEndNode + 1;
tMemoryBlockSize = (tEndNode - tStartNode + 1) * sizeof(int);

memcpy(&tTemp, &tOrig[tStartNode], tMemoryBlockSize);
memcpy(&tOrig[tStartNode], &tReve[tReveStartNode],tMemoryBlockSize);
memcpy(&tReve[tReveStartNode], &tTemp, tMemoryBlockSize);

Fig. 5. C code for the reverse array implementation

using the C language function memcpy, which copies m bytes of the source to the

destination. By using this technique, the Swap operation can be completed in O(1)

time. Figure 5 shows the C code implementation of the reverse array Swap operation.

B. Fix-and-follow

We introduced the fix-and-follow to correct the map array after the Swap operation.

Because the memory block of the original array has been changed during the Swap

operation, the map array contains an incorrect city information. Thus we need to

find the actual information using the fix-and-follow method. Figure 6 is the C im-

plementation of the fix-and-follow. In the while loop, we correct the map array until

we get the right index of t3. At the end of the loop, we can find the actual index of

t3. During the search period, the incorrect index information in the map array will

be fixed only when they were found.
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p3 = tMap[t3]; //t3 is candidate city

while( tOrig[p3] != t3 ) {
pFollow = tMap[tOrig[p3]];
tMap[tOrig[p3]] = p3;
p3 = pFollow;

}

tMap[tOrig[p3]] = p3;

Fig. 6. C code for the fix-and-follow implementation
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CHAPTER VI

COMPUTATIONAL RESULTS

As we mentioned in Chapter IV, there are three control variables for the GRASP

process, the size of the restricted candidate list (RCL) r, the size of the elite set e, and

the number of nearest neighbors k in 2-opt improving move search. In this chapter,

we will see how these factors affect the final solution tour quality and the running time

through computational result. Running times are based on the Pentium IV 2.2GHz

CPU performance. The minimum running time does not indicate the total processing

time, but the time when the smallest tour cost is first found. In the computational

test, TSPLIB instances are divided into two groups which are the small and the large.

If an instance is smaller than 1,000 cities, it is classified as small. Otherwise it belongs

to large instances. The computational results are based on 100 trials and 10 trials

for the small and the large instances, respectively. Both the small and the large cases

have been iterated 10,000 times for each trial. The following formula has been used

to compute the gap :

Gap = Bestsolution − Optimum
Optimum

In order to measure the effect of the number of nearest neighbors in 2-opt improving

move search k, five different sizes of k from 10 to 50 have been tested for the selected

TSPLIB instances. Table 2 shows the average gap and running time for each value

k of this test. Similarly, we tested the same instances for the different size k = np,

where n is the size of instance and p is the percent. In Table 3, p is increased from

10% to 50%. Thus the number of nearest neighbors k will be k = n × p. As we

can see in Table 2 and Table 3, the tour cost is not so dependent on the size of k.
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But the bigger k we choose, the greater running time we get. Therefore k = 40 can

be a reasonable choice for the number of nearest neighbors in 2-opt improving move

search. This result supports Johnson and McGeoch [12], who claimed that k = 40

is the point of diminishing for TSPLIB instances. The same selected instances have

been tested for different sizes of the elite set e to decide the appropriate size of elite

set e. Test results indicate that the tour quality is not strongly related to the size of

the elite set. However, since the running time increases along with the elite set size,

e = 5 can be the best choice. Those results are shown in Table 4. The last control

variable is the the size of the restricted candidate list (RCL) r. Using the same

method and instances with the other variables, we changed the size of RCL r from 3

to 9, increased by 2. The outcomes of this trial are shown in Table 5, which indicates

that as r is increased, gap and the running time are also increased. This result is

quite intuitive because if r is extended, then relatively far neighbors can be included

to the RCL. If r is too small, however, we can not get enough various tours for the

path-relinking procedure. Thus we can conclude that r = 3 as the size of RCL gives

sufficient flexibility to construct various tours and at the same time it guarantees high

tour quality in a short running time. In order to test the factor interactions between

the three control variables, we used three-factor ANOVA model I with α = 0.1 Type

I error. From the analysis, we can conclude that the three variables do not interact.

Therefore we can use the best values of each control variable together to get the best

solution. The more detail about the three-factor analysis can be found in Appendix A.

Table 6 shows the computational result of each TSPLIB instance using the preferred

values for the variables r, e, and k. Thus we set the values r = 3, e = 5, and k = 40.

