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 ABSTRACT 
 
 
 

Electrooptic Matched Filter Controlled by Independent 
 

Voltages Applied to Multiple Sets of Electrodes. (December 2005) 
 

Changdong Kim, B.S., Korea University 
 

Chair of Advisory Committee: Dr. Henry F. Taylor 
 
 
 

Analysis and experimental results on a polarization independent electrooptic 

matched filter (EMF) with a center wavelength of 1.53 μm are reported. The EMF 

utilizes electrooptic phase-matched TE↔TM conversion in a Ti-diffused waveguide on 

a LiNbO3 substrate. The operation of the EMF to select an optical frequency channel is 

controlled by applying independent voltages to interdigital electrode sets cascaded 

along a single mode waveguide. The device is inherently polarization independent and 

has the potential for submicrosecond tuning. The number of selectable channels N is 

related to the number of electrode sets P by the formula / 2 1N P= + . A matrix analysis 

is used to determine the TE↔TM conversion efficiency for the case that 8P =  and 

5N = . A driving circuit for the EMF was implemented using a digital-to-analog 

converter (DAC) array controlled from a personal computer (PC). Transmittance 

spectra of a filter produced in a LiNbO3 substrate are presented. A raised cosine 

weighting function applied along the 3.8 cm length of an EMF provides a sidelobe 

suppression level better than –17 dB with a 1.0 nm 3-dB bandwidth. 
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CHAPTER I 

INTRODUCTION 

 
 

Optical filters are essential components in wavelength-division multiplexed 

(WDM) optical networks [1]. Communications has evolved from point to point 

transmission to multiplexed networks [2], and next-generation network functionality 

will be enhanced by reconfigurable optical add/drop multiplexers (ROADMs) [3]. 

These dynamic tunable optical filters are still at an early stage of development. 

Among different technologies used to implement tunable optical filters, 

electrooptic tunable filters (EOTFs) provide a good solution for sub-microsecond 

tunability through TE-TM mode coupling [4]. A polarization-independent EOTF 

demonstrated in LiNbO3 employed two identical TE↔TM polarization converters and 

TE/TM polarization splitters [5]. Another scheme in Fig. 1 using strain-induced 

polarization conversion in LiTaO3 was also demonstrated [6]. These conventional 

EOTF designs utilize a Mach-Zehnder interferometer structure, phase-matched 

polarization conversion, and polarization beam splitters.  

The primary objective of the research is to demonstrate the electrooptic matched 

filter (EMF), a new type of EOTF which provides wide spectral tuning range and rapid 

tuning. The EMF is designed for operation in the 1550 nm wavelength regime for 100 

GHz (0.8 nm) channel spacing corresponding to the International Telecommunication 

Union – Telecommunication Standardization Sector (ITU–T) grid. 

 

The journal model is IEEE Journal of Lightwave Technology. 
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Fig. 1. EOTF design in LiTaO3 

The following features of EMF are expected from the results of this research: 

• Spectral tuning range of 3.2 nm  

• Submicrosecond tuning speed 

• Single chip integration on a LiNbO3 substrate 

• Polarization independence 

• High sidelobe suppression via raised-cosine apodization 

Chapter II provides a description of fundamentals of polarization mode coupling in 

optical waveguides, which is the basis for operation of the EMF. Chapter III introduces 

the EMF structure and a matrix formualtion to analyze TE↔TM mode converson and 

phase retardation quantitatively. Chapter IV describes the electronic circuitry 

developed to drive the EMF as required for selecting WDM channels. Measured 

spectral characteristics for an EMF produced on a LiNbO3 substrate are presented in 

Chapter V, and the experimental results are compared with theory. Finally, conclusions 

 Λ

ν1,…, νN 

y 
x 

z 

polarizing beam splitter Strain pads
electrode

νj 
waveguide 

ν1,…, νj-1 
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and recommendations for the future research work are presented in Chapters VI and 

VII. 
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CHAPTER II 

MODE COUPLING IN OPTICAL WAVEGUIDE 

 
 
A. TE and TM Modes in Slab Dielectric Waveguide 

An optical waveguide is a medium of high refractive index surrounded by a 

dielectric material of lower refractive index to confine and direct the light. The 

structure of optical waveguides can be a slab (or planar), strip, or cylinder (Fig. 2). The 

optical fiber is a good example of a cylindrical waveguide. In this chapter, TE and TM 

modes for the general asymmetric slab dielectric waveguide and their coupling are 

described. 

1. Wave Equation in Slab Waveguide 

The step-index planar waveguide is the simplest structure for discussing 

fundamental properties of guided modes. The guiding layer (region II) has a higher 

refractive index than cover (region I) and the substrate (region III) as shown in Fig. 3, 

where the refractive indices of region I, II, and III are n1, n2, and n3, respectively. It is 

assumed  that  n2>n3>n1.  The  allowed  modes  of  this  waveguide  are  obtained  from 

 
Fig. 2. Optical waveguide structures. (a) slab (b) strip and (c) fiber 

(a) (b) (c) 



5 

 
Fig. 3. Slab dielectric waveguide 

the wave equation given by 

 2 2 2
0( ) ( ) ( ) 0E r r E rk n∇ + =  (1) 

where 0 /k cω≡  and n is the refractive index. The solutions are subject to the boundary 

conditions that tangential components of E  and H  are continuous at the interfaces 

0x =  and x t= − . For the field propagating along the z-axis given by 

 ( )( , ) ( , )E r E i t zt x y e ω β−=  (2) 

in infinite slab waveguides, where the electromagnetic fields are independent of y, 

equation 1 becomes 

 
2

2 2 2
02 ( , ) ( ) ( , ) 0E Ex y k n x y

x
β∂

+ − =
∂

 (3) 

Here, ω  is the frequency of the wave and β  is the propagation constant. 

2. TE Modes 

Assuming an isotropic and lossless medium in the waveguide of Fig. 3, Maxwell’s 

equations given by 

Region II n2

Region I n1

Region III n3

x 

0 
 
 

-t 

z
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 0
HE
t

μ ∂
∇× = −

∂
 (4) 

and 

 2
0

EH n
t

ε ∂
∇× = −

∂
 (5) 

yield two orthogonal modes: transverse electric (TE) mode and transverse magnetic 

(TM) mode [7]. The wave equation and Maxwell’s equations for the TE mode are 

 
2

2 2 2
02 ( ) 0y yE k n E

x
β∂

+ − =
∂

 (6) 

 
0

y yH Eβ
ωμ

= −  (7) 

 
0

1 y
z

E
H

j xωμ
∂

= −
∂

 (8) 

From equation 6 and boundary conditions in each layer, TE modes can be written as 

 

( )

, 0

[cos( ) sin( )], 0

[cos( ) sin( )] ,

qx
y

y

p x t
y

E Ce x
qE C hx hx t x
h
qE C ht ht e x t
h

−

+

= >

= − − ≤ ≤

= + < −

 (9) 

where 

 2 2 2 2 2 2 2 2 2
0 1 0 2 0 3, ,q k n h k n p k nβ β β= − = − = −  (10) 

and C  is an arbitary constant. 
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In the above discussion, the propagating constant β  is 0 3 0 2k n k nβ< <  to support 

confined modes in the guiding layer. The eigenvalue equation written by 

 tan( ) p qht pqh
h

+
=

−
 (11) 

 is obtained from boundary condition of zH  at the interfaces 0x =  and x t= − . Only 

discrete values of β  satisfy equation 11 and are called eigenvalues for the guided TE 

modes. 

3. TM Modes 

TM modes are solution of the wave equation, given by 

 
2

2 2 2
02 ( ) 0y yH k n H

x
β∂

+ − =
∂

 (12) 

Maxwell’s equations for the TM modes are 

 2
0

x yE H
n

β
ωε

=  (13) 

 2
0

1 y
z

H
E

j n xωε
∂

=
∂

 (14) 

The similar analysis to TE mode yields TM mode field solutions in the following: 

 

( )

, 0

[ cos( ) sin( )], 0

[ cos( ) sin( )] ,

qx
y

y

p x t
y

hH C e x
q
hH hx hx t xC
q
hH ht ht e x tC
q

−

+

′−= >

′= − + − ≤ ≤

′= − + < −

 (15) 
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where q , h , and p  are same as equation 10 and the constant C′  is chosen arbitarily. 

Equation 15 and boundary conditions at the interfaces result in eigenvalue equation for 

TM modes given by 

 

2 2
2 2
2 2
3 1

22
2

1 3

tan( )

n np q
n nht

n pqh
n n h

+
=

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

  (16) 

B. TE/TM Polarization Converter 

TE/TM polarization coupling, a key aspect of the EMF design, is described in this 

section. TE and TM polarizations experience polarization perturbation induced by 

refractive index changes in the waveguide through an applied electric field. General 

coupled mode formulation, the electrooptic effect in LiNbO3 and the field solutions for 

TE and TM coupled mode equations are detailed in the following sections 1, 2, and 3, 

respectively.  

