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Abstract

Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are

currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium,

and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus

Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal

tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the

coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670Mb with�47% GC content. This GC content was

intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the

D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii

genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neigh-

boring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also

foundinSymbiodiniumtridacnidorum.Thisconservationseemstopartiallyclarifyanancestralgenomicstructure intheSymbiodiniaceae

and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis

suggests thatapproximatelyhalfof thetaxa intheSymbiodiniaceaemaymaintaintheability tosynthesizemycosporine-likeaminoacids.

Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.

Key words: Symbiodiniaceae, Durusdinium trenchii, WGS, MAAs, GMC oxidoreductase.

Significance

Dinoflagellates of the family Symbiodiniaceae include coral symbionts and have been well studied. Analyses from

whole-genome sequencing of several genera have been reported, but no genome is available from the genus

Durusdinium. Here, we report the draft genome of Durusdinium trenchii from the coral, Favia speciosa. The genomic

analysis of this thermotolerant species shows that a cluster of genes for biosynthesis of mycosporine-like amino acids

(MAAs), which absorb UV radiation, is conserved between Symbiodinium, an early-diverging lineage, and

Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae. Both genera

reportedly enhance thermal tolerance of corals. If coral bleaching is triggered by high solar radiation, a dinoflagellate

capacity for MAA biosynthesis may contribute to bleaching resistance.

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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Introduction

Symbiotic dinoflagellates of the Family Symbiodiniaceae, are

keystone photosynthetic organisms in coral reef ecosystems

(LaJeunesse et al. 2018). The diversity of symbiotic dinoflagel-

late populations and their relationships with hosts have been

analyzed and discussed (Baker 2003; Coffroth and Santos

2005; Coffroth et al. 2006; Pochon and Gates 2010; Green

et al. 2014; Pochon et al. 2014). Dinoflagellate populations in

stony corals, which form modern reefs, have attracted partic-

ular attention (Abrego et al. 2009; Thornhill et al. 2014;

Shoguchi et al. 2020), because breakdown of coral-

dinoflagellate symbiosis causes coral bleaching, decimating

coral reef communities (coral holobionts) (Weis et al. 2008;

Stat and Gates 2011).

Although many reasons have been discussed for collapse

of this symbiotic relationship (Nakamura and van Woesik

2001; Iguchi et al. 2012), the main trigger is likely rising sur-

face seawater temperatures (SSTs) caused by climate change

(Weis et al. 2008). Possible bleaching has been also reported

in other hosts, such as giant clams (Mies 2019). Recently,

discussions of coral bleaching due to increasing SSTs have

focused on heat-tolerant species of the genus Durusdinium

(Symbiodiniaceae) (a member of previous clade D), because

genetic variability of dinoflagellates in corals is thought to be a

major factor in the bleaching phenomenon (Berkelmans and

Van Oppen 2006; Stat and Gates 2011; Lesser 2019).

Horizontal transmission types of symbiosis may be more adap-

tive than vertical transmission types (Weis et al. 2001;

Yamashita et al. 2013; Hidaka 2016; Yuyama et al. 2018).

Coral holobionts resulting from coral-Durusdinium symbiosis

may be better adapted to rising SSTs than other types of coral

holobionts.

Durusdinium includes heat-tolerant strains (Rowan 2004;

Stat and Gates 2011). A metabolic analysis of cultured

Symbiodiniaceae showed that D. trenchii has a low level of

the sterol metabolite, C29 Stanol 2, suggesting metabolic dif-

ferences among members of the family Symbiodiniaceae

(Symbiodinium microadriaticum, Symbiodinium psygmophi-

lum, and B. minutum) (Klueter et al. 2015). A recent report

on effects of light and thermal stress indicates that the pan-

tropical species, D. trenchii, is more thermotolerant than

others so far examined (S. microadriaticum, B. minutum,

and Cladocopium goreaui) (Lesser 2019). In addition, the

heat-stress response of D. trenchii was compared between

free-living and symbiotic cells and transcriptional activity in

symbiotic dinoflagellates was drastically altered by thermal

stress (Bellantuono et al. 2019).

Genomes of several taxa within the Symbiodiniaceae have

been deciphered (Shoguchi et al. 2013, 2018; Aranda et al.

2016; Liu et al. 2018; Li et al. 2020) and genome evolution of

this family has been discussed (Gonz�alez-Pech et al. 2019).

However, no Durusdinium genome is available and the ge-

netic basis for thermal tolerance remains unknown (Baker

2003; Weber and Medina 2012; Hidaka 2016). To provide

a genomic resource for Durusdinium, we isolated D. trenchii

from the coral, F. speciosa, in Okinawa, which will be useful

for analyzing Durusdinium in coral holobionts.

