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ABSTRACT

Preconditioned Solenoidal Basis Method

for Incompressible Fluid Flows. (December 2004)

Xue Wang, B.E., South China University of Technology; M.E., Osaka University

Chair of Advisory Committee: Dr. Vivek Sarin

This thesis presents a preconditioned solenoidal basis method to solve the al-

gebraic system arising from the linearization and discretization of primitive variable

formulations of Navier-Stokes equations for incompressible fluid flows. The system

is restricted to a discrete divergence-free space which is constructed from the incom-

pressibility constraint. This research work extends an earlier work on the solenoidal

basis method for two-dimensional flows and three-dimensional flows that involved the

construction of the solenoidal basis P using circulating flows or vortices on a uniform

mesh. A localized algebraic scheme for constructing P is detailed using mixed finite

elements on an unstructured mesh. A preconditioner which is motivated by the anal-

ysis of the reduced system is also presented. Benchmark simulations are conducted

to analyze the performance of the proposed approach.
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CHAPTER I

INTRODUCTION

Advances in computing have made it possible to simulate the fluid flows using com-

putational fluid dynamics(CFD). Realistic simulation of fluid flows requires heavy

computational power to solve the nonlinear system. By using operator-splitting tech-

niques, the nonlinear system is reduced to a constrained linear system, which must

be solved alternately with an unconstrained nonlinear system. This research work

presents an effective approach to solve the linear system in incompressible fluid flows

for 2D P2/P1 triangular element meshes using mixed finite element schemes.

A. Incompressible Flow Governing Equations

The Navier-Stokes equations (NSE) have been regarded as the fundamental governing

equations for Newtonian incompressible viscous fluid flows for over 150 years. Such

incompressible potential flows are important both in fluid mechanics and in heat or

mass transfer. The flow is governed by the following Navier-Stokes equations

∂u

∂t
− 1

Re
∇2u + u · ∇u +∇p = 0 in Ω, (1.1)

∇ · u = 0 in Ω, (incompressibility condition)

u = g on ∂Ω,

where Ω and ∂Ω denote the region of the flow and its boundary, respectively. We

use standard notation, in (1.1), ∇ = { ∂
∂xi
}2i=1, u = {ui}2i=1 is the flow velocity, p is

pressure, and Re is the Reynolds number.

This thesis follows the style and format of IEEE Transactions on Software

Engineering.
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To incorporate the boundary condition from the incompressibility constraint of

the fluid, the given function g has to satisfy

∫
∂Ω

g · ndΩ = 0, (1.2)

where n is the outward unit vector normal to ∂Ω. Finally, for the time dependent

problem, an initial condition such as

u(x, 0) = u0(x) on Ω, (1.3)

for any given u0, is usually prescribed and assumed to satisfy the incompressibility

constraint, i.e., ∇ · u0 = 0.

The difficulties with the Navier-Stokes equations are the nonlinear terms u ·∇u,

and the incompressibility condition. By using convenient operator-splitting tech-

niques for the time discretization of the Navier-Stokes equations, these difficulties

will be decoupled. The following algorithm [9] shows the simplest two-stage operator-

splitting scheme

un+θ − un

θ∆t
− α

1

Re
∇2un+θ + u∗ · ∇un+θ = β

1

Re
∇2un −∇pn in Ω, (1.4)

un+θ = gn+θ on ∂Ω,

un+1 − un+θ

(1− θ)∆t
− β

1

Re
∇2un+1 +∇pn+1 = α

1

Re
∇2un+θ − u∗ · ∇un+θ in Ω, (1.5)

∇ · un+1 = 0 in Ω,

un+1 = gn+1 on ∂Ω,

with given u0, θ ∈ [0, 1], α ∈ (0, 1), and β ∈ (0, 1). The natural choice of u∗ = un

gives a linear method but in this case the accuracy is only first order. Second order
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accuracy can be achieved by setting u∗ = un+θ. Through this kind of operator-

splitting scheme, the nonlinear system gets reduced to a constrained linear system,

called the generalized Stokes problem(1.5), which must then be solved alternatively

with an unconstrained nonlinear system. We use the following notation to express

the generalized Stokes equations:

αu− 1

Re
∇2u +∇p = f in Ω, (1.6)

∇ · u = 0 in Ω,

u = g on ∂Ω ,

where α = 1
∆t

is positive parameter, f is the force coming from convection term.

In matrix notation, after suitable discretization and linearization, (1.6) can be

represented as the following linear system:

 A B

BT 0


 u

p

 =

 f

0

 , (1.7)

where BT is the discrete divergence matrix, which ensures the constraint of discrete

null divergence on the solution vector u, and A is the matrix arising from the terms

with u:

A = αM +
1

Re
L, (1.8)

in which M is the n × n mass matrix, L is a symmetric positive definite matrix

corresponding to the Laplace operator. For a system with n velocity unknowns and

m pressure unknowns, A ∈ Rn×n, B ∈ Rn×m, u ∈ Rn, and p ∈ Rm.

The linear system (1.7) is large, sparse, and is a saddle-point problem. Although

the matrix A is symmetric and positive definite, the linear system is indefinite because

of the incompressibility constraints BT u = 0. The indefiniteness is the main cause of
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difficulty for iterative methods and preconditioning techniques.

