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ABSTRACT 
 
 
 

Structural Insights into the Mechanisms of Membrane Binding and Oligomerization of a 

Bacterial Pore-forming Toxin. (December 2004) 

Rajesh Ramachandran, B.S., University of Madras; 

M.S., University of Madras 

Chair of Advisory Committee:  Dr. Arthur E. Johnson 

Perfringolysin O (PFO), a cytolytic toxin from by the pathogenic bacterium 

Clostridium perfringens, perforates mammalian cell membranes by forming large 

aqueous pores. Secreted as water-soluble monomers, the toxin molecules bind to 

cholesterol-containing membranes, form large, circular oligomeric complexes on the 

membrane surface and then insert into the bilayer to create pores with diameters near 

300 Å. Using multiple independent fluorescence techniques as primary tools, the 

mechanisms of PFO membrane binding and oligomerization have been identified. 

Domain 4 (D4) of the protein interacts first with the membrane and is responsible 

for cholesterol recognition.  Remarkably, only the short hydrophobic loops at the tip of 

the D4 β-sandwich are exposed to the bilayer interior, while the remainder of D4 

projects from the membrane surface. Thus, a very limited interaction of D4 with the 

bilayer core appears to be sufficient to accomplish cholesterol recognition and initial 

PFO binding to the membrane. 

Upon PFO membrane binding, a structural element in domain 3 (D3) of the 

molecule moves to expose the edge of a previously-hidden β-strand that forms the 
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monomer-monomer interface. The β-strands that form the interface each contain a single 

aromatic residue, and these aromatics appear to stack to align the transmembrane β-

hairpins of adjacent monomers in the proper register for insertion. Membrane-dependent 

structural rearrangements are thus required to initiate and regulate PFO oligomerization. 

Fluorescence resonance energy transfer measurements reveal that the elongated 

toxin monomer arrives at the membrane in an ‘end-on’ orientation, with its long axis 

oriented nearly perpendicular to the plane of the membrane bilayer. This orientation is 

largely retained even after monomer association to form a prepore complex.  In 

particular, the D3 polypeptide segments that form the transmembrane β-hairpins remain 

far above the membrane surface both at the membrane-bound monomer and prepore 

stages of pore formation. However, upon pore formation, the height of the oligomeric 

complex above the membrane surface is significantly reduced. The major topographical 

changes that occur during the prepore-to-pore transition of the PFO oligomer, therefore 

appears to result primarily from a collapsing of the extended domain 2 (D2) 

conformation in the monomer. 
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CHAPTER I 

INTRODUCTION 

Clostridium perfringens, the anaerobic bacterium that causes gas gangrene in 

humans, secretes an arsenal of tissue-damaging toxins into its host to elicit the various 

lesions and symptoms associated with the disease (Stevens and Bryant, 1999). The toxin 

primarily responsible is the ‘α-toxin’ that exhibits degradative enzymatic activities 

towards the mammalian plasma membrane leading to its disruption and permeabilization 

(Titball, 1999). The pore-forming perfringolysin O (PFO; also known as Θ-toxin) is 

another membrane-damaging toxin that plays a secondary, yet critical, role in 

establishing clostridial pathogenesis (Stevens and Bryant, 1999; Petit et al., 1999). In 

concert with the α-toxin, PFO contributes to the impairment of the host immune 

response by causing necrosis of the vasculature at the site of infection. PFO belongs to a 

large family of protein toxins called the ‘cholesterol-dependent cytolysins’ (CDCs) that 

form pores only in membranes that contain cholesterol (Alouf, 1999; Tweten et al., 

2001). 

The research in the following dissertation examines and elucidates mechanisms 

by which PFO anchors itself to a cholesterol-containing membrane and forms ring-like 

oligomeric complexes that ultimately insert into the membrane bilayer to create large 

aqueous pores. Beginning with an introduction, each successive chapter will address the 

molecular details of a specific step in the pore formation process, followed by an in 

                                                 
This dissertation follows the style and format of Cell. 
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depth discussion of the new findings and their impact on our current understanding of 

CDC pore formation.  

Bacterial protein toxins 

An evolutionary outcome of the host-pathogen relationship between higher 

eukaryotes and bacteria is the development of sophisticated virulence factors or toxins 

by the pathogen that give it a selective advantage over the host. These toxins are most 

often protein molecules that are designed specifically to either kill the host cell by lysing 

it or subvert host cellular processes such as cell signaling, intracellular protein sorting, 

and cytoskeletal assembly in order to create an ecological niche for the pathogenic 

bacteria to derive nutrients, effectively resist the host immune response, and thereby 

exert their virulence. Pathogenicity leads, in nearly all cases, to death. Thus, these 

molecules are, as the name implies, ‘toxic’ to the host.  This section will provide readers 

a brief introduction to the rapidly expanding field of toxin biology or ‘toxinology’ and 

its impact on human disease and health. For comprehensive reviews on bacterial protein 

toxins, I direct the reader to the following resource – The comprehensive source book of 

bacterial protein toxins (Alouf and Freer, 1999). 

 Since the isolation of the diphtheria toxin by Roux and Yersin in 1888, microbial 

toxins have been recognized as the molecular effectors of infectious disease (Schmitt et 

al., 1999). In the 1930s, diphtheria toxin was purified to sufficient quantities and was 

ascertained to be a protein. However, due to the limited knowledge on the nature of 

proteins then, fundamental concepts regarding protein toxins and their mode of action 

were not firmly grounded. Not until after World War II, when basic cellular processes 
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and their molecular bases were beginning to be unraveled, did scientific interest turn 

towards toxins and their role in altering host metabolism. The rapid advancement of 

biological sciences in the 60s and 70s saw seminal discoveries being made in toxin 

biology. In fact, debilitating diseases caused by Vibrio cholerae (cholera), Bacillus 

anthracis (anthrax), Bordetella pertussis (whooping cough), Clostridium perfringens 

(gas gangrene), Clostridium botulinum (botulism) and Clostridium tetani (tetanus) were 

all shown to be related to the protein toxins produced by these pathogenic bacteria.  With 

these discoveries came the application of inactivated toxins (toxoids) as vaccines to 

battle the invasive bacteria and their disease. 

 With a few exceptions (e.g. Listeria monocytogenes), growth of pathogenic 

bacteria within the host is extracellular. The protein toxins elicited by these bacteria are 

thus often secreted as soluble, diffusible moieties into the extracellular milieu of the host 

and in some cases are released by lysis of the bacterial cell (e.g. pneumolysin from 

Streptococcus pneumoniae). Hence, these toxins are referred to as ‘exotoxins’, as 

opposed to ‘endotoxins’ that are integral components of the outer membrane of Gram-

negative bacteria (e.g. lipopolysaccharides or LPS) and are usually liberated during 

bacterial lysis (Alouf, 1999).  

Although secreted into the extracellular milieu, a vast majority of bacterial 

exotoxins exert their deleterious effects by targeting molecules that are located within 

the host cytosol. For instance, toxins such as the Vibrio cholerae cholera toxin and the 

Bordetella pertussis pertussis toxin catalyze the ADP-ribosylation of the Gs subunit of 

heterotrimeric G proteins in the host cytosol that eventually leads to the disruption of 
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host signal transduction pathways (Hirst, 1999; Locht and Antoine, 1999).  Similarly, the 

Corynebacterium diphtheriae diphtheria toxin interferes with host protein synthesis by 

ADP-ribosylating the EF-2 elongation factor (Choe et al., 1992). 

How do toxins that act intracellularly move across the physical barrier posed by 

the host cell membrane? Most protein toxins that act on intracellular targets consist of 

two components: an ‘A’ or ‘active’ component that is responsible for the enzymatic 

activity of the toxin in the host cytosol, and a ‘B’ or ‘binding’ component that is 

involved in the binding of the toxin to a specific receptor on the host cell membrane and, 

by various mechanisms, in the translocation of the A moiety into the host cytosol. These 

toxins are referred to as ‘A-B’ toxins; the A and B components may or may not be 

encoded in a single polypeptide chain (Lacy and Stevens, 1998; Collier and Young, 

2003). For example, in the case of tripartite anthrax toxin, the lethal (LF) and the edema 

(EF) factors are the A components, while the protective antigen (PA) moiety constitutes 

the B component that forms a transmembrane pore through which the noncovalently-

associated A component is translocated into the host cytosol (for a review, see Collier 

and Young, 2003). This translocation takes place through the membrane of the acidified 

endocytic vesicle after internalization of the A-B complex by receptor-mediated 

endocytosis.  

On the other hand, in the diphtheria toxin, both the A and B moieties are present 

in a single polypeptide chain (Choe et al., 1992). The C-terminal portion of the B moiety 

associates with a specific transmembrane receptor on the host cell membrane (identified 

to be a heparin-binding protein; Naglich et al., 1992) and triggers the internalization of 
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the complex by receptor-mediated endocytosis. Acidification of the endocytic vesicle 

unfolds the toxin polypeptide and promotes the insertion of the highly hydrophobic N-

terminal portion of the B moiety into the endocytic vesicle membrane. This somehow 

facilitates the translocation of the N-terminal A moiety to the cytosolic side. Then, 

disulfide-bond reduction and proteolytic cleavage release the A chain into the cytosol, 

where it refolds and enzymatically ADP-ribosylates elongation factor-2 (EF-2) to inhibit 

protein synthesis. 

Thus, membrane-inserting, pore-forming toxin components constitute a portal for 

the entry of intracellularly-acting toxin moieties into the host cytosol. Since my study 

involves a pore-forming toxin, I will curtail my general description of bacterial toxins 

here and focus primarily on pore-forming toxins. 

Pore-forming toxins (PFTs) 

 Among the several different classes of protein toxins produced by pathogenic 

bacteria, a fair number of them (~ 35% of the 325 protein toxins identified so far) act by 

damaging host cell membranes (Alouf, 2001). Membrane damage constitutes any 

process that disrupts the integrity or the permeability barrier of the membrane bilayer. 

These toxins were first identified and characterized by virtue of their lytic activity 

towards mammalian red blood cells, earning them the name ‘hemolysins’. However, 

later studies showed that these toxins are active on a variety of cell types. Hence, they 

were rechristened as ‘cytolysins’ or ‘cytolytic toxins’ to accurately represent their mode 

of action (Alouf, 2001). 
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Membrane-damaging toxins can be organized into three main types: those that 

exhibit enzymatic activities towards the host cell membrane such as C. perfringens α-

toxin that exhibits metal ion-dependent phospholipase C and sphingomyelinase activities 

(Titball, 1999); those that solubilize the membrane via detergent- or surfactant-like 

activities, such as the S. aureus δ toxin (Dufourcq et al., 1999); and the PFTs that form 

sizeable holes in the host cell membrane and thereby surmount the permeability barrier 

conferred by it (Alouf, 2001). Action of these membrane-damaging toxins results in the 

rapid influx of water into the host cell, cell swelling, dissipation of electrochemical 

gradients, leakage of cellular contents, and ultimately, cell lysis.  

 PFTs are generally secreted by the bacteria as water-soluble monomers (e.g. PFO 

from C. perfringens) or in some cases, as dimers (e.g. Proaerolysin from Aeromonas 

hydrophila) (Buckley, 1999; Tweten et al., 2001). Upon encountering a target 

membrane, PFTs bind to high-affinity receptors and anchor themselves onto the target 

cell membrane surface. These receptors are highly varied and range from cholesterol 

molecules for cholesterol-dependent cytolysins (Alouf, 1999) to 

‘glycosylphosphatidylinositol-anchored proteins’ (GPI-anchored proteins) that bind 

toxins such as Clostridium septicum α-toxin (Gordon et al., 1999) and A. hydrophila 

aerolysin (Fivaz et al., 2001). On stable binding, the molecules diffuse laterally on the 

plane of the bilayer and undergo oligomerization, a hallmark property of PFTs.  

Oligomerization in discrete stoichiometries is accomplished either spontaneously or by 

the proteolytic removal of a polypeptide segment that presumably obscures the 

oligomerization interface. For example, inactive A. hydrophila ‘proaerolysin’ is 
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converted to active ‘aerolysin’ by the proteolytic removal of a peptide fragment by the 

host membrane-protease ‘furin’ (Fivaz et al., 2001). Oligomers formed by PFTs are 

essentially circular and are comprised of monomeric subunits ranging from seven (e.g. 

Staphylococcus aureus α-hemolysin (α-HL), A. hydrophila aerolysin) to more than forty 

(e.g. CDCs) (Heuck et al., 2001). Complete oligomerization into circular complexes then 

triggers the spontaneous insertion of these complexes into the membrane to create 

aqueous pores that range between 9 Å to 300 Å in diameter. 

 Structurally, PFTs can be classified into two types: α-PFTs that insert 

amphipathic α-helices into the membrane to line the aqueous pore and β-PFTs that form 

aqueous pores by insertion of an amphipathic β-barrel (Heuck et al., 2001). α-PFTs are 

best exemplified by the channel-forming ‘colicins’, a family of bacteriocidal PFTs from 

Escherichia coli. Colicin Ia is a particularly striking example of this family that forms 

small pores ~ 9 Å in diameter (Lakey and Slatin, 2001). A hallmark of this toxin 

molecule is the presence of buried hydrophobic helices in the water-soluble form of the 

toxin that are exposed upon target membrane binding and eventually insert into the 

bilayer. Other examples of α-PFTs include diphtheria toxin and the insecticidal δ-

endotoxin Cry from Bacillus thuringiensis (Lacy and Stevens, 1998). Since my study 

involves a β-PFT, I direct you to the following reviews for a discussion of α-PFTs 

(Gouaux, 1997; Lacy and Stevens, 1998; Lakey and Slatin, 2001). 

 β-PFTs, unlike α-PFTs, must oligomerize on the target membrane in order to 

generate the oligomeric transmembrane (TM) β-barrel. β-PFTs represent a growing 

family of proteins that are involved in bacterial pathogenesis and classic examples 
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include the S. aureus α-HL, A. hydrophila aerolysin, the Bacillus anthracis protective 

antigen (anthrax PA) and the CDCs of pathogenic Gram-positive bacteria (for a review, 

see Heuck et al., 2001). 

 TM β-barrels are ubiquitous from bacteria to man and are found in the outer 

mitochondrial and chloroplast membranes in eukaryotes and in the outer membrane of 

Gram-negative bacteria (Buchanan, 1999; Wimley, 2003). There, they serve as ‘porins’ 

for the passive translocation of a variety of small-molecular weight metabolites 

including sugars and siderophores. Recent experiments also implicate TM β-barrels in 

the translocation of unfolded polypeptide chains through the outer membranes of the 

mitochondrion and the chloroplast (Gabriel et al., 2001). Most TM β-barrels are 

comparatively small and contain as few as 8 (OmpA) or as many as 22 (FepA) β-strands 

(Schulz, 2000). In contrast, the β-barrels formed by β-PFTs vary widely in size, ranging 

from 14 β-strands in S. aureus α-HL and anthrax PA to about 200 β-strands in CDCs 

(Song et al., 1996; Heuck et al., 2001). Furthermore, while the β-barrels in the outer 

membrane of bacteria are usually formed by a single polypeptide [with the known 

exception of the trimeric β-barrel-forming TolC from E. coli (Koronakis et al., 2000)], 

those formed by β-PFTs are always oligomeric (Heuck et al., 2001). 

 TM β-barrel formation within the confines of the lipid bilayer involves the more-

or-less concerted insertion of all the β-strands that constitute the β-barrel (White and 

Wimley, 1999). Unlike the insertion of individual α-helices of a TM α-helical bundle, 

the pairwise insertion of single amphipathic β-hairpins is not energetically favored 
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because within the nonpolar core of the bilayer that lacks hydrogen-bond donors and 

acceptors, the transfer of non-hydrogen-bonded polar atoms of a β-hairpin-forming 

polypeptide is energetically costly. This cost is offset when the hydrogen bonding 

potential of the polypeptide is satisfied by matching backbone hydrogen-bond donors 

and acceptors and closing the β-sheet edges into a β-barrel. Thus, insertion of a 

preformed β-barrel or the formation of the β-barrel concomitant with membrane 

insertion is most favored as a mechanism for β-PFT pore formation (for an extensive 

review on TM β-barrel folding and insertion, see White and Wimley, 1999). Although 

no conclusive data exist for the timing of TM β-barrel formation and insertion in PFTs, 

it is presumed that a ‘prepore’ state (a complete circular oligomer poised for insertion) 

allows the concerted insertion of the β-hairpins from individual monomers. Furthermore, 

since the TM β-barrel is amphipathic, with nonpolar and polar sidechains facing the 

bilayer and the aqueous pore, respectively, concerted insertion of the β-hairpins to 

displace the lipids in the center of the pore seems most likely. 

S. aureus α-HL 

An important paradigm for pore formation by β-PFTs was established with the 

crystal structures of the detergent-solubilized S. aureus α-HL heptamer (Figure 1) and 

the water-soluble monomeric form of the homologous S. aureus LukF (Figure 2A) (Song 

et al., 1996; Olson et al., 1999). With each monomer contributing a single amphipathic 

TM β-hairpin, the mushroom-shaped α-HL heptamer formed a 14-stranded TM β-barrel 

that enclosed an aqueous pore ~ 15 Å in diameter. The structure of the water-soluble 
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monomeric form of LukF was found to closely resemble that of a monomer in the α-HL 

heptamer except at two different places. First, in the water-soluble form of LukF, the 

polypeptide stretch that eventually forms the TM β-hairpin was folded into three short β-

strands and packed against the core β-sheet in order to protect hydrophobic residues of 

the amphipathic β-hairpins from exposure of solvent. Second, residues 1-20 at the N-

terminus of LukF form a loop and a short β-strand that in the α-HL heptamer is 

significantly displaced and found to interact with the core β-sheet of the neighboring 

subunit. This N-terminal sequence is therefore termed the ‘amino-latch’. Although not 

experimentally demonstrated, it is presumed that membrane binding elicits these 

conformational changes in the α-HL monomer. Biochemical analyses also revealed two 

intermediate stages in the transition of the water-soluble monomer into a membrane-

inserted heptamer: the membrane-bound monomer (Walker et al., 1992) and the 

heptameric prepore complex poised for TM β-barrel insertion (Walker et al., 1995). For 

recent reviews on α-HL, see Prevost et al., 2001 and Montoya and Gouaux, 2003.  

CDCs 

The CDCs are a family of β-PFTs that serve as virulence factors for several 

genera of pathogenic Gram-positive bacteria (for a review, see Tweten et al., 2001). 

And, as their name implies, they are active or form pores only in membranes that contain  

cholesterol, a molecule that is unique to the membranes of higher eukaryotes. The CDCs 

are widely distributed and have been identified in 23 different species from five different 

genera of bacteria that include Clostridium, Streptococcus, Listeria, Bacillus and most 

recently, Arcanobacterium (Alouf, 2000). Although all CDCs are thought to operate via  
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Figure 1. Crystal structure of the S. aureus α-HL heptamer. The cap, rim and stem 

domains are labeled. One monomer in the heptamer is colored. The image was generated 

using MOLSCRIPT (Kraulis, 1991) and rendered with Raster3D (Merritt and Bacon, 

1997). 
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Figure 2.  Comparison of the structures of LukF and α-HL. Comparison of the crystal 

structures of the LukF monomer (A) and a monomer of the homologous α-HL heptamer 

(B) reveals regions of the monomer that undergo appreciable conformational changes 

during oligomerization and membrane insertion. The pre-latch conformation, the amino-

latch and the pre-stem/stem regions of the toxins are colored and labeled. The images 

were generated using MOLSCRIPT (Kraulis, 1991) and rendered with Raster3D (Merritt 

and Bacon, 1997). 
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a similar mechanism of action, they are known to fulfill diverse roles in establishing 

bacterial pathogenesis. For example, the CDC Listeriolysin O (LLO) form L. 

monocytogenes forms holes in the membranes of acidified phagocytic vesicles and, in 

concert with listerial phospholipases, dissolves the membrane and facilitates the escape 

of the phagocytosed bacteria into the host cytosol (Portnoy et al., 2002). In contrast, the 

CDC streptolysin O (SLO) from Streptococcus pyogenes is presumed to form holes in 

the host cell membrane that are used by the bacteria to inject enzymes and other effector 

molecules into the host cytosol, similar in mechanism to Type III secretion in Gram-

negative bacteria (Madden et al., 2001). 

At the molecular level, the CDCs are 50-70 kDa single-chain polypeptides that 

share 40-70% sequence identity (Figure 3) (Tweten et al., 2001). Based on the relatively 

high degree of sequence similarity, the CDCs are assumed to adopt similar three-

dimensional structures and modes of action. A striking feature in the primary sequence 

of 8 of the 11 sequenced CDCs is a highly conserved 11-residue sequence, 

ECTGLAWEWWR, situated near the C-terminus of the polypeptide. Modification of the 

Cys residue within this sequence (the only Cys in the entire molecule) with thiol-specific 

reagents was shown to completely inactivate the toxin (Iwamoto et al., 1987). In fact, the 

CDCs were previously referred to as ‘thiol-activated cytolysins or TACs’, since studies 

involving crude extracts containing these toxins were observed to lose activity over time 

and the addition of thiol-containing reducing agents such as dithiothreitol or β-

mercaptoethanol was found to restore activity, thereby suggesting that the loss of activity 

was due to the oxidation of protein Cys thiol(s) that was critical for the activity of these
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  Figure 3. Primary structures of the sequenced CDCs. Identical residues are boxed. 
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  Figure 3. (continued) 
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toxins (Billington et al., 2000). However, later experiments clearly demonstrated that the 

Cys did not play a substantial role since mutation of the Cys to Ala did not greatly alter 

the extent of pore formation (Pinkney et al., 1989; Saunders et al., 1989; Shepard et al., 

1998). These toxins have since been referred to as ‘cholesterol-dependent cytolysins’ 

because all members of the family exhibit an absolute dependence on the presence of 

cholesterol in the target membrane for their cytolytic activity (Tweten et al., 2001).  

