
VISUALIZATION TOOLS FOR MOVING OBJECTS

A Thesis

by

AIMÉE VARGAS ESTRADA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2005

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4270244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VISUALIZATION TOOLS FOR MOVING OBJECTS

A Thesis

by

AIMÉE VARGAS ESTRADA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Nancy M. Amato
Committee Members, John Keyser

Donald H. House

Head of Department, Valerie E. Taylor

December 2005

Major Subject: Computer Science

iii

ABSTRACT

Visualization Tools for Moving Objects. (December 2005)

Aimée Vargas Estrada, B.S., Universidad Nacional Autónoma de México (UNAM)

Chair of Advisory Committee: Dr. Nancy M. Amato

In this work we describe the design and implementation of a general framework

for visualizing and editing motion planning environments, problem instances, and

their solutions.

The motion planning problem consists of finding a valid path between a start and

a goal configuration for a movable object. The workspace is, in traditional robotics

and animation applications, composed of one or more objects (called obstacles) that

cannot overlap with the robot.

As even the simplest motion planning problems have been shown to be in-

tractable, most practical approaches to motion planning use randomization and/or

compute approximate solutions. While the tool we present allows the manipulation

and evaluation of planner solutions and the animation of any path found by any plan-

ner, it is specialized for a class of randomized planners called probabilistic roadmap

methods (PRMs).

PRMs are roadmap-based methods that generate a graph or roadmap where the

nodes represent collision-free configurations and the edges represent feasible paths

between those configurations. PRMs typically consist of two phases: roadmap con-

struction, where a roadmap is built, and query, where the start and goal configura-

tions are connected to the roadmap and then a path is extracted using graph search

techniques.

iv

To Marco for all his love and support. Thank you for being always there for me.

v

ACKNOWLEDGMENTS

I want to thank the Mexican government, especially to Consejo Nacional de

Ciencia y Tecnoloǵıa (CONACYT), for the scholarship that allowed me to pursue

one of my dreams.

My respect and gratitude go to an intelligent woman, my advisor Dr. Nancy

Amato, for her guidance and support since the very first day I met her.

I also want to thank Dr. Donald H. House and Dr. John Keyser, two great

professors I had the privilege to meet, for the comments and feedback that enriched

this thesis.

I want to acknowledge the work of Jyh-Ming Lien who was my mentor and was

always willing to help me.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Contribution . 3

B. Outline of Thesis . 4

II PRELIMINARIES AND RELATED WORK 5

A. Basic Motion Planning Concepts 5

B. Related Work . 7

1. Motion Strategy Library 7

2. A PRM Planner for Rigid Objects in 3D 9

3. Vizmo . 9

4. Modeling Articulated Objects 10

a. Link Connection and Denavit-Hartenberg Pa-

rameters . 11

b. Transformations 13

5. Collision Detection . 15

III REQUIREMENTS . 17

A. Overview of Design Process 18

B. Definition and Analysis of Requirements and Functionality 19

C. Modular Organization of Functionality 27

IV DESIGN . 29

A. Design of the User Interface 29

B. Class Design . 30

V IMPLEMENTATION . 33

A. I/O Files . 33

1. File Formats . 33

2. Creation of New Files 38

B. Geometric Model and Rendering 38

1. Object Selection . 39

C. Class Implementation . 40

1. Implementing Articulated Objects 42

vii

CHAPTER Page

D. Interfacing Vizmo++ with our Motion Planning Library . 44

E. Status . 45

VI APPLICATIONS: THE CAMPUS NAVIGATOR 51

VII CONCLUSION . 54

REFERENCES . 56

VITA . 62

viii

LIST OF TABLES

TABLE Page

I Visualization Tools for Motion Planning Available 11

ix

LIST OF FIGURES

FIGURE Page

1 MSL . 8

2 Vizmo . 10

3 Denavit-Hartenberg parameters [1] 12

4 Joint reference frame [1] . 13

5 Link frames: frame i is attached to link i [1] 14

6 Structure of a tree-like linked object [2] 15

7 Vizmo++ GUI . 18

8 Function hierarchy diagrams . 20

9 Query shown for the narrow environment 21

10 Path and movie recording interface for the narrow environment . . . 23

11 A roadmap node is selected and the translation tool is shown. 25

12 narrow environment: saving options 26

13 Class hierarchy (solid lines represent inheritance and dashed lines

denote a “use” relationship) . 31

14 Example of a BYU file describing a cube 34

15 Environment file description and visualization 35

16 Map file example and visualization 36

17 Path file description and visualization 37

18 Multibody description . 40

x

FIGURE Page

19 Path image generated by Vizmo++ 53

1

CHAPTER I

INTRODUCTION

Visualization tools are meant to transform quantitative sets of data into meaningful

images. Researchers in many areas can use tools to visualize and manipulate 2D and

3D data models to better understand their problems, to test hypotheses in virtual

models or to explain their results. For example, researchers in fields like robotics and

computational biology use visualization tools to visualize routes taken by their robots

or their models of interacting molecules, respectively.

Motion planning is the problem of finding feasible paths for movable objects

among obstacles [3]. A movable object could be a robot, a digital character or ac-

tor, molecules such as proteins or RNA, etc. Here we will refer to them as either

robots or movable objects. The concept of feasible path is determined by the applica-

tion: in robotics path planning, feasible paths are typically collision-free sequences of

robot poses, whereas in computational biology we may be interested in the energetic

feasibility of the path, e.g., paths through low energy regions of the conformation

space.

The most successful approach to the motion planning problem is randomized

planning. There are several randomized techniques available. Most of these tech-

niques can be classified as either tree-based [4, 5, 6, 7, 8] or map-based [9, 10, 11,

12, 13, 14, 15, 16]. In addition to robotics, these techniques have been successfully

applied in fields like virtual prototyping [17], graphic animation [18], medical surgery

[19], and even computational biology [2].

This thesis follows the style and format of IEEE Transactions on Robotics.

2

Although motion planning deals with geometric models that represent obstacles

and robots in the workspace, many motion planning methods find it convenient to

work in the robot’s Configuration Space (C-Space) [20]. In this case, planners work

with sets of configurations that correspond to workspace positions and orientations of

the movable object. C-Space is a useful abstraction that enables all motion planning

problems to be treated in a standard manner and facilitates the development of

general planning methods.

Motion planning methods use and generate information that represents a solution

to a given problem. We are interested in visualizing the robot, the obstacles, and

planner outputs (e.g., paths and roadmap). The visualization should interpret and

present views of the information through a tool that allows researchers to observe

and gain better understanding of the instance of the motion planning problem and

of the computations of the motion planning methods.

The visualization tool presented in this thesis can help users to evaluate planner

outputs that otherwise would be hard to analyze. Planners generate roadmaps or

graphs whose nodes represent robot configurations and whose edges represent paths

(sequences of configurations) connecting configurations. A path, which the robot

will follow to reach its goal, is a sequence of collision-free configurations. Since the

configuration of even a rigid body in 3D is represented by six values, without a

visualization tool it would be difficult to understand the quality of the solution found

by a given planner just by looking at the generated raw data. Indeed, configurations

map to objects placed in a 3D workspace and one natural way to understand motion

planning methods is through 3D visualization. That is the approach taken in our

work.

3

A. Contribution

Research in motion planning is very active and there are many planners available.

Since many randomized planners share a common structure (e.g., they generate a

graph of robot configurations and solution paths are sequences of configurations), a

tool supporting the common needs would potentially assist many researchers. There

is a need to support a variety of movable objects and basic visualization and manipu-

lation of the elements of the environment. Some research groups have developed their

own visualization tools [21, 22, 23]. However none of them support both visualization

and editing of the solutions and environments. Also, none of them integrate collision

detection into the visualization, animation, and editing tools.

The main contribution of this thesis is a new 3D tool for visualizing and editing

motion planning environments, problem instances, and their solutions. Our tool offers

a self-explanatory graphical user interface (GUI) that allows users to become familiar

with it in a short period of time, and above all, provides most of the functionality they

need. To our knowledge, there is no available tool that supports both visualization

and editing of workspace environments.

Researchers in the motion planning community take advantage of visualization

tools to see and compare solutions generated by different planners, and to analyze

their methods by looking at the distribution of the nodes, the connectivity of the

roadmap, and the quality of the path. The visualization tool we present in this thesis

supports all these uses for a variety of planning methods and hence can be generally

useful for the motion planning community. Ultimately, we hope to release our tool to

other research groups to facilitate comparison of different planners.

Our tool, Vizmo++, was developed following Software Engineering [24] and

Computer-Human Interaction [25] guidelines to implement a well-designed object

4

oriented application that is easy to maintain and extend.

• Vizmo++ will help users in their understanding and evaluation of different plan-

ner strategies and solutions through straightforward visualizations and through

visualization and animation of path configurations. For example, since differ-

ent planners generate different distributions of nodes, roadmap visualization can

help to better understand how each method works by looking at the distribution

of the nodes and their connectivity.

