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ABSTRACT 

Development of a Branch and Price Approach Involving Vertex Cloning to Solve the 

Maximum Weighted Independent Set Problem. (December 2004) 

Sandeep Sachdeva, B.Tech., Indian Institute of Technology, Delhi, India 

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm 

 

We propose a novel branch-and-price (B&P) approach to solve the maximum 

weighted independent set problem (MWISP). Our approach uses clones of vertices to 

create edge-disjoint partitions from vertex-disjoint partitions. We solve the MWISP on 

sub-problems based on these edge-disjoint partitions using a B&P framework, which 

coordinates sub-problem solutions by involving an equivalence relationship between a 

vertex and each of its clones. We present test results for standard instances and 

randomly generated graphs for comparison. We show analytically and computationally 

that our approach gives tight bounds and it solves both dense and sparse graphs quite 

quickly. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Given a graph, ),( EVG =  where V represents the set of vertices; and E , the set of 

edges, a subset of vertices VI ⊆ such that no two vertices in I  are adjacent to each other 

constitutes an independent set (IS). The problem of finding the independent set of largest 

cardinality in a graph is known as the maximum independent set problem (MISP). The 

cardinality of the maximum independent set is known as the independence number or the 

stability number of the graph. Extending the MISP to vertex-weighted graphs, the 

MWISP is to find the independent set of maximum weight. Letting vw  represent the 

weight associated with vertex v  for Vv∈ , the MWISP is to find the independent set I  

such that ∑ ∈Iv vw  is maximized. Both MISP and MWISP are known to be NP-Hard 

[12]. Even though the MWISP can be solved in polynomial time on some specialized 

graph structures ([1], [11]); the problem remains NP-Hard on arbitrary graphs. 

MISP and MWISP are among the most researched problems in the field of graph 

theory. They have large numbers of practical applications in diverse fields, including 

protein structure realignment [8], coding theory [7], computer vision [2], experimental 

design [2], signal transmission [2], and information retrieval [2]. 

                                                 

This thesis follows the style and format of the European Journal of Operational Research. 
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1.2 Motivation and Objectives 

The approach explored in this study involves solving the integer programming 

formulation of the MWISP (in edge inequality form) which may be stated as 

{ }EvuxxBQQxwMaxZ vu
V

Vv
vvMWISP ∈∀≤+∈=

⎭
⎬
⎫

⎩
⎨
⎧

∈= +
∈
∑ ),(1:where,: ||* xx ,       (1) 

where 1=vx if vertex v  is included in the independent set, and 0=vx otherwise.  

Warrier et al [25] developed a branch-and-price (B&P) approach to solve the 

MWISP and showed that their approach gives competitive results for sparse graphs. 

However, their approach suffers from two major drawbacks: their restricted master 

problem (RMP) gives bounds that are not tight and comprises a large number of 

constraints, requiring lengthy run times. This study contributes a new B&P approach, 

which is directed towards overcoming these shortcomings. This new approach, which we 

call Vertex Cloning, is designed to facilitate solution by yielding a RMP with fewer 

constraints. We also show that Vertex Cloning provides a tighter formulation, improving 

bounds in the branch-and-bound (B&B) tree. 

The primary objectives of this study are:  

(1)  Formulation of the Vertex Cloning approach,  

(2)  Analysis showing that Vertex Cloning yields a tighter formulation,  

(3)  Effective methods to implement Vertex Cloning, and  

(4)  Analysis of the computational efficacy of Vertex Cloning. 
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1.3 Basic Notations 

We consider only simple, undirected, and finite graphs.  Most of the notation we use 

in this thesis is the same as that used by Warrier et al [25]. We represent an edge as 

Ee∈  or, alternatively, by denoting its end vertices as Evu ∈),(  where vuVvu ≠∈ ,, . 

We use ),( EVG ′′=′  to denote the complement graph of G , where VV =′  and 

{ }vuVvuEvuE ≠∈∉=′ ,,:),( . We use )(vN to denote the set of v ’s neighbors, 

{ }Evuu ∈),(: . 

We decompose graph G  into || P  sets of vertex-induced partitions. We use 

),( ppp EVG =  for Pp∈  to denote the sub-graph (partition) p , where pV  and pE  

denote the set of vertices and edges in partition p , respectively. Furthermore, we use Ê  

to represent the set of edges that connect vertices in different sub-graphs, 

pPp EEE ∈= U\ˆ ; and  similarly, V̂  to denote the set of vertices at the ends of edges in 

Ê . For Vv∈ , we use vπ  to identify the partition into which v  is assigned. We use 

)(vN p  to denote the neighbors of v  in partition Pp∈ . Vertex Cloning may duplicate 

certain vertices into partition Pp∈ . We use an “over bar” to denote the vertex and edge 

sets in partition p  after duplication (i.e., pp EV  and  for Pp∈  ). 

1.4 Organization of Thesis 

The remainder of this thesis is organized in six chapters. Chapter II presents a review 

of the literature on MWISP, including a detailed discussion of the B&P approach 
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developed by Warrier et al [25]. Chapter III introduces concepts that underlie Vertex 

Cloning and gives a detailed mathematical formulation (objective 1). Chapter IV 

discusses properties of polyhedra formed by various B&P formulations (objective 2). 

Chapter V discusses implementation issues (objective 3) and Chapter VI analyzes 

computational results (objective 4), comparing the performance of several algorithms for 

solving the MWISP. Finally, Chapter VII gives summary and recommendations for 

future research. 
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CHAPTER II 

LITERATURE REVIEW 

A solution to the MWISP can be obtained as the solution to the maximum weighted 

clique problem on the complementary graph and the literature describes extensive study 

of both problems. The solution methods presented in the literature use variety of 

approaches for solving the MWISP, which includes B&B [2, 3, 7, 21], implicit 

enumeration [9] and standard heuristic methods like genetic algorithms [13] and greedy 

random adaptive search procedures [10]. Bomze et al [6] gave an extensive survey of 

algorithms, complexity and applications of maximum clique problem. Recently, Carr et 

al [8] described a branch-and-cut approach for the MWISP.  

Bazaara et al [5] gave a good description of Dantzig-Wolfe decomposition (DWD) 

for linear programming problems. DWD may be applied to the linear relaxation of an 

integer programming problem to obtain a bound at each node in the B&B tree in an 

approach known as B&P. Over the last twenty years, B&P has been successfully applied 

in a wide range of integer programming problems [4, 18, 20, 23, 24, 26]. To apply B&P, 

integer programming problems must be decomposed into two sets of constraints; those 

that form sub-problem(s) and those that are relegated to the RMP. Barnhart et al [4] and 

Wilhelm [26] provided extensive overviews of B&P and gave descriptions of 

decomposition methods, and associated implementation issues. 

Mehrotra and Trick [18] used B&P to solve the minimum coloring problem, another 

important graph problem. The minimum coloring problem is to find the minimum 
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number of colors that allows each vertex to be colored so that the endpoints of each edge 

have different colors. They used a set covering formulation of the coloring problem with 

the objective of finding the minimum number of maximal independent sets such that the 

union of these sets includes all vertices of the graph. Their RMP consisted of set 

covering constraints and their (single) sub-problem involved finding the maximal 

independent set. 

Warrier et al’s [25] B&P approach partitions a graph into smaller, vertex-disjoint 

sub-graphs and solves a MWISP on each sub-graph (sub-problem) to generate columns 

that are coordinated by a RMP to obtain the MWIS for the original graph. Their 

approach partitions the inequalities associated with edge constraints in (1) into two sets; 

one set, the coordinating set, comprises inequalities associated with edges that connect 

vertices in different partitions (i.e., Evuxx vu
ˆ),(1 ∈∀≤+ ); and the other set, P  sub-

problems, each consisting of inequalities associated with the respective edges included 

in a partition (i.e., pvu Evuxx ∈∀≤+ ),(1 ) . They used B&P, forming the RMP (we 

duplicate their model here) as: 

∑∑
= ∈

=
P

p Jj

jpp
jpLP

p

MaxZ
1

* )( xwλ              (2) 

s.t.   1)(
1

≤∑ ∑
= ∈

P

p Jj

jp
pjp

p

A xλ             (3) 

Pp
pJj

jp ∈∀=∑
∈

1λ           (4) 

pjp JjPp ∈∈∀≥ ,0λ          (5) 
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where   

pJ  denotes the set of integer extreme points of )( || pV
p BQconv ∩ ,  

jpx  is a pV - vector that defines extreme point pJj∈ , and 

jpλ  is a RMP decision variable that corresponds to extreme point pJj∈ . 