1. Coupled Mode Theory in Optical Waveguide 

In an isotropic charge-free medium, eigen modes in equations 9 and 15 satisfy the 

wave equation in the form 

 
2

2
2

( , )( , ) ( ) E rE r r tt
t

με ∂
∇ =

∂
 (17) 

which is obtained from substituting the curl of equation 4 into equation 5 and using 

( ) 0Eε∇ ⋅ =  and ( ) 2E E E∇×∇× ≡ ∇ ∇ ⋅ − ∇ . With the electric polarization of the 

medium ( , )P r t , equation 17 can be written as 
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2 2

2
0 2 2

( , )( , ) ( , )E rE r P rtt t
t t

με μ∂ ∂
∇ = +

∂ ∂
 (18) 

where ( , ) [ ( ) ] ( , )0P r r E rt tε ε= −  and ( )rε  is the medium dielectric constant. If the 

deformation in the waveguide is taken into account, the induced perturbation in the 

polarization results in 

 
2

2
2( , ) [ ( ) ( , ) ( , )]E r r E r P rpertt t t

t
μ ε∂

∇ = +
∂

 (19) 

Assuming only the TE mode here because the same expression is made for other 

polarizations, the equation 19 becomes again 

 
2 2

2
2 2( , ) ( ) ( , ) [ ( , )]r r r ry y pert yE t E t P t

t t
μ ε μ∂ ∂

∇ − =
∂ ∂

 (20) 

The solutions of equation 20 are obtained in two steps: first, we ignore the perturbation 

term on the right-hand side of equation 20 and find the solution in unperturbed 

waveguide. Then, we substitute it into equation 20 and get a final solution of the 

perturbed waveguide with some assumptions. The solution for the unperturbed 

waveguide of Fig. 3 is 

 ( )1
2( , ) ( ) . .r mj t zm

y m y
m

E t A E x e c cω β−= +∑  (21) 

where m implies the mth eigenmode, mA  is the amplitude, and ( )m
yE x  is the transverse 

distribution. It is noted that ( )m
yE x  satisfies equation 20 without the perturbation term 

in the right-hand side so that 
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2

2 2
2 ( ) ( ) ( ) 0rm m

m y y
d E x E x
dx

β ω με
⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

 (22) 

Assuming small deformation, only mA  is changed to ( )mA z . Substituting equation 

21 into equation 20, we have 

 

2
2 2

2

2 2

2 2

( ) ( )
2

1 2 ( ) . . [ ( , )]
2

r

r

m

m

j zj t mm
m y

m

j zmm m
m y pert y

A de E x e
dx

d A dAj E x e c c P t
dz dz t

βω

β

β ω με

β μ

−

−

⎡ ⎛ ⎞
− +⎢ ⎜ ⎟

⎝ ⎠⎣
⎤⎛ ⎞ ∂

+ − + =⎥⎜ ⎟ ∂⎝ ⎠ ⎦

∑
 (23) 

From equation 22 and 
2

2
m m

m
d A dA
dz dz

β<<  where small variatino in mA  is assumed, 

equation 23 is written as 

 
2

( )
2( ) . . [ ( , )]rmj t zmm

m y pert y
m

dAj E x e c c P t
dz t

ω ββ μ− − ∂
− + =

∂∑  (24) 

We multiply equation 24 by the sth eigenmode ( )s
yE x  and integrate with respect to x. 

From the orthogonality between modes given by 2( ) ( )
s

m s
y y smE x E x dx ωμ

β δ
∞

−∞

=∫  with 

1smδ = −  if s m=  and 0smδ =  otherwise, the following expression is derived: 

 
2

( ) ( )
2. . [ ( , )] ( )

2
rs sj t z j t z ss s

pert y y
dA dA je e c c P t E x dx
dz dz t

ω β ω β

ω

∞− +
+ −

−∞

∂
− − = −

∂ ∫  (25) 

In the left-hand side of equation 25, two waves propagating forward (to the +z side) 

and backward (to the –z side) are included. This equation is used to consider TE and 

TM mode interaction. 
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2. Electrooptic Effect in a Uniaxial Crystal 

An electrooptic material undergoes the change in the refractive index induced by 

applied electric field linearly (Pockels effect) or quadratically (Kerr effect) and this 

phenomenon is called the electrooptic effect [8]. The electrooptic effect is used for 

optical phase modulation and phase retardation to fabricate electrically controllable 

optical devices. This section starts with a brief description of anisotropic media 

including LiNbO3. 

The electric flux density D  in an anisotropic dielectric media is written by with 

dielectric constants and electric fields 

 
11 12 13

21 22 23

31 32 33

x x y z

y x y z

z x y z

D E E E

D E E E

D E E E

ε ε ε

ε ε ε

ε ε ε

= + +

= + +

= + +

 (26) 

If the coordinate system in a crystal structure is chosen to vanish off-diagonal elements, 

the axes in this coordinate system are defined as principal axes and a 3× 3 electric 

permeability tensor can be expressed as 

 
11

22

33

0 0
[ ] 0 0

0 0

ε
ε ε

ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (27) 

Recalling the electric energy density stored in a crystal 1
2 E Dew = ⋅  and 0[ ]D Eε ε= , 

ew  takes a form of 

 
22 2

11 22 33

1
2

yx z
e

DD Dw
ε ε ε

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (28) 
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Replacing 0/ 2i eD wε  where i x= , y , z  and 0ε  is the electric pemeability of free 

space with X , Y , and Z  in equation 28, we have the index ellipsoid described by 

 
2 2 2

2 2 2 1
x y z

X Y Z
n n n

+ + =  (29) 

where 11 0/xn ε ε= , 22 0/yn ε ε=  and 33 0/zn ε ε=  are principal refractive indices. 

Equation 29 deliniates the optical properties of aniotropic media in a complete manner. 

An isotropic crystal characterized by x y zn n n= =  has a spherical index ellipsoid. A 

uniaxial media takes the ellipsoid of revolutuion as the shape of index ellipsoid since 

x y zn n n= ≠ . In the uniaxial cryatal, it is noticed that x y on n n= =  and z en n=  where 

on  and en  are called the ordinary and extraordinary indices, respectively and the z axis 

is called the optic axis (Fig. 4). 

The presence of electric field applied in an arbitrary direction to a crystal leads to a 

linear change in the coefficient 21/ in  according to 

 

Fig. 4. The index ellipsoid for a uniaxial crystal 

x 
y 

z 

no 
no 

ne 
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 2

1 1, ..., 6, 1, 2, 3ij j
ji

r E i j
n

⎛ ⎞Δ = = =⎜ ⎟
⎝ ⎠

∑  (30) 

In a matrix form, equation 30 is written by  

 

2
11 12 131

2
21 22 232

12
31 32 333

22
41 42 434

32
51 52 535

2
61 62 636

(1/ )
(1/ )
(1/ )
(1/ )
(1/ )
(1/ )

r r rn
r r rn

E
r r rn

E
r r rn

E
r r rn
r r rn

Δ
Δ
Δ

=
Δ
Δ
Δ

 (31) 

The 6×3 electrooptic tensor composed of the electrooptic coefficient ijr  has a different 

form for noncentroelectric crystals. The electrooptic tensor of LiNbO3 which is a 

uniaxial material of the 3m trigonal crystal class [9] is given by 

 

22 13

22 13

33

51

51

22

0
0
0 0
0 0

0 0
0 0

r r
r r

r
r

r
r

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

 (32) 

The new index ellipsoid in the applied electric field is described by 

' ' ' ' ' '
2 2 2

2 2 2 2 2 2
1 2 3 4 5 6

1 1 1 1 1 12 2 2 1x y z yz xz xy
n n n n n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (33) 

where the impermeability tensor is no longer diagonal such as below 

 

2 2 2 2
1 6 5

2 ' 2 2 2 2
6 2 4

2 2 2 2
5 4 3

1/ (1/ ) (1/ ) (1/ )
[1/ ] (1/ ) 1/ (1/ ) (1/ )

(1/ ) (1/ ) 1/ (1/ )

x

y

z

n n n n
n n n n n

n n n n

⎡ ⎤+ Δ Δ Δ
⎢ ⎥= Δ + Δ Δ⎢ ⎥
⎢ ⎥Δ Δ + Δ⎣ ⎦

 (34) 
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Fig. 5. Principal axis rotation in a y-cut, x-propagating LiNbO3 

For various electric field directions in y-cut, x-propagating LiNbO3, the electric 

field e
yE  applied uniformly along y axis is considered in Fig. 5. When the electric field 

e
yE  is applied, the index ellipsoid becomes 

 2 2
22 512 2

1 1 2 1e e
y y

o e

r E y z r E yz
n n

⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (35) 