• Vizmo++ will enable users to interact with and edit the environment. For

example, it will let users manipulate obstacles and robot configurations, set

queries, save new environments to be able to work on them later, or select and

move nodes and thus editing existing or creating new paths and roadmaps.

• Vizmo++ will interface with the planners available in our motion planning

library to enable users to run new queries. Our tool provides a convenient

interface to select planners and set their parameters. Vizmo++’s structure

eases the integration of new planner options and hence encourages and facilitates

experimentation with new methods and parameters.

B. Outline of Thesis

Chapter II describes basic motion planning concepts and previous work. Chapter III

presents the definition of requirements and functionality of our tool, and describe

how Vizmo++ will model an articulated object. Chapter IV presents the design

of our application. In Chapter V we present implementation details. Chapter VI

presents a different application of Vizmo++: the Campus Navigator, which is a web

based-application to help users to find their way across the Texas A&M campus.

Chapter VII describes our conclusions and future work.

5

CHAPTER II

PRELIMINARIES AND RELATED WORK

A. Basic Motion Planning Concepts

Motion planning researchers are interested in visualizing the robot, the obstacles, and

the solution path. In general, they are interested in the visualization and manipulation

of the solutions generated for a given motion planning problem.

The motion planning problem consists of finding a valid path between a start and

a goal configuration for a movable object [3]. A configuration is defined as an n-tuple

of values that represents the position and orientation of the object. The workspace

is the place in which the robot moves. In traditional robotics and animation applica-

tions, the workspace is composed of one or more objects (called obstacles) that cannot

overlap with the robot. The configuration space (C-space) [20] is an n-dimensional

space (n being the number of degrees of freedom (DOF) of the robot) consisting of

all (i.e., feasible and infeasible) robot configurations. The robot is represented as a

point in C-space.

The motion planning problem is known to be PSPACE-hard [26] – at least as

hard as an NP-complete problem. All complete algorithms developed so far take

exponential time in the number of DOF of the robot. A practical and broadly used

approach to solve the motion planning problem is through randomization. Random-

ized algorithms have proved useful in finding approximate solutions to intractable

problems such as motion planning. In these methods, the movable object’s C-space

is sampled at random and the samples are connected to form collections of feasible

paths in C-space. We can classify most randomized planners as either roadmap-based

6

[9, 13, 14] or tree-based [4, 6, 5]. Notable examples of roadmap-based and tree-based

planners are the Probabilistic Roadmap Methods (PRMs) [9, 11, 12, 10, 13, 14, 15, 16],

and the Rapidly-exploring Randomized Trees (RRTs) [5], respectively.

Probabilistic Roadmap Methods (PRMs) [9] are roadmap-based methods that

generate a graph or roadmap where the nodes represent collision-free configurations

and the edges represent feasible paths between those configurations. A roadmap may

contain one or more connected components. The path will be a sequence of configu-

rations that describe the set of movements that the movable object needs to perform

to reach its goal. PRMs typically consist of two phases: roadmap construction, where

a roadmap is built, and query, where the start and goal configurations are connected

to the roadmap and then a path is extracted using graph search techniques.

Several PRM variants have been developed. The original PRM [9] samples nodes

uniformly. Lazy PRM [11] avoids collision detection during roadmap construction to

speed up the roadmap construction at the cost of slightly reducing the speed of query

processing. Fuzzy PRM [12] introduces the concept of a “fuzzy” roadmap where

roadmap nodes are validated but edges are not until queries are processed. C-PRM

[10] builds a coarse roadmap only performing an approximate validation of nodes

and edges, then, in the query phase, the roadmap is refined and validated only in

necessary regions thus decreasing total processing costs and typically also improving

performance. The same roadmap can be used (customized) to support different query

requirements (e.g., variations in the clearance threshold). Other variants deal with

the problem of narrow passages which are difficult to sample. Obstacle-Based PRM

(OBPRM) [13] generates nodes on or near C-obstacle surfaces. The Medial Axis PRM

(MAPRM) samples the configuration space uniformly and then samples are retracted

onto the medial axis of the free space [27, 14, 28] or an approximation of it [29]. The

Bridge Test method [15] has a hybrid sampling strategy to increase the density of the

7

samples inside narrow passages. The Gaussian PRM [16] biases the samples close to

the C-obstacles with a Gaussian distribution.

Tree-based planners grow a tree by picking a feasible configuration and nodes

are added to the tree according to some expansion strategy. The first such method,

Randomized Path Planner (RPP) [4], builds a graph that connects the local minima

of a potential function that is defined over the robot’s C-space. Rapidly-exploring

Randomized Trees (RRTs) [5] grow a tree of samples starting from the robot’s ini-

tial configuration and have been shown to be effective in exploring high-dimensional

spaces. The Ariadne’s Clew Algorithm [6] grows a search tree using genetic algo-

rithms. An algorithm for expansive configuration spaces [7] tries to sample the space

that is relevant to the query.

Since there are many algorithms available and they produce different types of

graphs, there exists a need to evaluate their differences and their performance. One

way in which researchers compare methods is by comparing the sample distribution,

the graph structure and graph connectivity.

B. Related Work

There exist 3D visualization tools to support PRMs developed by different research

groups. Some of them are available upon request and others can be downloaded from

their web sites. Among those tools are the Motion Strategy Library [21], the PRM

Planner for Rigid Objects [22] and Vizmo [23].

1. Motion Strategy Library

The Motion Strategy Library (MSL) [21] was developed by the research group of

Professor Steven M. LaValle at the University of Illinois at Urbana Champaign. MSL

8

Fig. 1. MSL

was designed for easy development and testing of motion planning algorithms. MSL

is open source and free.

MSL is an object-oriented software package developed in Linux that uses the

following software packages:

• FOX GUI Toolkit [30] for the user interface.

• OpenGL [31] for a GL-based renderer, Open Inventor [32] which offers more

accurate shading, and OpenGL Performer [33] for high performance graphics.

Figure 1 shows the MSL’s GUI using Open Inventor rendering.

• Proximity Query Package (PQP) [34] for collision detection.

MSL lets the user attempt to solve problems with any of its embedded plan-

ners based on Rapidly-exploring Random Trees (RRTs) [8], Probabilistic Roadmaps

(PRMs), and Forward Dynamic Programming (FDP) [35]. Planners and some pa-

rameters can be configured through the interface.

MSL does not show the roadmaps or RRTs directly on the 3D-environment.

Instead it allows users to generate a two-dimensional plot of the projection of the

connectivity graph on the plane formed by any two variables selected by the user. This

9

plot does not show any information about the obstacles, providing only information

regarding the feasible configurations and connections.

MSL shows the 3D environment and gives the user the ability to control the

view. However, it does not allow any other type of interaction. The interface is not

user-friendly and some functions are available only through hot-keys.

2. A PRM Planner for Rigid Objects in 3D

The Physical and Biological Computing Group led by Professor Lydia Kavraki at

Rice University, has developed the PRM Planner for Rigid Objects in 3D [22].

This application is UNIX-based and uses the following software packages:

• The XForms [36] GUI toolkit.

• Geomview [37] for model visualization.

• The RAPID [38] bounding box-based collision checker.

• libSVM for simple vector and matrix support (distributed with version 1 of

RAPID).

Problems can be solved by using any of the embedded planners.

3. Vizmo

Vizmo (see Figure 2) was the first 3D visualization tool for motion planners developed

in our research group [23]. This tool was implemented in C++, however its design

was not fully object-oriented. Vizmo uses the following software packages:

• Tool Command Language Tcl/Tk [39] for the GUI.

• The Visualization Toolkit (VTK) [40] for 3D rendering.

10

Fig. 2. Vizmo

Vizmo offers basic functionality, allowing users to interact with and manipulate

some of the elements in the environment, such as changing the color of the objects

and animating the path. However, some useful characteristics are missing.

Vizmo supports only rigid bodies and does not support our work with articu-

lated objects, closed chain systems [41], and biomolecules. Vizmo does not support

roadmap representation. For example, the configurations on the roadmap cannot be

seen, and it animates the path but the path configurations cannot be visualized. Also,

the GUI needs to be improved so it can be more intuitive. Finally Vizmo was difficult

to maintain and extend so we decided to develop a new version that could support

previous and new needs.

Table I summarizes the characteristics of the visualization tools presented.

4. Modeling Articulated Objects

The moving objects Vizmo++ can display are of two types: rigid and articulated.

The geometry of a rigid body is given as a polyhedron described as a set of triangles.