As with other bacterial PFTs, structural dimorphism is a characteristic hallmark 

of the CDC family of toxins. The CDCs are secreted as water-soluble monomers into the 

extracellular milieu of the host. Upon encountering a cholesterol-containing membrane, 

the CDCs form large, circular homo-oligomeric complexes on the membrane surface and 

eventually insert into the bilayer to create large aqueous pores. Based on electron 

microscopy images, CDC pores have been estimated to be ~ 300 Å in diameter with each 

oligomeric complex containing ~ 50 monomers (Oloffson et al., 1993).  

The conversion of a CDC polypeptide from a stably-folded water-soluble form 

into an integrated membrane form is spontaneous.  This property is encoded in the 

structure of the CDC molecule itself, since the transformation is achieved without the 

assistance of other protein molecules (e.g. chaperones) or an energy source after being 

triggered by specific interactions with the target membrane bilayer (Heuck et al., 2001). 

How this is accomplished remains a fundamental issue that has intrigued researchers in 

the field for a long time.  

Inspection of the primary structures of the CDCs did not reveal any stretches of 

hydrophobicity that would be expected to insert into, and span, the nonpolar core of the 
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membrane bilayer (Figure 3). However, mutagenesis data indicated that residues in the 

conserved 11-residue sequence at the C-terminus are critical for pore formation, 

suggesting that they were directly involved in membrane insertion and presumably, in 

cholesterol binding (Iwamoto et al., 1987; Sekino-Suzuki et al., 1996; Jacobs et al., 

1999). The first speculation as to how CDCs penetrated the membrane bilayer came 

when the crystal structure of the water-soluble form of PFO was determined. 

PFO structure 

The three dimensional structure of the water-soluble monomeric form of PFO 

was solved at 2.2 Å resolution by X-ray crystallography and is the only high resolution 

structure of a CDC (Figure 4) (Rossjohn et al., 1997). The mature molecule (after signal 

sequence cleavage) composed of 472 residues, assumes an unusual elongated shape (115 

Å × 30 Å × 55 Å) and is rich in β-sheet. Based on the arrangement of the polypeptide 

chain within the structure, the molecule has been divided into three discontinuous 

domains (designated domains 1-3 or D1-3) and a contiguous C-terminal domain 

(designated domain 4 or D4). Domain 1 (residues 37-53, 90-178, 229-274, 350-373) is 

located at one end of the molecule and has both α-helix and β-sheet content, with a long 

helix packed against a 7-stranded antiparallel β-sheet. Domain 2 (residues 54-89, 374-

390), on the other hand, is simply a long, curved single-layer 3-stranded β-sheet that 

links domain 1 at one end of the molecule with domain 4 at the other. Domain 3 

(residues 179-228, 275-349) which extends from the core β-sheet of domain 1, adopts a 

α/β/α topology with a core 5-stranded β-sheet sandwiched between two layers of three 
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Figure 4. Crystal structure of monomeric PFO. Domains 1-4 (D1-D4) are colored and 

denoted. The image was generated using MOLSCRIPT (Kraulis, 1991) and rendered 

with Raster3D (Merritt and Bacon, 1997). 
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short α-helices each. Domain 4 (residues 391-500) adopts the ubiquitous β-sandwich 

fold comprised of two four-stranded antiparallel β-sheets. Interestingly, the highly-

conserved 11-residue sequence implicated in membrane insertion was found to form an 

extended, solvent-accessible loop at the tip of the domain 4 β-sandwich, where it 

appeared poised to interact with the membrane. This loop will hereafter be referred to as 

the ‘Trp-rich’ loop. 

Membrane-interacting regions of PFO 

Based largely on the location of D4 in monomeric PFO and also on the 

mutagenesis data, Rossjohn et al. (1997) proposed an attractive model for PFO 

membrane insertion in which the 29 Å long D4 β-sandwich completely inserted into the 

membrane bilayer to form the lipid-water interface of the aqueous pore in the oligomeric 

form of the toxin. The crystallographers also envisioned and modeled a binding site for a 

single cholesterol molecule in the crystal structure of the PFO monomer. They suggested 

that the Trp-rich loop in D4 undergoes a conformational change and creates a binding 

site for cholesterol that is sandwiched between the rearranged loop and one face of the 

D4 β-sandwich. The Trp-rich loop bound to a cholesterol molecule was then proposed to 

form a ‘hydrophobic dagger’ that completely spanned the membrane. Their model also 

included cholesterol molecules on the other face of the D4 β-sandwich to protect the β-

sheet’s hydrophilic face from the nonpolar core of the bilayer. In essence, domain 4 of 

each monomer was modeled with bound cholesterol molecules on both faces of the β-

sandwich while its edges were involved in intermolecular interactions with the β-

sandwich edges of neighboring monomers to create a D4 ‘β-barrel’ that interfaced the 
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aqueous pore and the nonpolar core of the lipid bilayer. All other domains of the PFO 

molecule were situated far above the plane of the membrane. 

This model was consistent with the following experimental observations. The 

PFO monomer was shown to undergo relatively modest changes in secondary structure 

upon membrane insertion by circular dichroism (CD) analysis (Nakamura et al., 1995). 

A proteolytically-derived C-terminal fragment (residues 304-500 that included D4) was 

able to interact with both the target membrane and intact PFO molecules on the 

membrane surface (Iwamoto et al., 1990; Tweten et al., 1991). Furthermore, some or all 

of the six Trp residues within D4 were shown to come into contact with the core of the 

membrane bilayer. This was determined based on the quenching of PFO Trp 

fluorescence by brominated lipids incorporated into cholesterol-containing liposomes 

(Nakamura et al., 1998). 

In apparent conflict with the details of model proposed by Rossjohn et al. (1997), 

cysteine-scanning mutagenesis and fluorescence spectroscopy data obtained with the 

CDC, SLO suggested that at least a part of D3 came into contact with the core of the 

membrane bilayer (Palmer et al., 1996; Palmer et al., 1998). This was determined by 

covalently attaching acrylodan, an environmentally-sensitive fluorophore to single 

cysteines engineered into the SLO polypeptide, and observing the changes in the dye’s 

emission spectra before and after pore formation. However, these data were fragmentary 

rather than complete and did reveal neither the structure of the polypeptide that 

contacted the bilayer nor its degree of membrane penetration. These observations formed 

the bases of further inquiry into the protein-membrane interactions of the CDCs.  
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Elegant fluorescence spectroscopy experiments with PFO later unequivocally 

demonstrated that the transmembrane regions of the molecule that form the interface 

between the aqueous pore and the nonpolar core of the lipid bilayer in the membrane-

inserted oligomer originate from D3 and not from D4 as previously suggested (Figure 5) 

(Shepard et al., 1998; Shatursky et al., 1999; reviewed in Heuck et al., 2001). In this 

ground-breaking series of experiments, residues 189-217 and 288-311 in D3 were 

substituted, one at a time, with a single Cys in a functional, Cys-free derivative of PFO 

(C459A). The water-sensitive fluorescent dye, NBD, was covalently attached to a single 

Cys at each position and the dye’s spectral properties were determined prior to, and 

after, pore formation in liposomal membranes. Movement of the NBD dye from a polar 

to a nonpolar environment results in a pronounced increase in its fluorescence lifetime 

(Heuck and Johnson, 2002). After PFO membrane insertion, the NBD dye detected an 

alternating pattern of aqueous and nonpolar environments every successive residue, 

thereby showing that these two stretches of polypeptide are in a β-sheet conformation. 

Had the membrane-interacting regions been α-helical, the dye would have detected a 

pattern of aqueous and nonpolar environments as predicted by a helical wheel analysis, 

as demonstrated recently in the case of equinatoxin II (EqtII) from the sea anemone, 

Actinia equina (Malovrh et al., 2003). 

Consistent with the idea that these segments in PFO formed two β-hairpins that 

interfaced the aqueous pore and the nonpolar core of the lipid bilayer, NBD probes 

exposed to a nonpolar environment were quenched by nitroxide moieties attached to the 

acyl chain of the phospholipids, while probes exposed to a polar environment were  
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Figure 5. Origin of the transmembrane segments of PFO. Initially, D4 (shown in blue) 

was proposed to span the membrane bilayer (Rossjohn et al., 1997). Location of the 

conserved 11-residue sequence (undecapeptide) implicated in membrane insertion is 

shown. Later, six short α-helices in D3 were shown to unfold to form the two TM β-

hairpins, TMH1 (red) and TMH2 (green), that each monomer contributes to the β-barrel 

(Shepard et al., 1998; Shatursky et al., 1999). The image was generated using 

MOLSCRIPT (Kraulis, 1991) and rendered with Raster3D (Merritt and Bacon, 1997). 
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quenched by hydrophilic iodide ions (Heuck and Johnson, 2002). These TM β-hairpins 

will hereafter be referred to as TMH1 (residues 189-217) and TMH2 (residues 288-311) 

(Figure 5). Interestingly, both TMHs were each folded into short α-helices in the water-

soluble PFO monomer. Thus, each PFO monomer was found to undergo a helix-to-sheet 

transition and contribute two amphipathic β-hairpins to the large TM β-barrel formed by 

the membrane-inserted oligomer. These structural changes were unprecedented among 

bacterial pore-forming toxins and constituted a new paradigm for the insertion of CDCs 

into target membranes. Thus, the CDCs were shown to be β-PFTs.  

Since D3 is the pore-forming domain, the model proposed by Rossjohn et al. 

 (1997) appears to be incorrect. This result then elicits the following questions: where is 

D4 in the oligomeric pore complex, and how does it interact with the membrane bilayer? 

As briefly mentioned earlier, six of seven highly-conserved Trp residues in PFO 

are located in the C-terminal D4, while a lone Trp is located in D1. Consistent with the 

widely-held view that the Trp-rich loop in D4 inserts into the membrane and is partly 

responsible for pore formation, Nakamura et al. (1998) found that the binding of PFO to 

cholesterol-containing vesicles is accompanied by an increase in Trp emission that can 

by quenched by bromine atoms attached to the acyl chain of phospholipids in the 

membrane bilayer. These data, coupled with the finding that the lone Trp in D1 does not 

contribute to the membrane-dependent change in Trp fluorescence intensity (Nakamura 

et al., 1998), suggested that a few or all of the surface-exposed Trps in D4 entered the 

bilayer during pore formation. 

To determine the extent of membrane penetration by D4, Heuck et al. (2000)   
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used nitroxide-labeled phospholipids with the quencher moiety located at different 

depths within the bilayer to measure the extent of quenching of D4 Trp emission 

intensity.  Surprisingly, the Trp emission intensity was quenched significantly only when 

the quencher moiety was located close to the surface of the bilayer, suggesting that D4 is 

not deeply inserted into the bilayer and is peripheral to the membrane. Yet these 

experiments provided only little information on the orientation of D4 on the membrane 

surface and did not reveal what regions of its β-sandwich structure, other than the 

perceived Trp-rich undecapeptide loop, came into contact with the membrane bilayer. 

Hence, in the absence of detailed structural information, the exact role of D4 in the pore 

formation process is unknown. 

Heuck et al. (2000) also compared the kinetics of the D4-specific change in Trp 

emission intensity upon membrane binding and the D3-specific change in NBD-

emission intensity when a probe attached to a membrane-facing TMH residue is inserted 

into the bilayer. These experiments demonstrated that D4-membrane interactions 

preceded the insertion of D3 TMHs into the membrane. They also showed that 

substitution of D3 TMH residues with Cys altered the rate of D4 binding to the 

membrane surface, even though D4 interacts first with the membrane. Furthermore, 

when insertion of the D3 TMHs was prevented by an engineered intramolecular 

disulfide bond between a TMH residue and D2, D4-membrane binding proceeded to 

completion. These data thereby revealed that the spatially-separated D3 and D4 are 

conformationally coupled. Thus, pore formation was shown to be accomplished by 
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sequential and ordered conformational changes that extended throughout the CDC 

molecule. 

Mechanism of CDC pore formation 

 A contentious issue that sparked widespread debate among researchers in the 

field involved the mechanism of assembly of the CDC oligomeric pore complexes in the 

membrane bilayer. Two conceptually different models were proposed for the mechanism 

of CDC pore formation. 

 Palmer et al. (1998), based on the extremely large size of the SLO pore, the 

perceived heterogeneity of the SLO oligomer, and the existence of arc-shaped pore 

structures in electron microscopy images of membrane-bound SLO, suggested that 

membrane insertion of a CDC molecule preceded its oligomerization. According to their 

model, CDC pore formation is triggered by the initial insertion of a dimer that serves a 

nucleus for oligomerization. Subsequent elongation of the inserted dimer by the insertion 

of individual monomers that rapidly associate yields a ‘growing’ arc-shaped pore that 

eventually becomes circular after the arc is completed. Consistent with their model, they 

provided evidence that the pore size could be manipulated by addition of a SLO mutant 

that ostensibly capped the ends of a growing oligomer and prevented further 

oligomerization. However, the ‘growing-pore’ model posed severe conceptual 

difficulties because it was not clear how the hydrophilic side of the two TMHs of an 

individual SLO monomer could be inserted into the nonpolar bilayer and retained in a 

stable form until pore formation was complete. 

In apparent contrast to the growing-pore model, results from four independent 
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studies suggested that the formation of a complete, circular, oligomeric ‘prepore’ 

complex is obligatory and occurs prior to the insertion of the CDC TM β-barrel.  

First, Shepard et al. (2000) demonstrated that the membrane-inserted CDC (PFO) 

oligomers (~ 2.5 MDa) were resistant to the detergent SDS. They showed that the large 

SDS-resistant PFO oligomer could be sieved on a SDS-agarose gel (SDS-AGE) and 

resolved from the monomer. Under low temperature conditions that significantly 

retarded the rate of insertion of the TMHs, they found that nearly 80% of the PFO 

monomers were present in SDS-resistant oligomers. The formation of circular prepore 

complexes prior to TM β-barrel insertion under these conditions was confirmed by a 

combination of SDS-AGE, electron microscopy, fluorescence spectroscopy, and ion-

conductivity measurements in planar bilayers.  

Second, Hotze et al. (2001) engineered a reversible, intramolecular disulfide 

bond in PFO that clamped TMH1 to D2 and showed that the disulfide-trapped molecules 

formed circular, prepore complexes on the membrane surface in the absence of any 

TMH insertion.  

Third, Hotze et al. (2002) discovered a point mutant of PFO in which substitution 

of a highly conserved Tyr in D3 (Y181) with a residue other than Phe (Y181A, Y181C) 

trapped PFO in the prepore state and completely abrogated pore formation. Furthermore, 

they also showed that the non-functional Y181A mutant could be forced to insert its TM 

β-hairpins into the membrane in mixed oligomers comprised of a molar excess of 

functional PFO, demonstrating that monomer-monomer interactions in the prepore 

complex are necessary to drive TM β-barrel insertion.  
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Fourth, Heuck et al. (2003) in a recent unprecedented comparative study showed 

that the CDCs PFO and SLO, when tested under the same conditions, formed only large 

pores. They demonstrated that the rate and extent of release of liposome-encapsulated 

markers of molecular dimensions ranging from small (0.6 kD) to large (670 kD) were 

superimposable under limiting toxin concentrations. These results are inconsistent with 

the notion of a smaller, rapidly-growing, arc-shaped pore that would be expected to 

release smaller markers at a faster rate than larger ones. Thus, the CDC pore is formed 

by the insertion of a large, discrete oligomer of a defined size and not by the growth of a 

smaller pore into a larger one by the addition of individual molecules. 

Pathway for CDC pore formation 

From the available data, the general pathway by which CDCs form pores in 

cholesterol-containing membranes can be delineated: 

Water-soluble monomer → Membrane-bound monomer → Membrane-bound 

prepore complex → Membrane-inserted pore complex (Figure 6).  

To briefly summarize each of these steps, membrane-targeting by CDCs is 

accomplished, presumably by the specific recognition of cholesterol in the membrane by 

D4. Whether cholesterol serves as a receptor for binding and/or is involved at a later 

stage in pore formation is still controversial. In synthetic liposomal membranes 

comprised of a binary mixture of phospholipids and cholesterol, a high amount of 

cholesterol (> 40 mol%) is absolutely required for binding (Heuck et al., 2000). In RBC 

membranes, near-depletion of cholesterol by methyl-β-cyclodextrin (MβCD) does not 

abrogate binding or prepore formation but does block TM β-barrel insertion instead 
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Figure 6. Top view of the pathway of pore formation by PFO. The gray surface 

represents intact membrane. The plane of the membrane is the same as the plane of the 

paper. 
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(Giddings et al., 2003). Further experimentation is required to clearly resolve this issue.  

Stable binding to the target membrane surface presumably triggers 

conformational changes in the CDC molecule that promote oligomer formation. 

Subsequent oligomerization of 40-50 monomers into circular, prepore complexes aligns 

the D3 TMH segments of adjacent monomers and triggers their concerted insertion into 

the membrane to form a large TM β-barrel. Concomitant with TM β-barrel insertion, by 

a mechanism that is still unclear, the lipid molecules in the middle of the pore are 

displaced to create a hole that measures ~ 300 Å in diameter. 

Unresolved issues and specific goals of this study 

As evident from the above narrative, our current understanding of the mechanism 

of CDC pore formation is fragmented rather than complete. For example, we do not yet 

understand the molecular details of the mechanism by which CDCs recognize a 

cholesterol-containing membrane. Other outstanding questions include the following: 

How do CDCs prevent premature oligomerization prior to target membrane binding? 

How does membrane binding trigger oligomerization? What conformational changes are 

elicited upon membrane binding? Where are the intersubunit interfaces in the CDC 

oligomeric complex? How are the TMHs of adjacent monomers aligned in proper 

register for β-barrel insertion? What are the topographical changes in the CDC molecule 

relative to the target membrane at different stages of pore formation? 

 In the case of smaller PFTs such as the S. aureus α-HL, high-resolution 

crystallographic structures have provided structural snapshots of the initial and final 

stages of pore formation, from which a pathway of pore formation has been delineated 
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(Montoya and Gouaux, 2003). Although high-resolution structures of the intermediate 

states in CDC pore formation are desirable, realistically speaking, with current 

limitations and difficulties in obtaining diffraction-quality crystals of membrane 

proteins, the idea of obtaining one with CDC oligomers that are heterogenous in subunit 

composition seems far-fetched. 

 Therefore, in the following studies, using PFO and synthetic lipid vesicles 

(liposomes) that permit pore formation as models for CDCs and the mammalian cell 

membrane, respectively, I have employed multiple independent fluorescence 

spectroscopic techniques as primary tools in answering the above-mentioned questions. 

 In toto, the combined data from the following studies have helped bridge many 

of the gaps that exist in our current knowledge of the mechanism of CDC pore 

formation. 
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CHAPTER II 

EXPERIMENTAL PROCEDURES 

Construction of recombinant PFO (rPFO) derivatives 

 The gene for PFOC459A (hereafter termed rPFO), the cysteine-free, functional 

derivative of PFO, was subcloned in the bacterial overexpression vector, pRSETB 

(Invitrogen) from its original vector, pRT20 (Shepard et al., 1998) via its Bgl II and 

EcoR I restriction sites (Heuck et al., 2000). The pRSETB vector containing the gene for 

rPFO was designated pAH21. In pAH21, the ORF of pfoC459A encoding amino acid 

residues 28-500 (residues 1-27 constitute the signal sequence for secretion from C. 

perfringens and are proteolytically removed) is placed under the control of the 

bacteriophage T7 promoter and fused in-frame to an N-terminal tag encoding 27 

residues that include a 6X-polyhistidine stretch for rapid purification of the protein 

product. The plasmid also provides an ampicillin-resistance cassette as a selectable 

marker. His-tagged rPFO was found to retain activity comparable to the wild-type 

(Heuck et al., 2000). 

This construct was used as the template for PCR-based site-directed mutagenesis 

using the Quikchange method (Stratagene). The basic codon replacement procedure 

utilizes two synthetic, complementary oligonucleotide primers (forward and reverse) 

containing the desired mutation(s) that anneal to their complementary sequence on 

opposite strands of the template plasmid except at the site of mutation. Complete 

extension of these annealed primers during thermal cycling by the high fidelity, 

thermostable DNA polymerase, pfuTurbo, generates a mutation-carrying plasmid with 
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staggered nicks. After treatment of the PCR mixture with Dpn I, a restriction enzyme 

that digests the methylated and hemi-methylated parental template DNA, the reaction 

mixture is used to transform sub-cloning grade competent bacteria. Cells carrying the 

repaired, mutated DNA are then selected based on ampicillin-resistance. After isolation 

of plasmid DNA (QIAGEN miniprep), the presence of the desired mutation(s) and the 

absence of random mutations in the mutated plasmid are confirmed by automated DNA 

sequencing.    

The mutagenic primers designed were between 25-45 nucleotides in length with 

melting temperatures (Tm) ranging between 60-80oC. The desired mutation(s) were 

typically in the middle of the primers. Primers were synthesized and purified by either 

Sigma-Genosys or Integrated DNA technologies, Inc. (IDT). The PCR reaction was 

performed in a volume of 50 µl containing 1 µl of template DNA (1 µl of a plasmid 

miniprep; ~ 30 ng/µl DNA), 1 µl each of forward and reverse mutagenic primers (125 ng 

of each primer), 1 µl of dNTP mix (50 µM final of each dNTP), 5 µl of 10X reaction 

buffer [200 mM Tris-HCl (pH 8.8), 100 mM KCl, 100 mM (NH4)2SO4, 20 mM MgSO4, 

1% (v/v) Triton X-100, 1 mg/ml nuclease-free bovine serum albumin (BSA)], 1 µl of 

pfuTurbo DNA polymerase (2.5 U/µl), and 40 µl of ddH2O. Thermal cycling parameters 

were 95oC (30 sec) for denaturation, 55oC (1 min) for annealing, and 68oC (2 min/kb of 

plasmid; 9 min) for extension. Typically, 16 cycles of PCR were performed for each 

mutagenesis. 

