

DEVELOPMENT OF A BRANCH AND PRICE APPROACH

INVOLVING VERTEX CLONING TO SOLVE THE MAXIMUM

WEIGHTED INDEPENDENT SET PROBLEM

A Thesis

by

SANDEEP SACHDEVA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2004

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4270231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEVELOPMENT OF A BRANCH AND PRICE APPROACH

INVOLVING VERTEX CLONING TO SOLVE THE MAXIMUM

WEIGHTED INDEPENDENT SET PROBLEM

A Thesis

by

SANDEEP SACHDEVA

Submitted to Texas A&M University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Wilbert E. Wilhelm Illya Hicks
 (Chair of Committee) (Member)

 Arun Sen Brett A. Peters
 (Member) (Head of Department)

December 2004

Major Subject: Industrial Engineering

 iii

ABSTRACT

Development of a Branch and Price Approach Involving Vertex Cloning to Solve the

Maximum Weighted Independent Set Problem. (December 2004)

Sandeep Sachdeva, B.Tech., Indian Institute of Technology, Delhi, India

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm

We propose a novel branch-and-price (B&P) approach to solve the maximum

weighted independent set problem (MWISP). Our approach uses clones of vertices to

create edge-disjoint partitions from vertex-disjoint partitions. We solve the MWISP on

sub-problems based on these edge-disjoint partitions using a B&P framework, which

coordinates sub-problem solutions by involving an equivalence relationship between a

vertex and each of its clones. We present test results for standard instances and

randomly generated graphs for comparison. We show analytically and computationally

that our approach gives tight bounds and it solves both dense and sparse graphs quite

quickly.

 iv

DEDICATION

To my parents

 v

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Dr. Wilbert E. Wilhelm for providing

motivation and guidance in pursuing this research. In addition, I would like to

acknowledge the support of Dr. Illya Hicks and other members of the NSF project team

for their valuable suggestions. I am also thankful to my friends for their support

throughout my stay at Texas A&M University.

This material is based in part upon work supported by the Texas Advanced

Technology Program on Grant Number 000512-0248-2001 and by the National

Science Foundation on Grant DMI-9500211.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

DEDICATION ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES.. viii

LIST OF TABLES ... ix

CHAPTER

 I INTRODUCTION ... 1

1.1 Overview .. 1
1.2 Motivation and Objectives ... 2
1.3 Basic Notations... 3
1.4 Organization of Thesis ... 3

 II LITERATURE REVIEW .. 5

 III VERTEX CLONING APPROACH... 9

3.1 Concept... 9
3.2 Formulation .. 14

 IV ANALYSIS OF BOUNDS .. 17

 V IMPLEMENTATION ISSUES.. 24

5.1 Selecting Vertices for Cloning ... 24
5.2 Assigning Weights.. 26
5.3 Solving the MWISP.. 26
5.4 Partial Cloning.. 27

 VI COMPUTATIONAL EVALUATION .. 29

 vii

CHAPTER Page

 VII SUMMARY, CONCLUSIONS AND FUTURE RESEARCH..................... 42

REFERENCES.. 44

VITA ... 48

 viii

LIST OF FIGURES

FIGURE Page

1 Example graph G... 11

2 Vertex disjoint partitions of G ... 11

3 Edge disjoint partitioning of G through vertex cloning 12

4 Edge disjoint partitioning of G by cloning different vertices............................ 12

5 ZLP vs |P| for johnson824comp... 33

6 ZLP vs |P| for manna9comp... 33

7 Run time vs |P| for Johnson 824 comp .. 34

8 Run time vs |P| for manna9comp... 34

 ix

LIST OF TABLES

TABLE Page

1 Performance measures for DIMACS instances... 31

2 Performance measures for p-graphs .. 36

3 Additional performance measures for DIMACS instances............................... 37

4 Additional performance measures for random p-graphs................................... 38

5 Performance measures for sparse random p-graphs.. 41

 1

CHAPTER I

INTRODUCTION

1.1 Overview

Given a graph,),(EVG = where V represents the set of vertices; and E , the set of

edges, a subset of vertices VI ⊆ such that no two vertices in I are adjacent to each other

constitutes an independent set (IS). The problem of finding the independent set of largest

cardinality in a graph is known as the maximum independent set problem (MISP). The

cardinality of the maximum independent set is known as the independence number or the

stability number of the graph. Extending the MISP to vertex-weighted graphs, the

MWISP is to find the independent set of maximum weight. Letting vw represent the

weight associated with vertex v for Vv∈ , the MWISP is to find the independent set I

such that ∑ ∈Iv vw is maximized. Both MISP and MWISP are known to be NP-Hard

[12]. Even though the MWISP can be solved in polynomial time on some specialized

graph structures ([1], [11]); the problem remains NP-Hard on arbitrary graphs.

MISP and MWISP are among the most researched problems in the field of graph

theory. They have large numbers of practical applications in diverse fields, including

protein structure realignment [8], coding theory [7], computer vision [2], experimental

design [2], signal transmission [2], and information retrieval [2].

This thesis follows the style and format of the European Journal of Operational Research.

 2

1.2 Motivation and Objectives

The approach explored in this study involves solving the integer programming

formulation of the MWISP (in edge inequality form) which may be stated as

{ }EvuxxBQQxwMaxZ vu
V

Vv
vvMWISP ∈∀≤+∈=

⎭
⎬
⎫

⎩
⎨
⎧

∈= +
∈
∑),(1:where,: ||* xx , (1)

where 1=vx if vertex v is included in the independent set, and 0=vx otherwise.

Warrier et al [25] developed a branch-and-price (B&P) approach to solve the

MWISP and showed that their approach gives competitive results for sparse graphs.

However, their approach suffers from two major drawbacks: their restricted master

problem (RMP) gives bounds that are not tight and comprises a large number of

constraints, requiring lengthy run times. This study contributes a new B&P approach,

which is directed towards overcoming these shortcomings. This new approach, which we

call Vertex Cloning, is designed to facilitate solution by yielding a RMP with fewer

constraints. We also show that Vertex Cloning provides a tighter formulation, improving

bounds in the branch-and-bound (B&B) tree.

The primary objectives of this study are:

(1) Formulation of the Vertex Cloning approach,

(2) Analysis showing that Vertex Cloning yields a tighter formulation,

(3) Effective methods to implement Vertex Cloning, and

(4) Analysis of the computational efficacy of Vertex Cloning.

 3

1.3 Basic Notations

We consider only simple, undirected, and finite graphs. Most of the notation we use

in this thesis is the same as that used by Warrier et al [25]. We represent an edge as

Ee∈ or, alternatively, by denoting its end vertices as Evu ∈),(where vuVvu ≠∈ ,, .

We use),(EVG ′′=′ to denote the complement graph of G , where VV =′ and

{ }vuVvuEvuE ≠∈∉=′ ,,:),(. We use)(vN to denote the set of v ’s neighbors,

{ }Evuu ∈),(: .

We decompose graph G into || P sets of vertex-induced partitions. We use

),(ppp EVG = for Pp∈ to denote the sub-graph (partition) p , where pV and pE

denote the set of vertices and edges in partition p , respectively. Furthermore, we use Ê

to represent the set of edges that connect vertices in different sub-graphs,

pPp EEE ∈= U\ˆ ; and similarly, V̂ to denote the set of vertices at the ends of edges in

Ê . For Vv∈ , we use vπ to identify the partition into which v is assigned. We use

)(vN p to denote the neighbors of v in partition Pp∈ . Vertex Cloning may duplicate

certain vertices into partition Pp∈ . We use an “over bar” to denote the vertex and edge

sets in partition p after duplication (i.e., pp EV and for Pp∈).

1.4 Organization of Thesis

The remainder of this thesis is organized in six chapters. Chapter II presents a review

of the literature on MWISP, including a detailed discussion of the B&P approach

 4

developed by Warrier et al [25]. Chapter III introduces concepts that underlie Vertex

Cloning and gives a detailed mathematical formulation (objective 1). Chapter IV

discusses properties of polyhedra formed by various B&P formulations (objective 2).

Chapter V discusses implementation issues (objective 3) and Chapter VI analyzes

computational results (objective 4), comparing the performance of several algorithms for

solving the MWISP. Finally, Chapter VII gives summary and recommendations for

future research.

 5

CHAPTER II

LITERATURE REVIEW

A solution to the MWISP can be obtained as the solution to the maximum weighted

clique problem on the complementary graph and the literature describes extensive study

of both problems. The solution methods presented in the literature use variety of

approaches for solving the MWISP, which includes B&B [2, 3, 7, 21], implicit

enumeration [9] and standard heuristic methods like genetic algorithms [13] and greedy

random adaptive search procedures [10]. Bomze et al [6] gave an extensive survey of

algorithms, complexity and applications of maximum clique problem. Recently, Carr et

al [8] described a branch-and-cut approach for the MWISP.