Sub-problem Pp∈ is formulated as 

{ }||* :)( pV
p

jpjpT
p

p
p BQAwMaxZ ∩∈−= xxα ,          (6) 

where { }pvu
Vp

p EvuxxRQ p ∈∀≤+∈= + ),(1:||x  and α  is an |ˆ| E -vector of dual 

variables associated with constraint (3). 

They tested two different partitioning procedures; one partitioned an original graph 

into chordal sub-graphs and the other used METIS [15, 16, 17], a heuristic that seeks to 

minimize the number of edges in Ê , while balancing the number of vertices in different 

partitions, given the number of partitions. They solved MWISP on each chordal sub-

graph using Frank’s algorithm [11]. For solving the NP-Hard MWISP posed by each 

METIS-partitioned sub-graph, they modified the Carraghan and Pardalos [9] algorithm 

to address weights and solve the MWISP in the graph (the original algorithm finds the 

maximal clique in a graph). We refer to this modified algorithm using the acronym 

MCP. In addition to evaluating these two methods to partition a graph, they tested with 

two types of RMP formulation and two methods of branching. They tested their 

methodology with DIMACS Challenge Problems [14] and randomly generated p-graphs 

and concluded that the combination of METIS partitioning, RMP formulation in terms of 

clique inequalities and branching on cliques in B&B tree gave the best results. 
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Furthermore, they found that their method outperformed the MCP algorithm for sparse 

graphs, which are known to be especially challenging. Subsequently, we refer to this as 

the Original B&P (OBP) approach to solve the MWISP. 
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CHAPTER III 

VERTEX CLONING APPROACH 

This chapter introduces Vertex Cloning (henceforth referred to as Cloning) and its 

mathematical formulation. 

3.1 Concept 

Cloning extends the partitioning methods employed by Warrier et al [25] by cloning 

selected vertices with the goal of eliminating edges in set Ê . After using METIS to 

partition the graph ),( EVG =  into P  disjoint sub-graphs PGG ,.....,1 , each edge 

Evue ˆ),( ∈=  connects vertices in two different partitions ( qp VvVu ∈∈ ,  where 

qpPqp ≠∈ ,, ) and the associated edge inequality ( 1≤+ vu xx ) is included in the RMP. 

Cloning can duplicate vertex u  )(v  into partition q  )( p  so that edge ),( vu  lies entirely 

in partition q  )( p  and the edge inequality in the RMP can be replaced by an equality 

uw xx =  )( vx , where w  is the clone of u  )(v . Similarly, edge inequalities in the RMP 

can be replaced by relationships equating the decision variables associated with a cloned 

vertex and each of its clones. 

Cloning is analogous to the cost splitting technique of Lagrange relaxation [19, 22] 

through which, depending on the structure of the problem, duplicate variables can be 

introduced to improve bounds. We refer to a vertex that is duplicated as the cloned 
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(originating) vertex and any duplicate vertex as a clone. We use the term copies to 

indicate an original vertex along with its clones. 

We illustrate Cloning using Figure 1, which depicts a graph comprising 7 vertices 

and 7 edges. The formulation for the MWISP on this graph (as in (1)) can be written as:  

 

7654321 xxxxxxxZMax IP ++++++=       (7) 

s.t.   

121 ≤+ xx          (8) 

151 ≤+ xx          (9) 

132 ≤+ xx         10) 

172 ≤+ xx        (11) 

143 ≤+ xx        (12) 

163 ≤+ xx        (13) 

154 ≤+ xx        (14) 

7
7654321 ),,,,,,( +∈= Zxxxxxxxx      (15) 

Figure 2 shows an arbitrary partitioning with }2,1{=P , where },,,{ 76211 vvvvV =  

and },,{ 5432 vvvV = . Let 1G  and 2G  represent the two sub-graphs (partitions), 

respectively, and { }),(),,(),,(ˆ
326351 vvvvvvE =  be the set of edges that connects vertices 

in the partitions. The endpoints of all edges Ee ˆ∈ comprise the set },,,,{ˆ
65321 vvvvvV = . 
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1 2 3 

7 6 

4 

5 

1 2

7 6

3

4

5

Partition 1 Partition 2 

Fig. 1  Example graph G. 

Fig. 2  Vertex disjoint partitions of G. 
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1 2
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Partition 1 Partition 2 

8 9

1 2

7 6

3

4

5

Partition 1 Partition 2 

8 9 10

Fig. 3  Edge disjoint partitioning of G through vertex cloning. 

Fig. 4  Edge disjoint partitioning of G by cloning different vertices. 
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The OBP reformulates model (7)-(15), creating one sub-problem with edge inequalities 

associated with 1G (i.e., (8) and (11)) and an other sub-problem with edge inequalities 

associated with 2G (i.e., (12) and (14)). The RMP comprises inequalities corresponding 

to edges Ee ˆ∈  (i.e., (9), (10) and (13)).  

Figure 3 depicts one possible way to clone vertices so that all edge inequalities in the 

RMP are replaced with equality constraints. Here, 3v  is duplicated (as 8v ) in partition 1 

so that the edges ),( 32 vv and ),( 63 vv  can be included in partition 1 as ),( 82 vv and 

),( 86 vv , respectively. Similarly, 1v  is cloned as 9v  in partition 2 to include edge ),( 51 vv  

in partition 2 as ),( 95 vv . This cloning process results in an edge-disjoint partitioning of 

G  in which =Ê Ø  and equalities 
9183

 and vvvv xxxx ==  replace corresponding edge 

inequalities ((9), (10) and (13)) to assure that decision variables associated with a cloned 

vertex and each of its clones are equal. Cloning results in vertices, instead of edges, 

being shared between partitions. Figure 4 demonstrates an alternate way to clone 

vertices. In this case, three clones (namely 8v , 9v  and 10v ) are formed (as clones of 5v , 

6v  and 2v , respectively). This alternate cloning adds more vertices into the partitions, 

making the sub-problems more challenging to solve and also resulting in a larger RMP. 

Thus, the approach should clone a minimum number of vertices to promote tractability.  

Note that, typically, only a subset of vertices in V̂  need be cloned to locate each 

edge Ee ˆ∈ into some partition. In Figure 3, only two vertices from the set V̂  are cloned 

and in Figure 4, three vertices are cloned. 
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3.2 Formulation 

We now specialize the MWISP to represent Cloning. Let VK ˆ∈  be the set of cloned 

vertices and vD  denote the set of clones corresponding to vertex  VKv ˆ∈∈ . Cloning 

vertex v  (as w ) relocates a set of edges Evu ˆ),( ∈  from Ê  to partition uπ (also, 

uw ππ = ). In partition uπ , this relocated edge(s) ),( vu  exists as ),( wu . 

Note that not all vertices in V̂  need be cloned (see example in 3.1). If vertex Vv ˆ∈  is 

not cloned, vD = ∅ and if it is cloned, vD  gives the set of its clones. Let VK ˆ∈  denote 

the set of vertices for which vD  ≠ ∅. Cloning increases the number of vertices in the 

graph to V , where vKv DVV ∈= U . 

Cloning adds vertices and edges to certain partitions, changing ( )ppp EVG ,=  to 

( )ppp EVG ,= , where pV  includes pV  and clones that are added in partition p  and pE  

includes edges from set pE  as well as relocated edges. Correspondingly, the vector px  

is changed to { }pv Vvx ∈= :px . The integer programming formulation of the MWISP 

may now be specialized to reflect Cloning: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∈∀=−= ∑∑
∈ ∈Pp

vvw
Vv

vv
D
MWISP DwKvxxxwMaxZ

p

,0:   (16) 

where  PpQ p ∈∀∈px  and { }pvu
Vp EvuxxBQ p ∈∀≤+∈= + ),(1:px . The 

formulation given in (16) can be rewritten as follows: 
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∑
∈

=
Pp

D
MWISP MaxZ pp xw        (17) 

s.t.      

0=∑
∈Pp

pA px         (18) 

PpBp ∈∀≤ 1px    (19) 

PpB pV ∈∀∈px    (20) 

where pA  denotes the matrix of coefficients of decision variables in equalities (18) 

and pB  denotes  the matrix of coefficients of decision variables in inequalities (19). 

Equalities (18) include an equivalence relation between each cloned vertex and each 

of its clones; and inequalities (19) include edge inequalities in partition Pp∈ . 

Inequalities (19) define P  disjoint blocks of constraints, one for each partition p , 

forming a block diagonal structure. Application of DWD to the linear relaxation of (17)-

(20) allows each block to be addressed as an independent sub-problem while relegating 

constraint (18) to the RMP: 

∑∑
∈ ∈

=
Pp Jj

jpp
jpRMP

p

MaxZ )(* xwλ         (21) 

s.t.      