B. Iterative Methods

The methods commonly used to solve the linear system in equation (1.7) can be

broadly classified as Uzawa-type methods [3][6][10], preconditioned Krylov subspace

methods [12][15], and projection based methods. Uzawa-type methods employ block

elimination to obtain a reduced system for pressure unknowns, which is then solved

via iterative methods.

BT A−1Bp = BT A−1f. (1.9)

Preconditioned Krylov subspace methods are a general class of techniques that em-

ploy well known iterative methods with commonly used preconditioners. A good

preconditioner is a matrix M whose inverse is a close approximation to the inverse

of A. Instead of Ax = b, we solve the system M−1Ax = M−1b. The most popular

class of preconditioners utilize the incomplete LU factorizations that form the matrix

M by constructing sparse approximations of the LU factors of A. Projection based

methods solve a reduced problem in a subspace of divergence-free fluid velocity via

iterative methods. Solenoidal basis method [13][17] belongs to this class of methods.

The solenoidal basis method is a projection technique that uses a discrete divergence-

free basis to represent velocity. This has the advantage of automatically satisfying the

incompressibility condition constraint. A hierarchical algebraic scheme to construct

the solenoidal basis was developed in [16]. The local divergence free basis introduced

in [17][13] for 2D, 3D MAC scheme leads to the construction of a very effective and

robust preconditioner for the linearized system.

Since the projection basis, P , spans the null space of BT , a divergence-free ve-

locity vector can be expressed as u = Px for any arbitrary vector x. Such a velocity
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vector automatically satisfies the incompressibility constraints BT u = BT Px = 0. As

a result, the linear system (1.7) reduces to

APx + Bp = f. (1.10)

After multiplying P T to both sides of equation (1.10), the system is transformed into

a reduced system

P T APx = P T f, (1.11)

which must then be solved for x. The reduced system (1.11) is solved by an appropri-

ate iterative method such as the conjugate gradient (CG) [8] or generalized minimum

residual method (GMRES) [11]. Velocity is recovered by computing u = Px and

pressure is obtained by solving the least square problem Bp = f − APx.

Since B is large and sparse, it is very expensive to compute a QR factorization

to obtain the null space matrix P . The convergence of the iterative method for the

reduced system (1.11) depends on the choice of P . The basis P should be computed

efficiently, and the choice of P must allow effective preconditioning of the reduced

system P T AP , so that the system will converge to a solution faster.

In this research, we present techniques to construct the solenoidal basis and the

preconditioner for the reduced system arising from mixed finite element discretization

scheme. We extend an earlier work on the solenoidal basis method for two-dimensional

flows [17] and three-dimensional flows [13] that involved construction of the solenoidal

basis P using circulating flows or vortices on an uniform mesh. We also present

effective preconditioning techniques for the reduced system that are motivated by the

analysis of the reduced system.

The thesis is organized as follows. Chapter II gives brief introduction of solenoidal

basis method, and the construction of local solenoidal basis using 2D and 3D Marker-
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and-Cell scheme of discretization on a uniform mesh. In chapter III, we extend the

approach presented in [17][14] to a 2D P2/P1 unstructured mesh using the finite

element scheme. We outline the details of constructing local solenoidal basis for this

scheme. We also propose a preconditioner to solve the reduced system. Chapter IV

shows the experimental results of test problems using the scheme given in chapter

III. Finally, chapter V provides a concluding summary of the research work.
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CHAPTER II

SOLENOIDAL BASIS METHOD FOR MARKER-AND-CELL SCHEME

In this chapter, the introduction of solenoidal basis method for Marker-and-Cell

scheme is presented. The construction of local solenoidal basis is given in both 2D

MAC scheme and 3D MAC scheme. An effective preconditioner is also given after

analyzing the structure of divergence operator matrix BT . The effectiveness of pre-

conditioned solenoidal basis method on uniform meshes using MAC scheme motivates

the extension of a similar methodology to unstructured meshes in later chapter.

A. 2D Marker-and-Cell Scheme

X

Y

cell k

p

v

u.,+ +,+

.,+

+,..,.u

v .,.

p

.,.

.,+ p

p

Fig. 1. Local solenoidal flows for Marker-and-Cell scheme in two dimensional domains

The simplest approach to construct a local solenoidal basis is to generate circu-

lating flows in local regions of the mesh such that each flow satisfies the divergence

constraint. In [17] Sarin presented solenoidal basis method using Marker-and-Cell

scheme for discretization on 2D uniform mesh, and outlined an optimal precondition-

ing technique for the generalized Stokes problem. Pressure unknowns are assigned

to the grid nodes and velocity unknowns are assigned to the midpoints of edges. As
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shown in Figure 1, a local solenoidal flow is obtained by assigning unit velocity to

the edges of a cell in a mesh oriented in anti-clock wise direction, where u.,. = 1,

u.,+ = −1, v.,. = −1, and v.,+ = 1. Since the net outflow at any pressure node is

zero, it ensures the flow is solenoidal. For example, after scaling with h, the row

corresponding to the node p.,. in Figure 1 has the nonzeros [ -1 1 -1 1 ] that multiply

with [u−,. u.,. v.,− v.,.] to enforce the divergence-free condition.

(u.,. − u−,.) + (v.,. − v.,−) = 0 (2.1)

The solenoidal flows can be constructed algebraically after analyzing the struc-

ture of the discrete divergence operator matrix BT . The submatrix with rows corre-

sponding to pressure nodes [u.,. u+,. v.,. v.,+], and columns corresponding to velocity

edges [u.,. u+,. v.,. v.,+], is

[
BT

]
k

=

u.,. u+,. v.,. v.,+

p.,.

p+,.

p.,+

p+,+



1 0 1 0

−1 0 0 1

0 1 −1 0

0 −1 0 −1


.