After PCR, the reaction was maintained at 37oC and 1 µl of the restriction 

enzyme, Dpn I (10 U/µl), was added directly to 50 µl of the PCR reaction mixture. This 
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mixture was incubated for 1 hour at 37oC to digest the methylated/hemi-methylated 

parental template DNA strands. Later, 1 µl of this reaction mixture was transferred to a 

microfuge tube containing 50 µl of freshly-thawed competent cells (Escherichia coli 

TOP10F’, XL-1 blue or MC1061 strains). This transformation reaction was gently 

mixed, incubated on ice for 30 min, and then heat-pulsed (heat shocked) for 45 sec at 

42oC. After the heat-pulse, the mixture was placed on ice for 5 min. Fresh SOC medium 

(250 µl) was then added to the bacterial suspension and the cells were grown at 37oC for 

1 hour with constant shaking (225-250 rpm). Later, 50-100 µl of the transformation 

mixture was spread on LB-Agar plates containing ampicillin (100 µg/ml) and incubated 

overnight at 37oC. Three or four colonies of transformed bacteria were picked, grown 

separately in 3 ml of LB (with 50 µg/ml ampicillin), and their plasmid DNA was isolated 

using the QIAGEN miniprep kit. The plasmid DNA was eluted in 50 µl of TE buffer 

[(10 mM Tris-HCl (pH 7.5), 1 mM EDTA)]. For automated DNA sequencing, 5 µl of 

the plasmid miniprep, diluted two-fold in ddH2O was submitted to Gene Technologies 

Lab (GTL) at Texas A&M University.   Forward or reverse mutagenic primers that were 

distant to the site of the desired mutation(s) were used as sequencing primers (50 

pmol/µl final) and the presence or absence of the desired mutation was confirmed. 

Overexpression and purification of rPFO derivatives 

 rPFO and its derivatives were overexpressed in E. coli BL21(DE3)pLysS or 

BL21(DE3) star (Invitrogen). Both these strains carry the gene for bacteriophage T7 

RNA polymerase under control of the IPTG (Isopropyl-β-D-thiogalactopyranoside)–

inducible lacUV5 promoter. Addition of IPTG induces the overexpression of T7 RNA 
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polymerase, which in turn drives overexpression of the rPFO constructs in pRSETB that 

are placed under the control of the strong T7 promoter. 

 Growth of BL21(DE3)pLysS or BL21(DE3) star cells carrying the plasmid for 

rPFO or its derivatives was initiated with a pilot culture grown overnight in 100 ml 

sterile LB (50 µg/ml ampicillin). The saturated overnight culture was then used as a 1:20 

inoculum for 2 liters of sterile LB (50 µg/ml ampicillin) in a 4-liter flask. The 2 liter-

culture was incubated at 37oC with constant shaking for about 3 hours until the OD600 

reached 0.5-0.6. Expression of rPFO constructs was then induced by the addition of 

IPTG to a final concentration of 1 mM. The induced culture was incubated further for 

another 4 hours before the cells were harvested by centrifugation in a Beckman JA-10 

rotor at 5000 RPM (RCF 4400 × g) and 4oC.  

 The following procedures were used for the purification of rPFO derivatives. 

Minor modifications to the protocol were made in the case of disulfide-bonded rPFO 

(see note at the end of this section).  

The cell pellet from the 2 liter-culture was suspended in 25 ml of buffer A [10 

mM MES (pH 6.5), 150 mM NaCl] containing protease-inhibitors benzamidine (0.5 

mg/ml final) and PMSF (0.1 mg/ml final). Cell lysis was achieved by two consecutive 

passages through a French pressure cell (Aminco) at 18,000-20,000 psi (cell pressure). 

Cell debris was removed by sedimentation at 15,000 RPM (RCF 31,000 × g) in a 

Beckman JA-17 rotor at 4oC and passage of the supernatant through a 0.45 µm-pore 

filter. The lysate was then loaded, via a bench-top peristaltic pump, onto a FPLC column 

(1.5 cm ID × 10 cm; Pharmacia) containing Chelating Sepharose Fast Flow resin 
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(iminodiacetic acid-Sepharose; Amersham) that was preloaded with Co2+ and 

equilibrated with buffer A at room temperature. Preloading of the Chelating Sepharose 

with Co2+ was achieved by passing a 5 mg/ml CoCl2 solution through the resin and 

washing away the excess unbound metal ions with buffer A. 

 At pH 6.5, the His-tagged rPFO derivatives bound to the Co2+-resin chelate, 

while most other contaminating proteins were discarded in the flow-through. To remove 

unbound contaminants, the resin was washed with 50 ml of buffer A. The column was 

then transferred to a FPLC (Pharmacia) unit and washed further with 65 ml (2 ml/min) 

of buffer A. This was followed by a 20 ml (2 ml/min) linear gradient of buffer B [1 M 

Imidazole (pH 6.5)] from 0 to 50 mM Imidazole to remove loosely-bound contaminants. 

After a 15 ml (2 ml/min) passage of 50 mM Imidazole, the concentration of Imidazole 

was raised to 300 mM in one step and His-tagged rPFO or its derivative was eluted in 

about 40 ml of 300 mM imidazole. The peak fractions were pooled (~ 40 ml) and 

dialyzed overnight at 4oC against 4 liters of buffer C [10 mM MES (pH 6.5), 1 mM 

EDTA, 0.5 mM DTT]. After removal of excess imidazole and metal ions by dialysis, the 

protein solution was loaded directly onto a 1.5 cm ID × 15 cm column containing the 

cation-exchange resin, sulfopropyl (SP) Sepharose (Amersham), equilibrated with buffer 

C. A linear gradient (3 ml/min) from 0 to 1 M NaCl eluted purified rPFO or its 

derivatives in a sharp peak at about 0.7 M NaCl. The fractions containing purified rPFO 

or its derivatives were pooled (~16 ml) and dialyzed overnight against buffer D [50 mM 

Hepes (pH 7.5), 100 mM NaCl]. After addition of 5 mM DTT (final), the protein 

solution was made 10% (v/v) in glycerol, aliquoted into 2 ml cryovials and flash-frozen 
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in liquid nitrogen. The quality of purification was assessed by polyacrylamide gel 

electrophoresis (PAGE: 12.5% gel) and the concentration of protein was determined by 

absorbance at 280 nm (A280) using a molar absorptivity coefficient of 74,260 M-1 cm-1.  

Note: In the case of disulfide-bonded rPFO (T319C V334C) and its derivatives, the 

bacteria were lyzed under slightly alkaline conditions [50 mM Tris-HCl (pH 8.0), 100 

mM NaCl] to promote formation of disulfide bonds. After initial purification by affinity 

chromatography using Co2+-chelating Sepharose under the same alkaline conditions, the 

pH was lowered to 6.5 by dialysis against buffer C lacking DTT. Disulfide-bonded rPFO 

was finally purified to apparent homogeneity by cation-exchange chromatography as 

described above. No DTT was added to any solution used to purify a disulfide-bonded 

rPFO derivative. No free sulfhydryls were detected in disulfide-bonded rPFO (T319C 

V334C) using dithionitrobenzene (Ellman’s reagent; Pierce Biotechnology protocol), 

thereby confirming that nearly all cysteines were engaged in disulfide bonds.  

Fluorescent labeling of rPFO derivatives 

NBD labeling of rPFO derivatives was done according to procedures described 

before (Shepard et al., 1998). Briefly, rPFO derivatives (between 5 to 10 µM) in buffer E 

were reacted with a 10-fold molar excess of IANBD (Molecular Probes; Figure 7), 

except that only in the case of rPFO(V322C), the reaction was made 3 M in guanidine 

hydrochloride to facilitate access of the IANBD to the partially-buried cysteine. NBD-

labeled rPFO derivatives were separated from the free dye by gel filtration through a 

Sephadex G-50 column (1.5 cm I.D. × 25 cm) equilibrated with buffer D. The efficiency 

of labeling was determined spectrophotometrically to be 80-100% [except for  
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Figure 7. Structures of fluorescent reagents and phospholipid. All fluorophores used in 

this study were obtained from Molecular Probes Inc. 
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rPFO(T319C V334C V322C], which was labeled to 30% in the absence of guanidine 

HCl), by using molar absorptivity coefficients of 74,260 M-1cm-1 at 280 nm and 25,000 

M-1 cm-1 at 478 nm for PFO and NBD, respectively. 

BODIPY labeling of rPFO derivatives was done similarly by using a 10-fold 

molar excess of BODIPY® FL C1-IA (Molecular Probes; Figure 7). The efficiency of 

labeling was determined spectrophotometrically to be 25-60% by using a molar 

absorptivity coefficient of 76,000 M-1 cm-1 at 502 nm for BODIPY. 

For pyrene labeling of rPFO(T179C), N-(1-pyrene)maleimide (Molecular 

Probes; Figure 7), was dissolved in DMSO and added in a four-fold molar excess to PFO 

in buffer E [50 mM Hepes (pH 8.0), 100 mM NaCl, 1 mM EDTA]; rPFO(V322C) was 

labeled in buffer B containing 3 M guanidine HCl. After incubation at room temperature 

for 2 hr, the reaction was quenched by the addition of DTT to a final concentration of 5 

mM (except in the case of disulfide-linked derivatives). After removal of precipitated 

material by sedimentation, the supernatant was passed through a Sephadex G-50 column 

(1.5 cm I.D. x 25 cm) equilibrated with buffer D to separate pyrene-labeled PFO from 

the dye-DTT adduct. The efficiency of labeling, determined spectrophotometrically 

using a molar absorptivity coefficient of 40,000 M-1cm-1 at 338 nm for pyrene, was 60-

70%, with the exception of rPFO(T319C V334C V322C) (50% labeled; no guanidine 

HCl in the reaction).  

All fluorophore-labeled rPFO derivatives were made 10% (v/v) in glycerol, 

flash-frozen in small aliquots and stored at -80oC before use. 
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Preparation of liposomes 

 Synthetic liposomal membranes comprised of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC; Avanti Polar Lipids, Inc) and cholesterol (Steraloids, Inc) at a 

ratio of 45:55 mol% respectively were generated using an Avestin Inc. Liposofast 

extruder and polycarbonate membranes (Whatman) of 100 nm pore diameter as 

described previously (Heuck et al., 2003). Briefly, the mixture in chloroform was dried 

and spread uniformly as a thin layer on the walls of a glass test tube by placing the 

solution under a stream of N2 gas at 37oC. To remove any traces of chloroform, the lipid 

mixture was further dried under vacuum at 37oC for an additional 3 hours. The 

thoroughly dried lipid mixture was then resuspended in pre-warmed (37oC) buffer D for 

30 min and vortexed thoroughly to remove lipids from the test tube wall and ensure their 

complete hydration. The volume of buffer D added to the dried lipid mixture was 

adjusted to yield a final lipid concentration of 5 mM (2.25 mM POPC; 2.75 mM 

cholesterol). The resuspended lipid mixture was subjected to 3 consecutive freeze/thaw 

cycles, and passed 21 times through a 100 nm polycarbonate membrane in a liposome 

extruder to generate large unilamellar liposomes. The liposomes were stored at 4oC and 

used within a week of production. 

Liposomes used in lipophilic quenching experiments were prepared using POPC 

and cholesterol in the same way, except that 10 mol% of the POPC was substituted with 

a nitroxide-labeled (spin-labeled) phospholipid, 1-palmitoyl-2-stearoyl-(12-doxyl)-sn-

glycero-3-phosphocholine (12-doxyl-PC; Avanti polar lipids, Inc), where the nitroxide 

moiety is covalently attached to the 12th carbon in the acyl chain of the phospholipid. 
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 Similarly, in liposomes used in FRET experiments, 1, 1.5 or 2 mol% of the total 

lipid was replaced with Rh-PE (Molecular Probes; Figure 7). 

Assay for pore formation 

Cholesterol-containing liposomes were prepared as above except that the dried 

lipid mixture was resuspended in buffer D containing 3 mM TbCl3 and 9 mM dipicolinic 

acid (DPA). Tb3+ (a lanthanide metal ion) and DPA together form a highly-fluorescent 

[Tb(DPA)3]3- complex. Free [Tb(DPA)3]3- was separated from liposome-encapsulated 

[Tb(DPA)3]3- by passing the mixture over a Sephadex G-50 column (1.5 cm ID x 25 cm) 

in buffer D at room temperature. The ability of unlabeled and fluorophore-labeled rPFO 

derivatives to form pores in cholesterol-containing liposomes was determined by 

measuring the release of the encapsulated [Tb(DPA)3]3- complex into an external solvent 

containing 5 mM EDTA. EDTA binds tightly to Tb3+ and quenches its fluorescence by 

displacing DPA from the [Tb(DPA)3]3- complex. Briefly, cholesterol-containing 

liposomes (50 µM total lipid) encapsulating the [Tb(DPA)3]3- complex were resuspended 

in buffer D containing  5 mM EDTA (pH 7.5) and placed in a temperature-controlled 

(25oC or 37oC as noted) cuvette (1 cm x 1 cm quartz) under constant stirring using a 

magnetic stir bar (1.5 mm Χ 8 mm). After thermal stabilization and complete mixing of 

the sample (5 min), the initial intensity (F0; zero time point) was determined. Then, the 

ability of rPFO derivatives (50 nM final) to form pores in these vesicles was determined 

by measuring the decrease in terbium emission intensity as a function of time, starting 15 

sec after toxin addition. The samples were excited at 278 nm (2 nm bandpass) and 

emission was monitored at 544 nm (2 or 4 nm bandpass) every 30 sec for the entire time 
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course of the experiment. Emission was monitored through an Oriel 5215 filter (0% 

transmittance below 350 nm) to remove second-order excitation light. 

Steady-state fluorescence spectroscopy 

Steady-state fluorescence measurements were made using an SLM 8100 photon-

counting spectrofluorometer with a 450 W xenon lamp light source, a double 

monochromator in the excitation light path, a single emission monochromator, and a 

Peltier-cooled PMT housing. Either 4 mm × 4 mm or 1 cm × 1 cm stoppered quartz 

cuvettes (Starna Cells, Inc) were used to house the samples for fluorescence 

measurements. 

For single-wavelength fluorescence measurements, the following excitation and 

emission wavelengths were used for the various fluorophores used in this study: Trp (λex 

= 295 nm, λem = 348 nm), pyrene excimer (λex = 345 nm, λem = 470 nm), NBD (λex = 470 

nm, λem = 530 nm), BODIPY (λex = 490 nm, λem = 510 nm); the band-pass was either 2 

or 4 nm for both excitation and emission. Typically, five 5-second integrations of 

emission intensity at a particular wavelength were taken in sequence and averaged to 

yield the recorded intensity measurement.  

For the acquisition of time-dependent emission intensity profiles for Trp and 

NBD, a sample containing rPFO or a derivative (final concentration 50 nM) in buffer D 

was stirred and temperature-equilibrated in a cuvette (1 cm x 1 cm quartz) before its 

initial intensity (F0; zero time point) was determined. Cholesterol-containing liposomes 

(50 µM total lipid) were then added to the sample, and data collection begun 15 sec later 

as above. Blank measurements were made using an otherwise identical sample that 
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lacked the fluorophore. The blank data were subtracted from the corresponding sample 

data, and F0 was corrected for dilution. 

 Fluorescence emission spectra for NBD and pyrene-labeled rPFO derivatives 

were recorded in either 4 mm x 4 mm or 1 cm × 1 cm quartz cuvettes under the same 

conditions described above. NBD was excited at 470 nm (4 nm bandpass) and emission 

intensity was measured between 500 nm and 600 nm (4 nm bandpass) at 1 nm intervals, 

while pyrene was excited at 345 nm (2 nm bandpass) and emission intensity was 

monitored between 360 nm and 550 nm (4 nm bandpass) at 1 nm intervals. 

To prevent photodegradation of the fluorescent probes, samples were stored in 

the dark prior to use.  In the fluorometer, shutters in the light path were kept closed until 

data collection began. 

Collisional quenching by iodide ions 

The extent of collisional quenching of NBD emission intensity by iodide ions 

was determined using the titration method as described before (Shepard et al., 1998). In 

this method, two equivalent samples containing NBD-labeled rPFO in buffer D at 25oC 

were titrated in parallel under constant stirring, one with 1 M KI and 1 mM Na2S2O3 and 

the other with 1 M KCl and 1 mM Na2S2O3 to yield final KI and KCl concentrations 

between 20 and 100 mM (5 points; 20, 40, 60, 80 and 100 mM) in the sample solution.  

Two equivalent control samples that lacked the NBD dye were also titrated in parallel 

with the same solutions and served as blanks in the experiment. The initial net 

fluorescence intensity for each sample (F0) was obtained prior to the addition of any KI 

or KCl by subtracting the background signal and light scattering of a corresponding 
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blank sample from its corresponding NBD-containing sample. After each addition of KI 

or KCl to a sample and its control, the emission intensities were measured and dilution-

corrected to obtain the net emission intensity (F). The net change in fluorescence due to 

quenching at each iodide ion concentration was then normalized using the equation: 

F0 / F = [(F0 / F)KI / (F0 / F)KCl] 

 The resultant data were then analyzed according to the Stern-Volmer law for 

collisional quenching of fluorescence, which is mathematically stated as: 

F0 / F = 1  +  Ksv [Q] = 1  +  kq τ0  [Q], 

where Ksv is the Stern-Volmer quenching constant and Q is the concentration of the 

quencher. Ksv is equal to kqτ0, where kq is the bimolecular quenching constant and τ0 is 

the fluorescence lifetime in the absence of quencher. kq was determined by a linear least-

squares analysis of (F0/F-1)/τ0 values at five different [I-] from at least three independent 

experiments. The slope of the plot yields kq. An example Stern-Volmer plot is shown in 

Figure 8. 

Quenching by spin-labeled phospholipids  

The emission intensities of two equivalent samples of monomeric NBD-labeled 

rPFO (50 nM) in buffer D were measured at 10oC (Fbuff), and then excess cholesterol-

containing liposomes (50 µM total lipid) with or without nitroxide-labeled phospholipids 

were added to the sample. After incubation of the mixture at 37oC for 30 min to allow 

pore formation, the samples were brought back to 10oC, and the NBD emission 

intensities were redetermined (Fmemb). The blank-subtracted, dilution-corrected 

intensities were normalized (Fmemb/Fbuff) to account for the differences in the NBD  
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Figure 8. Analysis of iodide ion quenching by the Stern-Volmer equation. Iodide ion 

quenching of water-soluble ( ) or membrane-inserted rPFO(V403C-NBD) ( ) was 

analyzed according to the Stern-Volmer equation: F0/F = 1 + kqτ0 [Q], where F0 is the 

emission intensity in the absence of quencher and F is the emission intensity in the 

presence of iodide ions at concentration [Q]. kq is the bimolecular quenching constant 

and τ0 is the fluorescence lifetime in the absence of quencher. A linear least-squares 

analysis of (F0/F-1)/τ0 values at five different [I-] yielded the value of kq (slope). 
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content of each sample. From these data, F/F0 was calculated, where F0 was the 

normalized NBD emission intensity in the nitroxide-lacking sample and F was the 

normalized NBD emission intensity in the nitroxide-containing sample. In the absence of 

quenching, F/F0 equals ~ 1, while in the presence of quenching, F/F0 <1. 

Time-resolved fluorescence spectroscopy and data analysis 

 Fluorescence lifetime measurements were made using an ISS (Urbana, IL) K2-

002 multi-frequency cross-correlation phase and modulation spectrofluorometer 

(Spencer and Weber, 1969). Samples were excited in 1 cm × 1 cm quartz cuvettes using 

the 457 nm or the 488 nm line of a Coherent (Santa Clara, CA) Innova 400-15/3 argon 

ion laser, and fluorescence emission was monitored through an Oriel OG-515 filter (0% 

transmittance of light with wavelengths less than 515 nm). To eliminate polarization 

artifacts (due to the effects of anisotropy on the intensity decay), magic-angle conditions 

were used in which the excitation light was passed through a vertically-oriented (0o) 

Glan-Taylor polarizer and emitted light collected through a Glan-Thompson polarizer 

oriented at 54.7o relative to the vertical axis (Spencer and Weber, 1970). No blank 

subtraction was done since scatter due to the presence of liposomes (both Raman and 

Rayleigh) was always less than 10% of the signal. For NBD lifetime measurements, 

disodium fluorescein (reference grade; Molecular Probes) in 0.1 M NaOH (τ = 4.05 ns) 

was used as the reference standard. 

Typically, samples containing 50-500 nM NBD-labeled rPFO derivatives in 

buffer D were incubated, either with or without an excess of cholesterol-containing 
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liposomes (PFO/lipid molar ratio, 1/1000), at 37oC for 45 min and then cooled to 25oC 

for 10 min before measuring the NBD lifetimes. 

 The phase and modulation data were analyzed using the computer program, 

GLOBALS UNLIMITED (University of Illinois, Urbana, IL) to compute the lifetime 

and mole fraction of dyes in each sample. Data were best fit (had the lowest χ2) to 

intensity decay models comprised of two components, either two discrete exponentials 

or one discrete exponential and one Lorentzian distribution. The latter adds an additional 

parameter corresponding to the half-width of the distribution. Fitting the data to three 

component models did not significantly improve the fit. Fractional contributions of each 

computed lifetime, expressed as pre-exponential factors, were interpreted to equal the 

relative mole fractions of NBD probes in the two environments (Crowley et al., 1993). 

FRET parameters, measurements and data analysis 

Calculation of acceptor density  

The surface density of Rh-PE molecules in acceptors per square angstrom, σ, 

was calculated by assuming that each cholesterol molecule occupies 37 Å2 of surface 

area, and each phospholipid molecule 48 Å2 of surface area in the presence of an 

equimolar ratio of cholesterol (Lecuyer and Dervichian, 1969). Thus, 

σ = [Rh-PE] / {([Phospholipid] × 48 Å2) + ([Cholesterol] × 37 Å2)}. 