In Table 6, Pre time denotes the time spent to prepare the GRASP operation such as

data file loading, distance computation, and sorting. The instance type specifies how

the distance data is given. For each data type except the explicit data type, there is
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a special distance function defined by TSPLIB.
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Table 2. Gap and running time for each k

Name k = 10 k = 20 k = 30 k = 40 k = 50
a280 0.058 0.054 0.053 0.054 0.054

3.8 3.9 3.9 3.9 4.2
ch150 0.032 0.032 0.032 0.032 0.032

1.7 1.8 1.8 1.8 1.8
lin318 0.060 0.053 0.053 0.051 0.052

5.5 5.7 5.8 5.8 5.7
gr431 0.057 0.055 0.055 0.054 0.054

8.6 8.8 8.8 8.9 8.9
gr666 0.082 0.075 0.075 0.076 0.075

17 17.3 17.4 17.5 17.6
rat783 0.082 0.082 0.082 0.082 0.082

25.2 25.4 25.3 25.3 25.4
pr1002 0.089 0.083 0.085 0.082 0.085

2.8 2.7 3 3.2 2.9
pcb1173 0.092 0.089 0.091 0.091 0.090

4 3.1 3.6 3.7 3.6
rl1304 0.114 0.088 0.084 0.081 0.083

4.5 4.8 5.2 4.4 5.3
u1432 0.087 0.089 0.087 0.086 0.087

4.6 4.2 4.9 4 4.1
fl1577 0.119 0.105 0.093 0.086 0.087

5.8 6.2 6.5 6.1 5.9
vm1748 0.097 0.087 0.084 0.082 0.083

7.7 8.8 8.1 9.9 7.8
rl1889 0.113 0.090 0.088 0.090 0.089

10 9.6 12 11.8 11.8
d2103 0.133 0.118 0.121 0.121 0.123

9.4 9.6 10.5 10.4 11.1
pr2392 0.106 0.101 0.101 0.102 0.100

13.6 13 13.2 12.3 12.5
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Table 3. Gap and running time for each p%

Name p = 10 p = 20 p = 30 p = 40 p = 50
a280 0.054 0.054 0.054 0.054 0.053

3.9 3.9 3.9 3.9 4.2
ch150 0.032 0.032 0.031 0.030 0.031

1.7 1.7 1.7 1.7 1.7
lin318 0.052 0.052 0.053 0.051 0.052

5.4 5.5 5.5 5.5 5.5
gr431 0.054 0.054 0.053 0.054 0.053

8.9 9 9.2 9.2 9.2
gr666 0.074 0.075 0.074 0.075 0.075

17.9 18 18 18.1 18.1
rat783 0.082 0.082 0.082 0.082 0.082

23.2 23.1 23 23.1 23.2
pr1002 0.083 0.082 0.084 0.082 0.081

3.2 2.7 2.9 3.1 2.8
pcb1173 0.094 0.091 0.090 0.091 0.093

3.8 3.6 3.7 3.8 3.6
rl1304 0.085 0.081 0.077 0.080 0.083

5.7 4.9 4.7 5.4 4.9
u1432 0.087 0.088 0.090 0.087 0.087

4.7 4.6 4.9 3.7 4.3
fl1577 0.063 0.062 0.063 0.064 0.062

6.8 7.5 8.4 7.7 7.2
vm1748 0.082 0.083 0.083 0.083 0.082

9.3 9.6 9.3 8.8 9.3
rl1889 0.085 0.086 0.085 0.086 0.087

9.9 10.1 9.9 10.8 11
d2103 0.120 0.123 0.121 0.120 0.123

10.8 9.1 12.2 11 10.7
pr2392 0.101 0.101 0.100 0.102 0.101

11.9 12.3 11.5 11.6 12.9
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Table 4. Gap and running time for each elite set size e