(2.2)

At each pressure node, incoming edges have a value of −1 and outgoing edges have a

value of 1. The null space of [BT ]k is vector

[P ]k =
[

1 −1 −1 1

]T

, (2.3)

which is identical to the discrete local solenoidal flow shown in Figure 1. [P ]k rep-

resents solenoidal function local to cell k. By adding zeros to expand the local null

space vector [P ]k into a global null space vector Pi with length of n, the divergence
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constraint BT Pi = 0 can be satisfied. The discrete solenoidal basis P is the set of

vectors Pi for all cells in the grid.

In order to better understand the structure of P T AP , we need to first analyze

the structure of P T P . The matrix-vector product y = P T u is analyzed as follows.

Since the kth column of P is a local solenoidal flow along the edges of the kth cell,

the inner product of u with this column is the discrete curl of the flow in the cell

k. The product y = P T u computes the curl of the flow represented by u at the

center of each cell. The matrix-vector product u = Px computes the discrete curl

of a suitable function. Thus the product y = P T Pw represents 5 × 5 × w in a

discrete setting. After simplification, it shows that the matrix P T P is equivalent to

the Laplace operator on the solenoidal function space. The reduced system for the

generalized Stokes problem can be approximated by

P T AP ≈
[

1

∆t
M +

1

Re
P T P

]
P T P, (2.4)

and the corresponding preconditioner is defined as

Gp =
[

1

∆t
M +

1

Re
Ls

]
Ls, (2.5)

where Ls is the Laplace operator for the local solenoidal functions. The preconditioned

system is equivalent to a symmetric positive definite matrix, which can be solved via

CG method. The experimental results show that the rate of convergence of the

iterative method for the preconditioned CG method is nearly independent of the

problem parameters such as the mesh width, time step and viscosity.
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B. 3D Marker-and-Cell Scheme

In [14], Sambavaram extended the approach presented in [17] to 3D Marker-and-Cell

scheme. The solenoidal flows are defined on each face of a cubic mesh cell(see Figure

2). Pressure unknowns are assigned to grid nodes and velocity unknowns are assigned

to the mid-points of edges. The construction of local solenoidal functions is identical

to that constructed for the 2D Marker-and-Cell scheme.

X

Y

Z

Fig. 2. Local solenoidal flows for Marker-and-Cell scheme in three dimensional do-

mains. Only three such flows are shown

X

Y

Z

u1

w2

v1

w3

u2

v3

u4

w4

v4

u3

v2

w1

Fig. 3. Velocity nodes on 3D Marker-and-Cell

The velocity assignment for the solenoidal functions for each face in the 3D
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Table I. Solenoidal functions for the 3D cell shown in Figure 3

F r o n t B a c k L e f t R i g h t B o t t o m T o p

u1 1 0 0 0 -1 0

u2 -1 0 0 0 0 1

u3 0 -1 0 0 1 0

u4 0 1 0 0 0 -1

v1 -1 0 1 0 0 0

v2 1 0 0 -1 0 0

v3 0 1 -1 0 0 0

v4 0 -1 0 1 0 0

w1 0 0 1 0 -1 0

w2 0 0 0 -1 1 0

w3 0 0 -1 0 0 1

w4 0 0 0 1 0 -1

cell, as shown in Figure 3, is given in Table I. The six cell flows are not linearly

independent. Solenoidal flow on the top face can be constructed from the remaining

flows. It is easily to be observed that the front face solenoidal flow of the 3D neighbor

cell which is behind the current cell is exactly the negative of the current cell’s back

solenodial flow. Within the whole domain, the adjacent cells have same solenoidal

flow with opposite direction on the sharing faces. Hence, a linearly independent

solenoidal basis consists of all front and left solenoidal flows for each cell, and those

lie on the bottom, right and back boundaries. The preconditioner for the iterative

method is the same as that for 2D MAC scheme, and the experimental results show

that the preconditioner ensures a stable rate of convergence independent of problem
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parameters such as mesh width, time step and viscosity.
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CHAPTER III

SOLENOIDAL BASIS METHOD FOR MIXED FINITE ELEMENT METHOD

The finite element method [4] is an approximate method of solving differential equa-

tions of boundary and/or initial value problems in engineering and mathematical

physics. In this method, the domain Ω is discretized into many small elements

Ωe, e = 1, 2, · · · , Ne(Ne is number of elements) of convenient shapes − triangles,

quadrilaterals, etc. Choosing suitable points within the elements, the variable in

the differential equation is written as a linear combination of appropriately selected

interpolation functions and the values of the variable or its various derivatives are

specified at the nodes. Using variational principles or weighted residual methods,

the governing differential equations are transformed into “finite element equations”

governing all isolated elements. These local elements are finally collected together

to form a global system of differential or algebraic equations with proper boundary

and/or initial conditions imposed. The nodal values of the variable are determined

from this system of equations.

A. Local Solenoidal Basis

1. Interpolation and Finite Element Discretization

For the finite element solution of the equation (1.7), the domain and the discrete so-

lution variables are commonly discretized using P1 iso-P1 triangular element, which

uses linear shape functions for the velocity and pressure, and P2/P1 triangular ele-

ment, which uses quadratic functions for velocity and linear functions for pressure.