Rh-PE concentrations of 1, 1.5 and 2 mol% yielded σ values of 2.4 × 10-4, 3.6 × 10-4, 

and 4.8 × 10-4 per Å2, respectively. 
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Determination of quantum yield QD 

The quantum yields of water-soluble and oxidized rPFO(T319C V334C E167C-

BODIPY)  and rPFO(T319C V334C A215C-BODIPY),  hereafter abbreviated as 

rPFODS(E167C-BODIPY) and rPFODS(A215C-BODIPY) to denote the intramolecular 

disulfide bond, were determined using the relationship: 

Q1 / Q2 = (F1 / F2) (A2 / A1)                  (Eq. 1) 

where Q1 is the quantum yield of  unreduced rPFODS(E167C-BODIPY) or 

rPFODS(A215C-BODIPY) in buffer D and Q2 is 0.92, the quantum yield of disodium 

fluorescein (Molecular Probes reference grade) in 0.1 M NaOH (Weber and Teale, 

1957). F1 and F2 are the integrated areas of the corrected emission spectra of the 

rPFODS(E167C-BODIPY) or rPFODS(A215C-BODIPY) and disodium fluorescein 

samples, respectively, recorded between 470-700 nm while A1 and A2 are the respective 

absorbances of the samples in their corresponding solvents at the exciting wavelength of 

460 nm. 

Determination of R0 

R0, the distance between a donor dye (D) and an acceptor (A) dye that yields a 

FRET efficiency of 50% was determined for BODIPY-labeled rPFO and Rh-PE in 

cholesterol-containing membranes using the equation: 

R0
6 = (8.79 × 10-5) κ2 n-4 QD  JDA                  (Eq. 2) 

where R0
6 is in Å6, JDA is the spectral overlap integral in M-1 cm-1 nm4, QD is the quantum 

yield of unreduced rPFODS(E167C-BODIPY) or rPFODS(A215C-BODIPY) in the 

absence of energy transfer, n is the refractive index of the medium between the D and A 
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dyes, and κ2 is a geometric factor that depends upon the relative orientation of the D and 

A dyes (discussed in Results). The absorbance spectrum of Rh-PE in cholesterol-

containing membranes and the corrected emission spectrum of the BODIPY dye in 

rPFODS(A215C-BODIPY) were recorded in buffer D at 1-nm intervals. JDA was then 

determined using 

JDA = ∫ FD(λ) εA(λ) λ4 dλ / ∫ FD(λ) dλ ,                                 (Eq. 3) 

where FD(λ) is the corrected net emission intensity of rPFODS(A215C-BODIPY) at a 

given wavelength and εA(λ) is the molar extinction coefficient of Rh-PE at the same 

wavelength. Using a molar extinction coefficient of 80,000 M-1 cm-1 at 567 nm for Rh-

PE, JDA was determined to be 2.05 × 1015 M-1 cm-1 nm4. The emission spectra of all 

BODIPY-labeled rPFO derivatives had the same shape (λmax = 511 nm) and yielded the 

same JDA values at all stages of pore formation. The spectral overlap of rPFODS(A215C-

BODIPY) and Rh-PE in cholesterol-containing membranes is shown in Figure 9. 

 Assuming values of 1.4 and 2/3 for n and κ2, respectively (Johnson et al., 1982; 

Mutucumarana et al., 1992; Yegneswaran et al., 1997), R0 for FRET between rPFO 

derivatives labeled with BODIPY at position 167 and Rh-PE in cholesterol-containing 

membranes was determined to be 52.2 Å, while that R0 for FRET between rPFO 

derivatives labeled with BODIPY at position 215 and Rh-PE was 53.4 Å. As discussed 

below and in Woolhead et al. (2004), it is reasonable to use κ2=2/3 to calculate R0. 
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Figure 9. Spectral overlap of BODIPY and Rh-PE. The corrected emission spectrum of 6 

nM rPFODS(A215C-BODIPY) (solid line) and the absorbance spectrum of Rh-PE (2 

mol%) (dotted line) incorporated into cholesterol-containing membranes (0.5 mM total 

lipid), both in buffer D were recorded at 1 nm-intervals. The molar extinction coefficient 

for Rh-PE is 80,000 M-1 cm-1 at 567 nm. The spectral overlap integral JDA was 

determined to be 2.05 × 1015 M-1 cm-1 nm4. 
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Steady-state anisotropy 

Steady-state anisotropies of BODIPY and rhodamine were measured in buffer D 

at 25oC using BODIPY-labeled rPFO derivatives bound to vesicles lacking Rh-PE and 

unmodified rPFO derivatives bound to Rh-PE-containing vesicles, respectively. The L-

format was used with Glan-Thompson prism polarizers in both the excitation and 

emission beams as described previously (Mutucumarana et al., 1992).  The emission 

intensity measured when a sample was excited by vertical plane-polarized light, and the 

emission detected through a horizontal polarizer was designated as IVH. IVV, IHV, and IHH 

were defined analogously. The component intensities of a dye-free blank sample 

containing the same concentrations of unmodified rPFO bound to vesicles that lacked 

Rh-PE were subtracted from the corresponding component intensities of the sample to 

obtain the net emission intensities of BODIPY-labeled rPFO derivatives and Rh-PE.  

The fluorescence anisotropy (r) was then calculated using the equation: 

r = (IVV – GIVH) / (IVV + 2GIVH),                                                                               (Eq. 4) 

where the grating factor G = IHV / IHH. λex and λem were 490 nm and 510 nm for 

BODIPY-labeled rPFO and 570 nm and 590 nm for Rh-PE. 

To eliminate homo-FRET between closely-spaced BODIPY-labeled rPFO in a 

membrane-bound oligomer that would reduce the fluorescence anisotropy, a mixture 

containing 6 nM of BODIPY-labeled rPFO and 94 nM of the corresponding unlabeled 

species (as in the FRET measurements) was incubated with cholesterol-containing 

membranes to spatially separate the labeled rPFO molecules in the oligomer. In 

experiments not shown, we determined that the anisotropy values do not change when 
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the ratio of unlabeled-to-labeled PFO is increased above 12:1. Similarly, to avoid homo-

FRET effects, we measured the anisotropy of Rh-PE using a σ of 0.6 × 10-4/Å2 (0.25 

mol%), a surface density considerably lower than that used in the FRET measurements. 

Energy transfer measurements  

 Four biochemically-equivalent samples were prepared in parallel for each energy 

transfer measurement: sample D (donor only) contained 6 nM of a BODIPY-labeled 

rPFO mutant and 94 nM of the corresponding unlabeled rPFO incubated with 

membranes lacking Rh-PE; sample DA (donor + acceptor) contained the same protein 

mixture incubated with cholesterol-containing membranes containing Rh-PE; sample A 

(acceptor only) contained 100 nM of the unlabeled rPFO mutant and Rh-PE-containing 

membranes; and sample B (blank) contained 100 nM of the same unlabeled rPFO 

derivative with membranes that lacked Rh-PE. In all four samples, the total lipid 

concentration of the cholesterol-containing membranes was 100 µM, and the 

concentration of Rh-PE was the same in DA and A. All samples were incubated at 37oC 

for 15 min to permit complete binding of rPFO derivatives to, and in some cases 

insertion into, the cholesterol-containing membranes. 

The net intensity of D, DA, or A (FD, FDA, and FA, respectively) was obtained by 

subtracting the blank signal (FB). The blank signal never exceeded 1% of the emission 

intensity of the D or DA samples. To correct for any signal in the DA sample caused by 

direct excitation of the acceptor, the net blank-corrected FA was subtracted from FDA. 

Making the reasonable assumption that the presence of the donor dye does not perturb 
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the absorptivity of the distant acceptor dyes, the ratio of the donor quantum yields in the 

absence and presence of the acceptor is then given by: 

QD / QDA = FD / (FDA - FA).                (Eq. 5) 

Calculation of the distance of closest approach L 

When the extent of energy transfer between randomly and uniformly distributed 

D dyes in one infinite plane and randomly and uniformly distributed A dyes in a parallel 

infinite plane is small, the first term in the approximate series solution of Dewey and 

Hammes can be used for calculating the distance of closest approach between the D and 

A dyes (i.e., the distance between the two infinite planes) (Dewey and Hammes, 1980). 

The measured QD/QDA values were therefore used to calculate L between BODIPY 

attached to rPFO mutants and Rh-PE dyes located at the membrane surface using: 

QD / QDA = 1 + (π σ R0
2 / 2) (R0 / L)4

.
                      (Eq. 6) 

QD/QDA values from multiple independent experiments were plotted as a function 

of the product of σ and R0
2. These combined data were analyzed using linear least-

squares regression analysis and from the slope of the plot, which is equivalent to 

πR0
4/2L4, L was determined. Use of eq. 6 is justified only when L > R0 (Baird and 

Holowka, 1985). In those instances, the extent of energy transfer to the acceptor dyes at 

the inner surface of the 50-Å-thick phospholipid bilayer is negligible and has not been 

included in our calculations. 

Chemical crosslinking and SDS-AGE 

Chemical crosslinking of rPFO derivatives with the homobifunctional amine-

crosslinker glutaraldehyde (Sigma) and denaturing agarose gel electrophoresis in the 
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presence of SDS (SDS-AGE) were performed as described previously (Shepard et al., 

2000), except that agarose (GeneMate) was used at a final concentration of 2% (w/v). 

Briefly, samples containing 0.4 to 2 µM NBD-labeled rPFO were incubated with an 

excess of liposomes (PFO/lipid molar ratio 1/1000) at 37oC for 30 min in buffer D. After 

the incubation, one-half of each sample received 5 mM glutaraldehyde for 2 min at room 

temperature before the reaction was quenched by the addition of 1 M urea (final), 

whereas the other half received no glutaraldehyde. The samples were then solubilized 

with SDS-sample buffer [50 mM Tris.HCl (pH 6.8), 0.6% (w/v) SDS, and 15% (v/v) 

glycerol (all concentrations final), with a trace of bromophenol blue] and resolved in a 

2% (w/v) SDS-agarose gel in SDS-gel reservoir buffer [50 mM Trizma Base, 400 mM 

glycine, 0.125% (w/v) SDS]. The gel was run at 100 V for 30 min and the resolved 

protein bands were visualized either by Coomassie blue staining or by NBD emission 

(for NBD-labeled rPFO) by exciting and scanning the gel with the 488 nm laser line of 

the Bio-Rad Molecular Imager FX. 
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CHAPTER III 

MEMBRANE-ANCHORING MECHANISM OF PFO* 

Introduction 

A fundamental issue associated with the mechanism of action of any pore-

forming protein is the identity and structure of the polypeptide that inserts into the 

membrane and forms the interface between the aqueous pore and the nonpolar lipid 

bilayer. Early studies with PFO showed that a proteolytically-derived C-terminal 

fragment (residues 304-500) is able to interact with both the target membrane and intact 

PFO molecules on the membrane surface (Iwamoto et al., 1990; Tweten et al., 1991). In 

addition, some of the six Trp residues within this fragment come into contact with the 

core of the membrane bilayer (Nakamura et al., 1995; Nakamura et al., 1998). Also, 

amino acid substitutions in a highly-conserved 11-residue sequence (residues 458-468) 

dramatically inhibit PFO pore formation (Sekino-Suzuki et al., 1996). The three-

dimensional structure of the water-soluble PFO monomer was subsequently determined, 

and the C-terminal portion of PFO (residues 391-500, designated D4) was found to fold 

into a separate β-sandwich domain comprised of two four-stranded β-sheets at one end 

of the elongated protein (Rossjohn et al., 1997) (Figure 5).  

Based largely on the location of D4 in monomeric PFO and on the above 

biochemical and genetic data, Rossjohn et al. (1997) proposed that D4 undergoes a 

conformational change and inserts completely into the bilayer to form the lipid-water 

                                                 
*Reprinted with permission from Ramachandran, R., Heuck, A.P., Tweten, R.K., and Johnson, A.E. 
(2002). Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. 
Nat. Struct. Biol. 9, 823-827. 
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interface of the aqueous pore in the membrane-inserted oligomer.  

However, recent studies have unequivocally demonstrated that six short α-

helices in D3 unfold to form two TM β-hairpins, designated TMH1 and TMH2 (Figure 

5). These TMHs then join with those of other PFO molecules in the oligomer to create 

the TM β-barrel that defines the pore. Although D4 does not contribute to this β-barrel, 

other studies have shown that D4 interacts directly with the membrane (Iwamoto et al., 

1990; Tweten et al., 1991; Nakamura et al., 1995; Heuck et al., 2000). Thus, there has 

been great interest in the nature of the interactions of D4 with the membrane and with 

neighboring monomers in the oligomeric complex. 

We have recently shown that pore formation requires the sequential and coupled 

interaction of D4 and the spatially-separated D3 (residues 179-228 and 275-349) of PFO 

with the target membrane. Kinetics experiments using domain-specific fluorescent 

probes showed that D4 at one end of the elongated PFO monomer (Figure 5) interacts 

first with the membrane, yet mutations in D3 can alter the rate of the D4-membrane 

interaction (Heuck et al., 2000). This discovery raises important structural issues. Since 

D4 binds first to the membrane, how does the molecule reorient to allow the TMHs to 

insert into the bilayer during pore formation (Figure 5)? Does D4 also insert into the 

membrane? Is PFO oriented parallel to the membrane in the complex, with D4 lying 

along the membrane surface, to position the TMHs in D3 at the membrane surface? Is 

D4 involved in monomer-monomer interactions during the highly cooperative pore 

formation process (Hotze et al., 2002)?  

As a first step toward addressing the above questions, we have determined the 
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topography of D4, the domain responsible for PFO recognition of cholesterol at a 

membrane surface, using multiple independent fluorescence techniques. Our data reveal 

that: D4 does not span the membrane; only the tip of the D4 β-sandwich is exposed to 

the nonpolar core of the bilayer; D4 projects out of the surface instead of lying along it; 

and contact areas between D4 and adjacent monomers, if any, are small. 

Results 

Experimental approach 

Site-specific fluorescence labeling and various fluorescence spectroscopic 

techniques have been used successfully to identify regions of the PFO polypeptide that 

span the membrane bilayer (Shepard et al., 1998; Shatursky et al., 1999). In this 

approach, a single amino acid residue in a cysteine-free protein is replaced with a 

cysteine and its sulfhydryl moiety is covalently modified with the water-sensitive 

fluorophore, NBD (Figure 7). After ensuring that the function of the protein is not 

compromised by mutagenesis and/or modification, the spectral properties of the 

fluorescent dye are monitored before and after association of the labeled protein with the 

target membrane. Movement of the NBD dye from an aqueous milieu to a hydrophobic 

environment, such as the core of a membrane bilayer, is characterized by a dramatic 

increase in NBD fluorescence lifetime (τ) from about 1 ns in water to more than 7 ns in 

the interior of the membrane (Crowley et al., 1993). This spectroscopic technique 

therefore allows one to ascertain the environment of the residue to which the dye is 

attached, both before and after pore formation (Heuck and Johnson, 2002). 

Here, a single cysteine was introduced, one at a time, at 12 different locations on 
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Figure 10.  D4 probe locations. D4 is shown in a ribbon representation (A) and two 

space-filled representations rotated 180o relative to each other (B). Residues substituted 

with Cys to attach the NBD fluorophore are highlighted in (B): 397, 423, 433, 442, 455, 

474, 480, and 495 in red; 403 and 491 in purple; and 401 and 437 in yellow. Probe 

position corresponds to the residue number in the polypeptide chain. The images were 

generated using InsightII (Accelrys). 
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the surface of D4 (Figure 10) in a derivative of PFO that lacks the single natural 

cysteine, PFO (C459A), hereafter termed rPFO. The single cysteine in each rPFO 

mutant was then covalently modified with NBD. The pore-forming activities of NBD-

labeled forms of each of the rPFO mutants, assayed by monitoring the leakage of 

liposome-encapsulated [Tb(DPA)3]3- (see Experimental Procedures), were comparable to 

that of the parent toxin, rPFO, with the exception of rPFO(L491C) that formed pores 

slowly with or without the NBD modification (Appendix, Figure 32). 

D4 does not span the bilayer  

Time-resolved fluorescence measurements revealed the environments of NBD 

dyes at various locations on the surface of D4 both before and after pore formation 

(Figure 11). We observed that the fluorescence lifetime of probes located at positions 

401, 403, 437 and 491 of PFO, each located in a loop at the tip of the molecule (Figure 

10, yellow and violet), were short (0.5-0.8 ns) in the water-soluble monomer, but were 

long (> 7 ns) in the membrane-inserted oligomer. Thus, these probes moved from an 

aqueous milieu into a hydrophobic environment during pore formation in cholesterol-

containing liposomes. In contrast, the short fluorescence lifetimes of probes placed at 

eight other positions on the D4 surface (397, 423, 433, 442, 455, 474, 480 and 495) did 

not change significantly (Figure 10, red). Hence, these probes were still in an aqueous 

milieu following pore assembly. However, since a nonpolar environment could be 

provided either by the hydrophobic core of the membrane bilayer or within a 

hydrophobic monomer-monomer interface of the oligomeric complex, further 

experiments were necessary to ascertain the exact location of the probes.  
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Figure 11. D4 Probe environments.  Fluorescence lifetimes of NBD probes in water-

soluble monomeric PFO ( ) and membrane-inserted oligomeric PFO ( ) were measured 

and analyzed as described in Experimental Procedures. In the case of the water-soluble 

monomer, the data were best fit (i.e., had the lowest χ2) to two discrete lifetimes. For the 

membrane-inserted oligomer, the data were best fit to two lifetimes consisting either of 

two discrete exponentials or of a Lorentzian distribution and a discrete exponential. Only 

the major lifetime component (mole fraction > 80%) is shown here for both the 

monomer and the oligomer. A minor lifetime component that ranged between 1.7-4.3ns 

represents probes that are dynamically exposed to different environments within the 

protein. The half-widths of the Lorentzian distributions in the analyses (only for probe 

positions 401, 403, 437 and 491) were less than 2.4 ns. 
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Only the tip of D4 is exposed to the membrane core  

Collisional quenching of fluorescence is a direct method for determining whether 

the fluorophore and the quencher are co-localized because no quenching will be 

observed if the quencher cannot access and collide with the fluorophore (Crowley et al., 

1994; Hamman et al., 1998; Heuck and Johnson, 2002). For example, an NBD probe that 

is embedded in the hydrophobic core of the bilayer will be accessible to membrane-

restricted quenchers, such as an uncharged nitroxide moiety attached to the acyl chain of 

a phospholipid molecule, but will not be quenched by hydrophilic quenching agents such 

as iodide ions (I-) that are restricted to an aqueous solvent. We therefore used 12-doxyl-

PC, a phospholipid derivative with a nitroxide positioned near the center of the bilayer, 

to examine the location of each NBD probe in our mutants. 

We observed that only the probes exposed to a nonpolar environment (positions 

401, 403, 437 and 491) were quenched by membrane-restricted nitroxide moieties (Table 

1). Hence, it is clear that the loops at the tip of D4 are embedded in or exposed to the 

nonpolar membrane interior, and are not located at a nonpolar interface between two 

PFO monomers. 

To estimate the depth of D4 penetration into the membrane, we compared the 

extents of 12-doxyl-PC quenching of D4 probes with the quenching of two residues 

whose location in the bilayer is fixed and known. In the TM β-barrel formed by the 

oligomeric complex, residue 202 is located near the membrane surface in TMH1 and 

residue 303 is located near the center of the membrane in TMH2 (Shatursky et al., 

1999). Since the extent of quenching at positions 401, 403, 437 and 491 was similar to 
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that at position 202 (Table 1), and since we previously showed that the Trp residues in 

the highly-conserved 11-residue sequence of D4 were quenched by 5-doxyl-PC, but not 

by 12-doxyl-PC (Heuck et al., 2000), we conclude that the membrane-exposed probes in 

the loops at the tip of D4 are located close to the membrane surface. 

But the bulk of D4 is surrounded by water because probes with short lifetimes 

were strongly quenched by iodide ions (Table 2) and not by 12-doxyl-PC (Table 1). 

Interestingly, while two of the nitroxide-quenched probes (403 and 491) were not 

quenched by iodide ions, the other two (401 and 437) were weakly quenched by iodide 

ions (Table 2). The latter two NBD dyes are therefore most likely positioned near the 

interfacial region of the bilayer where they are dynamically and transiently exposed to 

iodide ions.  Thus, both the 12-doxyl-PC and iodide ion quenching data show that the tip 

of D4 is located at or near the lipid-aqueous interface. 