Bazaara et al [5] gave a good description of Dantzig-Wolfe decomposition (DWD)

for linear programming problems. DWD may be applied to the linear relaxation of an

integer programming problem to obtain a bound at each node in the B&B tree in an

approach known as B&P. Over the last twenty years, B&P has been successfully applied

in a wide range of integer programming problems [4, 18, 20, 23, 24, 26]. To apply B&P,

integer programming problems must be decomposed into two sets of constraints; those

that form sub-problem(s) and those that are relegated to the RMP. Barnhart et al [4] and

Wilhelm [26] provided extensive overviews of B&P and gave descriptions of

decomposition methods, and associated implementation issues.

Mehrotra and Trick [18] used B&P to solve the minimum coloring problem, another

important graph problem. The minimum coloring problem is to find the minimum

 6

number of colors that allows each vertex to be colored so that the endpoints of each edge

have different colors. They used a set covering formulation of the coloring problem with

the objective of finding the minimum number of maximal independent sets such that the

union of these sets includes all vertices of the graph. Their RMP consisted of set

covering constraints and their (single) sub-problem involved finding the maximal

independent set.

Warrier et al’s [25] B&P approach partitions a graph into smaller, vertex-disjoint

sub-graphs and solves a MWISP on each sub-graph (sub-problem) to generate columns

that are coordinated by a RMP to obtain the MWIS for the original graph. Their

approach partitions the inequalities associated with edge constraints in (1) into two sets;

one set, the coordinating set, comprises inequalities associated with edges that connect

vertices in different partitions (i.e., Evuxx vu
ˆ),(1 ∈∀≤+); and the other set, P sub-

problems, each consisting of inequalities associated with the respective edges included

in a partition (i.e., pvu Evuxx ∈∀≤+),(1) . They used B&P, forming the RMP (we

duplicate their model here) as:

∑∑
= ∈

=
P

p Jj

jpp
jpLP

p

MaxZ
1

*)(xwλ (2)

s.t. 1)(
1

≤∑ ∑
= ∈

P

p Jj

jp
pjp

p

A xλ (3)

Pp
pJj

jp ∈∀=∑
∈

1λ (4)

pjp JjPp ∈∈∀≥ ,0λ (5)

 7

where

pJ denotes the set of integer extreme points of)(|| pV
p BQconv ∩ ,

jpx is a pV - vector that defines extreme point pJj∈ , and

jpλ is a RMP decision variable that corresponds to extreme point pJj∈ .

Sub-problem Pp∈ is formulated as

{ }||* :)(pV
p

jpjpT
p

p
p BQAwMaxZ ∩∈−= xxα , (6)

where { }pvu
Vp

p EvuxxRQ p ∈∀≤+∈= +),(1:||x and α is an |ˆ| E -vector of dual

variables associated with constraint (3).

They tested two different partitioning procedures; one partitioned an original graph

into chordal sub-graphs and the other used METIS [15, 16, 17], a heuristic that seeks to

minimize the number of edges in Ê , while balancing the number of vertices in different

partitions, given the number of partitions. They solved MWISP on each chordal sub-

graph using Frank’s algorithm [11]. For solving the NP-Hard MWISP posed by each

METIS-partitioned sub-graph, they modified the Carraghan and Pardalos [9] algorithm

to address weights and solve the MWISP in the graph (the original algorithm finds the

maximal clique in a graph). We refer to this modified algorithm using the acronym

MCP. In addition to evaluating these two methods to partition a graph, they tested with

two types of RMP formulation and two methods of branching. They tested their

methodology with DIMACS Challenge Problems [14] and randomly generated p-graphs

and concluded that the combination of METIS partitioning, RMP formulation in terms of

clique inequalities and branching on cliques in B&B tree gave the best results.

 8

Furthermore, they found that their method outperformed the MCP algorithm for sparse

graphs, which are known to be especially challenging. Subsequently, we refer to this as

the Original B&P (OBP) approach to solve the MWISP.

 9

CHAPTER III

VERTEX CLONING APPROACH

This chapter introduces Vertex Cloning (henceforth referred to as Cloning) and its

mathematical formulation.

3.1 Concept

Cloning extends the partitioning methods employed by Warrier et al [25] by cloning

selected vertices with the goal of eliminating edges in set Ê . After using METIS to

partition the graph),(EVG = into P disjoint sub-graphs PGG ,.....,1 , each edge

Evue ˆ),(∈= connects vertices in two different partitions (qp VvVu ∈∈ , where

qpPqp ≠∈ ,,) and the associated edge inequality (1≤+ vu xx) is included in the RMP.

Cloning can duplicate vertex u)(v into partition q)(p so that edge),(vu lies entirely

in partition q)(p and the edge inequality in the RMP can be replaced by an equality

uw xx =)(vx , where w is the clone of u)(v . Similarly, edge inequalities in the RMP

can be replaced by relationships equating the decision variables associated with a cloned

vertex and each of its clones.

Cloning is analogous to the cost splitting technique of Lagrange relaxation [19, 22]

through which, depending on the structure of the problem, duplicate variables can be

introduced to improve bounds. We refer to a vertex that is duplicated as the cloned

 10

(originating) vertex and any duplicate vertex as a clone. We use the term copies to

indicate an original vertex along with its clones.

We illustrate Cloning using Figure 1, which depicts a graph comprising 7 vertices

and 7 edges. The formulation for the MWISP on this graph (as in (1)) can be written as:

7654321 xxxxxxxZMax IP ++++++= (7)

s.t.

121 ≤+ xx (8)

151 ≤+ xx (9)

132 ≤+ xx 10)

172 ≤+ xx (11)

143 ≤+ xx (12)

163 ≤+ xx (13)

154 ≤+ xx (14)

7
7654321),,,,,,(+∈= Zxxxxxxxx (15)

Figure 2 shows an arbitrary partitioning with }2,1{=P , where },,,{ 76211 vvvvV =

and },,{ 5432 vvvV = . Let 1G and 2G represent the two sub-graphs (partitions),

respectively, and { }),(),,(),,(ˆ
326351 vvvvvvE = be the set of edges that connects vertices

in the partitions. The endpoints of all edges Ee ˆ∈ comprise the set },,,,{ˆ
65321 vvvvvV = .

 11

1 2 3

7 6

4

5

1 2

7 6

3

4

5

Partition 1 Partition 2

Fig. 1 Example graph G.

Fig. 2 Vertex disjoint partitions of G.

 12

1 2

7 6

3

4

5

Partition 1 Partition 2

8 9

1 2

7 6

3

4

5

Partition 1 Partition 2

8 9 10

Fig. 3 Edge disjoint partitioning of G through vertex cloning.

Fig. 4 Edge disjoint partitioning of G by cloning different vertices.

 13

The OBP reformulates model (7)-(15), creating one sub-problem with edge inequalities

associated with 1G (i.e., (8) and (11)) and an other sub-problem with edge inequalities

associated with 2G (i.e., (12) and (14)). The RMP comprises inequalities corresponding

to edges Ee ˆ∈ (i.e., (9), (10) and (13)).

Figure 3 depicts one possible way to clone vertices so that all edge inequalities in the

RMP are replaced with equality constraints. Here, 3v is duplicated (as 8v) in partition 1

so that the edges),(32 vv and),(63 vv can be included in partition 1 as),(82 vv and

),(86 vv , respectively. Similarly, 1v is cloned as 9v in partition 2 to include edge),(51 vv

in partition 2 as),(95 vv . This cloning process results in an edge-disjoint partitioning of

G in which =Ê Ø and equalities
9183

 and vvvv xxxx == replace corresponding edge

inequalities ((9), (10) and (13)) to assure that decision variables associated with a cloned

vertex and each of its clones are equal. Cloning results in vertices, instead of edges,

being shared between partitions. Figure 4 demonstrates an alternate way to clone

vertices. In this case, three clones (namely 8v , 9v and 10v) are formed (as clones of 5v ,

6v and 2v , respectively). This alternate cloning adds more vertices into the partitions,

making the sub-problems more challenging to solve and also resulting in a larger RMP.

Thus, the approach should clone a minimum number of vertices to promote tractability.

Note that, typically, only a subset of vertices in V̂ need be cloned to locate each

edge Ee ˆ∈ into some partition. In Figure 3, only two vertices from the set V̂ are cloned

and in Figure 4, three vertices are cloned.