In [14], Sambavaram presented the technique to construct local solenoidal basis using

P1 iso-P1 triangular element(see Figure 4). The basis functions are given by
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ξ

η
η

Pressure Velocity
ξ

P1 iso−P1 element

1 2

3

1 2

3

4

56

Fig. 4. Degrees of freedom in P1 iso-P1 element

φ1(ξ, η) = 1− ξ − η,

φ2(ξ, η) = ξ,

φ3(ξ, η) = η. (3.1)

In this research work, we are focusing on construction of local solenoidal basis

using P2/P1 triangular element(see Figure 5), where the discrete velocity solution

u, v are piecewise quadratic and continuous all over Ω. On each triangle, there is one

velocity basis function per vertex, and one velocity basis function per midside node.

The discrete pressure solution p is interpolated using a linear polynomial. On each

triangle, it is determined by its values at the three vertices,

u(x, y) =
n∑

j=1

ujϕj,

v(x, y) =
n∑

j=1

vjϕj,

p(x, y) =
m∑

j=1

pjφj, (3.2)

where ϕj are the basis functions for velocities, φj are basis functions for pressure,
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ξ

η
η

Pressure Velocity
ξ1 2

3

1 2

3

4

56

P2/P1 element

Fig. 5. Degrees of freedom in P2/P1 element

uj, vj are the degrees of freedom of u, v, pj are the degrees of freedom of p, n is the

number of velocity nodes, and m is the number of pressure nodes.

Since we have to integrate quadratic polynomials, it appears easy to use the same

Ω̂ for all triangles Ωe in the mesh for function integration. The common choice of Ω̂

is shown in Figure 6.

e

Ω

Ω

x

y

ξ

η

Fig. 6. Master element Ω̂ and corresponding element Ωe
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Let ϕ̂i = ϕ̂i(ξ, η), φ̂i = φ̂i(ξ, η) be the polynomial basis on the master element

Ω̂ and xe(ξ, η), ye(ξ, η) the transformation from (ξ, η) coordinates for Ω̂ to (x, y)

coordinates for Ωe (Figure 6). The map is usually defined parametrically using the

element basis functions,

xe(ξ, η) =
6∑

i=1

ϕ̂ix
e
i ,

ye(ξ, η) =
6∑

i=1

ϕ̂iy
e
i , (3.3)

where (xe
i , y

e
i ) are nodal coordinates defining Ωe.

For the quadratic velocities, the basis functions on the master element Ω̂ are

given by

ϕ̂1(ξ, η) = 2(1− ξ − η)(
1

2
− ξ − η),

ϕ̂2(ξ, η) = 2ξ(ξ − 1

2
),

ϕ̂3(ξ, η) = 2η(η − 1

2
),

ϕ̂4(ξ, η) = 4(1− ξ − η)ξ,

ϕ̂5(ξ, η) = 4ξη,

ϕ̂6(ξ, η) = 4η(1− ξ − η), (3.4)

and for the linear interpolation of the pressure on the master element is given by

φ̂1(ξ, η) = 1− ξ − η,

φ̂2(ξ, η) = ξ,

φ̂3(ξ, η) = η. (3.5)

The derivatives of shape functions in (x, y) coordinates can be transformed using the
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chain rule. Introducing the Jacobian matrix

J =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 ,

with

∂x

∂ξ
=

6∑
j=1

xe
j

∂ϕ̂j

∂ξ
,

∂y

∂ξ
=

6∑
j=1

ye
j

∂ϕ̂j

∂ξ
,

∂x

∂η
=

6∑
j=1

xe
j

∂ϕ̂j

∂η
,

∂y

∂η
=

6∑
j=1

ye
j

∂ϕ̂j

∂η
, (3.6)

the derivative operators can be expressed as ∂
∂x

∂
∂y

 = J−1

 ∂
∂ξ

∂
∂η

 . (3.7)

The elemental area in Cartesian coordinates (x,y) can be expressed in terms of

the area in the local coordinates (ξ, η) as

dxdy = |J|dξdη, |J| = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
, (3.8)

where |J| is the determinant of the Jacobian. In order to obtain the finite element

formulation of equations(1.7), an arbitrary velocity basis function ϕi, and an arbitrary

pressure basis function φi are multiplied and integrated into the domain:

∫
Ω
(
∂u

∂t
− ν∇2u +

∂p

∂x
)ϕidxdy =

∫
Ω

f1 · ϕidxdy,∫
Ω
(
∂v

∂t
− ν∇2v +

∂p

∂y
)ϕidxdy =

∫
Ω

f2 · ϕidxdy,∫
Ω
(
∂u

∂x
+

∂v

∂y
)φidxdy = 0, (3.9)

where ν is the viscosity. Applying the divergence theorem on the diffusive term and
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setting the boundary integral to zero, we obtain

∫
Ω

∂u

∂t
· ϕidxdy + ν

∫
Ω
(
∂u

∂x

∂ϕi

∂x
+

∂u

∂y

∂ϕi

∂y
)dxdy −

∫
Ω

p
∂ϕi

∂x
dxdy =

∫
Ω

f1 · ϕidxdy,∫
Ω

∂v

∂t
· ϕidxdy + ν

∫
Ω
(
∂v

∂x

∂ϕi

∂x
+

∂v

∂y

∂ϕi

∂y
)dxdy −

∫
Ω

p
∂ϕi

∂y
dxdy =

∫
Ω

f2 · ϕidxdy,∫
Ω
(
∂u

∂x
+

∂v

∂y
)φidxdy = 0. (3.10)