D4 orientation and contacts 

If D4 were to lie along the membrane surface or were to contact adjacent PFO 

monomers in the oligomeric complex, a probe positioned at a protein-membrane or 

protein-protein interface would be completely or largely inaccessible to aqueous 

collisional quenchers such as iodide ions (Heuck and Johnson, 2002). We therefore 

examined iodide ion quenching of probes at six water-exposed positions (397, 423, 433, 

442, 474 and 495) located all around the surface of the D4 β-sandwich (Figure 10) in the 

membrane-inserted oligomer. In each case, the NBD fluorescence was efficiently 

quenched (Table 2). Furthermore, since the probes on different D4 surfaces were 

quenched at similar rates (similar kq), the sizeable hydrated iodide ions (9 Å diameter) 



 62

 

Table 1. NBD exposure to the membrane interior 

Probe position         F / F0   

491     0.74 ± 0.07 

403                                           0.73 ± 0.05 

             401                           0.77 ± 0.02 

437                                           0.78 ± 0.03 

                         495     1.00 ± 0.01 

                                    433                                           1.05 ± 0.02 

455     1.00 ± 0.01 

                         397     1.08 ± 0.04 

   202 (near surface)   0.74 ± 0.06 

   303 (near center)              0.12 ± 0.02 

 
Quenching of NBD fluorescence by 12-doxyl-PC was measured and calculated as described under 

Experimental Procedures. The F/F0 values reported are an average of 4-8 independent experiments with 

the standard deviation indicated. F0 is the emission intensity of PFO inserted into a membrane lacking 12-

doxyl-PC and F is the emission intensity of an equivalent amount of PFO inserted into a membrane 

containing 12-doxyl-PC. To correlate the observed extents of D4 probe quenching with the depth of the 

probe in the bilayer under our experimental conditions, the quenching by 12-doxyl-PC of NBD probes 

located near the membrane surface (position 202 in TMH1) and the bilayer center (position 303 in TMH2) 

in the inserted PFO β-barrel are shown for comparison.  
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Table 2. NBD exposure to the aqueous milieu 

 Probe position                        kq (M-1 ns-1) 

  Water-soluble monomer        Membrane-inserted oligomer 

                      397                        7.1 ± 0.2           4.4 ± 0.1 

                      423                         3.2 ± 0.6        5.3 ± 0.1 

                                  433                             6.7 ± 0.7                                      3.0 ± 0.1   

            442            12.0 ± 0.3       2.7 ± 0.2                                        

           474                         7.0 ± 0.6                                      3.3 ± 0.1 

            495                           5.3 ± 0.5                                      4.1 ± 0.1 

                         491                         9.8 ± 0.5                                            0  

                            403                                5.8 ± 0.2                                            0 

                            401       9.5 ± 1.0                                      0.4 ± 0.1 

                         437                              12.3 ± 0.8                                      0.3 ± 0.1       

 
Collisional quenching of NBD fluorescence by iodide ions was measured as described under Experimental 

Procedures. The data were analyzed according to the Stern-Volmer equation: F0/F = 1 + kqτ0 [Q], where F0 

is the emission intensity of water-soluble or membrane-inserted PFO in the absence of quencher and F is 

the emission intensity in the presence of iodide ions at concentration [Q]. kq is the bimolecular quenching 

constant and τ0 is the primary fluorescence lifetime in the absence of quencher. kq was determined by a 

linear least-squares analysis of [(F0/F)-1]/τ0 at five different [I-] from at least three independent 

experiments as described under Experimental Procedures. 
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had similar access to all sides of D4. These data rule out the possibility that D4 lies at a 

small angle along the surface of the membrane in the oligomeric complex because iodide 

ions would not be able to move between a closely-juxtaposed D4 surface and the 

membrane to collide with dyes positioned at this interface. Instead, D4 must project out 

of the membrane surface. 

The iodide ion quenching data also show that D4 does not make extensive 

contact with adjacent monomers in the membrane-inserted oligomer because no probe is 

covered up and inaccessible to iodide ions. Since we have not placed probes over the 

entire surface of D4, and since each dye can be displaced slightly because of its short 

flexible tether, some small areas of contact between D4 and adjacent monomers may 

exist. However, the probe distribution in our experiments is sufficient to rule out major 

protein-protein interfaces involving D4. 

Each D4 probe is accessible to iodide ions in the water-soluble monomer, and the 

probes exposed to water in the membrane-inserted oligomer are also quenched by iodide 

ions as expected (Table 2). However, not surprisingly, the extents of NBD accessibility 

to iodide ions vary for the different probe locations. The reduction in quenching 

observed for all but one of the probes upon membrane insertion is expected because the 

presence of the membrane eliminates up to 50% of the routes by which iodide ions can 

approach and collide with each probe. But the monomeric kq values are differentially 

altered when PFO inserts into the membrane. These differences indicate that the 

conformation of D4 changes during pore formation. 
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D4 topography in the membrane-inserted oligomer 

The spectroscopic data reported here show directly and unambiguously that D4 is 

not embedded in and does not span the membrane in the fully-assembled and membrane-

inserted oligomer. Instead, only the hydrophobic loops at the tip of the D4 are exposed to 

the nonpolar interior of the bilayer (Figure 12). This includes the conserved 

undecapeptide loop at the tip of D4 that cannot be labeled with an extrinsic probe, but 

contains intrinsic Trp fluorophores. Three of the six D4 tryptophans are located in this 

loop, and we have previously shown that the Trps exposed to the membrane core are 

located near the surface (Heuck et al., 2000). Since the other three Trps are located near 

the middle of D4 and cannot reach the membrane surface, only the Trps in the 

undecapeptide loop are exposed to the membrane interior in the oligomeric complex. 

Furthermore, since all sides of the D4 surface are exposed both to water and to iodide 

ions, D4 projects out of the membrane surface and does not appear to be involved in 

extensive monomer-monomer interactions. These unexpected discoveries not only 

establish important aspects of D4 structure in the membrane-inserted oligomer, they also 

provide important insights into the mechanisms of membrane recognition and pore 

formation by PFO.   

Discussion 

Role of D4 in pore formation  

Since D4 is the first portion of the molecule observed to contact the membrane 

during pore formation (Heuck et al., 2000), and since CDCs do not function on 

membranes that lack cholesterol, D4 plays a critical role in PFO recognition of, and  
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Figure 12. D4 topography in the membrane-inserted oligomer. The combined 

fluorescence data position D4 on the bilayer surface as shown. Only the hydrophobic 

loops at the tip of D4 are exposed to the nonpolar membrane interior, while the bulk of 

D4 is exposed to the aqueous solvent and projects from the membrane surface. In this 

figure, only one monomer of the membrane-inserted oligomer is shown. As indicated in 

the figure, PFO undergoes a major conformational rearrangement during pore formation. 

However, the specifics of these conformational changes have yet to be determined, and 

hence much of PFO is shown here as an undefined gray cartoon. 
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targeting to, a cholesterol-containing membrane, presumably by mediating the 

cholesterol interaction required for toxin activity. The high proportion of solvent-

exposed hydrophobic residues in the loops at the tip of D4 in the water-soluble PFO 

monomer is consistent with such a role (Rossjohn et al., 1997), and our results strongly 

indicate that D4 interactions with the membrane are limited to those loops. Although 

cholesterol has been proposed to bind to sites on the D4 surface (Rossjohn et al., 1997), 

the nature of the putative interaction between PFO and cholesterol has yet to be defined 

experimentally. But our experimental data suggest that only a few residues of PFO are 

responsible for cholesterol, and hence membrane, recognition. Moreover, since the loops 

at the tip of D4 (Figure 10) represent some of the most conserved regions of CDC 

polypeptides, it seems likely that other CDCs recognize cholesterol in the same way. 

 After binding to the membrane surface, PFO oligomerizes to form a pre-pore 

complex (Heuck et al., 2000; Shepard et al., 2000; Hotze et al., 2001). Previous studies 

have suggested that D4 is a key participant in the oligomerization of different CDC 

molecules on the membrane surface (Iwamoto et al., 1990; Tweten et al., 1991; Gilbert 

et al., 1998; Weis and Palmer, 2001). If this were the case, then one would expect D4 to 

contact the surface(s) of adjacent CDC molecules and thereby create monomer-monomer 

interfaces that are inaccessible to solvent. Yet our data show that all sides of D4 except 

its tip are exposed to solvent and iodide ions in the membrane-inserted PFO oligomer 

(Table 2). Furthermore, the presence of a probe at these sites on the surface of D4 did 

not inhibit either oligomerization or pore formation by the toxin. The functional data 

therefore also indicate that monomer-monomer interactions do not include extensive 
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coverage of D4 surfaces. Although the data presented here do not rule out a transient 

contact of D4 with adjacent PFO monomers during oligomer assembly, it appears that 

D4 does not participate directly in the interactions that stabilize the toxin complex. 

Instead, D4 of PFO is conformationally coupled to D3 during membrane recognition and 

pore formation (Heuck et al., 2000).  Thus, the interaction of D4 with the membrane 

initiates a cascade of conformational changes within PFO that ultimately leads to pore 

formation. 

It is clear from Figure 12 that each PFO molecule undergoes major structural 

rearrangements during pore formation because D3 in the middle of the elongated 

monomeric protein must rotate its core β-sheet relative to D4 and then move to the 

membrane surface to insert both TMHs. Since D3 is linked to the top of D4 via domains 

1 and 2, and since the top of D4 is positioned above the membrane surface (Figure 12), a 

substantial amount of rotational and translational movement is required to bring the 

TMHs of D3 to the membrane surface. It therefore appears that D4 plays an additional 

role during pore formation by acting as a fulcrum or fixed axis of rotation around which 

the rest of the molecule can rotate and undergo the major conformational changes that 

are required during pore formation. Furthermore, the hydrophobic interactions between 

D4 and the nonpolar core of the membrane must provide sufficient stability to serve as a 

fixed foundation that can support the mechanical forces necessary for such structural 

changes, as well as facilitate the cooperative monomer-monomer interactions that enable 

the TMHs to penetrate the bilayer in a concerted fashion (Hotze et al., 2002).  
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D4 therefore performs multiple key functions during PFO pore formation, 

including its regulatory role in initiating the conversion of PFO from a water-soluble 

monomer to a membrane-inserted oligomer. All of these functions are accomplished 

with a minimal exposure of D4 to the membrane. Many other bacterial toxins generate 

pores of different types (β-sheets or α-helices) and sizes in membranes, but each faces 

the same mechanical problem: the regulated insertion of polypeptide into the bilayer. 

The data reported here therefore suggest a potential common principle for the 

mechanism of cytolytic action: only limited protein-membrane surface interactions are 

required to provide a base for the conformational changes required for pore formation. 
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CHAPTER IV 

MECHANISM OF PFO OLIGOMERIZATION 

AND INTERSUBUNIT β-SHEET ALIGNMENT* 

Introduction 

To date, PFO from C. perfringens is the only member of the CDC family to have 

its water-soluble structure solved at atomic resolution (Rossjohn et al., 1997), and no 

crystal structure of a membrane-inserted CDC oligomer has yet been determined. 

However, by covalently attaching a fluorescent probe to monitor the environment of 

various sites in the molecule and by using multiple independent fluorescence techniques 

to examine PFO structure, we have been able to identify several unique features of the 

CDC during its transition from a water-soluble monomer to a membrane-inserted 

oligomer (Heuck et al., 2001; Heuck and Johnson, 2002). Most notably, each monomer 

contributes two TMHs to the β-barrel formed by the oligomer (Shepard et al., 1998; 

Shatursky et al., 1999). In the monomer, these TMH sequences are each folded into three 

short α-helices, presumably to minimize premature entanglement of the two amphipathic 

sequences. Furthermore, the domain located at one end of the elongated PFO monomer, 

D4 (Figure 12), is responsible for the initial membrane recognition and binding, but only 

the tip of this domain is exposed to the nonpolar interior of the bilayer in the membrane-

inserted oligomer (Chapter III). Since D4 extends out of the membrane surface instead 

of being embedded in the bilayer, it is clear that major conformational changes are 

                                                 
*Reprinted with permission from Ramachandran, R., Tweten, R.K., and Johnson, A.E. (2004). Membrane-
dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and 
intersubunit β-strand alignment. Nat. Struct. Mol. Biol. 11, 697-705. 
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required to bring the TMHs in D3 of PFO to the membrane surface and then insert them 

into the membrane.  

We have recently shown that oligomerization precedes pore formation, and that 

the formation of an oligomeric prepore complex on the membrane surface is an 

obligatory precursor to the concerted insertion of the D3 TMHs into the membrane 

(Shepard et al., 2000; Hotze et al., 2001; Hotze et al., 2002; Heuck et al., 2003). The 

major structural transitions in PFO that accomplish pore formation are therefore 

regulated by oligomerization. What then controls oligomerization? Since PFO does not 

associate into multimeric aggregates even at high concentrations (10 mg ml–1) in 

aqueous solution, it would appear that whatever blocks PFO association disappears upon 

its stable binding to the target membrane. Furthermore, since no other proteins are 

involved in the spontaneous oligomerization and insertion of PFO into cholesterol-

containing membranes, the regulation of oligomerization is an intrinsic property of the 

PFO molecule itself. In addition, oligomerization must involve a mechanism for 

orienting adjacent monomers and ensuring that their TMHs are correctly aligned and in 

proper register with those of their neighbors to effect pore formation. 

To examine these control mechanisms, we have focused on four questions: What 

features in the three-dimensional structure of the monomer prevent its premature 

oligomerization in aqueous solution? How does membrane binding expose 

intermolecular interaction surfaces? What regions of the PFO molecule form the 

monomer-monomer interface in the oligomeric complex? How are the hydrogen-

bonding partners between neighboring monomers aligned to generate the oligomeric  
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Figure 13. PFO structural elements and mutations. Ribbon representation of the crystal 

structure of the water-soluble PFO monomer is shown in two orientations rotated 180o 

relative to each other. Polypeptide segments in D3 comprising the six short helices that 

unfold to form the two TM β-hairpins are labeled TMH1 (red) and TMH2 (green). The 

D3 segment comprising the loop and β5 (residues 325-337) that covers the edge of β4 in 

the monomer is shown in blue. Residues that were mutated in this study are shown in 

ball-and-stick representation and labeled accordingly. Tyr 181 mutants were 

characterized in a previous study (Hotze et al., 2002). 
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TM β-barrel? By using a combination of experimental approaches, we have identified 

the molecular changes in PFO conformation that occur upon membrane binding and 

show that these changes expose an otherwise-hidden interface required for monomer-

monomer interactions. These studies also suggest the mechanism by which β-strands in 

adjacent subunits are positioned correctly relative to each other during oligomerization. 

Results 

Experimental rationale  

 As noted above, the polypeptide sequences destined to form the TMHs are each 

folded into three short α-helices (Figure 13). But equally intriguing, the TMH sequences 

that ultimately contribute four β-strands to the β-barrel constitute extensions of an 

antiparallel β-sheet that forms the core of the folded protein (Shepard et al., 1998; 

Shatursky et al., 1999) (Figure 14). This observation led us to suggest that monomer-

monomer interactions in the oligomer may involve a backbone hydrogen bonding 

interaction between β-strands that extends from the TMHs into the core β-sheets of PFO 

(Shatursky et al., 1999). It would then be reasonable to assume that oligomerization 

could be prevented by blocking access of one edge of the core β-sheet in a monomer 

(these β-strands are designated β1, β2, β3, and β4 to differentiate the core sequences 

from the TMH sequences that form the ends of these β-hairpins in the inserted oligomer; 

Figure 14) to the opposite edge of the core β-sheet in the neighboring monomer. 

An examination of the crystal structure of the PFO monomer revealed that β1 in 

D3 is exposed to solvent and accessible for protein-protein interactions. However, β4 is  
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Figure 14. Conformational changes in D3. (A) Structure of the monomeric D3 core β-

sheet is shown on the left and a cartoon representation of its extension to form the 

aqueous-lipid interface in the oligomeric pore is depicted on the right (view from the 

pore center). The segment comprising the loop, β5 and the helix (residues 325-347) that 

covers β4 in the monomer has been deleted to allow visualization. All ribbon 

representations of the crystal structure were generated using MOLSCRIPT (Kraulis, 

1991) and rendered with Raster3D (Merritt and Bacon, 1997). (B) A schematic diagram 

of the arrangement of β-strands and α-helices in monomeric D3 with β-strands labeled 

β1-5 and segments color coded as above. 

 

 

B 

A 



 75

almost completely shielded from solvent by a stretch of polypeptide (residues 325–347) 

that is comprised of a loop, a short β-strand (termed β5) that hydrogen bonds to β4, and 

an amphipathic helix that packs across β4’s hydrophobic face (Figures 13, 14). This 

arrangement suggested that these structural elements evolved to cover β4 and thereby 

prevent its premature interaction with other PFO monomers in solution. We therefore 

initially focused our attention on these segments to ascertain whether they indeed played 

a role in controlling β4 exposure. 

β4 to β5 crosslinking inhibits oligomerization 

To determine whether a conformational rearrangement involving β5 is required 

for oligomerization and/or TM β-barrel insertion, we engineered a reversible disulfide 

bridge between β4 and β5. In earlier studies, we successfully employed this strategy to 

arrest PFO in the prepore complex by disulfide crosslinking TMH1 to D2 (Heuck et al., 

2000; Hotze et al., 2001). Thr319 in β4 and Val334 in β5 were replaced with cysteines 

based on the close proximity of their Cα atoms (Cα-Cα distance 4.5 Å) and their 

relatively high solvent accessibility. The double cysteine-substituted mutant was purified 

in the absence of reducing agent and tested for its ability to form pores in cholesterol-

containing membranes. In the absence of reducing agent, the toxin was unable to form 

pores in cholesterol-containing membranes. However, upon reduction of the disulfide 

bond with DTT, pore formation ensued, thereby indicating that β5 must move relative to 

β4 to achieve β-barrel insertion (Figure 15). 

To determine what stage of pore formation was blocked by the β4-β5 disulfide  
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Figure 15. Effect of β4-β5 disulfide-locking on pore formation. Time-dependent 

emission intensity profiles for liposome-encapsulated [Tb(DPA)3]3- (50 µM total lipid) 

when incubated with 50 nM of either pre-reduced ( ) or unreduced ( ) rPFO(T319C 

V334C) at 25oC in buffer D containing 5 mM EDTA. The release of liposome-

encapsulated [Tb(DPA)3]3- was monitored as described in Experimental Procedures. In 

the sample containing unreduced rPFO(T319C V334C), DTT was added to a final 

concentration of 3 mM 45 min after liposome addition (arrow). F0 is the initial intensity 

prior to toxin addition and F the intensity at time ‘t’. 
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bond, we systematically tested the ability of this disulfide-trapped PFO to bind, 

oligomerize and insert its TM β-sheet into the target membrane. As before (Heuck et al., 

2000), we monitored binding of the toxin molecule to the membrane surface by an 

increase in intrinsic D4 Trp fluorescence (Figure 16A) and D3 TMH insertion by the 

increase in emission intensity that accompanies the exposure of NBD, covalently 

attached to a single Cys substituted for Ala 215 in TMH1, to the hydrophobic interior of 

the membrane (Shepard et al., 1998) (Figure 16B). Quite remarkably, the β4-β5 

disulfide-locked PFO molecule retained its ability to bind to cholesterol-containing 

membranes at a rate nearly identical to that of the pre-reduced toxin (Figure 16A), 

thereby showing that the introduction of the disulfide bond in D3 did not detectably 

affect either the structure or the function of D4. However, the disulfide-locked mutant 

lacked the ability to insert into the membrane in the absence of reducing agent because 

no TMH1 insertion occurred under oxidizing conditions (Figure 16B). 

The ability of the disulfide-locked β4-β5 toxin to oligomerize in the absence of 

reducing agent was examined using agarose gel electrophoresis in the presence of SDS 

(SDS-AGE). We have previously demonstrated that both the prepore and the pore 

complexes of PFO are stable to SDS exposure, though the prepore complex is slightly 

more susceptible to subunit dissociation than is the fully-inserted oligomer (Shepard et 

al., 2000). However, the prepore complex can be stabilized by the addition of 

glutaraldehyde, an amine-to-amine crosslinking reagent, prior to SDS addition. The 

crosslinked prepore species exhibits mobility in SDS-AGE similar to that of the SDS-

resistant and fully-inserted pore complex.  
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Figure 16. Effect of β4-β5 disulfide-locking on membrane binding and TMH insertion. 

(A) Time-dependent Trp emission intensity for either pre-reduced ( ) or unreduced ( ) 

rPFO(T319C V334C) after addition of cholesterol-containing liposomes as described in 

Experimental Procedures. No DTT was added during the course of the experiment. (B) 

Time-dependent emission intensity for NBD attached to a membrane-facing cysteine 

residue at position 215 (A215C) in TMH1 was measured for either pre-reduced ( ) or 

unreduced ( ) rPFO(T319C V334C A215C-NBD) after addition of cholesterol-

containing liposomes as described in Methods. In the sample containing oxidized 

rPFO(T319C V334C A215C-NBD), DTT was added to a final concentration of 3 mM 

45 min after liposome addition (arrow). 
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The disulfide-locked β4-β5 PFO derivative was therefore examined to determine 

whether it formed a prepore complex under oxidizing conditions. In the absence of the 

crosslinker, no band other than the monomer band was detected, even after incubating 

the toxin with cholesterol-containing membranes at 37oC for 30 min or more (Figure 17, 

lane 3). When 5 mM glutaraldehyde was added 2 min prior to the addition of SDS, small 

higher-molecular-mass species, presumably dimers and trimers, were observed in the gel 

(Figure 17, lane 4). However, none of these species corresponded to the much larger size 

of the prepore complex, thereby indicating that the disulfide-trapped β4-β5 mutant is 

unable to form a prepore complex. As expected, pre-reduction of the disulfide bond 

before addition of target membranes resulted in the mutant behaving very similarly to 

functional PFO by forming a large, SDS-resistant oligomer (Figure 17, lane 7). Thus, the 

presence of a disulfide-bond between β4 and β5 apparently prevents the structural 

rearrangement that exposes β4 for intermolecular interactions. Hence, we conclude that 

the disulfide-locked β4-β5 PFO derivative is trapped at the membrane-bound monomer 

stage of pore formation. 

Membrane binding alters PFO conformation near β4 

We previously showed the existence of a highly-coordinated interdomain 

communication network between D3 and D4 in PFO in which mutations in D3 

dramatically altered the kinetics of D4 binding to the membrane, even though D4 binds 

first to the membrane and the D3 mutation sites were spatially distant from D4 (Heuck et 

al., 2000). However, the extent and location of the conformational changes that occur 

upon D4 binding to the membrane were unknown. We therefore explored the possibility  
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Figure 17. Effect of β4-β5 disulfide-locking on oligomerization. Samples containing 

either unreduced (- DTT) or pre-reduced (+ DTT) rPFO(T319C V334C A215C-NBD) (1 

µM final) were incubated in the absence or presence of cholesterol-containing liposomes 

(1 mM total lipid) in buffer D for 30 min at 37oC as indicated. After the incubation, each 

sample was divided into two equal aliquots. One aliquot received 5 mM glutaraldehyde 

for 2 min at room temperature before the addition of urea (1 M final), while the other 

aliquot received buffer D instead of the crosslinker prior to urea addition. All samples 

were then dissolved in SDS sample buffer and electrophoresed as described in 

Experimental Procedures before visualization by NBD emission. M represents the 

monomer and O the oligomer. 
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that the membrane-dependent conformational changes in D3 involved β4. 