0)( =∑ ∑
∈ ∈Pp Jj

jp
pjp

p

A xλ         (22) 

Pp
pJj

jp ∈∀=∑
∈

1λ       (23) 

pjp JjPp ∈∈∀≥ ,0λ      (24) 
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where  

pJ  denotes the set of integer extreme points of )( pQconv ,  

jpx  is a pV - vector that defines extreme point pJj∈ and  

jpλ  denotes the RMP decision variable that corresponds to extreme point pJj∈ . 

Sub-Problem Pp∈  is a MWISP of the form: 

{ }p
p

jp
p

p
jjp QAMaxzcMaxZ ∈−−=−= xxw :)(ˆˆ* βα ,     (25) 

where α is a vector of dual variables associated with equality constraints (22) and pβ  is 

the dual variable associated with convexity constraint p in (23).  

Optimal extreme point j  in sub-problem p  gives vector jpx , which is an improving 

column if 0* >pZ . At each iteration, we solve all P  sub-problems and select jpx  as 

arg ( )*max pPp
Z

∈
 to enter the RMP basis. If 0* ≤pZ  for all Pp∈ , the current RMP solution is 

optimal. 
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CHAPTER IV 

ANALYSIS OF BOUNDS 

In this chapter we analyze the polytope associated with the OBP (given in (2)-(6)) 

and Cloning (given in (21)-(25)) models and their linear relaxations to show that Cloning 

gives a tighter bound at the root node of B&B tree than that obtained by OBP. Our proof 

is based on showing that the polytope associated with Cloning is contained in the 

polytope associated with the OBP. To promote simplicity, we present our discussion in 

terms of the polytopes associated with decision variables vx . 

Let S  denote the set of feasible integral solutions to (1); C , the convex hull of S ; 

and L , the polytope associated with the linear relaxation of (1): 

{ }VvxEvuxxZS vvu
|V| ∈∀∈∈∀≤+∈= + }1,0{,),(1:x , 

)(SconvC =  and 

{ }VvxEvuxxRL vvu
|V| ∈∀≤≤∈∀≤+∈= + 10,),(1:x . 

Relative to the vertex-disjoint partitions formed in the OBP (see Chapter II), let 
pSPS  

and CSS  denote the set of integral solutions that are feasible relative to the edge 

inequalities in pE  (which constitute block-diagonal set Pp∈ ) and Ê (which constitute 

the coordinating set), respectively: 

{ }{ }VvxEvuxxZS vpvu
|V|

SPp
∈∀∈∈∀≤+∈= + 1,0,),(1:x  and 

{ }VvxEvuxxZS vvu
|V|

CS ∈∀∈∈∀≤+∈= + }1,0{,ˆ),(1:x . 
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 Similarly, let 
pSPC = )(

pSPSconv  and CSC )( CSSconv= . Let 
pSPL  denote the polytope 

corresponding to the linear relaxation of 
pSPS  for Pp∈ ; and CSL , the polytope 

associated with the linear relaxation of CSS . Following their respective definitions, we 

have LCS ⊆⊆ , 
ppp SPSPSP LCS ⊆⊆  and CSCSCS LCS ⊆⊆ . 

Noting that pPp EEE ∈= Uˆ ; and E  defines S , C  and L ; pE  defines 
pSPS , 

pSPC and 

pSPL ; Ê  defines CSS , CSC  and CSL ; we have  

I
Pp

SPCS p
SSS

∈

= , I
Pp

SPCS p
CCC

∈

⊆ , and I
Pp

SPCS p
LLL

∈

= .      (26) 

Define polytope OR  by substituting (tightening) L , replacing 
pSPL with 

pSPC : 

I
Pp

SPCSO p
CLR

∈

= .        (27) 

Since 
ppp SPSPSP LCS ⊆⊆  and CSCSCS LCS ⊆⊆ , we may write, 

I
Pp

SPCS p
SS

∈
I

Pp
SPCS p

CC
∈

⊆ I
Pp

SPCS p
CL

∈

⊆ I
Pp

SPCS p
LL

∈

⊆  , 

LRCS O ⊆⊆⊆ .      (28) 

Cloning replaces every edge inequality 1≤+ vu xx  (where Evu ˆ),( ∈ ) in the 

coordinating set (of OBP) by an equality wv xx =  (vertex v  in partition vπ  is cloned as 

w  into partition uπ ) and an inequality corresponding to a clone, 1≤+ wu xx  (associated 

with edge ),( wu  in partition uπ ). Let CSL′  denote the polytope that is formed by 

replacing all edge inequalities ( 1≤+ vu xx ) in CSL  with equalities ( wv xx = ) and edge 
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inequalities ( 1≤+ wu xx ). CSL′  can be written as intersection of polytopes =
CSL  and ≤

CSL , 

where =
CSL  denotes the polytope associated with the equality constraints that result from 

cloning ( wv xx = ) and ≤
CSL  denotes the polytope comprising edge inequalities 

( 1≤+ wu xx ), each of which includes a decision variable associated with a clone: 

{ }VvxDwKvxxRL vvvw
|V|

CS ∈≤≤∈∈∀=∈= +
= ,10,,:x  , 

{ }VvxDwKvEvuxxRL vwuvuw
|V|

CS ∈≤≤=∈∈∈∀≤+∈= +
≤ ,10,:,,ˆ),(1: ππx  and  

≤==′ CSCSCS LLL I . 

Note that Cloning increases the number of decision variables to ||V  so the polytopes 

CSL′ , =
CSL and ≤

CSL  are defined in ||V -dimensional space. We now prove that CSL  and 

CSL′  are equivalent; (i.e., the set of solutions that are feasible with respect to CSL′  in 

terms of the decision variables that correspond to the original vertices, Vvxv ∈: , is same 

as those associated with CSL ). We represent this equivalence by “≡”. 

Proposition 1: CSL  ≡  CSL′ . 

Proof: Let { }VvxX v ∈= :  be any vector in CSL  and construct { }VvxX v ∈= : , comprising 

a V - sub-vector of variables vx  associated with original vertices (which includes all 

vertices but clones) and a VV \ - sub-vector associated with clones. In particular, for 

original vertices ,Vv∈  set vv xx = . For each vertex VVKv ⊆⊆∈ ˆ , identify each of its 

clones, VVDw v \∈∈  and set vw xx = . From the construction, it is clear that X  is 

feasible with respect to CSL′ . 
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It is important to note that CSL′  contains ∑ ∈Kv vD  more variables (associated with 

clones) than CSL , tending to increase the dimension of polyhedron CSL  by ∑ ∈Kv vD . 

For Kv∈ , one equality constraint relates cloned vertex v  to each of its clones 

w ( vw xx = ) for vDw∈ . Since there are exactly ∑ ∈Kv vD  (linearly independent) 

equality constraints in CSL′ , the dimension of CSL′  is the same as that of CSL . CSL′  

includes more decision variables but solutions are projected onto the set of solutions that 

are feasible with respect to CSL  by the associated equality constraints. Thus, we 

conclude that  CSL  ≡  CSL′ . Q.E.D. 

From (27), we have I
Pp

SPCSO p
CLR

∈

= I
Pp

SPCS p
SconvL

∈

= )( . Let 
pSPS ′  denote the set 

of integral points that is equivalent to the corresponding to set of integral points 
pSPS  in 

||V -dimensional space (i.e., 
pSPS ′ ≡  

pSPS ). Therefore, using CSL  ≡  CSL′ , OR  may be 

written as : 

I
Pp

SPCSO p
SconvLR

∈

′′≡ )( . 

Since ≤==′ CSCSCS LLL I ,   II
Pp

SPCSCSO p
SconvLLR

∈

≤= ′≡ )( .       (29) 

Relative to the edge-disjoint partitions formed in Cloning, edge inequalities in pE  

comprise the block-diagonal set Pp∈ . Let 
pSPS  denote the set of integral solutions that 

are feasible relative to block-diagonal set pE  for Pp∈ : 

{ }{ }VvxEvuxxZS vpvu
|V|

SPp
∈∀∈∈≤+∈= + 1,0,),(:1:x  and 
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let 
pSPC  = )(

pSPSconv . The block diagonal set Pp∈  in Cloning ( pE ) incorporates 

the inequalities associated with edges in pE  as well as those associated with clones. 