In equation 35, the existence of the mixed yz term implies the index ellipsoid is rotated 

about x axis and x, y, and z are no longer the principal axes. The perturbed index 

ellipsoid in new x′y′ plane is expressed by 

 
2 2

2 2 1
y z

y z
n n′ ′

′ ′
+ =  (36) 

where the new principal axes x , y′ , and z′  can be written as 

 
1 0 0

[ ] , [ ] 0 cos sin
0 sin cos

x x
y T y T
z z

θ θ
θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (37) 

TE 
TM 

LiNbO3 

x 

y  y′

z′ 

θ

Electrooptic grating  

e
yE

z 
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Substituting equation 37 into equation 36 and comparing to equation 35, the rotation θ  

about x axis is described by 

 51
2 2

2
tan 2

1/ 1/

e
y

e o

r E
n n

θ =
−

 (38) 

The refractive indices xn ′ , yn ′  and zn ′  are found as [10] 

 

3
22

3 2
513

22 2 2

3 2
51

2 2

1
2

( )1
2 1/ 1/

( )
1/ 1/

e
x o o y

e
o ye

y o o y
e o

e
e y

z e
e o

n n n r E

n r E
n n n r E

n n

n r E
n n

n n

′

′

′

= +

= − +
−

= −
−

 (39) 

Since practically x on n′ , y on n′ , and z en n′  for LiNbO3,  

 

2 2

2 2

2 2

0 0 0 0
[ ] 0 0 0 0

0 0 0 0

x o

y o

z e

n n
n n

n n
ε

′

′

′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (40) 

The permeability tensor [ ]ε  in the x , y , and z  coordinate system becomes diagonal 

form according to the transformation [ ] [ ] [ ][ ]TT Tε ε ′=  and written by 

 
11

22 23

23 33

0 0
[ ] 0

0

ε
ε ε δε

δε ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (41) 

where 2 2
23 51

e
e o yn n r Eδε = − . Considering the TM polarized optical wave yEω  propagates in 

a crystal and off-diagonal elements in the permeability tensor are induced by electric 

field e
yE , the polarization ([ ] [ ])0P Eδ ε ε ε′= −  is described by 
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 0 23

23

0 0 0 0
0 0
0 0 0

x

y y

z

P
P E
P

ω

δ
δ ε δε
δ δε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (42) 

It is noted that perturbation in the permeability tensor induced by electric field e
yE  

gives rise to the perturbation in the optical wave yEω  written by 0 23z yP Eωδ ε δε= − . 

3. TE↔TM Mode Converter 

If the electric field e
yE  is applied to a LiNbO3 crystal with the optical wave TM–

polarized in the y direction, the TE polarized optical field is obtained by the 

perturbation polarization zPδ  in z direction denoted as 

 0 23pert yz
P Eωε δε⎡ ⎤ =⎣ ⎦  (43) 

The TE↔TM mode conversion between two codirectional and orthogonal modes is 

described by the coupled mode equations 

 

i xm
m

i xm
m

dA i B e
dx

dB i A e
dx

β

β

κ

κ

− Δ

Δ

= −

= −
 (44) 

where mA  and mB  are complex amplitudes of the two coupled optical waves, 

TM TEβ β βΔ ≡ −  and the coupling coefficient κ  is obtained by [7], [11] 

 3/ 2
0 51

1 ( )
2

e
e o yn n k r Eκ =  (45) 

Assuming the boundary conditions  
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0

( 0) 0
( 0)

m

m

A x
B x B

= =
= =

 (46) 

the solutions of equation 44 are obtained as 

 

2 2
0 2 2

2 2 2 2
0 2 2

( ) sin( )

( ) cos( ) sin( )

x
m

x
m

xA B e x

iB x B e x x

δ

δ

κ κ δ
κ δ

δκ δ κ δ
κ δ

−

−

+= −
+

⎡ ⎤
= + − +⎢ ⎥

+⎣ ⎦

 (47) 

where 1
2 ( )TM TEδ β β≡ − . When the two modes are phase matched, we have the simpler 

solution  

 0

0

sin( )
cos( )

m

m

A B x
B B x

κ
κ

= −
=

 (48) 

The plot of the normalized powers 2
0( ) /mA x B  and 2

0( ) /mB x B  is illustrated in Fig. 6. 

The shortest coupling length L  for full power transfer is denoted by 

 
2

L π
κ

=  (49) 

Full power transfer requires phase-matching condition that TM TEβ β=  in the uniform 

waveguide structure and 2 /TM TEβ β π− = Λ  in the  periodic structure  (Fig.  7).  In  Fig. 

 
Fig. 6. Power transfer between two coupled optical waves. (a) phase-matched conditon, 

(b)unmatched conditions 

xκ xκ
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2
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B

2
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B

2
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1 1 
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Fig. 7. Periodic electrode structure for electrooptically induced TE-TM coupling 

7, the periodicity of the structure compensates for the difference between the two 

propagation constants. Assuming the phase-matching condition at a certain wavelength 

λ , the polarization converter behaves as a wavelength filter and the optical bandwidth 

of TE↔TM conversion becomes [12] 

 0.8FWHM L
λ λΛ⎛ ⎞Δ ≈ ⎜ ⎟

⎝ ⎠
 (50) 

where FWHMλΔ  is the 3-dB bandwidth (FWHM). 

Λ

y 

x z 

Vc

TE TM 

Po Pi 
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CHAPTER III 

DESIGN OF ELECTROOPTIC MATCHED FILTER 

 
 
A. The Principal Characteristics of EMF 

The electrooptic matched filter (EMF) utilizes polarization coupling produced by 

the Pockels effect in a periodic waveguide structure. A cross-sectional view of 

interdigital electrodes implemented on LiNbO3 is shown schematically in Fig. 8. The 

voltage V is applied to the electrodes and establishes periodic electric fields in the 

single-mode waveguide. The x component of electric field provides TE↔TM mode 

conversion induced by 23δε  perturbation in the permeability tensor via the electrooptic 

coefficient 51r . The mode conversion is a wavelength selective process. The most 

efficient wavelength 0λ  is found by the phase-matching condition as 

 0 TM TEn nλ = Λ −  (51) 

where Λ  is the period of interdigital electrodes and TMn  and TEn  are the effective 

refractive indices of the TM and TE modes. It is noted that the EMF is polarization 

independent since TE→TM and TM→TE conversion are reciprocal processes. 

 
Fig. 8. Cross-sectional view of electrodes 

Λ 

+V                Ground               +V               Ground              +V 
Electrode 

Insulating 
film Waveguide 

Substrate 
y

x

z
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Wavelength selection is achieved if the first order phase-matching condition 0Δ =  

is satisfied, where the phase mismatch constant Δ  is [13] 

 2 ( ) 2TM TEn n
c

πν π−
Δ = ±

Λ
 (52) 

and c  and ν  are the light velocity in free space and the optical frequency, respectively. 

Assuming the selected optical frequency jν , Δ  is large and the efficiency of 

polarization conversion is reduced as the frequency is slightly different from jν . Hence, 

the tuning mechanism can be described by applying the voltage to the electrodes to 

nullify Δ  at any desired frequency. The change in birefringence induced by the electric 

field makes up for the frequency deviation from jν  of equation 52. Assuming that the 

birefringence TM TEn n−  is equal to 1 3n n−  the difference between principal refractive 

indices of LiNbO3, the deviation in frequency ν  from jν  is derived from equation 52 

as below  

 
1 32 ( )j

g g

c
n n

ν ν
π

Δ
− =

−
 (53) 

where 1gn  and 3gn  are the group refractive indices of the birefringent substrate material.  

Sidelobe suppression can be accomplished by implementing a suitable coupling 

strength distribution along the length of a waveguide. Coupling interaction controlled 

by applying a weighting function to the electrodes has been reported [14], [15]. In the 

EMF design, a raised cosine apodization is used to achieve highly suppressed sidelobes. 

The sidelobe levels are suppressed to below –10 dB by applying a raised cosine 

apodizing function  
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 0 0( ) 0.5 cos 2 0.5yy
L

κ κ κ π⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (54) 

where the uniform coupling coefficient 0κ  is denoted by 0 / 2Lκ π=  from equation 49. 

The TE↔TM polarization conversion of EMF is described by the coupled mode 

equations 

 

( ) ( )

( ) ( )

i y

i y

dA y i B y e
dy

dB y i A y e
dy

κ

κ

− Δ

Δ

= −

= −
 (55) 

for the case of codirectional coupling and will be analyzed in detail at section 3.4. Here, 

( )A y  and ( )B y  are the complex amplitude of the two coupled modes. 

