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ABSTRACT

Topics in Genomic Image Processing. (December 2004)

Jianping Hua, B.E., Tsinghua University, P.R. China;

M.S., Tsinghua University, P.R. China

Chair of Advisory Committee: Dr. Zixiang Xiong

The image processing methodologies that have been actively studied and developed

now play a very significant role in the flourishing biotechnology research. This work

studies, develops and implements several image processing techniques for M-FISH and

cDNA microarray images. In particular, we focus on three important areas: M-FISH

image compression, microarray image processing and expression-based classification.

Two schemes, embedded M-FISH image coding (EMIC) and Microarray BASICA:

Background Adjustment, Segmentation, Image Compression and Analysis, have been

introduced for M-FISH image compression and microarray image processing, respec-

tively. In the expression-based classification area, we investigate the relationship

between optimal number of features and sample size, either analytically or through

simulation, for various classifiers.
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CHAPTER I

INTRODUCTION

Since the introduction of the first transgenic plants in 1983, the modern biotechnology

has bloomed into a $200 billion industry, extending from pure scientific research into

daily merchandises such as food and medicine[1]. In spite of the fiery debate in the

ethics aspect, the modern biotechnology exhibits substantial importance to medical

research. Nowadays, more than 4000 medical disorders caused by defective genes

have been identified, and one out of ten people encounters at least one type of such

disorders in his/her lifetime. These facts raise intensive demands in the development

of biotechnology in various areas. In treatment, the first case of gene therapy took

place in 1990 at NIH. In diagnosis, it is predicted that genetic tests on 25 diseases will

be available in most hospitals in 10 years, including commonly seen diseases such as

cancer and diabetes. In pharmaceutics, Gleevec, a promising new drug for leukemia,

has been put into market. It along with several other drugs reveal the trend of a new

generation of medicines designed under the principles of a new science subject named

pharmacogenomics. The fast developing technology now exceeds far beyond biology

itself, and poses challenging problems in various areas. Due to the multidisciplinary

nature of genome-related research, researchers of different backgrounds have been

summoned to contribute to this promising field.

Among all these cross-over areas, the methodologies that have been studied and

developed by the image processing community – in particular, image processing, com-

pression, signal estimation and pattern recognition, are among the most powerful tools

for biologists and medical doctors. In modern biotechnology, a huge amount of data

The journal model is IEEE Transactions on Automatic Control.
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are now obtained in image format, hence raise extraordinary demands on efficient

genomic image processing and related data/signal processing. For example, some

images for direct inspections by the physicians require highly efficient compression

and transmission, and some images for further analysis necessitate accurate informa-

tion extraction. Also the data obtained through image processing call for powerful

signal processing and data mining technology to help biologists understand the true

biological meanings behind them. The work proposed here is intended to deal with

some of the most important image processing issues associated with two types of

genomic image: multiplex fluorescence in situ hybridization (M-FISH) image and

cDNA microarray image.

A. M-FISH and cDNA Microarray Imaging Technology

Genome is the smallest element in any living organism that contains all the infor-

mation of its cellular structures and activities[2]. Living organism of each biological

species has its very own genome, and each cell, the basic working unit of the organism,

contains a complete copy of the genome. In each cell, the genome is distributed along

the chromosomes, which are the carriers of entwined DNAs. Segments of the DNA

with certain nucleotide sequences are called genes, which are expressed or depressed

to control the synthesis of protein. The human genome contains about 30,000 genes.

M-FISH and microarray imaging technologies are two powerful tools recently devel-

oped, which intend to show the properties of genome on the chromosome level and

gene level, respectively.

M-FISH imaging is a recently developed technology for molecular cytogenetic

analysis [3]. In contrast to the conventional single-staining-based methods, M-FISH

specimens are obtained by simultaneous hybridization with a set of chromosome spe-
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cific DNA probes, each labeled with a different combination of fluorescent dyes. M-

FISH images are acquired through a fluorescence microscope with a turret of multiple

optical filters for imaging each of the individual fluorescent dyes separately. These

are visible in different optical wavelengths referred to as spectral channels. Thus an

M-FISH image set is comprised of a number of images, each aligned to the coordinates

of a reference image by performing image registration. Fig. 1 shows two (out of six)

channels of a typical M-FISH image set.

M-FISH technology enables multi-color karyotyping thanks to the combination of

multiple fluorescent dyes used in the chromosome specific DNA probes. Furthermore,

it facilitates unambiguous detection of target-specific chromosomal alterations in hu-

man and other mammalian cells, which is especially useful for elucidation of subtle

or complex chromosomal rearrangements [4]. For these reasons, M-FISH technology

has been increasingly used for the diagnosis of genomic abnormalities in the rapidly

growing field of cancer cytogenetics.

(a) (b)

Fig. 1. Two (out of six) channels of a typical M-FISH image set “A0101X” with size

645 × 517 × 6. (a) DAPI channel. (b) Texas Red channel.

cDNA microarray technology is a hybridization-based process that can quan-
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titatively characterize the relative abundance of gene transcripts [5, 6]. Contrary

to the conventional methods, microarray technology promises to monitor the tran-

script production of thousands of genes or even the whole genome simultaneously.

It thus provides a new and powerful tool for genetic research and drug discovery.

To produce cDNA microarrays, the mRNA of the control and test samples are first

reverse-transcribed into cDNA, and fluorescently labeled with different dyes (typically

red and green). Then the fluorescent targets are mixed and allowed to hybridize with

gene-specific cDNA clones printed in an array format on a glass microslide. Finally by

scanning the microslide with a laser and capturing the photons emitted from different

dyes into different channels with a confocal fluorescence microscope, a two-channel

16-bit microarray image is obtained, in which the pixel intensities reflect the level of

mRNA expression. Fig. 2 shows a portion of a typical microarray image in RGB

composite format, where the red and green channels correspond to the two channels

of the microarray image obtained while the blue channel is set to zero. Each round

spot in the figure corresponds to the hybridization site of a certain gene. With the

techniques from various areas like image processing, classification, clustering, statisti-

cal data analysis, etc., cDNA microarray images can shed light on the complex genetic

regulation rules long sought by the biologists and clinicians.

B. Issues of Genomic Image Processing

Genomic image processing can be roughly categorized into three major areas: pro-

cessing, compression, and analysis. Usually data analysis cannot be performed prior

to image processing, while compression sometimes can be performed separately. Basic

image processing tasks mainly consist of procedures such as geometric adjustment,

noise filtering, segmentation and enhancement. As the very first step of genomic im-
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Fig. 2. Part of a typical cDNA microarray image in RGB composite format.

age processing, its accuracy is critical to the reliability of subsequent data analysis.

Although many genomic images can be analyzed by the biologists directly after pro-

cessing, data analysis methods can further help the biologists understand the data

from different aspects, and establish a possible link between the data and their biolog-

ical meanings. For example, classification can associate the data with certain biologi-

cal functions/diseases, hence help the clinicians make diagnosis decisions. Clustering

can be used to obtain a holistic view of the data, and to seed a feature selection

algorithm for classification. And genetic regulatory networks can help construct the

dynamic system involving different genes and suggest the potential medical inter-

ventions/treatments. Besides processing and analysis, image compression is another

important issue. The images obtained through expensive biological experiments with

precious samples need to be archived for later process and double-check, or even being

revisited in the future with much advanced technologies. Moreover, current genomic

imaging technologies become more and more involved with parallel techniques which
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endeavor to provide as much as possible information to the biologists in one shot.

For example, both M-FISH and cDNA microarray apply simultaneous hybridizations

with multiple fluorescent dyes across a whole set of chromosomes/genes. These fac-

tors will significantly increase both the number and the size of the genomic images

to be archived. Thus efficient image compression algorithms are highly desired.

It is impractical to perform a thorough research on all the issues. Hence only

selected problems in each category are studied in this dissertation:

• M-FISH image compression: Although image compression1 techniques gen-

erally fall into two categories: lossy and lossless compression, lossless compres-

sion is preferred in most medical applications due to the possibility of informa-

tion loss associated with lossy compression[7]. Current method for archiving

M-FISH images is to store them channel by channel by losslessly compressing

each channel using techniques such as Lempel-Ziv-Welch (LZW) coding [8, 9].

However, M-FISH image has an important characteristic that is distinct from

many other types of medical images: it has a foreground which includes infor-

mation essential to the diagnosis or analysis, and can be viewed as the region

of interest (ROI). On the other hand, the remaining background only provides

some reference information. This property opens a door to ROI coding, which

encodes the foreground and background independently. In this work we will

design a wavelet-based ROI coding scheme for M-FISH image.

• Microarray image processing: Unlike most other medical images, the in-

formation of microarray images lies in the intensity of each spot, which is not

intended to be analyzed under visual inspection. Thus the signals in microarray

1We use image coding and image compression interchangeably in this dissertation.
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images must be estimated with appropriate image processing procedures before

any analysis is taken. In this work we will design an efficient microarray signal

estimation scheme which can perform a series of basic image processing func-

tions, including segmentation and background adjustment, to estimate signals

for later analysis.

Besides signal estimation, owing to the large data volume associated with mi-

croarray images (each typically takes about 15MB to store), highly efficient

compression is necessary. Hence in this work, we will design a good progres-

sive compression scheme that provides sufficiently accurate genetic information

for data analysis at low bit-rates, while still ensuring good lossless compression

performance.

• Expression-based classification: Classification via gene expression level es-

timated from the microarray images requires designing a classifier that takes

a vector of gene expression levels as input features, and outputs a class label,

which predicts the class containing the input feature vector. Given the joint

feature-label distribution, increasing the number of features always results in

decreased classification error; however, this is not the case when a classifier is

designed via a classification rule from sample data. Typically, for fixed sam-

ple size, the error of a designed classifier decreases and then increases as the

number of features grows. The problem is especially acute when sample size

is very small and the potential number of features is very large, which are ex-

actly the cases encountered in expression-based classification, where the typical

sample size is well under 100, and the available gene expression levels usually

up to thousands. Thus it is crucial to obtain a general understanding of the

range of feature-set sizes that can provide good performance for a particular
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classification rule at certain sample size. In this study we will investigate this

relationship for various classifiers.

C. Organization of the Dissertation

The major work accomplished in this dissertation consists of three parts: 1) M-FISH

image compression; 2) microarray image processing; 3) determination of the optimal

feature size as a function of sample size for expression-based classification.