One of the early-diverging lineages of the family

Symbiodiniaceae is the genus Symbiodinium (LaJeunesse

et al. 2018), which includes species having the ability to syn-

thesize MAAs (Banaszak et al. 2000). Both Symbiodinium and

Durusdinium have been known to enhance thermal tolerance

of holobionts (Reynolds et al. 2008; Kemp et al. 2014; Aihara

et al. 2016). The genome of Symbiodinium tridacnidorum has

a cluster of genes for enzymes involved in MAA biosynthesis

(Shoguchi et al. 2018). On the other hand, species in later-

diverging groups (Breviolum and Cladocopium) appear not to

have this metabolic pathway, as no MAA gene cluster has

been found in their genomes. Therefore, a draft genome of

Durusdinium, one of an intermediate group of seven genera

in the family Symbiodiniaceae, may help to clarify when the

ability to synthesize MAAs was lost during diversification of

the Symbiodiniaceae. To explore the genetic background of

the coral symbiont, Durusdinium, here we examined the ge-

nome and associated transcriptomes to determine whether

Durusdinium also has this gene cluster.

Materials and Methods

Biological Materials

The culturable dinoflagellate, D. trenchii, is harbored by the

coral, F. speciosa, in Okinawa, Japan. A single cell of

D. trenchii was isolated using a glass-micropipette in May

2012. The Nagoya Protocol was not applicable to the dino-

flagellate. The established culture strain is available as NIES-

2907 in the Microbial Culture Collection at the National

Institute for Environmental Studies (NIES) in Tsukuba (https://

mcc.nies.go.jp). Cloned Durusdinium cells for nucleotide se-

quencing were basically maintained as previously described

(Shoguchi et al. 2018). The culture medium included artificial

seawater containing 1� Guillard’s (F/2) marine-water enrich-

ment solution (Sigma–Aldrich) and soil extract (Provasoli et al.

1957). A 25 �C incubator for culturing was maintained on a

12 h-light/12 h-dark regime at an illumination of

�20lmol m�2 s�1 (Beedessee et al. 2015).

Nucleotide Sequencing and Assembly

Genomic DNA from clonal cultures was extracted using

phenol-chloroform and cetyltrimethylammonium bromide

(Shoguchi et al. 2013) and was used for Illumina library con-

struction (supplementary table S1, Supplementary Material

online). Libraries were sequenced using a HiSeq 2500

(Illumina) and paired-end reads were assembled de novo

with Platanus (Kajitani et al. 2014) and Newbler. Assembled

data were combined (Nishitsuji et al. 2020). Scaffolding with

mate-pair information was carried out using SSPACE (ver. 3.0)
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(Boetzer et al. 2011). With Gapcloser, gaps inside scaffolds

were closed with paired-end data. Finally, data were polished

using Pilon (ver. 1.22) (Walker et al. 2014). The completeness

of the assembled genome was evaluated by the recovery of

458 CEGMA and 303 BUSCO genes from the genome of

D. trenchii (Parra et al. 2007; Sim~ao et al. 2015; Beedessee

et al. 2020). Total RNA for transcriptome sequencing was

isolated from cultured cells at 25 �C, as described previously

(Shoguchi et al. 2013). Two libraries (the difference of culture

time at 0 and 3 days) were constructed following the manu-

facturer’s protocol and were sequenced using a HiSeq 2500.

De novo assembly was performed using Trinity (Grabherr

et al. 2011).

Gene Prediction and Annotation

RNA-seq reads were mapped to a soft-masked genome using

STAR (Dobin et al. 2013) for passage to the BRAKER2 pipeline

(Hoff et al. 2016). UTR and gene model prediction were per-

formed with Augustus (v3.2.3) (Stanke et al. 2008). Intron

and exon hints were generated with STAR (Dobin et al.

2013) and BLAT (Kent 2002), respectively, and were used to

make final gene predictions using a modified version of

Augustus (v3.2.3) (Stanke et al. 2008; Shoguchi et al.

2013). The final set of predicted proteins was annotated

against UniProt (Magrane and UniProt Consortium 2011)

and PFAM (Punta et al. 2012) where hits larger than 1e�5

were discarded. Putative contaminant sequences were iden-

tified basically following Chen et al. (2020). First, short scaf-

folds (<1 kb) were removed (Shoguchi et al. 2018). To find

contaminant sequences, 45 scaffolds (>10 kb) with high GC

content (>55%) were manually checked using a genome

browser (Koyanagi et al. 2013). Twelve scaffolds predicted

genes with introns that were supported by transcriptomes

or had similarities to S. microadriaticum proteins (BlastX, E-

value <10�20) in the NCBI database (https://pubmed.ncbi.

nlm.nih.gov). About 33 scaffolds were removed as putative

contaminant sequences.