B. The EMF Structure for Two Sidebands 

In previous tunable electrooptic filters, the same voltage was supplied to each set 

of interdigital electrodes for mode conversion while another separate voltage applied 

outside TE↔TM mode conversion region was utilized to perform tuning of the 

wavelength [12], [15]. In contrast, the EMF operates by applying programmable 

voltages to independent electrode sets as shown in Fig. 9. The array of electrode sets is 

formed on the waveguide which is fabricated on an x-cut y-propagating LiNbO3 

substrate by Ti diffusion. The EMF is composed of 8 sets of interdigital electrodes to 

tune 5 wavelength channels according to the relation / 2 1N P= + , where N  is  the 

number of selectable channels and P  is the number of electrode sets. The spatial 

period of the interdigital electrodes Λ  is 21 mμ . The period of electrode sets Π  is 

200 ⋅ Λ  and the length of single mode conversion region cl  is (179 3/ 4)+ ⋅Λ . The ideal 
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Fig. 9. Schematic diagram of the EMF structure and orientation for two sidebands 

coupling strength distribution along the length of the electrode sets in the structure for 

two sidebands is  

 ( ) ( ) cos( ), 1, 2, 3, ,j jy S y y j Nκ = Δ =  (56) 

where ( )S y  is the apodization funciton and  

 1 3 02 ( )g g j
j

n n
c

π ν ν− −
Δ =  (57) 

It is noted that in the phase-matched condition, the integral of the coupling coefficient 

over the interaction length L  is given by 

 
0 2
L

dy πκ =∫  (58) 

for a complete TE↔TM power conversion. 

The j’th frequency  channel is selected  by applying a  periodic set of  voltages jpV , 

1, 2, 3, ,p P= , to the electrode sets. In equation 55, the coupling coefficient is real, 

V1               V2               V3          V4          V5               V6               V7               V8 

Λ 

Π           Π           Π

TE/
TM 

Po 

TM/
TE 
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so that frequency channels equally separated from the center frequency 0ν  are selected 

in the structure for two sidebands, where  

 0
TM TE

c
n n

ν =
− Λ

 (59) 

The algorithm to select frequency channels is shown in Fig. 10. At the center frequency 

0ν , 0 0Δ =  and the coupling coefficient κ  is given by [12] 

 

Fig. 10. Selection of voltages in the structure of two sidebands. (a) for 0j =  sideband, 
(b) for 1j = ±  sidebands, (c) for 2j = ±  sidebands 
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3

51

0

xn r Eπκ
λ

Γ
=  (60) 

where Γ  is an overlap parameter of the applied electric field with the optical 

waveguide mode and 1 3n n n= . Suppose that the width and the spacing for the 

interdigital electrodes are equal to / 4Λ , the uniform coupling voltage for selecting 0ν  

is written from equations 57 and 59 by 

 0
0 3

512
V

n r L
λ Λ

=
Γ

 (61) 

In this research, 0V  is obtained experimentally to optimize the polarization conversion. 

The ratio of jpV  to the 0V  are given in Table 1 where the voltages for the raised cosine 

apodization are obtained by using equation 54. 

C. The EMF Structure for Single Sideband 

The modified EMF structure to select only a single sideband is shown in Fig.11. 

The  length   of    an   interdigital   electrode   set    is    periodically    altered    between 

Table 1. The ratio of jpV  applied to p’th channel to 0V  for the selection of j’th 
frequency channel in the structure of two sidebands 

1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1

±1 1.848 0.765 -0.765 -1.848 -1.848 -0.765 0.765 1.848
±2 1.414 -1.414 -1.414 1.414 1.414 -1.414 -1.414 1.414
0 0.538 0.809 1.191 1.462 1.462 1.191 0.809 0.538

±1 0.994 0.619 -0.912 -2.701 -2.701 -0.912 0.619 0.994
±2 0.761 -1.144 -1.685 2.067 2.067 -1.685 -1.144 0.761

Without
apodization

With
raised cosine
apodization

j,
channel

p, the number of electrode set
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(200 1/ 4)αΠ = − Λ  and (200 1/ 4)βΠ = + Λ . The regions of αΠ  and βΠ  cause in-

phase and quadrature coupling, respectively. The coupling coefficient is complex and 

is written by 

 ( ) ( ) ji y
j y S y eκ Δ=  (62) 

For the in-phase and quadrature coupling, the coupling coefficient jκ  is written by 

 
( ) ( ) cos( ), (2 1)

( ) ( )sin( ), 2
j j

j j

y S y y j n

y iS y y j n

κ

κ

= Δ = ± −

= Δ = ±
 (63) 

respectively, with 1, 2, 3,n = . In the similar manner to the structure for two 

sidebands, the treatment to select the p’th electrode voltage for j’th frequency channel 

for single sideband is illustrated in Fig. 12. The voltages for 1j = −  and 2j = −  can be 

obtained from Fig. 12 (b) and (c) with the opposite sign for the even voltages. The 

selected voltages for j’th frequency channel satisfy the relation 

 
Fig. 11. Modified configuration in the series of electrodes for a single sideband 

V1               V2               V3          V4          V5               V6               V7               V8 

Πα          Πβ         Πα         Πβ         Πα

TE/
TM 

Po 

TM/
TE 

y 

x 
z Λ 

LiNbO3 

Ti:LiNbO3

lc    lpα     lc    lpβ

Pi 



26 

 
Fig. 12. Selection of voltages in the structure of a single sideband. (a) for 0j =  

sideband, (b) for 1j =  sideband, (c) for 2j =  sideband 

 
0

( )
2

k
L i y

j jky e dy πκ δ− Δ =∫  (64) 

with 1jkδ =  if j k=  and 0jkδ =  otherwise. Table 2 summarizes the ratio of the 

voltages applied to electrode sets jpV  to the uniform coupling voltage 0V  for both an 

unapodized and a raised cosine apodized filter transmission. It is found that the EMF 

acceptably has an expected filter characteristics, although the voltages applied to the 

electrode  sets  vary  in  a  discrete  manner  to  select  both   two  sidebands  and single  
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Table 2. The ratio of jpV  applied to p’th channel to 0V  for the selection of j’th 
frequency channel in the structure of single sideband 

1 2 3 4 5 6 7 8
-2 0.707 -0.707 -0.707 0.707 0.707 -0.707 -0.707 0.707
-1 1.848 -1.848 -0.765 -0.765 -1.848 1.848 0.765 0.765
0 2 0 2 0 2 0 2 0
1 1.848 1.848 -0.765 0.765 -1.848 -1.848 0.765 -0.765
2 0.707 0.707 -0.707 -0.707 0.707 0.707 -0.707 -0.707
-2 0.380 -0.572 -0.842 1.034 1.034 -0.842 -0.572 0.380
-1 0.994 -1.494 -0.912 -1.119 -2.701 2.201 0.619 0.412
0 1.076 0 2.383 0 2.924 0 1.617 0
1 0.994 1.494 -0.912 1.119 -2.701 -2.201 0.619 -0.412
2 0.380 0.572 -0.842 -1.034 1.034 0.842 -0.572 -0.380

Without
apodization

With
raised cosine
apodization

j,
channel

p, the number of electrode set

 

sideband. 

D. Matrix Formulation and Simulation Results 

The EMF of Fig. 9 and Fig. 11 consists of 8 identical TE↔TM mode coupling 

regions spaced by 10% of the width of a set. The effect of each individual element, 

either a coupling region or a propagation region, can be analyzed in a systematic 

manner by using a matrix formulation [13], [16]. In a matrix method, each optical 

element is described by a 2×2 matrix. The overall transfer matrix of the whole system 

is given by the product of all the individual element matrices. In the structure for two 

sidebands, the effect of polarization conversion in the j’th coupling region and of phase 

shift in the spacing between electrodes is written by 

 + =j 1 j jE M E  (65) 

The vector jE  is given by 
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 , 1, 2, 3, ,
TE
j

TM
j

E
j P

E
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

jE  (66) 

where TM
jE  and TE

jE  are the electric field amplitudes of two polarization modes just 

prior to the j’th coupling region and the 2×2 transfer matrix jM  is given by C Φ
jM M . 

Here, the matrix ΦM  describes the phase shift occurring at the propagation region 

between adjacent coupling regions, which is given by  

 
2

2

0

0

i

i

e

e

φ

φ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ΦM  (67) 

where the experienced phase retardation is 

 1 2( ) plφ β β= −  (68) 

with 1 2 /TEn cβ πν= , 2 2 /TMn cβ πν=  and p cl l= Π − . The matrix C
jM  representing the 

effect of polarization conversion at the j’th coupling region is in general written by 

adapting the well known solution of equation 55 [11], [17] 

 
1 1

2 2

( ) ( )
2 2

( ) ( )* 2 2

c c

c c

i l i l

c c

i l i l

c c

a e b e

b e a e

β β

β β

Δ Δ
− + − +

Δ Δ
− − − −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

C
jM  (69) 

where  

 

2 2

2 2

2 2

2 2

cos( )

sin( )

c c

c c

a l i

b i l

δκ δ
κ δ

δ κ δ
κ δ

= + +
+

= − +
+

 (70) 
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and *z  is used to denote the complex conjugate of z . The EMF consists of the first 

coupling region and the 1P −  pairs of alternating polarization conversion region and 

the spacing between them, so that the conversion matrix is given by 

 1
2

P

j

C
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ C Φ C

jM M M  (71) 

Assuming that the TE polarization mode is excited at the input of EMF and its 

amplitude is normalized to 1, the power coupling efficiency is written by 

 2
12PCE C=  (72) 

where 12C  is the off-diagonal element of the matrix C .  