Chapter II discusses the M-FISH image compression where a new coding scheme,

the embedded M-FISH image coding (EMIC), is presented. We first review the shape-

adaptive integer wavelet transforms and the object-based bit-plane coding which can

generate separate embedded bitstreams that allow continuous lossy-to-lossless com-

pression of the foreground and background. Then we propose a method of designing

an optimal context model for the bit-plane coding that specifically exploits the sta-

tistical characteristics of M-FISH images in the wavelet domain. Experiments have

been done to compare our proposed scheme with other popular schemes like LZW

coding, JPEG-LS and JPEG-2000.

In Chapter III we target at the microarray image processing for signal estima-

tion and image compression. We present Microarray BASICA: an integrated image

processing scheme including tools like segmentation, background adjustment and im-

age compression for cDNA microarray images. For the signal estimation part, we

first present a fast Mann-Whitney-test-based segmentation algorithm, followed by

the post-processing procedure, and finally the background adjustments. For the im-

age compression part, we first introduce a new distortion measurement for cDNA

microarray image compression and then present a coding scheme by modifying the

embedded block coding with optimized truncation (EBCOT) algorithm [10].
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Chapter IV investigates the relationship between the optimal number of features

and sample size for various classifiers in expression-based classification. Both para-

metric and non-parametric classifiers are discussed. First we provide an analytical

approach for the quadratic discriminant analysis (QDA) based on the statistic rep-

resentation derived by MacFarland and Richards [11]. Then for linear discriminant

analysis(LDA) and non-parametric classifiers, we take advantage of the massively

parallel computation and perform simulations on the carefully designed distribution

models and real patient data.

In Chapter V, we summarize the dissertation on the accomplished works and

provide a perspective for the future research in genomic image processing.

D. Main Contributions

• Developed a wavelet-based progressive coding scheme for highly efficient com-

pression of M-FISH images. To achieve this, a new context model design method

is proposed.

• Designed a microarray image processing scheme, which performs efficient signal

estimation and image compression.

• Found an analytic method to determine the optimal number of features at

different sample sizes for QDA classifier.

• Studied the optimal number of features as a function of sample size for various

classifiers based on both well-designed distribution models and real patient data.

A reference web-site is established to provide a resource for the community in

assessing the feature-set sizes.
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CHAPTER II

M-FISH IMAGE COMPRESSION∗

This chapter presents a new wavelet-based image coder specifically designed for M-

FISH image compression. The chapter starts with a brief introduction of the current

achievements in wavelet-based image coding, especially in medical image compression.

Then our new scheme, embedded M-FISH image coding (EMIC), is discussed in detail.

A. Wavelet-based Medical Image Coding Schemes and M-FISH Image Compression

Image compression techniques generally fall into two categories: lossy and lossless

compression. Although lossy compression can achieve higher compression ratios,

medical diagnosis is often compromised with its usage due to the information loss

[7]. Thus lossless compression is preferred in most medical applications. The current

method for archiving M-FISH images is to store them channel by channel by losslessly

compressing each channel as tiff image using techniques such as Lempel-Ziv-Welch

(LZW) coding [8, 9].

However, LZW coding of M-FISH images fails to exploit either the two-dimensional

(2-D) pixel correlation within each channel or the dependencies among different chan-

nels (each chromosome is located in the same spatial position across different channels

within an M-FISH image set.) This suggests that standard 2-D JPEG [13] or JPEG-

2000 [14] coding would outperform LZW coding and that new 3-D wavelet-based

coding techniques [15]-[19] could further improve M-FISH image compression.

Shapiro’s embedded zerotree wavelet (EZW) coder [20] and the later work by

∗ c©2004 IEEE. Reprinted, with permission, from “Wavelet-based compression of
m-fish images”, J. Hua, Z. Xiong, Q. Wu, and K. R. Castleman, IEEE Trans. on
Biomedical Engineering, to appear.
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Said and Pearlman on set partitioning in hierarchical trees (SPIHT) [21, 22] revolu-

tionized the field of wavelet image coding. The new JPEG-2000 standard is based

on a scheme called embedded block coding with optimal truncation (EBCOT) [10].

Inspired by the success of wavelet image coding, several authors have extended the ex-

isting frameworks to 3-D medical volumetric data compression [16, 17, 18, 19, 23, 24],

achieving better results than those from the 2-D approaches [25, 26] and the early work

of 3-D wavelet-based medical image compression [15]. Among them, 3-D extensions

of SPIHT and EBCOT, namely 3-D SPIHT [27] and 3-D embedded subband cod-

ing with optimal truncation (3-D ESCOT) [28] achieve the best coding performance

published so far in the literature [17]. An attractive feature of the wavelet-based ap-

proach is that, with an integer wavelet transform, one can generate a single embedded

bitstream1 that allows progressive lossy-to-lossless compression.

M-FISH images have an important characteristic that is distinct from many other

types of medical images: the chromosome regions (the regions of interest to cytoge-

neticists for evaluation and diagnosis), which are identical among all channels, are

well determined and segmented prior to the storage of each image set. These chro-

mosome regions provide diagnostic information and should be losslessly compressed.

On the other hand, the remaining background images, which may contain cell nuclei

and stain debris, are kept as well in routine cytogenetics lab procedures for specimen

reference rather than for diagnostic purposes. Since they usually provide little useful

information, lossy compression for them is acceptable. M-FISH images can thus be

viewed as consisting of two types of regions of interest (ROI): foreground objects

(chromosomes) and background objects (interphase nuclei and stain debris, etc.).

1An embedded bitstream has the property that each additional bit improves the
quality of the decoded images and that the whole bitstream can be truncated at any
point to provide a set of decoded images with quality commensurate with the bit-rate.
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Consequently, regions-of-interest coding [29] should be used to treat the foreground

and background objects differently (e.g., lossless coding of the foreground objects and

lossy-to-lossless coding of the background objects). In [30], an efficient wavelet-based

regions-of-interest coding scheme is already proposed for lossy-to-lossless compression

of both the foreground and background objects of single-channel chromosome images.

Hence it is natural to apply wavelet-based regions-of-interest coding to M-FISH image

compression.

B. Embedded M-FISH Image Coding (EMIC)

In this section we introduce wavelet-based embedded M-FISH image coding (EMIC).

EMIC seeks to encode M-FISH images adaptively with respect to the image content.

Recall that each M-FISH image set can be classified into two types of ROI: fore-

ground objects and background objects. Lossless compression is always needed for

the foreground objects as they include all the chromosomes, which are essential to

cytogeneticists’ evaluation and diagnosis. Lossy compression is acceptable in most

cases for the background objects, which contain little diagnostic information. EMIC

goes a step further by providing lossy-to-lossless compression for both the foreground

and background objects.

Fig. 3 depicts the block diagram of the encoder in EMIC. A set of M-FISH images

is first segmented into the foreground and background objects. This is followed by

shape coding of the segmentation mask shared by all image channels. Then we apply

critically sampled integer wavelet transforms to both the foreground and background

objects, and encode the shapes of the objects as a small header in the bitstream. After

the transforms, object-based bit-plane coding is employed to generate one lossless

bitstream for the foreground objects and another layered lossy-to-lossless bitstream
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for the background objects. In forming the final encoded bitstream, we follow the

syntax that the bitstream generated by shape coding goes first, followed by those

corresponding to the foreground objects and the background objects, respectively.

The encoding procedure is reversed in the decoder. Although we only aim for lossless

compression of the foreground and lossy-to-lossless compression of the background,

lossy compression of the foreground objects can also be achieved in EMIC by simply

decoding at lower bit-rates. The lossy mode is desirable in applications requiring

progressive image transmission, such as telemedicine and fast searching and browsing

of M-FISH images. The rest of this section describes different components of EMIC

in detail.

Fig. 3. Block diagram of the encoder in EMIC for M-FISH image compression.

1. Segmentation and Shape Coding

Before object-based bit-plane coding, segmentation must be performed to delineate

the foreground objects from the background objects. EMIC can either use an existing

segmentation mask generated interactively under the supervision of cytogeneticists,

or obtain it through an adaptive thresholding algorithm (e.g., [31]) applied on the

DAPI channel of each M-FISH image set.
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Different spectral channels of an M-FISH image set share the same segmentation

mask. An 8-connected differential chain code [31] is used to compress the segmenta-

tion mask. Shape coding of the segmentation mask typically costs about 2.5 kbytes

per M-FISH image set. Compared to the average lossless compression results on the

foreground objects shown later, this overhead due to shape coding is nominal.

2. Integer Wavelet Transform

It was shown in [32] that every finite impulse response wavelet or filter bank can

be decomposed into lifting steps. In addition to achieving as much as a two-fold

speed-up over filtering-based implementations, the lifting-based approach also makes

it very easy to have an integer-to-integer mapping, which is a must for lossless image

compression [33]. Different wavelet filters are compared for lossy image compression in

[34] and lossless image compression in [35]. In general, the 5/3 filters [33] outperform

other wavelet filters for lossless compression, while the Daubechies 9/7 filters [36] are

the overall best for lossy compression2. As reported in [33, 35, 37], different wavelet

filters excel at different types of images, hence it was not clear which filters are the

best for M-FISH images. Thus in Section C we evaluate the 5/3 and 9/7 filters along

with seven other commonly used filters [35], i.e., S+P, (2+2,2), (4,2), (2,4), (6,2),

(4,4) and 2/6 filters, to experimentally determine the best among this augmented set

of filters for M-FISH image compression.

a. 2-D Shape-adaptive Integer Wavelet Transform

After the segmentation of M-FISH images, both the foreground and background ob-

jects are arbitrarily shaped, which demands shape-adaptive integer wavelet trans-

2These filters are chosen as the default filters for lossless and lossy image compres-
sion, respectively, in JPEG-2000 [14].
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forms. In EMIC, we use odd-symmetric extensions over the ROI boundaries [38].

Fig. 4 shows the foreground objects in Fig. 1 (a) and their two-level critically sam-

pled integer wavelet transforms via lifting. It is easy to see that a segmentation mask

in the image domain induces a mask for each subband in the transform domain. This

wavelet-domain segmentation mask will be used later in the stage of object-based

bit-plane coding.