 14

3.2 Formulation

We now specialize the MWISP to represent Cloning. Let VK ˆ∈ be the set of cloned

vertices and vD denote the set of clones corresponding to vertex VKv ˆ∈∈ . Cloning

vertex v (as w) relocates a set of edges Evu ˆ),(∈ from Ê to partition uπ (also,

uw ππ =). In partition uπ , this relocated edge(s)),(vu exists as),(wu .

Note that not all vertices in V̂ need be cloned (see example in 3.1). If vertex Vv ˆ∈ is

not cloned, vD = ∅ and if it is cloned, vD gives the set of its clones. Let VK ˆ∈ denote

the set of vertices for which vD ≠ ∅. Cloning increases the number of vertices in the

graph to V , where vKv DVV ∈= U .

Cloning adds vertices and edges to certain partitions, changing ()ppp EVG ,= to

()ppp EVG ,= , where pV includes pV and clones that are added in partition p and pE

includes edges from set pE as well as relocated edges. Correspondingly, the vector px

is changed to { }pv Vvx ∈= :px . The integer programming formulation of the MWISP

may now be specialized to reflect Cloning:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∈∀=−= ∑∑
∈ ∈Pp

vvw
Vv

vv
D
MWISP DwKvxxxwMaxZ

p

,0: (16)

where PpQ p ∈∀∈px and { }pvu
Vp EvuxxBQ p ∈∀≤+∈= +),(1:px . The

formulation given in (16) can be rewritten as follows:

 15

∑
∈

=
Pp

D
MWISP MaxZ pp xw (17)

s.t.

0=∑
∈Pp

pA px (18)

PpBp ∈∀≤ 1px (19)

PpB pV ∈∀∈px (20)

where pA denotes the matrix of coefficients of decision variables in equalities (18)

and pB denotes the matrix of coefficients of decision variables in inequalities (19).

Equalities (18) include an equivalence relation between each cloned vertex and each

of its clones; and inequalities (19) include edge inequalities in partition Pp∈ .

Inequalities (19) define P disjoint blocks of constraints, one for each partition p ,

forming a block diagonal structure. Application of DWD to the linear relaxation of (17)-

(20) allows each block to be addressed as an independent sub-problem while relegating

constraint (18) to the RMP:

∑∑
∈ ∈

=
Pp Jj

jpp
jpRMP

p

MaxZ)(* xwλ (21)

s.t.

0)(=∑ ∑
∈ ∈Pp Jj

jp
pjp

p

A xλ (22)

Pp
pJj

jp ∈∀=∑
∈

1λ (23)

pjp JjPp ∈∈∀≥ ,0λ (24)

 16

where

pJ denotes the set of integer extreme points of)(pQconv ,

jpx is a pV - vector that defines extreme point pJj∈ and

jpλ denotes the RMP decision variable that corresponds to extreme point pJj∈ .

Sub-Problem Pp∈ is a MWISP of the form:

{ }p
p

jp
p

p
jjp QAMaxzcMaxZ ∈−−=−= xxw :)(ˆˆ* βα , (25)

where α is a vector of dual variables associated with equality constraints (22) and pβ is

the dual variable associated with convexity constraint p in (23).

Optimal extreme point j in sub-problem p gives vector jpx , which is an improving

column if 0* >pZ . At each iteration, we solve all P sub-problems and select jpx as

arg ()*max pPp
Z

∈
 to enter the RMP basis. If 0* ≤pZ for all Pp∈ , the current RMP solution is

optimal.

 17

CHAPTER IV

ANALYSIS OF BOUNDS

In this chapter we analyze the polytope associated with the OBP (given in (2)-(6))

and Cloning (given in (21)-(25)) models and their linear relaxations to show that Cloning

gives a tighter bound at the root node of B&B tree than that obtained by OBP. Our proof

is based on showing that the polytope associated with Cloning is contained in the

polytope associated with the OBP. To promote simplicity, we present our discussion in

terms of the polytopes associated with decision variables vx .

Let S denote the set of feasible integral solutions to (1); C , the convex hull of S ;

and L , the polytope associated with the linear relaxation of (1):

{ }VvxEvuxxZS vvu
|V| ∈∀∈∈∀≤+∈= + }1,0{,),(1:x ,

)(SconvC = and

{ }VvxEvuxxRL vvu
|V| ∈∀≤≤∈∀≤+∈= + 10,),(1:x .

Relative to the vertex-disjoint partitions formed in the OBP (see Chapter II), let
pSPS

and CSS denote the set of integral solutions that are feasible relative to the edge

inequalities in pE (which constitute block-diagonal set Pp∈) and Ê (which constitute

the coordinating set), respectively:

{ }{ }VvxEvuxxZS vpvu
|V|

SPp
∈∀∈∈∀≤+∈= + 1,0,),(1:x and

{ }VvxEvuxxZS vvu
|V|

CS ∈∀∈∈∀≤+∈= + }1,0{,ˆ),(1:x .

 18

 Similarly, let
pSPC =)(

pSPSconv and CSC)(CSSconv= . Let
pSPL denote the polytope

corresponding to the linear relaxation of
pSPS for Pp∈ ; and CSL , the polytope

associated with the linear relaxation of CSS . Following their respective definitions, we

have LCS ⊆⊆ ,
ppp SPSPSP LCS ⊆⊆ and CSCSCS LCS ⊆⊆ .

Noting that pPp EEE ∈= Uˆ ; and E defines S , C and L ; pE defines
pSPS ,

pSPC and

pSPL ; Ê defines CSS , CSC and CSL ; we have

I
Pp

SPCS p
SSS

∈

= , I
Pp

SPCS p
CCC

∈

⊆ , and I
Pp

SPCS p
LLL

∈

= . (26)

Define polytope OR by substituting (tightening) L , replacing
pSPL with

pSPC :

I
Pp

SPCSO p
CLR

∈

= . (27)

Since
ppp SPSPSP LCS ⊆⊆ and CSCSCS LCS ⊆⊆ , we may write,

I
Pp

SPCS p
SS

∈
I

Pp
SPCS p

CC
∈

⊆ I
Pp

SPCS p
CL

∈

⊆ I
Pp

SPCS p
LL

∈

⊆ ,

LRCS O ⊆⊆⊆ . (28)

Cloning replaces every edge inequality 1≤+ vu xx (where Evu ˆ),(∈) in the

coordinating set (of OBP) by an equality wv xx = (vertex v in partition vπ is cloned as

w into partition uπ) and an inequality corresponding to a clone, 1≤+ wu xx (associated

with edge),(wu in partition uπ). Let CSL′ denote the polytope that is formed by

replacing all edge inequalities (1≤+ vu xx) in CSL with equalities (wv xx =) and edge

 19

inequalities (1≤+ wu xx). CSL′ can be written as intersection of polytopes =
CSL and ≤

CSL ,

where =
CSL denotes the polytope associated with the equality constraints that result from

cloning (wv xx =) and ≤
CSL denotes the polytope comprising edge inequalities

(1≤+ wu xx), each of which includes a decision variable associated with a clone:

{ }VvxDwKvxxRL vvvw
|V|

CS ∈≤≤∈∈∀=∈= +
= ,10,,:x ,

{ }VvxDwKvEvuxxRL vwuvuw
|V|

CS ∈≤≤=∈∈∈∀≤+∈= +
≤ ,10,:,,ˆ),(1: ππx and

≤==′ CSCSCS LLL I .

Note that Cloning increases the number of decision variables to ||V so the polytopes

CSL′ , =
CSL and ≤

CSL are defined in ||V -dimensional space. We now prove that CSL and

CSL′ are equivalent; (i.e., the set of solutions that are feasible with respect to CSL′ in

terms of the decision variables that correspond to the original vertices, Vvxv ∈: , is same

as those associated with CSL). We represent this equivalence by “≡”.

Proposition 1: CSL ≡ CSL′ .

Proof: Let { }VvxX v ∈= : be any vector in CSL and construct { }VvxX v ∈= : , comprising

a V - sub-vector of variables vx associated with original vertices (which includes all

vertices but clones) and a VV \ - sub-vector associated with clones. In particular, for

original vertices ,Vv∈ set vv xx = . For each vertex VVKv ⊆⊆∈ ˆ , identify each of its

clones, VVDw v \∈∈ and set vw xx = . From the construction, it is clear that X is

feasible with respect to CSL′ .

 20

It is important to note that CSL′ contains ∑ ∈Kv vD more variables (associated with

clones) than CSL , tending to increase the dimension of polyhedron CSL by ∑ ∈Kv vD .

For Kv∈ , one equality constraint relates cloned vertex v to each of its clones

w (vw xx =) for vDw∈ . Since there are exactly ∑ ∈Kv vD (linearly independent)

equality constraints in CSL′ , the dimension of CSL′ is the same as that of CSL . CSL′

includes more decision variables but solutions are projected onto the set of solutions that

are feasible with respect to CSL by the associated equality constraints. Thus, we

conclude that CSL ≡ CSL′ . Q.E.D.