If the moving object is composed of more than one body, then the description of each

11

TABLE I

Visualization Tools for Motion Planning Available

Tool Robot CD∗ Visualization Editing

Rigid Articulated

MSL [21] yes yes no no

PRM Planner [22] yes info. not available no no

Vizmo [23] yes no no no

Vizmo++ yes yes yes yes
∗

Collision Detection

body is given in an independent input file. Connection information is also given so

that each rigid body can be linked to another rigid body(ies) to form an articulated

object. As part of our work, we had to define the way we would describe articulated

objects.

An articulated object can be defined as a set of bodies connected by joints forming

a chain. We will call those bodies links. The chain can be connected by different

types of joints. The most used types of joints are revolute, which represents a single

rotational DOF about a given axis, and prismatic, which represents a translational

DOF along a given axis.

Each joint has a joint axis which is a vector about which a link i rotates relative

to link i-1. We can describe the relationship between the links of a chain through

their joint axes. We use Denavit-Hartenberg (DH) notation [42, 2] to specify the

connection between links.

a. Link Connection and Denavit-Hartenberg Parameters

The DH parameters are four numbers that describe the relationship between each

pair of links that compose an articulated object: two distances and two angles (ai, di,

12

Fig. 3. Denavit-Hartenberg parameters [1]

θi, αi) (see Figure 3). Following Craig [42], ai (the link length) is a distance that can

be measured between any two axes in 3D space, this distance is measured along the

common perpendicular between the two axes. That perpendicular is unique except

when the two axes are parallel. αi (also called the link twist) is the angle formed

between axis i and axis i-1. Links that are neighbors have a common joint axis. di

(the link offset) is the distance along this common axis from one link to the next.

θi (also called the joint angle) is the parameter that defines the amount of rotation

about the common joint axis between link i-1 and link i.

To describe the location of a link in a serial chain, reference frames are attached to

each link. There is a convention for naming and assigning those frames (see Figure 4):

- Frame i is attached to link i.

- The origin of frame i will be located where ai intersects the joint i axis.

- The z -axis of frame i will always be in the joint axis.

- The x -axis of frame i will point along the common perpendicular ai from joint

i to joint i+1.

- The y-axis is formed by the right-hand rule.

13

Fig. 4. Joint reference frame [1]

b. Transformations

Once each link has a reference frame attached to it, we can determine the transform

that will define the location of frame i relative to frame i-1. This transformation

will be a function of the four parameters we described before (ai, di, θi, αi). We will

define the transformation as four transformations (see Figure 5):

1. A translation along zi−1 with displacement di

2. A rotation around zi−1 with angle θi

3. A translation along xi−1 with displacement ai

4. A rotation around xi with angle αi

Multiplying the four previous transformations, the following general transforma-

tion is obtained (see [42] equation 3.6):

Ti−1

i
=



















cosθi −sinθi 0 ai−1

sinθicosαi−1 cosθicosαi−1 −sinαi−1 −sinαi−1di

sinθisinαi−1 cosθisinαi−1 cosαi−1 cosαi−1di

0 0 0 1



















(2.1)

This transformation contains position and orientation information. The position is

14

Fig. 5. Link frames: frame i is attached to link i [1]

a 3×1 vector and the orientation is a 3×3 rotation matrix composed of three unit

vectors of the coordinate system i relative to i-1, set as columns in the matrix.

Now, to know the transformation that relates frame n to frame 0, we multiply

the link transformations to define a single transformation (see [42] equation 3.8):

T 0

n = T 0

1
T 1

2
T 2

3
...T n−1

n (2.2)

The above describes how a serially linked chain is typically modeled. To describe

a tree-like model we follow the approach presented in [2] where an extra reference

frame is added to each joint as described below and as shown in Figure 6. This

approach decouples the link’s body frame and its joint specification, allowing each

joint to have an independent representation.

• A body frame is attached to each body i, we call it Fi, which is independent of

any joint connection. The center of mass is usually used as the origin of this

body frame.

• Reference frames are attached to each joint that connects bodyi and bodyj. To

define the joint transformation, “DH-frames”, DHi and DHj, are assigned to

15

Xj0

Zj0

Yj0

Xi0

Yi0

Frame i0

Frame j0 Body J

Body I

Xi Xj

Zi Zj
Yj

theta
Frame DHi Frame DHj

Fig. 6. Structure of a tree-like linked object [2]

bodyi and bodyj respectively. DH parameters define the connection between

those DH frames.

• To obtain the transformation from Fi to Fj (T i
j), we multiply the transforma-

tions (as in 2.2) we are given in the environment input file: from Fi to DHi

(T Fi

DHi
), then to DHj and to Fj:

T i
j = T Fi

DHi
TDHi

DHj
T

DHj

Fj
(2.3)

5. Collision Detection

The validity test is the most expensive and repetitive operation in solving the mo-

tion planning problem. For example, during the construction of PRM roadmaps,

configurations are repeatedly tested to keep only valid nodes and edges. A robot

configuration is not valid if it violates any given constraint. One common constraint

is that the robot should not overlap with the obstacles in the environment. This

particular constraint is tested with libraries specialized in collision detection. Effi-

ciency and robustness are two important factors to consider when choosing a collision

detection library because collision detection is repetitive and expensive.

16

In Vizmo++ the validity test is also a repetitive operation since, if the robot

or a node is being moved after the collision detection option was turned on, the

validity test is computed until the option is turned off. In the workspace we model

each robot and obstacle as a multibody, which is a collection of one or more bodies.

Multibody descriptions (position and orientation) and connections are given with

respect to a global coordinate frame. Each body has its own properties such as

position, orientation, and connection information (for the case of articulated objects).

We perform collision detection by testing each body of a multibody against each

obstacle in the environment. We use an external collision detection library called

RAPID (Robust and Accurate Polygon Interface Detection) [38].

RAPID is a small library which is easy to install and use. It computes a hi-

erarchical representation of models using oriented bounding box trees (OBBTrees).

An OBB is a rectangular bounding box with arbitrary orientation placed around a

collection of polygons. At run time, the algorithm traverses two trees (one for each

element that is being tested for collision) and tests for overlaps between their oriented

bounding boxes [43].

We chose to use RAPID because of its performance. In [44], M. Reggiani et al.

experimentally evaluated collision detection libraries, within the context of motion

planning in 3D workspaces. Their results show that RAPID performs better (in

general) for non-convex models and its performance is not bad when compared to

V-Clip, which performs better for models of moderate size and with few non-convex

characteristics.

17

CHAPTER III

REQUIREMENTS

Our objective was to develop a tool to support the visualization and manipulation

of the elements of the environment (e.g., rigid and articulated robots, obstacles,

roadmap, path, etc.) that can be generally useful for motion planning researchers.

Vizmo++, a new version of Vizmo [23], is a 3D visualization/authoring tool

conceived to display and manipulate the elements in the moving object’s workspace

and the information generated for any motion planner (roadmap and path), but

specialized for PRMs. Vizmo supported only rigid bodies. The GUI was composed

of a menu that allowed users to visualize the roadmap (whose nodes were rendered as

cubes) and the path as a series of robot configurations. It allowed the visualization

of the models (robot and obstacles) in either solid or wire mode. The interaction

with the environment was limited to zooming in and out and rotation of the scene.

In addition, the architecture of the application did not easily support the addition of

new functionality. Hence, it was necessary to change the design to support the new

set of required characteristics and functionality we describe below (Section B).

This new version of Vizmo provides an improved interface that eases interaction

with the objects in the environment. It gives users the possibility to modify, add

or delete static objects, and to change the position and orientation of the moving

object. Vizmo++ also supports visualization of collision between objects and offers

an interface to our motion planning library (Figure 7 shows Vizmo++’s GUI). The

new architecture of Vizmo++ is based on the object oriented programming paradigm

to allow better extendibility of the code.

18

Fig. 7. Vizmo++ GUI

A. Overview of Design Process

To achieve our goal and develop a tool that could be easily maintained, we applied

Software Engineering principles, which are used as a guide to help in the process

of software development. The Spiral model [24] has been widely used to develop

interactive systems. This model is an iterative process that starts with defining

objectives and an analysis of requirements so the system can be divided into different

components. The next stage is the design of those components, followed by the

implementation and evaluation of each component, and finally they are put together

and the system as a whole is tested. Following this design and development process,

once one of the components has been finished, this same approach is used on the

next component. This process continues until all components have been developed.

Moreover, it is well known that software development is not a linear process, so at

each step of this process, we can always stop and go back to the previous stage.

After defining the requirements for Vizmo++, we decided to separate the devel-

opment of the GUI and the development of the functions available to the users. Our

19

first step was the selection of the GUI library we would use. Then, we worked on

the design of the user interface (UI): the distribution of the elements such as menus,

buttons, and the main window. From this point we started the design of the main

classes from which we would build up the next version of Vizmo++ with a new and

more friendly user interface. That process implied the redesign of the original classes.

Once the new UI was implemented, we worked on its integration into the redesigned

classes so we could have the “old” functionality working with our new GUI. Next, we

started to work in more detail on the analysis and design of each of the new features

Vizmo++ would support. The order of implementation of these features depended

on the required technology and importance of those features for the current users.