(a) (b)

Fig. 4. Wavelet representation of the foreground objects. (a) The foreground objects of

Fig. 1 which include all the chromosomes. (b) The wavelet-domain coefficients

after two-level critically sampled integer wavelet transform of the foreground

objects.

b. 3-D Integer Wavelet Transform Structure

In 3-D wavelet video coding, we usually use the same wavelet filters in all three

dimensions to perform separable wavelet decompositions for both the foreground and

background objects. For each object, the 2-D spatial transform and spectral transform

(along spectral channels) are done separately by first performing a 2-D dyadic wavelet

decomposition on each channel, and then performing a 1-D wavelet decomposition
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along the resulting channels3. After the transform, there are eight different types of

subbands (e.g., LLL, LLH, LHL, HLL, LHH, HLH, HHL, and HHH bands, where

the three alphabets from left to right denote the horizontal, vertical, and spectral

dimension, respectively.) Similar to JPEG-2000, after transposing some subbands,

we can finally end up with only four types (e.g., LLL, LHL, HHL, and HHH bands.)

From our experiments, we find that none of the wavelet filters previously men-

tioned can efficiently exploit the correlation across different channels. This can be

partially explained by the noticeable difference in the average foreground pixel values

across these channels (see Fig. 1). This does not mean those cross-channel co-located

pixels are not correlated, they actually are as they correspond to the same set of

chromosomes. It merely means that 1-D spectral transform across different M-FISH

channels is not an efficient way of exploiting this correlation. Hence in EMIC, we

allow the option of not performing the 1-D spectral transform after the 2-D spatial

transform of each channel. This option eliminates the spectral highpass bands, such

as the HHH bands, and relies on efficient context modeling to exploit the correlation

among all six channels in adaptive arithmetic coding [39].

3. Fractional Bit-plane Coding

After the shape-adaptive integer wavelet transform, the wavelet coefficients are com-

pressed with bit-plane coding. EMIC employs the bit-plane coding scheme used in

embedded wavelet video (EWV) coding [40], which was originally designed for low

bit-rate video coding. Below we briefly review the fractional bit-plane coding scheme

in EWV which is a 3-D extension of 2-D EBCOT [10] in the JPEG-2000 standard. It

offers high compression efficiency and other functionalities (e.g., error resilience and

3The pixel mean of ROIs is subtracted off before wavelet decomposition, as is done
in coders like SPIHT [21] and 3-D SPIHT [27].
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random access) for image coding. Major components of this scheme are discussed

below.

Coding primitives: The state of a coefficient is initially set to insignificant and

changed to significant when the coefficient’s first non-zero bit-plane value is encoded.

Depending on the states of the nearby coefficients, the current coefficient’s binary

information bit at each bit plane is coded using one of the following three primitives:

a) Zero coding (ZC): When a coefficient is not yet significant in the previous bit

planes, this primitive is used to code whether it becomes significant or not in the

current bit plane. b) Sign coding (SC): Once a coefficient becomes significant in the

current bit plane, SC is called to code its sign. c) Magnitude refinement (MR): This

primitive is used to code the bits of a coefficient if it is already significant.

Fractional bit-plane coding: Using the above three coding primitives in bit-plane

coding, one can generate an embedded bitstream for each subband. Specifically, the

coding procedure consists of the following three consecutive passes in each bit plane:

a) Significance propagation pass: This pass processes coefficients that are not yet

significant but have a preferred neighborhood. We use the ZC and SC primitives

to code these coefficients’ significance information and, if necessary, their sign bits.

b) Magnitude refinement pass: Coefficients that became significant in previous bit

planes are coded in this pass. The binary bits are coded by the MR primitive. c)

Normalization pass: Processed in this pass are coefficients that are not coded in

the previous two passes; these coefficients are not yet significant, so the ZC and SC

primitives are applied. Each of the above passes processes one fractional bit plane in

the natural raster-scan order.

Bitstream construction and scalability: In this stage, bitstreams corresponding

to different subbands will be truncated and multiplexed into a final bitstream. First,

an operational R-D curve for each subband can be obtained through the fractional bit-
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plane coding. Then, given a target bit-rate R0, optimal rate allocation, i.e., minimum

distortion, over all subbands is achieved when operation points on all operational R-D

curves have equal slope λ. Lossless coding is achieved by encoding all bit planes, i.e.,

setting λ to zero. The bitstream with multiple layers is obtained by breaking each

subband’s bitstream into multiple layers for different rates, and multiplexing them.

Since each subband is coded separately, it can achieve scalability in both rate and

resolution with great flexibility.

a. Object-based Coding

The extension of fractional bit-plane coding to shaped-adaptive coding is straight-

forward and efficient. The wavelet-domain representation of a typical M-FISH image

set’s foreground objects is shown at Fig. 4 (b). Because the shape-adaptive integer

wavelet transform is critically sampled, the number of wavelet coefficients is the same

as that in the original foreground objects. Using the wavelet-domain segmentation

mask, we can easily decide whether a coefficient belongs to the object. If any neighbor

of that coefficient falls outside the object, we just set that neighboring coefficient’s

value to zero and never code it. The object-based EMIC scheme is inherently better

than 3-D SPIHT [27], whose rigid cubic zerotree structure is almost surely inefficient

in covering an arbitrarily shaped object.

4. Wavelet Coefficient Context Modeling

The generic context model in [28, 40] for arithmetic coding is designed for natural

video sequences. However, for any special class of images like M-FISH data, a generic

context model cannot fully exploit the peculiarities that are data specific. Thus,

designing a particular context model for M-FISH images is essential for better arith-

metic coding performance. In this section we focus on optimizing the context model
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in EMIC. We first describe a general approach to optimal context modeling for a

given data source. We then explain how to apply this approach to the context model

design problem in EMIC.

a. A General Approach of Optimal Context Modeling

Consider a data sequence x1, x2, . . . , xN drawn from alphabet set X of a stationary

random process X. For each sample xi, one can form its context model C using its

preceded samples, i.e., xi−1, ..., x1, x0. Assuming X is an m-th order Markov process,

which is reasonable for wavelet-domain image coefficients4, its context model C for

xi can be naturally made up of the m symbols xi−1, ..., xi−m. Then for large N , the

minimum code length (in bits per symbol) is the m-th order conditional entropy,

H(X|C), of X given C [41].

Rissanen has shown in [42] that for a given K-parameter context model C, the

minimum model adaptation cost is ∆C = 1
2
(K/N) log2 N per symbol. Although a

context model with higher K decreases H(X|C) [41], it also induces a higher context

model adaptation cost ∆C . For a binary Markov process generated from the raster-

scan of bit planes, K is equal to the number of contexts, i.e., 2m. One way to limit the

model cost is to quantize the 2m contexts into k, k ¿ 2m, with Q(C) ∈ {c̄1, c̄2, . . . , c̄k}.
Thus the aim of optimal context modeling is to minimize the average codelength

Lc(X) = H(X|Q(C)) + ∆Q(C). (2.1)

To find the optimal context model, one must determine the optimal number of con-

texts k, the context decision region Ai = {C : Q(C) = c̄i} for each context c̄i, and

the corresponding conditional probability p(X|Q(C) = c̄i), for 1 ≤ i ≤ k. A direct

4Although wavelet coefficients are almost uncorrelated, there still remains high-
order dependencies among them.
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approach is to begin with a small k (e.g., k = 2); for each k, find the optimal context

model and compute the corresponding Lc(X); increase k until the model adaptation

cost ∆Q(C) becomes dominant, i.e., until Lc(X) stops decreasing or even increases for

several successive k’s.

For a given k, the key to optimal context modeling is to find the optimal quantizer

Q(C) that minimizes H(X|Q(C)) in Eq. (2.1). Since H(X|Q(C)) ≥ H(X|C) due

to the convexity of the entropy function H(·), it has been shown in [43] that the

optimization procedure is equivalent to minimizing

H(X|Q(C))−H(X|C) =
∑

c

p(c)D(p(X|c)‖p(X|Q(c)))

= D(p(X|C)‖p(X|Q(C))), (2.2)

where D(p(X|c)‖p(X|Q(c))) is the relative entropy between p(X|c) and p(X|Q(c))

under a given context c, and D(p(X|C)‖p(X|Q(C))) is the conditional relative en-

tropy (Kulback-Leibler distance [41]) between the conditional distribution of X given

C and the conditional distribution of X given Q(C).

There is no close-form solution to the problem in Eq. (2.2). However, if D(p(X|C)‖
p(X|Q(C))) is viewed as the cost function and D(p(X|c)‖p(X|Q(c))) as the distance

measure, then it is similar to a hard clustering problem [44]: cluster the contexts

into k distinct decision regions to minimize the cost function. Thus the K-means

algorithm in classification (or the LBG algorithm in vector quantization [45]) which

iteratively updates the decision regions and the conditional probability distributions

can be used to find a local-optimal solution. It is shown in [43] that for any context

c with the optimal cluster Q(c) = c̄i, updating its decision region has to follow the

condition

D(p(X|c)‖p(X|Q(c))) ≤ D(p(X|c)‖p(X|Q′(c))) (2.3)
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for any Q′(c) 6= Q(c). Here we point out that updating the conditional proba-

bility distribution p(X|Q(C)) is based on another condition that, for the optimal

p(X|Q(C) = c̄i) of decision region Ai,

∑
c∈Ai

p(c)D(p(X|c)‖p(X|Q(c))) ≤
∑
c∈Ai

p(c)D(p(X|c)‖p′(X|Q(c))) (2.4)

for any p′(X|Q(c)) 6= p(X|Q(c)). This condition can be easily proved from Eq. (2.2).

Below we give a detailed description of the general context clustering algorithm.

Cluster 2m contexts into k contexts

• Initialization: Choose an initial set of conditional probability distributions

p(X|Q(C) = c̄1), . . . , p(X|Q(C) = c̄k).

• Repetition:

– Update the decision regions: for each context c, let

Q(c) = arg min
c̄

D(p(X|c)‖p(X|Q(c) = c̄)). (2.5)

– Update the conditional probability distributions: for each decision region

Ai, let

p(X|Q(C) = c̄i) = arg min
q(X|c̄i)

∑
c∈Ai

p(c)D(p(X|c)‖q(X|c̄i))

=
∑
c∈Ai

p(c)p(X|c)/
∑
c∈Ai

p(c), (2.6)

where the second equation follows the results obtained through the La-

grange multiplier method under the constraint
∑

x q(x|c̄i) = 1. Note that

the optimal probability distribution is the centroid of the current region,

which confirms the suggestion in [43].

– Evaluation: compute the cost function D(p(X|C)‖p(X|Q(C))) under the

current context model parameters.
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• Stopping criterion: continue until the cost does not change between two succes-

sive iterations.

