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operators in the boundary theory. For this identification, we use the Penrose transform

between bulk fields and twistor functions, together with its holographic dual that relates

twistor functions to boundary sources. In the resulting picture, the interaction between two

Didenko-Vasiliev particles is just a geodesic Witten diagram that calculates the correlator

of two boundary bilocals. We speculate on implications for a possible reformulation of the

bulk theory, and for its non-locality issues.
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1 Introduction and summary

Higher-spin (HS) gravity [1, 2] is a smaller sibling of string theory. It is a theory of

infinitely many massless fields with different spins, including a spin-2 “graviton”. Whereas

string theory is holographically dual to matrix-like conformal field theories [3–5], higher-

spin gravity is dual to vector models [6–9]. While HS gravity can be defined in various

dimensions, our interest will be the 4d case. Specifically, we will consider the type-A theory,

which has one field of every integer spin, and is holographically dual to a free vector model

of N complex scalar fields [6].
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From a complementary point of view, HS gravity is a larger sibling of supergravity, the

low-energy limit of string theory. Whereas supergravity extends the spacetime symmetry

of GR in a fermionic direction, HS gravity extends it in a bosonic direction, resulting

in an infinite multiplet of massless “partners” for the graviton with different spins. In

supergravity with N = 2 or higher supersymmetry, particular importance is placed on

extremal black hole (or black brane) solutions [10] that saturate the BPS bound. Such

black holes define backgrounds that preserve part of the theory’s supersymmetry. The

gravitational charge of these black holes, i.e. their mass, is proportional to their electric

charge under gravity’s spin-1 superpartner. These supergravity solutions play a key role in

string theory, where they are ultimately identified [11] with D-branes [12, 13].

In HS gravity, a similar object is known — the Didenko-Vasiliev “black hole” [14].

This is a spherically symmetric solution to the Vasiliev equations, constructed by analogy

with the Kerr-Schild procedure for the Schwarzschild black hole. Aside from this formal

similarity, it’s not at all clear that this solution behaves like the familiar black holes of GR,

with their event horizons and thermodynamical properties; hence the quotation marks

around the term “black hole”. See [15] for generalizations of the Didenko-Vasiliev solution,

as well as [16], where general HS-extended Petrov Type D solutions are interpreted as

black hole microstates. The Didenko-Vasiliev black hole is charged under the HS fields of

all spins. These charges are all proportional to each other, reflecting a partial preservation

of HS symmetry, in clear analogy with the supergravity case. Though we won’t consider

it here, there is also a supersymmetric version of the Didenko-Vasiliev solution, where the

type-A and type-B HS gravities are naturally combined into an N = 2 supermultiplet.

One then finds [14] that the solution preserves a quarter of the supersymmetries, further

strengthening the analogy to BPS black holes.

In this paper, we will study the linearized version of the Didenko-Vasiliev black hole,

which was described by the same authors in [17]. This is a solution to Fronsdal’s equations

for free HS gauge fields [18, 19], with a source localized at the spatial origin (or, from a

spacetime perspective, along the time axis). We will refer to this source as a “Didenko-

Vasiliev particle”, or DV particle for short. Our main case of interest, and the original

context of [17], will be DV particles in AdS4, where a non-linear HS theory exists, complete

with holographic duals. However, we will also consider DV particles in flat spacetime, where

some calculations simplify. We will work in Euclidean signature, so that our spacetime will

be either flat R
4 or hyperbolic space, i.e. Euclidean AdS4 (EAdS4 for short).

The main object of our calculations will be the leading-order action from two DV

particles interacting via their HS gauge fields. For every spin separately, this action is

IR-divergent in R
4, but finite in EAdS4. When the particles are brought close together, a

UV divergence arises; this is the same as the IR divergence from the flat case, viewed from

a different perspective. However, we find that these divergences cancel upon summing over

spins, thanks to the DV particles’ special pattern of charges. This is an enhanced version

of the well-known cancellation of the electric and gravitational forces between two BPS

objects in supergravity (or between two extremal Riessner-Nordstrom black holes). In the

latter case, the cancellation only holds when the two objects are mutually at rest; the

introduction of a relative velocity reveals the different tensor structure of the two forces,
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and they no longer cancel. In our case, the cancelation holds for any relative velocity,

with the single exception of a particle and antiparticle mutually at rest. This criterion can

in fact be used to derive the DV pattern of charges (we are grateful to Slava Lysov for

calling our attention to this feature). Either way, it reflects a certain kind of non-locality,

or softness, of interactions governed by HS symmetry.

Our next observation is that the higher-spin fields of the DV particle, as given in [17],

play a role in higher-spin holography. Since the original motivation in [14, 17] was to mimic

black hole solutions of GR, one might expect that the relevant holographic duality would be

between non-perturbative black holes in the bulk and thermal states in the boundary CFT.

We make no claims here about the validity of this scenario. Instead, we point out a different

one, in which the linearized DV solution appears in a perturbative role. Specifically, the

DV particle describes the linearized bulk solution, i.e. the “boundary-to-bulk propagator”,

that corresponds to a bilocal operator [20, 21] in the boundary theory. In this picture,

the worldline of the DV particle, which sources its HS fields, lies on the bulk geodesic

that connects the two boundary “legs” of the bilocal — see figure 1. Note that this can’t

directly apply in the original setup of [14, 17]: there, the DV particle’s worldline is a

timelike geodesic in AdS4, which has no boundary endpoints. The problem is not fatal,

though: a timelike AdS4 geodesic does have boundary endpoints in complexified spacetime,

so we can consider a bilocal boundary operator there. Alternatively, we can work in de

Sitter space, where timelike geodesics have real boundary endpoints. In this paper, we’ll

be working in EAdS4, where all geodesics are spacelike, and have real boundary endpoints.

For a systematic discussion of various signatures in higher-spin theory, see [22].

It is instructive to compare our picture to the one developed in e.g. [16, 23]. There,

a distinction is made between “particle-like” and “black-hole-like” HS field solutions. In

this terminology, what we refer to as a DV particle falls into the “black-hole-like” cate-

gory. In particular, one shouldn’t confuse the DV particle, a spin-0 particle-like object

charged under the HS fields, with a particle excitation of the HS fields themselves! On

the other hand, in our picture, there is a continuous limiting procedure that relates HS

field solutions with a DV-like source to ones without: one must simply bring together the

DV worldline’s boundary endpoints. This will reduce the bilocal boundary operator to the

standard HS tower of local currents, and the DV bulk solution to an ordinary boundary-

to-bulk propagator. Thus, the linearized HS fields with DV sources can be regarded as a

continuous generalization of the source-free solutions — a point of view that we’ll adopt in

section 7. This should be contrasted with the picture in [16], where the “particle-like” and

“black-hole-like” solutions are associated with distinct representations of the spacetime

symmetry, and cannot mix with each other. The apparent contradiction is resolved by

being careful about the relevant spacetime signatures. The distinction between singleton

and anti-singleton representations, which plays a defining role in [16], is only applicable in

Lorentzian AdS4, with its SO(2, 3) symmetry. As mentioned above, the relevant boundary

endpoints in that case are complex, and they cannot be brought together without chang-

ing the causal character of the DV particle’s worldline. In our Euclidean AdS4 setup, the

boundary endpoints are real, and can be brought together without any problem.

– 3 –
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Our identification of the DV particle with a boundary bilocal operator is obtained

via the spacetime-independent twistor formalism for HS holography, developed in [24, 25].

Though the appearance of a particle-like bulk source in the context of a “boundary-to-bulk

propagator” may sound surprising, it is in fact a special case of the recently uncovered

relation [26–28] between OPE blocks in the boundary CFT and geodesic Witten diagrams.

In particular, the interaction of two bulk DV particles in EAdS4, which we will calculate

here, is nothing but a geodesic Witten diagram for the correlator of two boundary bilocals.

The rest of the paper is structured as follows. In section 2, we review Fronsdal’s theory

of free HS fields, in flat space and EAdS4, including boundary-to-bulk propagators and

2-point functions. In section 3, we construct and solve the field equations for linearized

HS fields sourced by a bulk particle that travels along a geodesic worldline. In section 4,

we study the action for two such particles interacting via HS fields, and demonstrate the

cancellation of UV divergences for the DV pattern of charges. In the flat case, we find

the action analytically; in EAdS4, we end up with an unpleasant integral, which however

agrees numerically with a simple analytic answer guessed from holography.

In section 5, we take a detour to introduce EAdS4 twistors, higher-spin algebra, the

Penrose transform, as well as HS-algebraic formulas for boundary-to-bulk propagators and

boundary n-point functions. In this, we will follow the formalism of [24, 25, 29], which

combines HS algebra, embedding space, and spacetime-independent twistors. With this

machinery in place, we proceed to make our main claims in section 6. There, we evaluate

the linearized bulk fields that correspond to a bilocal operator in the boundary CFT, and

notice that they coincide with the fields of a DV particle. We further notice that the

interaction of two such particles, as calculated in section 4, reproduces the correlator of

two boundary bilocals, in the spirit of the general theory of geodesic Witten diagrams [26].

Finally, in section 7, we speculate about the relevance of our construction to understanding

interacting HS theory and its locality issues.

2 Free HS fields and local boundary sources

In this section, we review the theory of free HS gauge fields, before introducing HS-charged

particles in section 3.

2.1 Fronsdal action, field equations and gauge symmetry

The theory of linearized higher-spin gauge fields on maximally symmetric spacetimes, with

or without cosmological constant, was put forward by Fronsdal in [18, 19]. It generalizes

Maxwell theory (which constitutes the spin-1 case) and linearized GR (the spin-2 case).

Also included is the spin-0 case of a conformally massless scalar, though it is not strictly

speaking a gauge theory.

We will work in 4d Euclidean spacetime with a positive-definite metric gµν . The specific

spacetime will be either flat R
4, or Euclidean AdS4 of unit radius. The commutator of

covariant derivatives ∇µ in these spacetimes reads:

[∇µ, ∇ν ]vρ =

{

0 R
4

2v[µδρ
ν] EAdS4

. (2.1)
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A spin-s gauge potential in Fronsdal’s formulation is given by a tensor hµ1...µs
that is totally

symmetric and double-traceless in its indices:

hµ1...µs
= h(µ1...µs) ; hνρ

νρµ1...µs−4
= 0 . (2.2)

The first of these constraints becomes non-trivial for s ≥ 2, and the second — for s ≥ 4.

The low-spin cases h, hµ and hµν correspond respectively to a scalar field, a Maxwell

potential and a linearized metric perturbation. For s ≥ 1, the fields hµ1...µs
are subject to

a gauge symmetry:

hµ1...µs
→ hµ1...µs

+ ∇(µ1
θµ2...µs) , (2.3)

where the gauge parameter θµ1...µs−1 is in turn constrained to be totally symmetric and

traceless (a constraint that becomes non-trivial for s ≥ 3):

θµ1...µs−1 = θ(µ1...µs−1) ; θν
νµ1...µs−3

= 0 . (2.4)

One can construct from hµ1...µs
a gauge-invariant second-derivative object, known as the

Fronsdal tensor. In flat space, this reads:

Fµ1...µs
= �hµ1...µs

− s∇(µ1
∇νhµ2...µs)ν +

s(s − 1)

2
∇(µ1

∇µ2hν
µ3...µs)ν , (2.5)

where � = ∇µ∇µ. In EAdS4, we get additional terms due to the curvature:

Fµ1...µs
= (� + 2 − 2s2)hµ1...µs

− s∇ν∇(µ1
hµ2...µs)ν +

s(s − 1)

2
∇(µ1

∇µ2hν
µ3...µs)ν

= (� + 2 + 2s − s2)hµ1...µs
− s∇(µ1

∇νhµ2...µs)ν +
s(s − 1)

2
∇(µ1

∇µ2hν
µ3...µs)ν

− s(s − 1)g(µ1µ2
hν

µ3...µs)ν ,

(2.6)

where the difference between the two expressions is in the ordering of the derivatives in

the second term. For s = 1, Fµ is the divergence of the Maxwell field strength; for s = 2,

Fµν is proportional to the linearized Ricci tensor. The free field equations for all spins are

simply Fµ1...µs
= 0.

The linear equations of motion Fµ1...µs
= 0 can be derived from a quadratic Lagrangian

of the form ∼ hµ1...µs
F µ1...µs . However, for s ≥ 2, this Lagrangian is not invariant under

the gauge transformation (2.3). We must instead use a trace-modified version of Fµ1...µs
:

Gµ1...µs
= Fµ1...µs

− s(s − 1)

4
g(µ1µ2

F ν
µ3...µs)ν ; Fµ1...µs

= Gµ1...µs
− s

4
g(µ1µs

Gν
µ3...µs)ν , (2.7)

which satisfies a (partial) conservation law:

∇νGν
µ1...µs−1

= trace terms only . (2.8)

For s = 2, this is just the construction of the Einstein tensor out of the Ricci tensor.

For spins 1 and 2, Gµ1...µs
is conserved as usual. For s ≥ 3, it is not the full divergence

∇νGν
µ1...µs−1

that vanishes, but rather its totally traceless part. This is sufficient to define

an action:

S = −1

2

∫

d4x
√

g hµ1...µs
Gµ1...µs + boundary terms , (2.9)
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which is invariant (up to boundary terms) under the gauge transformation (2.3) subject to

the constraint (2.4) on the gauge parameter. The Euler-Lagrange equations of motion are

now Gµ1...µs
= 0, which is of course equivalent to Fµ1...µs

= 0. For more detailed discussion

of free HS Lagrangians, see e.g. [30, 31].

