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ABSTRACT 
 
 

Methodologies and New User Interfaces to  

Optimize Hydraulic Fracturing Design and Evaluate Fracturing Performance  

for Gas Wells.   (December 2005) 

Wenxin Wang, B.S. Southwest Petroleum Institute 

Chair of Advisory Committee: Dr. Peter Valko 

 
 

This thesis presents and develops efficient and effective methodologies for optimal 

hydraulic fracture design and fracture performance evaluation.  These methods 

incorporate algorithms that simultaneously optimize all of the treatment parameters while 

accounting for required constraints. Damage effects, such as closure stress, gel damage 

and non-Darcy flow, are also considered in the optimal design and evaluation algorithms. 

Two user-friendly program modules, which are active server page (ASP) based, were 

developed to implement the utility of the methodologies. Case analysis was executed to 

demonstrate the workflow of the two modules. Finally, to validate the results from the 

two modules, results were compared to those from a 3D simulation program. 

The main contributions of this work are: 

• An optimal fracture design methodology called unified fracture design (UFD) 

is presented and damage effects are considered in the optimal design 

calculation.  

• As a by-product of UFD, a fracture evaluation methodology is proposed to 

conduct well stimulation performance evaluation. The approach is based on 

calculating and comparing the actual dimensionless productivity index of 

fractured wells with the benchmark which has been developed for optimized 

production.  

• To implement the fracture design and evaluation methods, two web ASP 

based user interfaces were developed; one is called Frac Design (Screening), 

and the other is Frac Evaluation. Both modules are built to hold the following 

features. 

o Friendly web ASP based user interface 
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o Minimum user input 

o Proppant type and mesh size selection 

o Damage effects consideration options 

o Convenient on-line help. 
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CHAPTER I 
 

INTRODUCTION 
 
 
This research develops and presents methods of optimal hydraulic fracture design and 

post-fracture evaluation for gas wells. To make the methods and algorithm more valuable 

for practical application, Active Server Page (ASP) based user interfaces (UI) were 

created. 

The first section of this chapter provides some hydraulic fracturing background. 

Next, comparison of fracture stimulation for high permeability and low permeability 

reservoirs is presented. In the third section an optimal fracture design methodology called 

unified fracture design (UFD) is discussed. The fourth section provides a literature 

review, presenting non-Darcy effects, which are significant in optimal fracture design. 

The last section of this chapter introduces the objectives of the research and the expected 

results. 

 

1.1 Background on Hydraulic Fracturing 

Hydraulic fracturing is a technique used to allow oil and natural gas to migrate more 

freely by generating a high conductivity conduit from the rock pores to a producing well. 

The technology was developed in the late 1940s and has been continuously improved and 

applied since that time. More than 100,000 wells have been hydraulically fractured in the 

U.S. in the past 15 years, an estimated 50 percent of natural gas wells and 30 percent of 

oil wells employ this technique to improve recovery. Application of hydraulic fracturing 

to increase recovery is estimated to account for 30 percent of U.S. recoverable oil and gas 

reserves and has been responsible for the addition of more than 7 billion barrels of oil and 

600 trillion cubic feet of natural gas to meet the nation’s energy needs.1  

Hydraulic fracturing involves injecting fluids into a reservoir at pressure that is 

high enough to part the formation. To keep the fracture open after the injection pressure 
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is relieved, a granulated material called “proppant”, which ranges from natural sand to 

expansive synthetic, is pumped into the created fracture.  

The proppant-filled fracture generates a narrow but very conductive or high 

permeability flow path toward the wellbore. The propped permeability is normally five to 

six orders of magnitude greater than the reservoir permeability. “Typical intended 

propped widths in low permeability reservoirs are on the order of 0.25 cm (0.1 in.), and 

the length can be several hundred meters. In high permeability reservoirs, the targeted 

fracture width is much larger, perhaps as high as 5 cm (2 in.), while the length might be 

as short as 10 meters (30 ft).”2  

The primary goal of hydraulic fracturing is to increase the productivity of a well 

by removing damage in the vicinity of the wellbore or by inducing a highly conductive 

pathway in the formation. Increasing of productivity can either improve the production 

rate or decrease the pressure drawdown. 

The relation between production rate and drawdown pressure can be expressed by 

the following equation: 

 q = J ∆ p……………………………………………………………………… (1) 

where J is the productivity index (PI). 

The general form of the constant-rate solution of diffusive equation is: 

 

 q = 
Dp

pkh 1
2.141

1
µ
∆

……………………………………………….………… (2)  

 
Therefore, the expression of productivity index can be obtained from comparing 

Eq.(1) and (2). 

 

 J 
Dp

kh
p

q 1
2.141

1
µ

=
∆

= …………………………………………………..….. (3) 

 
where q is the flow rate, h is reservoir net pay thickness and µ  is the fluid 

viscosity; ∆ p is pressure drawdown and Dp  is dimensionless pressure. 
For pseudo-state flow, the drawdown and dimensionless pressure function are 

given by 

 
∆ p = p  - pwf................................................................................................... (4) 
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and  

 

pD =  
w

e

r
r472.0

ln ……………………………………………………………. (5) 

 
where p is average reservoir pressure, pwf is flowing bottomhole pressure, re is outer 

boundary radius and rw is wellbore radius. 

Because of the radial nature of flow, most of the pressure drop occurs near the 

wellbore2, and any damage in this region may significantly increase the pressure loss. 

The impact of damage near the well can be represented by the skin factor, s, added to the 

dimensionless pressure in the expression of the PI: 

 

J = 
)(2.141

1
sp

kh

D +µ
………………………………………………………. (6) 

 

Eq. 6 reveals that a positive skin factor implies a restriction to flow, which in 

turns reduce production rate. Positive skin factor may be caused by a variety of factors. 

One of the main components of total skin effect is the damage skin, which may be the 

result of the drilling, completion and workover operations on a well. Another component 

of total skin effect is mechanical skin, which may be due to partial completion and slant 

and perforation skin effect. Phase and rate dependent skin effects are collectively 

classified as ‘pseudo-skins’. 

Opposite to positive skin, a negative skin factor implies that the near-wellbore 

pressure drop is less than would be expected under normal reservoir flow conditions 

(zero damage), therefore, negative skin effect would increase the well productivity.  

Hydraulic fracturing is one of such method that intends to improve the skin factor 

(negative skin factor). Ideally, a hydraulic fracture creates a highly permeable pathway 

connecting the formation and the well, thus bypassing the near-well damage. 
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1.2 Hydraulic Fracturing in Low and High Permeability Reservoirs 

 

1.2.1 Low Permeability (Tight Gas) Fracturing 

Well performance can be determined by the rate and pressure behavior of a well 

throughout its productive life. This performance can be estimated through various 

methods, most of which are based on the constant rate solution of the radial diffusivity 

equation, as shown below, 

 

t
p

k
c

r
p

r
rr

t

∂
∂=�

�

�
�
�

�

∂
∂

∂
∂ φµ1

………………………………………………………. (7) 

 

where ( kct /φµ ) is the hydraulic diffusivity term that determines the speed that 

production or injection impulses (transients) travel radially through the formation. 

Hydraulic diffusivity is sufficiently low in most low permeability gas reservoirs that well 

stimulation is usually desired to speed the recovery of reservoir fluid, and well 

stimulation is usually achieved by a hydraulic fracture treatment. The purpose of the 

treatment therefore, is to extend a high conductivity “tunnel,” normally vertical in 

orientation, from the wellbore into the reservoir rock.  

When fracturing treatments are successful, the increased reservoir flow area 

created by the fracture can greatly increase the production capacity of the well in addition 

to any benefit enabled by the mitigation of near-wellbore formation damage. To enhance 

this effect, the flow capacity of the fracture must be significantly great compared to that 

of the native reservoir exposed to the fracture. 

It is generally recognized that the fracture length requirements depend greatly on 

reservoir permeability and fracture conductivity. For low permeability formations, 

fracture length is normally much greater than that of high permeability reservoirs, but 

with narrower width. 

 

1.2.2 High Permeability Fracturing (Frac and Pack) 

Traditionally, hydraulic fracturing has been used predominantly for the stimulation of 

low permeability reservoirs. Widespread misunderstanding has limited the use of 
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hydraulic fracture in high permeable reservoir based on the belief that the excessive fluid 

leakoff and difficulties arising from the unconsolidated sands often associate with this 

kind of formation would render the treatment ineffective. 

In recent years, however, techniques for successfully fracturing high-permeability 

and poorly consolidated reservoir have been developed and improved, leading to an 

increasingly popular method for the stimulation and control of sand production in these 

reservoirs. The key technique that enabled the use of hydraulic fractures in high 

permeability reservoirs is tip screenout (TSO). This involves arresting the lateral 

propagation of the created fracture; subsequent inflation and packing of the fracture 

provides the required width (conductivity). The treatment may thus be split into two 

parts: 1) the TSO stage, and 2) the fracture inflation and packing (FIP) stage. The 

resulting fracture is much shorter and much wider than a traditional low-permeability 

hydraulic fracture. 

This two-in-one combination treatment is often called a frac and pack treatment. 

Similar to conventional (low permeability) fracturing, frac and pack treatments by-pass 

near wellbore damage, providing effective stimulation when acidizing may not be 

successful. By reducing the pressure drawdown and fluid flux in the reservoir, these 

treatments also provide effective sand control. In addition to this indirect sand control via 

reduction in near-wellbore pressure gradients and flow velocities, frac and packs also 

help control sand production in a more direct manner. This is achieved by increasing 

effective stresses acting on the formation, in effect compacting and stabilizing the 

sandface, as well as by exerting a physical filtering effect similar to conventional gravel 

packs. Frac and pack treatments have been shown to provide superior sand control 

without the loss in productivity associated with conventional sand control methods. In 

additional to the initial increased productivity compared to gravel packs, frac and pack 

treatments often experience an improvement in productivity with time whereas 

conventional gravel pack completions deteriorate with time3-7.  

Frac and pack treatments offer other advantages besides sand control and 

stimulation. Drawdown-related problems such as asphaltene or wax deposition can be 

reduced or eliminated, and non-Darcy flow well effects may be reduced. Frac and packs 
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also allow for more complete zonal coverage, which is can be very beneficial in 

laminated reservoirs and non-perforated zones. 

The first isolated attempts at combining stimulation and sand control took place 

three decades ago in Venezuela. A small number of frac and pack completions were 

performed in the early 1980’s, and the number of completions increased in the late 

1980’s and early 1990’s experienced a marked increase in frac and pack completions and 

the technique continues to gain popularity, with successful implementations in various 

petroleum regions including Gulf of Mexico, Prudhoe Bay in Alaska, Indonesia, Nigeria, 

Australia and the North Sea4,8,9. 