≤
CSL  denotes the polytope corresponding to the inequalities associated with clones. A 

block diagonal set Pp∈  incorporates a set of inequalities corresponding to clones that 

are added into p . In other words, block diagonal set p  incorporates a subset of 

inequalities from the set (of inequalities) that defines ≤
CSL (i.e., 1≤+ wu xx  where vDw∈  

and Evu ˆ),( ∈ ) for which wup ππ == . Let ≤
pCSL  denote the polytope associated with 

inequalities (corresponding to clones) that are added to partition Pp∈  such that 

I Pp CSCS p
LL

∈
≤≤ = . 

pSPS  consists of integer points, which are feasible with respect to edge 

inequalities pE as well as inequalities corresponding to ≤
pCSL . Let ≤

pCSS  denote the set of 

integer solutions that are feasible relative to ≤
pCSL . The feasible integer solutions with 

respect to a block-diagonal set p  in Cloning may be written as: 

I ≤′=
ppp CSSPSP SSS .        (30) 

=
CSL  gives the polytope associated with the coordinating set in Cloning as it consists 

of equalities, each of which relates a cloned vertex with one of its clones. Let CSL  

denote this polytope: 

{ }VvxDwKvxxRLL vvvw
|V|

CSCS ∈∀≤≤∈∈∀=∈== +
= 10,,:x . 

Let CR  denote the polytope formed by the intersection of CSL and 
pSPC : 
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I
Pp

SPCSC p
CLR

∈

= .        (31) 

Proposition 2: OC RR ⊆ . 

Proof: From (30), we have I ≤′=
ppp CSSPSP SSS , 

I )()( ≤′=⇒
ppp CSSPSP SSconvSconv , 

I )()()( ≤′⊆⇒
ppp CSSPSP SconvSconvSconv , 

I ≤′⊆⇒
ppp CSSPSP LSconvSconv )()( ,   (as )( ≤

pCSSconv  ≤⊆
pCSL ), 

( )III ≤

∈∈

′⊆⇒
ppp CSSP

PpPp
SP LSconvSconv )()( , 

I III ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′⊆⇒

∈

≤

∈∈ Pp
CS

Pp
SP

Pp
SP ppp

LSconvSconv )()( , 

III ≤

∈∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′⊆⇒ CS

Pp
SP

Pp
SP LSconvSconv

pp
)()( , (as I Pp CSCS p

LL
∈

≤≤ = ). 

From (31), I
Pp

SPCSC p
CLR

∈

= I
Pp

SPCS p
SconvL

∈

= )( ; and substituting forI
Pp

SPp
Sconv

∈

)( ,  

I
Pp

SPCSC p
SconvLR

∈

= )( II
Pp

SPCSCS p
SconvLL

∈

≤ ′⊆ )( , 

II
Pp

SPCSCSC p
SconvLLR

∈

≤= ′⊆⇒ )( ,   ( Since CSL  = =
CSL ). 

Using (29),  OC RR ⊆ . Q.E.D. 

Finally, using LRCS O ⊆⊆⊆ from (28) and OC RR ⊆ , we have 

LRRCS OC ⊆⊆⊆⊆ . Let *
LZ  and *

CZ  denote the optimal solution values obtained by 

solving the MWISP objective function (1) on polytopes L  and C , respectively. 
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Similarly, let *
CRZ  and *

ORZ  denote the optimal solution obtained by solving the 

MWISP on polytopes CR  and OR  , respectively. Thus, 

*****
LRRCMWISP ZZZZZ

OC
≤≤≤= . 

Proposition 3: In B&P search tree, Cloning gives tighter bound at the root node than the 

bound obtained by the OBP. 

Proof: From (27) and (31), we have 

I
Pp

SPCSC p
CLR

∈

= and I
Pp

SPCSO p
CLR

∈

= . 

If we apply DWD to the constraint set of OR , the constraints that form CSL  are 

relegated to form the constraints in the RMP of the OBP model (see (2)-(5)) and those 

that form 
pSPC  create the constraint set for the sub-problem (see (6)). Similarly if we 

apply DWD to the constraint set of CR , the constraints in CSL  form the constraints in 

the RMP of the Cloning model and those in 
pSPC  creates the constraint set for sub-

problem. Since **
OC RR ZZ ≤ , it implies that Cloning gives tighter bound at the root node 

than the bound obtained by the OBP model. Q.E.D. 

However, should sub-problems exhibit the Integrality Property, (i.e., all extreme 

points of 
pSPL  for Pp∈  are integral), 

***
LRR ZZZ

OC
== . 

Hence, to obtain a tighter bound, it is imperative that sub-problems avoid the 

Integrality Property. 
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CHAPTER V 

IMPLEMENTATION ISSUES 

Cloning involves two key issues: (a) Selecting vertices to be cloned, (b) Assigning 

weights to clones. We discuss these issues and propose solutions in this chapter. We 

present the overall algorithmic steps involved in solving the MWISP by our B&P 

approach and introduce a new concept, Partial Cloning, developed to exploit the 

desirable virtues of both OBP and Cloning approaches. 

5.1 Selecting Vertices for Cloning 

Each vertex that is cloned increases the size of the partition (i.e., sub-problem) into 

which it is cloned as well as the number of equality constraints (in the RMP). Especially 

in dense graphs, Cloning may add a large number of vertices, resulting in larger sub-

problems that are more difficult to solve. Thus, it is imperative that Cloning duplicate 

the minimum number of vertices. For example, in Figure 2, to replace edges ( 2v , 3v ) and 

( 6v , 3v ), either 2v  and 6v  could be cloned into partition 2, increasing its size by two 

vertices (and two edges) or 3v  could be cloned into partition 1, increasing its size by 

only one vertex (and, of course, two edges). This issue can be resolved by solving an 

appropriate set covering problem. Using binary decision variables 1=vpy  if vertex v  is 

cloned into partition p  and 0=vpy  otherwise, the set covering problem may be 

formulated as follows: 
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,:
ˆ ⎭

⎬
⎫

⎩
⎨
⎧

∩∈= ∑∑
∈ ∈

m
sc

Vv Pp
vp BQyMinZ y       (32) 

where 

   { }qpvpuq
m

sc VvVuEuvyyRQ ∈∈∈∀≥+∈= +  and,ˆ1:y  and )1|(||ˆ| −= PVm .   

The set covering problem is NP-Hard [12], but a “near optimal” solution would suit 

our purpose so we propose a modified version of the greedy set covering heuristic [19] 

to quickly obtain a solution. We refer to this heuristic as the modified set covering 

heuristic: 

Step 1:  0=i , =K ∅, vD = ∅ Vv ˆ∈∀ ; pp VV =  and pp EE = for all Pp∈ . 

Step 2: For every vertex Vv ˆ∈ , determine )(vN p  from Ê . 

Step 3: Calculate { }pVvPpvNvN vpp
≠∈∈= π,ˆ,  :)(max)( *

* . )( *
* vN

p
 identifies 

the vertex *v  to be cloned as the one adjacent to the largest number of vertices 

not in the same partition (i.e., vπ ) and the partition *p  into which it would be 

cloned. Clone vertex *v  into partition *p  as vertex w .  

Step 4: Update; { }U wDD vv ← , { }wVV pp U← , 

{ })(:),( *
* vNuwuEE

ppp ∈← U , }{vKK U← , 

{ })(:),(\ˆˆ **
* vNuvuEE

p
∈← and )( if\ˆˆ vNvVV p= = ∅ Pp∈∀ , pv ≠π . 

Step 5: Repeat Steps 2, 3 and 4 until V̂ = ∅. 

Step 6: For Kv∈ , vDw∈  are the clones of vertex v .  
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5.2 Assigning Weights 

Appropriate weights must be assigned to a cloned vertex and its clones. To be an 

exact copy, a clone should have the same weight as that of its originating vertex but this 

would increase the total weight in the graph so that the optimal solution to the MWISP 

on the graph with clones would not be the same as that on the original graph. We 

implemented two strategies that result in total weights that are the same in both the 

original graph and the one that results from cloning. One strategy is to divide the weight 

of an originating vertex equally among the set of copies. Another, and in fact the 

simplest, strategy is to assign a null-weight to clones. The chapter on computational 

evaluation compares the impacts of these strategies on run-time. 

5.3 Solving the MWISP 

Cloning may be detailed as follows: 

Step 1: Partition an original graph into P  partitions using METIS [15, 16, 17]. 

Step 2: Apply the modified set covering heuristic to select the set of vertices to be 

cloned and identify the clones for each. Update the RMP to include equalities 

corresponding to equivalence relationships between each originating vertex and 

its clones. Update sub-problems to include clones ( vDw∈ ) and their associated 

edge inequalities. 