For solutions to the source-free field equations Fµ1...µs
= 0, it’s possible to choose a

transverse traceless gauge. The gauge conditions and field equations can then be summa-

rized as:

hν
νµ1...µs−2

= 0 ; ∇νhνµ1...µs−1 = 0 ; �hµ1...µs
= m2hµ1...µs

, (2.10)

where m2 = 0 in flat space, and m2 = s2 − 2s − 2 in EAdS4.

The gauge-invariant content of a solution to the field equations is captured by another

invariant tensor, this time involving s derivatives:

ϕµ1ν1...µsνs
= 2s ∇µ1 . . . ∇µs

hν1...νs
antisymmetrized over every µkνk pair,

with all traces subtracted.
(2.11)

For s = 0, this is just the scalar field again, ϕ = h; for s = 1, ϕµν is the Maxwell

field strength; for s = 2, ϕµνρσ is proportional to the linearized Weyl tensor. The field

strength (2.11) is the sum of two chiral parts: one that is right-handed (i.e. self-dual) in

every µkνk index pair, and one that is left-handed (i.e. anti-self-dual). From the point of

view of the field strength (2.11), without referring to the gauge potential hµ1...µs
, the free

massless field equations read:

s = 0 : �ϕ = m2ϕ ;

s = 1 : ∇µϕµν = ∇[µϕνρ] = 0 ;

s ≥ 2 : ∇µ1ϕµ1ν1···µsνs
= 0 ,

(2.12)

where the only difference between R
4 and EAdS4 is now in the spin-0 case, with m2 = 0, −2

respectively.

2.2 Boundary data and on-shell action in EAdS4

We now specialize to EAdS4 spacetime. In this subsection, we will represent EAdS4 in

Poincare coordinates (z, x), while writing the components of tensors in an orthonormal

basis. This is described by the vielbein:

e0
z = e1

1 = e2
2 = e3

3 =
1

z
. (2.13)

All tensor indices will refer to the orthonormal basis. Greek indices (µ, ν, . . . ) will take

values in (0, 1, 2, 3), while Latin indices (i, j, . . . ) take values in (1, 2, 3).

The conformal boundary of EAdS4, here in a flat conformal frame, is at z = 0. The

boundary behavior of solutions to the Fronsdal equations has beed studied e.g. in [32–

34]. The results are simplest in transverse traceless gauge, where the equations take the

form (2.10). As usual, locally near the boundary, there are two branches of linearly inde-

pendent solutions, characterized by different powers of z, which are canonically conjugate

to each other. Global regularity on EAdS4 picks out a particular linear combination of the

– 6 –
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two branches. We will refer to the branches as “electric” and “magnetic”, for reasons that

will become clear. Their asymptotics, at leading order in small z, is defined by:

Magnetic branch : hi1...is
(z, x) = z2−sAi1...is

(x) ; (2.14)

Electric branch : hi1...is
(z, x) = zs+1Ji1...is

(x) . (2.15)

The other components of hµ1...µs
within each of the branches, i.e. the components where

one or more indices take the value 0, scale with higher powers of z, and are determined

by the components hi1...is
above. The tracelessness of hµ1...µs

then implies that Ai1...is
and

Ji1...is
must be traceless. In addition, the electric boundary data Ji1...is

is divergence-free,

∂i1J i1i2...is = 0. In the holographic duality with a free vector model of scalar fields, the

electric boundary data Ji1...is
(x) describes the VEVs of the boundary theory’s single-trace

operators (i.e. spin-s conserved currents), while the magnetic data Ai1...is
(x) describes the

sources for these operators (i.e. spin-s gauge fields).

Outside of transverse traceless gauge, it is helpful to characterize the two branches of

solutions in a gauge-invariant way. For this purpose, we consider not the gauge potential

hµ1...µs
, but its field strength, the generalized Weyl tensor ϕµ1ν1...µkνk

from eq. (2.11). At

every point, its linearly independent components are captured by a pair of totally symmetric

traceless tensors Ei1...is
and Bi1...is

, which describe respectively the field strength’s electric

and magnetic parts:

Ei1i2...is
= ϕ0i10i2...0is

; Bi1i2...is
=

1

2
ǫi1jkϕjk

0i2...0is
. (2.16)

On-shell, both of these are divergence-free in the 3d sense, i.e. ∂i1Ei1i2...is = ∂i1Bi1i2...is = 0.

In the boundary limit z → 0, both Ei1...is
and Bi1...is

scale as zs+1:

Ei1...is
(z, x) = zs+1Ei1...is

(x) ; Bi1...is
(z, x) = zs+1Bi1...is

(x) . (2.17)

The magnetic branch of solutions (2.14) can now be characterized by vanishing electric

boundary data Ei1...is
(x) = 0, while the electric branch (2.15) is characterized by vanishing

magnetic boundary data Bi1...is
(x) = 0. Perhaps the quickest way to see this is to notice

the behavior of the different types of boundary data under the antipodal map z → −z:

Ai1...is
(x) and Bi1...is

(x) are associated with antipodally even solutions, while Ji1...is
(x) and

Ei1...is
(x) are associated with antipodally odd ones [35, 36] (in fact, Ji1...is

(x) and Ei1...is
(x)

are the same up to a numerical factor, while Bi1...is
(x) is a conformal field strength for the

3d gauge potential Ai1...is
(x)).

Returning now to transverse traceless gauge, let us work out the on-shell action of

a free HS field in EAdS4. A detailed analysis can be found in [33]; here, we will take

some shortcuts towards the final answer. Since we are dealing with free field theory, and

since Ai1...is
(x) and Ji1...is

(x) are canonically conjugate, the action (with divergent pieces

removed) should be proportional to
∫

Ai1...is
(x) J i1...is(x) d3x. As we will now show, the

correct proportionality factor is:

S[h, h] =
1 − 2s

2

∫

Ai1...is
(x) J i1...is(x) d3x , (2.18)

– 7 –
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where the notation on the l.h.s. is intended to emphasize that S is a quadratic form in

the space of free-field solutions hµ1...µs
(z, x). The numerical coefficient in (2.18) depends

on our choice of boundary terms for the action, which in turn depend on our choice of

boundary conditions in the variational principle. Here, we are interested in the standard

variational principle for AdS/CFT, in which the source-type boundary data Ai1...is
(x) is

held fixed. The variation of the action (2.18) then reads:

δS = (1 − 2s)

∫

J i1...is(x) δAi1...is
(x) d3x . (2.19)

Identifying this as a symplectic potential, we take another variation to extract the sym-

plectic form:

Ω = (1 − 2s)

∫

δJ i1...is(x) ∧ δAi1...is
(x) d3x . (2.20)

Note that in eq. (2.18), Ai1...is
(x) and J i1...is(x) were linearly related by the requirement

of regularity in EAdS4, while in (2.20), we treat them as linearly independent.

We can now justify the numerical coefficient in (2.18) by comparing the symplectic

form (2.20) with the one derived directly from the Lagrangian −1
2hµ1...µs

Gµ1...µs . In general,

this will be somewhat complicated, due to the large number of terms with different index

arrangements inside Gµ1...µs . However, in the boundary limit z → 0 in transverse traceless

gauge, things simplify considerably, and all the terms in Gµ1...µs beyond the “trivial” one

�hµ1...µs can be ignored. We then get the symplectic form:

Ω =
1

z2

∫

δhi1...is
(z, x) ∧ ∂zδhi1...is(z, x) d3x , (2.21)

where the integral is at a fixed small value of z. By linear superposition of (2.14) and (2.15),

the general boundary behavior of hi1...is
is given by:

hi1...is
(z, x) = z2−sAi1...is

(x) + zs+1Ji1...is
(x) + . . . , (2.22)

where the dots signify terms with Ai1...is
(x) and its ∂i derivatives multiplied by powers of z

higher than z2−s, and terms with Ji1...is
(x) and its ∂i derivatives multiplied by powers of z

higher than zs+1. In the symplectic form (2.21), only the terms explicitly written in (2.22)

will contribute. The other terms will end up vanishing, either due to high powers of z,

or due to the wedge product’s antisymmetry along with integration over the boundary.

All in all, we see that the symplectic form (2.21) ends up conciding with (2.20), with the

numerical coefficient arising as:

1 − 2s =
1

z2

(

zs+1∂zz2−s − z2−s∂zzs+1
)

. (2.23)

2.3 Embedding space, boundary-to-bulk propagators and 2-point function

While Poincare coordinates in EAdS4 are sometimes useful, we prefer the more covariant

embedding-space picture. There, EAdS4 is defined as the hyperboloid of unit timelike

radius embedded in a flat Minkowski space R
1,4:

EAdS4 =
{

xµ ∈ R
1,4 | xµxµ = −1, x0 > 0

}

. (2.24)
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The flat metric ηµν of R
1,4 has mostly-plus signature. In an abuse of notation, we will

denote the 5d embedding-space indices by the same Greek letters (µ, ν, . . . ) that we used

for intrinsic tensors in the 4d spacetime. This is quite natural, because intrinsic EAdS4

vectors at a point xµ ∈ EAdS4 are simply vectors vµ ∈ R
1,4 that happen to be tangent to

the hyperboloid (2.24), i.e. that satisfy x · v ≡ xµvµ = 0. In particular, the EAdS4 metric

is simply gµν(x) = ηµν + xµxν . Similarly, the EAdS4 covariant derivative ∇µ is just the

flat R
1,4 derivative ∂µ, followed by projecting all tensor indices back into the hyperboloid,

using the projector δν
µ +xµxν . With this notation, the formulas of section 2.1 carry through

seamlessly.

The conformal boundary of EAdS4 is defined by the projective lightcone in the R
1,4

embedding space, i.e. by null vectors ℓµ ∈ R
1,4, ℓ · ℓ = 0, modulo equivalence under

rescalings ℓµ → ρℓµ. The bulk→boundary limit can be described as xµ → ℓµ/z, where the

parameter z goes to zero (as the coincident notation suggests, the Poincare coordinate z

near the boundary plays this role). Vectors on the 3d conformal boundary are described

by R
1,4 vectors vµ that are tangential to the lightcone, v · ℓ = 0, subject to the equivalence

relation vµ ∼= vµ + αℓµ. Since our axes in R
1,4 are orthonormal, many of the formulas from

section 2.2 carry over to this picture, with embedding-space indices (µ, ν, . . . ) in place of

the orthonormal boundary indices (i, j, . . . ).

Let us now use the embedding-space language to write down massless spin-s boundary-

to-bulk propagators. These are solutions to the free bulk field equations that are charac-

terized by a “source” point ℓµ on the boundary, and a null polarization vector λµ at that

point, so that ℓ · ℓ = ℓ · λ = λ · λ = 0. The equivalence relation λµ ∼= λµ + αℓµ can be made

manifest by replacing λµ with the totally-null bivector Mµν ≡ 2ℓ[µλν], which satisfies:

Mµνℓν = MµνMνρ = M[µνMρ]σ = 0 . (2.25)

At a bulk point xµ, the boundary inputs (ℓµ, Mµν) induce three quantities: a scalar ℓ · x

and two vectors ℓµ
⊥ ≡ ℓµ + (ℓ · x)xµ and mµ ≡ Mµνxν , which satisfy:

mµℓµ
⊥ = mµmµ = 0 ; ℓ⊥

µ = ∇µ(ℓ · x) . (2.26)

The “⊥” label on ℓµ
⊥ indicates projection in perpendicular to xµ, i.e. into the EAdS4 tangent

space at x. The projection of Mµν into the tangent space at x reads:

Mµν
⊥ ≡ Mµν + 2m[µxν] =

2m[µℓ
ν]
⊥

ℓ · x
. (2.27)

The spin-s boundary-to-bulk propagator is now given by:

hµ1...µs
(x) =

Mµ1ν1xν1 . . . Mµsνs
xνs

(ℓ · x)2s+1
=

mµ1 . . . mµs

(ℓ · x)2s+1
. (2.28)

It’s easy to verify that this satisfies Fronsdal’s equations (2.10) in transverse traceless gauge.

The field strength (2.11) associated with this solution can be calculated by repeatedly

applying the identities:

m[µ∇ν](ℓ · x) =
1

2
(ℓ · x)M⊥

µν ; ∇µmν = −M⊥
µν ; m[µ∇ν]mρ =

1

2
M⊥

µνmρ , (2.29)
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and noting that ∇µM⊥
νρ = −2gµ[νmρ] can be discarded as a trace piece. The result reads:

ϕµ1ν1...µsνs
(x) =

(2s − 1)!

(s − 1)!
· M⊥

µ1ν1
. . . M⊥

µsνs

(ℓ · x)2s+1
− traces . (2.30)

The subtraction of traces is equivalent to leaving just the purely right-handed and purely

left-handed parts of M⊥
µ1ν1

. . . M⊥
µsνs

. Thus, if we define the left/right-handed parts of M⊥
µν

as:

ML/R
µν ≡ 1

2

(

M⊥
µν ± 1

2
ǫµν

λρσxλMρσ

)

, (2.31)

then the field strength (2.30) can be written as:

s = 0 : ϕ(x) =
1

ℓ · x
; (2.32)

s ≥ 1 : ϕµ1ν1...µsνs
(x) =

(2s − 1)!