In the PFO monomer structure, residues 325–347 comprise the loop, β5 and the 

helix that form the ridges of a highly hydrophobic groove whose base consists primarily 

of residues from β4 (Figure 13). A conformational rearrangement to expose β4 would 

presumably also expose this base to solvent. Thus, to ascertain whether this putative 

rearrangement occurs, a fluorescent NBD probe was covalently attached to a single Cys 

substituted at position 322 in β4. This NBD-labeled PFO derivative exhibited pore-

forming activity comparable to the wild-type toxin (Appendix, Figure 33). 

NBD is an environmentally-sensitive fluorophore whose emission lifetime and 

intensity are highly sensitive to the presence of water (Crowley et al., 1993; Shepard et 

al., 1998; Heuck and Johnson, 2002). In a non-aqueous milieu, NBD has a fluorescence 

lifetime τ > 7 ns, while its lifetime in an aqueous environment is ~ 1 ns. As expected, the 

NBD dye at position 322 exhibited a high fluorescence lifetime (> 9 ns) in the 

monomeric form of the toxin, thereby demonstrating the dye’s burial in a hydrophobic 

environment. However, in the membrane-inserted form of the toxin, the NBD at position 

322 was in an aqueous environment (τ ~ 1 ns) (Table 3). These data clearly show that a 

major change in conformation occurs near β4 during pore formation. 

To gain temporal insight into this change in protein conformation, the rate of 

PFO binding to membranes was monitored by the increase in intrinsic D4 Trp emission 

intensity upon liposome addition and then compared to the rate of NBD emission 

intensity decrease when liposomes were added to rPFO(V322C-NBD). We have 

previously used similar kinetic measurements to demonstrate that the binding of D4 to  
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Table 3. Fluorescence lifetimes of rPFO(V322C-NBD) 

Species τ1 (ns)  width (ns) mol%  τ2 (ns)  mol% 

monomer    9.1       1.4    80     0.9     20 

oligomer    0.6      93     5.7      7 

The phase and modulation data were collected as described in Experimental Procedures and analyzed 

using GLOBALS UNLIMITED (University of Illinois) to compute the mole fraction of dyes in each 

environment. For the water-soluble monomer, the data were best fit (had the lowest χ2) to a Lorentzian 

distribution of long lifetimes and a discrete short lifetime, while the membrane-inserted oligomer data 

were best fit to two discrete lifetimes. In both cases, the major lifetime component (mole fraction > 80%) 

indicated that the probes were predominantly in either a hydrophobic (lifetime > 7 ns) or an aqueous 

environment (lifetime ~ 1 ns). The minor lifetime component presumably represents probes that are 

dynamically exposed to different environments. 
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the membrane surface precedes the insertion of NBD-labeled D3 TMHs into the bilayer 

(Heuck et al., 2000). But in this case, the rates of Trp and NBD intensity changes were 

nearly superimposable for rPFO(V322C-NBD) (Figure 18). This result demonstrates that 

the NBD-detected conformational rearrangement around β4 essentially coincides with 

PFO binding to the membrane surface and precedes TMH insertion into the bilayer. 

To determine directly whether the conformational change detected by the NBD 

probe in β4 is coupled to the movement of β5 relative to β4, a V322C mutation was 

introduced into the derivative that forms the β4-β5 disulfide bond, rPFO(T319C 

V334C), to yield rPFO(T319C V334C V322C). This protein was purified under non-

reducing conditions and then labeled with NBD to form rPFO(T319C V334C V322C-

NBD). When liposomes were added to a sample of this protein, the NBD emission 

intensity decreased by about 20% (Figure 19), much less than the 95% decrease 

observed with rPFO(V322C-NBD) (Figure 18). However, when DTT was then added to 

the disulfide-trapped sample, a dramatic decrease in NBD intensity was observed 

(Figure 19), similar to that seen in Figure 18. The origin of the initial 20% decrease may 

be due to a partial rotation of β5 relative to β4 and/or to a fraction of the rPFO(T319C 

V334C V322C-NBD) proteins that lacked disulfide bonds. Most important, the large 

fluorescence change observed upon addition of DTT demonstrates that the 

conformational change that exposes β4 requires β5 to move relative to β4, and hence 

that the membrane-dependent conformational change in D3 involves the rearrangement 

of β5 around β4.  
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Figure 18. D4-membrane interaction triggers a conformational change around β4 in D3. 

(A) Time-dependent emission intensities for Trp ( ) and NBD ( ) in rPFO(V322C-

NBD) (50 nM) were measured upon addition of 50 µM liposomes (55 mol% cholesterol, 

45 mol% POPC) as described in Experimental Procedures. (B) To allow direct 

comparison of the rate of change in Trp ( ) and NBD ( ) fluorescence, each intensity 

profile was normalized and plotted as the total fractional intensity change as a function 

of time. F0 represents the initial emission intensity before the addition of liposomes, F 

the intensity at time ‘t’, and Ff the intensity when t = 30 min. 

A 

B 
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Figure 19. Effect of β4-β5 disulfide-locking on the conformational change around β4. 

Time-dependent emission intensity for NBD in rPFO(T319C V334C V322C-NBD) (50 

nM) was measured upon addition of 50 µM liposomes as described in Experimental 

Procedures. DTT was added to a final concentration of 3 mM 30 min after liposome 

addition (arrow). 
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Loop flexibility is required for oligomerization 

Examination of the monomeric crystal structure revealed the presence of two 

glycines (Gly324, Gly325) at the junction of β4 and the loop leading to β5 (Figure 13). 

Interestingly, these glycines are conserved throughout the CDC family. To ascertain 

whether these glycines play an important functional/structural role in pore formation, we 

mutated both of these residues to valines. Valine, a bulky β-branched residue, restricts 

extensive movement around its peptide bond and hence may restrict any conformational 

rearrangement of the loop and movement of β5. The twin glycine mutant rPFO(G324V 

G325V) did not exhibit any pore-forming activity (Appendix, Figure 33), though it 

retained the ability to bind to cholesterol-containing membranes as detected by the 

increase in intrinsic tryptophan emission intensity (Appendix, Figure 34A).  

The absence of a prepore-sized oligomer after SDS-AGE analysis of 

rPFO(G324V G325V A215C-NBD) and visualization of bands by NBD fluorescence 

revealed that this mutant lacked the ability to form large oligomers on the membrane 

surface (Figure 20). Thus, valines at positions 324 and 325 apparently hinder the 

conformational rearrangement of the loop to β5 that is required to expose β4 for 

intermolecular interactions, consistent with the two glycines at the junction of β4 and the 

loop serving as a hinge around which to rotate the loop and β5 to expose β4. 

β1 of one monomer is adjacent to β4 of its neighbor 

 As noted above, it was previously suggested that monomer-monomer association 

would involve the hydrogen-bonding of β1 from one PFO molecule to β4 of the adjacent 

molecule in the oligomer (Shatursky et al., 1999). However, the monomer-monomer  
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Figure 20. Mutation of glycines at the end of β4 blocks oligomerization. SDS-AGE 

analysis of 2 µM rPFO(G324V G325V A215C-NBD) was carried out as described in 

Figure 17. Cholesterol-containing liposomes were added to a final concentration of 2 

mM. 
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interfacial surfaces have not been identified experimentally. To determine whether β1 in 

D3 of each monomer is in close proximity to, and therefore can interact with, β4 in D3 

of the neighboring monomer to generate an extended β-sheet in the oligomer (Figure 

13), we exploited the spectral properties of the fluorophore pyrene. The emission scan of 

monomeric pyrene reveals two peaks at 375 nm and 395 nm (λex = 345 nm), while a 

broad emission peak centered near 470 nm is observed when two pyrene dyes stack to 

form an ‘excited-state dimer’ or ‘excimer’ (Lehrer, 1997). Pyrene excimer formation is 

therefore only seen when two pyrene dyes are positioned adjacent to each other and are 

able to stack. As a result, this experimental approach constitutes an excellent method for 

detecting the close proximity of two sites labeled with pyrene dyes. For example, pyrene 

attached to a cysteine in β1 of one molecule can stack and form an excimer with a 

pyrene attached to a cysteine in β4 of another molecule only if the loop and β5 in the 

latter are rearranged from their original positions in the water-soluble monomer and if 

the β1 and β4 strands of neighboring monomers move adjacent to each other during 

oligomer formation. 

Two separate PFO derivatives were prepared by attaching a pyrene moiety to a 

single cysteine positioned either at residue 179 in β1 or, alternatively, residue 322 in β4 

(Figure 13).  Pyrene labeling at position 322 did not affect pore formation, while 

modification of the Cys at position 179 with any fluorophore blocked membrane 

insertion (Appendix, Figure 35A). Equimolar mixtures of rPFO(T179C-Pyr) and either 

rPFO or rPFO(V322C-Pyr) exhibited pore formation (Appendix, Figure 35A) but we 

could not unambiguously determine the extent of rPFO(T179C-Pyr) incorporation into 
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the inserted oligomers. However, rPFO(T179C-Pyr) formed pyrene fluorescence-

detected oligomers when mixed with an equivalent amount of rPFO, thereby 

demonstrating that rPFO(T179C-Pyr) was able to associate with functional PFO 

molecules into prepore complexes (Appendix, Figure 35B). Since rPFO(T179C-Pyr) 

associated with other PFO molecules to form oligomers, we were able to assess whether 

or not β1 and β4 were adjacent to each other in the prepore complex using excimer 

fluoresence. 

When an equimolar mixture of rPFO(T179C-Pyr) and rPFO(V322C-Pyr) was 

incubated with cholesterol-containing membranes, a strong pyrene excimer band was 

observed, thereby showing directly the close proximity of β1 in one monomer with β4 in 

the neighboring monomer in the oligomer (Figure 21). No excimer formation was 

observed when the mixture was incubated either in the absence of membranes or in the 

presence of cholesterol-free membranes (Figure 21A). In control experiments, no 

excimer fluorescence was seen in oligomers generated with only one of the two Pyr-

labeled mutants, indicating that pyrenes attached to the same position on adjacent PFO 

molecules are not close enough to stack (Figure 21B). Furthermore, no excimer 

formation was observed when rPFO(V322C-Pyr) was mixed with rPFO(Y181C-Pyr), 

thereby showing the expected strong dependency on the proximity of the pyrenes 

(Appendix, Figure 36). 

To determine whether the close proximity of β1 and β4 in neighboring 

monomers requires the membrane-dependent rearrangement of β5, the T179C and 

V322C mutations were introduced into derivatives that form the β4-β5 disulfide bond  
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Figure 21. Pyrene excimer formation detects β1 and β4 proximity in neighboring PFO. 

(A) Pyrene emission spectra for an equimolar mixture of rPFO(T179C-Pyr) and 

rPFO(V322C-Pyr) (100 nM total) in the presence of 100 µM lipid in cholesterol-

containing (solid line) or cholesterol-free POPC (dotted line) liposomes. (B) Pyrene 

emission spectra for rPFO(T179C-Pyr) (solid line) and rPFO(V322C-Pyr) (dotted line) 

(100 nM each) in the presence of cholesterol-containing liposomes (100 µM lipid). 
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and then the free Cys was labeled with pyrene to yield rPFO(T319C V334C T179C-Pyr) 

and rPFO(T319C V334C V322C-Pyr). Although the efficiency of Cys labeling at 

position 322 was reduced by the presence of the β4-β5 disulfide bond (see Experimental 

Procedures), these samples were sufficiently labeled to clearly resolve the issue. No 

excimer formation was observed when an equimolar mixture of rPFO(T319C V334C 

T179C-Pyr) and rPFO(T319C V334C V322C-Pyr) was incubated with cholesterol-

containing membranes under non-reducing conditions (Figure 22). However, upon 

reduction of the disulfide bond, excimer formation was observed (Figure 22), which 

indicates that the membrane binding-dependent rearrangement of β5 exposes β4 and 

allows the close juxtaposition of β1 and β4 in neighboring monomers. (Less excimer 

formation was seen in Figure 22A than in Figure 21A because of the lower pyrene 

content in the disulfide-linked sample.) These data therefore show that β1 in one 

monomer is in close proximity to β4 in the neighboring monomer where they can 

participate in hydrogen-bonding interactions to generate the oligomeric β-sheet (Figures 

14, 21, 22). The β1 and β4 edges of the core PFO β-sheet therefore constitute important 

interfacial surfaces between two monomers in the oligomeric complex. 

Aromatic residues align intersubunit β-strands 

 A previous study showed that the mutation of Tyr181 in β1 to a residue other 

than Phe dramatically inhibited the pore-forming activity of the toxin by preventing the 

insertion of the TM β-barrel and reducing the stability of the prepore complex (Hotze et 

al., 2002). The strict requirement for an aromatic residue at position 181 suggests that it 

is involved in a π-stacking interaction with an aromatic residue of the neighboring  
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Figure 22. Excimer formation in the presence of the β4-β5 disulfide lock. (A) Pyrene 

emission spectra for an equimolar mixture of rPFO(T319C V334C T179C-Pyr) and 

rPFO(T319C V334C V322C-Pyr) (100 nM total) incubated with cholesterol-containing 

liposomes (100 µM lipid) in the presence (solid line) and absence (dotted line) of 3 mM 

DTT. (B) Time-dependent pyrene excimer emission intensity for an equimolar mixture 

of rPFO(T319C V334C T179C-Pyr) and rPFO(T319C V334C V322C-Pyr) was 

measured as described in Experimental Procedures for either a pre-reduced ( ) or an 

unreduced ( ) sample. In the sample containing the oxidized protein, DTT was added to 

a final concentration of 3 mM 30 min after liposome addition (arrow).   
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Figure 23. F318A mutation blocks pore formation but not membrane binding. (A) Time-

dependent emission intensities for liposome-encapsulated [Tb(DPA)3]3- (50 µM total 

lipid) were measured at 25oC as described in Experimental Procedures after the addition 

of 50 nM rPFO(F318A) ( ), rPFO(F318Y) ( ), or rPFO ( ). (B) Time-dependent Trp 

emission intensity was measured after addition of cholesterol-containing liposomes (50 

µM) to 50 nM rPFO(F318A) ( ) and rPFO(F318Y) ( ) as described in Experimental 

Procedures. 
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monomer to stabilize the intersubunit β-strand association in the prepore complex and/or 

promote the insertion of the β-barrel into the membrane bilayer. Examination of the PFO 

structure revealed that β1 and β4 each contained only a single aromatic residue: Tyr181 

and Phe318, respectively (Rossjohn et al., 1997). Furthermore, each of the 11 sequenced 

CDCs has a Tyr at the equivalent of position 181, while 8 of the 11 have a Phe at 318. 

 Substitution of Phe318 with Ala, Cys or Trp prevented pore formation, while a 

F318Y substitution did not alter pore formation (Figure 23A; data for F318C and F318W 

not shown). However, the F318A mutant was able to bind cholesterol-containing 

membranes at a rate similar to that of the F318Y mutant, as determined by the increase 

in intrinsic Trp fluorescence (Figure 23B). Moreover, like the Y181A mutant (Hotze et 

al., 2002), the F318A mutant was able to form a prepore complex on the membrane 

surface (Figure 24A). But little insertion of the TM β-sheet of rPFO(F318A A215C-

NBD) was observed by increases in either NBD lifetime (Table 4) or intensity (Figure 

24B), as expected by the lack of pore formation. When a 4-fold excess of unmodified 

and functional rPFO was mixed with rPFO(F318A A215C-NBD), the mutant toxin 

molecules were able to insert their TMHs into the bilayer (Table 4, Figure 24B). This 

effect is similar to that observed earlier with the Y181A mutant (Hotze et al., 2002), 

where the cooperative nature of the pore formation process allows wild-type PFO 

molecules to overcome whatever barrier is created by the F318A mutation. Thus, the 

comparable mutations at Tyr181 and Phe318 were phenotypically identical in terms of 

disrupting late stages of PFO pore formation. 

The fact that pore formation occurred only if the small aromatic side chains of  
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Figure 24. F318A mutation blocks TMH insertion but not prepore formation. (A) SDS-

AGE analysis of rPFO(F318A, A215C-NBD) in the presence or absence of liposomes 

and in the presence or absence of glutaraldehyde as indicated. (B) NBD emission spectra 

for 20 nM rPFO(F318A, A215C-NBD) in the absence of liposomes (dashed line), in the 

presence of 80 nM unlabeled rPFO(F318A, A215C)  and cholesterol-containing 

liposomes (dotted line), and in the presence of 80 nM rPFO and cholesterol-containing 

liposomes (solid line). The toxin was incubated with liposomes (100 µM total lipid) in 

buffer D at 37oC for 30 min before cooling to 25oC for spectral measurements as 

described in Experimental Procedures. 
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Table 4. Fluorescence lifetimes of rPFO(F318A A215C-NBD) 

Species    τ1 (ns)  mol%  τ2 (ns)  mol% 

monomer       1.2    87     4.2     13 

oligomer       1.3    85     7.7     15 

oligomer formed with 4X rPFO    8.7    69     0.9     31 

Lifetimes were measured and the data analyzed as described in Table 3. In all cases, the data were best fit 

to two discrete lifetimes. 
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Tyr or Phe were located at positions 181 and 318 is consistent with the idea that a 

sterically-restricted π-stacking interaction between the two residues is required for PFO 

oligomer insertion into the bilayer. One way to address this possibility experimentally is 

to shift each aromatic residue two positions along its β-strand so that the side chains 

would be on the same side of the β-sheet as in wild-type PFO. If the stacking of the 

aromatic rings is important for function, then it is possible that this derivative would be 

active because the locations of the rings relative to each other would be unchanged.  

We therefore prepared a quadruple mutant of rPFO(Y181A F318A T179Y 

A320F) (iv in Figure 25), as well as mutants that contained only one altered aromatic or 

no aromatics as controls (i, ii, and iii in Figure 25). All of these derivatives were able to 

form large oligomeric complexes on cholesterol-containing membranes (Figure 26A). 

However, only one, the quadruple mutant iv, was functionally active. While the control 

samples were not active or were barely active in pore formation, iv formed pores at a 

rate faster than that of unmodified rPFO (Figure 26B). The increased rate of pore 

formation by iv is explained by the fact that iv binds to membranes at a much higher rate 

than does its parent toxin, rPFO (Appendix, Figure 34B). This result shows that the 

relative positioning of the two aromatic rings in β1 and β4 is critical for PFO pore 

formation. Thus, it appears that the stacking of Tyr181 and Phe318 between neighboring 

monomers not only helps to stabilize the prepore complex, but also serves to align the 

adjacent β1 and β4 strands in the proper register to effect insertion of the TM β-barrel. A 

similar stacking phenomenon has been proposed to stabilize the assembly of β-sheet-rich 

amyloid fibrils containing short aromatic-containing peptides (Gazit, 2002).  
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Figure 25. Alignment of aromatic residues in β1 and β4 is critical for pore formation. 

Aromatic residue positioning in β1 and β4 of rPFO and mutants labeled i through iv. 
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Figure 26. Analysis of mutants i through iv. (A) SDS-AGE analysis of oligomer 

formation by rPFO and i–iv as in Figure 25. All samples received glutaraldehyde and 

oligomers were detected using Coomassie Blue staining. (B) Time-dependent detection 

of pore formation by rPFO and i–iv as in Figure 25. 
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Discussion 

Mechanism of PFO oligomerization and intersubunit β-sheet alignment 

Four questions critical to our understanding of how PFO oligomerizes and forms 

pores were posed, and the answers to these questions have here been determined 

experimentally using a wide variety of approaches and techniques. The monomer-

monomer interface in the PFO oligomer is formed when the β1 strand in one subunit 

associates, presumably via hydrogen bonding, with the β4 strand in a second subunit 

(Figures 21, 22). Premature association of PFO molecules (i.e., prior to their binding to 

an appropriate membrane surface) is prevented by the presence of β5, a short stretch of 

polypeptide that hydrogen bonds to β4 in the monomer and thereby prevents its 

interaction with the β1 strand of a second subunit (Figures 15-17). The binding of PFO 

D4 to the membrane surface elicits a conformational change in D3 that rotates β5 away 

from β4 and thereby exposes β4 to the aqueous medium where it can associate with the 

always-exposed β1 strand of another PFO molecule to initiate or promote 

oligomerization (Figures 18, 19). The β-strands of neighboring monomers then appear to 

be aligned in the proper register relative to each other by the aromatic π-electron 

stacking of the Tyr and Phe residues in β1 and β4. Since no pore formation is observed 

with mutants lacking Phe or Tyr at positions 181 and 318, this previously-unrecognized 

stacking interaction is an essential step in the mechanism of PFO pore formation 

(Figures 23-26). The data obtained here with various spectroscopic approaches have 

therefore provided significant insight into the molecular mechanisms that regulate the 
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oligomerization of PFO (and probably other CDCs) and the initiation of pore formation. 