Step 3: Solve the Cloning formulation utilizing the MCP algorithm to solve sub-

problems. At each iteration, re-optimize RMP over “known” columns and use 

the resulting dual variables to define the objective function coefficients of 
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decision variables in sub-problems. Use a pool to store the columns generated 

by the sub-problems. Maintain previously generated columns in the pool and 

optimize over these “known” columns before solving sub-problems in an 

attempt to conserve run-time. Branch on clique inequalities as described in 

Warrier et al [25]. 

5.4 Partial Cloning 

Warrier et al [25] observed that the OBP results in large  so that the RMP may 

comprise a large number of constraints and require a lengthy solution time. Cloning 

decreases the number of RMP constraints because the modified set covering heuristic 

(Section 5.1) seeks the minimum number of vertices to clone. On the other hand, this 

approach adds clones to partitions, increasing the size of individual sub-problems and 

making them more challenging for the MCP algorithm to solve. Hence, Cloning 

introduces a trade off by which problem complexity can be distributed among the RMP 

and sub-problems. 

|ˆ| E

The sizes of the partitions (sub-problems) can be controlled to some extent by 

specifying the number of partitions that METIS is required to develop. However, the pV  

and pE  depend on the characteristics of partitions created by METIS and the set of 

clones prescribed by the modified set covering heuristic. 

We propose a new approach to achieve a favorable trade-off between the size 

(and tightness) of the RMP and the sizes of the sub-problems. This approach, which we 

call Partial Cloning, may not clone all vertices in , perhaps retaining some edge Ê
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inequalities in the RMP. We update step (2) of the modified set covering heuristic 

(Section 5.3) to implement Partial Cloning by setting a threshold (PCThreshold) to affect 

the vertex selected for cloning. To implement Partial Cloning, Step 2 in the heuristic 

given in chapter 5.1 is updated to be: 

Step 2 (updated): If  { }>∈∈ VvPpvN p
ˆ,  :)(max  PCThreshold , continue to Step 3,  

else go to Step 5.  

This modification allows the RMP to retain some edge inequalities while including 

equalities associated with clones. Henceforth, we use Complete Cloning (CC) to specify 

the approach where all the edges in Ê  are relocated by cloning and use Partial Cloning 

(PC) to specify the approach in which only a subset of edges in Ê  are relocated. We set 

PCThreshold to 1 in our tests so the modified set covering heuristic adds clones 

corresponding to those vertices Vv ˆ∈  and partition Pp∈ , for which 1|)(| >vN p  

for pv ≠π . If PCThreshold is set to 0, Complete Cloning results, yielding larger, more 

sparse sub-problem that are more challenging for MCP algorithm to solve. 
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CHAPTER VI 

COMPUTATIONAL EVALUATION 

We compare CC, PC, OBP and MCP computationally using two types of instances: 

(1) DIMACS Instances taken from the Second DIMACS Implementation Challenge 

[14], and (2) random p- graphs: These random graphs are generated by specifying the 

number of vertices V  and value p (probability that edge ),( vu  is included in the graph). 

We conducted all tests on a Dell PC with a 3.06 GHz Pentium IV processor and 512 MB 

of memory using the Visual C++ environment and CPLEX 7.1. 

Preliminary testing of the two Cloning approaches (CC and PC) each using the two 

weight-assignment strategies (Chapter 5.2) showed that assigning null weights to clones 

performs better than assigning each clone the same weight associated with its originating 

vertex. Hence, we presents results that assign null weights to all clones. 

We select || P  based on the criterion that the resulting sub-problem, after 

partitioning and cloning, should be less challenging for MCP to solve. However, there is 

no definite way to ascertain the size of sub-problems that will result from Cloning. 

Preliminary tests showed that, for graphs with 100 or more vertices and edge densities 

less than 40%, ≥|| P  6 results in sub-problems that MCP can solve effectively and for 

graphs having edge densities greater than 40%, =P 2 or 3 results in sub-problems that 

MCP can solve effectively. 
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The Partial Cloning parameter, PCThreshold, affects the mix of equalities and 

inequalities in the RMP. We set the default value of PCThreshold to 1. On some 

instances, a value of 1 leads to as many clones as in CC (because for all Vv ˆ∈ , 

1|)(| >vN p  Pp∈ , pv ≠π ). Hence, in these cases, PCThreshold  is set to |ˆ| E / M, 

where M is equal to∑ ∈Kv vD || . |ˆ| E / M gives the average number of vertices that a 

vertex Vv ˆ∈  is connected by edges Evu ˆ),( ∈ . 

Table 1 compares the performances of the three B&P approaches (OBP, CC and PC) 

and MCP in application to the DIMACS instances. Performance measures include the 

number of constraints in RMP, optimal solution at root node of the B&B tree, and 

computational time(in cpu seconds). The first five columns give the name of instance; 

number of vertices, V ; density; *
MWISPZ ; and number of partitions, P . Columns 6-8 

give the number of equality constraints in the RMP for OBP, CC, and PC, respectively 

(the number in the braces give the number of inequalities in the RMP corresponding to 

edge inequalities). In OBP, RMP comprises only inequalities, and in CC, RMP 

comprises only equalities. In PC, RMP comprises a mix of inequality and equality 

constraints. Columns 9-11 give *
LPZ (OBP), *

LPZ (CC) and *
LPZ (PC), the optimal solution 

at the root node (of B&B tree) for OBP, CC and PC, respectively. The optimal solution 

at root node gives an upper bound on *
MWISPZ . Computational results confirm that CC and 

PC give upper bounds that are tighter than the one that OBP gives and, as expected, 

*
LPZ (CC) ≤ *

LPZ (PC) ≤ *
LPZ (OBP).  
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Table 1  Performance measures for DIMACS instances.  

Graph  |V Density ZIP |P| Number of RMP ZLP Time (in sec)   

          OBP C1 C2 OBP C1 C2 OBP C1 C2 WCP 

 1  2 3  4  5 6  7  8   9 10  11   12 13  14   15 

                       

johnson824comp 28 44 4 2 (64) 13 1(56) 5.75 4 5 0.38 0.2 0.27 
johnson824comp 28 44 4 3 (103) 29 25(4) 8 4.25 4.25 0.75 0.13 0.063 
johnson824comp 28 44 4 4 (100) 39 29(10) 6.5 4 4.5 0.52 0.09 0.094 
johnson824comp 28 44 4 5 (124) 45 39(6) 9.5 4.5 4.5 1.38 0.11 0.078 

0.02 

                       
johnson844comp 70 23 14 3 (240) 69 59(10) 15 14 14 1.02 78.33 22.87 
johnson844comp 70 23 14 5 (374) 127 93(34) 21.25 14 14 19.47 52.97 6.66 
johnson844comp 70 23 14 8 (381) 161 104(57) 17.5 14 14 10.34 18.22 1.39 

14.89 

                       
manna9comp 45 7 16 2 (10) 9 1(8) 17.67 17.6 17.6 9.63 29.83 8.422 
manna9comp 45 7 16 3 (16) 14 2(12) 18 17.75 17.75 1.38 4.66 1.187 
manna9comp 45 7 16 4 (25) 19 6913) 20 17.86 18.5 3.14 3.67 0.781 
manna9comp 45 7 16 5 (26) 21 5916) 19 18 18 1.31 1.53 0.469 
manna9comp 45 7 16 6 (29) 23 6(17) 19.5 18 18 2.41 1.36 0.469 

620.97

                       
cfat2001comp 200 92 12 2 (8999) 97 29(6253) 13.5 12 13 2.13 0.72 2.03 
cfat2001comp 200 92 12 3 (12137) 196 87(6575) 15 12 12.33 10.44 3.1 8.08 

0.11 

                         
cfat2002comp 200 84 24 2 (7952) 97 30(5404) 30 24 27.5 14.3 544.69 16.13 0.42 

                       
hamming62comp 64 10 32 4 (64) 64 0(64) 32 32 32 0.22 135.77 0.22 
hamming62comp 64 10 32 5 (101) 67 27(40) 32 32 32 0.19 17.05 0.89 
hamming62comp 64 10 32 6 (114) 75 33(42) 32 32 32 0.42 21.66 1.25 

71.75 

                        
hamming82comp 256 3 128 20 (626) - 95(414) 128 - 128 3.3 - 27.05  - 

                       
johnson1624comp 120 23 8 10 - - 253(162)  - - 8.5 -  - 23.74  - 
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 In fact, (CC) =  for most of the instances (giving an integrality gap of 

0%). Furthermore, with an increase in 

*
LPZ *

MWISPZ

P , the bound gets weaken (integrality gap 

increases) for each of the three B&P approaches. Figures 5 and 6 shows variation of 

(OBP), (CC) and (PC) with increase in *
LPZ *

LPZ *
LPZ P  for “manna9comp” and 

“johnson824comp” respectively.  