(s − 1)!
· ML

µ1ν1
. . . ML

µsνs
+ MR

µ1ν1
. . . MR

µsνs

(ℓ · x)2s+1
, (2.33)

where we included the spin-0 case separately. Note that for s = 0, the factorials

in (2.30), (2.33) become ill-defined. However, we can analytically continue to continu-

ous values of s (whereupon the factorials become Gamma functions), and then take the

limit s → 0. We then see that (2.30) (but not (2.33)) correctly reproduces the spin-0 case

ϕ(x) = h(x) = 1/(ℓ · x).

Let’s now identify the asymptotic behavior of the boundary-to-bulk propagator (2.28).

At a boundary point ℓ̂ 6= ℓ, the boundary data is purely electric, and can be read off directly

from eq. (2.28) as:

Jµ1...µs
(ℓ̂) =

Mµ1ν1 ℓ̂ν1 . . . Mµsνs
ℓ̂νs

(ℓ · ℓ̂)2s+1
. (2.34)

The magnetic boundary data for the propagator (2.28) takes the form of a delta function

supported at ℓ̂ = ℓ:

s = 0 : A(ℓ̂) = 4π2δ3(ℓ̂, ℓ) ; (2.35)

s ≥ 1 : Aµ1...µs
(ℓ̂) = −4π2(2s − 2)!

2ss!(s − 1)!
δ3(ℓ̂, ℓ) λµ1 . . . λµs

. (2.36)

The numerical coefficient in (2.36) is rather non-trivial to derive, and we won’t reproduce

the derivation here. It’s been worked out, with small mistakes, in [32], as well as by one of

the present authors in [36]. A correct derivation can now be found in the updated version

of [36]. As with eq. (2.30) above, though the coefficient in (2.36) is ill-defined for s = 0,

we can reproduce the spin-0 case (2.35) by making s continuous and then taking the limit

s → 0.

Finally, we can plug the boundary data (2.34)–(2.36) into the action formula (2.18)

to obtain the 2-point function. Specifically, if we consider two boundary-to-bulk propa-

gators of the form (2.28) with parameters (ℓµ
1 , Mµν

1 = 2ℓ
[µ
1 λ

ν]
1 ) and (ℓµ

2 , Mµν
2 ), then their

contribution to the quadratic action (2.18) reads:

S[h1, h2] =
1

2

∫

d3ℓ̂ A1(ℓ̂)J2(ℓ̂) = 2π2J2(ℓ1) =
2π2

ℓ1 · ℓ2
(2.37)
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for s = 0, and:

S[h1, h2] =
1 − 2s

2

∫

d3ℓ̂ A1
µ1...µs

(ℓ̂)Jµ1...µs

2 (ℓ̂) =
2π2(2s − 1)!

2ss!(s − 1)!
λµ1 . . . λµs

Jµ1...µs

2 (ℓ1)

=
(−1)sπ2(2s)!

4s(s!)2
· (M1

µνMµν
2 )s

(ℓ1 · ℓ2)2s+1

(2.38)

for s ≥ 1. Again, (2.37) can be regarded a special case of (2.38), by analytically continuing

to continuous s and then sending s → 0.

3 HS fields with bulk particle sources

In this section, we couple Fronsdal’s linearized HS fields in R
4 and EAdS4 to a particle-like

source, with support on a geodesic worldline γ.

3.1 Action and field equations

First, consider coupling the spin-s Fronsdal field to a general HS current T µ1...µs :

S =

∫

d4x
√

g

(

−1

2
hµ1...µs

Gµ1...µs + hµ1...µs
T µ1...µs

)

+ boundary terms . (3.1)

The current T µ1...µs inherits the algebraic properties of hµ1...µs
, i.e. we take it to be totally

symmetric and double-traceless. In addition, invariance under the gauge symmetry (2.3)

demands that T µ1...µs be conserved in the same sense as Gµ1...µs , i.e. that the traceless part

of ∇νT ν
µ1...µs−1

should vanish:

∇νT ν
µ1...µs−1

= trace terms only . (3.2)

Varying the action (3.1) with respect to hµ1...µs
, we obtain the field equations Gµ1...µs =

T µ1...µs . Rearranging the trace as in (2.7), we express these equations in terms of the

Fronsdal tensor:

F µ1...µs = T µ1...µs − s

4
g(µ1µsT µ3...µs)ν

ν . (3.3)

Now, what HS current T µ1...µs can we associate with a point particle? Our first building

block is the delta function
∫

γ dτ δ4(x, x′) that localizes the particle on its worldline γ; here,

xµ are the worldline’s coordinates, and dτ =
√

dxµdxµ is the length element. The second

bulding block is the particle’s 4-velocity uµ = dxµ/dτ . We will assume minimal coupling,

which forbids spacetime derivatives of the delta function. We further assume that the

worldline is a geodesic, so that any further τ derivatives of uµ vanish. The most general

totally symmetric tensor then reads:

T µ1...µs(x′) =

∫

γ
dτ δ4(x, x′)

⌊s/2⌋
∑

n=0

Q(s)
n g(µ1µ2 . . . gµ2n−1µ2nuµ2n+1 . . . uµs) , (3.4)

with some coefficients Q
(s)
n . The n = 0 term in (3.4) is conserved, thanks to the geodesic

condition uν∇νuµ = 0. The n ≥ 2 terms are double-trace pieces, which are fixed by the
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requirement that T µ1...µs is double-traceless overall. Their divergence is automatically a

trace piece, so they do not affect the conservation condition (3.2). This leaves the n = 1

term, which does not satisfy the conservation law (3.2), and must therefore be ruled out.

All in all, we end up with the simplest possible coupling between the spin-s field and a

point particle:

T µ1...µs(x′) = Q(s)
∫

γ
dτ δ4(x, x′) uµ1 . . . uµs − double traces ; (3.5)

S = −1

2

∫

d4x
√

g hµ1...µs
Gµ1...µs + Q(s)

∫

γ
dτ hµ1...µs

uµ1 . . . uµs

+ boundary terms , (3.6)

where we renamed Q
(s)
0 ≡ Q(s) for brevity. The field equations (3.3) in the presence of the

current (3.5) read:

F µ1...µs(x′) = Q(s)
∫

γ
dτ δ4(x, x′)

(

uµ1 . . . uµs − s

4
g(µ1µ2uµ3 . . . uµs)

)

− double traces . (3.7)

3.2 Solution of the field equations in R
4

Let us now solve the field equations (3.7). We begin with the R
4 case. The worldline

γ is now just a straight line, which we can think of as running along the (Euclidean)

time direction. Let us extend the 4-velocity uµ into a constant vector field in spacetime,

which we’ll denote as tµ. Let R denote our distance from the worldline, and let rµ be the

corresponding radius-vector (we denote these by different-case letters, for consistency with

the curved case below). We then have the basic identities:

tµtµ = 1 ; rµrµ = R2 ; tµrµ = 0 ;

∇µtν = 0 ; ∇µR =
rµ

R
; ∇µrν = qµν ,

(3.8)

where qµν = gµν − tµtν is the flat metric of the 3d space orthogonal to tµ.

3.2.1 The solution

For spin 0, the field equation (3.7) and its solution read:

�h = Q(0)δ3(r) ; h(x) = −Q(0)

4πR
. (3.9)

For nonzero spins, we will work in a gauge that is traceless (but not transverse). The field

equation (3.7) then reads:

�hµ1...µs
−s∇(µ1

∇νhµ2...µs)ν = Q(s)δ3(r)

(

tµ1 . . . tµs − s

4
g(µ1µ2tµ3 . . . tµs) − double traces

)

.

(3.10)

To solve it, we define a null combination of tµ and rµ:

kµ ≡ 1

2

(

tµ +
irµ

R

)

. (3.11)
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In Lorentzian signature, this would be a lightlike vector, which defines an affine tangent to

the lightrays emanating from the worldline. In terms of kµ and rµ, eqs. (3.8) become:

kµkµ = 0 ; rµrµ = R2 ; kµrµ =
iR

2
;

∇µkν =
iΩµν

2R
; ∇µR =

rµ

R
; ∇µrν = qµν ,

(3.12)

where Ωµν = qµν − 1
R2 rµrν is the metric of the 2-sphere at radius r. In terms of kµ and rµ,

the metrics qµν and Ωµν take the form:

Ωµν = gµν − 4kµkν +
4i

R
k(µrν) ; qµν = Ωµν +

rµrν

R2
. (3.13)

We now claim that the following Kerr-Schild-like field, familiar from [17], solves the field

equation (3.10) for all nonzero spins s ≥ 1:

hµ1...µs
(x) = − Q(s)

2πR
kµ1 . . . kµs

. (3.14)

Note that this differs by a factor of 2 from the s = 0 case (3.9). The solution (3.14) is trace-

less as promised, since kµ is null. Plugging it into the field equation (3.10), one can easily

verify that the l.h.s. vanishes at R 6= 0, using the following corrolaries of eqs. (3.12)–(3.13):

∇µkµ =
i

R
; kν∇νkµ = rν∇νkµ = 0 ;

�
1

R
= 0 ; �kµ = − irµ

R3
; ∇ρkµ∇ρkν = − 1

R2

(
1

4
gµν − kµkν +

ik(µrν)

R

)

.
(3.15)

What remains is to resolve the delta-function-like source at R = 0. For that purpose, we

write the Fronsdal tensor on the l.h.s. of (3.10) as a total divergence:

Fµ1...µs
= ∇νKν

µ1...µs
; Kν

µ1...µs
= ∇νhµ1...µs

− s∇(µ1
hν

µ2...µs) . (3.16)

We now need to show that the flux of Kν
µ1...µs

through a 2-sphere at radius R reproduces

the coefficient of the delta function on the r.h.s. of (3.10):

4πR〈rνKν
µ1...µs

〉S2 = Q(s)
(

tµ1 . . . tµs − s

4
g(µ1µ2tµ3 . . . tµs) − double traces

)

. (3.17)

As a first step, we note that rνKν
µ1...µs

is double-traceless already before the S2 averaging,

thanks to the tracelessness of hµ1...µs
. When evaluated explicitly, it reads:

rνKν
µ1...µs

=
Q(s)

2πR

(

kµ1 . . . kµs
− is

2R
r(µ1

kµ2 . . . kµs) − s(s − 1)

4
Ω(µ1µ2

kµ3 . . . kµs)

)

=
Q(s)

2πR

(

kµ1 . . . kµs
− is

2R
r(µ1

kµ2 . . . kµs) +
s(s − 1)

4R2
r(µ1

rµ2kµ3 . . . kµs)

− s(s − 1)

4
q(µ1µ2

kµ3 . . . kµs)

)

.

(3.18)
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The double-tracelessness is manifest in the first line, since kµ is null and orthogonal to

Ωµν . To perform the S2 average, we decompose (3.18) along tµ, qµν and rµ:

rνKν
µ1...µs

=
s! Q(s)

2s+1π

(
s∑

n=0

in(1 − n2)r(µ1
. . . rµn

tµn+1 . . . tµs)

n!(s − n)!Rn+1

−
s−2∑

n=0

inr(µ1
. . . rµn

qµn+1µn+2tµn+3 . . . tµs)

n!(s − n − 2)!Rn+1

)

.

(3.19)

The S2 averaging now affects only the rµ1 . . . rµn
factors. For odd n, these average to zero,

while for even n, we have the identity:

〈rµ1 . . . rµn
〉S2 =

Rn

n + 1
q(µ1µ2

. . . qµn−1µn) . (3.20)

The latter can be proved by contracting both sides with qµ1µ2 . . . qµn−1µn , and using the

identity:

qµ1µ2 . . . qµn−1µnq(µ1µ2
. . . qµn−1µn) = n + 1 , (3.21)

which is easy to prove recursively in n. Plugging (3.20) into (3.19), we find that the two

terms in (3.19) combine nicely, giving:

〈rνKν
µ1...µs

〉S2 =
Q(s)

2s+1πR

⌊s/2⌋
∑

n=0

(−1)n

(

s

2n

)

q(µ1µ2
. . . qµ2n−1µ2n

tµ2n+1 . . . tµs) . (3.22)

To compare with (3.17), we must re-express the sum in (3.22) in terms of gµν and tµ, by

substituting qµν = gµν − tµtν . Since the double-tracelessness is assured, it’s enough to

compare the coefficients of tµ1 . . . tµs
and of g(µ1µ2

tµ3 . . . tµs). This is easy to do, confirming

the flux relation (3.17), and with it the field equation (3.10).

3.2.2 Field strength and symmetric gauge

We can now calculate the Weyl-like field strength (2.11) of the solution (3.14):

ϕµ1ν1...µsνs
(x) = −(2s)!

s!
· Q(s)S⊥

µ1ν1
. . . S⊥

µsνs

4πR2s+1
− traces , (3.23)

where S⊥
µν is a bivector in the tr plane:

S⊥
µν ≡ t[µrν] = 2k[µrν] , (3.24)

and the “⊥” superscript is in anticipation of the EAdS4 case below. The derivation of the

field strength (3.23) from the potential (3.14) is easy, once it is organized in terms of S⊥
µν .

