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Fingerprint detection is still the primary investigative technique for deciphering criminal inquiries and identifying in-

dividuals. The main forensic fingerprinting reagents (FFRs) currently in use can require multiple treatment steps to

produce fingerprints of sufficient quality. Therefore, the development of new, more effective FFRs that require minimal

chemical treatment is of great interest in forensic chemistry. In this work, prudently crafted DFT and TDDFT calcu-

lations are utilised to derive mechanistic insight into the optical activity of the non-fluorescent product of ninhydrin,

diketohydrindylidenediketohydrindamine (DYDA), and fluorescent product of DFO (1,8-Diazafluoren-9-one). We in-

vestigate various protonation sites to gain an understanding of isomeric preference in the solid-state material. A relaxed

scan of a single torsion angle rotation in the S1 minimised geometry of the O-protonated DYDA isomer suggests a

conical intersection upon ∼10 rotation. We show that the absence of a rigid hydrogen-bonded network in the crystal

structure of DYDA supports the hypothesis of torsion rotation which leads to de-excitation to occur readily. Conversely,

for the fluorescent DFO product, our calculations support an avoided crossing suggestive of a non-radiative mechanism

when the torsion angle is rotated by about ∼100. This mechanistic insight concurs with experimental observations of

fluorescence activity in DFO, and may aid the photophysical understanding of poorly visualised fingerprints due to

weak fluorescence. We show that, identifying suggestive avoided crossings via the method described here can be used

to initialise thoughts towards computational design of FFRs.

I. INTRODUCTION

The use of fingerprint development for forensic detection is

a powerful investigative tool, providing robust evidence lead-

ing to the identification of individuals of interest in crime

scene investigations.1 The application of forensic fingerprint-

ing reagents (FFRs) to the development of latent fingermarks

on porous surfaces is a commonly encountered process in

forensic chemistry and is of continuous interest to advance

alongside the continued evolution of chemical analysis tech-

niques. With the use of computational chemistry methods

emerging as an effective tool in informing development pro-

cesses in chemical sciences,2–4 it is of interest to apply such

methods to forensic chemistry. The subsequent work, reported

here, is aimed at informing the design process of fluorescent-

inducing amino-acid FFRs, and investigates the structural and

electronic properties of the chemical products formed when

developing fingerprints using 1,8-diazafluoren-9-one (DFO),

a fluorescent FFR, and 2,2-dihydroxyindane-1,3-dione (nin-

hydrin), a non-fluorescent FFR (fig. 1).

Ninhydrin and DFO are commonly utilised as FFRs for the

development of latent fingerprints on porous surfaces.5 Both

reagents react with trace amounts of amino acids within fin-

germark residue to form chromophoric chemical products.6,7

Only that of DFO exhibits fluorescence emission upon light
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FIG. 1. The chemical structures of ninhydrin (left) and DFO (right).

excitation during fingerprint visualisation, while the ninhydrin

product requires the addition of ZnCl2 to produce a fluores-

cent product.8 Fluorescence is a desirable property for devel-

oped fingerprints to maximise the observed contrast between

the fingerprint pattern and background surface, increasing the

detail observed and detected.1 To obtain this in a single reac-

tion step provides forensic investigators with a more efficient

fingerprinting method and reduces the required chemical re-

sources over those requiring additional reagents or treatments.