In a second stage of development, we extended Vizmo++ to support articulated

objects, which provided additional functionality to our tool. To achieve this extension,

we needed to go back to the definition and analysis of requirements stage of the Spiral

model, then redesign our classes and finally implement the new functionality. At this

point the collision detection module was included in the system.

B. Definition and Analysis of Requirements and Functionality

In motion planning research, in addition to manipulating the workspace and the

robot, we also need to visualize and manipulate the information generated by the

planners, e.g., the path produced when answering a query or a roadmap produced

during preprocessing. A requirement for Vizmo++ is that it must provide users

with a nice way to interact with, visualize, and edit such information. It must also

support a variety of movable objects such as rigid and articulated objects, and closed

chain systems. Recall, as shown in Table I, no other available tool supports both

visualization and editing of workspace environments.

20

Record animation

Animation

Path

grid
axes
list of objects
text labels
colormap

− change color
− change position
− change mode:

Select obstacles and:

 − wire or solid

add / delete

Auxiliary
tools

Environment

create new fileshow/hide

Query
moving obstacles
SupportShow / Hide

Roadmap

Set params.

GenerateArticulated

Robot

Rigid

change color

change start/goal position

Connected components

change color

Obstacles Take picture

collision detection

create new fileNodes

change color
change size of nodes

change node representation
change node position

collision detection

Save an environment
to a file

Show / Hide

Bounding Box

Crop: restrict area
and take a picture

from library
Select environment

Fig. 8. Function hierarchy diagrams

21

Fig. 9. Query shown for the narrow environment

We initiated the process of defining Vizmo++’s functionality by first identifying

the objects we wanted to visualize and the operations we wanted to perform for them.

This continued the definition and analysis of requirements, where we identified all the

operations to be supported for each object. We did this analysis and summarized it

into a function hierarchy diagram [45] which is shown in Figure 8. These diagrams

are a hierarchical representation in which the objects to be visualized (e.g., robot,

path, environment, roadmap, and query) are shown as parents and the operations

the user could perform with those objects are shown as children. We describe the

purpose of each functional requirement next.

Robot functions: There are a number of functions we need to support in addition

to robot visualization.

• Vizmo++ must enable users to select the robot and move it, rotate it, or change

its color. Enabling users to move the robot will allow them to set new start and

goal configurations.

• Collision detection checking is necessary to alert the users if they have selected

or created an invalid configuration.

• If the problem has more than one robot, then Vizmo++ must also support the

visualization of multiple robots.

22

• Robot construction. Vizmo++ must enable users to build their own articulated

objects.

• Articulated robot control. Users can modify any robot configuration by selecting

any of its links and changing the value of the corresponding DOF.

Query functions: The initial and final configurations of the robot can be shown to

give users visual information about where the robot will start moving and where it

should stop. Figure 9 shows an example for the narrow environment which consists

of two parallel plates. The robot’s initial position is between these plates and the

goal is to move the robot to a position away from the plates.

• It can happen that more than one query is given. Support for handling multiple

queries should be provided.

• A query can be described as a sequence of configurations to be visited in order.

• Different colors and text labels are used to ease the identification of the start

and goal configurations.

• New start and goal positions can be set by moving and rotating the robot. They

can be stored in a new query file.

• A query file can be edited using the text editor embedded in our interface.

• Users can execute queries using the GUI by clicking a button.

Path functions: The visualization of path configurations helps users to see and

analyze the path. Normally, it is rendered as a sequence of robot configurations in

wire mode.

• The path can be animated.

• The path can be saved as a movie. Figure 10 shows the interface for movie

production.

23

Fig. 10. Path and movie recording interface for the narrow environment

• While the robot is following the path, users may edit the environment, e.g.,

moving an obstacle.

• Collision detection could be activated to alert the user changing the color of the

robot if it collides with an obstacle while following the path.

• The path can be altered, e.g., selecting a configuration and changing it.

Roadmap functions: The visualization of the roadmap must help users to get as

much information as needed to analyze it. In the following, we present the require-

ments for a roadmap.

• Connected components. Since a roadmap may contain one or more connected

components, they will be presented in different colors to help users differentiate

them. A connected component’s color can be set (or changed) randomly or all

connected components can have the same color. Users can also set the color of

a particular connected component.

• Roadmap nodes. Users need to be able to decide how they want to view roadmap

nodes. They can also change their position, add new nodes to the roadmap or

delete nodes from the roadmap.

24

– Nodes can be rendered as points, cubes, or actual robot configurations

(poses) and the size of the nodes can be modified.

– A node can be moved by selecting it and moving it with the mouse or

by directly editing the values for any of its degrees of freedom. Figure 11

(narrow environment) shows the roadmap and how a node is selected to

be moved. If desired, collision detection can be turned on to guarantee

that, when a node is moved, the new configuration is valid.

– A node may be added to the roadmap (valid or non valid). Its position

can be manipulated as when moving a node. If we enable users to add

nodes to the roadmap, they might be able to add nodes in difficult regions

of the C-space, (e.g., narrow passages) that might help the planner to find

a solution. This function will need to test if the new node’s configuration

is valid, e.g., if it is inside the bounding box or it is collision free.

• Edges. In addition to enabling users to add nodes, we want to enable them

to add edges between nodes. To help users to add a valid edge or to validate

existing edges, collision detection will need to be available, e.g., by calling a

local planner.

• Creation of new roadmap files. If the roadmap has been modified, users need to

have the option of saving that roadmap to a file where the new graph informa-

tion will be stored. Users may want to select and save one or more connected

components of a particular roadmap into a different map file.

• Roadmap generation. Users can do this in two ways: manually or automatically.

– Manually, by editing an existing roadmap and saving it to a file, or by

adding nodes to an empty roadmap.

25

Fig. 11. A roadmap node is selected and the translation tool is shown.

– Automatically, by using the default planner (which can be set by the user)

that is invoked when the user requests by clicking a button.

• Paths: Visualization of nodes and edges that are part of the path. Even though

users can visualize the path and the roadmap at the same time, it is hard for

them to distinguish which nodes and edges were used in the path. Vizmo++

can offer the user the option of visualizing only particular regions or paths of

the roadmap. It can also show, e.g., in different color, if any portion of the path

is non valid.

• Edges can be selected and the robot is animated following the configurations

along the edge.

Environment functions:

• Users can select the environment they want to work with by selecting the input

files through a graphical interface that allows them to browse their directories.

• Auxiliary tools must be provided so users can have more information about the

environment:

– Visible axes can be shown to locate objects in 3D space.

26

Fig. 12. narrow environment: saving options

– Text labels can be used to annotate useful information such as the number

of nodes in the roadmap and their configurations, the location of the input

files, and how many links (components) the movable object has.

– A color map to select the colors of objects.

– A tree-like list of the objects the user is visualizing.

– An undo function so that the user can undo changes.

• The bounding box. If a bounding box was given as part of the input, this

bounding box can be shown. If the bounding box was not given, Vizmo++ can

compute one. Users can modify or hide the bounding box.

• Users can save images of the entire environment or of a predetermined region.

• Functions for the obstacles are needed that are analogous to those provided for

the robot.

– An obstacle can be selected and its color, position or orientation can be

modified. Obstacles can also be scaled.

– An obstacle can be visualized in wire and solid mode.

– Users can add or delete obstacles from the scene. An obstacle will be

added by selecting a geometry file from a library or directory, and it will

27

be deleted after the user selects it and selects the appropriate option from

a context menu.

– An obstacle can be static or not. Vizmo++ can support static and moving

obstacles.

• Users can rotate and translate the camera along the X, Y , and Z axes, or zoom

in or out.

• Multiple camera views can be provided to the user so they can switch the view

of the environment, e.g, from a camera mounted on the robot.

• After a user has edited an environment, they can save it into an environment

file. An environment file stores information about the robot and obstacles such

as initial configurations, geometry files, and relationships among objects. See

Figure 12.

C. Modular Organization of Functionality

Once the requirements and functionality were determined, we subdivided our appli-

cation into the following modules:

• reader and writer modules to provide the functions for reading and writing data

from and to the environment, query, roadmap, and path files.

• An editor module to provide functions for allowing users to modify the envi-

ronment.

• A collision detection module to provide visual feedback when an object is in

collision with other objects.

• An external planner module to interface Vizmo++ with our motion planning

library.

28

The reader module reads in the BYU (Brigham Young University) format [46]

for the geometric description of the objects. We selected the BYU format because of

its simplicity and because every other format of which we are aware can be translated

into the BYU format. Vizmo++’s structure eases the implementation of any other

format. The format of the query, roadmap, environment, and path files is presented in

Chapter V, Section 1. The writer module provides the functions for writing processed

data or images into files. From the function analysis we know we want to write new

environment, roadmap and query files.