The relevant identities read:

k[µ∇ν]kρ =
S⊥

µνkρ

2R2
+

i

2R
k[µgν]ρ ; ∇µS⊥

νρ = t[νgρ]µ , (3.25)

where every term proportional to gµν can be discarded as a trace piece. Note that, unlike

the potential (3.14), the field strength (3.26) correctly covers also the spin-0 case (3.9).
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The subtraction of traces in (3.23) can again be expressed as a projection onto the purely

right-handed and purely left-handed parts:

ϕµ1ν1...µsνs
(x) = −(2s)!

s!
· Q(s)

4πR2s+1

(

SL
µ1ν1

. . . SL
µsνs

+ SR
µ1ν1

. . . SR
µsνs

)

, (3.26)

where:

SR/L
µν ≡ 1

2

(

S⊥
µν ± 1

2
ǫµν

ρσS⊥
ρσ

)

. (3.27)

Finally, we note the freedom of gauge-transforming the solution (3.14). One reason to prefer

a different gauge is that (3.14) discriminates between the two null vectors kµ = 1
2(tµ + i

Rrµ)

and k̄µ = 1
2(tµ − i

Rrµ), thus breaking time-reversal symmetry t → −t (in the context of

black holes, this can be natural, if one wishes to ignore the time-reversed white hole).

It’s easy to see that if we complex-conjugate the solution (3.14), i.e. replace kµ → k̄µ

everywhere, the Fronsdal tensor (3.10) and Weyl-like field strength (3.26), which are real,

remain unchanged. Therefore, replacing kµ → k̄µ is a gauge transformation. Taking the

average of (3.14) and its complex conjugate, we obtain the solution in a gauge that is real

and symmetric under time reversal:

hµ1...µs
(x) = − Q(s)

4πR

(

kµ1 . . . kµs
+ k̄µ1 . . . k̄µs

)

= − Q(s)

2πR
Re(kµ1 . . . kµs

) . (3.28)

For s = 1, this is the usual Coulomb potential −Q(1)tµ/(4πR).

3.3 Solution of the field equations in EAdS4

Now, consider the same field equation with a particle source (3.7) in EAdS4, where we

again work in the embedding-space formalism. The source particle’s geodesic worldline

now stretches from one point ℓ′µ to another ℓµ on the EAdS4 boundary (see figure 1a). In

terms of these, the worldline and its 4-velocity are given by:

xµ(τ) =
1√

−2ℓ · ℓ′
(
eτ ℓµ + e−τ ℓ′µ)

; uµ(τ) =
1√

−2ℓ · ℓ′
(
eτ ℓµ − e−τ ℓ′µ)

. (3.29)

To each spacetime point xµ ∈ EAdS4 away from the worldline, we can again associate a

radial parameter R, a radial vector rµ and a “time” vector tµ:

R =

√

−2(x · ℓ)(x · ℓ′)
ℓ · ℓ′ − 1 ; (3.30)

rµ = xµ +
1

2

(
ℓµ

x · ℓ
+

ℓ′µ

x · ℓ′

)

; tµ =
1

2

(
ℓ′µ

x · ℓ′ − ℓµ

x · ℓ

)

. (3.31)

rµ and tµ lie in the EAdS4 tangent space at x, i.e. xµrµ = xµtµ = 0. The variables

(R, rµ, tµ) play similar roles to their flat counterparts from section 3.2, and coincide with

them close to the worldline, where the curvature of EAdS4 can be neglected. In particular,

R is a measure of distance from the worldline, rµ is tangent to the radial geodesics that

emanate from the worldline perpendicularly, and tµ is an extension of the 4-velocity uµ
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(a) (b)

Figure 1. (a) An HS-charged particle traveling along a geodesic between two boundary points

ℓ, ℓ′ in EAdS4 is generating HS gauge fields at a bulk point x. (b) A Feynman diagram in the

boundary vector model, connecting a bilocal operator φ̄I(ℓ′)φI(ℓ) to a local current at x, which

can be thought of as a boundary limit of the bulk point x; the solid lines are propagators, while

the dashed line simply contracts the color index I. The boundary diagram in (b) can be viewed as

an HS multiplet of OPE blocks, between the two fundamental fields φI(ℓ), φ̄I(ℓ′) and the currents

j(s)(x) of all spins, which constitute the full OPE of φI(ℓ) and φ̄I(ℓ′). The bulk picture in (a), with

the particle assigned the DV pattern of charges, is a geodesic Witten diagram for these OPE blocks.

from the worldline into the rest of spacetime. The identities (3.8) acquire curvature

corrections, as:

tµtµ =
1

1 + R2
; rµrµ =

R2

1 + R2
; tµrµ = 0 ;

∇µtν = −2t(µrν) ; ∇µR =
1 + R2

R
rµ ; ∇µrν = gµν − tµtν − rµrν .

(3.32)

We again define a null combination kµ of tµ and rµ, according to eq. (3.11). In Lorentzian,

this would again be an affine tangent to the lightrays emanating from the worldline. The

identities (3.12)–(3.15) with curvature corrections read:

kµkµ = 0; kµrµ =
iR

2(1+R2)
;

∇µkν =
i

2R
gµν − 2i

R
kµkν − 2(1+R2)

R2
k(µrν) ;

∇µrν = gµν −4kµkν +
4i

R
k(µrν) +

1−R2

R2
rµrν ;

∇µkµ =
i

R
; kν∇νkµ = 0; rν∇νkµ = − R2kµ

1+R2
;

�
1

R
= − 2

R
; �kµ = −3kµ − i(1+R2)

R3
rµ ;

∇ρkµ∇ρkν = − 1

4R2
gµν +

1+R2

R2
kµkν − i(1+R2)

R3
k(µrν) . (3.33)

We also define a bivector in the tr plane, as in (3.24) but with a curvature-corrected

prefactor:

S⊥
µν ≡ (1 + R2)t[µrν] = 2(1 + R2)k[µrν] , (3.34)
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which satisfies identities very similar to (3.25):

k[µ∇ν]kρ =
S⊥

µνkρ

2R2
+

i

2R
k[µgν]ρ ; ∇µS⊥

νρ = (1 + R2)t[νgρ]µ , (3.35)

and can be decomposed into left-handed and right-handed parts as:

SL/R
µν ≡ 1

2

(

S⊥
µν ± 1

2
ǫµν

λρσxλS⊥
ρσ

)

. (3.36)

With these building blocks in hand, it’s easy to show that the solution to the field equa-

tion (3.7) in EAdS4, as well as its Weyl curvature, take the same form as in the flat case:

h(x) = −Q(0)

4πR
(s = 0) ; (3.37)

hµ1...µs
(x) = − Q(s)

2πR
kµ1 . . . kµs

(s ≥ 1) ; (3.38)

ϕµ1ν1...µsνs
(x) = −(2s)!

s!
· Q(s)

4πR2s+1

(

SL
µ1ν1

. . . SL
µsνs

+ SR
µ1ν1

. . . SR
µsνs

)

(s ≥ 1) . (3.39)

To verify this, one must only repeat the calculations at R 6= 0. The analysis of the field

equation at the R = 0 singularity can be taken directly from the flat case, since the

constant curvature of EAdS4 becomes irrelevant at very short distances. For the s ≥ 1

solution, we will again prefer the more symmetric gauge choice (3.28):

hµ1...µs
(x) = − Q(s)

2πR
Re(kµ1 . . . kµs

) . (3.40)

Finally, it will be useful to express S⊥
µν directly in terms of the worldline’s boundary

endpoints ℓµ, ℓ′µ and the bulk “measurement point” xµ. It turns out that S⊥
µν is just the

projection of the bivector ℓ[µℓ′
ν]/(ℓ·ℓ′) into the tangent space at x, i.e. in perpendicular to xµ:

Sµν ≡
ℓ[µℓ′

ν]

ℓ · ℓ′ ;

S⊥
µν = Sµν + xµxρSρν + xνxρSµρ .

(3.41)

4 HS interaction between two bulk particles

In this section, we study the action for two bulk particles with geodesic worldlines, inter-

acting at leading order via HS fields. We will see that a particular pattern of charges leads

to divergence cancellation and an especially simple result for the action. In section 6, we

will identify this special pattern of charges as that of the Didenko-Vasiliev solution, and

associate it with a bilocal operator on the boundary.

4.1 General structure of the on-shell action

In general, when we impose the field equations Gµ1...µs = T µ1...µs , the two terms in the

action (3.1) become proportional to each other. The on-shell action then reads simply:

S =
1

2

∫

d4x
√

g
∞∑

s=0

hµ1...µs
T µ1...µs + boundary terms , (4.1)
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where we included a sum over spins. Specializing to a point-particle source, charged under

the fields of different spins, this becomes:

S =
1

2

∫

γ
dτ

∞∑

s=0

Q(s)hµ1...µs
uµ1 . . . uµs + boundary terms . (4.2)

We will consider here two particles, so really there should be a sum over two worldlines

in (4.2). However, we’ll restrict our attention to the action due to the fields of one particle

acting on the other. As usual, there will be an equal contribution from the second particle

acting on the first; taking this into account cancels the factor of 1
2 in (4.2). The action of

a particle’s fields on itself, i.e. the particle’s self-interaction, is typically UV-divergent. As

we will see below, this isn’t actually the case for an HS-charged particle with the Didenko-

Vasiliev pattern of charges (though even then the action does diverge if we restrict to even-

spin charges only, i.e. if we average the charges between a particle and its antiparticle).

At any rate, we’ll treat the case of a particle acting on itself as just a special case of one

particle acting on another.

Two further subtelties should be addressed before the action (4.2) can be evaluated:

the action’s boundary terms, and its gauge-dependence. The boundary terms in (4.2) are

associated with the free-field part of the action, and have been with us since eq. (2.9).

As we saw in section 2.2, in EAdS4 they amount to an integral of the form (2.18) in

transverse traceless gauge. Since neither of the gauges (3.38), (3.40) is transverse, this

formula cannot be applied directly. However, we know that the boundary data Ai1...is

and J i1...is in transverse traceless gauge are associated with the magnetic and electric

parts (2.16)–(2.17) of the gauge-invariant field strength. In other words, the boundary

action (2.18) couples the boundary magnetic field to the boundary electric field (where the

magnetic potential Ai1...is
is needed to make this coupling local). Now, it’s straightforward

to check that, away from the particle’s worldline, the field strength (3.39) satisfies Bi1...is
=

0, i.e. its asymptotics is purely electric (this was demonstrated in [24], using the language

of sections 5–6 below). This leaves the possibility of contributions to Bi1...is
from the

wordline endpoints ℓ, ℓ′; however, one can rule these out by SO(3) rotational symmetry,

after using the boundary conformal group to place ℓ, ℓ′ at opposite poles of the boundary S3.

Thus, the magnetic boundary field stength vanishes everywhere, and with it the boundary

action (2.18). Having thus concluded that the action’s boundary terms in EAdS4 vanish,

we will ignore them in the R
4 case as well, since the main purpose of the latter is to serve

as a toy version for the EAdS4 calculation.

The second issue is gauge dependence. As is already the case in electromagnetism,

the coupling of the bulk particle to HS gauge fields is gauge-invariant only up to boundary

terms, i.e. up to contributions at the worldline endpoints. A natural resolution to this

issue is to restrict to gauges that respect the spacetime symmetries of the source particle’s

worldline: the SO(3) of rotations, the R of translations along the worldline, and the Z2 of

interchanging the worldline’s endpoints (while also reversing all odd-spin charges). Under

a gauge transformation within this class of gauges, the contributions to the action from

the two endpoints of a worldline will always cancel. Therefore, imposing these spacetime

symmetries fixes the action’s gauge-dependence.
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To summarize, we’ll be evaluating an action of the form:

S =
1

2

∫

γ2

dτ
∞∑

s=0

Q
(s)
2 uµ1 . . . uµshµ1...µs

(x2; γ1) , (4.3)

with no boundary terms, where the integral is over the worldline of particle no. 2, and the

field hµ1...µs
(x2; γ1) is the one generated by particle no. 1 at the location of particle no. 2.

Moreover, we will use hµ1...µs
in a gauge that respects the symmetries of particle no. 1’s

worldline. Such a gauge is provided by eq. (3.40), with the spin-0 case given separately by

eq. (3.37). Plugging these in, the index contractions in (4.3) reduce to powers of the scalar

product kµuµ, and the action takes the form:

S = − 1

4π

∫

γ2

dτ

R

(

1

2
Q

(0)
1 Q

(0)
2 + Re

∞∑

s=1

Q
(s)
1 Q

(s)
2 (kµuµ)s

)

= − 1

4π

∫

γ2

dτ

R

(

1

2
Q

(0)
1 Q

(0)
2 + Re

∞∑

s=1

Q
(s)
1 Q

(s)
2

2s

(

tµuµ +
irµuµ

R

)s
)

.

(4.4)

Here and below, the distance R, the radial vector rµ, the “time” vector tµ and their null

combination kµ are defined with respect to worldline no. 1, and evaluated at the location

of wordline no. 2; the 4-velocity uµ is that of worldline no. 2.

4.2 The R
4 case

We begin in flat Euclidean spacetime. The two particles’ worldlines are straight lines, at

distance b and angle θ (in the Lorentzian case, these would describe the particles’ impact

parameter and relative velocity). We can align the coordinate axes such that the two

worldlines are situated at:

xµ
1 (τ) = (τ, 0, 0, 0) ; xµ

2 (τ) = (τ cos θ, τ sin θ, b, 0) . (4.5)

The geometric ingredients of the action formula (4.4) then read:

tµ = (1, 0, 0, 0) ; rµ = (0, τ sin θ, b, 0) ; R =
√

τ2 sin2 θ + b2 ;

uµ = (cos θ, sin θ, 0, 0) ; tµuµ = cos θ ; rµuµ = τ sin2 θ ,
(4.6)

so that the action takes the form:

S = − 1

4π

∫ ∞

−∞

dτ√
τ2 sin2 θ+b2

(

1

2
Q

(0)
1 Q

(0)
2 +Re

∞∑

s=1

Q
(s)
1 Q

(s)
2

2s

(

cosθ+
iτ sin2 θ√

τ2 sin2 θ+b2

)s)

.