 

1.3 Optimal Fracture Design 

As a result of the success of massive hydraulic fracturing (MHF), the average size of a 

typical treatment has been increasing during the last several decades. For tight gas 

reservoir, it is common that with the fracture length increasing, the flow rate and ultimate 

recovery from a well are usually increased. This does not mean, however, that the bigger 

the fracture treatment the better. Holditch et al.10 realized that for any given set of 

reservoir parameters, an economic optimum fracture length can be calculated. If the 

induced fracture actually created in a well is greater than the economic optimal length, 

the well performance may be better but the profit from the well can be reduced. Holditch 

et al10 proposed that three factors need to be considered to determine the optimum 

fracture length (or treatment size): 1) fracturing cost; 2) the well performance; and 3) net 

present value economic. After the corresponding calculations are made, one can construct 

the graphs of present value profit (NPV) versus fracture length for various wells, such 

graphs can be used to determine the optimum economic values of well spacing and 

fracture length for given reservoir. 

This optimization procedure though, is very time consuming and tedious because 

it requires a large number of sensitivity runs. The inordinate number of required runs is a 

result of having three key unknowns that directly affect the ultimate production response, 

which includes dimensionless fracture conductivity, fracture length and fracture 

conductivity. The number of necessary runs is further exacerbated because the method 
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lacks an initial starting point to begin the sensitivity analysis for each of the key 

parameters11. 

A method called unified fracture design can dramatically reduce the number of 

required sensitivity runs, and the next section is a brief introduction of the method. The 

details and the algorithm will be discussed in following sections.  

 

1.3.1 Unified Fracture Design 

Valkó et al.2 realized that performance of a fractured well cannot be properly described if 

one forecasts the production of oil, gas, and even water as a function of time elapsed after 

the fracturing treatment, since post-treatment production is influenced by many decisions 

that are not part of the treatment design itself. To solve this problem, they introduce a 

dimensionless variable called pseudo-steady state productivity index; this variable 

describes the actual effect of the propped fracture on well performance. 

The goal of unified fracture design, therefore, is to reach the maximum pseudo-

steady state productivity index, based on the determined treatment size and specific 

reservoir information. The philosophy of the methodology is that if the petrophysical 

information of a reservoir is known, and if the amount and the type of proppant intended 

to inject into the formation have been determined, then one can make the optimal 

compromise between fracture width and length, where fracture width implies the fracture 

conductivity and the length implies the fracture penetration. The proppant volume puts a 

constraint on the two parameters. To handle the constraint easily, a new dimensionless 

parameter is introduced, which is called proppant number, expressed as: 

 

res

propf
prop kV

Vk
N

2
= ………………………………………………………………. (8) 

 

where, kf is the fracture permeability, Vprop is the propped volume, k is the reservoir 

permeability, and Vres is the bulk volume. 

Based on the determined proppant number, one can find a unique fracture 

conductivity that corresponds to the maximum productivity. With the two known 
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parameters, proppant number and fracture conductivity, the optimal fracture geometry 

can be calculate. 

 

1.4 Calculation of Non-Darcy Effects 

It has been suggested that tight-gas-well performance is hindered significantly by non-

Darcy flow effects.12-14 Gas wells with finite-conductivity fractures producing at high 

flow rates, the non-Darcy effect is created within the fracture. High pressure drop in the 

presence of high flow velocities might be reflecting both turbulence and inertial 

resistance. 

Vincent et al.13 realized that in designing fracture treatments non-Darcy effects 

should not be assumed to apply only to high-rate wells; the effects also are significant 

even in wells considered to be low rate by current industry standards. According to the 

author, ignoring these effects will often lead to inaccurate production forecasts, 

suboptimal fracture design, and selection of an inappropriate proppant type. These 

mistakes result in lost revenues which can exceed $2 million per fracture treatment for 

typical gas and oil well fracture treatments conducted in North America. 

Richardson11 proposed a methodology for fracture design and optimization 

considering the effects of closure stress, temperature, embedment, gel damage, non-

Darcy turbulent flow, and non-Darcy multiphase flow. The optimal length is selected on 

the basis of an economics analysis of fracture length versus net present value (NPV), and 

then the required fracture conductivity is calculated for a dimensionless fracture 

conductivity of 30.    

Barree et al. 15 identified that proppant selection as a key factor to guarantee a 

successful stimulation and field development. They corrected proppant conductivity for 

field conditions by considering damage mechanisms that might occur during fracturing 

and production. Finally, their simulator includes the effects of closure stress, embedment, 

filtercake deposition, and bulk gel damage.  

Lopez-Hernandez et al.16 realized that the Barree et al. methodology did not 

address the reliability of the estimation of the β -factor and its effects on the outcome. So 

they used unified-fracture-design methodology2, which is based on a new dimensionless 

number called proppant number to optimize the hydraulic fracture design. Their approach 
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can also be applied to the situation where non-Darcy flow through the propped fracture is 

significant. In their project, they evaluated β -correlations obtained from different 

sources for various proppants. 

Lopez-Hernandez’s16 methodology is an easy way to solve the problem of optimal 

fracture. The methodology was implemented in the design of 11 fractures treatments of 3 

natural tight gas wells in south Texas. Results show that optimal fracture design might 

increase the expected production with respect to design that assumes Darcy flow though 

the propped pack. 

Lopez-Hernandez et al.,16 however, did little to apply the method and algorithm to 

practical field analysis due to their complexity and inflexibility. This research developed 

a web based user interface connecting with reservoir and proppant database, which can 

greatly simplify the input and calculation procedure, hence, make the approach more 

valuable for application. Also, more case investigation could improve the practicality of 

the methodology. 

 

1.5 Objectives of This Research 

This research hinges on how to optimize the hydraulic fracture treatment parameters 

based on the given treatment size and petrophysical condition to maximize well 

productivity; an optimal fracture design methodology called unified fracture design 

(UFD) is presented.  

The methodology will be improved to suit practical fracture design work for gas 

wells by considering effects such as gel damage, closure stress and non-Darcy flow. Gel 

damage in this research is taken into account as a percentage of retained permeability; 

whereas closure stress resulting in compaction and consequently some reduction in 

proppant permeability is evaluated by looking up the behavior of proppant pack 

permeability versus closure stress for the proppant. This research will utilize an algorithm 

for non-Darcy effect calculation developed by Lopez-Hernandez et al16. In the algorithm, 

non-Darcy flow is described by the β  factor method. Evaluation and selection of 

appropriate β  factor correlation is a key in the approach, so the introduction of several 

typical β  correlations will be also included in the research. 
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In addition, a fracture evaluation methodology is developed to conduct well 

stimulation performance evaluation. The approach is based on calculating and comparing 

the actual dimensionless productivity index of fractured well with the benchmark which 

has been developed for optimized production. Therefore, the key factor of this method is 

the actual productivity index. The calculation for this parameter will be based on the 

actual skin factor, and production analysis is the necessary procedure to get reliable skin. 

The secondary objective of this research is to develop web (ASP) based user 

interfaces to implement the methods and simplify the calculation procedures. Two 

computer program modules will be developed corresponding to the fracture design and 

evaluation methodologies. Both modules should include following features. 

• Web (ASP) based user interface is friendly  

• Program minimizes user input by connecting with reservoir database 

• User is able to select the proppant type and mesh size from the interface 

• User has the opportunity to consider the effect of gel damage and non-Darcy 

flow from the interface 

• User manual is linked to the user interface page, providing on-line help 

An investigation on a stimulated well will be conducted in the last stage of the 

research to demonstrate and validate the methodologies and computer modules. Finally, 

the calculated results will be compared with those from a 3D fracture simulation 

program, FracPro, which was developed by Pinnacle Technology.  
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CHAPTER II 

 
METHODOLOGIES AND ALGORITHM 

 
 
2.1 Unified Fracture Design (UFD) 
 
Unified fracture design or proppant volume technique was first proposed by Valkó and 

Economides in 2002. The name “unified fracture design” suggests “the connection 

between theory and practice, but also that the design process cuts across all petroleum 

reservoirs— low permeability to high permeability, hard rock to soft rock. And indeed, it 

is common to all”2. 

 
 
2.1.1 Concept of Proppant Number 

The performance indicator of a stimulated natural gas well is the pseudo-steady state 

productivity index (J)2, which can be expressed by following equation. 

D
gg

pg

wfres

scg
J

B

hk

pp

q
J

µα
π

1

2
=

−
= ………………………………………………….. (9) 

where JD is called the dimensionless productivity index. 

The effect of the hydraulic fracture on the well performance appears in the 

variable JD. Dimensionless fracture conductivity (CfD) and penetration ratio ( xI = 2xf/xe) 

are the two primary variables that control JD. The dimensionless fracture conductivity, 

CfD, is the ratio between the flowability of produced fluid in fracture and ability of the 

fracture to gather fluids from the formation: 

fg

fpf
fD xk

wk
C = ………………………………………………………………… (10)                                                                                      

The proppant number is a combination of the two dimensionless variables: 

fDxprop CIN 2= ………………………………………………………………… (11)                                                                                            

Substituting the definition of penetration ratio and dimensionless fracture 

conductivity into Eq. 11 we obtain the final form: 
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res

wp

g

f
prop V

V

k

k
N 22 −= ………………………………………………………… (12)                                                                                            

Therefore, the proppant number is the ratio of the propped volume (volume of 

proppant in the pay, in the two wings) to the reservoir volume, weighted by the 

permeability contrast. The proppant number determines the maximum achievable 

dimensionless productivity index, as seen in Figs. 1 and 2.  For a specific Nprop, the 

maximum JD occurs for a well defined value of CfD. For example, optimum CfD is 1.6 for 

Nprop below 0.1 (Fig. 1). However, for Nprop larger than 0.1, the optimal CfD increases with 

proppant number (Fig. 2). It happens because the Ix cannot exceed unity.   

 
 
 

 
Fig. 1 Dimensionless productivity index as a function of the proppant number less 
than 0.1 and dimensionless productivity index2 
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Fig. 2 Dimensionless productivity index as a function of the proppant number above 
0.1 and dimensionless productivity index2 
 

For all proppant numbers, the optimum fracture dimensions can be obtained from:  

2
1

1

�
�

�

�

�
�

�

�
= −

pf

wpgfDopt
fp hk

VkC
w ………………………………………………….…… (13) 

2
1

1

�
�

�

�

�
�

�

�
= −

pgfDopt

wpf
f hkC

Vk
x ………………………………………………………… (14)    

Once the spacing of the wells in the reservoir has been defined, the proppant 

number will depend on propped fracture permeability (kf) and volume of proppant 

reaching the pay (Vp-2w).  