Name e = 5 e = 10 e = 15 e = 20 e = 25
a280 0.054 0.054 0.054 0.054 0.054

3.9 4 4.1 4.2 4.7
ch150 0.032 0.031 0.031 0.032 0.033

1.7 1.8 1.8 1.9 1.9
lin318 0.052 0.053 0.052 0.053 0.053

5.5 5.6 5.7 5.8 6
gr431 0.053 0.053 0.054 0.053 0.054

9.4 9.5 9.8 9.9 10.2
gr666 0.074 0.075 0.074 0.074 0.074

18.3 18.7 19 19.5 19.8
rat783 0.082 0.082 0.083 0.082 0.081

26.3 26.7 27.2 27.5 28.1
pr1002 0.082 0.081 0.081 0.084 0.082

4.1 4.1 4.2 4.2 4.4
pcb1173 1.091 0.092 0.091 0.089 0.090

4.8 4.9 5 5 5.1
rl1304 0.081 0.084 0.080 0.084 0.082

6.8 6.9 7 7 7.2
u1432 0.087 0.089 0.088 0.087 0.088

6 6.1 6.1 6.2 6.3
fl1577 0.850 0.846 0.868 0.857 0.847

2.2 2.2 2.3 2.3 2.4
vm1748 0.080 0.082 0.083 0.081 0.082

11.7 11.9 12 12.1 12.2
rl1889 0.086 0.087 0.090 0.087 0.087

13.9 14 14.2 14.2 14.4
d2103 0.756 0.754 0.754 0.754 0.754

3.3 3.3 3.4 3.4 3.5
pr2392 0.100 0.101 0.102 0.101 0.100

15.8 16 16.2 16.3 16.6
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Table 5. Gap and running time for each RCL size r

Name r = 3 r = 5 r = 7 r = 9
a280 0.049 0.061 0.061 0.057

3.9 5.4 6.4 7.1
ch150 0.03 0.037 0.033 0.039

1.7 2.3 2.7 3
lin318 0.051 0.056 0.056 0.058

5.5 7.4 8.6 9.5
gr431 0.053 0.057 0.056 0.057

8.8 12.2 14.5 16.2
gr666 0.08 0.085 0.083 0.082

17 23.1 32.8 30.6
rat783 0.083 0.088 0.087 0.088

22.9 31.5 37.3 41.7
pr1002 0.08 0.088 0.089 0.088

3.9 5.5 6.5 7.4
pcb1173 0.089 0.099 0.098 0.098

4.8 6.6 7.7 8.5
rl1304 0.087 0.092 0.096 0.1

6.6 8.8 10.2 11.3
u1432 0.088 0.096 0.095 0.096

5.9 8.1 9.7 10.8
fl1577 0.101 0.128 0.127 0.142

7.1 9.8 11.5 12.8
vm1748 0.082 0.09 0.091 0.091

11.8 15.4 17.5 19.2
rl1889 0.091 0.096 0.099 0.093

13.7 18.2 21 23
d2103 0.117 0.127 0.123 0.123

12.6 17.4 20.6 23.2
pr2392 0.1 0.111 0.113 0.111

15.9 21.9 26 28.9



36

Table 6. Performance

Name Cities Type Optimum Gap Time
Min Ave Max Pre Min Ave

a280 280 EUC 2D 2579 0.021 0.036 0.047 0.0 0.0 4.0
ali535 535 GEO 202339 0.040 0.053 0.062 0.1 0.2 18.0
att48 48 ATT 10628 0.000 0.000 0.000 0.0 0.0 0.0
att532 532 ATT 27686 0.040 0.051 0.057 0.2 0.3 13.6
bayg29 29 MATRIX 1610 0.000 0.000 0.000 0.0 0.0 0.0
bays29 29 MATRIX 2020 0.000 0.000 0.000 0.0 0.0 0.0
berlin52 52 EUC 2D 7542 0.000 0.000 0.000 0.0 0.0 0.0
bier127 127 EUC 2D 118282 0.001 0.010 0.019 0.0 0.1 1.7
brazil58 58 MATRIX 25395 0.000 0.000 0.000 0.0 0.0 0.0
burma14 14 GEO 3323 0.000 0.000 0.000 0.0 0.0 0.0
ch130 130 EUC 2D 6110 0.003 0.012 0.021 0.0 0.0 1.6
ch150 150 EUC 2D 6528 0.007 0.016 0.026 0.0 0.0 1.7
d198 198 EUC 2D 15780 0.007 0.014 0.018 0.0 0.2 3.0
d493 493 EUC 2D 35002 0.034 0.045 0.050 0.1 0.2 12.6
d657 657 EUC 2D 48912 0.050 0.058 0.064 0.3 0.3 19.3
d1291 1291 EUC 2D 50801 0.056 0.077 0.087 1.1 3.6 56.2
d1655 1655 EUC 2D 62128 0.079 0.087 0.092 1.8 5.8 84.0
d2103 2103 EUC 2D 80450 0.109 0.111 0.114 3.0 3.2 129.2
dantzig42 42 MATRIX 699 0.000 0.000 0.000 0.0 0.0 0.0
eil51 51 EUC 2D 426 0.000 0.001 0.002 0.0 0.0 0.3
eil76 76 EUC 2D 538 0.002 0.012 0.020 0.0 0.0 0.7
eil101 101 EUC 2D 629 0.003 0.019 0.029 0.0 0.1 1.1
fl417 417 EUC 2D 11861 0.007 0.013 0.019 0.1 0.5 7.2
fl1400 1400 EUC 2D 20127 0.025 0.030 0.039 1.2 10.0 67.1
fl1577 1577 EUC 2D 22249 0.054 0.068 0.079 1.6 6.7 75.8
fri26 26 MATRIX 937 0.000 0.000 0.000 0.0 0.0 0.0
gil262 262 EUC 2D 2378 0.023 0.038 0.048 0.0 0.1 4.1
gr17 17 MATRIX 2085 0.000 0.000 0.000 0.0 0.0 0.0
gr21 21 MATRIX 2707 0.000 0.000 0.000 0.0 0.0 0.0
gr24 24 MATRIX 1272 0.000 0.000 0.000 0.0 0.0 0.0
gr48 48 MATRIX 5046 0.000 0.000 0.000 0.0 0.0 0.1
gr96 96 GEO 55209 0.000 0.003 0.011 0.0 0.0 1.0
gr120 120 MATRIX 6942 0.003 0.010 0.017 0.0 0.0 1.6
gr137 137 GEO 69853 0.002 0.011 0.020 0.0 0.1 1.8
gr202 202 GEO 40160 0.018 0.029 0.036 0.0 0.0 2.9
gr229 229 GEO 134602 0.014 0.025 0.034 0.0 0.0 3.2
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Table 6. Continued