The editor module allows users to build their own environments and modify

them. The collision detection module gives visual feedback to the user whenever an

object is in collision with any other object, e.g., by changing the moving object’s color

when it is in collision.

The external planner module interfaces our application with the planners avail-

able in our motion planning library. Users can run new queries through a convenient

graphic interface where planners and parameters can be selected and then saved into

a script that can be executed or edited using the basic text editor embedded in

Vizmo++.

29

CHAPTER IV

DESIGN

Interactive systems need to be evaluated at each stage of development. We followed

the Iterative Design approach [47] which states that once a component has been

partially or completely implemented, we can receive feedback from users and based

on that we can detect problems in the design of the interface or problems in the

functionality of the system, and thus we can re-evaluate alternatives. Our design

has to take into account the compatibility and interaction with the motion planning

library developed in our research group.

We split our design into the design of the interface and the design of the classes.

For the design of the interface, we applied User Centered Design [48]. Working closely

with the final users allowed us to know their specific needs. The object oriented

programming paradigm was used to design and implement Vizmo++. This will ease

maintainability. Also, object-oriented programming offers a natural way of defining

functions and data in terms of a class hierarchy.

A. Design of the User Interface

The definition of requirements leads to the specifications of how the different parts

of an application will be used. Users were a central part in the design of Vizmo++’s

GUI because we wanted to offer them a self-explanatory interface that allows them to

become familiar with it in a short period of time. Getting feedback on the usability

of the application helped us in the definition of interface actions.

Another factor we considered in the design was the distribution of the menus,

toolbars, and buttons. We had several presentations and releases of Vizmo++ so

30

users could use it and in this way we got feedback from them related to the way

the options were distributed, the ease of use, how intuitive the interface was, and

what other options users would like Vizmo++ to provide. The users helped us to

identify the tasks most commonly performed: hiding and showing elements (e.g.,

the roadmap, the path, and the start and goal configuration), randomly coloring

the objects, opening environment files, and editing the roadmap. All these tasks were

made available through buttons and toolbars, so the users did not have to open menus

each time they needed to show or hide elements or change properties of the roadmap.

We made other functions available through buttons such as collision detection

checking, background color, and resetting the position of the camera. We also pro-

vided a toolbar to make movies and to take snapshots. In general, we tried to reduce

the number of clicks the user had to make in order to get a response to some action.

Each GUI library has its own philosophy and this needs to be considered for the

design of the GUI. What we looked for was an easy to use and learn library, portable,

with good documentation and with a wide set of widgets that can be used in our

interface. We decided to use Qt [49], which is a C++ multi-platform toolkit GUI

that facilitates the creation of applications. This library includes a wide set of con-

trols (widgets) that provides standard GUI functionality. The communication among

objects is achieved through what is called Signals and Slots (used for communication

between objects), that replace the call back technique. Qt also implements the Events

model to handle mouse inputs and key presses.

B. Class Design

Object oriented design is a well known method for modeling real or abstract objects

by expressing relationships between those objects. Each object is described as set of

31

Collision Detection

GUI

GL

 Model
Environment

Model
BoundingBoxRobotQueryModelPathModelMapModel

GLModel

vizmo

Environment
Loader MapLoader PathLoader QueryLoader

ILoad

Fig. 13. Class hierarchy (solid lines represent inheritance and dashed lines denote
a “use” relationship)

32

attributes and operations (methods).

Developing the function hierarchy diagrams discussed in Chapter III helped us

to identify and define the main classes and methods we would need to implement

in Vizmo++. We use Unified Modeling Language (UML) notation [50] which is a

standard for modeling software used to produce class diagrams. Class diagrams help

in the understanding of the software architecture by showing relationships among

classes.

Figure 13 shows a high level class diagram. In this diagram we represent inheri-

tance with solid lines and hollow arrows. The dashed lines denote a “use” relationship

among classes. For example, all the GUI classes use methods from the GL class which

implements OpenGL functions. We omitted the attributes and methods.

The class vizmo is the main class of Vizmo++. We can classify our design in the

following main modules:

- GUI implements the graphical user interface. This allows us to isolate all the

functionality at the interface level. This module communicates with the methods that

implement the functions related to the geometric model of the objects.

- ILoad is an interface that contains methods to read and load the input files:

environment, the path, the roadmap, and query.

- GL implements OpenGL related functions such as selection of objects, transla-

tions, rotations, camera position.

- GLModel contains the functions to build and render the model of the robot,

the obstacles, the roadmap, the path and the bounding box.

- Collision Detection implements the functions to perform collision detection. It

uses the RAPID library [38].

33

CHAPTER V

IMPLEMENTATION

A. I/O Files

In Chapter III section B, we identified the objects we wanted to visualize. The

information we need for visualization effects is stored in the following input files:

environment, roadmap, path, and query. It is in these files where we obtain the

location of the geometry files, the initial position and orientation of each multibody,

the number of joints of the robot and their description, the number of nodes in the

roadmap and node configurations, the configurations of paths found by planners, and

the start and goal configurations. Vizmo++ reads and interprets all this information.

The details of each file format are described in the next section.

1. File Formats

Model Files: The geometric descriptions of the objects to be visualized are given as

input to Vizmo++ in the BYU format [46]. BYU describes a model in terms of its

surfaces, which are composed of two-dimensional objects. BYU is an easy and widely

used way of defining a model.

Our model is a polyhedron composed of a set of polygons, which are described

as a set of triangles by convention. In the BYU format the header of the file has

four values which are: number of parts, number of vertices, number of polygons, and

number of edges. Then each value is decomposed into a list:

- The list of parts is defined by two index values, the beginning and the end

polygon numbers that form the model.

34

Fig. 14. Example of a BYU file describing a cube

- The list of vertices provides the x, y, and z coordinates for each vertex.

- The list of edges describes the connectivity among the vertices. Each row

contains vertex IDs. The edges are thus combined to form polygons.

All coordinates are with respect to a local coordinate frame. An example for a

cube is shown in Figure 14.

Environment File: The environment file defines the entire environment, that is,

how many objects and of what kind they are (robots or obstacles). For each object,

the location of its geometry file is given as well as its position and orientation. If

the object is articulated, connection information is also given as Denavit-Hartenberg

parameters (see II-4) and the constant transformation from one frame to the other.

See Figure 15 for an example file and its visualization.

Map File: The map file is generated by a planner for a specific environment. This

file has a preamble that provides information about the command line executed to

compute the roadmap, the name of the environment file, the parameters sent to the

local planner, the collision detection libraries and the distance metrics used. The

actual graph information follows the preamble. As part of the graph information, the

number of nodes and edges are given in the graph definition. Each row has the node

35

Fig. 15. Environment file description and visualization

36

Fig. 16. Map file example and visualization

ID, its configuration, the number of edges adjacent to this node, and the list of edges,

provided as a list of node IDs. Each node ID is followed by the planner ID identifying

the planner used to generate that edge and an optimal edge weight. See Figure 16.

Path File: The path file stores the list of configurations that takes the movable

object from the start configuration to its goal configuration. These configurations are

computed by a planner. Like the roadmap file, the path file has a preamble providing

set up information. The first line identifies this as a path file and gives its version. The

second line provides the number of robots and the third line provides the number of

configurations the file stores. Next, there is a line for each configuration in the path.

37

In each line, the first six numbers indicate position and orientation. If the object

is articulated, the following numbers indicate the angle between bodies. Figure 17

shows an example of a path file for a 6-DOF robot.

Query File: The query file is an input file for the query program, it stores two lines

that describe the start and goal configurations of the movable object. We use this

information to place the robot at the initial configuration when an environment is

loaded.

Fig. 17. Path file description and visualization

38

2. Creation of New Files

Environment File: From the environment file we retrieve the values of the variables

the EnvironmentLoader class read at the beginning of the user’s session. From there

we can get the multibody information. Since the rotation of a body is described as

Euler angles in the environment input file and we use quaternions to compute and

represent rotation (this is described in more detail in section C.1), we need to convert

quaternions back to Euler angles before writing the environment file.

Map file: In the map file, as stated in the previous section, each node stores its

current position and orientation, besides the information about its connectivity (what

edges and nodes this node is connected to) and whenever a configuration is moved,

we update the configuration’s values. When a user wants to save a new roadmap we

call methods from the Graph class to write the new graph.

The Graph class implements methods to create and modify a graph, e.g., add

nodes and edges, delete nodes and edges, extract information about nodes and edges

such as edge weight, vertex information, etc.

Query File: To store new start and goal configurations in a file, we added two

methods to the Robot class: the first method aids in the storing of the current robot

configuration as a start or goal position and the second method returns the two new

configurations to be saved into a file.

B. Geometric Model and Rendering

All the objects in the workspace (static or not) are described using their boundaries.