Ninhydrin, when reacted with amino acids, forms ’Ruhe-

mann’s Purple’ (1), as shown in fig. 2, though it is the

protonated form, diketohydrindylidenediketohydrindamine

(DYDA) that is responsible for the observed characteristics

of the developed fingerprint.9,10 This structure was elucidated
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FIG. 2. The proposed chemical structures of the products from the

reaction of ninhydrin with amino acids, Ruhemann’s purple (1) and

DYDA (2-4), and the proposed isomers of the product of the reaction

of DFO with amino acids (5 and 6).

through X-ray crystallography and 1H NMR, though there are

inconsistencies in the reported site of protonation resulting in

possible isomers, 2 and 3 respectively. Furthermore, a compu-

tational study employing a semi-empirical method suggested

that 4 showed closest agreement between the calculated ab-

sorption properties and that observed experimentally (a single

absorption peak with λ max of 485 nm).9,11

DFO reacts with amino acids during fingerprint development

to form a fluorescent product, reported to exhibit excitation

with λ max at 470 nm and emission λ max at ∼570 nm.7 The

crystal structure of the DFO product was determined to be 5,

though it was proposed that the proton is mobile with respect

to the remaining nitrogens within the structure, resulting in

6.12

Currently, the most efficient fluorescence-inducing FFR rec-

ommended for fingerprint development is 1,2-Indanedione,

reported to produce brighter fluorescent fingerprints than

DFO.13–15 However, structure elucidation of the fluorescent

product reported in the literature has yielded conflicting re-

sults leading to no conclusive solid-state structure.16,17 This

work has therefore focused on the DFO product to investigate

fluorescent properties.

Previous attempts at the development of new, more effective

FFRs have predominantly been based on experimental syn-

thesis with little success reported.18–21 Computational studies

investigating energetics of the amino acid reaction, and wave-

length and oscillator strength of absorption for DYDA ana-

logues also resulted in no new developments, highlighting the

need for an alternative computational approach.22–24

The mechanism of fluorescence is extremely challenging

to incorporate into computational design processes due to the

complex relationship between structure and observed prop-

FIG. 3. An illustration of the ground (S0) and excited (S1) states of

a chemical system demonstrating possible features and resultant re-

laxation mechanisms during a single excitation event, where (ii) and

(iv) show absorption and excitation, and (i) and (iii) represent fea-

tures indicative of a non-radiative mechanism, conical intersection

and avoided crossing respectively.

erties in solid state materials. However, investigation into

the potential energy surface (PES) of non-luminescent com-

pounds can reveal non-radiative processes such as those illus-

trated by fig. 3.25,26 It is the topologies of the S0 and low-

est excited state PES that fundamentally determines the ob-

served fluorescence activity, or inactivity, of a chemical sys-

tem. A conical intersection (CI), represented by (i) in fig. 3,

is a dominant non-radiative feature in non-fluorescent materi-

als, playing a major role in the de-excitation process.27 This

has been demonstrated for solid-state materials using ab initio

calculations.28,29

In this work we examine the calculated absorption and

emission properties of the proposed isomeric structures 2-4

(DYDA), and 5 and 6 (DFO product) to indicate the most

likely structures responsible for the reported experimentally

observed optical properties. The S0 and S1 state PES repre-

senting torsion angle rotations in those identified most likely

are also explored to rationalise the observed non-fluorescent

and fluorescent properties of the DYDA and the DFO product

structures.

II. COMPUTATIONAL DETAILS

S0 and S1 minima of all molecules studied were optimised

with DFT and TDDFT, respectively, using the CAM-B3LYP

functional30–32 and 6-31G(d) basis set.33–35 Here, the range-

separated functional CAM-B3LYP was employed in order to

avoid spurious charge transfer excited states36 between the

two units of the molecules studied, which was observed in

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
40

55
5



3

TABLE I. Experimentally-determined and computed photophysical properties of the materials investigated; absorption wavelength (λ abs) of

the lowest three transitions, emission wavelength (λ em), corresponding oscillator strength (f ), and character assignment for emission.