Name Cities Type Optimum Gap Time
Min Ave Max Pre Min Ave

gr431 431 GEO 171414 0.033 0.044 0.051 0.1 0.0 8.9
gr666 666 GEO 294358 0.052 0.064 0.071 0.2 0.1 17.9
hk48 48 MATRIX 11461 0.000 0.000 0.000 0.0 0.0 0.1
kroA100 100 EUC 2D 21282 0.000 0.001 0.004 0.0 0.0 1.0
kroB100 100 EUC 2D 22141 0.000 0.003 0.008 0.0 0.0 1.0
kroC100 100 EUC 2D 20749 0.000 0.001 0.005 0.0 0.0 0.8
kroE100 100 EUC 2D 22068 0.000 0.003 0.010 0.0 0.0 1.1
kroA150 150 EUC 2D 26524 0.000 0.015 0.021 0.0 0.0 1.7
kroB150 150 EUC 2D 26130 0.001 0.012 0.022 0.0 0.2 1.8
kroA200 200 EUC 2D 29368 0.007 0.016 0.026 0.0 0.1 2.7
kroB200 200 EUC 2D 29437 0.014 0.026 0.040 0.0 0.1 2.6
lin105 105 EUC 2D 14379 0.000 0.000 0.004 0.0 0.0 0.5
lin318 318 EUC 2D 42029 0.026 0.037 0.047 0.1 0.1 5.4
nrw1379 1379 EUC 2D 56638 0.071 0.075 0.078 1.3 4.9 69.8
p654 654 EUC 2D 34643 0.005 0.008 0.013 0.3 1.5 16.2
pcb442 442 EUC 2D 50778 0.037 0.047 0.052 0.1 0.0 8.9
pcb1173 1173 EUC 2D 56892 0.078 0.083 0.087 0.9 11.0 47.2
pcb3038 3038 EUC 2D 137694 0.093 0.097 0.099 6.8 44.2 243.3
pr76 76 EUC 2D 108159 0.000 0.002 0.007 0.0 0.0 0.8
pr107 107 EUC 2D 44303 0.000 0.002 0.009 0.0 0.0 1.0
pr124 124 EUC 2D 59030 0.000 0.000 0.003 0.0 0.0 0.5
pr136 136 EUC 2D 96772 0.004 0.012 0.025 0.0 0.0 1.4
pr144 144 EUC 2D 58537 0.000 0.000 0.000 0.0 0.0 0.3
pr152 152 EUC 2D 73682 0.000 0.003 0.008 0.0 0.0 1.7
pr226 226 EUC 2D 80369 0.000 0.003 0.008 0.0 0.1 2.7
pr264 264 EUC 2D 49135 0.001 0.016 0.031 0.0 0.1 3.6
pr299 299 EUC 2D 48191 0.019 0.034 0.041 0.0 0.1 4.6
pr439 439 EUC 2D 107217 0.020 0.037 0.046 0.1 1.0 9.3
pr1002 1002 EUC 2D 259045 0.063 0.073 0.078 0.7 0.0 37.2
pr2392 2392 EUC 2D 378032 0.090 0.094 0.098 4.2 12.1 157.3
rat99 99 EUC 2D 1211 0.001 0.011 0.021 0.0 0.0 1.0
rat195 195 EUC 2D 2323 0.025 0.039 0.051 0.0 0.0 2.3
rat575 575 EUC 2D 6773 0.057 0.066 0.071 0.2 0.0 13.2
rat783 783 EUC 2D 8806 0.063 0.074 0.078 0.4 0.6 23.9
rd100 100 EUC 2D 7910 0.000 0.003 0.009 0.0 0.0 1.0
rd400 400 EUC 2D 15281 0.040 0.051 0.058 0.1 0.2 8.2
rl1304 1304 EUC 2D 252948 0.062 0.069 0.078 1.1 19.3 67.4
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Table 6. Continued