From (27), we have I
Pp

SPCSO p
CLR

∈

= I
Pp

SPCS p
SconvL

∈

=)(. Let
pSPS ′ denote the set

of integral points that is equivalent to the corresponding to set of integral points
pSPS in

||V -dimensional space (i.e.,
pSPS ′ ≡

pSPS). Therefore, using CSL ≡ CSL′ , OR may be

written as :

I
Pp

SPCSO p
SconvLR

∈

′′≡)(.

Since ≤==′ CSCSCS LLL I , II
Pp

SPCSCSO p
SconvLLR

∈

≤= ′≡)(. (29)

Relative to the edge-disjoint partitions formed in Cloning, edge inequalities in pE

comprise the block-diagonal set Pp∈ . Let
pSPS denote the set of integral solutions that

are feasible relative to block-diagonal set pE for Pp∈ :

{ }{ }VvxEvuxxZS vpvu
|V|

SPp
∈∀∈∈≤+∈= + 1,0,),(:1:x and

 21

let
pSPC =)(

pSPSconv . The block diagonal set Pp∈ in Cloning (pE) incorporates

the inequalities associated with edges in pE as well as those associated with clones.

≤
CSL denotes the polytope corresponding to the inequalities associated with clones. A

block diagonal set Pp∈ incorporates a set of inequalities corresponding to clones that

are added into p . In other words, block diagonal set p incorporates a subset of

inequalities from the set (of inequalities) that defines ≤
CSL (i.e., 1≤+ wu xx where vDw∈

and Evu ˆ),(∈) for which wup ππ == . Let ≤
pCSL denote the polytope associated with

inequalities (corresponding to clones) that are added to partition Pp∈ such that

I Pp CSCS p
LL

∈
≤≤ = .

pSPS consists of integer points, which are feasible with respect to edge

inequalities pE as well as inequalities corresponding to ≤
pCSL . Let ≤

pCSS denote the set of

integer solutions that are feasible relative to ≤
pCSL . The feasible integer solutions with

respect to a block-diagonal set p in Cloning may be written as:

I ≤′=
ppp CSSPSP SSS . (30)

=
CSL gives the polytope associated with the coordinating set in Cloning as it consists

of equalities, each of which relates a cloned vertex with one of its clones. Let CSL

denote this polytope:

{ }VvxDwKvxxRLL vvvw
|V|

CSCS ∈∀≤≤∈∈∀=∈== +
= 10,,:x .

Let CR denote the polytope formed by the intersection of CSL and
pSPC :

 22

I
Pp

SPCSC p
CLR

∈

= . (31)

Proposition 2: OC RR ⊆ .

Proof: From (30), we have I ≤′=
ppp CSSPSP SSS ,

I)()(≤′=⇒
ppp CSSPSP SSconvSconv ,

I)()()(≤′⊆⇒
ppp CSSPSP SconvSconvSconv ,

I ≤′⊆⇒
ppp CSSPSP LSconvSconv)()(, (as)(≤

pCSSconv ≤⊆
pCSL),

()III ≤

∈∈

′⊆⇒
ppp CSSP

PpPp
SP LSconvSconv)()(,

I III ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′⊆⇒

∈

≤

∈∈ Pp
CS

Pp
SP

Pp
SP ppp

LSconvSconv)()(,

III ≤

∈∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′⊆⇒ CS

Pp
SP

Pp
SP LSconvSconv

pp
)()(, (as I Pp CSCS p

LL
∈

≤≤ =).

From (31), I
Pp

SPCSC p
CLR

∈

= I
Pp

SPCS p
SconvL

∈

=)(; and substituting forI
Pp

SPp
Sconv

∈

)(,

I
Pp

SPCSC p
SconvLR

∈

=)(II
Pp

SPCSCS p
SconvLL

∈

≤ ′⊆)(,

II
Pp

SPCSCSC p
SconvLLR

∈

≤= ′⊆⇒)(, (Since CSL = =
CSL).

Using (29), OC RR ⊆ . Q.E.D.

Finally, using LRCS O ⊆⊆⊆ from (28) and OC RR ⊆ , we have

LRRCS OC ⊆⊆⊆⊆ . Let *
LZ and *

CZ denote the optimal solution values obtained by

solving the MWISP objective function (1) on polytopes L and C , respectively.

 23

Similarly, let *
CRZ and *

ORZ denote the optimal solution obtained by solving the

MWISP on polytopes CR and OR , respectively. Thus,

LRRCMWISP ZZZZZ

OC
≤≤≤= .

Proposition 3: In B&P search tree, Cloning gives tighter bound at the root node than the

bound obtained by the OBP.

Proof: From (27) and (31), we have

I
Pp

SPCSC p
CLR

∈

= and I
Pp

SPCSO p
CLR

∈

= .

If we apply DWD to the constraint set of OR , the constraints that form CSL are

relegated to form the constraints in the RMP of the OBP model (see (2)-(5)) and those

that form
pSPC create the constraint set for the sub-problem (see (6)). Similarly if we

apply DWD to the constraint set of CR , the constraints in CSL form the constraints in

the RMP of the Cloning model and those in
pSPC creates the constraint set for sub-

problem. Since **
OC RR ZZ ≤ , it implies that Cloning gives tighter bound at the root node

than the bound obtained by the OBP model. Q.E.D.

However, should sub-problems exhibit the Integrality Property, (i.e., all extreme

points of
pSPL for Pp∈ are integral),

LRR ZZZ

OC
== .

Hence, to obtain a tighter bound, it is imperative that sub-problems avoid the

Integrality Property.

 24

CHAPTER V

IMPLEMENTATION ISSUES

Cloning involves two key issues: (a) Selecting vertices to be cloned, (b) Assigning

weights to clones. We discuss these issues and propose solutions in this chapter. We

present the overall algorithmic steps involved in solving the MWISP by our B&P

approach and introduce a new concept, Partial Cloning, developed to exploit the

desirable virtues of both OBP and Cloning approaches.

5.1 Selecting Vertices for Cloning

Each vertex that is cloned increases the size of the partition (i.e., sub-problem) into

which it is cloned as well as the number of equality constraints (in the RMP). Especially

in dense graphs, Cloning may add a large number of vertices, resulting in larger sub-

problems that are more difficult to solve. Thus, it is imperative that Cloning duplicate

the minimum number of vertices. For example, in Figure 2, to replace edges (2v , 3v) and

(6v , 3v), either 2v and 6v could be cloned into partition 2, increasing its size by two

vertices (and two edges) or 3v could be cloned into partition 1, increasing its size by

only one vertex (and, of course, two edges). This issue can be resolved by solving an

appropriate set covering problem. Using binary decision variables 1=vpy if vertex v is

cloned into partition p and 0=vpy otherwise, the set covering problem may be

formulated as follows:

 25

,:
ˆ ⎭

⎬
⎫

⎩
⎨
⎧

∩∈= ∑∑
∈ ∈

m
sc

Vv Pp
vp BQyMinZ y (32)

where

 { }qpvpuq
m

sc VvVuEuvyyRQ ∈∈∈∀≥+∈= + and,ˆ1:y and)1|(||ˆ| −= PVm .

The set covering problem is NP-Hard [12], but a “near optimal” solution would suit

our purpose so we propose a modified version of the greedy set covering heuristic [19]

to quickly obtain a solution. We refer to this heuristic as the modified set covering

heuristic:

Step 1: 0=i , =K ∅, vD = ∅ Vv ˆ∈∀ ; pp VV = and pp EE = for all Pp∈ .

Step 2: For every vertex Vv ˆ∈ , determine)(vN p from Ê .

Step 3: Calculate { }pVvPpvNvN vpp
≠∈∈= π,ˆ, :)(max)(*

* .)(*
* vN

p
 identifies

the vertex *v to be cloned as the one adjacent to the largest number of vertices

not in the same partition (i.e., vπ) and the partition *p into which it would be

cloned. Clone vertex *v into partition *p as vertex w .

Step 4: Update; { }U wDD vv ← , { }wVV pp U← ,

{ })(:),(*
* vNuwuEE

ppp ∈← U , }{vKK U← ,

{ })(:),(\ˆˆ **
* vNuvuEE

p
∈← and)(if\ˆˆ vNvVV p= = ∅ Pp∈∀ , pv ≠π .

Step 5: Repeat Steps 2, 3 and 4 until V̂ = ∅.

Step 6: For Kv∈ , vDw∈ are the clones of vertex v .