Molecular Phylogenetic Tree and Protein Structure
Predictions

Molecular phylogenetic analysis of the demethyl-4-

deoxygadusol (DDG) synthase family was performed as de-

scribed in our previous study (Shoguchi et al. 2018). Protein

sequences of glucose–methanol–choline (GMC) oxidoreduc-

tases in the molecular phylogenetic analysis of Sorigu�e et al.

(2017) and some proteins with GMC domains were collected

from the NCBI database (https://pubmed.ncbi.nlm.nih.gov;

last accessed July 21, 2020). Those and Symbiodiniaceae pro-

teins with GMC domains were aligned with MAFFT (Katoh

and Standley 2013). Molecular phylogenetic analysis was car-

ried out using Bayesian inference with MrBayes v.3.2

(Ronquist et al. 2012), as previously described (Beedessee

et al. 2019). Trees were visualized using Figtree (http://tree.

bio.ed.ac.uk/software/figtree/). I-TASSER was used for 3 D

prediction (Zhang 2008).

Results and Discussion

Draft Genome of Durusdinium

Three genomic libraries with insert sizes ranging from 500 bp

to 19 kb were constructed from the cloned Durusdinium (sup-

plementary table S1, Supplementary Material online). Short

read sequencing (2� 101 bp) produced �76 Gb of total se-

quencing data, which were assembled into a total length of

695 Mb. Thirty-three scaffolds, which were likely to be con-

taminant sequences, were removed from the initial assembly

(supplementary table S2, Supplementary Material online). The

final draft genome of D. trenchii (version 1.0) had a total

length of 670.4 Mb with a scaffold N50 of 97.5 kb (table 1).

Completeness of the D. trenchii genome was checked using

Table 1

Genomic Compositions of Seven Genomes of the Family Symbiodiniaceae

Durusdinium

trenchii

Symbiodinium

microadriaticuma

Symbiodinium

tridacnidorumb

Breviolum

minutumc

Fugacium

kawagutii v3d

Cladocopium

goreauie
Cladocopium

sp. (C92)b

A total assembled length

of assembly (Mb)

670.43 808.24 766.65 615.52 936.98 1,027.79 704.77

GþC content (%) 47.4 50.5 49.9 43.6 45.5 44.8 43.0

No. of genes 30,054 49,109 69,018 41,925 45,192 35,913 65,832

Average length of genes (bp) 15,030 12,898 8,834 11,959 7,242 6,967 8,192

No. of exons per gene 19.6 21.8 13.4 19.6 12.6 10.0 11.3

Average length (bp) of exons 90 110 105 100 126 176 130

Average length (bp) of introns 704 505 561 499 479 575 622

aAranda et al. (2016).
bShoguchi et al. (2018).
cShoguchi et al. (2013).
dLi et al. (2020).
eLiu et al. (2018).
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FIG. 1.—The dinoflagellates, Symbiodinium tridacnidorum and Durusdinium trenchii, both possess a probable gene cluster for MAA biosynthesis. (a) A

gene cluster in the D. trenchii genome and a potential evolutionary scenario for MAA biosynthesis in the family Symbiodiniaceae. Topology of the tree is

based on the phylogenetic tree of the DDG synthase family with bootstrap support >90%, as shown in green circle. The detail is shown in supplementary

figure S2, Supplementary Material online. The positions of clades B and C with no MAA biosynthetic gene cluster are assumed based upon previous 28S

rDNA phylogenies (Shoguchi et al. 2018). (b) A molecular phylogeny of GMC family enzymes showing evolutionary relationships of the proteins. Proteins

from the neighboring GMC oxidoreductase in (a) the MAA biosynthetic gene cluster are shown in red. Genes for choline dehydrogenase are encoded in

dinoflagellate genomes and others in the Symbiodiniaceae are unclassified enzymes in the GMC family. (c–e) 3D structures of the enzymes and their use of

flavin adenine dinucleotide (FAD) as a cofactor were predicted using I-TASSER (Zhang 2008). (c) Fatty acid photodecarboxylase (FAP), a light-activated

enzyme from Chlorella variabilis. (d) g1386 of D. trenchii. (e) s314_g32.t1 of S. tridacnidorum.
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CEGMA (Parra et al. 2007) and BUSCO (Sim~ao et al. 2015).