Name Cities Type Optimum Gap Time
Min Ave Max Pre Min Ave

rl1323 1323 EUC 2D 270199 0.061 0.066 0.072 1.2 27.8 72.1
rl1889 1889 EUC 2D 316536 0.065 0.076 0.080 2.6 35.6 135.8
rl5915 5915 EUC 2D 565530 0.095 0.102 0.107 35.0 142.6 779.8
rl5934 5934 EUC 2D 556045 0.100 0.108 0.110 36.0 82.9 829.1
si175 175 MATRIX 21407 0.001 0.002 0.003 0.0 0.0 2.1
si535 535 MATRIX 48450 0.004 0.006 0.008 0.1 0.3 12.2
si1032 1032 MATRIX 92650 0.002 0.005 0.006 0.4 1.8 34.3
st70 70 EUC 2D 675 0.000 0.000 0.001 0.0 0.0 0.1
swiss42 42 MATRIX 1273 0.000 0.000 0.000 0.0 0.0 0.0
ts225 225 EUC 2D 126643 0.001 0.005 0.008 0.0 0.0 2.7
tsp225 225 EUC 2D 3916 0.002 0.020 0.030 0.0 0.1 4.2
u159 159 EUC 2D 42080 0.000 0.008 0.018 0.0 0.0 1.9
u574 574 EUC 2D 36905 0.050 0.060 0.067 0.2 0.1 14.7
u724 724 EUC 2D 41910 0.054 0.067 0.073 0.3 0.2 20.8
u1060 1060 EUC 2D 224094 0.061 0.071 0.076 0.8 0.6 44.6
u1432 1432 EUC 2D 152970 0.076 0.081 0.084 1.4 0.6 59.1
u1817 1817 EUC 2D 57201 0.109 0.115 0.118 2.3 15.1 95.3
u2152 2152 EUC 2D 64253 0.102 0.114 0.119 3.2 30.3 122.1
u2319 2319 EUC 2D 234256 0.038 0.038 0.040 4.0 6.3 134.5
ulysses22 22 GEO 7013 0.000 0.000 0.000 0.0 0.0 0.0
vm1084 1084 EUC 2D 239297 0.050 0.064 0.068 0.8 3.4 50.2
vm1748 1748 EUC 2D 336556 0.067 0.076 0.078 2.1 8.6 116.2
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CHAPTER VII

CONCLUSION

The main contribution of this thesis is that we introduced a new efficient data struc-

ture, the reverse array, which can be applied with the Steiglitz and Weiner technique.

The simplicity of the algorithm is one of the important concerns in the heuristic

method. In this aspect, we claim that the GRASP algorithm applied in this thesis is

a successful algorithm. All the heuristic methods used in our GRASP procedure have

simple algorithm structure. We applied the nearest neighbor search method for the

construction phase of GRASP and the 2-opt and the path-relinking (PR) methods

for the local search phase. Those well-known methods are easily understandable and

implementable.

Computational experiments of the previous chapter have proven that GRASP

guarantees a near optimal solution for most of the TSPLIB instances. Because

GRASP has a randomized adaptive attribute, the solutions of each trial have large

difference tour values.

The quick 2-opt search techniques and the efficient data structure really expedite

the tour improvement. GRASP has a merit in the running time, especially with

a large size instance. In comparison with Lin-Kernighan (LK), the running time

increase rate is slow. Thus GRASP gives a solution within the 10% of optimum in a

relatively short time. However, the tour improvement capability of the 2-opt search

exceedingly decreases as the size of instance grows [21]. Therefore more intensified

local search method needs to be employed. We leave this as a future work.