(4.7)

This integral is scale-invariant. Upon switching to a dimensionless integration variable

τ̂ ≡ τ/b, the b-dependence disappears:

S = − 1

4π

∫ ∞

−∞

dτ̂√
τ̂2 sin2 θ + 1

(

1

2
Q

(0)
1 Q

(0)
2 + Re

∞∑

s=1

Q
(s)
1 Q

(s)
2

2s

(

cos θ +
iτ̂ sin2 θ√

τ̂2 sin2 θ + 1

)s)

.

(4.8)
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On the other hand, the integral is generally divergent as τ̂ → ±∞. For parallel or anti-

parallel worldlines, i.e. θ = 0, π, we get a linear divergence:

S = − 1

4πb

(

1

2
Q

(0)
1 Q

(0)
2 + Re

∞∑

s=1

(

±1

2

)s

Q
(s)
1 Q

(s)
2

)
∫ ∞

−∞
dτ , (4.9)

where the ± signs are for θ = 0, π respectively, and for the moment we restored the

dimensionful variables τ, b. The general form of eq. (4.9) is easy to understand: two

particles at rest have some potential energy of interaction that scales as inverse distance

∼ 1/b, and defines the action per worldline length. Now, there exist particular combinations

of charges Q
(s)
1,2 for which the coefficient in parentheses in (4.9) vanishes; for these special

combinations, the potential energy (and the resulting force) between two particles at rest

is zero. The most famous example is a pair of extremal charged black holes in Einstein-

Maxwell theory, or BPS particles in supergravity. For two such objects at rest, the electric

repulsion precisely cancels the gravitational attraction. In our notation, this corresponds to

the case θ = 0, with particles charged only under the s = 1 gauge field (electric charge) and

the s = 2 field (gravitational mass), with the charges related as Q(1) = ± i√
2
Q(2). Here, the

imaginary electric charge is a standard consequence of working in Euclidean signature. At

θ = π, these same charges yield contributions that add up rather than cancel; in Lorentzian

signature, this corresponds to a particle and antiparticle at rest, with both electric and

gravitational forces attractive.

The integral (4.8) diverges also for general angles 0 < θ < π, but logarithmically rather

than linearly. Specifically, at both ends τ → ±∞ of the worldline, the integral takes the

form:

Slog-divergent = − 1

4π sin θ

(

1

2
Q

(0)
1 Q

(0)
2 +

∞∑

s=1

Q
(s)
1 Q

(s)
2

2s
cos(sθ)

)
∫

dτ

|τ | . (4.10)

Comparing with (4.9), we can see that the introduction of an angle (i.e. a relative velocity)

brings out the different tensor structures of the different-spin interactions, in the form of

the angle-dependent cos(sθ) factors. In particular, the s = 1 and s = 2 contributions to the

logarithmic divergence have different θ dependence, and therefore can no longer cancel each

other; in particular, for the BPS charge assignment Q(1) = i√
2
Q(2), we get a cancellation

only at θ = 2π/3.

On the other hand, if we let go of the restriction to spins s = 1, 2, we can obtain a

cancellation of the divergences at almost all angles. Suppose, as in the BPS case, that both

particles have the same proportionality pattern between the charges of different spins, i.e.:

Q
(s)
1

Q
(0)
1

=
Q

(s)
2

Q
(0)
2

≡ qs , (4.11)

The logarithmic divergence (4.10) of the action then reads:

Slog-divergent = −Q
(0)
1 Q

(0)
2

4π sin θ

(

1

2
+

∞∑

s=1

q2
s

2s
cos(sθ)

)
∫

dτ

|τ | . (4.12)
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We see that the squared charges of the different spins act as Fourier coefficients for the

θ-dependence of the logarithmic divergence. This means that we cannot quite cancel the

divergence for all θ, but we can increase the domain of cancellation from θ = 0 all the way

to 0 ≤ θ < π, by making the expression in parentheses in (4.12) proportional to δ(θ − π):

1

2
+

∞∑

s=1

q2
s

2s
cos(sθ) ∼ δ(θ − π) . (4.13)

This is accomplished by choosing q2
s = (−2)s, i.e.:

Q(s) = ±(i
√

2)sQ(0) , (4.14)

which is consistent with the BPS assignment for s = 1, 2, but extends it to all spins. As we

will see in section 6, the pattern of charges (4.14) coincides with the one for the Didenko-

Vasiliev black hole. We therefore refer to it as the DV pattern. Plugging it back into

the full action formula (4.8), we find that the sum over spins becomes a geometric series.

Summing the series, we arrive at an integral that can be performed analytically:

S = −Q
(0)
1 Q

(0)
2 (1 − cos θ)

8π(1 + cos θ)

∫ ∞

−∞

dτ̂
(
2τ̂2(1 − cos θ) + 1

)√
τ̂2 sin2 θ + 1

= − Q
(0)
1 Q

(0)
2

8π(1 + cos θ)
arctan

(1 − cos θ)τ̂√
τ̂2 sin2 θ + 1

∣
∣
∣
∣

∞

τ̂=−∞

= − Q
(0)
1 Q

(0)
2 θ

8π(1 + cos θ)
.

(4.15)

As anticipated above, we see that the action vanishes for θ = 0, diverges for θ = π, and

is finite for all intermediate values 0 < θ < π. To recapitulate, this finiteness is due

to cancellations of the divergences (4.9)–(4.10), in a higher-spin-enhanced version of the

cancellation for BPS particles in supergravity, which takes place only at θ = 0 and θ = 2π/3.

We emphasize again that the dependence on the impact parameter b dropped out of

the action (4.15), due to scale invariance. This scale invariance enables us to take two

equivalent viewpoints on the cancelled divergences. Our calculation above made them

appear as IR divergences: at fixed impact parameter b, the action diverges as we integrate

over distant portions of the worldline. However, these same divergences can be viewed as

UV ones: if we cut off the integration at some fixed distance along the worldline, then the

action becomes finite at fixed b, but diverges for b → 0, i.e. when the two particles collide.

4.3 The EAdS4 case

We now turn to the case of two particles interacting via HS fields in EAdS4 (see figure 2a).

Our first task is again to parameterize the particles’ geodesic worldlines. The relative

position of the worldlines is again characterized by two numbers: an impact parameter,

which we will now denote by χ, and a relative angle θ. χ is defined as the length of

the shortest interval in EAdS4 connecting the two worldlines; it is a hyperbolic angle in

the R
1,4 embedding space. θ is defined as the angle between the worldlines’ 4-velocities,
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(a) (b)

Figure 2. (a) Two HS-charged particles, traveling along geodesics in EAdS4, are interacting via

their HS gauge fields. (b) A Feynman diagram in the boundary vector model, computing the

correlator of two bilocal operators φ̄I(ℓ′

1)φI(ℓ1) and φ̄I(ℓ′

2)φI(ℓ2); the solid lines are propagators,

while the dashed lines are just contractions of the color indices I. The bulk picture in (a), with

each of the two particles assigned the DV pattern of charges, describes an HS multiplet of Witten

diagrams that compute the same correlator. The boundary diagram in (b) is almost one of the

Feynman diagrams for the 4-point function of scalar operators j(0)(ℓ) = φ̄I(ℓ)φI(ℓ), but with two

propagators missing.

evaluated at the ends of this shortest interval (the angle can be defined equivalently either

in embedding space, or intrinsically in EAdS4 using parallel transport along the interval).

In a suitably chosen Lorentz frame in the R
1,4 embedding space, we can fix the positions

and 4-velocities of the two worldlines at their closest points as:

xµ
1 (0) = (1, 0, 0, 0, 0) ; uµ

1 (0) = (0, 1, 0, 0, 0) ;

xµ
2 (0) = (cosh χ, 0, sinh χ, 0, 0) ; uµ

2 (0) = (0, cos θ, 0, sin θ, 0) .
(4.16)

From these, we can construct the worldlines themselves as:

xµ
1 (τ) = xµ

1 (0) cosh τ + uµ
1 (0) sinh τ

= (cosh τ, sinh τ, 0, 0, 0) ; (4.17)

xµ
2 (τ) = xµ

2 (0) cosh τ + uµ
2 (0) sinh τ

= (cosh χ cosh τ, cos θ sinh τ, sinh χ cosh τ, sin θ sinh τ, 0) . (4.18)

In particular, the 4-velocity along the 2nd worldline reads:

uµ(τ) ≡ uµ
2 (τ) = (cosh χ sinh τ, cos θ cosh τ, sinh χ sinh τ, sin θ cosh τ, 0) . (4.19)

Taking the limits τ → ±∞ in (4.17)–(4.18) and extracting coefficients of 1
2e|τ |, we identify

the boundary endpoints of the two worldlines as:

ℓµ
1 = (1, 1, 0, 0, 0) ; ℓ′µ

1 = (1, −1, 0, 0, 0) ; (4.20)

ℓµ
2 = (cosh χ, cos θ, sinh χ, sin θ, 0) ; ℓ′µ

2 = (cosh χ, − cos θ, sinh χ, − sin θ, 0) . (4.21)

Our two parameters χ and θ are just a particular encoding of the two independent cross-

ratios of the four boundary points ℓ1, ℓ′
1, ℓ2, ℓ′

2. Explicitly:
√

(ℓ1 · ℓ′
2)(ℓ2 · ℓ′

1)

(ℓ1 · ℓ′
1)(ℓ2 · ℓ′

2)
=

1

2
(cosh χ + cos θ) ;

√

(ℓ1 · ℓ2)(ℓ′
1 · ℓ′

2)

(ℓ1 · ℓ′
1)(ℓ2 · ℓ′

2)
=

1

2
(cosh χ − cos θ) . (4.22)
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Plugging the 2nd worldline’s position (4.18) and the 1st worldline’s endpoints (4.20) into

eqs. (3.30)–(3.31), we obtain the ingredients of the action integral (4.4) as:

R =
√

(cosh2 χ − cos2 θ) sinh2 τ + sinh2 χ ;

rµuµ =
(cosh2 χ − cos2 θ) cosh τ sinh τ

(cosh2 χ − cos2 θ) sinh2 τ + cosh2 χ
;

tµuµ =
cosh χ cos θ

(cosh2 χ − cos2 θ) sinh2 τ + cosh2 χ
.

(4.23)

We can simplify these expressions somewhat by switching variables from τ (which ranges

from −∞ to ∞) to R (which ranges twice from sinh χ to ∞). Plugging everything into the

action integral (4.4), we get:

S = − 1

2π

∫ ∞

sinh χ

dR
√

(R2 − sinh2 χ)(R2 + sin2 θ)

(

1

2
Q

(0)
1 Q

(0)
2 + (4.24)

+ Re
∞∑

s=1

Q
(s)
1 Q

(s)
2

2s(R2 + 1)s

(

cosh χ cos θ +
i

R

√

(R2 − sinh2 χ)(R2 + sin2 θ)

)s
)

,

The integral (4.24) does not have the scale-invariance of its R
4 counterpart, due to the

EAdS4 curvature radius (here, set to 1). Due to the negative curvature, geodesics in

EAdS4 recede from each other at large distances much faster than in R
4. As a result,

unlike its flat counterpart, the integral (4.24) is IR-finite for any assignment of charges

Q
(s)
1,2: at R → ∞, the spin-s piece of the integral goes as

∫
dR/Rs+2. On the other hand,

there are still UV divergences in the limit χ → 0, i.e. as the two particles collide. Since

the spacetime curvature becomes negligible at short distances, these UV divergences are

the same as the ones we studied in the R
4 case. They can thus be cancelled, for all values

of θ except θ = π, by assigning the DV pattern of charges (4.14) to both particles. With

this assignment, the sum over spins in (4.24) again becomes a geometric sum. Performing

it, we bring the action integral into the form:

S =
Q

(0)
1 Q

(0)
2

2π

∫ ∞

sinh χ

dR
√

(R2 − sinh2 χ)(R2 + sin2 θ)

(

1

2
− (4.25)

− (R2 + 1) Re

(

R2 + 1 + cosh χ cos θ +
i

R

√

(R2 − sinh2 χ)(R2 + sin2 θ)

)−1
)

.

We’ve been unable to significantly simplify this integral, or to evaluate it analytically.

One might have hoped to at least use the flat result (4.15) in the limit χ → 0 when the

particles come very close together, and extrapolate from there. However, even in this limit,

the EAdS4 result isn’t captured by the R
4 one, precisely due to the cancellation of UV

divergences. On the other hand, as we’ll discuss below, holography predicts a very simple

answer for the integral (4.25):

S = − Q
(0)
1 Q

(0)
2

16(cosh χ + cos θ)
= −Q

(0)
1 Q

(0)
2

16

√

(ℓ1 · ℓ′
1)(ℓ2 · ℓ′

2)

(ℓ1 · ℓ′
2)(ℓ2 · ℓ′

1)
. (4.26)
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We’ve verified the agreement between (4.25) and (4.26) by numerical integration in Math-

ematica, for various values of the parameters χ, θ. The formula (4.26) for the leading-order

interaction of two HS-charged particles in EAdS4 with the DV pattern of charges is the

main technical result of our paper. In the next sections, we will place our analysis of HS-

charged particles in a broader context, by connecting it to the Didenko-Vasiliev black hole

solution, as well as to higher-spin holography.