With this approach, the 2m contexts are clustered into k contexts to form the optimal

context model.

b. Optimal Context Modeling for EMIC

The general approach to context modeling described above assumes the input data

sequence is m-th order Markov. In practice, m is not known a priori. Only by

determining m first can we correctly form the context model for the current wavelet

coefficient.

To achieve this, we consider 18 samples in the 3-D neighborhood of the current

coefficient (see Fig. 5). We first put these 18 neighbors into 6 categories: immedi-

ate horizontal neighbors (h), immediate vertical neighbors (v), immediate spectral

neighbors (s), horizontal-vertical diagonal neighbors (dhv), horizontal-spectral diago-

nal neighbors (dhs) and vertical-spectral diagonal neighbors (dvs).

We compute the correlation between the current coefficient and those in each

category in different wavelet subbands. The correlation coefficients obtained over

eight randomly picked training image sets are shown in Table I. We single out the

DAPI channel from other channels because the correlation pattern of DAPI channel

is significantly different from other channels. One interesting observation from Table

I is that the correlation between the current coefficient and the immediate spectral

neighbors is around 0.3 for all subbands and channels. Although these numbers are

probably over-estimated due to some isolated pixels with large values, they indicate

that there are positive correlations among channels that can be exploited. Another

observation is that for all channels except DAPI, the intra-channel correlation is much
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Fig. 5. The 18 8-connected neighbors are categorized into 6 types of neighbors. These

neighboring coefficients and the current coefficient are spanned in three con-

secutive channels, e.g. DAPI, Spectrum Green (where the current coefficient

locates), and Spectrum Orange.

higher in the LLL band and drastically lower in other subbands. We also see that the

two categories of neighbors dhs and dvs, i.e., horizontal-spectral diagonal neighbors

and vertical-spectral diagonal neighbors, are almost uncorrelated with the current

coefficient in all subbands. Thus we drop them and form the context model with

the 10 coefficients in the remaining four categories for the ZC primitive. For coding

the current coefficient, however, the context model includes all coded bits of the 10

neighboring coefficients. For the SC primitive, like many other coders [14, 46], only

the six direct neighbors, i.e., h, v and s neighbors, are involved.

The iterative scheme described in the general approach requires the information

of conditional probability distribution p(X|c) for each context c. However, in practical

implementation, this distribution can only be obtained from limited training data.

The situation becomes even worse for wavelet-based M-FISH image coding, where

the foreground objects are further decomposed into different subbands. The p(X|c)
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Table I. Correlation coefficients between the current coefficient and its neighbors. The

(6,2) wavelet filters with three-level decomposition are used. The correlations

are averaged over eight randomly selected training image sets. The results un-

der DAPI column are obtained when current coefficient is in DAPI channel,

and Others column when it is in other channels.

LLL band LHL bands HHL bands

DAPI Others DAPI Others DAPI Others

h 0.268 0.681 0.202 0.004 -0.069 0.014

v 0.250 0.706 -0.311 -0.104 0.063 0.045

s 0.243 0.269 0.358 0.345 0.263 0.287

dhv 0.339 0.595 -0.0733 -0.074 0.121 0.054

dhs 0.017 0.107 0.073 0.028 -0.016 -0.007

dvs 0.056 0.130 -0.080 -0.043 0.031 0.017

estimated under limited training symbols can lead to a context model that has good

performances only on training images, a problem similar to overfitting in pattern

recognition [44]. To avoid this, the total number of contexts should be judiciously

chosen to ensure sufficient training symbols in each context. On the other side, since

context clustering is an irreversible procedure, special attention must be paid to avoid

merging contexts that might belong to different decision regions.

Binary quantization is one way of reducing the context size. A binary-valued

state variable σ[i, j, k] that characterizes the significance of coefficient x[i, j, k] at

position [i, j, k] is introduced. It is initialized to 0 and toggled to 1 when x[i, j, k]’s

first non-zero bit-plane value is encoded. This value is already used in Sec. B.3 of this

chapter to decide which coding primitive to use. It quantizes the coded bits of each

coefficient in the context model into a binary value, and hence efficiently reduce the
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context size. However, with 10 binary symbols in the context, a total of 210 contexts

are still too many to obtain reliable p(X|c) in M-FISH context modeling.

There is no reason to treat coefficients in the same category defined in Fig. 5

differently, we thus let h, v, s, and dhv denote the number of coefficients that are

already significant in their own categories. Since the case that most coefficients in

one category are simultaneously significant is very rare, we further cap h, v, and s

at one, and dhv at two. With this procedure, the context size is reduced to 24 for

the ZC primitives. And for the LLL and HHL bands, h and v are merged into h + v

and the context size is further reduced to 18. As for the SC primitives, we use the

13 contexts provided in EWV [40]. Although the context size seems relatively small,

our experiments show that this is sufficient for coding of the foreground objects.

We point out that the fractional bit-plane coding scheme is actually another

type of context clustering. It effectively clusters the contexts into three context state

sets, i.e., ZC, SC, and MR primitives, and provides great flexibility by introducing

fractional bit planes. It was shown in [47] that the associated performance loss is

nominal. Thus our context modeling procedure starts with fractional bit-plane coding

and ends with separate optimization of sub-context models for the ZC, SC, and MR

primitives. However, whenever there is no confusion, we will still call them context

modeling in the sequel.

The general context modeling approach is based on the assumption that the input

data sequence is stationary. However, from Table I we see that the data sequence is

not stationary (e.g., the DAPI channel and other channels are statistically different).

Also the binary sequence generated under the fractional bit-plane coding scheme of

EMIC is not stationary among different fractional bit planes.

To ensure the stationarity of the data sequence, we only consider the data from

one type of subbands at a time, and treat DAPI channel and other channels in-
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dependently. This means that we need to design separate optimal context models

for sub-sequences of the data from different subbands and channels. Then for each

sub-sequence we convert the binary sequence into a non-binary sequence, where each

symbol is made up of the bits from all fractional bit planes, i.e., x = {x1, . . . , xB},
where B is the number of fractional bit planes, and xi is the symbol in fractional bit

plane i. Note that since each bit is coded only once in one of the three fractional bit

planes that form that bit plane, xi can actually have three possible values: 1, 0 and

VOID, where the VOID corresponds to the case when no bit is coded in the current

fractional bit plane. It is reasonable now to assume that each new input sequence is

stationary. Then by assuming that the probability distribution of xi depends only on

its context, the average codelength can be written as

EX [L(X)] = −
N∑

i=1

∑
X

P (x) log2 p(xi|C)

= −
N∑

i=1

∑
X

B∑
j=1

P (x) log2 p(xj
i |Cj)

=
B∑

j=1

N ·H(Xj|Cj), (2.7)

where N now denotes the number of symbols coded in each fractional bit plane. Then

the cost function in Eq. (2.2) becomes

H(X|Q(C))−H(x|C) =
B∑

j=1

∑
c

pj(c)D(pj(Xj|c)‖pj(Xj|Qj(c)))

=
B∑

j=1

D(pj(Xj|Cj)‖pj(Xj|Qj(Cj))). (2.8)

Although this approach can find the optimal context model for each fractional

bit plane, it also scales the total number of contexts by the number of fractional

bit planes, which will induce high context adaptation cost. One thus must consider
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different fractional bit planes jointly in order to achieve a good balance between the

conditional entropy H(X|Q(C)) and the context adaptation cost ∆Q(C).

By observing the training sets of M-FISH images we notice that for each context c,

the conditional probability distribution P (X|c) changes smoothly between adjacent

fractional bit planes. This implies that different fractional bit planes can use the

same optimal context model to reduce context adaptation cost. Thus in optimizing

the context model, we let Qi(c) = Qj(c), 1 ≤ i, j ≤ B.

The iterative optimization procedure in Sec. B.4.a of this chapter is used to

design the context model for the ZC and SC primitives in different subbands. For

the MR primitive, since the refinement bits are known to be almost uniform, EMIC

does not perform any context model optimization and keeps the one used in EWV

[40]. Separate context models are designed for the DAPI channel and other channels

in the LLL, LHL, and HHL subbands. Thus six context models are obtained for each

ZC or SC primitive.

The memory usage of the 3-D context model in EMIC is larger than EBCOT’s

2-D model but much smaller than EWV’s 3-D model. Compared to EWV’s generic

context model, EMIC only uses a total of 10 neighbors and 6 tables for the ZC

primitive. Thus the look-up tables for the ZC context assignment have a maximum

of 6×210 items, which are 128 times smaller than EWV’s 3×218 items for three tables,

and are about 6 times larger than EBCOT’s 2 × 29 items for two tables. Compared

to EBCOT and EWV, the look-up tables for the SC primitive in EMIC cost more

memory. But since the SC primitive’s context tables are much smaller than the ZC

primitive’s, the overall memory cost is actually determined by the latter. As for the

complexity issue, setting up the look-up tables takes little time and once it is done,

these tables are easy to use. Thus our M-FISH specific context model design does

not bring more complexity to the coding procedure than the general context models
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in EBCOT or EWV.

C. Experimental Results

Experiments have been conducted to test the performance of EMIC on a total of

88 different M-FISH image sets from a publicly available M-FISH image database

(http://www.adires.com /05/Project/MFISH DB/MFISH DB.shtml). Each set has

six channels, all with size 645 × 517 and eight bit resolution. These M-FISH image

sets belong to the ASI group of test images in the database.

1. Lossless Coding Performance for the Foreground Objects

a. EMIC Results with Different Wavelet Filters and Decomposition Levels

Table II lists the lossless compression results of EMIC with different wavelet filters

and decomposition levels. For these tests we randomly selected 8 out of the 88 image

sets. We tested all the nine integer wavelet filters mentioned in Sec. B.2.a of this

chapter with the level of wavelet decomposition ranging from one to five. From these

results we notice that with the same decomposition level, the (2+2,2), (4,2), (4,4),

and (6,2) wavelet filters perform closely and they achieve slightly higher compression

ratios than the others. For all nine wavelet filters, the compression ratio reaches a

peak at the decomposition level of two or three. After that, the compression ratio

peaks out and even starts to decrease slightly. Unlike zerotree-based coding schemes,

EMIC does not always perform better when the decomposition level increases. This

is because the increase in decomposition level results in more small-size subbands.

As each subband has its own model-adaptation cost in arithmetic coding, the loss in

adaptation cost cancels out the gain from using more decomposition levels at some

point. Among the nine wavelet filters and five different decomposition levels, the



29

(6,2) wavelet filters with a two-level or three-level decomposition performed the best

during this test on the eight M-FISH image sets.