The resulting semi-discrete finite element system has the form
M̂ 0 0

0 M̂ 0

0 0 0




u̇

v̇

ṗ

 +


νÂ 0 Bx

0 νÂ By

(Bx)T (By)T 0




u

v

p

 =


F1

F2

0

 , (3.11)

where

[u̇ v̇ ṗ] ≡ d/dt[u v p], M̂ =
∫
Ω

ϕiϕjdxdy, (3.12)

Â =
∫
Ω

((ϕi)x(ϕj)x + (ϕi)y(ϕj)y)dxdy, Fk =
∫
Ω

fk(x)ϕidxdy, k = 1, 2, (3.13)

and

(Bx)T =
∫
Ω
(ϕi)xφrdxdy, (By)T =

∫
Ω
(ϕi)yφrdxdy, (3.14)

with i, j = 1, 2, · · ·n, and r = 1, 2, · · ·m.

The formulas for numerical integration [5] of a function f over a triangle of area

S are all of the form ∫ ∫
fdS = S

NG∑
i=1

wif(ξi, ηi, ζi), (3.15)

where ξi, ηi, ζi are the area co-ordinates of the i-th sampling point, wi is the weight

associated with the i-th sampling point, and NG is the number of quadrature points.

In this thesis, we use three points Gauss integration rule, which ensures the numerical

integration to have a degree of precision 2.

Hence, for equations (3.12)-(3.14), the shape function and shape function deriva-
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tives are evaluated at the quadrature points in Ω̂ and they are used in a quadrature

sum for each element. For example, for the integration of function f and shape

function ϕj over a triangle, we obtain

∫
Ωe

fϕjdxdy =
∫
Ω̂

f̂ ϕ̂j|J|dξdη

= S
NG∑
i=1

wif̂(ξi, ηi)ϕ̂j(ξi, ηi)|J(ξi, ηi)|. (3.16)

2. Local Solenoidal Basis

The structure of local solenoidal functions affects the convergence rate of the iterative

method to solve the reduced system (1.11). Construction of local solenoidal functions

is complicated, especially on an unstructured mesh. As shown in last chapter, ex-

perimental results of 2D and 3D MAC scheme on an uniform mesh illustrate the

effectiveness of preconditioning techniques based on circulating solenoidal flow struc-

ture. The behaviour of the robust preconditioning technique motivates extension of

the same technique to unstructured mesh. We try to construct similar circulating

flows on an unstructured mesh similar to circulating flows in local regions in MAC

scheme on an uniform mesh. Just like the procedure mentioned in P1 iso-P1 case

[14], the solenoidal functions for P2/P1 are classified into three groups:

• Nodal solenoidal functions

• Edge solenoidal functions

• Element solenoidal functions.

Given a mesh with m pressure nodes, e edges, and t elements, there are 2m nodal

solenoidal functions, e edge solenoidal functions and t element solenoidal functions.

All these solenoidal functions are constructed after coordinate transformation of edge

velocities during preprocessing. A typical element pair is shown in Figure 7, where Ve

is the sharing edge velocity of the element pair, Pi is pressure node with correspond-
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h1

h2

θ

η

τ
P2(x2,y2)

P4(x4,y4)

P3(x3,y3)

P1(x1,y1)

τVe

Veη d1

d2

Fig. 7. Coordinate transformation for element pair

ing (xi, yi) coordinates (i = 1, 2, 3, 4), d1 is the length of the line joining pressure

nodes P1 and P4, d2 is the length of the sharing edge joining pressure nodes P2 and

P3, h1 is the vertical distance from pressure node P1 to the sharing edge, and h2 is

the vertical distance from pressure node P4 to the sharing edge. The transformed

space is τ -η space, where τ direction is parallel to the sharing edge of the element

pair and η direction is parallel to the line joining the opposite pressure nodes. This

coordinate transformation simplifies the structure of B matrix and makes it sparser.

The coordinate transformation of edge velocity from (x, y) to (τ, η) is accomplished

by a linear operator matrix G. Then for the kth element as shown in Figure 7 the

submatrix Gk is given as

Gk =

 (x2 − x3)/d2 (y2 − y3)/d2

(x1 − x4)/d1 (y1 − y4)/d1

 . (3.17)

The size of the global matrix G is 2(m+e)×2(m+e) considering both x direction and

y direction for the given mesh with m pressure nodes and e edges. Since G matrix
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only transforms edge velocities without any changes for node velocities, the portion of

G matrix corresponding to pressure node velocities should be identity matrix. Hence,

G matrix has the following structure

G =



Im

. . . . . .

Dxx Dxy

. . . . . .

Im

. . . . . .

Dyx Dyy

. . . . . .



, (3.18)

where Im is identity matrix, Dxx, Dxy, Dyx, and Dyy are coming from global generation

of submatrix Gk. Since the B matrix takes the order of rows as x component before

y component, G matrix takes same order as B matrix. Matrix B̃T = (GB)T denotes

the divergence operator matrix in the transformed space. B̃ matrix for the kth

element involving the edge velocity node and the surrounding pressure nodes is given

in (3.19). The submatrix B̃k with rows corresponding to τ , η components of interior

edge velocity, and columns corresponding to pressure nodes, is given as
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[
B̃

]
k

=

P1 P2 P3 P4

τ

η

 0 h1 + h2 −(h1 + h2) 0

d2 sin θ 0 0 −d2 sin θ

 , (3.19)

where θ is the angle between τ − η direction. From equation(3.19), one can observe

that transformed edge velocities have nonzeros in the B̃ matrix for only those pressure

nodes along their directions. Thus this transformation can simplify the structure of

B matrix and make it much sparser.