5 Twistors, HS algebra and boundary correlators

From here on, we focus on the case of EAdS4 spacetime. In this section, we introduce the

tools necessary to connect our results above with the Didenko-Vasiliev solution and with

AdS/CFT. In essence, we need to switch from the Fronsdal’s “metric-like” formulation of HS

fields to Vasiliev’s language of twistors, HS algebra and master fields. More specifically, we

will introduce these in a slightly non-standard approach, developed by us in [24, 25, 29, 37].

The idea is to work in the embedding-space picture, and to introduce twistors in a way

that is closer to Penrose’s original sense of the word [38, 39] — as spinors of the spacetime

symmetry group SO(1, 4), that exist without tethering to any particular spacetime point.

In section 5.1, we review twistor space, HS algebra, bulk master fields and the Penrose

transform. In section 5.2, we review the free vector model that lives on the conformal

boundary of EAdS4, and the HS-algebraic generating function for its correlators. In sec-

tion 5.3, we use the boundary 2-point functions to fix the relative normalizations between

the Fronsdal and twistor languages. The content of sections 5.1–5.2 is a telegraphic sum-

mary of constructions detailed at length in [24, 25]; the calculation in section 5.3 is new.

5.1 Twistor space, HS algebra and the Penrose transform

For the purposes of this paper, twistor space is the space of (4-component, Dirac) spinors

of the EAdS4 isometry group SO(1, 4). In other words, twistors are the spinors of the R
1,4

embedding space. We use Latin indices (a, b, . . . ) to denote twistors. Twistor space has

a symplectic metric Iab with inverse IabIac = δb
c, which we use to raise and lower indices

as Ua = IabU
b, Ua = UbI

ba. It is often convenient to use index-free notation, in which

bottom-to-top index contraction is implied, e.g. UV ≡ UaV a. The translation between

twistors and tensors is performed by the Dirac gamma matrices (γµ)a
b, which satisfy the

Clifford algebra γ(µγν) = −ηµν (these are just the familiar gamma matrices from R
1,3, with

the addition of γ5). It is also useful to define the antisymmetric combinations γµν ≡ γ[µγν],

which generate the SO(1, 4) spacetime symmetry within Clifford algebra. The matrices γab
µ

are antisymmetric and traceless in their twistor indices, while the γab
µν are symmetric. We

define the following dictionaries between objects with tensor and twistor indices:

ξab = γab
µ ξµ ; ξµ = −1

4
γµ

abξ
ab ; ζab =

1

2
γab

µνζµν ; ζµν =
1

4
γµν

ab ζab . (5.1)

We now define HS algebra in complete analogy to Clifford algebra. Instead of a vector

of quantities γµ whose anticommutator is given by the spacetime metric ηµν , we define a
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twistor variable Y a whose commutator is given by the twistor metric Iab. We denote this

non-commutative product with a star ⋆, and realize it as:

Y a ⋆ Y b = Y aY b + iIab . (5.2)

The product (5.2) is easily extended to an associative product on twistor polynomials f(Y ).

A further generalization to arbitrary functions f(Y ) is possible, and is formally given by

an integral formula:

f(Y ) ⋆ g(Y ) =

∫

d4Ud4V f(Y + U) g(Y + V ) e−iUV , (5.3)

where the twistor integration measure is defined as:

d4U ≡ ǫabcd

4!(2π)2
dUadU bdU cdUd ; ǫabcd ≡ 3I[abIcd] . (5.4)

The algebra defined by the product (5.2)–(5.3) (restricted to even functions, i.e. to integer

spins) is known as HS algebra, and defines the infinite-dimensional symmetry group of

HS theory. Strictly speaking, to define an HS algebra properly, one must restrict to an

appropriate class of functions (or distributions) f(Y ), worry about boundary conditions

etc.; see e.g. [40]. These issues won’t concern us here.

HS algebra contains the spacetime symmetry SO(1, 4) as a finite-dimensional subalge-

bra. The latter is generated, just as in Clifford algebra, by the quadratic elements YaYb.

HS algebra admits a trace operation, defined simply by:

tr⋆ f(Y ) = f(0) . (5.5)

So far, we made no reference to any spacetime points. Choices of spacetime points, either

in the bulk of EAdS4 or on its boundary, induce decompositions of twistor space, and thus

of HS algebra. A choice of bulk point xµ decomposes twistor space into right-handed and

left-handed Weyl spinor spaces at x, via the projectors:

P ab(±x) =
1

2

(

Iab ± xµγab
µ

)

, (5.6)

or, in index-free notation, simply P (±x) = 1
2(1 ± x). We use the same notation P (±x) to

denote the two spinor spaces themselves. The two spinor spaces at x are orthogonal to each

other under the twistor metric, which simply decomposes as Iab = Pab(x) + Pab(−x). We

denote the right-handed and left-handed Weyl-spinor pieces of a twistor Ua at x as u(±x) ≡
P (±x)U . We define a measure on each spinor space, and a corresponding delta function, as:

d2u(±x) =
Pab(±x)

2(2π)
dua

(±x)dub
(±x) ; δ±x(Y ) =

∫

P (±x)
d2u eiuY . (5.7)

A key concept in twistor theory is the Penrose transform, which maps between twistor

functions and solutions to free massless field equations in 4d. It was noticed in [24] that

the Penrose transform has a very elegant expression in HS theory. Specifically, we can map
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between an even twistor function f(Y ) and a master field C(x; Y ) in EAdS4 that contains

an HS multiplet of free massless fields, via a simple star product:

C(x; Y ) = if(Y ) ⋆ δx(Y ) . (5.8)

When written out explicitly, the star product in (5.8) is a Fourier transform of the right-

handed spinor y(x) (the Penrose transform is famously chiral; of course, a left-handed

transform can also be defined). The object C(x; Y ) = C(x; y(x) + y(−x)) is the usual lin-

earized zero-form master field from the HS literature, up to some nuances of the formalism,

which we return to in section 6.2. In particular, it acts as a generating function for the

Weyl-like field strengths (2.11) of HS fields of all spins, together with their derivatives.

The field strengths (as opposed to their derivatives) are contained in the purely chiral

parts C(x; y(x)) and C(x; y(−x)) of the master field, as:

Cµ1ν1...µsνs
(x) =

1

4s
γa1a2

µ1ν1
. . . γa2s−1a2s

µsνs

(

CR
a1b1...asbs

(x) + CL
a1b1...asbs

(x)
)

;

CR
a1b1...asbs

(x) =
∂2sC(x; y(x))

∂ya1

(x) . . . ∂ya2s

(x)

∣
∣
∣
∣
∣
y(x)=0

;

CL
a1b1...asbs

(x) =
∂2sC(x; y(−x))

∂ya1

(−x) . . . ∂ya2s

(−x)

∣
∣
∣
∣
∣
y(−x)=0

,

(5.9)

where the spinors CR
a1b1...asbs

(x) and CL
a1b1...asbs

(x) encode the right-handed and left-handed

parts of the field strength at x, respectively. The spin-0 field is simply given by:

C(x) = C(x; 0) . (5.10)

The rest of the master field’s Taylor expansion, with non-zero powers of both y(x) and

y(−x), encodes derivatives of the field strengths (5.9):

∂2(s+k)C(x; Y )

∂ya1

(x) . . . ∂y
a2s+k

(x) ∂y
(−x)
b1

. . . ∂y
(−x)
bk

∣
∣
∣
∣
∣
∣
Y =0

= ik ∇̂(b1
(a1

. . . ∇̂bk)
ak

CR
ak+1...a2s+k)(x) ;

∂2(s+k)C(x; Y )

∂ya1

(x) . . . ∂yak

(x)∂y
(−x)
b1

. . . ∂y
(−x)
b2s+k

∣
∣
∣
∣
∣
∣
Y =0

= ik ∇̂(b1
(a1

. . . ∇̂bk
ak)C

bk+1...b2s+k)
L (x) ,

(5.11)

where the covariant derivative with spinor indices is defined as:

∇̂ab ≡ P c
a(−x)P d

b(x)γµ
cd∇µ , (5.12)

forcing the left-handed spinor index into the first position, and the right-handed one into

the second position.

The transform (5.8) automatically enforces the derivative relations (5.11), and also

ensures that the fields (5.9)–(5.10) satisfy the appropriate field equations (2.12) in EAdS4.

As usual in HS theory, all these equations can be encoded as a single unfolded equation on

C(x; Y ) itself — see section 5C of [24], or section 3B of [37]; for our formalism’s version of

the full non-linear Vasiliev equations, see section 4 of [37].
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Note that our notation Cµ1ν1...µsνs
(x) for the field strengths in (5.9)–(5.10) is different

from the one we used so far, i.e. ϕµ1ν1...µsνs
(x). We reserve the latter notation for field

strengths derived, via (2.11), from potentials with a canonically normalized kinetic term,

as in (2.9). So far, we haven’t given the twistor function f(Y ) and the Penrose-transformed

fields (5.8)–(5.10) a meaningful normalization. In section 5.2, we will equip them with one,

by tying them to holographic correlators. In section 5.3, we will work out the proportion-

ality coefficients between these fields and the canonically normalized ones from (2.11).

5.2 Boundary correlators from twistor functions

Here, we begin to turn our attention to the holographic CFT dual of HS gravity, which

lives on the boundary of EAdS4. In the simplest case that we’re considering, this CFT is

a free vector model of N complex massless scalar fields φI , subject to U(N) symmetry. Its

single-trace primary operators are a tower of conserved currents, one for each spin s:

j
(s)
k1...ks

=
1

is
φ̄I

(
s∑

m=0

(−1)m

(

2s

2m

)
←
∂ (k1

. . .
←
∂ km

→
∂ km+1 . . .

→
∂ ks) − traces

)

φI , (5.13)

whose bulk duals are the HS gauge fields. One can uplift the 3d boundary indices into

5d indices in the R
1,4 embedding space. Also, it is convenient to package the tensor

components of (5.13) at a boundary point ℓ by contracting with a null polarization vector

λµ, like the one we introduced in section 2.3 (satisfying λ · ℓ = λ · λ = 0):

j(s)(ℓ, λ) = λµ1 . . . λµsjµ1...µs
(ℓ)

=
λµ1 . . . λµs

is
φ̄I(ℓ)

s∑

m=0

(−1)m

(

2s

2m

)
←
∂ (µ1

. . .
←
∂ µm

→
∂ µm+1 . . .

→
∂ µs) φI(ℓ) .

(5.14)

As discussed in [24, 25], there exists a “holographic dual of the Penrose transform”: a dictio-

nary that encodes single-trace operator insertions in the CFT as twistor functions. In turn,

these twistor functions correspond via the (ordinary, bulk) Penrose transform to linearized

bulk fields with the appropriate boundary data. In terms of these twistor functions f(Y ),

the generating function for the CFT correlators is given by the HS-algebraic expression:

Z[f(Y )] = exp






N

4

∞∑

n=1

(−1)n+1

n
tr⋆

(

f(Y ) ⋆ . . . ⋆ f(Y )
︸ ︷︷ ︸

n factors

)




 . (5.15)

This partition function defines the on-shell bulk action of HS gravity (at least in the

classical limit, i.e. at large N). In particular, it lends meaning to the normalization of the

bulk fields (5.8)–(5.10) produced from f(Y ) via the Penrose transform.

To make this more explicit, let us write down the twistor function that corresponds

to the boundary current (5.14). First, we must briefly discuss the structure imposed on

twistor space by a choice of boundary point ℓ. At a bulk point, we saw that twistor space

decomposes into the two chiral subspaces (5.6). At a boundary point ℓ, only a single 2d

subspace is singled out — the subspace P (ℓ) spanned by ℓab = ℓµγab
µ . This ends up serving

as the space of 2-component cospinors on the 3d boundary. Though P (ℓ) is totally null
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under the twistor metric Iab, one can equip it with a symplectic metric, or equivalently a

measure d2u(ℓ), by using ℓab itself:

dua
(ℓ)dub

(ℓ)

2π
≡ 1

2
ℓab d2u(ℓ) . (5.16)

This metric scales under rescalings of ℓµ, as is appropriate for a metric on the conformal

boundary. We can use it to define a delta function with support on P (ℓ):

δℓ(Y ) =

∫

d2u(ℓ) eiu(ℓ)Y . (5.17)

The twistor function corresponding to the boundary current (5.14) is constructed from this

delta function as [25]:

κ(s)(ℓ, λ; Y ) =
iMa1 . . . Ma2s

8π

(

Ya1 . . . Ya2s
+ (−1)s ∂2s

∂Y a1 . . . ∂Y a2s

)

δℓ(Y ) , (5.18)

where Ma is a polarization spinor, defined as an appropriate square root of the bivector

Mµν ≡ 2ℓ[µλν]:

γab
µνℓµλν =

1

2
γab

µνMµν = (ℓM)a(ℓM b) . (5.19)

The Penrose transform (5.8) of the twistor function (5.18) reads [25]:

C(x; Y ) =
1

4π
· (MℓP−xY )2s + (MℓPxY )2s

(ℓ · x)2s+1
exp

iY ℓxY

2(ℓ · x)
. (5.20)

Here, the field strength at x is contained in the exponent’s prefector, while the exponent

itself carries the tower of derivatives. Explicitly, the field strength, extracted via eqs. (5.9)–

(5.10), reads:

Cµ1ν1...µsνs
(x) =

(2s)!