Table II. Lossless compression results for the foreground objects of M-FISH images

using EMIC with different integer wavelet filters and decomposition levels.

The shown compression ratios are in bits /pixel/channel and are averaged

over the eight test image sets.

1 level 2 levels 3 levels 4 levels 5 levels

9/7-F 0.3720 0.3659 0.3655 0.3656 0.3657

(2+2,2) 0.3642 0.3594 0.3596 0.3598 0.3599

(2,2) 0.3693 0.3648 0.3649 0.3651 0.3652

(S+P) 0.3754 0.3681 0.3672 0.3673 0.3674

(4,2) 0.3645 0.3594 0.3594 0.3596 0.3597

(2,4) 0.3708 0.3669 0.3670 0.3672 0.3673

(4,4) 0.3648 0.3599 0.3599 0.3600 0.3602

(6,2) 0.3645 0.3593 0.3593 0.3595 0.3596

2/6 0.3759 0.3691 0.3685 0.3686 0.3687

b. Comparison with Other Lossless Coding Techniques

We have compared EMIC against several popular lossless coding schemes: LZW

in WinZip 8.0, JPEG-LS, and JPEG-2000. We used the JPEG-LS Reference En-

coder V.1.00 implementation by Hewlett-Packard for JPEG-LS coding and Taub-

man’s Kakadu V2.2 implementation for JPEG-2000 coding. Because the 2-D based

JPEG-LS and JPEG-2000 coders cannot compress the multi-channel M-FISH image

set as a whole, the six channels in each set were coded separately when these two
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coders were used, and the sums of six compressed file sizes are reported.

Since LZW and JPEG-LS can only handle lossless compression of regularly

shaped images, we set the background pixels in test images to zero for these coders.

For JPEG-2000, because coding of the foreground and the background is not done

separately, no lossless reconstruction of the foreground objects can be guaranteed

until the whole image set is recovered. Therefore, the same test images with zero

background for LZW and JPEG-LS were used for the JPEG-2000 tests to ensure

lossless recovery of the foreground objects. Lossless compression results from differ-

ent coders are summarized in Table III. EMIC turns out to perform much better

than the other popular coders under study. It achieves an average saving of 78%,

72%, and 17% over LZW, JPEG-2000, and JPEG-LS, respectively. Note that the

result of EMIC already includes the overhead of shape coding of the segmentation

mask, which, as described in Sec. B.1 of this chapter, is around 2.5 kbytes, or 0.01

bits/pixel/channel for each M-FISH image set. LZW-based WinZip 8.0 gives the

poorest result, mainly because it does not take advantage of the 2-D or 3-D structure

of the image data. The performance of JPEG-2000 is not very good either because

its wavelet transform is not critically sampled, thus more samples need to be coded

in the wavelet domain. JPEG-LS performs better than LZW and JPEG-2000 but is

still behind EMIC. Furthermore, in contrast to LZW and JPEG-LS, EMIC is capable

of providing a scalable lossy-to-lossless bitstream for a given image set. This progres-

sive coding property is achieved in EMIC’s encoding process by inserting truncation

points to form a layered bitstream. The decoder can simply stop at any truncation

point. Bitstream scalability is desirable in applications requiring progressive image

transmission, such as in telemedicine and fast browsing of M-FISH images.

Besides the above popular coding schemes, we also provide results based on

EMIC with the generic context model from EWV, which we denote as EWV in Table
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III. With the generic context model, EWV is slightly worse than EMIC. These

results indicate that the generic context model is capable of providing rather good

performance. However, our context model specifically designed for M-FISH images

gives even better compression performance.

Table III. Lossless compression results of the foreground objects. The bit-rates shown

are in bits/pixel/channel and are averaged over 88 M-FISH image sets. The

(6,2) wavelet filters are used with three levels of decomposition in EMIC

and EWV.

LZW JPEG-2000 JPEG-LS EWV EMIC

Bit-rate 0.6030 0.5830 0.3978 0.3411 0.3396

2. Lossy-to-lossless Coding Performance for the Background Objects

a. EMIC Results with Different Wavelet Filters and Decomposition Levels

EMIC allows different choices of wavelet filters and decomposition levels for the fore-

ground and background objects. This is because they are separately coded. Although

lossless coding might be needed for the background objects, lossy coding is usually

acceptable. The setting for lossless coding of the foreground objects (i.e., the (6,2)

wavelet filters with three-level decomposition) might not be the best choice for the

background objects. Therefore a comparison of the EMIC performance with different

wavelet filters for lossy-to-lossless compression was performed on the same eight sets

of M-FISH images used in Sec. C.1 of this chapter.

Comparison results for the nine integer wavelet filters used in this study are shown

in Fig. 6 (a). Note that the (2,4) wavelet filters achieve the best PSNRs for lossy

coding despite the fact that they are not outstanding for lossless coding. Among
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all the nine filter pairs, the (4,4) and (2+2,2) wavelet filters yield relatively good

performance for both lossless and lossy coding. Besides the performance differences

caused by the choices of wavelet filters, the decomposition level also appears to affect

the lossy-to-lossless coding performance. Performance comparisons in PSNR using

the (2,4) wavelet filters with different levels of wavelet decomposition and bit-rates

are shown in Fig. 6 (b). Unlike the lossless coding experiments in which the best

performance is achieved with a two or three-level decomposition, when the bit-rate

is relatively low the PSNRs of reconstructed images in these cases keep increasing as

the wavelet decomposition level goes up. This is because more energy is compacted

into the lowpass subbands as the decomposition level increases, and so M-FISH image

sets can be reconstructed with higher PSNRs. When the bit-rate is relatively high,

the performance difference due to different decomposition levels diminishes. The

incremental gain also becomes smaller from one level to another.

Table IV shows the PSNRs of each channel of a reconstructed M-FISH image

set “A0101XY” by EMIC at different bit-rates. Here the (2,4) wavelet filters with a

five-level decomposition is used. The background of this M-FISH image set is first

coded losslessly at 2.53 bits/pixel/channel. This lossless bitstream is truncated at

0.01, 0.025, 0.05, 0.10, and 0.15 bits/pixel/channel, respectively to obtain decoded

images with the PSNRs shown in the table. Note that these bit-rates are for the

background objects only. The segmentation mask and the foreground objects of M-

FISH images are already losslessly coded with the bit-rate 0.34 bits/pixel/channel.

Thus the total bit-rate for the whole image set is the sum of the lossy bit-rate and

0.34 bits/pixel/channel.

Fig. b shows two channels (DAPI and Texas Red) of the original and recon-

structed image set “A0101XY”. The bit-rates shown are for the background ob-

jects only. When reconstructed at 0.01 bits/pixel/channel, the blur of nuclei in the
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Table IV. PSNR (in dB) of each channel of M-FISH image set “A0101XY” recon-

structed at different bit-rates in bits/pixel/channel. The (2,4) wavelet filters

are used with a five-level decomposition.

Bit-rate 0.01 0.025 0.05 0.1 0.15

DAPI 35.69 38.00 41.98 43.76 44.64

Green 32.69 36.14 37.71 39.26 40.18

Orange 30.20 34.77 36.33 38.04 39.04

Texas Red 33.25 36.57 38.78 40.89 41.87

Cy 5 34.20 36.79 38.20 39.81 41.02

Cy 5.5 32.54 36.40 38.21 40.49 42.44

Average 33.43 36.45 38.53 40.37 41.53

background objects is noticeable; at 0.025 bits/pixel/channel, the results look much

better; at 0.05 bits/pixel/channel, the image quality is reasonably good; at 0.10

bits/pixel/channel, most details in the original images are present in the reconstructed

ones; and at 0.15 bits/pixel/channel, the original images and the reconstructed ones

become indistinguishable.

Fig. 7 depicts the bit-rate vs. averaged PSNR over all 88 M-FISH image sets.

Again the (2,4) wavelet filters are used with a five-level decomposition and the bit-

rate is for the background objects only (the average bit-rate for the foreground is

0.34 bits/pixel/channel, as seen from Table III, which already includes the bit-rate

for the segmentation mask). Note that, in order to achieve lossless compression

of the background objects, the average required bit-rate is 2.49 bits/pixel/channel.

This is much higher than the 0.5 bits/pixel/channel needed on average to produce

perceptually good image quality with PSNR at 44.5 dB.



34

b. Comparison with JPEG-2000

Finally we compare EMIC with JPEG-2000. Recall that JPEG-2000 only supports

lossless coding of regularly shaped images. We set the background of M-FISH images

to zero (or a constant value in general) for JPEG-2000 to achieve lossless compres-

sion of the foreground. By doing so both the foreground and the zero background are

perfectly recovered. Table III shows that JPEG-2000 spends 0.58 bits/pixel/channel

on average for this purpose, indicating it is not efficient for lossless regions-of-interest

coding because bits are wasted coding the zero background. In contrast, EMIC only

uses 0.34 bits/pixel/channel on average to achieve lossless compression of the fore-

ground ROI. Given the average bit-rate of 0.58 bits/pixel/channel required by JPEG-

2000 to achieve lossless foreground coding, EMIC can not only code the foreground

lossless with 0.34 bits/pixel/channel but also produce on average PSNR around 42.5

dB for lossy coding of the background using the remaining 0.24 bits/pixel/channel.

Because EMIC achieves bit-rate savings from lossless compression of the foreground,

it can afford lossy compression of the background, as opposed to having to flatten

the background in order to ensure lossless foreground compression with JPEG-2000.

Therefore EMIC clearly provides superior coding capabilities to what JPEG-2000

does for M-FISH image compression.
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(a)

(b)

Fig. 6. PSNR performance of EMIC under different wavelet filters and decomposition

levels. The results shown are the average PSNRs of eight sample M-FISH

image sets reconstructed at different bit-rates. (a) Comparison between the

nine wavelet filters, all with four-level decomposition. (b) Comparison between

different levels of decomposition using the (2,4) wavelet filters.
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Fig. 7. Average PSNRs from using EMIC for lossy coding of the background objects

at different bit-rate. The results are averaged over 88 M-FISH image sets and

computed on the background objects only.
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(a)

(b)

Fig. 8. Two channels of M-FISH image set “A0101XY” reconstructed at different

bit-rates. The images in the left column are from the DAPI channel and the

right from the Texas Red channel. (a) The original images. (b) Reconstructed

at 0.01 bits/pixel/channel. (c) Reconstructed at 0.025 bits/pixel/channel.