 26

5.2 Assigning Weights

Appropriate weights must be assigned to a cloned vertex and its clones. To be an

exact copy, a clone should have the same weight as that of its originating vertex but this

would increase the total weight in the graph so that the optimal solution to the MWISP

on the graph with clones would not be the same as that on the original graph. We

implemented two strategies that result in total weights that are the same in both the

original graph and the one that results from cloning. One strategy is to divide the weight

of an originating vertex equally among the set of copies. Another, and in fact the

simplest, strategy is to assign a null-weight to clones. The chapter on computational

evaluation compares the impacts of these strategies on run-time.

5.3 Solving the MWISP

Cloning may be detailed as follows:

Step 1: Partition an original graph into P partitions using METIS [15, 16, 17].

Step 2: Apply the modified set covering heuristic to select the set of vertices to be

cloned and identify the clones for each. Update the RMP to include equalities

corresponding to equivalence relationships between each originating vertex and

its clones. Update sub-problems to include clones (vDw∈) and their associated

edge inequalities.

Step 3: Solve the Cloning formulation utilizing the MCP algorithm to solve sub-

problems. At each iteration, re-optimize RMP over “known” columns and use

the resulting dual variables to define the objective function coefficients of

 27

decision variables in sub-problems. Use a pool to store the columns generated

by the sub-problems. Maintain previously generated columns in the pool and

optimize over these “known” columns before solving sub-problems in an

attempt to conserve run-time. Branch on clique inequalities as described in

Warrier et al [25].

5.4 Partial Cloning

Warrier et al [25] observed that the OBP results in large so that the RMP may

comprise a large number of constraints and require a lengthy solution time. Cloning

decreases the number of RMP constraints because the modified set covering heuristic

(Section 5.1) seeks the minimum number of vertices to clone. On the other hand, this

approach adds clones to partitions, increasing the size of individual sub-problems and

making them more challenging for the MCP algorithm to solve. Hence, Cloning

introduces a trade off by which problem complexity can be distributed among the RMP

and sub-problems.

|ˆ| E

The sizes of the partitions (sub-problems) can be controlled to some extent by

specifying the number of partitions that METIS is required to develop. However, the pV

and pE depend on the characteristics of partitions created by METIS and the set of

clones prescribed by the modified set covering heuristic.

We propose a new approach to achieve a favorable trade-off between the size

(and tightness) of the RMP and the sizes of the sub-problems. This approach, which we

call Partial Cloning, may not clone all vertices in , perhaps retaining some edge Ê

 28

inequalities in the RMP. We update step (2) of the modified set covering heuristic

(Section 5.3) to implement Partial Cloning by setting a threshold (PCThreshold) to affect

the vertex selected for cloning. To implement Partial Cloning, Step 2 in the heuristic

given in chapter 5.1 is updated to be:

Step 2 (updated): If { }>∈∈ VvPpvN p
ˆ, :)(max PCThreshold , continue to Step 3,

else go to Step 5.

This modification allows the RMP to retain some edge inequalities while including

equalities associated with clones. Henceforth, we use Complete Cloning (CC) to specify

the approach where all the edges in Ê are relocated by cloning and use Partial Cloning

(PC) to specify the approach in which only a subset of edges in Ê are relocated. We set

PCThreshold to 1 in our tests so the modified set covering heuristic adds clones

corresponding to those vertices Vv ˆ∈ and partition Pp∈ , for which 1|)(| >vN p

for pv ≠π . If PCThreshold is set to 0, Complete Cloning results, yielding larger, more

sparse sub-problem that are more challenging for MCP algorithm to solve.

 29

CHAPTER VI

COMPUTATIONAL EVALUATION

We compare CC, PC, OBP and MCP computationally using two types of instances:

(1) DIMACS Instances taken from the Second DIMACS Implementation Challenge

[14], and (2) random p- graphs: These random graphs are generated by specifying the

number of vertices V and value p (probability that edge),(vu is included in the graph).

We conducted all tests on a Dell PC with a 3.06 GHz Pentium IV processor and 512 MB

of memory using the Visual C++ environment and CPLEX 7.1.

Preliminary testing of the two Cloning approaches (CC and PC) each using the two

weight-assignment strategies (Chapter 5.2) showed that assigning null weights to clones

performs better than assigning each clone the same weight associated with its originating

vertex. Hence, we presents results that assign null weights to all clones.

We select || P based on the criterion that the resulting sub-problem, after

partitioning and cloning, should be less challenging for MCP to solve. However, there is

no definite way to ascertain the size of sub-problems that will result from Cloning.

Preliminary tests showed that, for graphs with 100 or more vertices and edge densities

less than 40%, ≥|| P 6 results in sub-problems that MCP can solve effectively and for

graphs having edge densities greater than 40%, =P 2 or 3 results in sub-problems that

MCP can solve effectively.

 30

The Partial Cloning parameter, PCThreshold, affects the mix of equalities and

inequalities in the RMP. We set the default value of PCThreshold to 1. On some

instances, a value of 1 leads to as many clones as in CC (because for all Vv ˆ∈ ,

1|)(| >vN p Pp∈ , pv ≠π). Hence, in these cases, PCThreshold is set to |ˆ| E / M,

where M is equal to∑ ∈Kv vD || . |ˆ| E / M gives the average number of vertices that a

vertex Vv ˆ∈ is connected by edges Evu ˆ),(∈ .

Table 1 compares the performances of the three B&P approaches (OBP, CC and PC)

and MCP in application to the DIMACS instances. Performance measures include the

number of constraints in RMP, optimal solution at root node of the B&B tree, and

computational time(in cpu seconds). The first five columns give the name of instance;

number of vertices, V ; density; *
MWISPZ ; and number of partitions, P . Columns 6-8

give the number of equality constraints in the RMP for OBP, CC, and PC, respectively

(the number in the braces give the number of inequalities in the RMP corresponding to

edge inequalities). In OBP, RMP comprises only inequalities, and in CC, RMP

comprises only equalities. In PC, RMP comprises a mix of inequality and equality

constraints. Columns 9-11 give *
LPZ (OBP), *

LPZ (CC) and *
LPZ (PC), the optimal solution

at the root node (of B&B tree) for OBP, CC and PC, respectively. The optimal solution

at root node gives an upper bound on *
MWISPZ . Computational results confirm that CC and

PC give upper bounds that are tighter than the one that OBP gives and, as expected,

*
LPZ (CC) ≤ *

LPZ (PC) ≤ *
LPZ (OBP).

 31

Table 1 Performance measures for DIMACS instances.

Graph |V Density ZIP |P| Number of RMP ZLP Time (in sec)

 OBP C1 C2 OBP C1 C2 OBP C1 C2 WCP

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

johnson824comp 28 44 4 2 (64) 13 1(56) 5.75 4 5 0.38 0.2 0.27
johnson824comp 28 44 4 3 (103) 29 25(4) 8 4.25 4.25 0.75 0.13 0.063
johnson824comp 28 44 4 4 (100) 39 29(10) 6.5 4 4.5 0.52 0.09 0.094
johnson824comp 28 44 4 5 (124) 45 39(6) 9.5 4.5 4.5 1.38 0.11 0.078

0.02

johnson844comp 70 23 14 3 (240) 69 59(10) 15 14 14 1.02 78.33 22.87
johnson844comp 70 23 14 5 (374) 127 93(34) 21.25 14 14 19.47 52.97 6.66
johnson844comp 70 23 14 8 (381) 161 104(57) 17.5 14 14 10.34 18.22 1.39

14.89

manna9comp 45 7 16 2 (10) 9 1(8) 17.67 17.6 17.6 9.63 29.83 8.422
manna9comp 45 7 16 3 (16) 14 2(12) 18 17.75 17.75 1.38 4.66 1.187
manna9comp 45 7 16 4 (25) 19 6913) 20 17.86 18.5 3.14 3.67 0.781
manna9comp 45 7 16 5 (26) 21 5916) 19 18 18 1.31 1.53 0.469
manna9comp 45 7 16 6 (29) 23 6(17) 19.5 18 18 2.41 1.36 0.469

620.97

cfat2001comp 200 92 12 2 (8999) 97 29(6253) 13.5 12 13 2.13 0.72 2.03
cfat2001comp 200 92 12 3 (12137) 196 87(6575) 15 12 12.33 10.44 3.1 8.08

0.11

cfat2002comp 200 84 24 2 (7952) 97 30(5404) 30 24 27.5 14.3 544.69 16.13 0.42

hamming62comp 64 10 32 4 (64) 64 0(64) 32 32 32 0.22 135.77 0.22
hamming62comp 64 10 32 5 (101) 67 27(40) 32 32 32 0.19 17.05 0.89
hamming62comp 64 10 32 6 (114) 75 33(42) 32 32 32 0.42 21.66 1.25

71.75

hamming82comp 256 3 128 20 (626) - 95(414) 128 - 128 3.3 - 27.05 -

johnson1624comp 120 23 8 10 - - 253(162) - - 8.5 - - 23.74 -

 32

 In fact, (CC) = for most of the instances (giving an integrality gap of

0%). Furthermore, with an increase in

*
LPZ *

MWISPZ

P , the bound gets weaken (integrality gap

increases) for each of the three B&P approaches. Figures 5 and 6 shows variation of

(OBP), (CC) and (PC) with increase in *
LPZ *

LPZ *
LPZ P for “manna9comp” and

“johnson824comp” respectively.