Volume of proppant reaching the pay is set based on economics (mass of 

proppant to inject). Finally, the ultimate proppant number will depend on effective 

propped pack permeability at in-situ conditions. Laboratory tests,14 well modeling and 

simulation,17 and post fracture well evaluations11 have shown that propped fracture 

permeability of natural gas wells may be significantly reduced by: 

• closure stress; 

• non-Darcy Flow; 
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• gel damage;  

• multiphase flow; 

• embedment; 

• proppant crushing; and 

• fines migration 

The method of optimal fracture design in this research considers the effects of 

closure stress, non-Darcy flow and gel damage upon proppant effective permeability. 

 

2.1.2 Closure Stress 

A hydraulic fracture grows normal to the plane of minimum principal in situ stress (Fig. 

3). In a homogeneous formation the minimum principal stress is equal to closure stress. 

However, lithology typically varies with depth. Therefore, minimum principal stress 

varies in magnitude and direction over the gross pay interval. In this case, closures stress 

represents the stress at which created fracture globally close (i.e. global average for the 

interval). Techniques commonly used to determine closure stress are the step-rate test, 

shut-in decline and flowback analysis.18 

Fracture fluid (i.e. pad and slurry) is injected at high pressures into the formation 

to overcome closure stresses, create and propagate a hydraulic fracture. When fluid 

injection ceases, stresses acts to close the fracture and confine proppant. The effective 

stress acting on the proppant is 

fractureceff PP −=σ …………………………...................................................... (15) 

Effective stress (σeff) results in compaction and consequently some reduction in 

proppant permeability, which is then magnified by crushing of the grains (Fig. 4).  

Reservoir pressure depletion decreases the net closure stress (Pc).19 On the other hand, 

flowing pressure within the fracture (Pfracture) typically decreases with time, increasing the 

net closure stress. In general, the most critical condition is when pressure within the 

fracture is 0 psi. It is the case assumed in this research where Pc is calculated from Eq. 16. 

MoPFGPc ⋅= ………………………………………………………..……… (16) 
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where, FG is fracture gradient of the interval, and MoP is the middle of perforation of the 

interval. 

 

 

 

 

 

 

 

Fig. 3 Orientation of created fracture with respect to principal stresses16  

 

 

 

 

 

 

 

 

Fig. 4 Closure stress compacts the propped pack reducing the initial permeability of 

fracture16 

 

The behavior of proppant pack permeability versus closure stress for proppants is 

presented in Appendix A. 

σσσσmin

σσσσmin

σσσσmin

σσσσmin

Clossure
Stress

Pressure within
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Clossure
Stress

Pressure within
the proppant
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2.1.3 Non-Darcy Flow 

Darcy´s law describes laminar flow through porous media where the pressure gradient is 

directly proportional to flow velocity  

f

g

k

v

L
P µ

=
∆
∆

…………………………………………………………………… (17) 

When flow velocity increases, an additional pressure drop is caused by the 

frequent acceleration and deceleration of the particles of the moving fluid. These inertial 

effects21,26 are described by Forchheimer equation:  

2av
k

v

L
P

f

g +=
∆
∆ µ

…………………………………………..…………………. (18) 

Cornell and Kartz20 rewrote the constant a  as the product of the β factor (also 

called non-Darcy flow coefficient, inertial flow coefficient, and turbulent factor) and the 

fluid density: 

2v
k

v

L
P

g
f

g βρ
µ

+=
∆
∆ …………………………………………………………..... (19) 

Manipulating Eq. 18 and 19 we can get an expression of kf-eff describing the non-

Darcy flow effects. Geertsma21 first suggested the parameter called Reynolds number 

(NRe), which is presented in Eq. 21. 

Re1 N

k
k f

efff +
=− …………………………………………………………….... (20) 

g

gf vk
N

µ
ρβ

=Re ……………………………………………………………...… (21) 

 

β factor is a property of the porous media.22,23 Empirical correlations, based on proppant 

lab data, have been developed to estimate this factor24. β factor correlations considered in 

this research were selected based on evaluations performed by Lopez, Valkó and Pham16.  
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2.1.3.1 Typical β  Correlations  

Cooke  

Cooke’s equation was the first equation developed to estimate the β factor of 

proppants.25 Brady sand was used in the lab experiments. Five sand sizes and various 

stress levels were considered. Fluids used were brine, gas and oil. Cooke observed no 

difference results among fluids evaluated. All curves followed Eq. 22. Coefficients are 

shown in Table 1.  

b
fk
a=β ………………………………………………………..…………………………. (22) 

 
Table 1. Constants a and b of Cooke’s Equation 

Sand Size  (mesh)                     a                                   b 
         8/12                               3.32                              1.24 
        10/20                              2.63                              1.33 
        20/40                              2.65                              1.54 
        40/60                              1.10                              1.60 

 

Martins et al.   

Tests were conducted for different type of proppants (i.e. intermediate strength 

proppant, sand) and mesh size (i.e. 16/20 and 20/40) at confining stresses of 2,000, 4,000 

and 5,000.26 Martins et al. observed that at high rates all results are very similar 

irrespective of the type of sand and mesh, and so they proposed Eq. 23 as general 

equation for proppants.   

036.1

011.2

fk

E −
=β …………...…………………..…......................................... (23) 

Penny and Jin  

Penny and Jin plotted β factor vs. permeability for different types of 20/40 

proppants (i.e. northern wide sand, procured resin coated white sand, intermediate 

strength ceramic products and bauxite).27  Their final equation has the same form as 
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Cooke´s equation (Eq. 22) where the coefficients a and b depend on type of sand. These 

coefficients are shown in Table 2. The correlation provides the so called dry β  factor 

because the authors propose to correct it for multiphase flow (when water or condensate 

is also flowing).  

 
Table 2. Constants a and b of Penny & Jin’s equations for 20/40 mesh 
Type of proppant                                 a                                 b 
Jordan Sand                                     0.75                             1.45 
Precurred Resin-Coated Sand            1                                1.35 
Light Weight Ceramic                     0.7                               1.25 
Bauxite                                             0.1                               0.98 

 

Pursell et al. 

Three type of proppants (i.e. Brady sand, Interprop and Carbolite) were evaluated 

injecting nitrogen at constant closure stress and pore pressure, at different flow rates. 

Pursell et al. 22 concluded that the relationship between permeability and β factor is only 

a function of mesh size and proppant permeability and is independent of proppant type. 

They developed two equations, with the same form as Cooke’s equation for 12/20 and 

20/40 mesh size. Their coefficients a and b are shown in Table 3.  

 
Table 3. Constants a and b in Pursell’s equation 
     Mesh                            a                        b 
     12/20                        1.144                 0.635 
     20/40                        1.123                 0.326 

 
 

2.1.4 Gel Damage 

Fracturing fluids are one the most important components of a successful fracture 

treatment. The main functions of these fluids are to transmit the hydraulic pressure from 

the pumps to the formation and transport proppant along the created fracture.2,18  

Water-based systems are the most widely used fracturing fluids. In this case, 

polymers are added to proportionate viscosity to the fluid. Guar gum and its derivatives 

such as hydroxypropil guar (HPG) and carboxymethyl-hydroxypropyl guar (CMHPG) 

are the polymers typically used as gelling agents.  
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During the treatment polymer deposits a filter cake on the fracture wall due to the 

leakoff of the fracturing fluid into the formation.28 Gel concentration within the fracture 

increases with time as an effect of the fluid leakoff as well.  Deposited cake is subject to 

erosion and part of the polymer within the fracture comes out in the flowback. However, 

most of the polymer remains in the fracture (Fig. 5). Final effect is a reduction of the 

cross sectional area of flow, which decreases fracture permeability. 

Gel damage is taken into account in this research as a percentage of retained 

permeability (Eq. 16). Flowers, Hupp and Ryan23 mentioned that usually engineer 

designing hydraulic fractures includes a damage of 50% or more to proppant permeability 

as a consequence of damage by polymers.  

damagekk fefff %⋅=− ………...……….…………………………………... (24) 

 

 

 

Fig. 5 Polymers within the fracture reduce cross sectional area of propped pack16 
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2.2 Algorithm of Fracture Design Incorporating Damage Effects 

 Lopez et al.16 developed an algorithm for optimal fracture design, which incorporates 

non-Darcy flow effect. The algorithm can be illustrated by a flow chart shown in Fig 6. 

The detail of the procedure is described as following: 

 

 
 

Fig. 6 Flow chart of the fracture design algorithm30 
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2.2.1 Calculate General Fracture Parameters 
 

• Estimate closure pressure (pc) 

      mopfp gc ⋅= …………………………………………………….. (25) 
 
• Obtain kf based on closure pressure, selected proppant type and mesh size 
 
• If AR is the method selected for fracture height calculation then initialize hf  to 

100 ft; Else hf  is the one specified by user. 

 
 
2.2.2 Calculate Volume of Proppant and Reservoir 
 

• Calculate drainage radius (re) 

      
π

area
re = ……………………………………………………… (26) 

 
• Reservoir volume (Vres) 

      peres hrV ⋅⋅= 2π …….……………………………………….…… (27)                      
 
• Volume of proppant injected (Vi) 

      ( ) sgppp
m

Vi ⋅−
⋅=

1
016.0

……………………………………………...… (28) 

 
                                                                                                               

2.2.3 Correct Initial kf  due to Gel Damage  
 

• )100/1( gdkk ff
−⋅= ……………………..……………………... (29) 

• Initialize error to 100 
 

2.2.4   Fracture Design Assuming Darcy Flow through the Propped Pack 
 

• Set ffnew hh =  

• Volume of proppant reaching the pay (V2)  

            
fnew

p
i h

h
VV ⋅=2 …………………………..…………………...…..… (30) 
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• Proppant number (Nprop)  

      
resg

f
prop V

V
k

k
N 2

2 ⋅
= ……………..…………………....…………….. (31) 

 
• Calculate optimal dimensionless fracture conductivity (Cfdop) and optimal 

dimensionless productivity index (Jdop) from algorithm to calculate these two 

parameters for a given proppant number, 

 
• Proppant volume in one wing of the net pay (V1) 

      
2

2
1

V
V = ………………………………………………….…………. (32) 

 
• Optimal fracture half length (xf) 

      
2

1

1

�
�

�

�

�
�

�

�

⋅⋅
⋅

=
pgfdop

f
f hkC

Vk
x  …………………………………….……..… (33) 

       
•  fnewfold hh =                                                            
 

• If aspect ratio option is selected, then  
4

2 f
fnew

x
h

⋅
= ; Else continue 

 
• Calculate Error 

      100⋅
−

=
fold

foldfnew

h

hh
Error …………………………………….…… (34) 

 
• If Error < 0.01 continues; else go back to Eq. 30 and repeat its following steps 

again. 
 