4π
· ML

µ1ν1
. . . ML

µsνs
+ MR

µ1ν1
. . . MR

µsνs

(ℓ · x)2s+1
, (5.21)

where M
L/R
µ1ν1 are the projections of Mµν onto the left-handed and right-handed bivector

spaces at x, as in (2.31). The field strength (5.21) clearly coincides, up to numerical factors,

with the boundary-to-bulk propagator (2.32)–(2.33). The s = 0 case is included in (5.18)

and (5.21), as:

κ(0)(ℓ; Y ) =
i

4π
δℓ(Y ) ; (5.22)

C(x) =
1

2π(ℓ · x)
. (5.23)

5.3 Fixing the normalization of the Fronsdal/twistor dictionary

Let’s now work out the 2-point function for the spin-s currents (5.14). By SO(1, 4) sym-

metry, it must assume the same form (2.37)–(2.38) as the quadratic bulk action from two

boundary-to-bulk propagators. Our interest is in the normalization coefficient.

– 28 –



J
H
E
P
0
3
(
2
0
2
1
)
2
6
4

It is convenient to start from the bilocal scalar operators O(ℓ, ℓ′) = φ̄I(ℓ′)φI(ℓ). The

connected 2-point function for these is given by the Feynman diagram in figure 2b:

〈O(ℓ1, ℓ′
1)O(ℓ2, ℓ′

2)
〉

connected = NG(ℓ′
1, ℓ2)G(ℓ′

2, ℓ1) =
N

32π2
√

(ℓ′
1 · ℓ2)(ℓ1 · ℓ′

2)
. (5.24)

Here, G = �
−1 is the propagator of the vector model’s fundamental field φI :

G(ℓ, ℓ′) = − 1

4π
√

−2ℓ · ℓ′ , (5.25)

which is just the embedding-space expression for the massless propagator G = −1/(4πr)

in 3d flat space.

To obtain the 2-point function of the spin-0 local “current” j(0)(ℓ) = φ̄I(ℓ)φI(ℓ), we

simply set ℓ1 = ℓ′
1 and ℓ2 = ℓ′

2 in (5.24):

〈

j(0)(ℓ1) j(0)(ℓ2)
〉

connected
= − N

32π2(ℓ1 · ℓ2)
. (5.26)

For the 2-point function of currents with nonzero spin, we must act on (5.24) with deriva-

tives according to the pattern in (5.14), contract with polarization vectors λµ
1 , λµ

2 , and then

set ℓ1 = ℓ′
1 and ℓ2 = ℓ′

2 in the end. Performing this procedure on the first of the two bilocals

in (5.24), we get:

〈

j(s)(ℓ1,λ1)O(ℓ2, ℓ′
2)

〉

connected
=

(2s)!

(4i)ss!
· N

32π2

s∑

m=0

(−1)m

(

s

m

)

(λ1 ·ℓ2)m(λ1 ·ℓ′
2)s−m

(−ℓ1 ·ℓ2)m+ 1
2 (−ℓ1 ·ℓ′

2)s−m+ 1
2

.

(5.27)

Doing the same to the second bilocal, we will get terms of the general form:

(λ1 · λ2)n(λ1 · ℓ2)s−n(λ2 · ℓ1)s−n

(ℓ1 · ℓ2)2s−n+1
, (5.28)

with coefficients that involve some unpleasant combinatoric sums. On the other hand, we

know that these terms must eventually organize into the structure from (2.38):

(M1
µνMµν

2 )s

(ℓ1 · ℓ2)2s+1
=

2s ((λ1 · λ2)(ℓ1 · ℓ2) − (λ1 · ℓ2)(λ2 · ℓ1))s

(ℓ1 · ℓ2)2s+1
. (5.29)

Thus, it’s enough to follow just the coefficient of e.g. the (λ1 · λ2)s/(ℓ1 · ℓ2)s+1 term. This

arises from acting with the ∂/∂ℓµ
2 and ∂/∂ℓ′µ

2 derivatives just on the numerator in (5.27).

The coefficient is now easy to work out, and we get:

〈

j(s)(ℓ1, λ1) j(s)(ℓ2, λ2)
〉

connected
=

(−1)s+1(2s)!N

2s+6π2
· (M1

µνMµν
2 )s

(ℓ1 · ℓ2)2s+1
. (5.30)

Now, recall that the bulk action is related to the boundary partition function as S =

− ln Z. Thus, the quadratic contribution to the bulk action from two boundary insertions,

which correspond to the boundary-to-bulk propagators (5.21), is simply minus the 2-point

function (5.26), (5.30). To conform with the conventions of the previous sections, we

– 29 –



J
H
E
P
0
3
(
2
0
2
1
)
2
6
4

also divide by a factor of 2, so as to count each ordering of the two boundary insertions

separately. We thus arrive at the bulk action as:

s = 0 : S[C1, C2] =
N

64π2(ℓ1 · ℓ2)
;

s ≥ 1 : S[C1, C2] =
(−1)s(2s)!N

2s+7π2
· (M1

µνMµν
2 )s

(ℓ1 · ℓ2)2s+1
.

(5.31)

On the other hand, for boundary-to-bulk propagators expressed as Fronsdal fields hµ1...µs

of the form (2.28) with curvature ϕµ1ν1...µsνs
of the form (2.32)–(2.33), we’ve seen that the

bulk action is given by eqs. (2.37)–(2.38). Putting everything together, we arrive at the

proportionality coefficients between the field strengths of canonically normalized Fronsdal

fields, and those derived from f(Y ) via the Penrose transform:

Cµ1ν1...µsνs
(x) =

4π√
2s−1N

ϕµ1ν1...µsνs
(x) . (5.32)

Eq. (5.32) holds for both zero and nonzero spins.

6 The Didenko-Vasiliev solution and boundary bilocals

6.1 DV particle as the bulk dual of a boundary bilocal

In section 5.3, we used the fact that the local single-trace operators (5.14) of the bound-

ary CFT can all be treated as singular limits of the simple bilocal operator O(ℓ, ℓ′) =

φ̄I(ℓ′)φI(ℓ). This is the essence of the Flato-Fronsdal theorem [41], which has been high-

lighted and exploited e.g. in [20, 21]. Now, in [24], we identified the twistor function that

corresponds to the bilocal O(ℓ, ℓ′), in the same sense that the twistor functions (5.18) cor-

respond to the local currents (5.14). In other words, we found a linear map between bilocal

boundary sources and twistor functions, such that the correlators 〈O(ℓ1, ℓ′
1) . . . O(ℓn, ℓ′

n)〉
are generated by the HS-algebraic functional (5.15). The specific twistor function that

corresponds to O(ℓ, ℓ′) reads:

K(ℓ, ℓ′; Y ) =
1

π
√

−2ℓ · ℓ′ exp
iY ℓℓ′Y
2ℓ · ℓ′ . (6.1)

To understand the origin of this function, we can write it as a star product of two local

pieces:

K(ℓ, ℓ′; Y ) =
κ(0)(ℓ; Y ) ⋆ κ(0)(ℓ′; Y )

G(ℓ, ℓ′)
=

√
−2ℓ · ℓ′

4π
δℓ(Y ) ⋆ δℓ′(Y ) , (6.2)

where κ(0)(ℓ; Y ) is the twistor function (5.22) describing a local insertion of the spin-0 opera-

tor j(0)(ℓ) = φ̄I(ℓ)φI(ℓ), and G(ℓ, ℓ′) is the fundamental propagator (5.25). The logic behind

eq. (6.2) is as follows. The Feynman diagrams of the free vector model’s correlators are sim-

ply single loops, in which the operator insertions are connected by propagators G(ℓ, ℓ′) (see

e.g. figures 1b and 2b). An O(ℓ, ℓ′) insertion in such a Feynman diagram behaves exactly

like a pair of insertions j(0)(ℓ), j(0)(ℓ′) in sequence, but without the propagator between ℓ

and ℓ′. Eq. (6.2) encapsulates this diagrammatic relationship in terms of HS algebra.
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Now, what is the bulk master field that corresponds to the twistor function (6.2)? This

was also calculated in [24], as:

C(x; Y ) =
±1

π
√

2[ℓ · ℓ′ + 2(ℓ · x)(ℓ′ · x)]
exp

iY [ℓℓ′ + 2(ℓ′ · x)ℓx]Y

2[ℓ · ℓ′ + 2(ℓ · x)(ℓ′ · x)]
. (6.3)

The overall sign is ambiguous, and will not play an important role. For later convenience, we

will set it to −1 (see e.g. [15, 16] for a discussion of similar sign ambiguities). We now wish to

make the key observation that the bulk fields contained in (6.3) are precisely the fields of an

HS-charged particle, moving along the bulk geodesic between the boundary points ℓ′ and ℓ,

carrying the Didenko-Vasiliev pattern of charges (4.14). First, we observe that the denomi-

nators in (6.3) are proportional to the “distance” R from the geodesic, as defined in (3.30):

C(x; Y ) = − 1

π
√

−2ℓ · ℓ′ R
exp

−iY [ℓℓ′ + 2(ℓ′ · x)ℓx]Y

2(ℓ · ℓ′)R2
. (6.4)

Let’s now expand out the compact index-free notation in (6.4), and highlight the relevant

index symmetries:

C(x; Y ) = − 1

π
√

−2ℓ · ℓ′ R
exp

iY aY bγµν
ab

[

ℓ[µℓ′
ν] + 2(ℓ′ · x)ℓ[µxν]

]

2(ℓ · ℓ′)R2
. (6.5)

Now, recall from (5.9)–(5.10) that the field strengths at x (as opposed to their derivatives)

are contained in the master field’s dependence on purely chiral spinors at x, namely

Y = P±(x)Y = y(±x). When we make this substitution in (6.5), the bivector in square

brackets gets projected onto the space of right-handed or left-handed bivectors at x. Since

both of these spaces are orthogonal to xµ, the second term in the square brackets can be

simply ignored. As for the first term, we recall from eq. (3.41) that its projection onto

the space of bivectors at x is proportional to the bivector S⊥
µν in the tr plane, defined

in (3.34). Decomposing this into its right-handed and left-handed parts, we arrive at:

C(x; y(±x)) = − 1

π
√

−2ℓ · ℓ′ R
exp

iY aY bγµν
ab S

R/L
µν

2R2
. (6.6)

From here, we extract the field strengths of different spins using (5.9)–(5.10):

s = 0 : C(x) = − 1

π
√

−2ℓ · ℓ′ · 1

R
;

s ≥ 1 : Cµ1ν1...µsνs
(x) = − is(2s)!

πs!
√

−2ℓ · ℓ′ · SL
µ1ν1

. . . SL
µsνs

+ SR
µ1ν1

. . . SR
µsνs

R2s+1
.

(6.7)

Finally, we use eq. (5.32) to convert these into the field strengths of canonically normalized

Fronsdal fields:

s = 0 : ϕ(x) = −
√

N

8π2
√

−ℓ · ℓ′ · 1

R
;

s ≥ 1 : ϕµ1ν1...µsνs
(x) = − is(2s)!

√
2sN

8π2s!
√

−ℓ · ℓ′ · SL
µ1ν1

. . . SL
µsνs

+ SR
µ1ν1

. . . SR
µsνs

R2s+1
.

(6.8)
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We now observe that these are just the field strengths (3.37), (3.39) of an HS-charged

particle from section 3.3, with charges:

Q(s) =
is

√
2sN

2π
√

−ℓ · ℓ′ . (6.9)

This pattern of charges precisely agrees with the one we identified in eq. (4.14) as

cancelling UV divergences in the two-particle interaction.

Note that a curious thing has happened here. Normally, the Penrose transform should

produce solutions to free massless field equations, without bulk sources. For the boundary-

to-bulk propagators (5.18), (5.21) corresponding to the local boundary operator j(s)(ℓ, λ),

this is indeed the case. However, we now see that the Penrose transform of the twistor

function (6.1) solves not quite the free linearized equations, but the equations with a

particle-like source along the bulk geodesic between ℓ′ and ℓ. This puts us into somewhat

new territory for holography. In particular, one may wonder: are the boundary 2-point

correlators still described by a quadratic bulk action, even though the corresponding bulk

fields are no longer free?

It turns out that the answer is yes, provided we define the bulk action as in (3.6),

including both the free-field term and the interaction term with the bulk “particle”. Indeed,

consider two boundary bilocals, O(ℓ1, ℓ′
1) and O(ℓ2, ℓ′

2). Each of these generates bulk HS

fields, which are the fields of an HS-charged particle with charges given by (6.9). We can

then use the result (4.26) of section 4 to evaluate the quadratic bulk action as:

S = − N

64π2
√

(ℓ1 · ℓ′
2)(ℓ2 · ℓ′

1)
. (6.10)

This is −1
2 times the correlator (5.24) of the two bilocals, in agreement with the holographic

dictionary (recall eqs. (5.26), (5.30) as compared to eq. (5.31)). Note that if we were to

consider only the first, “free-field” term in the action (3.6), the result would have the

opposite sign. Thus, the interaction term with the bulk “particle” must be included both in

the field equations for the linearized HS fields (otherwise (6.8) is not a solution), and when

evaluating the bulk action (which otherwise fails to agree with the bilocal correlator (5.24)).

In other words, if we wish to work with boundary bilocals, we have no choice but to account

for the existence of DV particle-like sources in the bulk.

Note that the action (6.10) is divergent only when the boundary endpoints (ℓ1, ℓ′
2) or

(ℓ′
1, ℓ2) coincide. When the geodesics of the DV particles intersect in the bulk, the action

is perfectly regular; this is the cancellation of bulk UV divergences discussed in section 4.