(d) Reconstructed at 0.05 bits/pixel/channel. (e) Reconstructed at 0.1

bits/pixel/channel. (f) Reconstructed at 0.15 bits/pixel/channel. The bit-rates

referred are for coding the background only.
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(c)

(d)

Fig. 8 continued.
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(e)

(f)

Fig. 8 continued.
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CHAPTER III

MICROARRAY IMAGE PROCESSING∗

This chapter addresses two important issues associated with microarray image pro-

cessing, signal estimation and image compression, by introducing a new integrated

scheme: Microarray BASICA.

A. Overview of Micorarray Image Processing

As explained in the first chapter, microarray images cannot be used for genomic

data analysis directly. Appropriate image processing procedures are to be performed

in order to estimate the expression levels from the images for downstream analy-

sis. Thousands of cDNA target sites must first be identified as the foreground by

an image segmentation algorithm. Then the intensity pair (R, G) that represents

gene expression levels of both channels is estimated from every foreground target site

with appropriate background adjustment. Subsequent data analysis is usually con-

ducted based on the log-ratio log R/G of the intensity pair. As the very first step

of cDNA microarray signal processing, the accuracy of signal estimation is critical to

the reliability of subsequent data analysis. Many signal estimation schemes have been

developed for this purpose in recent years and can be found in various commercial

and non-commercial software packages [49]-[65].

Besides signal estimation, image compression also raises notable attentions. Gen-

erally, because each channel of the microarray image is typically more than 15 MB

in size, highly efficient compression is necessary for data backup and communication

∗Reprinted from EURASIP Journal on Applied Signal Processing, vol. 4, J. Hua,
Z. Liu, Z. Xiong, Q. Wu, and K. R. Castleman, “Microarray BASICA: Background
adjustment, segmentation, image compression and analysis of microarray images,”
pp. 92-107, Copyright(2004) with permission from HINDAWI Publishing Corp.
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purposes. Even with limit samples, the total space need to store these images can

easily surpasses 1GB. In order to save storage space and alleviate the transmission

burden for data sharing, the search for good progressive compression schemes that

provide sufficiently accurate genetic information for data analysis at low bit-rates,

while still ensuring good lossless compression performance, has become the focus of

cDNA microarray image compression research recently [49, 50, 66].

B. Details of Microarray BASICA

In this chapter we introduce a new integrated system called Microarray BASICA. Mi-

croarray BASICA provides solutions to both signal estimation and image compression

of cDNA microarray images. The major components of BASICA and their relation-

ship with the elements of a microarray experiment are shown in Fig. 9. The upper

two blocks, i.e., Segmentation and Background adjustment perform the signal

estimation function, while the lower two blocks, i.e., Header file and Compression

finish the image compression function.

Each two-channel microarray image acquired through the laser scanner is first

sent to the Segmentation component, where the target sites are identified. With

the result of segmentation, the Background adjustment component estimates each

spot’s foreground and background intensities, and calculates the log-ratio values based

on the background-subtracted intensities. After this, the calculated log-ratio values

along with the segmentation information and other necessary data related to each

spot are output for downstream data analysis. In the mean time, BASICA compiles

the segmentation result and estimated intensities into a header file. With this header

file, the Compression component encodes the foreground and background of both

channels of the original image into progressive bitstreams separately. The generated
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bitstreams, plus the header file, are saved into a data archive for future access, or

transmitted as shared data. On the other hand, to utilize the archived or transmitted

data, BASICA can either quickly retrieve the necessary genetic information saved

in the header file, or reconstruct the microarray image with available bitstreams

through the Reconstruction component, and redo the segmentation and background

adjustment.

Fig. 9. The major units of BASICA.

1. Signal Estimation

Segmentation is performed to identify the target sites in each spot where the hy-

bridization occurs. In [54], various existing segmentation schemes are summarized
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and categorized into four groups: (1) fixed circle segmentation, (2) adaptive circle

segmentation, (3) adaptive shape segmentation, and (4) histogram-based segmenta-

tion.

Although the shape of a target site is determined by the physical attributes of

the DNA probes and the mechanism of the printing procedure, most target sites

are round or donut-like in shape. The fixed circle segmentation, which sets a round

region of constant diameter in the middle of each spot as the target site, appears to be

the most straightforward method and is provided in most existing software packages

[55, 57, 58, 59, 63, 64]. The radius of the foreground is set either by a default value

as a parameter of the robot arrayer and laser scanner, or empirically determined by

the user. The fixed circle method runs fast and performs well when the microarray

spots are perfectly hybridized and aligned. In practical cases, however, the spots are

far from perfect due to unpredictable non-uniform hybridization across the spot or

misalignment of the probe array. Genepix [59] uses the adaptive circle segmentation

to accommodate the varying sizes of different target sites, and Dapple [57] finds the

best matched position of the round region in each spot to cope with the misalignment.

Neither the fixed nor the adaptive circle segmentation can accommodate the

irregular shapes of the target sites in the images. To tackle this problem, more

accurate and sophisticated segmentation methods are needed. The segmentation

technique introduced in [54] uses seeded region growing [67], while other methods

[51, 52, 56, 61, 63, 65] rely on more conventional histogram-based segmentation al-

gorithms. The histogram-based methods generally compute a histogram of pixel

intensities for each spot. Methods in [56, 63, 65] adopt a percentile-based approach,

which sets the pixels in a high percentile range of the histogram as the foreground and

those in a low range as the background. Methods in [52, 61] use a threshold-based

approach. To ensure correct segmentation, methods in [56, 61] employ repetitions to
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find the most stable segmentation. The histogram-based segmentation demonstrate

good performance when a target site has a high hybridization rate, i.e. a high in-

tensity. However, the intensities of most target sites are actually very close to the

local background intensities, and it is hard to segment correctly by finding a thresh-

old based on the histogram only. In an attempt to solve this problem, Chen et al.

introduced a Mann-Whitey-test-based segmentation method in [51].

So far no single segmentation algorithm can meet the demands of all microarray

images. Segmentation algorithms are normally designed to perform well on microarray

images acquired by certain type of arrayers and scanners. It is therefore hard to

compare them directly.

a. Mann-Whitney-test-based Segmentation

In BASICA, we use the Mann-Whitney-test-based segmentation algorithm introduced

by Chen et al. in [51]. The Mann-Whitney test is a distribution-free rank-based

two-sample test, which can be applied to various intensity distributions caused by

irregular hybridization processes that are difficult to handle by conventional thresh-

olding methods. Here we first give a brief description of the Mann-Whitney-test-based

segmentation algorithm.

Consider two independent sample sets X and Y . Samples X1, X2,...,Xm are

randomly selected from set X, and Y1, Y2,...,Yn are randomly selected from set Y . All

N = m+n samples are sorted and ranked. Denote Ri as the rank of the i-th sample,

R(Xi) as the rank of sample Xi, and R(Yi) as the rank of Yi. These ranks are used

to test the following hypotheses:

H0 : P (X < Y ) ≥ 0.5

H1 : P (X < Y ) < 0.5. (3.1)
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Define the rank sum of the m samples from X as

T =
m∑

i=1

R(Xi). (3.2)

To avoid deviations caused by ties, T is commonly normalized as:

T =
T −mN+1

2√
nm

N(N−1)

∑N
i=1 R2

i − nm(N+1)2

4(N−1)

. (3.3)

Hypothesis H0 will be rejected if T is greater than a certain quantile w1−α, where α

is the significance level.

In microarray image segmentation, hypothesis H1 corresponds to the case that

the intensities of the pixels in the foreground X is higher than the intensities of the

pixels in the background Y , and hypothesis H0 corresponds to the otherwise case.

To segment a target spot, a predefined target mask (obtained by selecting, unifying

and thresholding strong targets) is first applied to the spot. Pixels inside the mask

correspond to set X, and pixels outside correspond to set Y . To start the test, n

samples are randomly selected from set Y , while m samples with lowest intensities

are selected from set X. If the hypothesis H0 is accepted, the pixel with lowest

intensity is removed from set X and m sample pixels are reselected. The test is

repeated until hypothesis H0 is rejected. Then the pixels left in set X are considered

as the foreground at significance level α. The foregrounds obtained from the two

channels are united into one to produce the final segmentation result.

The repetitive nature of this algorithm makes it cumbersome for real-time imple-

mentation. So in BASICA we proposed a fast Mann-Whitney-test-based algorithm

[49] which runs much faster while generating identical segmentation results.
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b. Speeding Up Mann-Whitey-test-based Segmentation Algorithm

Assume the predefined target mask is obtained according to the way described in [51,

52]. X1, X2, ..., Xm and Y1, Y2, ..., Yn are picked from the foreground and background

respectively. Without loss of generality, it suffices to assume X1 ≤ X2 ≤ ... ≤ Xm and

Y1 ≤ Y2 ≤ ... ≤ Yn. Since X1, X2, ..., Xm are m smallest samples in set X, all other

samples can be determined if X1 is set. Then Mann-Whitney-test-based segmentation

is actually an optimization problem of minimizing X1 subject to T ≥ w1−α. Chen

et al.’s approach takes a large number of repetitions to reach the final segmentation.

However, it turns out that the number of repetitions can be significantly reduced by

carefully choosing the starting point and search strategy.

BASICA first finds an upper bound of the optimal X1, denoted as Xmax
1 , which

is related to Y1, Y2, ..., Yn. With Eq. (3.3), T ≥ w1−α can be written as

m∑
i=1

R(Xi) ≥ w1−α

√√√√ nm

N(N − 1)

N∑
i=1

R2
i −

nm(N + 1)2

4(N − 1)
+ m

N + 1

2
. (3.4)

In the right hand side of Eq.(3.4), only
∑N

i=1 R2
i is associated with X1. If no tie

exists, the ranks are from 1 to N and the sum is
∑N

i=1 i2. If there is a tie, the ranks

of the tied samples are the average of those ranks if there would have been no tie,

and induce a reduction on the sum. A property of this reduction is that it is only

related to the number of samples tied at that value. If there are k samples having the

same value, the deduction is 1
12

(k3 − k). With this property, one can easily reduce

the upper bound of
∑N

i=1 R2
i . Assume ∆Y is the decrease in the sum caused by the

ties in sorted Y1, Y2,...,Yn, then we have

N∑
i=1

R2
i ≤

N∑
i=1

i2 −∆Y, (3.5)

where the equation holds when X1, X2,...,Xm have no tie among themselves and share
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no tie with any sample in Y1, Y2,...,Yn. In most cases the difference is very small and

the bound is quite tight.