• Calculate gas production (qg) 

      dop
res

pg
g J

T

fbhpmpresmhk
q

)460(424,1

))()((

+⋅
−⋅⋅

=    …………...……………. (35)                                                                                                       

2.2.5 Perform Fracture Design Considering Non-Darcy Effect 

• Calculate z-factor (Zfbhp) at flowing bottomhole pressure  
 

• Calculate gas formation volumetric factor (bg) 
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bhp

resfbhp
g f

TZ
b

⋅
= 0282.0 ………………………..………………...…. (36) 

• Molecular weight of the mixture (mg) 

                              sggmg ⋅= 29 ……………………………….….…………………. (37) 
 

• Density of the gas (gasd) 

                              
resfbhp

gbhp
asd TZ

mf
g

⋅⋅
⋅

=
732.10

………………………...…………………. (38) 

 
• Beta factor (beta) 

                                   
cb

f ppk

a=β ………………...…………………………………….... (39) 

• Initialize Reynolds number (rnew) 10=newr  
 

• Calculate effective permeability due to NDF (kfeff) 

                              
new

f
feff r

k
k

+
=

1
……………………………………..………….…… (40) 

 
• Volume of proppant reaching the pay (V2)  

                              
f

p
i h

h
VV ⋅=2

…………..……………..………………………..……... (41) 

• Proppant number (Nprop)  

                              
resg

feff
prop V

V
k

k
N 2

2 ⋅
= ……………..…………….…………….…..... (42) 

 
• Calculate optimal dimensionless fracture conductivity (Cfdop) and optimal 

dimensionless productivity index (Jdop) based on a given proppant number, 

• Calculate proppant volume in one wing of the net pay (V1) 

                              
2

2
1

V
V =  

• Calculate optimal fracture half length (xf) by using following equation 

                             
2

1

1

�
�

�

�

�
�

�

�

⋅⋅
⋅

=
pgfdop

feff
f hkC

Vk
x  ……………………..……………………….. (43) 
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• If aspect ratio option is selected, then
4

2 f
f

x
h

⋅
= ; else continue 

• Evaluate the optimal propped width (wf) 

                             
2

1

1

�
�

�

�

�
�

�

�

⋅
⋅⋅

=
pfeff

gfdop
f hk

VkC
w …………………………….………………. (44) 

• Calculate gas production rate (qg) 

                                dop
res

pg
g J

T

fbhpmpresmhk
q

)460(424,1

))()((

+⋅
−⋅⋅

= ……………….………..… (45)                                                                                                                                                                                                            

• Calculate gas velocity within the fracture (v) 

                                
ff

gg

wh

qb
v

⋅
⋅⋅

=
500

 …………………………...…………….……….... (46)                                                   

• Set newnold rr =                                                                  
 

• Calculate gas viscosity (vfbhp) at flowing bottomhole pressure 
 

• Calculate Reynolds number (rnew) 

                                
fbhp

f
new v

vgasdk
r

⋅⋅⋅
×= − β161083.1 ……………………………..….. (47) 

• Compute Error of Reynolds number 

                                     100⋅
−

=
new

noldnew

r

rr
Error                                                                                         

• If Error < 0.01 continues; else go back to the step of effective permeability 

calculation. 

 
 
2.3 Fracture Performance Evaluation 
 
The methodology of fracture performance evaluation is based on calculating and 

comparing the actual dimensionless productivity index of fractured well with the 

benchmarks which have been developed for optimized production. From the comparison, 

one can evaluate the fracturing performance and make decisions such as re-fracturing and 

improvement of future treatments. 



 25 

To estimate the actual productivity index, one can use the equation applied to 

calculate the dimensionless pseudo-steady state productivity index, which is given as:  

s
r
r

J

w

e
D

+
=

472.0ln

1
……………………………………………….……. (48) 

Therefore, 

)472.0ln(
1

w

e

D r
r

J
s −= …………………………….……………..……….(49) 

where, JD is the actual dimensionless productivity index, re is the drainage radius, rw is 

the well radius, and s is the measured skin factor. 

The comparison between the two dimensionless productivity indexes is presented 

as the percentage of optimal productivity index achieved. 

piach= %100×
opt

act

J
J

……………………………………………………….(50) 

The key factor of this application is the input actual skin factor, which may come 

from other production analysis methodology such as Fetkovich decline curve analysis. 

Success of fracture evaluation greatly depends on how reliable this skin factor is. 
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CHAPTER III 

ACTIVE SERVER PAGE USER INTERFACE 

 

Two methodologies, unified fracture design and fracture evaluation, were presented in 

the previous chapter. In reality, however, they are rarely put in practical use due to the 

complex algorithm. This research is trying to solve the problem by creating user 

interfaces of fracture design and evaluation to simplify the input and calculation 

procedures. Two computer modules were developed based on the methods, one is called 

Frac Design (Screening), and the other is Frac Evaluation. 

 

3.1 Fracture Design (Screening) Module 

Frac Design (Screening) is a web based application for the design of hydraulic fractures 

mainly for natural gas wells. Design methodology is based on proppant number approach 

(UFD). The application considers the effects of closure stress, non-Darcy flow and gel 

damage upon the effective propped pack permeability performance. It results in more 

realistic fracture designs for maximizing gas well deliverability. 

Frac Design (Screening) was designed to minimize number of parameters to be 

entered by user. Then, most of the design input process consists on various selections, 

based on which, data required by application is obtained from those already created by 

the production company in South Texas and from new databases (i.e. database of 

proppant and beta factor) constructed in this research.  

One of the most important features of Frac Design (Screening) is the possibility to 

use any commercial proppant in any of its available mesh size. Proppants have been 

classified by type. Only a few commercial products have been initially included in the 

database, but it can be extended to include more proppant in the futures.  

The several typical proppant beta correlations have been included in Frac Design 

(Screening). Based on user selection of proppant type and mesh size, the program will 

pick the most appropriate correlation for actual case.  Gel damage is accounted as 

percentage of proppant permeability reduction.  
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3.1.1 Input Data 

Frac Design (Screening) has been designed to minimize the number of parameters to be 

entered by user. Most of required data is obtained from existing real reservoir databases 

and new databases we created for this application (i.e. database of proppant and beta 

correlations databases). Entries basically consist on the selections from lists and 

checkboxes displayed in input window. For the information which are not given in the 

database, default values are set for the entries and marks “**” following the data name. 

3.1.1.1 Well Data Input and Interval Selection 

Basic information of the selected well is displayed at the top of Frac Design (Screening) 

main page (Fig. 7), which includes operator information, well name, field name, reservoir 

information and the well location. 

 

 
Fig. 7 Basic data of well to be fractured 

 

 

The intervals in this well are presented in a combo box list (Fig. 8). It corresponds 

to intervals that are already included in the reservoir databases.  One interval might be 

selected from this list.  
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Fig. 8 Interval to be fractured in one stage 

 

 

All intervals selected must be in a range of maximum 300 ft (Fig. 9). It is because 

only one fracture treatment can be designed at a time and maximum expected fracture 

height is 300 ft. 

 

 

           

Fig. 9 Intervals selected to be fractured in one stage should be in a range of 300 ft30 

300 ft maximum 
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3.1.1.2 Reservoir and Fluid Data  

These data read from the reservoir databases will be displayed in “Fluid data” and 

“Reservoir Data” forms (Fig. 10), right below the “Well data” and “Interval selection” 

sections after an interval is selected. 

 

       

 

Fig. 10 Fluid/reservoir data collecting from the reservoir databases  

 

The input data of this section includes three parts i.e. fluid data, wellbore 

parameters and reservoir data, which are described as following. 

3.1.1.3 Fluid Data 

• Gas gravity. The specific gravity of the gas, this information might be 

obtained from lab or field measurements 

• %N2. Percentage of nitrogen (mass) present in the gas mixture. It is obtained 

from lab measurements. 

• %CO2. Percentage of carbon dioxide (mass) present in the gas mixture. It is 

obtained from lab measurements. 
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• %H2S. Percentage of hydrogen sulfide (mass) present in the gas mixture. It is 

obtained from lab measurements. 

3.1.1.4 Wellbore Parameter 

• Well radius.   Normally this information can not be collected from reservoir 

database, so a number of 0.3 (ft) is set as default input. 

3.1.1.5 Reservoir Data 

• Reservoir initial pressure. The initial pressure of the reservoir 

• Reservoir temperature. Average formation temperature 

• Formation permeability. Formation effective permeability to gas. Normally 

this value can not be obtained directly from database, but from log, well test 

or from production analysis 

• Interval Top.  Depth of the interval top 

• Gross Thickness. Total gross thickness of the interested intervals 

• Net Pay Thickness. The effective thickness of the reservoir 

• Well drainage radius. It is obtained from drainage area assuming reservoir is 

circular (Eq. 18) 

      
π

Area
re

⋅= 560,43
………………………………………………..… (51) 

     where, re is in ft and Area in acres. 

• Middle depth of the perforations. It is calculated from the interval top plus the 

half of gross thickness. 

• Fracture gradient. This value is calculated in stead of read out from database. 

Since instantaneous shut-in pressure (ISIP) data can be obtained from fracture 

operation database, fracture gradient can be computed by following 

equations: 

      BHP = Ph + ISIP…………………………………………………. (51) 

     FG = BHP / MoP………………………………………….…….... (52) 
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      where, BHP is bottomhole pressure, Ph is hydrostatic pressure, FG is fracture 

gradient and MoP is middle of perforation. 

 

3.1.2 Proppant Selection & Treatment Size 

One of the most important steps in the hydraulic fracturing design, to be performed in any 

well, is the selection of proppant to be injected into the formation. It determines in part 

the maximum dimensionless productivity index we might expect from fractured well. In 

this section of the input window user can choose the type of proppant, commercial 

product, mesh size and mass of proppant to inject. Proppants available in Frac Design 

(Screening) are those included in a Microsoft Access database developed for this 

application. Then, this database can be extended as needed to include more proppant 

products. Data included in the Access file is shown in Appendix A. 