In particular, the action for a DV particle interacting with itself, such that ℓ1 = ℓ2 and

ℓ′
1 = ℓ′

2, is finite. On the other hand, if we restrict to even spins by symmetrizing over

(ℓ1 ↔ ℓ′
1) and (ℓ2 ↔ ℓ′

2), this self-interaction becomes divergent.

6.2 Relation to the Didenko-Vasiliev “black hole”

So far, we’ve shown that the linearized HS fields of a “Didenko-Vasiliev particle”, as de-

fined in section 4, coincide with the bulk fields that correspond to a bilocal operator in the
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boundary CFT. In this section, we observe that they also coincide with the linearized ver-

sion of the Didenko-Vasiliev black hole, thus justifying our nomenculature. Our statement

is that the bulk master field (6.3), derived via the Penrose transform (5.8) from the twistor

function (6.1), is the same as the linearized Didenko-Vasiliev solution as given in [14], up

to slight differences in the formalism (and in the spacetime signature).

First, let us summarize the differences and similarities between the twistor formalism

presented here and the one found in “mainstream” HS literature. The formalism in this

paper, which was first put forward in [37], starts with a fixed EAdS4 geometry, defined

via an R
1,4 embedding space. The tangent space at a spacetime point x ∈ EAdS4 is

just the tangent 4d hyperplane in R
1,4 to the EAdS4 hyperboloid; the tangent spaces for

different points are represented by different 4d hyperplanes in the same R
1,4. Twistor space

is defined as the space of SO(1, 4) spinors. At a point x ∈ EAdS4, it decomposes into two

spaces of Weyl SO(4) spinors; the Weyl spinor spaces at different points are represented

by different 2d subspaces of the same twistor space.

In contrast, in the standard HS literature, one doesn’t have a fixed EAdS4 geometry or

an embedding space, but an a-priori featureless spacetime manifold. On it, one constructs

the frame fields of Cartan’s formulation of General Relativity, and their higher-spin exten-

sions. Thus, the tangent space and Weyl spinor spaces at different spacetime points x exist

only as fibers over the spacetime manifold, as is usually the case in GR. The left-handed

and right-handed spinors at x are unified into Dirac spinors Y . These are referred to as

“twistors”, but “only” due to the structure imposed on them by HS algebra, acting on the

fiber at x. There is no notion of a twistor Y that exists independently from the spacetime

point x. Again, this is as usual in GR: true, Penrosian, x-independent twistors are easy to

define only on very special spacetimes.

With these basic circumstances in mind, let us consider again the HS-algebraic Penrose

transform (5.8). The bulk master field C(x; Y ) on the l.h.s. of (5.8) is basically the same

as that in the standard HS literature, up to the aforementioned difference in the nature

of Weyl spinors at x: in the standard formalism, they are basic structures in the fiber at

x, while in ours, they are x-dependent projections of an x-independent twistor Y . The

same comments apply to the spinor delta function δx(Y ) on the r.h.s. of (5.8). As for the

x-independent twistor function f(Y ) on the r.h.s. of (5.8), one may think at first that it has

no analog in the standard HS formalism. And yet, essentially the same formula as (5.8)

was put forward in eq. (3.23) of [14], as a technique for generating free bulk solutions.

Instead of a twistor function f(Y ) that’s literally constant with respect to x, in [14] one

uses a function ǫ0(x; Y ) that is covariantly constant with respect to the HS connection, in

the adjoint representation of HS symmetry. A star product with a spinor delta function,

just as in (5.8), transforms this function into a master field that solves the linearized bulk

equations, and in turn lives in the so-called twisted adjoint representation of HS symmetry.

Upon some reflection, one can see that eq. (3.23) of [14] and our Penrose transform (5.8) are

really the same, up to the above “cosmetic” differences in formalism. In particular, as was

shown in [24], our twistor function f(Y ) lives in the adjoint representation of HS symmetry

just like the ǫ0(x; Y ) of [14], while our master field C(x; Y ) lives in the twisted adjoint.
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Now, the authors of [14] proceeded to construct a particular solution to the linearized

bulk equations — the linearized Didenko-Vasiliev black hole — out of a particular covari-

antly constant twistor function ǫ0(x; Y ):

ǫ0(x; Y ) ∼ eiKab(x)Y aY b/2 . (6.11)

Here, Kab(x) a generator of the AdS4 group — specifically, the generator of time transla-

tions in the black hole’s rest frame — normalized as:

Ka
bKb

c = δa
c . (6.12)

In the linearized limit, when we consider the “black hole” as a point particle, this is just the

generator of time translations along the particle’s geodesic worldline. Now, consider the

embedding space R
2,3 of (now, Lorentzian) AdS4. There, the particle’s worldline is just the

intersection of the AdS4 hyperboloid with a 2d plane through the origin of R2,3, spanned by

some simple bivector Sµν . We then recognize Kab ∼ γµν
ab Sµν as the generator of rotations

in this 2d plane. In the embedding-space formalism, this generator is x-independent.

All that remains now is to switch signatures to EAdS4, with R
1,4 embedding space.

The particle’s worldline becomes a spacelike geodesic, with boundary endpoints ℓ and ℓ′,
such that Sµν ∼ ℓ[µℓ′

ν]. Imposing the normalization condition (6.12), we get:

Kab = ±γµν
ab ℓµℓ′

ν

ℓ · ℓ′ . (6.13)

We thus see that, upon translation to the present paper’s formalism, the twistor func-

tion (6.11) from [14] is nothing but our twistor function (6.1) that corresponds to the

boundary bilocal! Therefore, its Penrose transform (6.3), which solves the linearized field

equations with a particle-like source with charges (6.9), is just the linearized version of

the Didenko-Vasiliev black hole from [14]. This justifies our terminology of referring to

particles with the pattern of charges (4.14) as “DV particles”.

7 Discussion

In this paper, we pointed out two new perspectives on the Didenko-Vasiliev “black hole”

solution, or rather its linearized version. First, we learned to view this solution in

terms of Fronsdal fields generated by an HS-charged particle, with the special pattern

of charges (4.14). We calculated the interaction between such two particles via their HS

fields, and found that the DV pattern of charges has a unique property: in a certain sense,

it makes the two-particle interaction non-local. Specifically, with this pattern of charges,

the interaction action does not have a short-distance singularity as the two particles are

brought close together, for almost any angle between the worldlines; the exception is the

angle θ = π, which in Lorentzian corresponds to a particle and antiparticle mutually at rest.

Second, we learned to identify the DV solution as the bulk holographic dual of a

boundary bilocal operator O(ℓ, ℓ′) = φ̄I(ℓ′)φI(ℓ), and showed that for two such objects,

the bulk interaction action agrees with the connected boundary correlator. In more detail,
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we saw that a boundary bilocal operator generates a bulk DV particle that travels along

the geodesic between the two boundary points, and carries HS charges that source the

bulk HS gauge fields; the correlator of two boundary bilocals can then be expressed as the

exchange of HS fields between the two bulk DV particles. Though such a picture is new to

HS theory, it’s actually been painted before within the general AdS/CFT (or even general

CFT) context. We are referring here to geodesic Witten diagrams, introduced in [26, 27]

as a bulk representation for boundary OPE blocks and conformal blocks. Indeed, one way

of phrasing the Flato-Fronsdal theorem is that the bulk HS multiplet (or the boundary

multiplet of HS currents) is nothing but the OPE of the fundamental boundary fields φI(ℓ)

and φ̄I(ℓ) (with the identity operator excluded). Thus, our picture of a bulk geodesic

stretching between ℓ and ℓ′ and sourcing the HS multiplet is precisely the “half-geodesic

Witten diagram” picture of OPE blocks proposed in [27] (see figure 1). Similarly, the

connected correlator (5.24) of two bilocals can be thought of as a contribution to the 4-

point function of the fundamental boundary fields; our picture of it as an HS field exchange

between two geodesics (see figure 2) is precisely the geodesic Witten diagram description

of conformal blocks proposed in [26].

That being said, we view our results as more than just a special case of the geodesic

Witten diagram framework. This is because of their particularly tight relation to the basic

structure of HS theory. The bulk DV particle embodies not just some OPE, but the OPE

that defines the entire spectrum of HS theory. Furthermore, the role of the fundamental

fields φI , φ̄I here is subtle: they carry U(N) color, and therefore aren’t usually considered

as part of the CFT’s operators. As a result, the DV particle that embodies their bulk

OPE is really a new ingredient in the bulk theory. It is telling us that, if we wish to

accommodate boundary bilocals, then HS gravity must include more than just HS gauge

fields interacting with each other: we must also allow for particle-like HS currents that act

as bulk sources for the HS fields.

To make this more concrete, let us point out a specific property that sets the DV par-

ticle apart from the HS gauge multiplet. Unlike any of the HS gauge fields, the DV particle

carries electric charge: it is charged under the spin-1 gauge field in the HS multiplet, or,

equivalently, under the U(1) part of the boundary color U(N). This is easy to understand

from the boundary perspective: there, the electric charge is carried by φI , while φ̄I carries

an opposite charge. The local HS currents (5.13), which are the holographic duals of the

usual bulk fields, are all electrically neutral, since they contain a product of φI(ℓ) and

φ̄I(ℓ). In contrast, the bilocal operator O(ℓ, ℓ′) = φ̄I(ℓ′)φI(ℓ) is positively charged at one

point, and negatively charged at another; in the bulk, this translates into an electrically

charged DV particle that travels between the two points.

Now, suppose that we take seriously the possibility of boundary bilocal operators, and

with them their corresponding bulk HS currents. Then we should ask: what is the general

form of such currents? We’ve seen that a single bilocal insertion produces a particle-like

current (3.5) with the DV pattern of charges (4.14). What about a general superposition of

such insertions? Does the DV pattern of charges for each insertion entail some restrictions

on the resulting bulk currents? It’s easy to see that it does. The relations (4.14) between the

charges of different spins translate into a linear relation between the corresponding currents,
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which will be preserved by superpositions. Specifically, the trace of the spin-(s+2) current

T µ1...µs+2 ends up proportional to the traceless part of the spin-s current T µ1...µs :

T νµ1...µs

ν = −2

(

T µ1...µs − s − 1

4
g(µ1µ2T µ3...µs)ν

ν

)

. (7.1)

This relation generalizes the DV pattern of charges (4.14) to continuous current dis-

tributions in the bulk. It implies that, while the currents at each point x are merely

double-traceless, only their fully traceless parts are independent. We conjecture that any

configuration of bulk HS currents that satisfies eq. (7.1) (and the appropriate conservation

laws) arises from some superposition of boundary bilocals. For the bulk HS fields, the

constraint (7.1) on the currents translates into a relation between the Fronsdal tensors of

different spins:

F νµ1...µs

ν =
2

s + 1

(

F µ1...µs − s − 1

4
g(µ1µ2F µ3...µs)ν

ν

)

. (7.2)

Thus, if we allow arbitrary bilocal sources, the spectrum of bulk HS fields gets effectively

extended, by relaxing the linearized field equations from F µ1...µs = 0 to (7.2). Note that

it’s not clear how to express a general solution of (7.2) as either a twistor function f(Y )

or a master field C(x; Y ). Indeed, the twistor/spinor language was sufficiently flexible

to allow for a single DV particle-like source, for which the free HS field equations are

satisfied almost everywhere (see [16, 40, 42] for more detailed discussions on how the

twistor/spinor language bypasses or resolves the r = 0 singularity). However, it does

not seem flexible enough to accommodate a general superposition of such sources, for

which the free equations aren’t satisfied anywhere. This makes for an apparent failure of

linearity, similar to the one we analyzed in [25], and may benefit from closer attention.

Overall, what we find exciting is that, even though we dealt here only with linearized

HS gravity, the above discussion rhymes with some central issues in the interacting theory:

1. In HS theory, which is described via equations of motion rather than an action, it

is natural to express the interactions as a coupling between the HS fields and some

effective HS currents, which are in turn non-linear combinations constructed from

the HS fields.

2. Beginning from the quartic vertex, the interactions of HS gravity suffer from a

non-locality problem [43]. In particular, the boundary scalar 4-point function
〈

j(0)(ℓ1)j(0)(ℓ2)j(0)(ℓ3)j(0)(ℓ4)
〉

implies a non-local bulk vertex. When this prob-

lem was first glimpsed in [44], it was suggested that the solution may be to include

additional degrees of freedom in the description of the theory.

3. An attempt to address the locality issue is underway [45–48], with so-called spin

locality replacing ordinary spacetime locality as a guiding principle. As pointed out

in [48], this new locality principle is actually ordinary spacetime locality, but with the

set of field variables extended to include all possible non-linear currents (but not their

derivatives). Thus, the spin-locality effort is in some sense a concrete realization of the

vague proposal in [44] to restore locality by extending the set of degrees of freedom.
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Now, in the present paper, we also extended the spectrum of bulk HS fields by including

bulk HS currents. We then expressed the 2-point correlator 〈O(ℓ1, ℓ′
1)O(ℓ2, ℓ′

2)〉 of boundary

bilocals as a local bulk process involving both these currents and the original HS fields.

Most tantalizingly, the boundary Feynman diagram for this correlator is very similar to

those of the infamous 4-point correlator
〈

j(0)(ℓ1)j(0)(ℓ2)j(0)(ℓ3)j(0)(ℓ4)
〉

, just with two of

the propagators removed (see eqs. (5.24), (6.2) and figure 2). This leads us to hope that

the construction presented here may provide a useful alternative viewpoint on the bulk

interactions and their locality properties.
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