With this description, we can draw them with polygons. There are several free

software options to render 3D images: Persistence of Vision Ray-Tracer (POV-Ray)

[51], Renderman [52], OpenGL [31], and Visualization ToolKit (VTK) [40], among

39

others.

All these tools incorporate a broad set of rendering, texture mapping and other

visualization functions. We decided to use OpenGL because of its portability and for

its fast response time, necessary since we are developing an interactive tool. We don’t

want to offer a very high quality image at the cost of poorer response time. OpenGL

offers a good image quality that suffices for our needs.

All OpenGL surfaces are generated as collections of triangular surface patches.

Each polygon description is given as input through the geometry files described in

the Model Files section in Chapter V.

1. Object Selection

Vizmo++ allows users to select objects from the scene and perform operations over

them such as changing color, changing position, changing orientation, deleting, or

changing rendering status (solid/wire). After editing the environment, users can save

their changes to query, map and environment files.

To select an object from the scene, we use the OpenGL API that provides a

mechanism to select objects. In general, we need to detect which objects are close or

at the location of the mouse coordinates. The following steps need to be performed

to execute this action:

1. Get the window coordinates of the mouse.

2. Enter selection mode.

3. Redefine view volume.

4. Render the scene.

5. Quit selection mode and get the selection buffer.

40

Multibody

Body

Connection
information

Fig. 18. Multibody description

C. Class Implementation

As described in Chapter III section 5, each object in the workspace is a multibody.

In Vizmo++ we defined the class Multibody as one that will store information about

how many bodies compose the multibody and how many connections it has. Then

the class Body keeps information about body position, orientation, the name of the

geometry file, its index, a list of connections and its current transformation. The class

Connection stores the DH parameters, and the constant transformation (position and

orientation) of the local frame of the body and the joint frame. Figure 18 depicts

this relationship. At the finest level, each body is conceived of as a Polyhedron. It

is in this class where the body is built and its RAPID bounding volume hierarchy is

constructed. This class is also in charge of drawing the solid and wire models.

The Robot class is in charge of calling all the methods needed to build the moving

object after all the information has been stored in the Multibody class. The Robot

class is also in charge of computing the necessary transformations so each body can be

rendered in the correct configuration with respect to the links that the current body

is attached to. Articulated objects are modeled as tree-like structures, following the

information given in the environment file.

The Environment-related classes are in charge of reading all the information

stored in the environment file, feeding that information to the Multibody class, and

then asking for the creation of the models of each of the elements of the environment.

41

Since a roadmap can be composed of one or more connected components, the

Map-related classes will be in charge of reading the map input file and feeding in-

formation to the Connected Component class, which will dictate the way the nodes

will be rendered (points, boxes, robot configurations). We also use the class Graph,

which is a data structure used to extract and hold information related to the nodes

and the edges of the roadmap. This is the same class used by the motion planning

algorithms. The Configuration class inherits from the Graph class. This class stores

information related to each node’s configuration and the amount by which the node

has been moved from its original position. It implements its own drawing methods

to render a node.

As stated before, the path is a sequence of configurations listed in the path input

file. All those configurations are read and stored and then used to create the wire

model of each path configuration in the PathModel class. We obtain the model of the

robot from the Robot class. The same logic is applied for rendering the query though

the QueryModel class will be in charge of it.

In our analysis, we decided to split the implementation of the GUI and the

implementation of the models, so we can make Vizmo++ modular. No change to the

GUI will affect the way the models work but there is a close relationship between the

operations we want to perform with the objects in the environment that should map

to options offered in the GUI. The class vizmo works as the interface between the

GUI and model classes. Some of the classes that have to do with the GUI need to

be related to the class that manages all the interaction that the user can have with

the environment such as rotation and zoom in/out. We implement this functionality

in the GL class.

The ILoad class is an interface class which is inherited by all the “loader” classes

shown in Figure 13. This enables our application to expand the number of files that

42

could be read. If a new input file is necessary at some point, the developer just needs

to create a new “load” class and in this way we also keep the “reading” standard of

Vizmo++.

The classes that implement OpenGL related functions, e.g. selection of objects,

translations, rotations, are gathered in the GL module for simplification purposes.

The GLModel class inherits from GL and all the “model” classes inherit from GLModel

to build and render the objects. As in ILoad, GLModel allows an easy extension of

the kind of objects Vizmo++ can visualize.

1. Implementing Articulated Objects

As stated in Chapter III, the first stage of development included just rigid bodies.

We needed to extend Vizmo++ to support articulated objects. First, we had to go

over the process of requirements analysis to detect the classes that would need to be

updated:

- Environment class : in the first stage of development, we used a constant to set

the number of DOF to six, so there was no way of computing the actual DOF of an

articulated object. We had to add code to compute the DOF dynamically and code

to read all the information related to the connection information that is given for each

joint in the environment file. This led us to add more variables to the MultiBody and

Body classes to store all the data.

- MultiBody and Body classes : this is one of the classes where more changes were

needed. As stated in the previous paragraph, new variables were needed to store

information about the connections between links. We had to keep a tree structure to

know how each link was related to the rest. We also had to keep references to the

current transformation of each body.

- Robot class : the method in charge of configuring the robot was completely

43

changed. We had to compute the necessary transformations to obtain the actual

position and orientation of a link given the position and orientation of the previous

one, as stated in Chapter IV section B. In order to perform those transformations,

we had to implement the following classes:

- The Transformation class that is in charge of generating the transformation

variables (a 3D vector for position and a matrix for orientation). It also implements

the multiplication operator as in equation 2.2 and a method to transform DH param-

eters into a matrix using equation 2.1.

- An Orientation class that implements the methods to obtain the rotation matrix

given the Euler angles according to equation 2.71 in [42]:

RXYZ(γ, β, α) =













cα cβ cα sβ sγ − sα cγ cα sβ cγ + sα sγ

sα cβ sα sβ sγ + cα cγ sα sβ cγ − cα sγ

−sβ cβ sγ cβ cγ













(5.1)

where c stands for the cosine function and s for the sine function.

The initial rotation of a body is given as Euler angles. We call these angles α,

β, and γ.

Quaternions are a more compact representation of a rotation, so we decided

to represent rotations as quaternions. A quaternion is a four dimensional complex

number that represents a rotation w about a unit vector [x, y, z], here referred to

as q = [w, x, y, z]. Quaternions allow the implementation of smooth and continuous

rotations. In our implementation, we compute the quaternion for each given Euler

angle as in Equation 5.2. Then the final rotation is computed by multiplying those

quaternions.

44

qx = (cx, sx, 0, 0) qy = (cy, 0, sy, 0) qz = (cz, 0, 0, sz) (5.2)

where:

cx = cos
α

2
, sx = sin

α

2
cy = cos

β

2
, sy = sin

β

2
cz = cos

γ

2
, sz = sin

γ

2

When needed, as in the case of computing collision detection, the resulting quaternion

is converted to a rotation matrix following Equation 5.3 (equation 2.91 from [42]).

Rot =



















1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy) 0

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx) 0

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2) 0

0 0 0 1



















(5.3)

Since we extended Vizmo++’s capabilities to save environment, map, and query

files, we needed to convert quaternions back to Euler angles. Given that we already

had the conversion from quaternion to matrix, we needed just to convert from matrix

to Euler angles.

- Configuration class : we had to redesign the methods of the class to make them

support more than six DOF because we were only considering six variables to store

the configuration of a robot. We use a simple data structure to dynamically make it

store the configuration of the robot given its number of DOF.

D. Interfacing Vizmo++ with our Motion Planning Library

We want Vizmo++ to be independent of the planners. The interface between Vizmo++

and our motion planning library was implemented through the generation of scripts.

We offer the user the functionality of generating a new command line and saving it

45

to a file to run a planner. In this way users may be able to easily call other motion

planning libraries and display information generated by any planner as long as it

provides the information in the formats supported by Vizmo++.

E. Status

Chapter III describes the requirements we determined were necessary for a tool such

as Vizmo++ to support the visualization and manipulation of motion planning en-

vironments, problem instances, and their solutions. In this section we outline the

status of the current implementation of Vizmo++.

Robot functions:

• Implemented.

– Support for a single movable object.

– Support for rigid and articulated movable objects.

– Partially implements collision detection visualization. Collision checking

is performed only when the robot or obstacle is being moved using the

mouse.

– Users can modify the movable object’s color, position and orientation.

• Not implemented.

– Vizmo++ does not support the visualization of multiple robots. This can

be done by making the Environment-related classes able to read and store

the information for multiple robots.

– Vizmo++ does not implement the robot construction function. New classes

would need to be implemented so users are able to draw a skeleton repre-

sentation of the links of the robot and to set their DH parameters. Then,

46

a rigid body representation can be constructed for each link based on user

preferences.

– Users cannot change each DOF of the robot. Robot selection is already

available and it would need to be updated to let users select individual

links instead of selecting the entire body.

Query functions:

• Implemented.