In the path-relinking, we performed the PR operation for every iteration’s solu-

tion. But Resende and Ribeiro [17] suggested alternative schemes. Finding a more

intensive PR scheme is another issue for the future work.
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APPENDIX A

THREE-FACTOR ANALYSIS

For the three-factor analysis, we designed the experiment as 10 test runs with 10,000

iterations for each test run. The test instance ch150 is selected from TSPLIB. The

three factors are the three control variables of GRASP, the size of the restricted

candidate list (RCL) r, the size of the elite set e, and the number of nearest neighbors

k in 2-opt improving move search. Table 7 contains the test results of this experiment.

We set the Type I error α = 0.1. Using the Kimball inequality for the family level

of significance α, we calculated αi = 0.015 for each of the seven tests of the three-

factor study. Thus, we can get each percentile value from the F distribution with

α = 0.015. Table 8 shows the ANOVA results. Since the test statistic for the three-

factor interactions Ferk = 1.272 is less than F(0.985; 48, 900)=1.5144, we can say

that there are no three-factor interactions between the three factors. For the same

reason, there are also no two-factor interactions between each pair of variables.
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Table 7. Experiments for the 3-factor analysis

Values Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10
e5r3k10 0.015 0.009 0.01 0.027 0.018 0.023 0.013 0.015 0.013 0.015
e5r3k20 0.015 0.015 0.02 0.018 0.022 0.016 0.014 0.014 0.023 0.016
e5r3k30 0.017 0.009 0.023 0.023 0.009 0.015 0.015 0.016 0.018 0.02
e5r3k40 0.015 0.025 0.02 0.018 0.014 0.011 0.019 0.019 0.018 0.02
e5r3k50 0.019 0.008 0.017 0.018 0.023 0.018 0.021 0.02 0.021 0.023
e5r5k10 0.023 0.024 0.03 0.016 0.02 0.012 0.018 0.025 0.019 0.024
e5r5k20 0.022 0.018 0.023 0.022 0.023 0.022 0.013 0.017 0.023 0.02
e5r5k30 0.015 0.024 0.018 0.024 0.02 0.018 0.006 0.018 0.023 0.02
e5r5k40 0.017 0.018 0.026 0.017 0.008 0.019 0.023 0.022 0.024 0.024
e5r5k50 0.025 0.008 0.015 0.022 0.017 0.022 0.013 0.008 0.022 0.028
e5r7k10 0.015 0.019 0.014 0.016 0.01 0.011 0.026 0.023 0.022 0.02
e5r7k20 0.021 0.017 0.026 0.022 0.025 0.028 0.025 0.022 0.023 0.021
e5r7k30 0.02 0.015 0.015 0.02 0.025 0.024 0.019 0.023 0.017 0.021
e5r7k40 0.018 0.022 0.017 0.015 0.028 0.027 0.024 0.024 0.011 0.023
e5r7k50 0.017 0.026 0.023 0.026 0.02 0.018 0.019 0.022 0.021 0.024
e5r9k10 0.018 0.024 0.022 0.013 0.022 0.03 0.023 0.033 0.017 0.015
e5r9k20 0.022 0.018 0.015 0.024 0.013 0.014 0.015 0.023 0.024 0.024
e5r9k30 0.024 0.017 0.012 0.011 0.026 0.011 0.026 0.016 0.025 0.021
e5r9k40 0.021 0.02 0.014 0.017 0.027 0.02 0.013 0.019 0.024 0.018
e5r9k50 0.026 0.02 0.01 0.016 0.019 0.026 0.013 0.019 0.019 0.014
e10r3k10 0.013 0.016 0.016 0.019 0.019 0.016 0.021 0.013 0.021 0.013
e10r3k20 0.021 0.019 0.015 0.019 0.015 0.011 0.013 0.006 0.019 0.012
e10r3k30 0.014 0.02 0.018 0.016 0.016 0.017 0.019 0.022 0.017 0.009
e10r3k40 0.019 0.016 0.022 0.019 0.023 0.014 0.011 0.019 0.017 0.024
e10r3k50 0.013 0.017 0.015 0.009 0.02 0.018 0.016 0.016 0.02 0.019
e10r5k10 0.022 0.023 0.022 0.027 0.017 0.022 0.028 0.02 0.013 0.028
e10r5k20 0.015 0.025 0.016 0.018 0.026 0.021 0.023 0.02 0.023 0.019
e10r5k30 0.019 0.021 0.017 0.02 0.018 0.03 0.015 0.014 0.032 0.018
e10r5k40 0.021 0.017 0.011 0.023 0.022 0.024 0.023 0.017 0.023 0.014
e10r5k50 0.023 0.026 0.017 0.026 0.022 0.028 0.029 0.029 0.028 0.025
e10r7k10 0.017 0.024 0.021 0.02 0.015 0.017 0.013 0.018 0.022 0.022
e10r7k20 0.014 0.017 0.018 0.03 0.02 0.014 0.017 0.015 0.021 0.023
e10r7k30 0.008 0.019 0.016 0.011 0.022 0.012 0.025 0.021 0.021 0.028
e10r7k40 0.019 0.015 0.017 0.021 0.022 0.014 0.024 0.026 0.015 0.023
e10r7k50 0.024 0.018 0.028 0.01 0.016 0.011 0.024 0.022 0.022 0.024
e10r9k10 0.025 0.021 0.018 0.028 0.016 0.02 0.017 0.028 0.017 0.023
e10r9k20 0.023 0.026 0.019 0.02 0.016 0.021 0.014 0.022 0.02 0.017
e10r9k30 0.023 0.016 0.016 0.016 0.028 0.011 0.016 0.014 0.024 0.011
e10r9k40 0.017 0.023 0.015 0.025 0.022 0.025 0.02 0.013 0.013 0.02
e10r9k50 0.02 0.025 0.012 0.025 0.007 0.014 0.022 0.024 0.02 0.02
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Table 7. Continued