To simplify the notation,
√

nm
N(N−1)

(
∑N

i=1 i2 −∆Y )− nm(N+1)2

4(N−1)
in Eq. (3.4) is

notated as σmax in the rest of this chapter. Then Xmax
1 must satisfy the inequality

m∑
i=1

R(Xi) ≥ w1−ασmax + m
N + 1

2
(3.6)

no matter what X2, X3, ..., Xm can be for as long as the assumption X1 ≤ X2 ≤
... ≤ Xm holds. So to find Xmax

1 is to find the smallest X1 that the smallest rank

sum of X1 ≤ X2 ≤ ... ≤ Xm still satisfies inequality (3.6). To associate Xmax
1 with

known information Y1, Y2, ..., Yn, assuming Yu < Xmax
1 . Then the minimum rank sum

is
∑m

i=1 R(Xi) =
∑m

i=1(u + i), when Yu < X1 ≤ X2 ≤ ... ≤ Xm < Yu+1. By solving

the inequality with
∑m

i=1 R(Xi) =
∑m

i=1(u + i), u can be obtained as:

u = dw1−ασmax

m
+

n

2
e. (3.7)

Thus the upper bound Xmax
1 is the smallest sample in X that is larger than Yu.

For any sample set X1, X2, ..., Xm with X1 ≥ Xmax
1 , hypothesis H0 can be rejected

outright. The threshold min X1 subject to T ≥ w1−α must be smaller than Xmax
1 and

can be checked out by perform the Mann-Whitney test repetition backwardly. Since

X1, X2, ..., Xm normally have similar intensities which bring on consecutive ranks,

Xmax
1 is usually very close to the actual threshold. Hence the repetitions can be

greatly reduced if backward repetitions based on Xmax
1 are applied.

Besides changing the starting point and repetition direction, a two-tier repetition

strategy can be used to reduce the repetition in case when the upper bound is not

so tight as expected. In the first tier, one does not perform the repetition in a pixel-

by-pixel manner, but in a leaping manner instead. Then a pixel-by-pixel repetition
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follows up and locates the exact segmentation in the second tier. Larger step size

means fewer repetitions in the first tier but more in the second tier, while smaller

step size has the opposite effect. A natural choice of the repetition steps is indicated

by Y1, Y2,...,Yn when n is not very large. The whole algorithm is described as follows:

• Step 1: Calculate u using Eq. (3.7);

• Step 2: Find m smallest samples from set X that are larger than Yu, and execute

the Mann-Whitney test;

• Step 3: If hypothesis H0 is rejected, then set u = u − 1 and go to step 2,

otherwise, go to step 4;

• Step 4: u = u + 1. Find m smallest samples from set X that are larger than

Yu, and begin the pixel-by-pixel repetition in backward manner.

It should be noted that this modified Mann-Whitney-test-based segmentation

algorithm may not always generate identical results with Chen et al.’s original al-

gorithm. In order to obtain identical results, the backward- searching nature of the

new algorithm requires the normalized rank sum in Eq. (3.3) to be strictly increasing

during the repetition of the original algorithm. This is not guaranteed due to the

occurrences of ties in the sorted samples. In one extreme case, when all N samples

have the same intensity, the devisor will become zero and the normalized rank sum

will be infinity. Actually Chen et al.’s original algorithm can be viewed as trying to

find the largest foreground that rejects the hypothesis H0, while the modified algo-

rithm in BASICA tries to find the smallest foreground that accepts the hypothesis

H0. Since in most cases the normalized rank sum will be strictly increasing, we ex-

pect the segmentation results of the modified algorithm to be identical to the original

algorithm most of the time.
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The comparisons of the number of required repetitions between Chen et al.’s

algorithm and our modified algorithm are given in Table V. We find that the seg-

mentation results on all test spots of the sample images used in this study are identical

between the original algorithm and the modified algorithm. From the table we ob-

serve that the modified algorithm reduces the number of repetitions by up to 50 times

from what is required of the original algorithm.

Table V. The comparisons on the number of repetitions between Chen et al.’s algo-

rithm and our modified method used in BASICA at different significance

levels. Results are averaged over 504 spots in both channels from different

test images. Both algorithms set m = n = 8 and use the same randomly

selected samples from the predefined background for the Mann-Whitney test.

α 0.001 0.005 0.01 0.05

Chen et al. 328.7 269.1 270.9 226.3

BASICA 7.5 7.3 5.9 3.7

c. Post Processing

Like common threshold-based segmentation algorithms, there are always many annoy-

ing shape irregularities in the segmentation results obtained by the Mann-Whitney-

test-based algorithms. These irregularities occur randomly and can severely reduce

the compression efficiency. Thus an appropriate post-processing procedure is nec-

essary to achieve efficient compression. Moreover, because most irregularities are

pixels with a high probability of noise corruption, eliminating them is unlikely to

compromise the accuracy of subsequent data analysis.

In BASICA, we categorize possible irregularities into two types and employ dif-

ferent methods to eliminate them. The first type includes isolated noisy pixels or
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tiny regions, which can be observed from the lower half of the segmentation result in

Fig. 10 (a). These irregularities are caused usually by nonspecific hybridization or

undesired binding of fluorescent dyes to the glass surface. The second type includes

the small branches attached to the large consolidated foreground regions, which are

visible in the segmentation results of Fig. 10 (a). Located between the foreground

and background, intensities of these irregularities are also in-between, making them

vulnerable to noise corruption. The irregularities in most segmentation results are

usually made up of both these two types. For the first type, BASICA will detect and

remove them directly from the foreground. As to the second type, BASICA applies

an operation similar to the standard morphological pruning [68]. By removing and

pruning repetitively, BASICA can successfully eliminate most irregularities in three

to five repetitions. The right column of Fig. 10 shows the post-processing results on

the original segmentation, which are to be used for the compression of the images.

Fig. 11 shows a portion of a microarray image and its segmentation results.

d. Background Adjustment

It is commonly believed that the pixel intensity of the foreground reflects the joint

effects of the fluorescence and the glass surface. To obtain the expression level ac-

curately, the intensity bias caused by the glass surface should be estimated and sub-

tracted from the foreground intensity, and this process is known as background ad-

justment. Since there is no hybridization in the background area, the background

intensity is normally measured and treated as an intensity bias. Although mean pixel

intensity has been adopted in almost all existing schemes as the foreground inten-

sity, several methods have been developed for background intensity estimation. The

major differences of various methods lie in two aspects: (1) on which pixels the esti-

mation is based, and (2) how to calculate the estimation. Regarding the first aspect,
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(a)

(b)

Fig. 10. Segmentation and post-processing of two typical spots. The left column shows

the original microarray spots in RGB composite format. Some intensity ad-

justments are applied in order to show them clearly. The middle column

shows the corresponding segmentation results using the Mann-Whitney test

with significance level α = 0.001. The right column shows the final segmen-

tation results after post-processing.

the regions chosen for background estimation vary from a global background to a

local background. For the global background, the background regions in all spots

are considered, and a global background intensity is estimated and subtracted from

every foreground intensity [55, 62]. The global background ignores possible variance

between sub-arrays and spots. So in [55] partial global background estimation is

performed based on the background of one sub-array or on several manually selected

spots. The more common approach is to estimate the background intensity based on

the local background for each target site separately. The local background can be

the entire background region in one spot [64], or, to avoid interference from the fore-

ground, it can be the region with a certain distance from the foreground target site

[53, 57, 59, 61, 63]. In the extreme case, the algorithm in [60] used the pixels on the

border of each spot as the local background. However, using too few pixels increases
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(a) (b)

Fig. 11. (a) Part of a typical cDNA microarray image in RGB composite format. Some

intensity adjustments were applied in order to show the image clearly. (b) The

segmentation results of (a).

the possibility of a large variance in background estimation. As to the second aspect,

almost all existing systems adopt mean or median to measure the expression level.

Besides these, mode and minimum are also used in some softwares [52, 62]. Unlike

all the methods mentioned above, a morphological opening operation is performed in

[54] to smooth the whole background and then estimate the background by sampling

at the center of the spot.

Some commercial software packages [55, 62] offer more than one choice for back-

ground adjustment. ArrayMetrix [55] provides up to nine methods, while ArrayVi-

sion [56] provides seven ways of background region determination and six choices of

averaging method. Experiments in [54] show that the selection of the background

adjustment methods has significant impact on the log-ratio values subsequently ob-

tained. However, there is no known criterion to measure whether a certain approach

is more accurate over the others.



53

BASICA chooses the average of pixel intensities in the local background as the

estimate of background intensity. To prevent possible biases caused by either the

higher intensity values of the pixels adjacent to the foreground target sites or the

lower intensity values of the dark hole regions in the middle of the spots, the local

background used in BASICA is the background defined by the predefined target mask

obtained through the segmentation.

2. Image Compression

In order to achieve the best lossy-to-lossless compression performance, a novel dis-

tortion measure is introduced to match the requirement of data analysis. Thus in

this section we first provide the background knowledge on low-level statistical data

analysis, then introduce our microarray image compression scheme.

a. Data Analysis

Because so many elements impact the pixel intensities of the microarray image, genetic

researchers do not use the absolute intensities of the two channels, but the ratio

of them to measure the relative abundance of gene transcription. Not all genetic

information estimated are reliable enough for data analysis. If the spot has so poor

quality that no reliable information can be estimated, it is qualified as a false spot,

otherwise, it is a valid spot. For a valid spot k, the expression ratio is denoted as

Tk =
Rk

Gk

=
µFRk

− µBRk

µFGk
− µBGk

, (3.8)

where Rk and Gk are the background-subtracted mean intensities of the red and green

channels respectively, µFRk
and µFGk

are the respective foreground mean intensities,

and µBRk
and µBGk

are the respective estimated background mean intensities. Be-

cause expression ratio has an unsymmetric distribution, which contradicts the basic



54

assumptions of most statistic tests, the log-ratio log Tk = log Rk/Gk is commonly

used instead in most applications. In addition to the log-ratio, an auxiliary measure

which is often helpful to data analysis is the log-product log RkGk. However, since

the log transform does not have constant variance at different expression levels, some

alternative transforms like glog [69] have recently been introduced. In gene expression

studies, such transformed ratios are ordinarily normalized and quantized into three

classes: down-regulated, up-regulated and invariant. Expression level estimation and

quantization provide the starting point for subsequent high-level data analysis and

their accuracy is crucially important. Therefore compression schemes should be de-

signed to minimize the distortion in the image, and their performance should be

assessed by agreement/disagreement in gene expression level measurement caused by

the compression. These topics will be discussed in detail in the later sections.

b. Image Compression

Since microarray images contain huge amounts of data and are usually stored at

the resolution of 16 bpp, a two-channel microarray image is typically between 32

and 64 megabytes in size. Efficient compression methods are highly desired to ac-

commodate the rapid growth of microarray images and to reduce the storage and

transmission costs. Currently the common method to archive microarray images is

to store them losslessly in TIFF format with LZW compression [8, 9]. However, such

an approach does not exploit 2-D correlation of data between pixels and does not

support lossy compression. Due to the huge data size, microarray images require

efficient compression algorithms which support not only lossless compression but also

lossy compression with graceful degradation of image quality for downstream data

analysis at low bit-rates.