Columns 12-14 compare the run times (cpu seconds) required by OBP, CC and PC to

solve each instance, excluding the times required for partitioning and cloning, which are

trivial. Column 15 gives the run time required to solve each instance by MCP. A “-”

indicates that the corresponding instance requires more than 12 hours of run time. We

found that, as P increases, the run time required by each B&P approach to solve an

instance varies depending upon whether the instance is dense or sparse. For dense

instances, run time increases with an increase in P and, for sparse instances run time

first decreases and then increases as P increases, so some value of P gives minimum

run-time for sparse graphs. We vary the value of P for a few representative instances

(e.g., manna9comp, johnson824 comp) to show the variation in run-time as P

increases. For the remaining instances, we tabulate results for those P that give

minimum run-time (for e.g., we set P = 10 for johnson1624comp and P = 20 for

hamming82comp). PC gives quite competitive results for most of the DIMACS

instances. Figures 7 and 8 shows variation of run time for three B&P approaches with

increase in P for “manna9comp” and “johnson824comp” respectively.

 33

4

5

6

7

8

9

10

1 2 3 4 5 6

|P|

Z L
P

OBP
CC
PC

Fig. 5 ZLP vs |P| for johnson824comp.

16

17

18

19

20

21

1 2 3 4 5 6 7

|P|

Z L
P

OBP
CC
PC

Fig. 6 ZLP vs |P| for manna9comp.

 34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

|P|

Ti
m

e
(i

n
se

c)

OBP
CC
PC

Fig. 7 Run time vs |P| for Johnson 824 comp.

0
3
6
9

12
15
18
21
24
27
30

0 1 2 3 4 5 6 7

|P|

Ti
m

e
(i

n
se

c)

OBP
CC
PC

Fig. 8 Run time vs |P| for manna9comp.

 35

Table 2 reports application of the three B&P approaches to random p-graphs, using

the same column headings. “W0” in the name of instance indicates an un-weighted

graph and “W1” indicates a weighted graph. Run times reported in columns 12-14 of

Table 2 show that MCP outperforms all three B&P approaches on random instances

having densities greater than 40%. For instances with densities below 20%, all three

B&P approaches perform better than MCP. Comparing run times in columns 12-14

shows that weighted graphs are generally less challenging to solve than un-weighted

graphs. Although CC never gives the best run-time, it gives quite competitive results for

highly dense and highly sparse instances. Furthermore, as observed in DIMACS

instances, for all the random graphs, we have *
LPZ (CC) ≤ *

LPZ (PC) ≤ *
LPZ (OBP).

To gain further insight into the performance of B&P approaches for solving the

MWISP, we compare several additional performance measures in Tables 3 and 4, which

relates to the instances reported in Tables 1 and 2. Columns 1 and 2 in Tables 3 and 4

give the name of the instance and the number of partitions, P , respectively. Columns 3-

5 give number of RMP iterations required and columns 6-8 give number of nodes

explored in the B&B tree to obtain an optimal integral solution by each of the three B&P

approaches. If the number of nodes explored is zero, the optimal integer solution was

obtained at root node of the B&B search tree (i.e., *
LPZ (CC) = *

MWISPZ). PC typically

explores a number of B&B nodes that is between the numbers of nodes required by CC

and OBP.

 36

Graph |V| Density ZIP |P| number of RMP ZLP Run time (in sec)

 (%) OBP CC PC OBP CC PC OBP CC PC WCP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RG_GV1_W1_P05 100 5 481 10 (150) 111 32(79) 529.50 496.17 501.70 20.73 70.33 5.67 -

RG_GV1_W0_P10 100 10 30 10 (349) 222 97(125) 41.25 34.57 36.52 283.47 4344.48 463.27 -

RG_GV1_W1_P10 100 10 371 10 (349) 222 97(125) 478.00 402.25 422.87 68.77 2819.42 41.25 -

RG_GV1_W0_P20 100 20 19 10 (789) - 234(122) - - 24.88 - - 571.82

RG_GV1_W1_P20 100 20 246 10 (789) - 234(122) 399.00 - 289.63 273.15 - 2549.91
566.61

RG_GV1_W0_P30 100 30 15 10 (1231) - 341(105) 31.50 - 18.79 677.49 - 1434.20

RG_GV1_W1_P30 100 30 193 10 (1231) - 341(105) - - 219.38 - - 583.49
36.25

RG_GV1_W0_P40 100 40 12 6 (1517) - 254(14) 21.50 - 12.00 139.43 - 891.23

RG_GV1_W1_P40 100 40 161 6 (1517) 268 254(14) 272.50 161.00 161.00 86.90 935.03 759.63
3.89

RG_GV1_W0_P50 100 50 9 2 (1089) 49 32(320) 12.75 9.00 11.00 19.30 141.14 51.55

RG_GV1_W1_P50 100 50 120 2 (1089) 49 32(320) 170.00 120.00 141.00 15.34 112.92 34.73
0.88

RG_GV1_W0_P60 100 60 7 2 (1325) 49 32(399) 10.00 7.00 9.50 13.55 11.79 14.41

RG_GV1_W1_P60 100 60 52 2 (1325) 49 32(399) 68.20 52.00 61.00 6.02 29.87 8.55

RG_GV1_W0_P60 100 60 7 4 (2067) 150 132(182) 16.00 7.00 8.22 83.28 27.04 40.75

RG_GV1_W1_P60 100 60 52 4 (2067) 150 132(182) 98.50 52.00 52.00 40.67 103.69 27.21

0.30

RG_GV1_W0_P70 100 70 7 2 (1573) 49 37(328) 9.00 7.00 7.67 1.89 7.34 3.27

RG_GV1_W1_P70 100 70 41 2 (1573) 49 37(328) 60.00 41.00 48.33 5.27 6.56 4.02

RG_GV1_W0_P70 100 70 7 4 (2444) 151 139(148) 12.00 7.08 7.43 24.03 25.93 14.95

RG_GV1_W1_P70 100 70 41 4 (2444) 151 139(148) 77.00 43.41 46.07 31.21 19.14 13.14

0.94

RG_GV1_W0_P80 100 80 5 2 (1875) 50 36(478) 7.67 5.00 6.50 3.13 1.25 1.22

RG_GV1_W1_P80 100 80 38 2 (1875) 50 36(478) 51.50 38.00 41.67 1.41 1.15 1.11

RG_GV1_W0_P80 100 80 5 4 (2878) 152 140(156) 9.50 5.00 5.67 16.47 4.92 5.70

RG_GV1_W1_P80 100 80 38 4 (2878) 152 140(156) 68.00 38.00 38.00 12.03 5.13 2.25

0.03

RG_GV1_W0_P90 100 90 4 2 (2159) 49 43(235) 6.00 4.00 4.85 1.48 1.39 0.44

RG_GV1_W1_P90 100 90 32 2 (2159) 49 43(235) 43.00 32.00 34.60 1.02 0.33 0.44

RG_GV1_W0_P90 100 90 4 4 (3272) 152 118(622) 8.80 4.25 5.55 8.31 2.85 2.69

RG_GV1_W1_P90 100 90 32 4 (3272) 152 118(622) 63.50 32.00 41.75 7.09 0.73 1.72

0.02

Table 2 Performance measures for p-graphs.

 37

 Table 3 Additional performance measures for DIMACS instances.