Values Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10
e15r3k10 0.019 0.022 0.016 0.014 0.021 0.02 0.014 0.013 0.022 0.016
e15r3k20 0.017 0.017 0.016 0.021 0.015 0.016 0.022 0.006 0.017 0.009
e15r3k30 0.009 0.021 0.023 0.015 0.021 0.017 0.016 0.018 0.019 0.017
e15r3k40 0.019 0.016 0.017 0.023 0.012 0.019 0.019 0.016 0.017 0.009
e15r3k50 0.014 0.017 0.013 0.016 0.018 0.013 0.012 0.016 0.02 0.014
e15r5k10 0.018 0.017 0.017 0.02 0.018 0.024 0.011 0.026 0.009 0.027
e15r5k20 0.023 0.026 0.023 0.023 0.028 0.02 0.019 0.026 0.023 0.021
e15r5k30 0.012 0.02 0.027 0.024 0.019 0.021 0.012 0.019 0.026 0.023
e15r5k40 0.013 0.024 0.029 0.026 0.018 0.019 0.018 0.025 0.011 0.014
e15r5k50 0.018 0.021 0.021 0.019 0.021 0.024 0.025 0.023 0.018 0.02
e15r7k10 0.019 0.023 0.022 0.022 0.021 0.018 0.014 0.019 0.02 0.024
e15r7k20 0.022 0.024 0.015 0.022 0.012 0.025 0.021 0.013 0.018 0.023
e15r7k30 0.028 0.025 0.02 0.019 0.021 0.019 0.025 0.01 0.021 0.028
e15r7k40 0.023 0.026 0.018 0.022 0.026 0.02 0.021 0.022 0.022 0.021
e15r7k50 0.011 0.023 0.018 0.012 0.027 0.022 0.022 0.007 0.023 0.024
e15r9k10 0.023 0.028 0.023 0.017 0.019 0.023 0.011 0.024 0.027 0.021
e15r9k20 0.025 0.026 0.021 0.025 0.015 0.015 0.023 0.024 0.028 0.027
e15r9k30 0.028 0.024 0.023 0.015 0.014 0.021 0.028 0.02 0.021 0.02
e15r9k40 0.025 0.016 0.028 0.029 0.023 0.02 0.023 0.027 0.019 0.002
e15r9k50 0.017 0.028 0.022 0.017 0.025 0.024 0.021 0.008 0.026 0.021
e20r3k10 0.025 0.017 0.021 0.017 0.018 0.018 0.018 0.009 0.015 0.02
e20r3k20 0.018 0.017 0.019 0.018 0.022 0.02 0.013 0.021 0.02 0.019
e20r3k30 0.014 0.01 0.015 0.017 0.014 0.013 0.013 0.025 0.022 0.015
e20r3k40 0.013 0.021 0.01 0.017 0.009 0.019 0.011 0.022 0.018 0.018
e20r3k50 0.009 0.016 0.008 0.017 0.017 0.018 0.011 0.019 0.017 0.015
e20r5k10 0.018 0.02 0.017 0.028 0.019 0.025 0.023 0.019 0.028 0.023
e20r5k20 0.028 0.021 0.021 0.021 0.02 0.018 0.01 0.024 0.019 0.019
e20r5k30 0.023 0.021 0.026 0.024 0.023 0.015 0.014 0.019 0.023 0.023
e20r5k40 0.018 0.024 0.025 0.025 0.022 0.024 0.018 0.016 0.028 0.024
e20r5k50 0.018 0.02 0.023 0.028 0.028 0.026 0.025 0.026 0.025 0.024
e20r7k10 0.009 0.021 0.03 0.023 0.022 0.016 0.02 0.02 0.019 0.027
e20r7k20 0.025 0.023 0.025 0.027 0.023 0.02 0.026 0.021 0.012 0.023
e20r7k30 0.017 0.02 0.026 0.029 0.019 0.026 0.019 0.027 0.012 0.026
e20r7k40 0.033 0.023 0.016 0.02 0.025 0.017 0.026 0.015 0.03 0.021
e20r7k50 0.011 0.022 0.023 0.022 0.024 0.013 0.021 0.02 0.009 0.016
e20r9k10 0.017 0.021 0.012 0.007 0.013 0.023 0.018 0.016 0.018 0.023
e20r9k20 0.017 0.023 0.025 0.02 0.016 0.02 0.017 0.015 0.014 0.019
e20r9k30 0.021 0.025 0.02 0.019 0.019 0.013 0.02 0.012 0.027 0.021
e20r9k40 0.018 0.013 0.023 0.024 0.024 0.02 0.021 0.023 0.013 0.021
e20r9k50 0.024 0.023 0.03 0.021 0.01 0.015 0.021 0.021 0.025 0.019
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Table 7. Continued