• Proppant type. Because of recent advances in composite material and 

manufacturing technologies, many new men-made proppants are available. Type 

of proppant has to be selected based on in-situ stress conditions (i.e. Closure 

pressure), long term goals, etc. Types available in Frac Design (Screening) are 

included in the list next to label “Prop Type” (Fig. 11). The type of proppants 

initially included in Frac Design (Screening) are: 

o Low Weight Ceramic (LWC) 

o Heavy Weight Ceramic (HWC) 

o Sintered Bauxite (SB) 

o Resin Coated Sand (RCS) 

o Resin Coated Bauxite (RCB) 

o Sand (Sand) 

• Proppant name. It is the list of commercial proppants available in Frac Design 

(Screening) for type of proppant selected in previous step. If user changes the type 

of proppant to be used proppant name list should be changed too. (Fig. 11).  

• Mesh size. List displayed next to label “Mesh Size” corresponds to sizes available 

for proppant selected in previous step. It is automatically updated when user 

change proppant to be used. (Fig. 11). 
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• Mass of proppant. The mass of proppant to be injected into the formation in the 

textbox. It is in lbm (Fig. 11).  

 

 

Fig. 11 Selection of proppant to be considered in the design and mass of proppant to 

inject into the formation 

 

3.1.3 Optimal Treatment Design Options 
In this section, the user has to complete several input that will be necessary for 

determining final optimal fracture geometry. 

 

3.1.3.1 Fracture Height 

Final fracture height is determined by injection pressure, in-situ stresses and mechanical 

properties of interested and adjacent layers (i.e. strength contrasts).   Frac Design 

(Screening) includes two options to set this parameter based on data available and 

uncertainties.  

• Known fracture height. This option is recommended when final fracture height 

can be estimated from logs. It is the case of thick pays with high strength contrast 

where it can be assumed that fracture will be contained in the pay of interest (Fig. 

12). 
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Fig. 12 Fracture contained by two adjacent shales30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Fracture height estimation in multilayered reservoirs30 
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• Aspect ratio. This option is recommended when the uncertainties in fracture 

containment is high. It is the case of laminated reservoirs (Fig. 13) where it is 

difficult to predict where the fracture height growth will stop. Aspect ratio is 

defined as the ratio of total fracture half length to fracture height (Eq. 51). Valkó 

suggests setting this value to 4 based on numerous observations where both 

parameters were measured. 

f

f

h

x
AR

⋅
=

2
…………………………………………………..…………….… (53) 

Finally, select the appropriate method for fracture height calculation by clicking 

on the option that corresponds to the method (Fig. 14) 

 

 

 
Fig. 14 Fracture height estimation method selection  

 

 

3.1.3.2 Correct Prop Permeability 

In this section user has the opportunity to consider the effects of gel damage and non-

Darcy flow upon the effective permeability of the propped pack. It is recommended to 

consider the effects that are likely to be presented. It will result in real optimal fracture 

designs. 

• Gel damage.  To consider this effect just click on the check box next to the label 

with the same name. This option is active only when a checkmark appears in the 

check box (Fig. 15).  Then, user has to input a percentage of gel damage in the 

textbox next to the checkbox (Fig. 15).  Several authors recommend setting this 

parameter to 50% for design purposes.  

• Non-Darcy flow. This effect is always likely to be presented at field conditions. 

Therefore, it should always be considered during the design process. Check the 



 35 

box next to the label with the same name if non-Darcy effects are considered (Fig. 

15).  

            In this section the user can check the beta correlation and nominal proppant 

permeability being used, which are based on the proppant selection in the previous step. 

 

 

 
Fig. 15 Selection of damage factors  

 

 

3.1.3.3 Beta Correlation 

There are four β correlations available in Frac Design (Screening). Two of these 

correlations were developed for a specific proppant type and mesh size. These are Penny 

& Jin and Cooke. These correlations will appear in the combo box if and only if the 

proppant type and mesh size corresponds to one of the combinations presented in Table 

4. If it is the case, select either one of these correlations as the correlation of choice. 

Otherwise, either Pursell et al.23 or Martins et al.25 can be used for other type of proppant 

and mesh size. 
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Table 4.  Correlations developed for specific types of proppants and mesh size 

Correlation                         Type of proppant                             Mesh size        

 Penn & Jin                              Bauxite                                            20/40       

                                                   LWC                                               20/40                                                                                                       

                                                   RCS                                                20/40   

                                                   Sand                                                20/40                        

Cooke                                        Sand                                                 8/12 

                                                   Sand                                                10/20 

                                                   Sand                                                 20/40 

                                                   Sand                                                 40/60 

 

3.1.3.4 Optimize Pseudo-Steady State Design 

In this section user must set the bottomhole pressure and average formation pressure in 

order to calculate the flow rate corresponding to the optimal fracture design. 

• Flowing bottomhole pressure. This parameter should be entered by user in the 

text box next to the label with the same name (Fig. 16).  This parameter is used to 

calculate the flow rate based on the optimal design scenario.  

• Formation average pressure. This parameter also should be input by user 

associated with the practical condition. It should be estimated as best as possible, 

since the final optimal design is affected by this parameter (Fig. 16). 

 

 

       
Fig. 16 Input of the bottomhole pressure and formation average pressure 
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3.1.4 Run Calculation 

After all data required have been entered and selections have been made, click on the 

“Calculation” button (Fig. 16) to execute the designing calculation. If any parameter is 

missing, a warning message will be displayed indicating what parameter to enter or 

correct (Fig. 17). 

 

                                      
 
Fig. 17 Warning message indicating that some parameter value is missing or out of 

the range 

 

3.1.5 Results 

Optimal fracture design, important parameters associated to this design and expected well 

performance is presented in the Calculation Results section (Fig. 18) at the bottom of 

Frac Design (Screening) window. Calculation results are presented below. 

 

 

Fig. 18 Results window 
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3.1.5.1 Gas Rate  

It is the expected gas production in Mscf/day coming from actual stage. It is calculated 

using the gas pseudo pressure function. It can be considered as a reference which depends 

on reservoir and well data as well as selected proppant and other conditions affecting 

propped pack permeability. Uncertainties in any of these parameters should be considered 

appropriately. 

3.1.5.2 Optimal Fracture Geometry 

It is the set of dimensions fracture should have in the reservoir to produce the amount of 

gas reported previously.   

• Fracture height (hf) Fig. 19 

• Fracture half length (xf)  Fig. 19 

• Fracture width (wp) Fig. 19 

• Aspect ratio  

 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 
Fig. 19 Optimal fracture dimensions reported in Frac Design (Screening)30 

 



 39 

3.1.5.3 Fracture Design Parameters 

It corresponds to the set of parameters that might be of interest to the user for further 

analysis.  

• Proppant number 

• Effective propped pack permeability 

• Reynolds number 

• Optimal dimensionless productivity index 

• Optimal dimensionless fracture conductivity 

3.1.5.4 Treatment Size vs. Production Rate/Productivity Index Plot 

The plots of treatment size (proppant mass) vs. production rate and treatment size vs. 

productivity index (Fig. 20, Fig. 21) show how much optimal production 

rate/productivity index one can reach for certain amount of proppant mass. The red dot in 

the graphic indicates the production rate/productivity index corresponding to the user-

input proppant mass. Note that there is an absolute maximum achievable dimensionless 

productivity index, which is π/6  (around 1.909), this PI corresponding to perfect linear 

flow in a square reservoir.  

The range of the proppant mass in the plot is from half of the value user input to 

the amount of proppant reaching to the design maximum productivity index (1.909). So 

one can find out from the plot that how much more proppant he/she should inject in order 

to achieve the maximum production rate (productivity index), if it is possible. 
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Fig. 20 Relation between treatment size and production rate 
 
 

                      

Fig. 21 Relation between treatment size and dimensionless productivity index 

 

 

 

3.2 Fracture Evaluation Module 

Frac Evaluation module is also a web based application for the evaluation of hydraulic 

fracturing performance. The methodology in this module is based on calculating and 

comparing the actual dimensionless productivity index of fractured well against the 

benchmarks which has been developed for optimized. Based on the comparison, one can 

evaluate the fracturing performance and make decisions such as re-fracturing and 

improvement of future treatments. 
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Similar to Frac Design (Screening), optimal parameter calculation in this 

application still considers the effects of closure stress, non-Darcy flow and gel damage 

upon the effective propped pack permeability performance. The key factor of this 

application is the input actual skin factor, which may be estimated from well test or from 

the production data by applying methodology such as Fetkovich analysis. The success of 

the evaluation greatly depends on how reliable this skin factor is. 

3.2.1 Input Data 

It is similar to Frac Design (Screening), the input sections in Frac Evaluation module also 

includes PVT data, fluid data and reservoir data. One difference between the two 

modules is that since fracture evaluation considers the wells which have already been 

performed fracture treatment, one can get sufficient completion operation information for 

these wells, to make it easier for user checking the treatment information, a section called 

“Fracture operation summary” is added in the user interface. The other difference of the 

input sections between the two modules is there is an extra input item in Frac Evaluation 

called actual skin factor, and productivity index can be calculated based on this 

information (Fig. 22). 
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Fig. 22 Input sections of Frac Evaluation module 
 
 
 

3.2.2 Results 

Optimal fracture parameters and actual dimensionless productivity index are presented in 

the Calculation Results section (Fig. 23) at the bottom of Frac Evaluation window. 

Calculation results are shown below. 
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Fig. 23 Results window of Frac Evaluation module 

 

3.2.2.1 Optimal and Actual PI 

These are two dimensionless parameters indicating the expected and actual well 

performance respectively. The fracture performance evaluation is based on the 

comparison between this two productivity indexes (percentage ratio).  

 
3.2.2.2 Percentage of Optimal Productivity Index Achieved 

This value indicates how close the actual fracture performance to that of optimal fracture. 

The closer this value is to 100%, the better the fracture performance is, vice versa.  
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CHAPTER IV 

CASE ANALYSIS 

 

 

In this chapter a well named RG #1 located at Texas Golf Coast is investigated as an 

example to show how the two methodologies and the computer modules (Frac Design 

(Screening) and Frac Evaluation) work. Also as validation, the results from Frac Design 

and Frac Evaluation to those from 3D frac simulation software, which is named FracPro, 

developed by Pinnacle Technology Company, will be compared. 

To perform fracture design and evaluation analysis, first step and also one of the 

most important steps is to collect the data regarding the necessary input. Most of the data 

in this case are from Halliburton’s post job report, since the information of this well has 

not been sufficiently established in the database. Petrophysical data are also quoted to 

confirm the information obtain from the report. 

Based on the collected treatment information, it is clear that the stimulation 

operation includes three stages; the location of each stage is shown in following table 

(Table 5). Notice that the second stage was abandoned due to the aquifer involved.   