Graph |P|

number of RMP

iterations
number of B&B

nodes
% of time to

clone % of time to obtain ZLP
% of time to solve

sub-problems

 OBP CC PC OBP CC PC CC PC OBP CC PC OBP CC PC

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

johnson824comp 2 320 23 319 34 0 35 4.01 0.00 33.33 91.63 43.08 37.33 41.87 45.51
johnson824comp 3 981 409 66 98 0 0 0.00 4.65 2.13 87.20 100.00 54.00 49.60 76.19
johnson824comp 4 746 65 67 56 0 0 1.62 9.01 2.91 84.04 82.97 30.29 67.02 65.96
johnson824comp 5 1906 116 97 169 0 0 4.76 5.83 2.25 86.24 79.48 29.67 72.48 0.00

johnson844comp 3 260 407 185 14 0 0 0.02 0.27 13.78 99.98 100.00 73.82 98.52 98.69
johnson844comp 5 11172 664 265 399 0 0 0.14 1.56 0.96 99.98 99.78 28.93 85.86 83.63
johnson844comp 8 7648 645 230 231 0 0 0.73 6.44 0.61 99.71 97.77 15.56 58.87 36.30

manna9comp 2 291 623 283 24 21 21 0.00 0.00 34.10 26.87 37.11 98.88 99.53 99.07
manna9comp 3 480 1258 512 24 32 27 0.00 1.11 20.44 18.45 26.28 87.49 89.54 83.99
manna9comp 4 3062 1889 591 143 37 22 0.49 0.00 4.97 16.61 29.96 65.55 74.13 70.04
manna9comp 5 2260 1603 754 99 30 24 0.93 0.00 5.94 9.21 13.43 52.40 52.91 40.51
manna9comp 6 4368 1495 809 168 28 24 1.00 0.00 2.62 11.55 9.81 45.93 59.16 49.68

cfat2001comp 2 61 24 60 5 0 5 38.82 15.80 18.40 97.93 23.80 5.79 97.93 8.50
cfat2001comp 3 244 114 167 18 0 0 35.83 17.00 6.43 98.45 39.53 1.63 92.39 7.10

cfat2002comp 2 351 101 948 20 0 19 0.50 2.20 2.62 99.99 27.51 13.99 99.98 43.08

hamming62comp 4 40 256 40 0 0 0 0.02 0.00 93.98 99.99 100.00 87.97 99.61 85.39
hamming62comp 5 68 585 90 0 0 0 0.18 1.53 91.49 100.00 98.31 41.49 90.31 87.98
hamming62comp 6 111 524 91 0 0 0 0.22 0.87 96.21 99.93 98.08 55.92 92.79 92.06

hamming82comp 20 329 - 860.00 0 - 0.00 - 2.40 99.92 - 93.93 16.45 - 14.15

johnson1624comp 10 - - 355 - - 0.00 - 2.89 - - 99.82 - - 89.68

 38

Graph |P|

number of

RMP iterations
number of

B&B nodes
% of time
to clone

% of time
to obtain ZLP

% of time to
solve sub-problems

 OBP CC PC OBP CC PC CC PC OBP CC PC OBP CC PC

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RG_GV1_W1_P05 10 6516 7339 2646 81 15 25 0.18 1.04 1.73 12.90 9.38 66.01 49.61 50.39

RG_GV1_W0_P10 10 157482 103880 129175 2474 132 890 0.01 0.10 0.13 3.53 0.71 11.84 42.63 21.85
RG_GV1_W1_P10 10 30271 76771 10661 403 78 58 0.01 0.45 0.59 3.74 5.61 27.59 35.74 30.36

RG_GV1_W0_P20 10 - - 242987 - - 857 - 0.02 - - 1.52 - - 27.11
RG_GV1_W1_P20 10 91948 - 49898 1897 - 145 - 0.08 0.15 - 5.03 8.53 - 31.35

RG_GV1_W0_P30 10 145002 - 48455 4009 - 83 - 0.05 0.07 - 9.21 6.76 - 39.58
RG_GV1_W1_P30 10 - - 15702 - - 23 - 0.23 - - 21.17 - - 45.36

RG_GV1_W0_P40 6 31227 - 1059 1210 - 0 - 0.06 0.17 - 99.99 7.64 - 97.54
RG_GV1_W1_P40 6 18139 1388 1107 633 0 0 0.06 0.07 0.31 99.99 99.99 7.40 95.44 98.28

RG_GV1_W0_P50 2 2826 528 1355 213 3 34 0.09 0.44 5.10 67.22 41.65 53.99 99.51 90.54
RG_GV1_W1_P50 2 3026 231 1721 221 0 39 0.11 0.24 2.85 99.98 30.62 40.12 99.66 93.05

RG_GV1_W0_P60 2 2405 110 1694 212 0 60 1.12 1.01 1.96 99.87 29.17 34.70 98.80 78.53
RG_GV1_W1_P60 2 947 222 700 77 0 19 0.51 1.53 7.53 99.65 52.11 46.55 99.11 85.04
RG_GV1_W0_P60 4 14120 401 1321 958 0 5 1.67 1.33 0.21 99.88 58.02 10.83 91.61 84.20
RG_GV1_W1_P60 4 6434 1029 433 382 0 0 0.43 1.76 0.50 99.98 99.94 9.20 93.66 90.35

RG_GV1_W0_P70 2 318 163 228 27 0 4 2.13 4.61 6.61 99.79 61.24 30.05 97.67 82.79
RG_GV1_W1_P70 2 1012 150 580 97 0 20 2.58 4.25 2.07 99.75 47.06 21.98 97.85 76.66
RG_GV1_W0_P70 4 3673 3064 1385 247 8 7 2.01 4.23 0.84 35.85 57.26 4.89 61.32 58.60
RG_GV1_W1_P70 4 4871 2453 2051 344 7 16 2.71 4.64 0.60 37.87 32.87 4.89 59.22 50.48

RG_GV1_W0_P80 2 573 94 303 60 0 16 10.55 9.72 2.50 98.72 28.21 13.95 93.76 42.32
RG_GV1_W1_P80 2 244 90 188 25 0 6 10.95 12.03 6.69 98.62 59.09 21.19 90.68 57.47
RG_GV1_W0_P80 4 2266 360 736 185 0 5 11.12 10.94 1.23 79.16 54.51 4.35 58.51 44.64
RG_GV1_W1_P80 4 1638 463 273 128 0 0 10.32 21.03 1.43 99.68 97.91 3.91 80.34 65.86

RG_GV1_W0_P90 2 178 81 59 12 0 0 10.64 18.57 4.18 96.62 96.35 22.04 83.10 56.85
RG_GV1_W1_P90 2 174 64 145 20 0 6 23.18 23.32 6.10 95.12 42.69 9.15 61.58 60.73
RG_GV1_W0_P90 4 1060 315 543 102 0 9 24.08 18.34 3.38 98.35 52.90 3.59 31.62 14.99

RG_GV1_W1_P90 4 886 260 412 81 0 7 35.68 26.48 3.09 97.80 33.62 3.98 48.64 26.41

Table 4 Additional performance measures for random p-graphs.

 39

Columns 9-10 give the percentage of computational time spent in Cloning relative to

the total run time. Columns 11-13 give the percentage of time utilized to obtain optimal

solution at root-node relative to the total time spent in obtaining . Results show

that, for CC and PC, more than 90% of run time is spent in obtaining root-node

solutions, (CC) and (PC). Columns 14-16 give the percentage of time required

to solve sub-problems using the MCP algorithm relative to the time spent in prescribing

an integral optimal solution.

*
MWISPZ

*
LPZ *

LPZ

Results show that OBP spends a smaller percentage of run time to solve sub-

problems than CC and PC. OBP leads to sub-problems that are less challenging for MCP

to solve, but gives a weak (OBP) bound (see Tables 1 and 2). Because the upper

bound is weak, OBP requires exploration of more nodes in the B&B search tree. (see

Columns 6-8 in Tables 3 and 4) increasing the number of times the RMP is optimized,

and, hence, the total number of RMP iterations (see Columns 3-5 in Tables 3 and 4). As

a result, OBP spends most of the time optimizing the RMP and relatively little time

solving sub-problems. In contrast, both CC and PC spend a considerable percentage of

run time solving sub-problems. Cloning may increase the size of sub-problems

dramatically, making them challenging for MCP but giving tighter bounds. Because

upper bounds (CC) and (PC) are tight, CC and PC both explore fewer B&B

nodes and, thus, require less run time to optimize.

*
LPZ

*
LPZ *

LPZ

Further, we compare the three B&P approaches in application to random p-graphs

with densities less than 10%. Table 5 gives results for these graphs with the same

 40

column headings used in Tables 1 and 3. For CC, run time increases rapidly with an

increase in graph density. However, the (CC) bound is better than (PC) and

(OBP) for all the test cases.

*
LPZ *

LPZ

*
LPZ

We conjecture that Cloning may work better in application to instances for which the

resulting sub-problems are less challenging for MCP to solve. Increasing the value of P

may result in desirable sub-problems but weakens the upper bound and increases the

overall run time by increasing the number of B&B nodes (which increases the time spent

in optimizing the RMP).

 41

 Table 5 Performance measures for sparse random p-graphs.