After (τ, η) coordinate transformation using G matrix, the linearized system (1.7)

becomes

 GAGT GB

(GB)T 0


 G−Tu

p

 =

 GT f

0

 . (3.20)

The procedure to solve the above system (3.20) is the following:

• Find the null space of GB = B̃, i.e., P̃ = Null(B̃T ), which is equivalent to find the

solenoidal functions. It is detailed from next paragraph.

• Suppose ũ = P̃ x. Solve for x from the transformed reduced system (3.21),

P̃ T [GAGT ]P̃ x = P̃ T [Gf ], (3.21)

and recover velocity as u = GT ũ = GT (P̃ )x.

Nodal-based solenoidal functions are constructed cluster by cluster, where a clus-

ter is formed by assembling all the elements sharing a given interior pressure node.

Figure 8 shows an example of the cluster formed around pressure node P0 where v0,

ve1, ve2, ve3, ve4, · · · vek are velocity nodes inside the cluster formed by P0, P1, P2,
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P0 x
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P3 P4

P5

PkP1
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Ve1τ

2τ

3τ
4τ

5τ

κτ

Fig. 8. Nodal-based solenoidal functions

P3, P4, P5, · · · Pk pressure nodes. Nodal solenoidal flows consist of only τ component

of velocity nodes ve1, ve2, ve3, ve4, · · · vek, and x, y components of v0. Since the net

flow into P0 is zero, the nodal-based solenoidal flow can be generated. B̃ matrix for

the kth nodal cluster involving the edge velocity nodes and the surrounding pressure

nodes is given in (3.22). The submatrix B̃k with rows corresponding to x, y compo-

nents of v0 together with τ component of velocity along incoming edges, and columns

corresponding to surrounding pressure nodes, is given as
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[
B̃

]
k

=

P0 P1 P2 P3 P4 P5 · · · Pk

v0(x)

v0(y)

ve1τ

ve2τ

ve3τ

ve4τ

ve5τ

...

vekτ



α W T
1

β W T
2

−t1 t1

−t2 t2

−t3 t3

−t4 t4

−t5 t5
...

. . .

−tk tk



.

← x− function at P0

← y − function at P0

(3.22)

Since the influence of interior velocities outside the nodal cluster is zero, one can

infer that the sum of all columns for any row is zero, which implies that the following

equations are satisfied

α + W T
1 ~e = 0,

β + W T
2 ~e = 0, (3.23)

where ~e refers to a vector of all ones. We can get the null space of
[
B̃

]
k

with two

vectors

[
P̃

]
k

=


1 0

0 1

−W T
1 D−1 −W T

2 D−1

 , (3.24)

where D = diag[t1, t2, · · · , tk]. P̃ has two columns involving x directional velocity of

pressure node P0 and y directional velocity of P0.
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Ve1τ

VeVe2τ

Veη

Ve4τ

3τ

Fig. 9. Edge-based solenoidal functions

Edge-based solenoidal functions include five edge velocities in the edge solenoidal

flow and four pressure nodes forming the element pair. Figure 9 shows an example of

an element pair with the interior edge bounded by pressure nodes [P1 P2 P3 P4]. Two

solenoidal flows with opposite direction are generated. Both of these flows start from

η component of interior edge velocity. B̃ matrix for the kth interior edge involving

the edge velocity nodes and the surrounding pressure nodes is given in (3.25). The

submatrix B̃k with rows corresponding to τ component of interior velocity nodes

together with one η component of interior edge velocity, and columns corresponding

to surrounding pressure nodes, is given as
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[
B̃

]
k

=

P1 P2 P3 P4

ve1τ

ve2τ

ve3τ

ve4τ

veη



t1 −t1 0 0

0 t2 −t2 0

0 0 −t3 t3

t4 0 0 −t4

−t5 0 t5 0


.

(3.25)

From Equation(3.25) one can observe that those transformed edge velocities have

nonzeros in the
[
B̃

]
k

only for the pressure nodes along their direction. We can get

the null space of
[
B̃

]
k[
P̃

]
k

=
t5
2

[
1/t1 1/t2 1/t3 1/t4 2/t5

]T

. (3.26)

Ve

Ve

P1

P3 P2

Ve1τ

2τ

3τ

Fig. 10. Element-based solenoidal functions

Element solenoidal functions are generated using τ component of edge velocities.

Figure 10 shows an example of an element with one solenoidal flow. The construc-

tion of element solenoidal functions is similar to that of cell flows generated in MAC

scheme. B̃ matrix for the kth element involving three edge velocity nodes and the
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surrounding pressure nodes is given in (3.27). The submatrix B̃k with rows corre-

sponding to τ component of interior velocity nodes, and columns corresponding to

surrounding pressure nodes, is given as

[
B̃

]
k

=

P1 P2 P3

ve1τ

ve2τ

ve3τ


t1 −t1 0

0 t2 −t2

−t3 0 t3

 . (3.27)

From Equation(3.27) we can observe that edge tangential velocity has nonzeros in[
B̃

]
k

matrix for only those pressure nodes that share the edge.