The performance characteristics for channel 0, ±1, and ±2 in the structure for two 

sidebands are shown in Fig. 13 (a), (b), and (c) where the sidelobe suppression by 

raised cosine apodization is shown in the solid curve compared with the unapodized 

dashed line. As can be observed, the sidelobe level is reduced at the expense of its 

bandwidth performance by applying a raised cosine apodization function along the 

length of the EMF coupling region.  

Likewise, the transfer matrix for single sideband configuration shown in Fig. 11 

can be described except that the matrix ΦM  in equation 71 is replaced with ΦαM  if j is 

the even number and ΦβM  ohterwise. Here, the matrices ΦαM  and ΦβM  are given in 

the similar form to equation 67, while αφ  and βφ  are used instead of φ , respectively 

where 

 1 2

1 2

( )

( )
p

p

l

l
α α

β β

φ β β

φ β β

= −

= −
 (73) 
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Fig. 13. Simulated performances in the structure of two sidebands. (a) for channel 

0, (b) for channel ±1, (c) for channel ±2 
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Fig. 13. Continued 
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Fig. 14. Simulated performance in the single sideband configuration for channel –2 

(c) 
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with p cl lα α= Π −  and p cl lβ β= Π − . The calculated power conversion spectra for 

channel –2 in the structure of single sideband are shown in Fig. 14. The sidelobe 

suppresion reduced by a raised cosine apodization is shown by the solid curve. It is 

observed that a raised cosine weighting results in sidelobe levels below –20 dB. 
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CHAPTER IV 

ELECTRONIC DRIVING CIRCUIT FOR EMF 

 
 
A. Digital-to-Analog Converter Driving Circuit 

The EMF is controlled by applying different voltages to each electrode set 

independently. A digital-to-analog converter (DAC) independently controls the voltage 

on each electrode. The AD5379 from Analog Devices contains 40 DACs in one 

package and provides the maximum output voltages span of 17.5 V, corresponding to 

an output range of –8.75 V to +8.75 V. In this research, programmable data inputs are 

loaded from a personal computer (PC) memory into the AD5379 input registers by a 

serial interface and are decoded into the DAC output at a selected channel (Fig. 15). 

Fig 16  shows  the  electronic  driving circuit configuration for the EMF. The PC is  

 

Fig. 15. AD5379 board 
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Fig. 16. Electronic driving circuit setup 

connected to the AC5379 board by a Centronics cable. The DAC output voltages are 

insufficient to directly drive the EMF, so an external op-amp array is utilized to obtain 

higher voltages. 

B. Loading DAC Channels 

Analog Devices provides the PC software for control of DACs. Fig. 17 shows the 

graphic user interface to load each channel in the DAC menu of the software. All 

channels or each channel can be loaded manually with the entered DAC code. The 

AD5379 accepts 14-bit data word format in Table 3 from the serial interface. The 

hexadecimal  code  entered at the field “Enter Data (Hex)” in Fig. 17 can be decoded as  

  

Fig. 17. Load DAC channels 
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Table 3. 14-bit data word format 

 

follows: 

 max
2 ( ) 8192

8192
HEX DEC HexV VOUT G−⎛ ⎞= × ×⎜ ⎟

⎝ ⎠
 (74) 

where max max( ) max( )VOUT VOUT VOUT+ −−  is a maximum DAC output voltage and G  

is the voltage gain of op-amp. Here, 2 ( )HEX DEC Hex  is a function that converts a 

hexadecimal number Hex  to decimal. 

-8192 000000 0000 0000
-8191 000100 0000 0000 

-11FFF01 1111 1111 
0200010 0000 0000 

+1200110 0000 0000 
+8190 3FFE11 1111 1111 
+8191 3FFF11 1111 1111 
Offset Hexadecimal14-bit data word
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CHAPTER V 

EXPERIMENTAL RESULTS 

 
 
A. Experimental Configuration 

Optical testing was carried out using the amplified spontaneous emission (ASE) 

from a broadband light source of an erbium-doped fiber pumped by a 980 nm laser 

diode. The ASE spectrum of an erbium-doped fiber amplifier is 40 nm wide with a 

peak power at a wavelength of 1530 nm. Fig. 18 shows the schematic diagram of 

experimental setup. The input polarization is selected to be TE or TM by rotating the 

end of the polarizing fiber. External electronic circuits drive 8 independent sets of 

electrodes by using a DAC array from Analog Devices, as described in Chapter IV. 

The transmitted beam, after it passes through the EMF and the optical polarizer, is 

monitored with an optical spectrum analyzer.  

 

Fig. 18. A schematic diagram of experimental setup 

B. Test Results 

In the structure for two sidebands, the transfer response of TE→TM conversion is 

shown  in  Fig.  19. Fig. 19 (a) shows the unapodized output response for the TM mode  
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Fig. 19. The optical output power spectra of EMF for TE→TM polarization 

conversion in the structure for two sidebands. (a) unapodized and (b) apodized filter 
responses of TM mode at channel 0, (c) apodized filter response of TE mode at channel 
0, (d) apodized output power responses of TM mode at channel ±1 and (e) channel ±2 

(a) 

(b) 

(c) 
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Fig. 19. Continued 

at the channel 0 with a uniform coupling voltage 0V = 13 V. As can be observed, the 

optical bandwidth (FWHM) of 0.8 nm is in close agreement with the calculated value 

from equation 50. In Fig.19 (b), a sidelobe suppression level better than –17 dB is 

achieved by applying a raised cosine weighting function to the electrodes along the 

length of the device at the expense of bandwidth performance. Fig. 19 (c) shows the 

filter response of the TE polarized mode with the coupling strength apodized. In Fig. 

19 (d) and (e), apodized TM mode output responses for channel ±1 and ±2 are shown 

(d) 

(e) 
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with wavelength shifted. The filter performance of TM→TE polarization conversion is 

similar to that of TE→TM conversion shown in Fig. 19. 

Figs. 20, 21 and 22 show theoretical and experimental curves for apodized EMF 

filter characteristic at channel 0, ±1, and ±2, respectively. In these figures, only the 

baseline transmittance of the computer simulation plots was adjusted to approximately 

match the experimental curves. The results are in good agreement with theory. 
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Fig. 20. EMF filter characteristic at channel 0 
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Fig. 21. EMF filter characteristic at channel ±1 
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Fig. 22. EMF filter characteristic at channel ±2
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CHAPTER VI 

CONCLUSIONS 

 
 

This thesis presents a theoretical and experimental study of an electrooptic 

matched filter (EMF) designed for operation in the 1530 nm spectral regime. The 

device utilizes TE↔TM polarization conversion in a single mode waveguide fabricated 

in LiNbO3 by Ti diffusion. The number of selectable frequency channels N  is 5N =  

according to the relation / 2 1N P= +  with the number of electrode sets 8P = . 

Channel selection is achieved by applying 8 independent programmable voltages to the 

electrode sets.  

In the structure for two sidebands, the two channels equally separated from the 

center frequency 0ν  are selected. The modified configuration for single sideband 

provides the selection of only one channel. The performance of the EMF is inherently 

independent of the input polarization because of the reciprocal characteristic between 

TE and TM mode polarization conversion. A spectral tuning range of 3.2 nm for 5 

channels is demonstrated in this research without altering bandwidth performance. 

More channels can be accommodated by increasing the number of electrode sets (e.g., 

if 198P = , then 100N = ) with the length of the device unchanged.  

A tuning speed of less than 50 ns was achieved previously in a LiNbO3 tunable 

filter [18], and similar fast tuning is expected in the EMF when suitable electronic 

driving circuits are supported. The full width at half-maximum (FWHM) of the device 

is 0.8 nm with no apodization of electrode voltages. The FWHM increases to 1.0 nm 
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when a raised cosine weighting function is applied to the electrode voltages. 

Apodization improves the sidelobe suppression from –8.6 dB to –17.2 dB. 
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CHAPTER VII 

RECOMMENDATIONS 

 
 

In this thesis, the configuration for two sidebands has been tested and 

demonstrated. Tests of the structure for single sideband were also conducted and 

showed the transmittance spectra expected from computer simulation. However, the 

device with 8 electrode sets for single sideband produces unacceptable results, tuning 

over only +1, 0, and –1 frequency channels. The structure for single sideband with 

more than 8 electrode sets can realize good filter characteristics showing close 

agreement with prediction. 

In the current setup, voltages higher than 10 V are applied to drive the EMF from 

external circuitry. These voltages are out of the range which can be applied by the 

DAC used in this research and are amplified by op-amps to overcome the voltage limit 

of the DAC. New electronic components to provide higher voltage supply can facilitate 

the experiments. Additionally, the effect of oxide layer on an overlap parameter Γ  

should be analyzed to predict exact voltages applied to electrodes. 