Columns 12-14 compare the run times (cpu seconds) required by OBP, CC and PC to 

solve each instance, excluding the times required for partitioning and cloning, which are 

trivial. Column 15 gives the run time required to solve each instance by MCP.  A “-” 

indicates that the corresponding instance requires more than 12 hours of run time. We 

found that, as P  increases, the run time required by each B&P approach to solve an 

instance varies depending upon whether the instance is dense or sparse. For dense 

instances, run time increases with an increase in P  and, for sparse instances run time 

first decreases and then increases as P  increases, so some value of P  gives minimum 

run-time for sparse graphs. We vary the value of P  for a few representative instances 

(e.g., manna9comp, johnson824 comp) to show the variation in run-time as P  

increases. For the remaining instances, we tabulate results for those P  that give 

minimum run-time (for e.g., we set P  = 10 for johnson1624comp and P  = 20 for 

hamming82comp). PC gives quite competitive results for most of the DIMACS 

instances. Figures 7 and 8 shows variation of run time for three B&P approaches with 

increase in P  for “manna9comp” and “johnson824comp” respectively.  
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Table 2 reports application of the three B&P approaches to random p-graphs, using 

the same column headings. “W0” in the name of instance indicates an un-weighted 

graph and “W1” indicates a weighted graph. Run times reported in columns 12-14 of 

Table 2 show that MCP outperforms all three B&P approaches on random instances 

having densities greater than 40%. For instances with densities below 20%, all three 

B&P approaches perform better than MCP. Comparing run times in columns 12-14 

shows that weighted graphs are generally less challenging to solve than un-weighted 

graphs. Although CC never gives the best run-time, it gives quite competitive results for 

highly dense and highly sparse instances. Furthermore, as observed in DIMACS 

instances, for all the random graphs, we have *
LPZ (CC) ≤ *

LPZ (PC) ≤ *
LPZ (OBP). 

To gain further insight into the performance of B&P approaches for solving the 

MWISP, we compare several additional performance measures in Tables 3 and 4, which 

relates to the instances reported in Tables 1 and 2. Columns 1 and 2 in Tables 3 and 4 

give the name of the instance and the number of partitions, P , respectively. Columns 3-

5 give number of RMP iterations required and columns 6-8 give number of nodes 

explored in the B&B tree to obtain an optimal integral solution by each of the three B&P 

approaches. If the number of nodes explored is zero, the optimal integer solution was 

obtained at root node of the B&B search tree (i.e., *
LPZ (CC) = *

MWISPZ ). PC typically 

explores a number of B&B nodes that is between the numbers of nodes required by CC 

and OBP.   
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Graph  |V| Density ZIP |P| number of RMP ZLP Run time (in sec)  

     (%)     OBP CC PC OBP CC PC OBP CC PC WCP 
1  2  3  4  5  6  7   8 9  10  11   12 13  14   15 

                         

RG_GV1_W1_P05 100 5 481 10 (150) 111 32(79) 529.50 496.17 501.70 20.73 70.33 5.67 -  
                        

RG_GV1_W0_P10 100 10 30 10 (349) 222 97(125) 41.25 34.57 36.52 283.47 4344.48 463.27 -  

RG_GV1_W1_P10 100 10 371 10 (349) 222 97(125) 478.00 402.25 422.87 68.77 2819.42 41.25 -  
                        

RG_GV1_W0_P20 100 20 19 10 (789) - 234(122) - - 24.88  - - 571.82 

RG_GV1_W1_P20 100 20 246 10 (789) - 234(122) 399.00 - 289.63 273.15 - 2549.91
566.61

                        

RG_GV1_W0_P30 100 30 15 10 (1231) - 341(105) 31.50 - 18.79 677.49 - 1434.20

RG_GV1_W1_P30 100 30 193 10 (1231) - 341(105) - - 219.38 -  - 583.49 
36.25 

                        

RG_GV1_W0_P40 100 40 12 6 (1517) - 254(14) 21.50 - 12.00 139.43 - 891.23 

RG_GV1_W1_P40 100 40 161 6 (1517) 268 254(14) 272.50 161.00 161.00 86.90 935.03 759.63 
3.89 

                        

RG_GV1_W0_P50 100 50 9 2 (1089) 49 32(320) 12.75 9.00 11.00 19.30 141.14 51.55 

RG_GV1_W1_P50 100 50 120 2 (1089) 49 32(320) 170.00 120.00 141.00 15.34 112.92 34.73 
0.88 

                         

RG_GV1_W0_P60 100 60 7 2 (1325) 49 32(399) 10.00 7.00 9.50 13.55 11.79 14.41 

RG_GV1_W1_P60 100 60 52 2 (1325) 49 32(399) 68.20 52.00 61.00 6.02 29.87 8.55 

RG_GV1_W0_P60 100 60 7 4 (2067) 150 132(182) 16.00 7.00 8.22 83.28 27.04 40.75 

RG_GV1_W1_P60 100 60 52 4 (2067) 150 132(182) 98.50 52.00 52.00 40.67 103.69 27.21 
                      

0.30 

RG_GV1_W0_P70 100 70 7 2 (1573) 49 37(328) 9.00 7.00 7.67 1.89 7.34 3.27 

RG_GV1_W1_P70 100 70 41 2 (1573) 49 37(328) 60.00 41.00 48.33 5.27 6.56 4.02 

RG_GV1_W0_P70 100 70 7 4 (2444) 151 139(148) 12.00 7.08 7.43 24.03 25.93 14.95 

RG_GV1_W1_P70 100 70 41 4 (2444) 151 139(148) 77.00 43.41 46.07 31.21 19.14 13.14 
                      

0.94 

RG_GV1_W0_P80 100 80 5 2 (1875) 50 36(478) 7.67 5.00 6.50 3.13 1.25 1.22 

RG_GV1_W1_P80 100 80 38 2 (1875) 50 36(478) 51.50 38.00 41.67 1.41 1.15 1.11 

RG_GV1_W0_P80 100 80 5 4 (2878) 152 140(156) 9.50 5.00 5.67 16.47 4.92 5.70 

RG_GV1_W1_P80 100 80 38 4 (2878) 152 140(156) 68.00 38.00 38.00 12.03 5.13 2.25 
                      

0.03 

RG_GV1_W0_P90 100 90 4 2 (2159) 49 43(235) 6.00 4.00 4.85 1.48 1.39 0.44 

RG_GV1_W1_P90 100 90 32 2 (2159) 49 43(235) 43.00 32.00 34.60 1.02 0.33 0.44 

RG_GV1_W0_P90 100 90 4 4 (3272) 152 118(622) 8.80 4.25 5.55 8.31 2.85 2.69 

RG_GV1_W1_P90 100 90 32 4 (3272) 152 118(622) 63.50 32.00 41.75 7.09 0.73 1.72 

0.02 

Table 2  Performance measures for p-graphs.  
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 Table 3  Additional performance measures for DIMACS instances. 

Graph  |P| 

    
number of RMP 

iterations 
number of B&B 

nodes 
% of time to 

clone % of time to obtain ZLP
% of time to solve 

sub-problems 

    OBP  CC PC OBP CC PC CC PC OBP CC     PC OBP CC PC 

 1 2  3  4       5 6  7  8  9  10  11  12  13  14  15  16  

                        

johnson824comp 2 320 23 319 34 0 35 4.01 0.00 33.33 91.63 43.08 37.33 41.87 45.51
johnson824comp 3 981 409 66 98 0 0 0.00 4.65 2.13 87.20 100.00 54.00 49.60 76.19
johnson824comp 4 746 65 67 56 0 0 1.62 9.01 2.91 84.04 82.97 30.29 67.02 65.96
johnson824comp 5 1906 116 97 169 0 0 4.76 5.83 2.25 86.24 79.48 29.67 72.48 0.00 

                         
johnson844comp 3 260 407 185 14 0 0 0.02 0.27 13.78 99.98 100.00 73.82 98.52 98.69
johnson844comp 5 11172 664 265 399 0 0 0.14 1.56 0.96 99.98 99.78 28.93 85.86 83.63
johnson844comp 8 7648 645 230 231 0 0 0.73 6.44 0.61 99.71 97.77 15.56 58.87 36.30

                         
manna9comp 2 291 623 283 24 21 21 0.00 0.00 34.10 26.87 37.11 98.88 99.53 99.07
manna9comp 3 480 1258 512 24 32 27 0.00 1.11 20.44 18.45 26.28 87.49 89.54 83.99
manna9comp 4 3062 1889 591 143 37 22 0.49 0.00 4.97 16.61 29.96 65.55 74.13 70.04
manna9comp 5 2260 1603 754 99 30 24 0.93 0.00 5.94 9.21 13.43 52.40 52.91 40.51
manna9comp 6 4368 1495 809 168 28 24 1.00 0.00 2.62 11.55 9.81 45.93 59.16 49.68