We can compare the elemental solenoidal flow with that in MAC scheme to find

the similarity. The null space of
[
B̃

]
k

becomes

[
P̃

]
k

=
[

1/t1 1/t2 1/t3

]T

. (3.28)

Until now we generated localized null space vector, the generated [P̃ ]k represents a

solenoidal function local to flow in either a nodal cluster, an interior edge or an element

k. Using the above approach, local solenoidal flows can be constructed directly from

the matrix B̃T . When we expand vector [P̃ ]k to a length 2m + 2e vector P̃i by

adding zeros, it satisfies the divergence free constraint B̃T P̃i = 0. The set of vector

P̃i forms the discrete solenoidal basis P̃ . The global null space P can be recovered as

P = G−1P̃ .
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B. Preconditioning the Reduced System

In order to better understand the structure of P̃ , we rearrange the solenoidal functions

according to the order of nodal cluster, edge solenoidal flows and element solenoidal

flows. Then P̃ , the null space of the global B̃T , has the structure shown in equation

(3.29). From the structure of P̃ , we can see that columns of nodal solenoidal functions

P̃m, edge solenoidal functions P̃e and element solenoidal functions P̃t are mutually

independent.

P̃ =
[
P̃m, P̃e, P̃t

]
(3.29)

Table II. Structure of null space P̃

Nodal Edge Element

Solenoidal Solenoidal Soelnoidal

Functions Functions Functions

P̃m P̃e P̃t

2m̃ node

velocity I2m̃ 0 0

η-

edge velocity 0 Iẽ 0

τ -

edge velocity P̃13 P̃23 P̃33

P̃ has full column rank. We can confirm it by checking the dimension of null

space. The size of P̃ is equal to 2m̃ + ẽ + t̃, where m̃ is the number of pressure

nodes, ẽ is the number of edges and t̃ is the number of elements. The size of B̃ is
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(2m̃ + 2ẽ) × m̃, so that the dimensions of null space becomes 2m̃ + 2ẽ − m̃ + 1 =

2m̃ + ẽ + (m̃ + t̃− 1)− m̃ + 1 = 2m̃ + ẽ + t̃, which is equal to the size of P̃ .

From Table II, we can observe that P̃m and P̃e are well conditioned since they

have the identity matrix on the diagonal. Preconditioning would be more effective

when it transforms P̃t to a well-conditioned matrix. Preconditioner for the reduced

system (1.11), which is used to precondition matrix P T AP , is given by

Gp =


I 0 0

0 I 0

0 0 P T
t Pt

 . (3.30)

Compared to P1 iso - P1 case given in [14], the reduced system (1.11) is pre-

conditioned by the following

Gp =
[

1

∆t
M +

1

Re
P T P

]


I 0 0

0 I 0

0 0 P T
t Pt

 , (3.31)

and solved under various physical conditions by changing the ratio κ = h2Re/∆t.

Experimental results shows that when κ > 10 the preconditioning is near optimal

which assures stable convergence, regardless of parameters such as the mesh size,

Reynolds number, and the time step.
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CHAPTER IV

NUMERICAL EXPERIMENTS

Generating a finite element triangulation is done by constructing initial grid and

refinement of the mesh using ′pdetool′ of commercial software Matlab. The refinement

technique is to take the three midpoints of a triangle, thus creating four smaller

triangles from a larger triangle. We make use of this technique to get the information

for P2/P1 triangular element. ′pdetool′ has the export function to get the data

structure of p, e, t, in which p has the coordinates of the nodal points, e has the

information for the edges on the boundary, and t has the information of three corner

nodes per element. In order to evaluate quadratic velocity polynomial, nodes on the

midpoints need to be determined. A special data structure ′nodes′ is used to store

all the six nodes per element during preprocessing. The structure of global null space

matrix P̃ in Table II indicates that three groups of cluster information is needed in

order to construct local solenoidal basis. During the preprocessing, we use a set of

vectors to get the elemental cluster information, which are generated for each pressure

node with anti-clock wise direction. We then get the groups of cluster information for

node cluster, edge cluster and element cluster using this elemental cluster information.

We use P2/P1 mixed finite element approximation and present results for three

standard test flow problems. We solve the linear system that arises at each discrete

time interval using CG method [8] with the preconditioner P as defined in Table

II. To show the robustness of the solver, both the iteration counts and execution

time required for the tolerance to be satisfied on a given mesh are reported. In

order to demonstrate that the solution obtained from the proposed solenoidal basis

method is exact for quadratic polynomial velocity, we compare with one known exact

solution problem. In addition to that, we test the driven cavity flow for both Stokes
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problem (4.1) and generalized Stokes problem (1.6) to illustrate the performance

and the effectiveness of the preconditioner. In these experiments, CG iterations are

terminated when the relative residual is reduced by 10−3.

A. Stokes Problem

The steady Stokes problem with Dirichlet conditions on the boundary for incompress-

ible fluids satisfies

− 1

Re
∇2u +∇p = f in Ω, (4.1)

∇ · u = 0 in Ω,

u = g on ∂Ω.