 

 

Table 5. Top and bottom depth of  RG #1 stages31  
Stage                                      Top Depth, ft                    Bottom Depth, ft 
Stage #1                                      13,195                                  13,354 
Stage #2                                      13,550                                  13,573 
Stage #3                                      14,282                                  14,631 

 

 

4.1 Fracture Design  

 

4.1.1 Treatment Stage 1 of RG #1 

Table 6 shows the basic information of RG #1 first stage. 

 

 



 45 

 

Table 6. The basic information of the first stage of RG #131 
Customer                                  PRODUCTION COMPANY 
Well Name                                 RG #1 
Stage                                          1 
Well Number                             1 
Start Time                                 23-Feb-05 08:21:54 
County                                       Lavaca 
State                                           Texas 
Country                                      United States of America 
H2S Present                               Unknown 

 

 

4.1.1.1 Input Data 

 

 Fluid Data 

The gas gravity value is obtained from reservoir database, the number is around 

0.65, also it is clear that any reasonable assumptions for impurity composition will not 

greatly affect the calculation results, so it is fine if one sets the three impurity components 

(CO2, H2S and N2) to zero. The detail of fluid data set is shown in Table 7. 

 

Table 7. Fluid data of RG #131 

Fluid Properties             Value              Data Source 

Gas Gravity                    0.65           Reservoir database 

CO2, %                             0                  Assumption 

N2, %                                0                  Assumption 

H2S, %                              0                  Assumption 

 

Well Data 

Fig. 24 shows the wellbore schematic of RG #1, from which one can estimate the 

well radius, the number is around 0.3 ft. 
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Fig. 24 Wellbore schematic of RG #1   

 

   

13 3/8” 68# K55 BTC @ 2,525’ 
Cmtd from 2,525’ to 1,310’ w/ primary job of 1,915 sx.  
Perf @ 1,144’-1,148’ & cement to surface w/ 283 sx 

9 5/8” 65# Q-125 SLX SET @ 10,820’  

  

 

PROPOSED WELLBORE DIAGRAM 
January 28, 2005 

7 5/8” 29.7# Q-125 SLX SET @ 14,000’ 
Cmtd w/ 1,430 sx 

TOP 7 5/8” 29.7 # Q-125 SLX @ 10,476’ 
 

TD 15886’ 

Estimated 
PBTD 14,900’ 

Perfs  14,282’-14,292’, 14,414’-14,420’, 14,532’-14533’, 14,626’-14,631’ ’ 
Fraced 

Perfs 13,195’-13,203’, 13,259’-13,261’, 13,307’-13,309’, 13,336’-13,354’ ’ 
Fraced 

Perfs 13,550’-13,560’, 13,566’-13,573’ ’ Fraced 

TOC Calc @ 7,000’ 

 

RG #1 Well bore Schematic  
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Reservoir Information 

Following (Table 8) is the corresponding reservoir data quoted from the 

Halliburton’s post job report. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Tables 9 and 10 show the pipe and perforation interval information of RG#1 
stage 1. 
 
 
 

Table 9.  Pipe information31 of RG #1 stage 1  

Equipment Name      Top MD       Bottom MD          OD         ID      Grade        Weight 
                                        ft                     ft                    in           in                           lb/ft 
      Casing                    0.0                10,820               9.875     8.559    Q-125        65.10 
      Casing                 10,476            14,000                7.625     6.875   HCQ-125    29.70 
      Casing                    0.0                15,070               7.625     6.875     Q-125        23.20 
 
 

Table 10. Perforation intervals31  

Top MD    Bottom MD    Total Gross Thickness   Number of     Perf Density       Perf                                 
    ft                  ft                        ft                                 shots                spf            Phasing 
14,282.0       14292.0                 339                               61                   6.0               60           
14,414.0       14420.0                                                      37                   6.0               60           
14,532.0       14533.0                                                      13                   6.0               60           
14,626.0       14631.0                                                      31                   6.0               60           
 
 
 

Also the reservoir data are collected from petrophysic summary, which is shown 

in Table 11. 

Table 8. Reservoir information31 of RG #1 stage 1  

Bottomhole temperature @ 14457 ft, F              338 
Surface temperature @ 0 ft, F                             73 
Young’s Modulus, psi                                         3,000,000 
Poisson’s Ratio                                                    0.25 
Total Compressibility, 1/psi                                0.00008 
Fluid viscosity, cp                                               0.03 
Reservoir Pressure, psi                                       12,553 
Reservoir Permeability, md                                0.1 
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Table 11. RG #1 stage 1 petrophysic summary 
Zone Name                                                        Meine 
Top Depth, ft                                                     14,282 
Bottom Depth, ft                                               14,631 
Gross Thickness, ft                                            339 
Net Pay, ft                                                          58.5 
Net to Gross, ft                                                   0.17 
Average Reservoir Permeability, md                 0.1033 
kh, md-ft                                                             6.04 
Porosity, %                                                         14 
Water Saturation, %                                           39.9 

 
 
 
Drainage Area 

The drainage area is necessary information to estimate the reservoir volume 

which in turn is used to calculate the proppant number.  However, this data is missing in 

both petrophysic summary and Halliburton’s report, so one must take advantage of other 

methodologies to evaluate this parameter. Before this research is conducted, a module 

called Fetkovich Advanced DCA (Decline Curve Analysis) has been developed by a 

reservoir technology group in the production company. This case investigation just 

directly applies the results by running the module. The value of drainage area gained 

from Fetkovich analysis is around 40 acres. 

 

Fracture Gradient 

Mini-frac was conducted before the treatment, Table 12 shows the ISIP and 

fracture gradient measured in three different phases, which include 1) well loaded; 2) the 

fluid efficiency test (FET); and 3) end of treatment. As an input, the average of the 

fracture gradient from the three phases is taken, which is around 0.98 psi/ft. 
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Depth of Middle of Perforation 

                      
The depth of middle of perforation is calculated by adding up top and bottom of 

interval and divide the summation by two. 

 
Dmiddle = (Dtop + Dbottom) / 2………………………………………………….. (54) 

 
Summarizing the information above, one can reach the input and resource for the 

optimal fracture design calculation as shown in Table 13. 

 

 

Table 13. Data input set for optimal fracture design calculation 

Reservoir Parameter                          Parameter Value           Data Source 

Initial Reservoir Pressure, psi              11,352                    Post job report  

Reservoir Temperature, F                    338                         Post job report 

Formation Permeability, md                0.1                          Post job report &  

                                                                 Log interpretation                                    

Depth of Interval Top, ft                     14,282                     Log interpretation 

Gross Thickness, ft                              339                          Log interpretation 

Net Pay, ft                                            58.5                         Log interpretation 

Drainage Area, acre                              40                           Fetkovich Analysis 

Depth of Middle of Perforation, ft       14,456                  Calculation based on     

                                                               Reservoir top and gross  

                                                                thickness                            

Frac Gradient, psi/ft                              0.98                      Post job report 

Table 12. ISIP table31  
Test Number          ISIP        Hydrostatic          Fracture Gradient           Test Phase 
                               psi                psi                            psi/ft 
       1                    7,875            6,360                        0.985                       Load Well 
       2                    7,797            6,357                        0.979                       PET 
       3                    7,464            6,660                        0.977                       End of  
                                                                                                                   Treatment 
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Proppant Selection and Treatment Size 

Again one can get the proppant information from the post job report prepared by 

Halliburton. The treatment consisted of 144,682 gal carrying 222,140 lbs of 20/40 

Bauxite coated with Expedite 350 at an average treating rate and pressure of 30.9 bpm 

and 8,218 psi. The maximum pressure encountered during the treatment was 9,177 psi. 

The total liquid load to recover is 137,519 gal. Table 14 gives the summary of proppant 

injection job information. 

 

 

Table 14. Proppant injection job summary31  

Start Time                                                        10:57:49 
End Time                                                         13:58:26 
Pump Time, min                                              126.87 
Max Treating Pressure, psi                              9,177 
Average Treating Pressure, psi                        8,218 
Max Slurry Rate, bpm                                      46.2 
Average Slurry Rate, bpm                                30.9 
Clean Volume, gal                                           137,384 
Slurry Volume, gal                                          144,668 
Proppant type                                                   Bauxite 
Mesh size                                                         20/40 
Proppant Mass, ×100  lbm                               2117.51 
BH Proppant in Formation, 100 * lbm             2060.37 

 
 
 

Fracture Height 

It is clear from log analysis that this is a laminated reservoir where it is difficult to 

predict where the fracture height growth will stop. Therefore, aspect ratio concept is used 

to determine the fracture height. In this case analysis, the value of aspect ratio is set as 4 

based on the rule of thumb. 

 

Non-Darcy Effect 

Since it is a gas well, non-Darcy effects can not be ignored in the fracture design 

calculation. 
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Driving Force 

To calculate the optimal flow rate, the average formation pressure and flowing 

bottomhole pressure have to be input, both of the parameters should be estimated as best 

as possible, because final optimal design is affected by these parameters due to the effects 

of non-Darcy flow, the higher kh product is the more important a good estimation is. This 

case is dealing with low permeability reservoir, so the input will not impact greatly on the 

optimal fracture geometry and productivity index.  The average reservoir pressure and 

flowing bottomhole pressure are set to 9000 psi and 7000 psi respectively. 

 

4.1.1.2 Design Parameters Calculation Results  

Table 15 shows the calculation results of optimal fracture design based on the input data 

discussed above. 

 

 

Table 15. Optimal fracture design parameter for RG #1 stage 1 

Gas Rate, mscf/D                                                            4,800 
Fracture Length, ft                                                          494 
Fracture Height, ft                                                           247 
Optimal propped width, inch                                          0.076 
Aspect Ratio (AR)                                                            4 
Proppant Number                                                            2.25 
Nominal Proppant Permeability, md                             166,000 
Effective Permeability, md                                             31,331 
Reynold Number                                                             1.65 
Dimensionless Optimal Productivity Index                     1.1 
Optimal Fracture Conductivity                                       4.01 
Post Treatment Pseudo Skin Factor                               -6.16 

 

 

 4.1.1.3 Comparison with 3D Simulation 

Fig.  25 is the 3D simulation result for fracture design, the solid and dash double-arrow 

lines indicate the simulation fracture length and UFD fracture length respectively. Note 

that it only consider the simulation fracture length with proppant concentration over 1 
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lb/ft2. The comparison shows no substantial deviation between the two results from the 

modules (494 ft versus 500 ft).   

In additional, it is clear from the simulation results that the effective fracture 

height (180 ft) is much less than the gross thickness (339 ft), that may lead the actual 

production rate lower than the optimal flow rate. 