λ abs
a (nm) λ em

a (nm) λ abs
b (nm) f abs

b λ em
b (nm) f em

b characterc

1 579, 410 - 515.36, 410.9, 403.1 0.2314, 0.0131, 0.0143 -† -† -†

2

485 -

414.3, 399.4, 378.2 0.0001, 0.4262, 0.5531 921.5 0 n → π∗

3 476.3, 378.6, 331.9 0.0001, 0, 0.0254 569.6 0 n → π∗

4a 489.9, 396.0, 371.4 0.1092, 0.1661, 0.0006 625.2 0.0799 n → π∗

4b 478.9, 417.2, 374.0 0.0005, 0.6086, 0 667.5 0.0916 n → π∗

5
470 570

452.7, 395.1, 394.0 0.3567, 0.0004, 0.4564 555.9 0.0566 π → π∗

6 471.9, 360.3, 359.2 0.8994, 0.001, 0.0008 562.8 0.6208 π → π∗

a Experimentally determined. b Computed at the CAM-B3LYP/6-31G(d) level of theory in vacuo. ccharacter assigned from generated natural transition

orbitals. †Optimisations failed to converge.

preliminary calculations. No dispersion correction was used

as dispersion is expected to have only a minor influence on

these planar structures. Calculations were performed in vac-

uum as there is no straightforward way of including the solid-

state environment of interest. The steepest decent search al-

gorithm was initially employed for S1 state optimisations, fol-

lowed by the GEDIIS algorithm for the relaxed scan of torsion

angles.37 All calculations were carried out in the gas phase

using the Gaussian09 program.38 Natural transition orbitals39

were visualised using the GaussView 5.0 software.40 The

crystal structure of DYDA was obtained from the Cambridge

Structural Database and analysed using the Mercury visuali-

sation program.41,42

FIG. 4. The two possible conformers of 4, the O-protonated isomer

of DYDA, where (a) has no hydrogen bonding possibility and (b) a

rearrangement accommodating hydrogen bonding.

III. RESULTS AND DISCUSSION

A. Calculation of absorption and emission wavelengths

The absorption wavelength (λ abs) of DYDA, the non-

fluorescent product of the reaction of ninhydrin with amino

acids, has been experimentally determined at 485 nm.9 There

have been conflicting reports of structure elucidation result-

ing in three possible structural isomers (2-4), differing by the

site of protonation.9–11 Considering conformational change, 4

may exhibit two conformational isomers, 4a or 4b (figure 4).

The measured absorption wavelength (λ abs) and emission

wavelength (λ em) of the materials investigated are reported

in table I alongside the calculated λ abs of the three lowest

energy singlet transitions, calculated λ em, and corresponding

oscillator strengths (f ). To calculate the emission properties

for each structure, an S1 energy minimisation was initiated

from the S0 minimised geometry. The calculated λ abs of 1

suggests absorption of 515.36 nm with high f (0.2314) while

two dark states are present at 410.9 nm and 403.1 nm. The

computed maximum is somewhat blueshifted compared to the

experimental peak at 579 nm. This shift of about 0.25 eV

may be attributed in part to the shift between vertical excita-

tion and band maximum for simulated spectra43 and gener-

ally lies within the expected accuracy of TDDFT. The prop-

erties of the S0-S1 transition in the DYDA isomers suggest

that 4a, the O-protonated isomer shows the closest agreement

with the experimental absorption wavelength of 485 nm, with

a calculated λ abs of 489.9 nm and f of 0.1092. The first ex-

cited states for isomers 3 and 4b are in a similar energy range,

but the calculated oscillator strengths show that these are dark

states, which are probably not observed in the spectrum. 2 and

4b feature bright states at 399 nm and 417 nm, significantly

blue-shifted when compared to the experimental absorption

maximum. Despite 4a showing the closest agreement with

experimental absorption, the experimental λ abs was measured

in CHCl3 and so the conclusion of which isomer is most likely

to occur based on the comparison of λ abs is made with cau-

tion due to the in vacuo environment of the simulations. The

calculated λ em of DYDA isomers 3 - 4b show zero f for the

lowest energy transition of 2 and 3, and weak f (0.0799 and

0.0916) for 4a and 4b respectively. The assigned character

of the natural transition orbitals (NTOs) of S1 minimised ge-
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FIG. 5. Visualisation of the crystal packing in the previously reported

X-ray crystal structure of DYDA.

ometries also suggests n → π∗ character. The non-radiative

hole-electron NTO pair calculated for isomer 2 (fig. 6 sup-

ports the non-fluorescent behaviour of the solid-state structure

of DYDA. Both of the observed characteristics of emission for

the DYDA isomers are suggestive of non-radiative behaviour

for all possible isomers.