– Users can visualize the start and goal configurations, which are shown in

different colors.

– New queries can be created, stored in a new query file, and executed using

a GUI. Users can also run new queries automatically by just clicking a

button. These queries are a pair of configurations.

• Not implemented.

– Vizmo++ supports one query at a time. The QueryModel class will need

to be updated to handle more than one query.

– Vizmo++ currently allows users to define a query consisting of two config-

urations, the start and the goal. It would need to be extended to support

sequences consisting of more than two configurations, e.g, adding and se-

lecting nodes that will be part of the query.

– Vizmo++ should offer users the option of changing the color of the start

and goal configurations. This can be done by adding a function to the

QueryModel class to dynamically set the color of these configurations.

Path functions:

47

• Implemented.

– Provides path visualization, animation, and movie recording.

• Not implemented.

– Collision detection currently cannot be turned on to validate a path. The

user should be able to activate collision detection to detect when the robot

collides with obstacles while following the path. This can be done by

calling the collision detection module every time the scene is drawn instead

of calling it only when the robot is moved with the mouse.

– If more than one robot is given, then the classes that are in charge of

reading in the environment information and the path file and those that

are in charge of building the model of the robot will need to be updated.

– The path cannot be altered. Selection of robot configurations that are part

of the path will need to be provided. The PathModel class will need to be

updated to handle the selection and manipulation of a configuration.

Roadmap functions:

• Implemented.

– Vizmo++ supports roadmap editing. Users can:

∗ Select nodes.

∗ Change the shape, size, and position of the nodes.

∗ Add nodes and edges. Vizmo++ currently does not support collision

detection for nodes and edges.

∗ Change the color of the connected components randomly or by select-

ing a connected component and manually selecting a color for it.

48

– Generate roadmaps manually and automatically as described in Chap-

ter III Section B.

– Save new roadmaps in files.

• Not implemented.

– If a node is being moved the user should be able to turn on collision de-

tection to determine if they are selecting an invalid configuration. This

function could be implemented using the collision detection function al-

ready developed for the robot.

– Add nodes. The user should be able to turn on collision detection or a

bounding box test for a node to test whether the node’s configuration is

valid.

– Add Edges. The user should be able to turn on collision detection to test

if an edge is valid, e.g., by calling a local planner.

– Visualization of nodes and edges that are part of the path. Even though

users can visualize the path and the roadmap at the same time, it is hard

for them to distinguish which nodes and edges were used to compute the

path. Vizmo++ can offer the user the option of visualizing only particular

paths or portions of the roadmap. This information can be given as an

additional input file or the user might select particular options in a GUI.

– If more than one robot is given the Map-related classes will need to be

updated accordingly.

– Even though users are able to save roadmaps, they cannot select one or

more connected components to be saved in file. Currently, a connected

component can be selected so Vizmo++ will need to enable users to select

49

more than one connected component at a time and offer them the option

of saving those connected components in a different map file.

– Edge animation. The edges can already be selected. The same approach

used for animating the path can be followed to make the robot move along

the edge.

Environment functions:

• Implemented.

– Vizmo++ offers auxiliary tools to give more feedback to the user using

text labels and visible axes, a tree-like list of the objects in the scene, and

a color map is provided to change the color of the objects randomly or by

hand.

– If the bounding box is provided, users can show it or hide it.

– Users can save images of the entire environment or of a predetermined

region.

– Users can add, delete, change color, position, and orientation of obstacles.

They can be rendered as solid or wire models.

– Users can zoom in or zoom out, and rotate the scene.

– Users can save a modified environment into a new environment file.

• Not implemented.

– An undo function so that can undo operations. Vizmo++ will have to

keep track of the events and store the objects and the properties that were

modified.

50

– The bounding box. If the bounding box was not given the users should be

able to ask Vizmo++ to compute it, and the user should be able to modify

it to focus on particular regions of the environment. The class that is in

charge of rendering the bounding box should implement the functions to

compute and modify the bounding box.

– Moving obstacles. The obstacles are defined as a multibody, so the same

functions that were implemented for the robot can be applied to obstacles

as well. Vizmo++ would need to be able to identify when it is dealing

with a moving obstacle so it can enable motion functions. Then, obstacle

motions could be stored as paths to load and show in Vizmo++.

– Support for multiple cameras. Currently, Vizmo++ handles only one cam-

era. The classes in charge of the camera control have the structure neces-

sary to add and handle more than one camera.

51

CHAPTER VI

APPLICATIONS: THE CAMPUS NAVIGATOR

The Campus Navigator is a web-based application that helps users navigate the large

and complex Texas A&M University campus [53]. In this project, motion planning

techniques are applied to find a path that users can follow to go from a given start

position to their final destination. The main modules of this application are the user

interface, the path generator, and the database.

We use 2D models of the campus that are based on CAD (Computer Aided

Design) models of buildings, streets, and side walks in the campus that are maintained

by the TAMU Administrative GIS office (http://www-agis.tamu.edu/). Buildings,

parking lots and bus stops can be used as start and goal positions.

Since the planner may consider all possible transportation methods (car, motor-

cycle, bicycle, walking, wheelchair, or bus), all the information available is used in

finding a path. The roadmap was built by hand using a roadmap editor written in

Java. The roadmap contains all the valid paths in the campus, represented by the

places and the transportation methods. We need the roadmap to be easily maintained

and efficiently accessed from other programs so we decided to store it in a database.

We use Vizmo++ to automatically generate and display the path found [54]

and the 3D model of the campus (see Figure 19). The CAD models were converted

to the BYU format so Vizmo++ could read and display them. Once the user sets

the transportation mode, the initial position, and the final destination, a query is

generated and sent to the path generator which will compute a path. Once the path

has been generated, Vizmo++ will render it and take a snapshot of it, which is then

sent back to the web interface along with a set of directions that are also automatically

52

generated (see Figure 19).

There are things we still need to work on:

• The current version of the Campus Navigator supports one transportation

means at a time. We want to expand it so combinations of transportation

methods can be taken into account to generate more than one alternative for

the users to get to their destinations.

• Vizmo++ could be used as a means to interactively define new start and goal

positions by allowing the user to click on the map, so the user can dynamically

set new queries.

• Vizmo++ could be used to automatically generate movies so users can see an

animation of the defined path.

• The path needs to be optimized according to user preferences, e.g., showing the

shortest path.

• More accurate directions need to be provided to the users.

53

Fig. 19. Path image generated by Vizmo++

54

CHAPTER VII

CONCLUSION

We presented Vizmo++, a tool for visualizing and editing motion planning envi-

ronments, problem instances, and their solutions. Vizmo++ was developed follow-

ing Software Engineering techniques and Computer-Human Interaction guidelines to

implement a well-designed object-oriented application that is easy to maintain and

extend. The use of Qt for the GUI, RAPID for the collision detection, OpenGL

for the rendering, and C++ as our programming language, made it possible to port

Vizmo++ to Mac OS and Windows with some minor changes. The original develop-

ment platform was Linux.

Vizmo ++ offers a self-explanatory graphical user interface that provides func-

tionality that no other known 3D visualization tool provides. In particular, it:

• allows users to interact with the environment, modify it and create new envi-

ronments by:

– adding and deleting obstacles, and

– modifying object properties (color, position, orientation)

• supports collision detection visualization,

• allows new queries to be created using a GUI,

• provides a convenient interface to select planners and set parameters for new

queries,

• supports two rendering modes, solid and wire,

• provides path visualization, animation, and movie recording,

• supports roadmap editing, and

55

• provides auxiliary tools to give feedback to the user.

We are convinced Vizmo++ can be generally useful for the motion planning

community and we hope to release our tool to other research groups to facilitate

comparison of different planners in the near future.

56

REFERENCES

[1] R. Manseur. Denavit-Hartenberg Parameters. Electrical and Computer

Engineering Dept., University of West Florida. Accessed October, 2005.

[Online]. Available: http://uwf.edu/ria/robotics/robotdraw/DH parm.htm

[2] G. Song and N. M. Amato, “A motion planning approach to folding: From paper

craft to protein structure prediction,” Department of Computer Science, Texas

A&M University, Tech. Rep. TR00-001, January 2000.

[3] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic Pub-

lishers, 1991.

[4] J. Barraquand and J. C. Latombe, “Robot motion planning: A distributed rep-

resentation approach,” Int. J. Robot. Res., vol. 10, no. 6, pp. 628–649, 1991.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” in Proc.

IEEE Int. Conf. Robotics and Automation (ICRA), 1999, pp. 473–479.

[6] P. Bessiere, J. M. Ahuactzin, E. G. Talbi, and E. Mazer, “The Ariadne’s clew

algorithm: Global planning with local methods,” in Proc. IEEE Int. Conf. Intel.

Rob. Syst. (IROS), vol. 2, 1993, pp. 1373–1380.