 

4.1.2 Stage 3 

The third stage of the treatment is located at 13,195 ft to 13,354 ft, the detail of the input 

data are described as following. 

 

4.1.2.1 Input Data 

Fluid Data 

It assumes that the fluid property independent on depth, therefore the same fluid 

data as shown in stage 1 (Table 8) is still used in stage 3. 

 

Reservoir Data 

The following table (Table 16) shows the basic information in the third stage of 

the fractured well. 

 

 

Table 16. Treatment information31 of RG #1 

Well Name                                                 RG # 1 
Stage                                                               3 
Well Number                                                  1 
Start Time                                            �����������	
��
���
County                                                       Lavaca 
State                                                           Texas 
H2S Present                                            Unknown 
CO2 Present                                            Unknown 

 

Reservoir Information 

Table 17 shows the reservoir data for RG #1 treatment stage 3, which are also 

collected from Halliburton’s post job report. 
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Fig. 25 Result comparison between Frac Design (Screening) and 3D simulation for treatment stage 1 of well RG #1 
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Table 18 and 19 show the pipe and each perforation interval information 
 

 
 
 

Table 19. Perforation intervals31  
Top MD    Bottom MD   Total Gross Thickness, ft   Number of Shots   Perf Diameter, in            
   Ft                      ft                               ft                             shots                          in                
13195.0         13203.0                        159                              49                         0.320             
13259.0         13261.0                                                            13                         0.320             
13307.0         13309.0                                                            13                         0.320             
13336.0         13354.0                                                             49                        0.320             

                 
 
 

Table 20 shows the reservoir data from petrophysic summary for RG#1 stage 3. 
 
 
 
 
 
 
 
 
 
 
 

Table 17. Reservoir information31 
Bottomhole temperature @ 14457 ft, F                      315 
Surface temperature @ 0 ft, F                                     65 
Young’s Modulus, psi                                            3,000,000 
Poisson’s Ratio                                                            0.20 
Total Compressibility, 1/psi                                   0.00009201 
Fluid viscosity, cp                                                       0.03 
Reservoir Pressure, psi                                              10,833 
Reservoir Porosity, %                                                   18 
Reservoir Permeability, md                                          0.1 

Table 18. Pipe information31  
Equipment           Top MD        Bottom MD          OD             ID          Grade      Weight  
Name                        ft                    ft                      in               in                              lb/ft     
Casing                   0.0                15070.0              5.000          4.044      Q-125        23.20 
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Table 20. RG #1 stage 3 log interpretation31 

Top Depth, ft                                                        13,195 
Bottom Depth, ft                                                   13,354 
Gross Thickness, ft                                               159 
Net Pay, ft                                                             23 
Net to Gross, ft                                                     0.14 
Average Reservoir Permeability, md                   0.4113 
kh, md-ft                                                               9.46 
Porosity, %                                                           15.9 
Water Saturation, %                                             36.7 

 
 
 
Fracture Gradient 

                       
Mini-frac test result are shown in Table 21. The fracture gradient is calculated by 

taking the average of three phases, which is around 0.95 psi/ft. 

 
 

 

 

Summarizing the information getting above; the necessary input for the optimal 

fracture design calculation can be reached as shown in the Table 22. 

 

 

 

 

 

 

 

Table 21. ISIP table 31 
Test Number         ISIP         Hydrostatic            Fracture Gradient          Test Phase 

    psi                psi                             psi/ft                    
        1                  6,849           5,862                           0.958                      Load Well 
        2                  6,860           5,866                           0.959                           PET 
        3                  5,716           6,827                           0.945                 End of Treatment 
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Proppant Selection and Treatment Size 

Table 23 gives the summary of proppant injection job information of stage 3. 

 

 

Table 23. Proppant injection job summary 

Start Time                                                        10:35:01 
End Time                                                         14:47:37 
Max Treating Pressure, psi                              9,476 
Average Treating Pressure, psi                        7,671 
Max Slurry Rate, bpm                                     40.2 
Average Slurry Rate, bpm                               36.41 
Slurry Volume, gal                                          144,668 
Proppant type                                                   Bauxite 
Mesh size                                                         20/40 
Proppant Mass, 100 * lbm                               2479.55 
BH Proppant in Formation, 100 * lbm             2465.00 

 
 

Table 22. Data input set of optimal fracture design calculation for RG # 1 stage 3 

Reservoir Parameter                          Parameter Value           Data Source 

Initial Reservoir Pressure, psi              10,833                    Post job report  

Reservoir Temperature, F                    315                         Post job report 

Formation Permeability, md                0.4113                    Post job report &  

                                                                 Log interpretation                                    

Depth of Interval Top, ft                     13,195                     Log interpretation 

Gross Thickness, ft                              159                          Log interpretation 

Net Pay, ft                                            23                            Log interpretation 

Drainage Area, acre                              40                           Fetkovich Analysis 

Depth of Middle of Perforation, ft       13,274                     Calculation based on     

                                                                   Reservoir top and gross  

                                                                   thickness                            

Frac Gradient, psi/ft                              0.95                         Post job report 
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Fracture Height 
 

The value of aspect ratio is still set to 4 based on the rule of thumb. 

Driving Force 

For this stage, it still assumes the average reservoir pressure and flowing 

bottomhole pressure are 9000 psi and 7000 psi respectively. 

 

4.1.2.2 Design Parameters Calculation Results  

Table 24 shows the calculation results of optimal fracture design based on the input data 

discussed above.  

 

Table 24. Optimal fracture design parameter for RG #1 stage 3 

Gas Rate, mscf/D                                                                        6,266 
Fracture Length, ft                                                                       420 
Fracture Height, ft                                                                        210 
Optimal propped width, inch                                                     0.1258 
Aspect Ratio (AR)                                                                           4 
Proppant Number                                                                        0.939 
Nominal Proppant Permeability, md                                        192,404 
Effective Permeability, md                                                         38,224 
Reynold Number                                                                          1.52 
Dimensionless Optimal Productivity Index                                  0.87 
Dimensionless Optimal Fracture Conductivity                             2.32 
Post Treatment Pseudo Skin Factor                                             -5.92 

 

 

4.1.2.3 Comparison with 3D Simulation 

Same as what has been done for stage 1, comparison between design results and those 

from 3D simulation is conducted. Fig.26 shows the fracture geometry generated by 

simulation program, again, the solid and dash double-arrow lines indicate the simulation 

fracture length and UFD fracture length respectively. It is clear from the comparison that 

optimal fracture geometry from UFD and that from real data 3D simulation are similar 

(420 ft versus 480 ft, for fracture length and 210 ft versus 200 ft for fracture height).   
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Fig. 26 Result comparison between Frac Design (Screening) and 3D simulation for treatment stage 3 of well RG #1 
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4.2 Fracture Evaluation 

Just as being mentioned in the previous chapter, the key factor of this application is the 

input actual skin factor, which may be estimated from the production data by applying 

methodology such as Fetkovich analysis. The success of the evaluation much depends on 

how reliable this skin factor is. The analysis result from Fetkovich Advanced DCA 

module is about -2. 

4.2.1 Fracture Evaluation Analysis 

The fracture evaluation analysis is done separately for the two individual treatment stages 

(stage 1 and stage 3). Since the Fetkovich analysis module is not allowed to conduct 

production allocation, it has to make the assumption that the skin factor is constant for the 

two stages. Of cause, this is not an accurate call, but for time being, and just for the 

method test purpose, it assumes the assumption is correct.  

4.2.2.1 RG #1 Stage 1 

The input of Frac Evaluation module for RG #1 stage 1 is listed in Table 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 25. Basic input of fracture evaluation for RG #1 stage 1 

Gas Gravity                                                                                  0.65 
CO2, %                                                                                           0 
N2, %                                                                                              0 
H2S, %                                                                                            0 
Well Radius, ft                                                                              0.3 
Skin Factor                                                                                     -2 
Initial Reservoir Pressure, psi                                                    11,352 
Reservoir Temperature, F                                                             338 
Formation Permeability, md                                                          0.1 
Depth of Interval Top, ft                                                           14,282 
Gross Thickness, ft                                                                       339 
Net Pay, ft                                                                                     58.5 
Drainage Area, acre                                                                       40 
Depth of Middle of Perforation, ft                                             14,456 
Frac Gradient, psi/ft                                                                      0.98 
Proppant Type                                                                            Bauxite 
Mesh Size                                                                                     20/40 
Treatment Size, lbm                                                                   206,000 
Fracture Height, ft                                                                        247 
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The calculation results from Frac Evaluation module are shown in Table 26. 

 

 

Table 26. Frac Evaluation results for RG #1 stage 1 

Gas Rate, mscf/Day                                                                  4801 
Optimal Productivity Index                                                       1.1 
Actual Productivity Index                                                         0.2 
Fracture Length, ft                                                                    494 
Optimal Propped width, inch                                                  0.076 
Proppant Number                                                                     2.25 
Nominal Proppant Permeability, md                                     166,000 
Effective Permeability, md                                                     31,331 
Reynolds Number                                                                      1.65 
Optimal Fracture Conductivity                                                 4.02 
Post Treatment Pseudo Skin                                                    -6.16 
Percentage of Optimal PI Achieved, %                                   17.94 

 
 
 

It is clear that the actual productivity index is significant low comparing to the 

optimal PI, i.e. only 17.94% of optimal PI achieved. The primary reason leading to the 

result is that in the first stage, reservoir is partial opened – gross thickness is 339 ft while 

only 130 ft of that height is covered, which confirms the pre-conclusion that the actual 

productivity is less than the optimal productivity drawn from Frac Design (Screening) 

analysis and the result comparison to 3D simulation.  

Therefore, by running Frac Evaluation module, it can easily find out the “bad” 

performance stimulation job based on the reliable input skin factor, thus one can look 

back by checking the petrophysic data and 3D simulation results, to search for the gap, 

finally gives such suggestions as re-fracturing and improvement of fracture treatments.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

Unified fracture design (UFD) or constant proppant volume technique is an efficient 

methodology to determine the optimal fracture parameters for hydraulic fracturing 

treatment. The name implies that it connects theory and practice, and that the design 

process cuts across all petroleum reservoirs – low permeability to high permeability, hard 

rock to soft rock. 

The goal of unified fracture design is to reach the maximum pseudo-steady state 

productivity index, based on the determined treatment size and specific reservoir 

information. In the methodology, a new dimensionless parameter called proppant number 

is introduced. From this parameter one can always find a unique fracture conductivity 

that corresponds to the maximum productivity index. Then with the two known 

parameters, proppant number and fracture conductivity, the optimal fracture geometry – 

fracture width and fracture length can be calculated. 