The 48% (145/303 BUSCO genes) hits on the D. trenchii pro-

teins was comparable to other reported dinoflagellate

genomes (44–71%) (supplementary fig. S1, Supplementary

Material online). The GC content of the draft genome was

47.4%, comparable to GC contents of Symbiodinium

(�50%) and Cladocopium (�44%) (table 1).

Genome Annotations

Two RNA-seq libraries were constructed and sequenced.

Reads of 2� 134 bp produced �11 Gb of total sequencing

data (supplementary table S1, Supplementary Material on-

line). The de novo assembly produced 64,183 contigs with

a GC content of �55%, similar to that of clade D from

reported transcriptomes (Gonz�alez-Pech et al. 2017). Using

transcriptome data as hints, 30,054 protein-coding genes

were predicted (table 1), a number comparable to that of

C. goreaui (Liu et al. 2018), but less than some other dinofla-

gellate genomes. A recent report indicated that a consistent

gene-prediction approach is crucial for comparative genomic

analysis, suggesting the difficulties of computational gene

prediction for dinoflagellate genomes (Chen et al. 2020).

Therefore, long-read transcriptomic data from various condi-

tions are likely to be needed in future comparative genomic

studies. Assembled genomic and transcriptomic data and an-

notation information are accessible from the following ge-

nome browser: https://marinegenomics.oist.jp/gallery

(Koyanagi et al. 2013). The 28S rDNAs and ITS2 sequences

(TRINITY_DN41397_c4_g2_i5) from the assembled sequen-

ces corresponded to the nuclear ribosomal ITS1/5.8S/ITS2

(KJ019889) in D. trenchii LaJeunesse sp. nov. (LaJeunesse

et al. 2014, 2018), confirming that the clone is D. trenchii.

Gene Cluster for Sunscreen Biosynthesis

Analysis of the S. tridacnidorum (previously Symbiodinium sp.

clade A3) genome identified a gene cluster for enzymes in-

volved in MAA biosynthesis in Shoguchi et al. (2018). In ad-

dition, comparative analysis suggested that orthologs of these

genes have been lost in the common ancestor of Breviolum

and Cladocopium. To determine whether such losses oc-

curred in the Durusdinium lineage, we performed BLAST

and Pfam domain searches. Scaffold 2498 of the draft assem-

bly contained a gene cluster for MAA biosynthesis, expression

of which was supported by transcriptomic data (fig. 1a).

Moreover, gene order was conserved between

S. tridacnidorum and D. trenchii. The orthologous relationship

between S. tridacnidorum and D. trenchii was confirmed in

molecular phylogenetic analysis of the DDG synthase family

(supplementary fig. S2, Supplementary Material online). In

addition, we found that the neighboring gene to D-Ala

D-Ala ligase homolog on the 30 side of the cluster encoded

an enzyme resembling the GMC oxidoreductase family. The

homolog was also found in the genome of S. tridacnidorum

and is located adjacent to the MAA gene cluster (fig. 1a),

suggesting syntenic conservation of metabolic genes among

members of the Symbiodiniaceae (Liu et al. 2018).

The predicted ligase had domains for the GMC oxidore-

ductase family (GMC_oxred_N of PF00732 and

GMC_oxred_C of PF05199), which includes proteins having

diverse catalytic activities. A molecular phylogeny of GMC

oxidoreductases indicated that this one does not belong to

a subfamily with known functions and that it may constitute a

sister group of alcohol oxidases and glucose oxidases and

dehydrogenases (fig. 1b). Recently, it has been shown that

GMC oxidoreductases in algae include photoenzymes

(Sorigu�e et al. 2017; Björn 2018), which have the light-

capturing flavin adenine dinucleotide (FAD) as a cofactor

(fig. 1c). Using I-TASSER software, prediction of the 3D struc-

ture of Symbiodiniaceae GMC oxidoreductases showed that

they likely also carry FAD (fig. 1d and e), suggesting the pos-

sibility of a photoenzyme (Sorigu�e et al. 2017; Björn 2018).

Future studies may clarify the relationship between light in-

tensity and MAA biosynthesis. Coral genomes also have

genes for MAAs (Shinzato et al. 2011, 2014), but they do

not seem to have GMC oxidoreductase. If coral bleaching is

triggered by high SSTs and insolation (Lesser 2019), the

Symbiodiniaceae capacity for MAA biosynthesis may contrib-

ute to bleaching resistance.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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