To gain insight into the relative stability of each isomer,

relative energies of the S0 and S1 optimised structures un-

der investigation have been calculated and are shown in table

II. Interestingly, 4a is shown to to be the least stable (+34.09

kJmol-1) despite showing the closest match with experiment,

while 2, the isomer representing the X-ray crystal structure, is

the most stable.

TABLE II. Relative energies (∆E) of the S0 minimised geometries,

and S1 energy of the S1 minimised geometries, investigated with re-

spect to the most stable in each electronic state, calculated at the

CAM-B3LYP/6-31G(d) level of theory.

S0 ∆E (kJmol-1) S1 ∆E (kJmol-1)

2 0.00 1.79

3 20.97 24.53

4a 34.09 70.49

4b 12.31 0.00

5 0.00 6.81

6 0.75 0.00

The calculated ∆E for the S1 minimised geometries of 2-4b

(table II) suggest that 2 and 4b are most stable with similar

energies (1.79 kJmol-1 difference), while the instability of 4a

with respect to the remaining isomers (+70.49 kJmol-1) is fur-

ther increased in comparison to that in the S0 state. The differ-

ence in isomer stability between S0 and S1 states suggests that

isomerisation may be favoured in the excited state between

2 (N-protonated) and 4b (O-protonated). Visualisation of the

X-ray crystal structure (fig. 5), indicative of the likely stabil-

ising intermolecular interactions present within the solid-state

fingerprint material, displays intermolecular hydrogen bond-

ing between an N-H proton, and carbonyl-O simultaneously

across two DYDA molecules, resulting in dimers throughout

the structure. This interaction indicates a possibility of con-

current intermolecular proton transfer to occur, representing

isomerisation between structures 2 and 4b.

The calculated properties of DFO product isomers 5 and

6, shown in table I, both show non-zero f for the lowest en-

ergy absorption transitions (0.3567 and 0.8994). Compari-

son of the corresponding λ abs (452.7 nm for 5 and 471.9 nm

for 6) indicates that 6 matches more closely with experiment.

The calculated λ em of 6 (562.8 nm) also shows closest agree-

ment with the experimental λ em of 570 nm in comparison to

5 (555.9 nm). The corresponding f also indicates that this

transition has near-zero possibility in 5, whereas 6 has a com-

paratively high f. π → π∗ character is assigned to both S1

minimised structures, indicated by hole-electron NTOs. In

fig. 6 the hole-electron NTOs for structures 2 and 6 are shown

to support character assignments. More details can be found

int he supplementary information. Calculated ∆E of the S0-

minimised structures of 5 and 6 suggest their stabilities are

similar (0.75 kJmol-1 difference), whereas 6 is 6.81 kJmol-1

more stable for the S1 minimised structures. Both the calcu-

lated transition properties and relative stabilities suggest that

6 is more likely to be representative of the structure displaying

the observed absorption and emission during fingerprint visu-

alisation. It should be noted, that the crystal structure reported

was a hydrated structure, and is most likely not representative

of that present in the developed fingerprint as the DFO fin-

gerprint development process involves thorough drying of the

FIG. 6. Natural transition orbitals (NTOs) of the hole-electron pairs

for the S1 minimised geometries of 2 and 6.
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FIG. 7. Relaxed S1 torsion angle scans of DYDA isomer 4a (left), and the DFO product isomer 6 (right). Geometries shown are representative

of the solid points.

fingerprint sample in an oven prior to visualisation.