The first problem to be considered is Stokes problem applied to flow on the unit

domain Ω = (0, 1)× (0, 1). Applying the constraint
∫
Ω pdx = 0,

f =

 f1

f2

 =

 −1

0

 , and the boundary conditions u =

 u

v

 =

 x2

−2xy

 (4.2)

on ∂Ω, the exact solution of system (4.1) is given as

u =

 u

v

 =

 x2

−2xy

 , p = x. (4.3)

We test the problem with the grid in Figure 11. The approximate solution of u, v

are shown by the meshes in Figure 12 and Figure 13. Comparing the approximate

solution with exact solution, it is seen that the error in u, v velocity for Stokes problem

reduces to 10−6 when the relative residual is reduced by 10−6, which verifies the

correctness of the solenoidal basis method.
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Fig. 11. Finite element mesh with mesh width parameter as 1/8

B. Stokes Problem: Driven Cavity Flow

We consider the Stokes problem, associated with a standard driven cavity flow prob-

lem defined on a unit domain Ω = (0, 1) × (0, 1), see Figure 14. The associated

boundary condition is given by

u(∂Ω, t) =

{
(1, 0) y = 1

0 otherwise
(4.4)

The matrix A consists of only Laplace operator part A = 1
Re

L, which is symmetric

positive definite matrix. The Stokes problem is solved with the grid given in Figure

11, and the solution of velocity plot is given in Figure 15. Figure 16 shows the contours

for the magnitude of the velocity.
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Fig. 12. Solution of velocity u
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u=v=0
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1

Fig. 14. The geometry and the boundary conditions of the driven cavity flow test

problem

C. Generalized Stokes Problem: Driven Cavity Flow

Table III. Problem sizes for the generalized Stokes problem

Mesh Pressure Velocity Solenoidal functions

h = 1/8 123 914 603

h = 1/16 469 3618 3362

h = 1/32 1807 14194 12003

The generalized Stokes problem is considered with same domain, boundary and

initial conditions given above. The unsteady Stokes problem is solved with the grid
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Fig. 15. Solution for the driven cavity problem

in Figure 11. The matrix A takes the following form

A =
1

∆t
M +

1

Re
L. (4.5)

The set of experiments shows the behaviour of the solenoidal basis method for

different Reynolds number and different time interval ∆t. Reynolds number varies

from 100 to 1000 and time interval ∆t varies from 0.001 to 10. Table III shows the

number for unknowns of pressure nodes and velocity nodes for the meshes used in the

experiments. The number of solenoidal functions represents the size of the reduced

system that is solved by the preconditioned method.

Convergence of the iterative method is sensitive to the variation of coefficient in

matrix A, which depends on ∆t and Re. The effect of time interval ∆t is given in Table



36

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 16. The contours for the magnitude of the velocity for the driven cavity problem

IV. It can be seen that as ∆t gets smaller, the iteration counts tend to be relatively

stable regardless of mesh refinement. Moreover the maximum count becomes larger

as ∆t increases. In order to verify the performance of preconditioned solenoidal

method, both preconditioned system and unpreconditioned system are solved. The

maximum iteration counts are given in Table V, the execution time is given in Table

VI. The effectiveness of the preconditioned solenoidal basis method is illustrated via

several instances of Re for P2/P1 case with ∆t = 0.01. Compared the preconditioned

with unpreconditioned systems, it can be easily observed that the iteration counts of

preconditioned system are far less than that of the unpreconditioned ones. Compared

to unpreconditioned system, the preconditioned system is solved in much less time.

It can be noticed that when Re/∆t > 104, the iteration count converges to a stable
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Table IV. Effect of time interval for the preconditioned solenoidal basis method in

P2/P1 case with Re = 100

∆t h = 1/8 h = 1/16 h = 1/32

0.001 75 47 48

0.01 41 50 54

0.1 47 105 190

1 107 219 333

10 160 323 420

value regardless of mesh refinement, which indicates that the preconditioner is optimal

for this case. The same result does not apply for the case when Re/∆t < 104. The

preconditioner is not optimal for that system even though it is optimal for any system

on uniform mesh using MAC scheme.
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Table V. Iteration counts for the preconditioned solenoidal basis method for P2/P1

case with ∆t = 0.01

Preconditioned

Re h = 1/8 h = 1/16 h = 1/32

100 41 50 54

1000 75 47 48

Unpreconditioned

Re h = 1/8 h = 1/16 h = 1/32

100 102 289 733

1000 114 194 449

Table VI. Execution time for the preconditioned solenoidal basis method for P2/P1

case with ∆t = 0.01

Preconditioned

Re h = 1/8 h = 1/16 h = 1/32

100 0.15 1.00 6.40

1000 0.26 0.93 5.82

Unpreconditioned

Re h = 1/8 h = 1/16 h = 1/32

100 0.34 4.59 54.75

1000 0.39 3.09 32.29
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CHAPTER V

CONCLUSIONS

In this thesis we developed an extension of the preconditioned solenoidal basis tech-

nique on an unstructured mesh for solving the linear system arising from the finite

element discretization of Navier-Stokes equations. A localized algebraic scheme was

outlined to compute discrete local solenoidal flows using P2/P1 triangular element.

A preconditioner was presented after analyzing the structure of the reduced system.

Benchmark simulations were conducted to illustrate the effectiveness of the proposed

technique on an unstructured mesh, which shows the following:

• The velocity system can be solved by solenoidal basis method with high preci-

sion.

• Preconditioner for unstructured 2D mesh is more effective because the precon-

ditioner takes care of ill-conditioned part of global solenoidal basis. Preconditioned

system outperforms unpreconditioned system in terms of both iteration counts and

execution time.
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