                         
cfat2001comp 2 61 24 60 5 0 5 38.82 15.80 18.40 97.93 23.80 5.79 97.93 8.50 
cfat2001comp 3 244 114 167 18 0 0 35.83 17.00 6.43 98.45 39.53 1.63 92.39 7.10 

                         
cfat2002comp 2 351 101 948 20 0 19 0.50 2.20 2.62 99.99 27.51 13.99 99.98 43.08

                         
hamming62comp 4 40 256 40 0 0 0 0.02 0.00 93.98 99.99 100.00 87.97 99.61 85.39
hamming62comp 5 68 585 90 0 0 0 0.18 1.53 91.49 100.00 98.31 41.49 90.31 87.98
hamming62comp 6 111 524 91 0 0 0 0.22 0.87 96.21 99.93 98.08 55.92 92.79 92.06

                          
hamming82comp 20 329 - 860.00 0 - 0.00 - 2.40 99.92 - 93.93 16.45 - 14.15

                          
johnson1624comp 10 -  - 355  - - 0.00 - 2.89 -  - 99.82 -  - 89.68
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Graph  |P| 

    
number of  

RMP iterations 
number of  

B&B nodes 
% of time  
to clone 

% of time  
to obtain ZLP

% of time to  
solve sub-problems 

    OBP CC PC OBP CC PC CC PC OBP CC PC OBP CC PC 

 1 2 3  4  5  6  7  8 9  10  11  12  13  14  15  16  

                       
RG_GV1_W1_P05 10 6516 7339 2646 81 15 25 0.18 1.04 1.73 12.90 9.38 66.01 49.61 50.39

                       
RG_GV1_W0_P10 10 157482 103880 129175 2474 132 890 0.01 0.10 0.13 3.53 0.71 11.84 42.63 21.85
RG_GV1_W1_P10 10 30271 76771 10661 403 78 58 0.01 0.45 0.59 3.74 5.61 27.59 35.74 30.36

                       
RG_GV1_W0_P20 10 - - 242987 -  - 857 - 0.02 - - 1.52  - - 27.11
RG_GV1_W1_P20 10 91948 - 49898 1897 - 145 -  0.08 0.15 - 5.03 8.53 - 31.35

                       
RG_GV1_W0_P30 10 145002 - 48455 4009 - 83 - 0.05 0.07 - 9.21 6.76 - 39.58
RG_GV1_W1_P30 10 - - 15702 -  - 23 - 0.23 - - 21.17  - - 45.36

                       
RG_GV1_W0_P40 6 31227 - 1059 1210 - 0 - 0.06 0.17 - 99.99 7.64 - 97.54
RG_GV1_W1_P40 6 18139 1388 1107 633 0 0 0.06 0.07 0.31 99.99 99.99 7.40 95.44 98.28

                       
RG_GV1_W0_P50 2 2826 528 1355 213 3 34 0.09 0.44 5.10 67.22 41.65 53.99 99.51 90.54
RG_GV1_W1_P50 2 3026 231 1721 221 0 39 0.11 0.24 2.85 99.98 30.62 40.12 99.66 93.05

                       
RG_GV1_W0_P60 2 2405 110 1694 212 0 60 1.12 1.01 1.96 99.87 29.17 34.70 98.80 78.53
RG_GV1_W1_P60 2 947 222 700 77 0 19 0.51 1.53 7.53 99.65 52.11 46.55 99.11 85.04
RG_GV1_W0_P60 4 14120 401 1321 958 0 5 1.67 1.33 0.21 99.88 58.02 10.83 91.61 84.20
RG_GV1_W1_P60 4 6434 1029 433 382 0 0 0.43 1.76 0.50 99.98 99.94 9.20 93.66 90.35

                        
RG_GV1_W0_P70 2 318 163 228 27 0 4 2.13 4.61 6.61 99.79 61.24 30.05 97.67 82.79
RG_GV1_W1_P70 2 1012 150 580 97 0 20 2.58 4.25 2.07 99.75 47.06 21.98 97.85 76.66
RG_GV1_W0_P70 4 3673 3064 1385 247 8 7 2.01 4.23 0.84 35.85 57.26 4.89 61.32 58.60
RG_GV1_W1_P70 4 4871 2453 2051 344 7 16 2.71 4.64 0.60 37.87 32.87 4.89 59.22 50.48

                         
RG_GV1_W0_P80 2 573 94 303 60 0 16 10.55 9.72 2.50 98.72 28.21 13.95 93.76 42.32
RG_GV1_W1_P80 2 244 90 188 25 0 6 10.95 12.03 6.69 98.62 59.09 21.19 90.68 57.47
RG_GV1_W0_P80 4 2266 360 736 185 0 5 11.12 10.94 1.23 79.16 54.51 4.35 58.51 44.64
RG_GV1_W1_P80 4 1638 463 273 128 0 0 10.32 21.03 1.43 99.68 97.91 3.91 80.34 65.86

                        
RG_GV1_W0_P90 2 178 81 59 12 0 0 10.64 18.57 4.18 96.62 96.35 22.04 83.10 56.85
RG_GV1_W1_P90 2 174 64 145 20 0 6 23.18 23.32 6.10 95.12 42.69 9.15 61.58 60.73
RG_GV1_W0_P90 4 1060 315 543 102 0 9 24.08 18.34 3.38 98.35 52.90 3.59 31.62 14.99

RG_GV1_W1_P90 4 886 260 412 81 0 7 35.68 26.48 3.09 97.80 33.62 3.98 48.64 26.41

                

Table 4  Additional performance measures for random p-graphs.  
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Columns 9-10 give the percentage of computational time spent in Cloning relative to 

the total run time. Columns 11-13 give the percentage of time utilized to obtain optimal 

solution at root-node relative to the total time spent in obtaining . Results show 

that, for CC and PC, more than 90% of run time is spent in obtaining root-node 

solutions, (CC) and (PC). Columns 14-16 give the percentage of time required 

to solve sub-problems using the MCP algorithm relative to the time spent in prescribing 

an integral optimal solution. 

*
MWISPZ

*
LPZ *

LPZ

Results show that OBP spends a smaller percentage of run time to solve sub-

problems than CC and PC. OBP leads to sub-problems that are less challenging for MCP 

to solve, but gives a weak (OBP) bound (see Tables 1 and 2). Because the upper 

bound is weak, OBP requires exploration of more nodes in the B&B search tree. (see 

Columns 6-8 in Tables 3 and 4) increasing the number of times the RMP is optimized, 

and, hence, the total number of RMP iterations (see Columns 3-5 in Tables 3 and 4). As 

a result, OBP spends most of the time optimizing the RMP and relatively little time 

solving sub-problems. In contrast, both CC and PC spend a considerable percentage of 

run time solving sub-problems. Cloning may increase the size of sub-problems 

dramatically, making them challenging for MCP but giving tighter bounds. Because 

upper bounds (CC) and (PC) are tight, CC and PC both explore fewer B&B 

nodes and, thus, require less run time to optimize. 

*
LPZ

*
LPZ *

LPZ

Further, we compare the three B&P approaches in application to random p-graphs 

with densities less than 10%. Table 5 gives results for these graphs with the same 
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column headings used in Tables 1 and 3. For CC, run time increases rapidly with an 

increase in graph density. However, the (CC) bound is better than (PC) and 

(OBP) for all the test cases. 

*
LPZ *

LPZ

*
LPZ

We conjecture that Cloning may work better in application to instances for which the 

resulting sub-problems are less challenging for MCP to solve. Increasing the value of P  

may result in desirable sub-problems but weakens the upper bound and increases the 

overall run time by increasing the number of B&B nodes (which increases the time spent 

in optimizing the RMP). 
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 Table 5  Performance measures for sparse random p-graphs.  