To gain further insight into the underlying mechanisms of

fluorescence activity in both DYDA and DFO, it is of interest

to explore the PES topologies to identify the presence of non-

radiative processes in that of DYDA to rationalise the non-

fluorescent properties observed beyond that reported already

here.

B. Investigation of potential energy surface topology

Non-radiative processes can be identified from the in-

vestigation of the ground and excited state PESs repre-

senting mechanisms or structural change exhibited by the

material.25,26,28,29 In this present work the investigation of the

S0 and S1 PESs representing a central C-C-N-C torsion angle

rotation of 4a and 5 are reported in the excited state. Isomer

4a was chosen for this investigation due to a closer resem-
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blance than 4b of the geometry exhibited in the X-ray crystal

structure, and will therefore give a more relevant insight into

the hypothesised isomerisation between 2 and 4b suggested

by the calculated S0 and S1 energetics.

A relaxed scan of the C=N-C-C torsion angle of 4a and 5

(fig. 7) was initiated from the optimised S1 geometries, and

carried out in 10 increments for 4a and 20 increments for 5.

Smaller increments were explored for 4a as an initial 20 scan

did not provide a clear topology, prompting a more detailed

investigation. The adjacent C-C=N-C torsion angle was fixed

at the angle exhibited in the optimised S1 geometry (17.5 for

4a, -0.2 for 5).

The plotted energies of the S1 minimised geometry, and the

relative S0 energy indicated by the S0-S1 transition with re-

spect to the varied torsion angle at each step in the scan are

displayed in fig. 7. The resultant PESs, plotted relative to

the most stable S0 geometry in each case, reveals contrasting

topologies for 4a and 5. Of particular significance is the CI

suggested by the PES of 4a occurring at a torsion angle of

-62.3, a 10 rotation from the unrestricted S1 minimised ge-

ometry, which is lower in energy. The existence of this CI

is further evidenced by the suggestive relative S0 and S1 PES

topologies between -72.3and -112.3. The S1 PES also indi-

cates a more stable geometry at -82.3 suggesting the S1 min-

imised geometry at -52.3 is a local minimum, though closer in

conformation to the S0 minimised geometry.

The relative S0 and S1 PES topologies of the relaxed tor-

sion angle scan of 5 resembles an avoided crossing (described

previously in fig. 3), suggesting a lower energy S1 minimised

structure at 99.8. The relative S0 energy is higher for this

geometry compared to that at -0.2 (the unrestricted S1 min-

imised geometry). In contrast to the relaxed torsion scan

of 4a, there is no evidence of a CI in that of 5. The dis-

cussed avoided crossing suggests the existence of a nearby

non-radiative mechanism when the torsion angle is rotated to

99.8, though considering the solid-state nature of the finger-

print material, this conformational change is assumed to be

hindered by intermolecular bonding networks.

Visualisation of the reported crystal structure of DYDA (fig.

5) displays hydrogen bonded dimers, exhibiting two simulta-

neous N-H—O interactions.10 Though the structure indicates

the existence of form 2, we propose that intermolecular pro-

ton transfer occurs in the solid state material to form 4a, ex-

plaining the agreement of the calculated λ abs with experiment

for the latter. Since the crystal packing does not exhibit long

hydrogen-bonded networks, but dimer units, it is hypothe-

sised that this less rigid structure allows for rotation of the

torsion angle that has been investigated here, likely to oc-

cur through vibrational modes. The reported crystal structure

of the DFO product resembles isomer 5, though in hydrated

form.12 Since the suggested fingerprint development process

using DFO requires heating of the sample to dry thoroughly

prior to visualisation,1 it is assumed that the crystal packing is

unlikely to represent that present in the visualised fingerprint

material. Further work is proposed to investigate computa-

tionally the geometries and hydrogen bonding networks of 4a

and 5 in the solid form to provide further insight into the pro-

posed mechanistic processes.