When these results are combined with those of our previous studies, the sequence 

of events that control and/or effect the transition of PFO from one functional state to the 

next are, for the most part, clearly delineated. Upon secretion from C. perfringens, PFO 

folds into a stable tertiary structure that avoids or minimizes the potential entanglement 

of the two amphipathic TMHs prior to membrane binding by having each adopt a stable 

α-helical secondary structure in the monomer (Rossjohn et al., 1997; Shepard et al., 

1998; Shatursky et al., 1999). The premature association of PFO monomers in solution is 

prevented by the hydrogen bonding of β5 to β4 that obscures the subunit-subunit 

interface (Figure 27A). When D4 recognizes a cholesterol-containing membrane surface 

(Heuck et al., 2000), only the polypeptide loops at the tip of D4 are inserted into the 

nonpolar core of the bilayer (Ramachandran et al., 2002) and a conformational change is 

triggered that extends more than 70 Å through the elongated PFO monomer to rotate the 

loop containing β5 around the Gly-Gly swivel at the end of β4 (Figure 20) and thereby 

expose the edge of β4 to the solvent (Figure 27B). Two-dimensional diffusion on the 

membrane surface then leads to productive collisions between PFO monomers that result 

in β1 in one monomer hydrogen bonding to the now-exposed β4 in a second PFO 

molecule (Figure 27C). Continued association of monomers with the original PFO dimer 

results in an oligomer (Heuck et al., 2000; Shepard et al., 2000; Hotze et al., 2001) 

containing up to 50 PFO molecules in a circular prepore complex (Oloffson et al., 1993; 

Hotze et al., 2001). Upon association, β1 and β4 in neighboring subunits move parallel 

to each other until Tyr181 in β1 of one subunit stacks on Phe318 of β4 in the adjacent  
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Figure 27. Mechanism of oligomerization and intermolecular β-sheet formation. (A-D) 

A schematic model of the conformational changes required for monomer-monomer 

interactions and β-barrel formation in D3 of PFO is depicted and described in the text. 

Stage i represents the binding of PFO to the membrane surface via D4 (not shown in the 

figure), stage ii the oligomerization of PFO monomers on the membrane surface, and 

stage iii the insertion of the oligomer TMHs into the membrane. Aromatic residues in β1 

and β4 of neighboring monomers are represented by clear rectangles in a and b; in c and 

d, these rectangles indicate stacked aromatic residues. In (D), the view is from the center 

of the aqueous pore. The polypeptide segments are color-coded as in Figure 13. 
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subunit to fix the position of the two β-strands in the proper register and at the proper 

angle relative to the plane of the membrane (Figure 27C). The hydrogen bonding 

between the now-aligned β1 and β4 strands in adjacent monomers in the prepore 

complex then causes the unfolding of the TMH helices in each subunit and nucleates the 

edgewise association of the elongated β-hairpins into an extended β-sheet, followed by 

(or coincident with) the cooperative (Hotze et al., 2002) insertion of the hydrogen-

bonded TMHs into the membrane to form the pore (Heuck et al., 2003) (Figure 27D). 

The order of the steps involved in β1-β4 alignment and TMH unfolding (Figure 

27D) has not been determined experimentally, and may actually be reversed. We 

arbitrarily placed alignment ahead of unfolding above only because β1 and β4 seem 

more likely to orient themselves relative to each other when there are fewer 

opportunities to form hydrogen bonds between the strands. However, the TMHs are not 

exposed to the nonpolar interior of the bilayer in the membrane-bound prepore complex 

(Heuck et al., 2003). 

The data of Figures 18 and 19 provide compelling evidence for the coupling of 

the conformation of D4 with that of D3 to coordinate PFO binding to the membrane with 

PFO oligomerization. We had previously shown that the spatially-distant D3 and D4 

conformations were coupled (Heuck et al., 2000), but the functional ramifications of that 

structural linkage were not clear until now. The conformational changes elicited by PFO 

binding to the membrane extend throughout most, if not all, of the PFO molecule and 

thereby demonstrate the delicate balance of forces that maintain PFO in its water-soluble 

monomeric conformation, poised to initiate the above structural changes that lead to the 



 104

stable SDS-resistant membrane-inserted oligomer.  

A very effective and efficient mechanism appears to have evolved to ensure that 

a peptide bond hydrogen in the extended β1 strand of one PFO molecule makes a 

hydrogen bond with the correct peptide bond carbonyl oxygen in the extended β4 strand 

of the adjacent PFO in the oligomer, thereby ensuring that the TMHs are aligned at the 

proper angle to insert into the membrane (Figures 23-26). The association of aromatic π-

electron systems provides sufficient free energy to stably bind Y181 to F318, and 

thereby position β1 and β4 next to each other in the proper register. The same stacking 

phenomenon led to the stable association of pyrene dyes attached to β1 and β4 (Figures 

21, 22), and also stabilizes RNA and DNA structures, and the assembly of β-sheet-rich 

amyloid fibrils containing short aromatic-containing peptides (Gazit, 2002). 

The coupling of membrane binding to the unmasking of the oligomerization site 

on PFO may be common to all or most cytolysins. A comparison of the crystal structures 

of membrane-embedded S. aureus α-HL (Song et al., 1996) and the water-soluble 

monomer of its LukF homologue (Olson et al., 1999) suggests that the N-terminus of the 

αHL is folded into an interface surface in the monomer and interacts with the core β-

sheet in the neighboring subunit in the heptamer (Montoya and Gouaux, 2003). 

Although the kinetics of membrane binding and N-terminus rearrangement have not 

been measured for αHL, it is reasonable to presume that αHL binding to the membrane 

surface elicits a conformational change that promotes heptamer formation and 

stabilization. 

The strategy used by PFO, and presumably by all other CDCs, to prevent 
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premature oligomerization in solution is not uncommon among β-sheet-containing 

proteins. A recent study of β-sheet structures in native proteins found that edge-to-edge 

association of β-strands of individual protein molecules was frequently prevented either 

by sterically covering a β-strand edge or by hydrogen-bonding a short stretch of 

polypeptide to the exposed β-strand edge similar to that seen with β5 in PFO 

(Richardson and Richardson, 2002). Interestingly, PFO employs both of these 

approaches to prevent premature oligomerization (Figure 13). 
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CHAPTER V 

TOPOGRAPHY OF MEMBRANE-BOUND PFO  

AT DIFFERENT STAGES OF PORE FORMATION 

Introduction 

The transition of the water-soluble PFO monomer into a membrane-inserted 

oligomer involves extensive changes in protein conformation that have been the focal 

point of research among investigators during the past few years. Using the crystal 

structure of the PFO monomer (Rossjohn et al., 1997), a repertoire of site-specifically 

mutagenized PFO derivatives, and multiple independent fluorescence techniques, several 

structural states and rearrangements have been identified along with various protein-lipid 

and protein-protein interactions that mediate the conformational changes. D4, located at 

one end of the elongated PFO monomer (Figure 28), is responsible for membrane 

recognition and initial binding (Heuck et al., 2000), but only the tip of this domain is 

embedded in the nonpolar interior of the bilayer (Ramachandran et al., 2002). D4-lipid 

interactions trigger conformational changes in the spatially-distant D3 that expose a 

previously-hidden interface for oligomerization and hence prepore complex formation 

(Ramachandran et al., 2004). Two sets of three short α-helices in D3 then undergo an α-

helix-to-β-sheet transition to create two TM β-hairpins, TMH1 and TMH2, per monomer 

that are then inserted into the bilayer (Shepard et al., 1998; Shatursky et al., 1999). This 

insertion also occurs in stages since the TMHs are not exposed to the nonpolar core of 

the bilayer in the prepore complex (Heuck et al., 2003). The conversion of PFO from a  
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Figure 28. PFO dimensions and locations of mutations. Ribbon representation of the 

crystal structure of monomeric water-soluble PFO (Rossjohn et al., 1997) is shown. 

Either E167 in D1 or A215 in D3 was substituted with a Cys for BODIPY-labeling. 

Locations of the two residues substituted with Cys that introduce an intramolecular 

disulfide bond are shown by a “cross-bar”, while the location of the F318A mutation is 

represented by a “star”.  The image was generated using MOLSCRIPT (Kraulis, 1991). 
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water-soluble monomer to a membrane-inserted oligomer therefore involves the 

structural coupling of D3 and D4 (Heuck et al., 2000; Ramachandran et al., 2004). 

The crystallized PFO monomer is elongated in shape and measures about 115 Å 

in its longest dimension (Rossjohn et al., 1997) (Figure 28). Since D4 remains peripheral 

to the bilayer throughout pore formation and is oriented with its long axis nearly 

perpendicular to it (Ramachandran et al., 2002), PFO may bind to the target membrane 

surface in an ‘end-on’ orientation (Figure 29i) and interact with the membrane only via 

the hydrophobic loops of D4. If this were true, the polypeptide stretches in D3 that 

eventually form TMHs 1 and 2 would be located > 40 Å above the membrane surface 

prior to insertion (Figure 28).  Major conformational changes would then be necessary to 

bring the TMHs in D3 to the bilayer surface for insertion. 

Consistent with the above idea, a recent atomic force microscopy (AFM) study 

reported a significant difference in the height above the membrane surface of the prepore 

complex (113 ± 5 Å) and the inserted pore complex (73 ± 5 Å) (Czajkowsky et al., 

2004). This study also indicated, consistent with earlier work (Heuck et al., 2003), that 

the polypeptide segments destined to form the TMHs are not in contact with the bilayer 

at the prepore stage of pore formation. The AFM data therefore suggest that the PFO 

molecule undergoes a ‘vertical collapse’ on the membrane surface during the prepore-to-

pore transition as the TMHs are inserted into the membrane bilayer. 

While the AFM study revealed the existence of a major structural reorganization 

of PFO during the prepore-to-pore transition, the domain specificity of the 

rearrangement was not addressed. Moreover, the AFM study did not examine the initial  
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Figure 29. Conceivable orientations of PFO on the membrane surface. Cartoons of 

potential domain rearrangements as PFO first binds to the membrane and then 

oligomerizes before forming the inserted pore complex. i represents an ‘end-on’ 

orientation of the membrane-bound PFO monomer, while ii represents a ‘flat’ 

orientation. 
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topography of PFO immediately after binding to the membrane, prior to oligomerization. 

Hence, in this study, we sought to provide specific information about the nature of the 

PFO-membrane complex before oligomerization, as well as to monitor the topography of 

two PFO domains above the membrane surface at every step of the pore formation 

process. Specifically, what is the orientation of the PFO molecule when it first binds to 

the membrane surface? Does it bind to the membrane surface in an “end-on” or a “flat” 

orientation (Figure 29i or 29ii)? What domain-specific conformational changes occur 

during the transition between the membrane-bound monomer and the membrane-bound 

oligomer? How far from the membrane surface are the D3 TMHs prior to insertion? 

Fluorescence resonance energy transfer (FRET) measurements between the 

membrane surface and different domains of the PFO molecule at each stage of pore 

formation reveal that the PFO molecule is initially anchored in an ‘end-on’ orientation, 

with the long axis of the molecule nearly perpendicular to the plane of the bilayer. 

Monomer-monomer association and subsequent prepore complex formation does not 

greatly alter the height of the molecule relative to the membrane surface. Also, the D3 

TMHs are located are far above the membrane surface prior to insertion. But while 

major changes in the overall topography of the PFO molecule occur during the prepore-

to-pore transition of the oligomer, D1 still is located farthest from the membrane surface. 

Results 

Experimental rationale and design  

D4 is responsible for membrane recognition and the initial binding of PFO to the 

membrane bilayer (Heuck et al., 2000). Furthermore, D4 projects nearly perpendicularly 
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from the bilayer surface in the membrane-inserted PFO oligomer (Ramachandran et al., 

2002). These results are consistent with the notion that the water-soluble monomer 

arrives ‘end-on’ at the membrane surface and is initially anchored by D4 to the 

membrane with its long axis perpendicular to the plane of the membrane bilayer as 

depicted in Figure 29i. However, since the TMHs of PFO originate from the spatially-

distant D3, it is also possible that PFO might bind to the membrane so that D3 is 

positioned close to the membrane surface as depicted in Figure 29ii. Moreover, these 

models are not mutually exclusive because there is a distinct possibility that PFO 

initially anchors itself to the membrane in an ‘end-on’ orientation and then relatively 

quickly undergoes conformational changes that bring D3 into close proximity with the 

membrane surface for TMH insertion. Hence, to identify the conformational changes 

associated with pore formation into a membrane, we have directly determined the 

locations of D1 and D3 relative to the membrane surface at different stages of pore 

formation using FRET. 

FRET is an excellent method for identifying conformations and detecting 

conformational changes, as well as for measuring the magnitude of a conformational 

change within a distance range of 20-100 Å (Stryer, 1978). The typical FRET 

experiment requires two fluorescent molecules, a ‘donor’ (D) and an ‘acceptor’ (A), that 

are each located at a specific site in the same or different molecule(s). After excitation 

by the absorption of a photon, an excited D can non-radiatively transfer its excited-state 

energy to an appropriate A under certain circumstances. The efficiency of this energy 

transfer depends primarily upon the extent of the overlap between D’s emission and A’s 
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absorption spectra, the relative orientation of the D and A transition dipoles, and the 

distance between D and A. Donor emission intensity is reduced by FRET and the 

magnitude of this decrease is used to measure the extent of energy transfer.  FRET has 

been primarily used to measure point-to-point distances between two sites within a 

molecule or between two molecules (e.g. Johnson et al., 1982; Watson et al., 1995; 

Woolhead et al., 2004). 

A variation of the FRET technique allows one to measure the distance between 

two parallel planes. Such an experimental situation is created when a protein binds to a 

membrane surface. The membrane or vesicle surface therefore provides one plane, and 

for large vesicles with low curvature, this surface approximates an infinite plane. If all 

bound proteins adopt the same conformation, then a site (amino acid or a probe) on the 

protein constitutes the second infinite plane because the site will be located at the same 

height above the membrane for all proteins. Covalently attaching a D dye (here, 

BODIPY) to a single site in each protein molecule and then binding these proteins to a 

vesicle that contains a phospholipid with a charged A dye covalently attached to the 

headgroup (here, Rh-PE) to localize it at the surface therefore allows one to determine 

the height of D above the membrane. Since the Rh-PE molecules freely diffuse laterally 

in the membrane, quantification of the height requires using analytical expressions that 

assume a random and uniform distribution of A on the membrane surface. We have used 

this approach to determine the locations above the membrane surface, of the active sites 

of several membrane-bound blood coagulation enzymes, and to quantify coagulation 

cofactor-dependent alterations in those locations that appear to be functionally important 
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(Isaacs et al., 1986; Husten et al., 1987; Lu et al., 1989; Armstrong et al., 1990; 

Mutucumarana et al., 1992; McCallum et al., 1996; McCallum et al., 1997; 

Yegneswaran et al., 1997; Yegneswaran et al., 1999). 

PFO derivatives trapped at different stages of pore formation 

We have previously shown that an intramolecular disulfide bond engineered 

between Cys residues substituted at positions 319 (T319C) and 334 (V334C) in D3 traps 

PFO as a membrane-bound monomer in the absence of reducing agent (Ramachandran 

et al., 2004). Hereafter, rPFO(T319C V334C) will be referred to as rPFODS to denote the 

presence of the intramolecular disulfide bond. To determine the locations of D1 and D3 

relative to the membrane surface at the membrane-bound monomer stage of pore 

formation, we introduced into rPFODS a third Cys residue located either at position 167 

in D1 or position 215 in D3 TMH1 (Figure 28) and labeled this third free Cys with 

BODIPY to yield rPFODS(E167C-BODIPY) or rPFODS(A215C-BODIPY), respectively. 

In the presence of the reducing agent DTT, these intramolecularly disulfide-bonded 

molecules readily formed pores in cholesterol-containing membranes, and hence were 

fully functional after being released to accomplish the monomer-to-oligomer transition 

by removing the disulfide bond. 

To block PFO insertion at the prepore stage of pore formation, we used a point 

mutant in PFO (F318A) that prevented TMH insertion and thereby arrested the PFO 

oligomer in the prepore state (Ramachandran et al., 2004). In the F318A background, a 

single Cys was introduced at either position 167 or at position 215 in two separate rPFO 
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mutants and labeled with BODIPY to yield rPFO(F318A, E167C-BODIPY) and 

rPFO(F318A, A215C-BODIPY), respectively. 

Spectral properties of BODIPY-labeled rPFO derivatives 

 The quantum yields of rPFO derivatives labeled at either position 167 or position 

215 were determined experimentally to be 0.65 and 0.74, respectively, using soluble, 

unreduced rPFODS(E167C-BODIPY) and rPFODS(A215C-BODIPY). Since the 

fluorescence lifetimes of the BODIPY-labeled rPFO derivatives (5.0 ± 0.2 ns) did not 

change appreciably after incubation with cholesterol-containing membranes (data not 

shown), we conclude that the quantum yields of the BODIPY dyes attached to these 

positions do not change as the protein progresses through all stages of pore formation. 

 Interestingly, however, significant differences were observed in the steady-state 

anisotropy values of the BODIPY dye attached to position 167 in D1 of rPFO 

derivatives trapped at different stages of pore formation. Anisotropy values of 0.20, 0.15, 

and 0.12 were determined for oxidized rPFODS(E167C-BODIPY), rPFO(F318A E167C-

BODIPY), and reduced rPFODS(E167C-BODIPY), respectively, after incubation with 

cholesterol-containing membranes (see below). These data indicate that the rotational 

freedom of the BODIPY dye in D1 increases during pore formation, though the exact 

nature of this change remains undefined. In contrast, very little change was seen in the 

anisotropy of the BODIPY dye (0.21 ± 0.01) attached to position 215 in D3 at different 

stages of pore formation (see below). Hence, the rotational freedom of the BODIPY dye 

in D3 is essentially the same before and after membrane insertion. 
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Topography of PFO as a membrane-bound monomer 

To determine whether the PFO monomer initially binds to the membrane in an 

‘end-on’ or a ‘flat’ orientation (Figure 29i or 29ii), we measured FRET between Rh-PE 

molecules located at the membrane surface and rPFODS(E167C-BODIPY) that was 

trapped in the monomeric state after binding to the membrane. When this mutant was 

bound to Rh-PE-containing membranes in the absence of DTT, essentially no energy 

transfer was observed from position 167 in D1 to Rh-PE at the membrane surface even 

at high acceptor density (Figure 30A), thereby demonstrating that the PFO molecule is 

stably bound to the membrane surface as a monomer in an ‘end-on’ orientation (Figure 

29i). A ‘flat’ orientation (Figure 29ii) would have positioned the BODIPY dye in D1 

much closer to the membrane surface and significant energy transfer would have been 

observed. The distance of closest approach or height of the BODIPY probe above the 

membrane surface, L, must therefore be >110 Å.  

We then determined the location of the D3 TMH segments in membrane-bound 

monomeric PFO relative to the membrane surface. Data from collisional quenching 

experiments indicate that the TMH residues do not come into contact with the 

hydrophobic core of the bilayer even at the prepore stage of pore formation (Heuck et 

al., 2003; Czajkowsky et al., 2004). Yet very little is known about the positioning of 

these TMH segments relative to the membrane surface prior to their insertion into the 

bilayer. To ascertain the location of the TMH segments prior to membrane insertion, we 

chose a location (A215C) that would ultimately place the donor probe on the 

hydrophobic side of the TM β-barrel in the inserted pore complex. We then measured  
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Figure 30. Dependence of energy transfer upon acceptor density. QD/QDA values for 

energy transfer between either D1 (A) or D3 (B) of each stage-trapped mutant and the 

membrane surface at 3 different acceptor densities (σ). The lines shown are the best-fit 

lines determined by linear regression as described under Experimental Procedures and 

have been required to go through position (0, 1). 
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the extent of energy transfer between unreduced rPFODS(A215C-BODIPY) and Rh-PE. 

Significant energy transfer was observed for rPFODS(A215C-BODIPY) (Figure 30B), 

and the height of this residue in TMH1 above the membrane surface was determined to 

be 72 ± 1 Å in the membrane-bound monomer. Since QD/QDA was found to be directly 

proportional to σR0
2 over a range of σ values, as indicated by linear plots in Figures 30A 

and 30B, the approximation of Dewey and Hammes (1980) (eq. 6) can be used to 

calculate L. Thus, the TMHs are located far from the membrane surface at the initial 

stage of pore formation. 

Topography of PFO in the prepore complex 

To ascertain whether the topography of the membrane-bound PFO monomer 

changes significantly upon association with other monomers to form a prepore complex, 

we next measured the extent of energy transfer between Rh-PE and rPFO(F318A 

E167C-BODIPY) trapped at the prepore stage of pore formation. In this case, a small 

amount of energy transfer was observed (Figure 30A), indicating that the location and/or 

orientation of D1 and its probe relative to the membrane surface had changed somewhat 

upon forming an oligomeric prepore complex. The increased FRET efficiency could also 

be explained wholly or in part either by a translational movement by D1 towards the 

membrane surface or by a rotation of D1 and the BODIPY probe relative to the 

membrane surface that changes κ2 (see below). The possibility of a rotational movement 

is supported by the fact that the rotational freedom of the donor dye significantly 

increases (anisotropy decreases from 0.20 to 0.15) upon monomer-monomer association. 

Yet whether or not D1 rotates upon monomer association, the data indicate that the PFO 
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molecule is still oriented in a largely “end-on” orientation (Figure 29i) since the height 

of the BODIPY probe in D1 relative to the membrane surface is about 100 Å even in the 

prepore complex. 

To determine whether monomer association and prepore formation cause the D3 

TMH1 segment to move relative to the membrane surface, we measured the extent of 

energy transfer between rPFO(F318A A215C-BODIPY) and Rh-PE, and found that 

rPFO(F318A A215C-BODIPY) had a higher FRET efficiency in the prepore oligomer 

than did rPFODS(A215C-BODIPY) in the monomeric membrane-bound state (Figure 

30B). Using eq. 6, the probe in TMH1 was determined to be 62 ± 1 Å above the 

membrane surface in the prepore complex. 

The increased FRET efficiency observed for the D3 probe upon PFO association 

to form the oligomeric prepore complex can most likely be attributed largely or solely to 

a translational movement of the D3 TMHs towards the membrane surface since the 

anisotropy values for the BODIPY dye do not change significantly (0.21 vs. 0.20) 

between the membrane-bound monomer and the prepore complex. Thus, in the prepore 

complex, the D3 TMH1 segment is located closer to the membrane surface than in the 

membrane-bound monomeric form. 

Topography of PFO in the pore complex 

To estimate the location of D1 in the pore complex, we then measured the extent 

of energy transfer between Rh-PE and rPFODS(E167C-BODIPY) under reducing 

conditions (+ DTT) that readily allowed pore formation (Ramachandran et al., 2004). 