Graph  |V| Density ZIP |P| ZLP run time (in sec)   

          

number of  
RMP constraints 

           

    (%)     OBP CC PC OBP CC PC OBP CC PC WCP
1  2  3  4  5 6  7  8  9  10  11  12  13  14  15  

                         

RG_GV1_W1_P0.02 100 2 656 10 (30) 25 5(20) 656.00 656.00 656.00 0.25 1.03 0.36  - 
                       

RG_GV1_W1_P0.03 100 3 575 10 (70) 61 6(55) 575.00 575.00 575.00 0.17 1.63 0.19  -  
                       

RG_GV1_W1_P0.04 100 4 521 10 (108) 91 17(74) 534.00 525.20 526.67 3.50 24.19 1.64  - 
                       

RG_GV1_W1_P0.05 100 5 481 10 (150) 111 32(79) 529.50 496.17 501.71 17.92 67.95 5.16  - 
                        

RG_GV1_W1_P_0.06 100 6 448 10 (179) 136 39(97) 504.50 469.50 487.50 9.72 108.12 10.36  - 
                        

RG_GV1_W1_P_0.07 100 7 432 10 (248) 163 64(99) 521.50 457.00 469.50 26.05 583.67 26.84  - 
                        

RG_GV1_W1_P_0.08 100 8 406 10 (273) 180 70(110) 517.50 429.50 449.33 63.46 349.80 37.90  - 
                        

RG_GV1_W1_P_0.09 100 9 386 10 (297) - 77(121) 479.00 - 431.65 61.35 - 36.23  - 
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CHAPTER VII 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

This thesis contributes a new vertex cloning approach to solve the MWISP within a 

B&P framework. This thesis achieves its objectives: formulation of the Vertex Cloning 

approach, analysis showing that Vertex Cloning yields a tighter formulation, effective 

methods to implement Vertex Cloning, and analysis of the computational efficacy of 

Vertex Cloning. This thesis also presents a variant of Cloning, Partial Cloning, which 

results in a mix of inequalities and equalities in the RMP. We compared the three B&P 

approaches on DIMACS instances as well as random p-graphs. 

The B&P approach for solving the MWISP is built on the basic idea of decomposing 

the graph into smaller sub-graphs that are less challenging to solve. Warrier et al [25] 

developed their B&P approach for the MWISP by creating vertex-disjoint sub-graphs. 

Cloning enhances this idea by creating clones of vertices to convert a vertex-disjoint 

partition into an edge-disjoint partition. Cloning improves the OBP approach by creating 

a smaller RMP that gives tighter upper bounds at nodes of the B&B tree. 

Cloning provides excellent bounds for the MWISP, but it may require lengthy 

runtime because it leads to larger sub-problems that may be more challenging to solve. 

In contrast, the RMP associated with OBP gives a weak bound but the approach requires 

less total run time because its sub-problems are smaller and can be solved more 

effectively. PC results in somewhat less challenging sub-problems than does CC and it 
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gives tighter bounds than does the OBP. Consequently, PC solves MWISP effectively on 

both dense and sparse graphs. 

Future research in this area could be directed towards developing efficient methods 

to create smaller edge-disjoint partitions that can be solved effectively. In addition, 

developing a more capable algorithm to solve sub-problems would help to reduce total 

run time. 



 44

  

REFERENCES 

[1] V.E. AlekSeev, Polynomial algorithm for finding the largest independent sets in 

graphs without forks, Discrete Applied Mathematics 135 (2004) 3-16. 

[2] E. Balas, C.S. Yu , Finding a maximum clique in an arbitrary graph, SIAM Journal 

on Computing 15 (4) (1986) 1054-1068. 

[3] E. Balas, J. Xue , Minimum weighted coloring of triangulated graphs, with 

applications to maximum weight vertex packing and clique finding in arbitrary 

graphs, SIAM Journal on Computing 20 (2) (1991) 209-221. 

[4] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, P. Vance, Branch-and-

price: column generation for solving huge integer programs, Operations Research 

46 (1998) 316-329. 

[5] M.S. Bazaraa, J. J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, 

2nd edition, John Wiley and Sons, New York, 1990. 

[6] I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelilo, The maximum clique 

problem, in: D.Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial 

Optimization, Kluwer Academic Publishers, Boston, 1999, pp. 1-74. 

[7] S. Butenko, P. Pardalos, I. Sergienko, V. Shyloand, P. Stetsuyk, Maximum 

independent sets in graphs arising from coding theory, in: Proceedings of the 

Seventeenth ACM Symposium on Applied Computing, Madrid, Spain, 2002, pp. 

542-546. 



 45

  

[8] R. Carr, G. Lancia S. Istrail, Branch and cut algorithms for independent set 

problems: integrality gap and an application to protein structure alignment, 

Technical Report SAND2000-2171, Sandia National Labs, Livermore, CA, 2000. 

[9] R. Carraghan, P.M. Pardalos, An exact algorithm for the maximum clique 

problem, Operations Research Letters 9 (1990) 375-382. 

[10] T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search 

procedure for maximum independent set, Operations Research 42 (1994) 860-878. 

[11] A. Frank, Some polynomial algorithms for certain graphs and hyper graphs, in: 

Proceedings of 5th British Combinatorial Conference, Winnipeg, Manitoba, 

Canada, 1975, pp. 211-226. 

[12] M. Garey, D. Johnson, Computers and Intractability: A Guide to Theory of NP-

Completeness, W.H. Freeman & Co., New York, 1979. 

[13] M. Hifi, A genetic algorithm based heuristic for solving the weighted maximum 

independent set and some equivalent problems, Journal of the Operational 

Research Society 48 (6) (1997) 612-622. 

[14] D.S. Johnson, M. Trick, Cliques, Coloring, and Satisfiability: Second DIMACS 

implementation challenge, AMS, Providence, RI, 1996. 

[15] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning 

irregular graphs, SIAM Journal on Scientific Computing 20 (1998) 359-392. 

[16] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph 

partitioning, Technical Report 98-019, Army HPC Research Center, Department 

of Computer Science, University of Minnesota, Minneapolis, 1998. 



 46

  

[17] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, 

Journal of Parallel and Distributed Computing 48 (1998) 96-129. 

[18] A. Mehrotra, M.A. Trick, A column generation approach for graph coloring, 

INFORMS Journal on Computing 8 (1996) 344-354. 

[19] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Programming, John 

Wiley and Sons, New York, 1988. 

[20] G.L. Nemhauser, P.H. Vance, C. Barnhart, E.L. Johnson, Solving binary cutting 

stock problems by column generation and branch-and-bound, Computational 

Optimization and Applications 3 (1994) 111-130. 

[21] P.M. Pardalos, G.P. Rodgers, A branch and bound algorithm for the maximum 

clique problem, Computers and Operations Research 19 (5) (1992) 363-375.  

[22] C. Ribeiro, M. Minoux, Solving hard constrained shortest path problems by 

lagrangian relaxation and branch and bound algorithm, Methods of Operations 

Research 53, in: M. Beckmann et al. (Eds.), Proceedings of the 10th Symposium 

on Operations Research, Munich, Germany, 1985, pp. 305-316. 

[23] M.W.P. Savelsbergh, A branch and price algorithm for the generalized assignment 

problem, Operations Research 45 (1997) 831-841. 

[24] F. Vanderbeck, Decomposition and Column Generation for Integer Programs, 

Ph.D. Thesis, Universite Catholique de Louvain, Belgium, 1994. 

[25] D. Warrier, W.E. Wilhelm, I.V. Hicks, J.S. Warren, A branch and price approach 

for maximum weight independent set problem, Working Paper, Department of 

Industrial Engineering, Texas A&M University, 2004. 



 47

  

[26] W.E. Wilhelm, A technical review of column generation in integer programming, 

Optimization and Engineering 2 (2001) 159-200. 



 48

  

VITA 

Sandeep Sachdeva was born on March 3, 1980 in New Delhi, India. He received his 

Bachelor of Technology degree in mechanical engineering from Indian Institute of 

Technology, Delhi in May 2002. In Fall 2002, he joined the Industrial Engineering 

department at Texas A&M University. He received his Master of Science degree in 

industrial engineering in December 2004. 

 

Permanent Address: 

23/3 Shivpuri 

Delhi-110051 

INDIA  

Phone: (91)-11-22416383 

E-mail: sandeeps@tamu.edu 

        ssachdeva@gmail.com 

 

 


	The Thesis V.pdf
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I   INTRODUCTION
	1.1 Overview
	1.2 Motivation and Objectives
	1.3 Basic Notations
	1.4 Organization of Thesis

	CHAPTER II   LITERATURE REVIEW
	CHAPTER III  VERTEX CLONING APPROACH
	3.1 Concept
	3.2 Formulation

	CHAPTER IV  ANALYSIS OF BOUNDS
	CHAPTER V   IMPLEMENTATION ISSUES
	5.1 Selecting Vertices for Cloning
	5.2 Assigning Weights
	5.3 Solving the MWISP
	5.4 Partial Cloning

	CHAPTER VI  COMPUTATIONAL EVALUATION
	CHAPTER VII SUMMARY, CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES
	VITA