[7] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configu-

ration spaces,” Int. J. Comput. Geom. & Appl., pp. 2719–2726, 1997.

[8] S. M. LaValle and J. J. Kuffner, “Rapidly-Exploring Random Trees: Progress

and Prospects,” in Proc. Int. Workshop on Algorithmic Foundations of Robotics

(WAFR), 2000, pp. SA45–SA59.

[9] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

57

Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, August 1996.

[10] G. Song, S. L. Miller, and N. M. Amato, “Customizing PRM roadmaps at query

time,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2001, pp.

1500–1505.

[11] R. Bohlin and L. E. Kavraki, “Path planning using Lazy PRM,” in Proc. IEEE

Int. Conf. Robotics and Automation (ICRA), 2000, pp. 521–528.

[12] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy PRM for manipulation plan-

ning,” IEEE/RSJ International Conference on Intelligent Robotics and Systems,

pp. 1716–1722, 2000.

[13] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, “OBPRM:

An obstacle-based PRM for 3D workspaces,” in Robotics: The Algorithmic Per-

spective. Proceedings of the Third Workshop on the Algorithmic Foundations of

Robotics, P. K. Agrawal, L. E. Kavraki, and M. Mason, Eds. Natick, MA: A.K.

Peters, 1998, pp. 155–168.

[14] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A probabilistic

roadmap planner with sampling on the medial axis of the free space,” in Proc.

IEEE Int. Conf. Robotics and Automation (ICRA), vol. 2, 1999, pp. 1024–1031.

[15] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “Bridge test for sampling narrow passages

with proabilistic roadmap planners,” in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), 2003, pp. 4420–4426.

[16] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sampling

strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf. Robotics

and Automation (ICRA), vol. 2, 1999, pp. 1018–1023.

[17] S. Sundaram, I. Remmler, and N. Amato, “Disassembly sequencing using a mo-

tion planning approach,” in Proc. IEEE Int. Conf. Robotics and Automation

58

(ICRA), 2001, pp. 1475–1480.

[18] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Roadmap-based flocking for com-

plex environments,” in Proc. Pacific Graphics, Oct 2002, pp. 104–113.

[19] A. Schweikard, R. Tombropoulos, L. E. Kavraki, J. Adler, and J.-C. Latombe,

“Treatment planning for a radiosurgical system with general kinematics,” in Pro-

ceedings of the IEEE/RJS International Conference on Robotics and Automation

(ICRA). San Diego, CA: IEEE Press, 1994, pp. 1764–1771.

[20] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free

paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10,

pp. 560–570, October 1979.

[21] S. M. LaValle. Motion Strategy Library. Accessed October, 2005. [Online].

Available: http://msl.cs.uiuc.edu/msl/

[22] A PRM planner for rigid objects in 3D. Physical and Biological Computing

Group. Accessed October, 2005. [Online]. Available: http://www.cs.rice.edu/

CS/Robotics/links.html

[23] R. Isaac, “Vizmo 3D: A Visualization Tool for Motion Modelling,” Masters

Project Report, Department of Computer Science, Texas A&M University, Col-

lege Station, TX, 1998.

[24] I. Sommerville, Software Engineering, 5th ed. Reading, MA: Addison-Wesley,

1996.

[25] R. M. Baecker, J. Grudin, W. A. S. Buxton, and S. Greenberg, Readings in

Human-Computer Interaction: Toward the Year 2000, 2nd ed. San Francisco,

CA: Morgan Kaufmann Publishers Inc., 1995.

[26] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in Proc.

IEEE Symp. Foundations of Computer Science (FOCS), San Juan, Puerto Rico,

59

October 1979, pp. 421–427.

[27] S. A. Wilmarth, “A Probabilistic Method for Rigid Body Motion Planning Using

Sampling from the Medial Axis of the Free Space,” Ph.D. dissertation, Depart-

ment of Mathematics, Texas A&M University, College Station, TX, 1999.

[28] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Motion planning for a rigid

body using random networks on the medial axis of the free space,” in Proc. ACM

Symp. on Computational Geometry (SoCG), 1999, pp. 173–180.

[29] J.-M. Lien, S. L. Thomas, and N. M. Amato, “A general framework for sampling

on the medial axis of the free space,” in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), September 2003, pp. 4439–4444.

[30] J. van der Zijp. (1997-2005) FOX Graphical User Interface Toolkit. Accessed

October, 2005. [Online]. Available: http://www.fox-toolkit.org/

[31] (2004) OpenGL. [Online]. Available: http://www.opengl.org/

[32] (1993-2003) Open Inventor. Silicon Graphics, Inc. [Online]. Available:

http://oss.sgi.com/projects/inventor/

[33] (1993-2005) OpenGL Performer. Silicon Graphics, Inc. [Online]. Available:

http://www.sgi.com/software/performer/

[34] (1999) Proximity Query Package (PQP). University of North Carolina. [Online].

Available: http://www.cs.unc.edu/∼geom/SSV/

[35] S. M. LaValle. (1999-2004) Planning algorithms. [Online]. Available: http:

//msl.cs.uiuc.edu/planning/

[36] T. C. Zhao and M. Overmars. (1995) XForms. [Online]. Available:

http://world.std.com/∼xforms

[37] (1996) Geomview. Geometry Center, University of Minnesota. Accessed

October, 2005. [Online]. Available: http://www.geomview.org/

60

[38] RAPID: Robust and Accurate Polygon Interference Detection. UNC Research

Group on Modeling, Physically-Based Simulation and Applications. Accessed

October, 2005. [Online]. Available: http://www.cs.unc.edu/∼geom/OBB/

OBBT.html

[39] Tool Command Languaje (Tcl/Tk). ActiveState. Accessed October, 2005.

[Online]. Available: http://www.tcl.tk/software/tcltk/

[40] The Visualization Toolkit VTK. Kitware Inc. Accessed October, 2005. [Online].

Available: http://public.kitware.com/VTK/

[41] S. LaValle, J. Yakey, and L. Kavraki, “A probabilistic roadmap approach for

systems with closed kinematic chains,” in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), 1999, pp. 1671–1676.

[42] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed. Reading,

MA: Addison Wesley, 1989.

[43] D. M. S. Gottschalk, M.C. Lin, “OBBTree: A hierarchical structure for rapid

interference detection,” in International Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH). New Orleans, LA: ACM Press, 1996, pp.

171 – 180.

[44] S. C. M. Reggiani, M. Mazzoli, “An experimental evaluation of collision detec-

tion packages for robot motion planning,” in IEEE International Conference on

Intelligent Robots and Systems, IROS’02. Lausanne, Switzerland: IEEE Press,

2002.

[45] P. Dorsey and P. Koletzke, Oracle Designer/2000 Handbook. Berkeley, CA:

Osborne McGraw-Hill, 1997.

[46] (2002) Movie.BYU file format. Brigham Young University. [Online]. Available:

http://lc.cray.com/doc/movie/

61

[47] J. D. Gould, “How to design usable systems,” in Readings in Human-Computer

Interaction: Toward the Year 2000, 2nd ed. San Francisco, CA: Morgan Kauf-

mann Publishers Inc.; Excerpt, 1995, pp. 757–789.

[48] D. Petrelli, A. D. Angeli, and G. Convertino, “A user-centered approach to user

modeling,” in Proc. ACM, International Conference on User Modeling, 1999, pp.

255–264.

[49] Qt. Trolltech. Accessed October, 2005. [Online]. Available: http://www.

trolltech.com/products/qt/

[50] (1997-2005) Unified Modeling Language (UML). Object Management Group.

[Online]. Available: http://www.uml.org/

[51] “Persistence of Vision Raytracer (pov-ray),” Persistence of Vision Raytracer

Pty. Ltd, 2005. [Online]. Available: http://www.povray.org/

[52] (1996-2005) RenderMan. Pixar. [Online]. Available: https://renderman.pixar.

com

[53] J. Kim, J.-M. Lien, A. Vargas, R. Pearce, and N. M. Amato. (2002) Texas A&M

Campus Navigator. Parasol Lab, Texas A&M University. [Online]. Available:

http://parasol.tamu.edu/groups/amatogroup/research/campus-nav/

[54] B. S. Sandhu, “A visualization tool to study the motion of complex 3d objects

in space,” Fellows Thesis, Department of Computer Science, Texas A&M Uni-

versity, College Station, TX, 2003.

62

VITA

Aimée Vargas Estrada received her B.S. in computer engineering at Universidad

Nacional Autónoma de México (UNAM), Mexico City, in 1996. She was awarded a

two-year scholarship from the Consejo Nacional de Ciencia y Tecnoloǵıa (CONA-

CYT), México, to pursue her master of computer science at the Department of

Computer Science, Texas A&M University. Aimée Vargas may be reached at 301

Harvey R. Bright Building, College Station, TX, 77843-3112. Her email address is

aimee@cs.tamu.edu.