Based on the results presented in Chapter IV, the EMF can be configured for a 4 

port add-drop multiplexer and a two port bandpass filter with a Mach-Zehnder 

interferometer structure. Here, the two arms in the Mach-Zehnder utilize EMF 

polarization converters. 

The spectral tuning range of the EMF for coarse WDM application can be 

improved by using a LiTaO3 substrate because the birefringence of LiTaO3 is much 
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less than that of LiNbO3, leading to approximately 20 times the tuning range for a 

given device length compared with LiNbO3. 
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 APPENDIX A 

      MATLAB CODE 
 
 
Two_2_center.m 

Description of Two_2_center.m 

Two_2_center.m is a program that performs the matrix multiplication described in 

Chapter III to calculate the PCE of channel ±2 in the structure for two sidebands. The 

refractive indices were obtained from modified Sellmeier equations [1] at the 

wavelength of 1.53 μm. The PCE of channel 0 and ±1 is each obtained by adjusting the 

variable lambdaj and S. 

Two_2_center.m Code 

n3=2.2119; 
n1=2.1386; 
n=sqrt(n3*n1); 
delta_ngr=0.08; 
 
period=21; 
lc=(179+3/4)*period; 
lp=(20+1/4)*period; 
L=lc*8+lp*7; 
 
lambda0=period*(n3-n1); 
lambdaj=lambda0-0.0016; 
 
npoints=2000; 
 
S=pi/(2*1.51*10^4); 
 
for int=1:npoints 
 
lambda = 1.37+0.0001*int; 
delta=2*pi*(n3-n1)*(1/lambda-1/lambda0); 
deltaj=2*pi*delta_ngr*(1/lambdaj-1/lambda0); 
d=delta/2; 
b1=2*pi/lambda*n1; 
b2=2*pi/lambda*n3; 
 
K1=S*cos(deltaj*1/16*L); 
K1a=S*cos(deltaj*1/16*L)*(1+0.5*cos(2*pi*(1/16-0.5))); 
ac1=cos(sqrt(K1^2+d^2)*lc)+i*d/sqrt(K1^2+d^2)*sin(sqrt(K1^2+d^2)*lc); 
bc1=-i*K1/sqrt(K1^2+d^2)*sin(sqrt(K1^2+d^2)*lc); 
ac1a=cos(sqrt(K1a^2+d^2)*lc)+i*d/sqrt(K1a^2+d^2)*sin(sqrt(K1a^2+d^2)*l
c); 
bc1a=-i*K1a/sqrt(K1a^2+d^2)*sin(sqrt(K1a^2+d^2)*lc); 
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MC1=[ac1*exp(-i*(b1+d)*lc) bc1*exp(-i*(b1+d)*lc); -conj(bc1)*exp(-
i*(b2-d)*lc) conj(ac1)*exp(-i*(b2-d)*lc)]; 
MC1a=[ac1a*exp(-i*(b1+d)*lc) bc1a*exp(-i*(b1+d)*lc); -conj(bc1a)*exp(-
i*(b2-d)*lc) conj(ac1a)*exp(-i*(b2-d)*lc)]; 
 
MP=[exp(-i*b1*lp) 0; 0 exp(-i*b2*lp)]; 
K2=S*cos(deltaj*3/16*L); 
K2a=S*cos(deltaj*3/16*L)*(1+0.5*cos(2*pi*(3/16-0.5))); 
ac2=cos(sqrt(K2^2+d^2)*lc)+i*d/sqrt(K2^2+d^2)*sin(sqrt(K2^2+d^2)*lc); 
bc2=-i*K2/sqrt(K2^2+d^2)*sin(sqrt(K2^2+d^2)*lc); 
ac2a=cos(sqrt(K2a^2+d^2)*lc)+i*d/sqrt(K2a^2+d^2)*sin(sqrt(K2a^2+d^2)*l
c); 
bc2a=-i*K2a/sqrt(K2a^2+d^2)*sin(sqrt(K2a^2+d^2)*lc); 
MC2=[ac2*exp(-i*(b1+d)*lc) bc2*exp(-i*(b1+d)*lc); -conj(bc2)*exp(-
i*(b2-d)*lc) conj(ac2)*exp(-i*(b2-d)*lc)]; 
MC2a=[ac2a*exp(-i*(b1+d)*lc) bc2a*exp(-i*(b1+d)*lc); -conj(bc2a)*exp(-
i*(b2-d)*lc) conj(ac2a)*exp(-i*(b2-d)*lc)]; 
T2=MC2*MP; 
T2a=MC2a*MP; 
 
K3=S*cos(deltaj*5/16*L); 
K3a=S*cos(deltaj*5/16*L)*(1+0.5*cos(2*pi*(5/16-0.5))); 
ac3=cos(sqrt(K3^2+d^2)*lc)+i*d/sqrt(K3^2+d^2)*sin(sqrt(K3^2+d^2)*lc); 
bc3=-i*K3/sqrt(K3^2+d^2)*sin(sqrt(K3^2+d^2)*lc); 
ac3a=cos(sqrt(K3a^2+d^2)*lc)+i*d/sqrt(K3a^2+d^2)*sin(sqrt(K3a^2+d^2)*l
c); 
bc3a=-i*K3a/sqrt(K3a^2+d^2)*sin(sqrt(K3a^2+d^2)*lc); 
MC3=[ac3*exp(-i*(b1+d)*lc) bc3*exp(-i*(b1+d)*lc); -conj(bc3)*exp(-
i*(b2-d)*lc) conj(ac3)*exp(-i*(b2-d)*lc)]; 
MC3a=[ac3a*exp(-i*(b1+d)*lc) bc3a*exp(-i*(b1+d)*lc); -conj(bc3a)*exp(-
i*(b2-d)*lc) conj(ac3a)*exp(-i*(b2-d)*lc)]; 
T3=MC3*MP; 
T3a=MC3a*MP; 
 
K4=S*cos(deltaj*7/16*L); 
K4a=S*cos(deltaj*7/16*L)*(1+0.5*cos(2*pi*(7/16-0.5))); 
ac4=cos(sqrt(K4^2+d^2)*lc)+i*d/sqrt(K4^2+d^2)*sin(sqrt(K4^2+d^2)*lc); 
bc4=-i*K4/sqrt(K4^2+d^2)*sin(sqrt(K4^2+d^2)*lc); 
ac4a=cos(sqrt(K4a^2+d^2)*lc)+i*d/sqrt(K4a^2+d^2)*sin(sqrt(K4a^2+d^2)*l
c); 
bc4a=-i*K4a/sqrt(K4a^2+d^2)*sin(sqrt(K4a^2+d^2)*lc); 
MC4=[ac4*exp(-i*(b1+d)*lc) bc4*exp(-i*(b1+d)*lc); -conj(bc4)*exp(-
i*(b2-d)*lc) conj(ac4)*exp(-i*(b2-d)*lc)]; 
MC4a=[ac4a*exp(-i*(b1+d)*lc) bc4a*exp(-i*(b1+d)*lc); -conj(bc4a)*exp(-
i*(b2-d)*lc) conj(ac4a)*exp(-i*(b2-d)*lc)]; 
T4=MC4*MP; 
T4a=MC4a*MP; 
 
K5=S*cos(deltaj*9/16*L); 
K5a=S*cos(deltaj*9/16*L)*(1+0.5*cos(2*pi*(9/16-0.5))); 
ac5=cos(sqrt(K5^2+d^2)*lc)+i*d/sqrt(K5^2+d^2)*sin(sqrt(K5^2+d^2)*lc); 
bc5=-i*K5/sqrt(K5^2+d^2)*sin(sqrt(K5^2+d^2)*lc); 
ac5a=cos(sqrt(K5a^2+d^2)*lc)+i*d/sqrt(K5a^2+d^2)*sin(sqrt(K5a^2+d^2)*l
c); 
bc5a=-i*K5a/sqrt(K5a^2+d^2)*sin(sqrt(K5a^2+d^2)*lc); 
MC5=[ac5*exp(-i*(b1+d)*lc) bc5*exp(-i*(b1+d)*lc); -conj(bc5)*exp(-
i*(b2-d)*lc) conj(ac5)*exp(-i*(b2-d)*lc)]; 
MC5a=[ac5a*exp(-i*(b1+d)*lc) bc5a*exp(-i*(b1+d)*lc); -conj(bc5a)*exp(-
i*(b2-d)*lc) conj(ac5a)*exp(-i*(b2-d)*lc)]; 
T5=MC5*MP; 
T5a=MC5a*MP; 
 