On the other hand, Non-Darcy effects in fracture treatment design are significant, 

it can not be ignored especially for gas well (high flow velocity).  In the UFD 

methodology non-Darcy effects are considered as reduction to the proppant permeability, 

thus, effective permeability is computed from the nominal permeability divided by 1 plus 

Reynolds number. Reynolds number is significantly impacted by the β  factor. This 

research presents several typical correlations which are developed from lab experiment to 

evaluate this β  factor. 

As a by-product of unified fracture design technique, fracture evaluation 

algorithm is developed in this research for the evaluation of hydraulic fracturing 

performance. The methodology is based on calculating and comparing the actual 

dimensionless productivity index of fractured well with the benchmarks which has been 

developed for optimized production. From the comparison, one can evaluate the 

fracturing performance and make decisions such as re-fracturing and improvement of 

future treatments. The key factor of this application is the input actual skin factor, which 
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may be estimated from the production data by applying methodology such as Fetkovich 

analysis. 

Nevertheless, the methodologies introduced above are impractical for field 

applications due to their complexity and inflexibility, so an active server page (ASP) 

based user interfaces is developed in this research. Two modules were developed. One is 

Frac Design (screening), and the other is Frac Evaluation. 

The two computer modules consider the effects of closure stress, non-Darcy flow 

and gel damage upon the effective propped pack permeability performance. It results in 

more realistic fracture designs for maximizing gas well deliverability. The modules were 

designed to minimize number of parameters to be input by the user. Then, most of the 

design process consists of these selections, based on which, data required by application 

is obtained from existing reservoir databases and proppant databases.  

One of the most important features of Frac Design (Screening) and Frac 

Evaluation is the possibility of using any commercial proppant in any of its available 

mesh size. Proppants have been classified by type. Only a few commercial products have 

been initially included in the database, but the database can be extended to include more 

proppant.  

 

5.2 Conclusions 

 

5.2.1 Optimal Fracture Design and Evaluation Methodologies  

Formal approaches to optimize fracture design and evaluate post-fracture performance for 

gas well have been introduced. Some of the advantages and highlights of these 

methodologies are as follows: 

• Compared with NPV versus fracture length optimization procedure, unified 

fracture design methodology needs much less input and computer running 

time. 

• Just as its name implies, unified fracture design connects theory with practice; 

also, it implements design process that is relevant to all petroleum reservoirs – 

low permeability to high permeability, hard rock to soft rock. 
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• The methodologies consider gel damage, closure stress and non-Darcy effects, 

which make the optimal fracture design calculation more realistic. 

• Fracture evaluation is a handy approach to identify the stimulated well failed 

to implement the expected (optimal) performance; the drawback of this 

method is that it greatly depends on the reliability of input skin factor.  

 

5.2.2 User Interface 

Two computer modules, Frac Design (Screening) and Frac Evaluation were developed to 

implement the optimal fracture design and evaluation methodologies. The user-friendly 

program is built on a VB script and Java script platform, and has following useful 

features. 

• The applications consider the effects of closure stress, non-Darcy flow and gel 

damage upon the effective propped pack permeability performance. 

• The programs are designed to minimize number of parameters to be input by 

users. Most of the design input process consists on various selections, based 

on which, data required by application is obtained from reservoir database and 

proppant database. 

• Some useful information, such as in the Frac Design (Screening) module, 

typical proppant beta correlation being used for the fracture design, and the 

nominal permeability based on the reservoir fracture gradient are shown in the 

user interface. In the Frac Evaluation module, fracture operation summary is 

displayed on the user interface, to give the user the basic information of the 

practical operation. 

• Two plots are shown in the design and evaluation module respectively, which 

are treatment size versus flow rate and treatment size versus dimensionless 

productivity index. The plots reveal that based on certain amount of proppant 

mass how much optimal production rate/productivity index can be reached. 

Referring to this information, the user can get clear picture of the relationship 

between treatment size and the expected well productivity. 
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• User guideline called “I need help” is included in the interface, which is a link 

to the user manual, and the documentation gives sufficient details about the 

methodology and the guideline of the user interface. 

 

5.2.3 Case Analysis 

This research has looked at an example of fracture design and evaluation based on the 

actual reservoir and treatment data. It was confirmed by comparing with 3D simulation 

software that Frac Design (Screening) and Frac Evaluation can work well for gas well 

fracture design and evaluation analysis.  

In the example, a gas well named RG #1 from a production company in South 

Texas is investigated. Based on the data interpretation, fracture design and evaluation 

analysis, following observations and suggestions can be obtained. 

• Two stages of hydraulic fracturing stimulation are performed for well RG #1. 

• The results of optimal fracture length calculated from UFD for both of the two 

stages are close to those from 3D simulation program.   

• Fracture height is much less than the gross pay thickness in the first stage 

thus, the actual calculated productivity is substantially lower than the optimal 

one, fracture evaluation analysis can confirm this point. 

• Re-fracturing suggestion may be issued for the interval from depth 14,282 ft 

to 14,631 ft (first stage) regarding the poor percentage of optimal productivity 

index reached, and the decision should be made combining the consideration 

from economic analysis. 

 

5.3 Recommendation for Future Work 

The scheme presented in this research provides two useful methodologies for optimal 

fracture design and evaluation for gas wells, and these approaches and the related 

computer modules have already been put into practical use, incorporating real reservoir 

and production data, but post jobs are still required to further improve the function of the 

modules:  

• Investigate more cases to validate the tools 
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• Integrate to the fracture design module with 2D gas simulator to conduct the 

production forecast based on the calculated optimal fracture parameters. 

• Improve the Fetkovich DCA module to implement production allocation, 

which can make the frac evaluation analysis for each individual stage more 

reliable.  
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NOMENCLATURE 

a =  numerator of β equation 

AR = aspect ratio 

b =  power of proppant permeability in β equation  

ct  =  total compressibility, psi-1 [kPa-1] 

Bg  =  gas formation volumetric factor, RCF/SCF [m3/m3] 

CfD = dimensionless fracture conductivity,  

CfDopt = optimal dimensionless fracture conductivity 

FG = fracture gradient, psi/ft [kPa/m] 

hf = fracture height, ft [m] 

hp = net pay, ft [m] 

Ix = penetration ratio 

J =  well productivity index, MSCF/D/psi [m3/s/kPa] 

JD = dimensionless productivity index 

kg = reservoir gas permeability, md [m2] 

kf   =  initial or nominal proppant permeability, md [m2] 

kf-eff =  effective proppant permeability, md [m2] 

∆L = differential length in pressure drop calculation, ft [m] 

MoP = mid of perforation, ft [m] 

NRe  =  Reynold number 

Nprop  = proppant number 

p  =  average formation pressure, psi [kPa] 

∆P = pressure drop, psi [kPa] 

Pc = closure pressure, psi [kPa] 

Pfracture =  Pressure within the fracture, psi [kPa] 

pres = reservoir pressure, psi [kPa] 

pwf  = flowing bottomhole pressure, psi [kPa] 

qgsc = gas rate production at standard conditions, MSCF/D [m3/s] 

re  =  outer boundary radius, ft [m] 

rw  =  wellbore radius, ft  [m]  
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s  =  skin factor  

v =  gas velocity, ft/D [m/s]  

Vp-2w = volume of proppant in the net pay, ft3 [m3] 

Vp-1w  =  volume of proppant in pay in one wing, ft3 [m3] 

Vres  =  reservoir volume, ft3 [m3] 

wfp  =  propped fracture width, ft or in [m] 

xe =  reservoir length, ft [m] 

xf  =  fracture half- length, ft [m] 

α1  = conversion units constant 

β =  non-Darcy flow coefficient, 1/ft [1/m, atm-sec2/gr] 

µg = gas viscosity, cp 

σeff  = effective in situ stress, psi [kPa] 
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PROPERTIES OF PROPPANT AVAILABLE IN DATABASE 
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Properties of proppants available in Database 30 
 
 

PROPPANT NAME TYPE SG
Closure 

Stress psi

CARBOECONOPROP LWC 2.70 20/40 30/50 40/70
2,000 340,000 230,000 78,000
4,000 300,000 190,000 65,000
6,000 230,000 150,000 51,000
8,000 150,000 100,000 41,000

10,000 85,000 70,000 28,000
CARBOLITE LWC 2.71 12/18 16/20 20/40

2,000 2,003,000 1,288,000 570,000
4,000 1,325,000 955,000 480,000
6,000 570,000 510,000 340,000
8,000 293,000 276,000 210,000

10,000 141,000 150,000 120,000
CARBPROP HWC 3.27 16/30 20/40 30/60 40/70

2,000 1,050,000 385,000 174,000 140,000
4,000 800,000 345,000 152,000 110,000
6,000 640,000 290,000 128,000 80,000
8,000 420,000 250,000 104,000 65,000

10,000 300,000 200,000 69,000 50,000
12,000 190,000 150,000 49,000 40,000
14,000 100,000

CARBOHSP Bauxite 3.56 12/18 16/30 20/40 30/60
2,000 2,742,000 1,207,000 539,000 254,000
4,000 2,395,000 939,000 440,000 224,000
6,000 1,609,000 721,000 370,000 197,000
8,000 894,000 515,000 302,000 167,000

10,000 409,000 393,000 246,000 134,000
12,000 284,000 298,000 204,000 99,000
14,000 194,000 232,000 166,000 73,000

CERAMAX-P RCB 3.43 16/30 20/40
2,000 604,000 233,000
4,000 568,000 218,000
6,000 523,000 195,000
8,000 400,000 166,000

10,000 289,000 138,000
12,000 212,000 112,000
14,000 156,000 96,000

AcFrac® SB Excel RCS 2.59 16/30 20/40
2,000 357,000 249,000
4,000 270,000 211,000
6,000 158,000 133,000
8,000 88,000 61,000

Mesh Size                                                          
Permeability (md)
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 Fig. A-1 Closure Stress versus Proppant Permeability for CARBOECONOPROP 

(LWC)30 
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Fig. A-2 Closure Stress versus Proppant Permeability for CARBOLITE (LWC)30 
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CARBPROP 

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

Closure Stress, psi

P
er

m
ea

bi
lit

y,
 m

d
16/30 20/40 30/60 40/70

 
Fig. A-3 Closure Stress versus Proppant Permeability for CARBPROP (HWC)30 
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Fig. A-4 Closure Stress versus Proppant Permeability for CARBOHSP (Bauxite)30 
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Fig. A-5 Closure Stress versus Proppant Permeability for CERAMAX-P (RCB)30 
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Fig. A-6 Closure Stress versus Proppant Permeability for ACFRAC SB EXCEL30 
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