Values Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10
e25r3k10 0.017 0.02 0.011 0.019 0.014 0.019 0.015 0.021 0.026 0.016
e25r3k20 0.022 0.018 0.017 0.019 0.018 0.019 0.017 0.016 0.016 0.02
e25r3k30 0.019 0.022 0.017 0.016 0.015 0.022 0.014 0.015 0.011 0.012
e25r3k40 0.023 0.016 0.02 0.017 0.014 0.015 0.013 0.015 0.011 0.021
e25r3k50 0.023 0.019 0.021 0.019 0.019 0.012 0.014 0.018 0.019 0.014
e25r5k10 0.013 0.02 0.011 0.022 0.03 0.017 0.026 0.011 0.021 0.023
e25r5k20 0.023 0.021 0.024 0.022 0.016 0.027 0.023 0.031 0.016 0.02
e25r5k30 0.016 0.024 0.023 0.021 0.022 0.019 0.027 0.018 0.017 0.027
e25r5k40 0.023 0.019 0.025 0.017 0.016 0.025 0.023 0.024 0.024 0.024
e25r5k50 0.026 0.013 0.02 0.024 0.019 0.018 0.019 0.015 0.029 0.014
e25r7k10 0.022 0.019 0.015 0.02 0.022 0.027 0.019 0.018 0.027 0.017
e25r7k20 0.023 0.023 0.023 0.022 0.023 0.014 0.021 0.019 0.027 0.021
e25r7k30 0.024 0.019 0.018 0.028 0.021 0.008 0.023 0.016 0.015 0.018
e25r7k40 0.022 0.018 0.025 0.019 0.025 0.014 0.013 0.013 0.024 0.017
e25r7k50 0.024 0.019 0.031 0.022 0.014 0.016 0.03 0.016 0.025 0.02
e25r9k10 0.02 0.023 0.021 0.017 0.011 0.018 0.021 0.015 0.02 0.012
e25r9k20 0.02 0.018 0.025 0.019 0.018 0.021 0.019 0.019 0.025 0.023
e25r9k30 0.022 0.022 0.019 0.019 0.019 0.019 0.027 0.016 0.023 0.025
e25r9k40 0.025 0.015 0.021 0.021 0.012 0.009 0.018 0.031 0.025 0.027
e25r9k50 0.014 0.023 0.021 0.02 0.027 0.024 0.025 0.027 0.021 0.023

Table 8. ANOVA table

Source Sum of Squares DF Mean Square F Percentile
SSe 8.05E-05 4 2.01E-05 0.929 3.1026
SSr 2.49E-03 3 8.30E-04 38.299 3.5067
SSk 6.13E-05 4 1.53E-05 0.707 3.1026
er 4.49E-04 12 3.75E-05 1.728 2.0976
ek 2.26E-04 16 1.41E-05 0.651 1.9321
rk 9.53E-05 12 7.95E-06 0.367 2.0976
erk 1.32E-03 48 2.76E-05 1.272 1.5144

Error 1.95E-02 900 2.17E-05
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