K6=S*cos(deltaj*11/16*L); 
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K6a=S*cos(deltaj*11/16*L)*(1+0.5*cos(2*pi*(11/16-0.5))); 
ac6=cos(sqrt(K6^2+d^2)*lc)+i*d/sqrt(K6^2+d^2)*sin(sqrt(K6^2+d^2)*lc); 
bc6=-i*K6/sqrt(K6^2+d^2)*sin(sqrt(K6^2+d^2)*lc); 
ac6a=cos(sqrt(K6a^2+d^2)*lc)+i*d/sqrt(K6a^2+d^2)*sin(sqrt(K6a^2+d^2)*l
c); 
bc6a=-i*K6a/sqrt(K6a^2+d^2)*sin(sqrt(K6a^2+d^2)*lc); 
MC6=[ac6*exp(-i*(b1+d)*lc) bc6*exp(-i*(b1+d)*lc); -conj(bc6)*exp(-
i*(b2-d)*lc) conj(ac6)*exp(-i*(b2-d)*lc)]; 
MC6a=[ac6a*exp(-i*(b1+d)*lc) bc6a*exp(-i*(b1+d)*lc); -conj(bc6a)*exp(-
i*(b2-d)*lc) conj(ac6a)*exp(-i*(b2-d)*lc)]; 
T6=MC6*MP; 
T6a=MC6a*MP; 
 
K7=S*cos(deltaj*13/16*L); 
K7a=S*cos(deltaj*13/16*L)*(1+0.5*cos(2*pi*(13/16-0.5))); 
ac7=cos(sqrt(K7^2+d^2)*lc)+i*d/sqrt(K7^2+d^2)*sin(sqrt(K7^2+d^2)*lc); 
bc7=-i*K7/sqrt(K7^2+d^2)*sin(sqrt(K7^2+d^2)*lc); 
ac7a=cos(sqrt(K7a^2+d^2)*lc)+i*d/sqrt(K7a^2+d^2)*sin(sqrt(K7a^2+d^2)*l
c); 
bc7a=-i*K7a/sqrt(K7a^2+d^2)*sin(sqrt(K7a^2+d^2)*lc); 
MC7=[ac7*exp(-i*(b1+d)*lc) bc7*exp(-i*(b1+d)*lc); -conj(bc7)*exp(-
i*(b2-d)*lc) conj(ac7)*exp(-i*(b2-d)*lc)]; 
MC7a=[ac7a*exp(-i*(b1+d)*lc) bc7a*exp(-i*(b1+d)*lc); -conj(bc7a)*exp(-
i*(b2-d)*lc) conj(ac7a)*exp(-i*(b2-d)*lc)]; 
T7=MC7*MP; 
T7a=MC7a*MP; 
 
K8=S*cos(deltaj*15/16*L); 
K8a=S*cos(deltaj*15/16*L)*(1+0.5*cos(2*pi*(15/16-0.5))); 
ac8=cos(sqrt(K8^2+d^2)*lc)+i*d/sqrt(K8^2+d^2)*sin(sqrt(K8^2+d^2)*lc); 
bc8=-i*K8/sqrt(K8^2+d^2)*sin(sqrt(K8^2+d^2)*lc); 
ac8a=cos(sqrt(K8a^2+d^2)*lc)+i*d/sqrt(K8a^2+d^2)*sin(sqrt(K8a^2+d^2)*l
c); 
bc8a=-i*K8a/sqrt(K8a^2+d^2)*sin(sqrt(K8a^2+d^2)*lc); 
MC8=[ac8*exp(-i*(b1+d)*lc) bc8*exp(-i*(b1+d)*lc); -conj(bc8)*exp(-
i*(b2-d)*lc) conj(ac8)*exp(-i*(b2-d)*lc)]; 
MC8a=[ac8a*exp(-i*(b1+d)*lc) bc8a*exp(-i*(b1+d)*lc); -conj(bc8a)*exp(-
i*(b2-d)*lc) conj(ac8a)*exp(-i*(b2-d)*lc)]; 
T8=MC8*MP; 
T8a=MC8a*MP; 
 
C=T8*T7*T6*T5*T4*T3*T2*MC1; 
PCE(int)=10*log10((abs(C(1,2)))^2); 
Ca=T8a*T7a*T6a*T5a*T4a*T3a*T2a*MC1a; 
PCEa(int)=10*log10((abs(Ca(1,2)))^2); 
 
dvec(int)=delta; 
end; 
 
plot(dvec*L, PCE, ':k'); 
hold on 
plot(dvec*L, PCEa, 'k'); 
hold on 
plot(dvec*L,-3, 'k', dvec*L,-10, 'k', dvec*L,-20, 'k'); 
hold off 
set(gcf,'Color','white'); 
xlabel('\DeltaL'); 
ylabel('PCE(dB)'); 
xlim([-30,30]); 
ylim([-30,0]); 

Single_2_center.m 
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Description of Single_2_center.m 

Single_2_center.m was written to calculate the PCE of channel 2 in the modified 

configuration for single sideband. In the similar manner to channel selection for two 

sidebands, the PCE of selectable channel is achieved by changing the value of variable 

lambdaj and S. 

Signle_2_center.m Code 

n3=2.2119; 
n1=2.1386; 
n=sqrt(n3*n1); 
delta_ngr=0.08; 
 
period=21; 
lc=(179+3/4)*period; 
lpa=(20)*period; 
lpb=(20+2/4)*period; 
L=lc*8+lpa*4+lpb*3; 
 
lambda0=period*(n3-n1); 
lambdaj=lambda0-0.0016; 
 
npoints=2000; 
 
S=pi/(2*3.02*10^4); 
 
for int=1:npoints 
 
lambda = 1.37+0.0001*int; 
delta=2*pi*(n3-n1)*(1/lambda-1/lambda0); 
deltaj=2*pi*delta_ngr*(1/lambdaj-1/lambda0); 
d=delta/2; 
b1=2*pi/lambda*n1; 
b2=2*pi/lambda*n3; 
 
K1=S*cos(deltaj*1/16*L); 
K1a=S*cos(deltaj*1/16*L)*(1+0.5*cos(2*pi*(1/16-0.5))); 
ac1=cos(sqrt(K1^2+d^2)*lc)+i*d/sqrt(K1^2+d^2)*sin(sqrt(K1^2+d^2)*lc); 
bc1=-i*K1/sqrt(K1^2+d^2)*sin(sqrt(K1^2+d^2)*lc); 
ac1a=cos(sqrt(K1a^2+d^2)*lc)+i*d/sqrt(K1a^2+d^2)*sin(sqrt(K1a^2+d^2)*l
c); 
bc1a=-i*K1a/sqrt(K1a^2+d^2)*sin(sqrt(K1a^2+d^2)*lc); 
MC1=[ac1*exp(-i*(b1+d)*lc) bc1*exp(-i*(b1+d)*lc); -conj(bc1)*exp(-
i*(b2-d)*lc) conj(ac1)*exp(-i*(b2-d)*lc)]; 
MC1a=[ac1a*exp(-i*(b1+d)*lc) bc1a*exp(-i*(b1+d)*lc); -conj(bc1a)*exp(-
i*(b2-d)*lc) conj(ac1a)*exp(-i*(b2-d)*lc)]; 
 
MP2=[exp(-i*b1*lpa) 0; 0 exp(-i*b2*lpa)]; 
K2=S*sin(deltaj*3/16*L); 
K2a=S*sin(deltaj*3/16*L)*(1+0.5*cos(2*pi*(3/16-0.5))); 
ac2=cos(sqrt(K2^2+d^2)*lc)+i*d/sqrt(K2^2+d^2)*sin(sqrt(K2^2+d^2)*lc); 
bc2=-i*K2/sqrt(K2^2+d^2)*sin(sqrt(K2^2+d^2)*lc); 
ac2a=cos(sqrt(K2a^2+d^2)*lc)+i*d/sqrt(K2a^2+d^2)*sin(sqrt(K2a^2+d^2)*l
c); 
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bc2a=-i*K2a/sqrt(K2a^2+d^2)*sin(sqrt(K2a^2+d^2)*lc); 
MC2=[ac2*exp(-i*(b1+d)*lc) bc2*exp(-i*(b1+d)*lc); -conj(bc2)*exp(-
i*(b2-d)*lc) conj(ac2)*exp(-i*(b2-d)*lc)]; 
MC2a=[ac2a*exp(-i*(b1+d)*lc) bc2a*exp(-i*(b1+d)*lc); -conj(bc2a)*exp(-
i*(b2-d)*lc) conj(ac2a)*exp(-i*(b2-d)*lc)]; 
T2=MC2*MP2; 
T2a=MC2a*MP2; 
 