Graph |V| Density ZIP |P| ZLP run time (in sec)

number of
RMP constraints

 (%) OBP CC PC OBP CC PC OBP CC PC WCP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RG_GV1_W1_P0.02 100 2 656 10 (30) 25 5(20) 656.00 656.00 656.00 0.25 1.03 0.36 -

RG_GV1_W1_P0.03 100 3 575 10 (70) 61 6(55) 575.00 575.00 575.00 0.17 1.63 0.19 -

RG_GV1_W1_P0.04 100 4 521 10 (108) 91 17(74) 534.00 525.20 526.67 3.50 24.19 1.64 -

RG_GV1_W1_P0.05 100 5 481 10 (150) 111 32(79) 529.50 496.17 501.71 17.92 67.95 5.16 -

RG_GV1_W1_P_0.06 100 6 448 10 (179) 136 39(97) 504.50 469.50 487.50 9.72 108.12 10.36 -

RG_GV1_W1_P_0.07 100 7 432 10 (248) 163 64(99) 521.50 457.00 469.50 26.05 583.67 26.84 -

RG_GV1_W1_P_0.08 100 8 406 10 (273) 180 70(110) 517.50 429.50 449.33 63.46 349.80 37.90 -

RG_GV1_W1_P_0.09 100 9 386 10 (297) - 77(121) 479.00 - 431.65 61.35 - 36.23 -

 42

CHAPTER VII

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

This thesis contributes a new vertex cloning approach to solve the MWISP within a

B&P framework. This thesis achieves its objectives: formulation of the Vertex Cloning

approach, analysis showing that Vertex Cloning yields a tighter formulation, effective

methods to implement Vertex Cloning, and analysis of the computational efficacy of

Vertex Cloning. This thesis also presents a variant of Cloning, Partial Cloning, which

results in a mix of inequalities and equalities in the RMP. We compared the three B&P

approaches on DIMACS instances as well as random p-graphs.

The B&P approach for solving the MWISP is built on the basic idea of decomposing

the graph into smaller sub-graphs that are less challenging to solve. Warrier et al [25]

developed their B&P approach for the MWISP by creating vertex-disjoint sub-graphs.

Cloning enhances this idea by creating clones of vertices to convert a vertex-disjoint

partition into an edge-disjoint partition. Cloning improves the OBP approach by creating

a smaller RMP that gives tighter upper bounds at nodes of the B&B tree.

Cloning provides excellent bounds for the MWISP, but it may require lengthy

runtime because it leads to larger sub-problems that may be more challenging to solve.

In contrast, the RMP associated with OBP gives a weak bound but the approach requires

less total run time because its sub-problems are smaller and can be solved more

effectively. PC results in somewhat less challenging sub-problems than does CC and it

 43

gives tighter bounds than does the OBP. Consequently, PC solves MWISP effectively on

both dense and sparse graphs.

Future research in this area could be directed towards developing efficient methods

to create smaller edge-disjoint partitions that can be solved effectively. In addition,

developing a more capable algorithm to solve sub-problems would help to reduce total

run time.

 44

REFERENCES

[1] V.E. AlekSeev, Polynomial algorithm for finding the largest independent sets in

graphs without forks, Discrete Applied Mathematics 135 (2004) 3-16.

[2] E. Balas, C.S. Yu , Finding a maximum clique in an arbitrary graph, SIAM Journal

on Computing 15 (4) (1986) 1054-1068.

[3] E. Balas, J. Xue , Minimum weighted coloring of triangulated graphs, with

applications to maximum weight vertex packing and clique finding in arbitrary

graphs, SIAM Journal on Computing 20 (2) (1991) 209-221.

[4] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, P. Vance, Branch-and-

price: column generation for solving huge integer programs, Operations Research

46 (1998) 316-329.

[5] M.S. Bazaraa, J. J. Jarvis, H.D. Sherali, Linear Programming and Network Flows,

2nd edition, John Wiley and Sons, New York, 1990.

[6] I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelilo, The maximum clique

problem, in: D.Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial

Optimization, Kluwer Academic Publishers, Boston, 1999, pp. 1-74.

[7] S. Butenko, P. Pardalos, I. Sergienko, V. Shyloand, P. Stetsuyk, Maximum

independent sets in graphs arising from coding theory, in: Proceedings of the

Seventeenth ACM Symposium on Applied Computing, Madrid, Spain, 2002, pp.

542-546.

 45

[8] R. Carr, G. Lancia S. Istrail, Branch and cut algorithms for independent set

problems: integrality gap and an application to protein structure alignment,

Technical Report SAND2000-2171, Sandia National Labs, Livermore, CA, 2000.

[9] R. Carraghan, P.M. Pardalos, An exact algorithm for the maximum clique

problem, Operations Research Letters 9 (1990) 375-382.

[10] T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search

procedure for maximum independent set, Operations Research 42 (1994) 860-878.

[11] A. Frank, Some polynomial algorithms for certain graphs and hyper graphs, in:

Proceedings of 5th British Combinatorial Conference, Winnipeg, Manitoba,

Canada, 1975, pp. 211-226.

[12] M. Garey, D. Johnson, Computers and Intractability: A Guide to Theory of NP-

Completeness, W.H. Freeman & Co., New York, 1979.

[13] M. Hifi, A genetic algorithm based heuristic for solving the weighted maximum

independent set and some equivalent problems, Journal of the Operational

Research Society 48 (6) (1997) 612-622.

[14] D.S. Johnson, M. Trick, Cliques, Coloring, and Satisfiability: Second DIMACS

implementation challenge, AMS, Providence, RI, 1996.

[15] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning

irregular graphs, SIAM Journal on Scientific Computing 20 (1998) 359-392.

[16] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph

partitioning, Technical Report 98-019, Army HPC Research Center, Department

of Computer Science, University of Minnesota, Minneapolis, 1998.

 46

[17] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs,

Journal of Parallel and Distributed Computing 48 (1998) 96-129.

[18] A. Mehrotra, M.A. Trick, A column generation approach for graph coloring,

INFORMS Journal on Computing 8 (1996) 344-354.

[19] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Programming, John

Wiley and Sons, New York, 1988.

[20] G.L. Nemhauser, P.H. Vance, C. Barnhart, E.L. Johnson, Solving binary cutting

stock problems by column generation and branch-and-bound, Computational

Optimization and Applications 3 (1994) 111-130.

[21] P.M. Pardalos, G.P. Rodgers, A branch and bound algorithm for the maximum

clique problem, Computers and Operations Research 19 (5) (1992) 363-375.

[22] C. Ribeiro, M. Minoux, Solving hard constrained shortest path problems by

lagrangian relaxation and branch and bound algorithm, Methods of Operations

Research 53, in: M. Beckmann et al. (Eds.), Proceedings of the 10th Symposium

on Operations Research, Munich, Germany, 1985, pp. 305-316.

[23] M.W.P. Savelsbergh, A branch and price algorithm for the generalized assignment

problem, Operations Research 45 (1997) 831-841.

[24] F. Vanderbeck, Decomposition and Column Generation for Integer Programs,

Ph.D. Thesis, Universite Catholique de Louvain, Belgium, 1994.

[25] D. Warrier, W.E. Wilhelm, I.V. Hicks, J.S. Warren, A branch and price approach

for maximum weight independent set problem, Working Paper, Department of

Industrial Engineering, Texas A&M University, 2004.

 47

[26] W.E. Wilhelm, A technical review of column generation in integer programming,

Optimization and Engineering 2 (2001) 159-200.

 48

VITA

Sandeep Sachdeva was born on March 3, 1980 in New Delhi, India. He received his

Bachelor of Technology degree in mechanical engineering from Indian Institute of

Technology, Delhi in May 2002. In Fall 2002, he joined the Industrial Engineering

department at Texas A&M University. He received his Master of Science degree in

industrial engineering in December 2004.

Permanent Address:

23/3 Shivpuri

Delhi-110051

INDIA

Phone: (91)-11-22416383

E-mail: sandeeps@tamu.edu

 ssachdeva@gmail.com

	The Thesis V.pdf
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I INTRODUCTION
	1.1 Overview
	1.2 Motivation and Objectives
	1.3 Basic Notations
	1.4 Organization of Thesis

	CHAPTER II LITERATURE REVIEW
	CHAPTER III VERTEX CLONING APPROACH
	3.1 Concept
	3.2 Formulation

	CHAPTER IV ANALYSIS OF BOUNDS
	CHAPTER V IMPLEMENTATION ISSUES
	5.1 Selecting Vertices for Cloning
	5.2 Assigning Weights
	5.3 Solving the MWISP
	5.4 Partial Cloning

	CHAPTER VI COMPUTATIONAL EVALUATION
	CHAPTER VII SUMMARY, CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES
	VITA