IV. CONCLUSIONS

In this work we have applied DFT and TDDFT in the in-

vestigation of the isomeric structures of the forensic finger-

printing reagents products of ninhydrin and DFO, and provide

mechanistic insight into their fluorescence activity based on

conformational change.

The most likely isomeric forms of the non-fluorescent nin-

hydrin product, DYDA, and the fluorescent DFO product that

exhibit the previously reported observed optical properties

following fingerprint development have been discussed. The

calculation of absorption properties using DFT and TDDFT

indicate that 4a (λ abs of 489.9 nm and f of 0.1092) shows

highest agreement with the experimentally reported λ abs (485

nm). Despite the reported crystal structure of DYDA indi-

cating protonation at the central N atom (form 2), our calcu-

lated λ abs (471.9 nm) and weak oscillator strength (0.0001)

suggests protonation at the carbonyl (C=O) to be more

likely. Calculated ∆E suggests 2 (N-protonated) and 4b (O-

protonated) are most stable in S0 and S1 states respectively,

suggesting a proton-transfer isomerisation process may be

favourable. The interactions present in the X-ray crystal struc-

ture suggest this could occur intermolecularly via isomer 4a.

In the DFO case, both the calculated λ abs and λ em of 6 (471.9

nm and 562.8 nm respectively) show close agreement with the

reported experimental values of the DFO product (470 nm and

570 nm). Calculated energetics suggest similar S0 stabilities

for 5 and 6, with the latter being 6.81 kJmol-1 more stable in

the excited state.

A relaxed S1 scan representing a torsion angle rotation in 4a

and 5 revealed contrasting topologies of the plotted PESs. Ini-

tiated from the S1 minimised geometries, a suggestive conical

intersection is observed upon 10 rotation from the S1 min-

imised geometry in 4a. A 10 torsion rotation is considered

feasible in the solid form of 4a, hypothesised to be exhibited

by vibrational modes. It is proposed that isomerisation oc-

curs between forms 2 and 4a via a simultaneous intermolecu-

lar proton transfer across dimers in the solid-state, explaining

the observation of form 2 in the reported crystal structure. On

the contrary, for the DFO product, an avoided crossing upon

a 100 torsion angle rotation is observed in 5 with no indi-

cation of a potential conical intersection. This mechanistic

insight from simulation reflects the strong fluorescence exhib-

ited by the DFO product experimentally. Further solid-state

calculations are suggested to confirm the nature of the crys-

tal packing of 4a and 5, and to gain insight into the relative

energetics of the possible isomeric forms to further evidence

the mechanistic process proposed here. We should note that

in a developed fingerprint sample, there would be other ma-

terials present (from the fingerprint residue/sweat, impurities,

and the surface it is developed on). To include the interac-

tions with these components would be useful, but it is im-

possible to know what exactly they would be considering the

impurities such as dirt, cosmetic product and such like that

could be present. Furthermore, fingerprint residue varies from

person-to-person, day-to-day, and contains both hydrophilic

and hydrophobic components. Interactions with water could

be modelled but could be misleading and therefore has not
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been included in this study.

The results presented here have demonstrated the success-

ful application of TDDFT to calculate the absorption and

emission properties of the products formed from well-known

FFRs and suggests strong correlation between the modelled

S1 electronic properties and the observed fluorescence activ-

ity. The ability to describe the accessibility of non-radiative

processes in the materials reported here offers the first step

towards the design of new fluorescence-inducing reagents for

fingerprint development from first principles.

V. DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are avail-

able within the article and its supplementary material and can

also be requested from the corresponding authors.

VI. SUPPLEMENTARY INFORMATION

In the supplementary information, we supply the computed

natural transition orbital diagrams, a schematic of how the tor-

sion angle is investigated, the energy, wavelength and oscilla-

tor strengths of the S0, S1 - S3 transitions for the S0 minimised

structures and the S1 minimised structures.
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