MP3=[exp(-i*b1*lpb) 0; 0 exp(-i*b2*lpb)]; 
K3=S*cos(deltaj*5/16*L); 
K3a=S*cos(deltaj*5/16*L)*(1+0.5*cos(2*pi*(5/16-0.5))); 
ac3=cos(sqrt(K3^2+d^2)*lc)+i*d/sqrt(K3^2+d^2)*sin(sqrt(K3^2+d^2)*lc); 
bc3=-i*K3/sqrt(K3^2+d^2)*sin(sqrt(K3^2+d^2)*lc); 
ac3a=cos(sqrt(K3a^2+d^2)*lc)+i*d/sqrt(K3a^2+d^2)*sin(sqrt(K3a^2+d^2)*l
c); 
bc3a=-i*K3a/sqrt(K3a^2+d^2)*sin(sqrt(K3a^2+d^2)*lc); 
MC3=[ac3*exp(-i*(b1+d)*lc) bc3*exp(-i*(b1+d)*lc); -conj(bc3)*exp(-
i*(b2-d)*lc) conj(ac3)*exp(-i*(b2-d)*lc)]; 
MC3a=[ac3a*exp(-i*(b1+d)*lc) bc3a*exp(-i*(b1+d)*lc); -conj(bc3a)*exp(-
i*(b2-d)*lc) conj(ac3a)*exp(-i*(b2-d)*lc)]; 
T3=MC3*MP3; 
T3a=MC3a*MP3; 
 
MP4=[exp(-i*b1*lpa) 0; 0 exp(-i*b2*lpa)]; 
K4=S*sin(deltaj*7/16*L); 
K4a=S*sin(deltaj*7/16*L)*(1+0.5*cos(2*pi*(7/16-0.5))); 
ac4=cos(sqrt(K4^2+d^2)*lc)+i*d/sqrt(K4^2+d^2)*sin(sqrt(K4^2+d^2)*lc); 
bc4=-i*K4/sqrt(K4^2+d^2)*sin(sqrt(K4^2+d^2)*lc); 
ac4a=cos(sqrt(K4a^2+d^2)*lc)+i*d/sqrt(K4a^2+d^2)*sin(sqrt(K4a^2+d^2)*l
c); 
bc4a=-i*K4a/sqrt(K4a^2+d^2)*sin(sqrt(K4a^2+d^2)*lc); 
MC4=[ac4*exp(-i*(b1+d)*lc) bc4*exp(-i*(b1+d)*lc); -conj(bc4)*exp(-
i*(b2-d)*lc) conj(ac4)*exp(-i*(b2-d)*lc)]; 
MC4a=[ac4a*exp(-i*(b1+d)*lc) bc4a*exp(-i*(b1+d)*lc); -conj(bc4a)*exp(-
i*(b2-d)*lc) conj(ac4a)*exp(-i*(b2-d)*lc)]; 
T4=MC4*MP4; 
T4a=MC4a*MP4; 
 
MP5=[exp(-i*b1*lpb) 0; 0 exp(-i*b2*lpb)]; 
K5=S*cos(deltaj*9/16*L); 
K5a=S*cos(deltaj*9/16*L)*(1+0.5*cos(2*pi*(9/16-0.5))); 
ac5=cos(sqrt(K5^2+d^2)*lc)+i*d/sqrt(K5^2+d^2)*sin(sqrt(K5^2+d^2)*lc); 
bc5=-i*K5/sqrt(K5^2+d^2)*sin(sqrt(K5^2+d^2)*lc); 
ac5a=cos(sqrt(K5a^2+d^2)*lc)+i*d/sqrt(K5a^2+d^2)*sin(sqrt(K5a^2+d^2)*l
c); 
bc5a=-i*K5a/sqrt(K5a^2+d^2)*sin(sqrt(K5a^2+d^2)*lc); 
MC5=[ac5*exp(-i*(b1+d)*lc) bc5*exp(-i*(b1+d)*lc); -conj(bc5)*exp(-
i*(b2-d)*lc) conj(ac5)*exp(-i*(b2-d)*lc)]; 
MC5a=[ac5a*exp(-i*(b1+d)*lc) bc5a*exp(-i*(b1+d)*lc); -conj(bc5a)*exp(-
i*(b2-d)*lc) conj(ac5a)*exp(-i*(b2-d)*lc)]; 
T5=MC5*MP5; 
T5a=MC5a*MP5; 
 
MP6=[exp(-i*b1*lpa) 0; 0 exp(-i*b2*lpa)]; 
K6=S*sin(deltaj*11/16*L); 
K6a=S*sin(deltaj*11/16*L)*(1+0.5*cos(2*pi*(11/16-0.5))); 
ac6=cos(sqrt(K6^2+d^2)*lc)+i*d/sqrt(K6^2+d^2)*sin(sqrt(K6^2+d^2)*lc); 
bc6=-i*K6/sqrt(K6^2+d^2)*sin(sqrt(K6^2+d^2)*lc); 
ac6a=cos(sqrt(K6a^2+d^2)*lc)+i*d/sqrt(K6a^2+d^2)*sin(sqrt(K6a^2+d^2)*l
c); 
bc6a=-i*K6a/sqrt(K6a^2+d^2)*sin(sqrt(K6a^2+d^2)*lc); 
MC6=[ac6*exp(-i*(b1+d)*lc) bc6*exp(-i*(b1+d)*lc); -conj(bc6)*exp(-
i*(b2-d)*lc) conj(ac6)*exp(-i*(b2-d)*lc)]; 
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MC6a=[ac6a*exp(-i*(b1+d)*lc) bc6a*exp(-i*(b1+d)*lc); -conj(bc6a)*exp(-
i*(b2-d)*lc) conj(ac6a)*exp(-i*(b2-d)*lc)]; 
T6=MC6*MP6; 
T6a=MC6a*MP6; 
 
MP7=[exp(-i*b1*lpb) 0; 0 exp(-i*b2*lpb)]; 
K7=S*cos(deltaj*13/16*L); 
K7a=S*cos(deltaj*13/16*L)*(1+0.5*cos(2*pi*(13/16-0.5))); 
ac7=cos(sqrt(K7^2+d^2)*lc)+i*d/sqrt(K7^2+d^2)*sin(sqrt(K7^2+d^2)*lc); 
bc7=-i*K7/sqrt(K7^2+d^2)*sin(sqrt(K7^2+d^2)*lc); 
ac7a=cos(sqrt(K7a^2+d^2)*lc)+i*d/sqrt(K7a^2+d^2)*sin(sqrt(K7a^2+d^2)*l
c); 
bc7a=-i*K7a/sqrt(K7a^2+d^2)*sin(sqrt(K7a^2+d^2)*lc); 
MC7=[ac7*exp(-i*(b1+d)*lc) bc7*exp(-i*(b1+d)*lc); -conj(bc7)*exp(-
i*(b2-d)*lc) conj(ac7)*exp(-i*(b2-d)*lc)]; 
MC7a=[ac7a*exp(-i*(b1+d)*lc) bc7a*exp(-i*(b1+d)*lc); -conj(bc7a)*exp(-
i*(b2-d)*lc) conj(ac7a)*exp(-i*(b2-d)*lc)]; 
T7=MC7*MP7; 
T7a=MC7a*MP7; 
 
MP8=[exp(-i*b1*lpa) 0; 0 exp(-i*b2*lpa)]; 
K8=S*sin(deltaj*15/16*L); 
K8a=S*sin(deltaj*15/16*L)*(1+0.5*cos(2*pi*(15/16-0.5))); 
ac8=cos(sqrt(K8^2+d^2)*lc)+i*d/sqrt(K8^2+d^2)*sin(sqrt(K8^2+d^2)*lc); 
bc8=-i*K8/sqrt(K8^2+d^2)*sin(sqrt(K8^2+d^2)*lc); 
ac8a=cos(sqrt(K8a^2+d^2)*lc)+i*d/sqrt(K8a^2+d^2)*sin(sqrt(K8a^2+d^2)*l
c); 
bc8a=-i*K8a/sqrt(K8a^2+d^2)*sin(sqrt(K8a^2+d^2)*lc); 
MC8=[ac8*exp(-i*(b1+d)*lc) bc8*exp(-i*(b1+d)*lc); -conj(bc8)*exp(-
i*(b2-d)*lc) conj(ac8)*exp(-i*(b2-d)*lc)]; 
MC8a=[ac8a*exp(-i*(b1+d)*lc) bc8a*exp(-i*(b1+d)*lc); -conj(bc8a)*exp(-
i*(b2-d)*lc) conj(ac8a)*exp(-i*(b2-d)*lc)]; 
T8=MC8*MP8; 
T8a=MC8a*MP8; 
 
C=T8*T7*T6*T5*T4*T3*T2*MC1; 
PCE(int)=10*log10((abs(C(1,2)))^2); 
Ca=T8a*T7a*T6a*T5a*T4a*T3a*T2a*MC1a; 
PCEa(int)=10*log10((abs(Ca(1,2)))^2); 
 
dvec(int)=delta; 
end; 
 
plot(dvec*L, PCE, ':k'); 
hold on 
plot(dvec*L, PCEa, 'k'); 
hold on 
plot(dvec*L,-3, 'k', dvec*L,-10, 'k', dvec*L,-20, 'k'); 
hold off 
set(gcf,'Color','white'); 
xlabel('\DeltaL'); 
ylabel('PCE(dB)'); 
xlim([-30,30]); 
ylim([-30,0]); 
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 APPENDIX B 
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