Under these conditions, a high FRET efficiency was observed between the probes in D1 
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in the membrane-inserted pore complex and Rh-PE at the membrane surface (Figure 

30A). Using eq. 6, L was determined to be 74 ± 2 Å. 

However, the above L value actually underestimates the extent of D1 movement 

towards the membrane because the Rh-PE is no longer distributed uniformly over a 

parallel plane after the pore is formed and the internal lipid “plug” is somehow lost to 

create the pore. Instead, a donor dye in a membrane-inserted PFO ring will transfer 

energy only to Rh-PE molecules that are located within a radius of about 110 Å (~ 2R0), 

and no acceptor dyes will be present in the newly-created 300 Å-diameter aqueous pore 

(Olofsson et al., 1993). To estimate the effect that pore formation would have on the 

surface density of Rh-PE around a BODIPY probe in a pore complex, we calculated the 

fraction of the area of a circle of radius 110 Å that would overlap with a circle of radius 

150 Å if the donor dye were located at the edge of the pore (i.e., the center of the smaller 

circle was assumed to lie on the circumference of the larger circle). The extent of 

overlap under these conditions was 42%. It is therefore reasonable to assume that the 

surface density of Rh-PE molecules around each BODIPY-rPFO in an inserted pore 

complex is reduced on the order of 42%. Using this corrected σ value, L turns out to be 

65 ± 1 Å. While this number constitutes only an estimate because of the assumptions 

made in its calculation, it is clear that the probe in D1 is located far from the membrane 

surface in the PFO pore complex. It is also clear that there is a major change in D1 

location relative to the membrane surface upon pore formation, since it appears that the 

D1 probe moves (assuming that the change in FRET efficiency is due solely to 
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translational movement of D1) from about 99 Å above the membrane surface to a height 

of about 65 Å above the surface. 

As noted earlier, the location of residue 215 in the pore complex is fixed and 

known (Shatursky et al., 1999). Residue 215 in TMH1 faces the hydrophobic core of the 

membrane bilayer in the TM β-barrel and is located near the membrane surface. 

Therefore, in the pore complex, the BODIPY dye attached to this position in the reduced 

rPFODS(A215C-BODIPY) resides within the bilayer core. In this case, L << R0 and 

donor dyes transfer significant excitation energy to acceptor molecules located on both 

sides of the membrane (but not in the pore, of course). Under these circumstances, the 

use of eq. 6 is invalid. However, this limitation is unimportant in this case because our 

previous studies have determined where A215 is located in the pore complex. 

Dye orientation (κ2) effects and uncertainties in L 

The accuracy of the values determined for L (summarized in Table 5) is 

dependent upon the accuracy of the assumption that the transition dipoles of the donor 

and acceptor dyes are dynamically randomized during the excited-state lifetime of the 

donor so that κ2 = 2/3. Since the BODIPY dyes attached to the protein and the 

rhodamine dyes attached to PE (Rh-PE) and located at the membrane surface do not 

rotate with complete freedom (Table 5), there is uncertainty in the experimentally 

determined R0 and therefore, in L. Although κ2 cannot be determined experimentally in a 

non-rigid sample, the theoretical upper and lower limits of κ2, and hence of R0, can be 

calculated from the anisotropy values of the donor (rD) and the acceptor (rA) that indicate 

the freedom of rotation of the dyes in the sample (Dale et al., 1979). From the measured  
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Table 5. Distance of closest approach determined by FRET 

aL was calculated using Equation 6 as described under “Experimental Procedures”. Average values and 

standard deviations for 6 to 9 independent experiments are shown. The errors indicate experimental 

uncertainty of measurements and not uncertainties in κ2 or R0. 
bNo energy transfer was observed. 

cThis L value was determined using a reduced σ as discussed in the text. 

N.D. not determined. 
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steady-state anisotropies of vesicle-bound BODIPY-labeled rPFO and Rh-PE (Table 5), 

the maximum uncertainty in R0 due to orientation effects (κ2) was calculated to range 

from -22% to +27%. However, assuming a value of κ2 = 2/3 usually yields distances that 

differ by 10 % from those determined by crystallography when such comparisons can be 

made. This is true for both point-to-point (e.g. Stryer, 1978; Wu and Brand, 1992; also 

compare Johnson et al., 1982, with the structure of Yusupov et al., 2001) and plane-to-

plane (compare McCallum et al., 1996, with Banner et al., 1996, and Yegneswaran et al., 

1997 and 1999, with Adams et al., 2004) FRET measurements. Furthermore, because 

Rh-PE is oriented randomly in the plane of the membrane in the plane-to-plane FRET 

measurements done here, the uncertainty in R0 due to orientation effects is further 

reduced. 

Discussion 

Our FRET measurements have provided four important insights into the 

topography of membrane-bound PFO at different stages of pore formation. First, in the 

membrane-bound monomeric state, the PFO molecule is anchored to the membrane in an 

‘end-on’ orientation, with the long axis of the molecule nearly perpendicular to the plane 

of the bilayer. Second, monomer-monomer association and the formation of a prepore 

complex do not greatly alter the domain arrangement of individual PFO molecules 

relative to the membrane surface. Third, the D3 polypeptide segments that constitute the 

TMHs are far above the membrane surface even in the prepore complex, prior to 

insertion. Fourth, major changes in the overall topography and domain arrangement of 

the PFO molecule occur only during the prepore-to-pore transition of the oligomer. 
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FRET measurements between D1 of membrane-bound monomeric PFO and the 

membrane surface show conclusively that the elongated monomer is bound to the 

membrane in an ‘end-on’ orientation. Despite the fact that PFO is anchored to the bilayer 

by only a few residues at the tip of D4 that are located at one end of the molecule (Heuck 

et al., 2000; Ramachandran et al., 2002), D1 is stably positioned at the opposite end of 

the molecule more than 100 Å above the membrane surface. In addition, FRET 

measurements between D3 of membrane-bound monomeric PFO and the membrane 

surface show that TMH1 is ~ 72 Å above the membrane (Table 5). Thus, in the 

membrane-bound monomer stage of pore formation, the PFO molecule projects nearly 

perpendicularly from the plane of the membrane bilayer.  

How do these distances relate to the dimensions of crystallized PFO (Rossjohn et 

al., 1997)? In the crystal structure, the longest dimension of the PFO monomer from the 

top of D1 to the tip of D4 is 115 Å (Figure 28; Rossjohn et al., 1997). If the PFO 

monomer initially binds to the membrane in a perpendicular orientation (Figure 29i), 

then the closest distance between the top of D1 and a phospholipid headgroup, after the 

insertion of the D4 loops into the bilayer core (Ramachandran et al., 2002), would be ~ 

110 Å. If one then takes into account the lengths of the short tethers (~ 5 Å) that attach 

the BODIPY and the rhodamine dyes to the Cys residue and the phospholipid 

headgroup, respectively, then our FRET-determined distance of ≥ 100 Å between a 

BODIPY dye attached to the top of D1 to a rhodamine dye located at the membrane 

surface agrees well with an ‘end-on’ topography. 
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Also, in the ‘end-on’ orientation, the distance between residue 215 in D3 TMH1 

and the membrane surface would be ~ 50 Å based on the crystal structure (Figure 28). 

However, this distance does not agree well with the FRET-determined height of 72 Å for 

the membrane-bound monomer (Table 5). This apparent discrepancy may be explained 

by the fact that D3 is poorly packed against D2 in the PFO crystal structure, and this 

induces a marked bend in the core β-sheet that connects D1 and D3 (Rossjohn et al., 

1997), suggesting that D3 is capable of flexing away from the rest of the molecule. If 

such dynamic conformational flexibility does exist in solution, then it would not be 

surprising if D3 is, on average, positioned somewhat farther away from the membrane 

than is indicated by the solid-state structure and its crystal packing forces. 

This structural arrangement, with an elongated protein projecting stably from a 

small 'footprint' on the membrane surface, is unusual. However, it is not unprecedented. 

Proteins involved in effecting and regulating blood coagulation are elongated, bind 

reversibly to appropriate membranes with small footprints, and extend approximately 

perpendicularly from the membrane with the enzyme active sites located 70-95 Å above 

the surface (Isaacs et al., 1986; Husten et al., 1987; Armstrong et al., 1990; 

Mutucumarana et al., 1992; McCallum et al., 1996; Yegneswaran et al., 1997). 

Intriguingly, these FRET studies revealed that the active site heights and/or orientations 

were altered in all but one case when the enzymes associated with the non-enzymatic 

protein cofactors that are required to achieve physiologically-significant reaction rates to 

either promote or prevent blood clot formation (Husten et al., 1987; Armstrong et al., 

1990; McCallum et al., 1996; Yegneswaran et al., 1997). Since we later showed directly 
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by protein engineering that the cofactor requirement for enzyme activity could be 

eliminated in one case by lowering the enzyme’s active site above the membrane surface 

(Yegneswaran et al., 1999), it appears that the cofactors regulate blood coagulation, at 

least in part, by positioning the enzyme active sites at the proper height and orientation 

above the phospholipid surface to cleave their membrane-bound substrates. It therefore 

seems reasonable to suggest that the unusual 'end-on' binding of PFO to the membrane 

may have evolved to provide a topographical mechanism for ensuring that protein-

protein interactions occur in the proper sequence and thereby regulating the movement 

of PFO through the different stages of pore formation. 

In the prepore complex, the height of D1 above the membrane surface was 

determined to be about 100 Å (Table 5). Since no energy transfer was observed between 

D1 and the membrane surface in membrane-bound monomeric PFO, and since the 

BODIPY dye in the prepore complex was found to rotate more freely than that in 

membrane-bound monomeric PFO (Table 5), the increased FRET may be due to a more 

favorable alignment of the donor and acceptor transition dipoles. Whatever the case, the 

small magnitude of the FRET efficiency demonstrates that even at the prepore stage of 

pore formation, D1 is still located far above the membrane surface and PFO is bound in 

an ‘end-on’ orientation in the prepore complex (Figure 29i). 

Since PFO is presumably poised in this obligatory prepore intermediate (Heuck 

et al., 2003) to insert into the bilayer, an interesting and important structural question is 

where the D3 TMHs are located in the prepore complex. Are they positioned near or at 

the membrane surface just prior to insertion? Heuck et al. (2003) showed that residues in 
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the TMHs were not exposed to the nonpolar interior of the membrane, but they did not 

further characterize TMH positioning. Here we have used the FRET approach to 

demonstrate that the height of the D3 TMH1 above the membrane surface is ~ 62 Å. 

This substantial height above the surface reveals that the TMHs in the prepore complex, 

supposedly 'poised' to insert into the bilayer, must still move a substantial distance to 

enter the membrane. For example, the fluorophore attached to TMH1 at position 215 

must move from 62 Å above the membrane surface to a position located within the 

hydrophobic core of the bilayer. This major change in topography may explain, in part, 

why the prepore-to-pore conversion involves a substantial transition energy barrier that 

cannot be surmounted at low temperature (Heuck et al., 2003) or with some PFO 

mutants (Hotze et al., 2002; Ramachandran et al., 2004). The energy is presumably 

necessary to power the large conformational rearrangements that move the D3 TMHs to 

the membrane surface and then into the bilayer during the prepore-to-pore transition. 

 Also, the 10 Å reduction in TMH1 height above the membrane surface during 

the monomer-to-oligomer transition is not surprising because we have previously shown 

that D4 binding to the membrane triggers appreciable conformational changes in the 

spatially-distant D3 that expose an interface required for PFO oligomerization 

(Ramachandran et al., 2004). In unreduced rPFODS trapped in the membrane-bound 

monomeric state, these conformational changes are not elicited due to the presence of 

the intramolecular disulfide bond (Ramachandran et al., 2004). It therefore appears that 

one structural ramification of D4 binding to the membrane is a long-range 

conformational change in D3 that not only exposes the monomer-monomer interface 
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surface (Ramachandran et al., 2004), but also moves D3 closer to the membrane surface 

by about 10 Å. 

While TMH1 moves more than 60 Å during the prepore-to-pore transition, D1 

appears to move about 34 Å closer to the membrane surface (Table 5). This number is 

only an estimate since the loss of acceptor dyes during pore formation complicates the 

determination of σ in the latter case. However, the FRET measurements agree very well 

with the heights of the prepore and pore complexes determined using AFM. Czajkowsky 

et al. (2004) reported a distance of 73 ± 5 Å between the top of the PFO pore complex 

and the membrane surface, which agrees well with the 65 ± 1 Å distance of closest 

approach between the D1 fluorophore and the acceptor dyes at the membrane surface 

(Table 5). The observed changes in the height of the PFO complex during the prepore-

to-pore transition were also similar: ~ 40 Å for the AFM study (Czajkowsky et al., 2004) 

and ~ 34 Å (Table 5). Thus, two independent approaches agree on the magnitude of the 

structural change in the height of the PFO complex during pore formation. In addition, 

the FRET approach reveals that some PFO domain movements are even larger than 

indicated by monitoring the overall structure of the complex. 

In summary, the water-soluble PFO monomer (Figure 31i) initially anchors itself 

to a cholesterol-containing target membrane in an ‘end-on’ orientation, with its long axis 

perpendicular to the plane of the membrane bilayer (Figure 31ii). At this stage, TMH-

forming D3 segments are located ~ 72 Å above the membrane surface (Figure 31ii). 

Monomer-monomer association and subsequent prepore formation slightly lowers the 
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Figure 31. Model of the FRET-detected changes in PFO topography. A cartoon 

representation of the pathway of PFO pore formation depicting the orientation of 

membrane-bound PFO at different stages prior to membrane insertion is shown. Our 

FRET experiments reveal that water soluble PFO monomer (i) anchors itself to the 

membrane surface in an ‘end-on’ orientation with the long axis of the molecule nearly 

perpendicular to the plane of the membrane bilayer (ii). At this stage, the TMHs are 

located far (~ 70 Å) above the membrane bilayer. Prepore formation slightly reduces the 

height of the molecule above the membrane surface (iii), as well as the height of TMH1 

in D3 above the membrane surface. During the prepore-to-pore transition, the molecule 

experiences a significant reduction in height (from ~ 100 Å to 65 Å) that brings D1 

closer to the membrane surface, while TMH1 in D3 is inserted into the nonpolar core of 

the bilayer as part of the TM β-barrel. For simplicity, only one monomer in the prepore 

(iii) and pore (iv) complexes are shown. 
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heights of both D1 and D3 above the membrane surface (Figure 31iii). Concomitant with 

the prepore-to-pore transition, the molecule experiences a marked reduction in height 

above the membrane surface from ~ 100 Å in the prepore complex to ~ 65 Å in the 

membrane-inserted pore complex (Figure 31iv). Since D4 projects perpendicularly from 

the membrane even in the pore complex (Ramachandran et al., 2002), the reduction in 

height is presumably caused by a downward collapse of D2, as suggested by 

Czajkowsky et al. (2004). Thus, major topographical changes in PFO structure 

accompany pore formation as depicted in Figure 31. 

In general, the changes in protein conformation that accompany the transition of 

several pore-forming toxins from one stably-folded state in water to a differently-folded 

membrane-inserted state within the target bilayer have been noted to be relatively 

modest (Montoya et al., 2003; Collier and Young, 2003). For example, in the case of the 

S. aureus α-HL, the TM β-hairpin that each monomer contributes to the 14-stranded β-

barrel originates simply as an extension of its core β-sheet with minimal changes to 

either the secondary structure or the topography of its oligomeric prepore complex on 

the membrane surface (Song et al., 1996; Olson et al., 1999; Montoya et al., 2003). 

However, as described here, the changes in both PFO secondary structure and 

topography are substantial during pore formation, thereby demonstrating that the 

mechanisms of pore formation differ for CDCs and other toxins. 
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CHAPTER VI 

SUMMARY 

Using multiple independent fluorescence techniques as primary tools, the 

research presented in this dissertation has elucidated the mechanisms by which, the pore-

forming toxin PFO from C. perfringens, binds to, and oligomerizes on the surface of, 

cholesterol-containing membranes. In addition, the topography of the molecule relative 

to the membrane surface at each stage of pore formation has been determined.  

In summary, D4, the domain that first interacts with the target membrane anchors 

PFO to the membrane surface via the short hydrophobic loops at the tip of its β-

sandwich. Only these loops are exposed to the nonpolar core of the bilayer, while the 

remainder of D4 is surrounded by water. D4 projects vertically from the membrane 

surface and its orientation relative to the membrane surface remains unaltered even after 

pore formation. Moreover, D4 makes little or no contact with neighboring monomers in 

the oligomer. Thus, initial binding of PFO to the target membrane is accomplished. The 

impact of these findings and the role of D4 in pore formation have been discussed in 

detail in Chapter III. 

Membrane binding elicits multiple structural rearrangements in PFO that initiate 

and regulate its oligomerization. D4-membrane interactions trigger the movement of a 

loop in the spatially-distant D3 that exposes the edge of a previously-hidden β-strand. 

This β-strand interacts with an already-exposed β-strand of an adjacent monomer to 

form the monomer-monomer interface. The exposure of this β-strand is necessary for 

productive collisional encounters between membrane-bound PFO monomers on the 
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membrane surface and the formation of a large, circular prepore complex. Remarkably, 

the β-strands that form the interface each contain a single aromatic residue, and these 

aromatics appear to stack to align the TMHs of adjacent monomers in the proper register 

for insertion. Thus, membrane-dependent conformational changes initiate and regulate 

oligomerization and pore formation. The significance of these fndings is discussed in 

Chapter IV. 

FRET measurements revealed the topography of PFO relative to the membrane 

surface at each stage of pore formation. The elongated PFO monomer is initially 

anchored to the membrane surface in an ‘end-on’ orientation with its long axis nearly 

perpendicular to the plane of the membrane bilayer. This orientation remains relatively 

unaltered even upon monomer-monomer association and prepore complex formation. 

However, the oligomeric complex undergoes a significant collapse in height concomitant 

with membrane insertion and pore formation. Furthermore, the polypeptide segments 

that constitute the TMHs are located far above the membrane surface even at the prepore 

complex stage of pore formation, thereby indicating that the major topographical 

changes in PFO occur during the prepore-to-pore transition of the oligomer. The 

importance of these findings is discussed in Chapter V. 

The results from this study have thus helped bridge many of the gaps that exist in 

our current knowledge of CDC pore formation. However, many intriguing questions still 

remain. For example, the trigger for the helix-to-sheet conversion in D3 is unknown. It is 

tempting to believe that exposure of the TMH-forming α-helices to the low dielectric 

constant environment of the lipid-water interface (White and Wimley, 1999) triggers this 
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event. However, till date, no experiments have been targeted at addressing this issue. 

How are the lipids in the middle of the circular, oligomeric prepore complex displaced to 

create the large aqueous pore? This poses a conceptual problem because creation of a 

300 Å pore requires the displacement of more than a 1000 lipid molecules from the 

middle of the oligomeric complex. How this is accomplished concomitant with TMH 

insertion remains obscure and demands further experimentation. Finally, and most 

important, the exact role of cholesterol in the pore formation process is still unclear. Do 

CDCs have a specific binding site for cholesterol? If so, what is the stoichiometry of the 

PFO:cholesterol complex? Answers to these questions have been hard to come by and 

demand ingenuity and creativity in experimental design. 
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Figure 32. Pore formation by NBD-labeled D4 mutants. Time-dependent emission 

intensity profiles for liposome-encapsulated [Tb(DPA)3]3- (50 µM total lipid) when 

incubated with 50 nM of a NBD-labeled rPFO mutant (see key) at 37oC in buffer D 

containing 5 mM EDTA. The release of liposome-encapsulated [Tb(DPA)3]3- was 

monitored as described in Experimental Procedures. For comparison, profile for rPFO is 

also shown. 
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Figure 33. Pore-formation assay for rPFO(V322C-NBD) and rPFO(G324V G325V). 

Time-dependent emission intensity profiles for liposome-encapsulated [Tb(DPA)3]3- (50 

µM total lipid) when incubated with 50 nM of the indicated rPFO mutant at 37oC in 

buffer D containing 5 mM EDTA. The release of liposome-encapsulated [Tb(DPA)3]3- 

was monitored as described in Experimental Procedures. For comparison, profile for 

rPFO is also shown. 
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Figure 34. Trp emission intensity time traces for rPFO mutants. Time-dependent Trp 

emission intensity was measured after addition of cholesterol-containing liposomes (50 

µM) to 50 nM of (A) rPFO(G324V G325V) or (B) rPFO(T179Y Y181A F318A A320F) 

(iv in Figure 24) as described in Experimental Procedures. For comparison, profile for 

rPFO is shown. 
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Figure 35. Characterization of pyrene-labeled rPFO mutants. (A) Time-dependent 

emission intensity profiles for liposome-encapsulated [Tb(DPA)3]3- (50 µM total lipid) 

when incubated with an equimolar mixture of rPFO(T179C-Pyr) and rPFO(V322C-Pyr) 

(50 nM total),  50 nM rPFO(T179C-Pyr), and 50 nM rPFO(V322C-Pyr) at 37oC in 

buffer D containing 5 mM EDTA. The release of liposome-encapsulated [Tb(DPA)3]3- 

was monitored as described in Experimental Procedures. (B) SDS-AGE analysis of an 

equimolar mixture of rPFO(T179C-Pyr) and rPFO (4.0 µM total) in the presence or 

absence of liposomes (1 mM total lipid) and in the presence or absence of the cross-

linker glutaraldehyde as indicated. The bands were visualized by pyrene emission by 

exciting the gel on an UV transilluminator. M represents the monomer and O, the 

oligomer. 
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Figure 36. Pyrene-excimer formation is dependent on the proximity of pyrenes. Pyrene 

emission spectrum for an equimolar mixture of rPFO(Y181C-Pyr) and rPFO(V322C-

Pyr) (100 nM total) in the presence of cholesterol-containing liposomes (100 µM lipid) 

was measured as described under Experimental procedures. Lack of excimer formation 

indicates that the pyrenes attached to these residues are not in close proximity to stack in 

the mixed PFO oligomer. 
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