Recently a new method known as the segmented LOCO (SLOCO) was intro-
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duced in [66]. This method exploits the possibility of lossy-to-lossless compression for

microarray images. SLOCO is based on the LOCO-I algorithm [70], which has been

incorporated in the lossless/near-lossless compression standard of JPEG-LS. SLOCO

employs a two-tier coding structure. It first encodes mircoarray images lossily with

near-lossless compression, then applies bit-plane coding to the quantization error to

refine the coding results until lossless compression is achieved. SLOCO can generate a

partially progressive bitstream with a minimum bit-rate determined by the compres-

sion of the first tier, and the coding is conducted on the foreground and background

separately.

In BASICA we also incorporate lossy-to-lossless compression of microarray im-

ages. The aims of compression in BASCIA are twofold: 1) To generate progressive

bitstreams that can fulfill the requirements of signal processing and data analysis at

low bit-rates for data sharing and transmission applications and 2) to deliver com-

petitive lossless compression performance for data archiving applications with a pro-

gressive bitstream. To achieve these objectives, the compression scheme in BASICA

treats the foreground and background of microarray images separatively. Obviously

the foreground and background usually have significant intensity differences and they

are relatively homogeneous in their corresponding local regions. Hence by compress-

ing the foreground and background separately, the compression efficiency is expected

to improve significantly. This is done by utilizing the outcomes of segmentation. Be-

fore encoding, BASICA saves all necessary segmentation information into a header

file for subsequent compression.

SLOCO in [66] is based on spatial-domain predictive coding. In contrast, BA-

SICA employs bit-plane coding in the transform domain. Bit-plane coding enables

BASICA to achieve truly progressive bitstream coding at any rates. To allow lossy

compression, an appropriate distortion measurement is needed. Generally, medical
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image compression requires visually imperceptible differences between the lossily re-

constructed image and the original. Traditional distortion measures, such as mean

square error (MSE), are poor indicators for this purpose. However, unlike other types

of medical images, the performance of microarray image compression does not depend

on visual quality judgement, but instead on the accuracy of final data analysis. There-

fore it is reasonable to adopt a distortion measure adherent to the requirements of

data analysis. Since almost all existing data analysis methods use the transformed

expression values, we should seek to minimize the distortion under these measure-

ments. In BASICA we adopt distortion measures based on the log-ratios and the

log-products because they are the mostly used transforms in common applications.

However, as we will see later, the scheme employed in BASICA can be easily adapted

for other transform measures.

The log-ratios and the log-products decouple the data of two channels into two

separate log-intensities, log R and log G. This ensures that the compression can be

done on each channel independently. Without loss of generality, we only refer to the

R channel in the rest of the paper.

BASICA currently employs the MSE of log R as the distortion measurement,

which is defined as

MSElog R =
1

N

N∑
i=1

(log Ri − log R̂i)
2, (3.9)

where N is the total number of spots in the microarray image, and Ri and R̂i are

background subtracted mean intensities obtained from spot i of the original and

reconstructed image respectively.

There is a direct relationship between the MSE of log-intensity and the traditional
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MSE. For spot k, its log-intensity log Rk can be further written as

log Rk = log(µFRk
− µBRk

) = log(
1

Mk

Mk∑
i=1

Xi − µBRk
), (3.10)

where Mk is the total number of pixels in the foreground of spot k, and Xi is the

intensity of the i-th pixel. So the unit error ∆ log Rk is associated with the unit error

∆Xj of j-th pixel by

∆ log Rk =
∆Xj

Mk(µFRk
− µBRk

)
. (3.11)

For the pixels in the background, because most existing schemes do not compute the

average intensity as µBRk
but use non-linear operations such as modulo or median

filtering, the above derivation no longer holds. The foreground and background pixels

have different impacts on the log-intensity and should be considered separately.

Eq. (3.11) indicates that the MSE of log-intensity is actually a weighted version

of traditional MSE. The weight 1
Mk(µFRk

−µBRk
)
is a constant for pixels in the same spot

and is inversely proportional to the spot’s intensity and foreground size. The higher

a spot’s intensity or foreground size, the larger its allowable reconstruction error.

Quite similarly, one can easily derive other MSE distortion measurements for

other transforms. For example, the glog transform in [69] is

g(Rk) = log(µFRk
− α +

√
(µFRk

− α)2 + c), (3.12)

where α and c are parameters estimated from the microarray image. Then with

straightforward derivation, one can associated the unit error ∆g(Rk) with the unit

error ∆Xj of j-th pixel by

∆g(Rk) =
∆Xj

Mk

√
(µFRk

− α)2 + c
. (3.13)

Thus the MSE of glog is also a weighted version of traditional MSE, and like MSE of
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log-ratio, the measurement allows larger distortions in spots of high intensities.

Although we can derive different distortion measurements for different transform,

the compression scheme in BASICA can only be designed based on one type of dis-

tortion measurement. As mentioned before, in BASICA we choose MSE of log-ratio

as the distortion measurement.

With the help of Eq. (3.11), we introduce a new lossy-to-lossless compression

scheme in BASICA by modifying EBCOT [10] with several techniques specifically

designed for the requirements of microarray technology. First, like what have been

done in the M-FISH image compression at previous chapter, we modify the EBCOT to

compress arbitrarily shaped regions by applying critically sampled wavelet transform,

and encoding the foreground and background separately. Then we apply intensity

shifts and bit shifts on the coefficients to minimize the MSE of log-intensity.

Since EBCOT, which is a state-of-the-art compression algorithm incorporated in

JPEG-2000 standard, is the basis of EWV mentioned in pervious chapter, here we will

omit those unnecessary description on EBCOT, and focus on our major modifications

to EBCOT:

• Header file: A header file is necessary for saving the information which will be

used in the encoding and decoding procedures. To ensure that the encoder and

decoder can correctly compress and reconstruct the foreground and background

independently, the segmentation information must be saved in the header file.

Besides, Eq. (3.11) indicates that the mean intensities of the foreground and

background are also needed by the compression algorithm. To save storage

memory, these data are coded with LZW compression. Although the segmenta-

tion information and spot intensities are enough for the compression component,

other data, such as variances of pixel intensities in each spot, can also be saved
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in the header file for quick genetic information retrieval. In the practical im-

plementation, the header file will be generated before encoding and must be

transmitted and decoded first.

• Shape-adaptive integer wavelet transform and object-based EBCOT:

This is pretty much like what we have done with EMIC in M-FISH image coding.

Shape-adaptive integer wavelet transforms and bit-plane coding are applied to

the foreground and background independently.

• Intensity shifts: To minimize the initial MSE, the average intensity of the

image is subtracted from each pixel before encoding and added back after de-

coding. Unlike 8-bit natural images, the foreground of a microarray image

normally has an exponential intensity distribution. The exponential distribu-

tion property of the foreground makes the global average intensity subtraction

less effective. However, the pixels in the foreground of any spot k normally have

similar intensities and roughly have a symmetric distribution around µFRk
. So

for the encoding of the foreground, instead of a global average intensity sub-

traction, each pixel in spot k is subtracted with µFRk
. Since µFRk

is already

saved in the header file, intensity shifts do not cost any overhead. With in-

tensity shifts, the distribution of foreground intensities are transformed into a

symmetric shape with a high peak around zero. And for the background com-

pression, through our experiments we find that the pixels in the background

actually have a roughly symmetric intensity distribution, suggesting that the

global average intensity subtraction will be appropriate.

• Bit shifts: EBCOT uses block-based bit-plane coding. In order to minimize

the distortions at different rates, one must code the bit-planes of different spots

according to their impacts on the MSE of log-intensity. One straightforward so-
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lution is to scale the coefficients of each spot with the spot’s weight, so bits at the

same bit-plane of all spots have the same impacts on the MSE of log-intensity.

However, because the weights are non-integer fractions, lossless compression

cannot be ensured under such a scaling. Furthermore, although one can round

them to the closest integer as an approximation, any scaler w will increase a

coefficient’s information by up to dlog2we bits, which can lead to a very poor

lossless compression performance. In BASICA, we apply the scaling by bit

shifts which is a good approximation and meanwhile does not compromise the

performance of lossless compression. For spot k, BASICA obtains

Sk = blog2(Mk(µFRk
− µBRk

)) + 0.5c. (3.14)

Let Smax = max{S1, S2, . . . , SN}. Then it scales the coefficients of spot k by

upshifting them Smax − Sk bits.

• Background compression: With careful consideration, bit shifts have not

been applied in the background compression in BASICA for several reasons.

First, since there exist different approaches to compute the background inten-

sity, and the values obtained by these methods also vary a lot, it is unclear

how to find a unique weight for each pixel like what BASICA has for fore-

ground compression. Second, unlike isolated target sites in the foreground, the

local background is normally connected to each other. Thus bit shifts will bring

abrupt intensity changes along the borders of spots, which will in turn lower the

compression efficiency significantly in lossless coding performance. Even though

one can figure out the weights through a formula similar to Eq. (3.11) based on

certain background extraction methods, there will be a significant tradeoff on

lossless compression, which is about 0.8 bpp according to our experiments. So
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in BASICA, we apply a global average intensity subtraction and no bit shifts

on the background compression, i.e., the traditional MSE measure is used for

rate-distortion optimization. Normally the pixel intensities in the background

are located in a very small range, which means the background is pretty ho-

mogenous. Thus compression with traditional MSE measure should be able to

represent the background with fairly small bit-rates.

To this end, the final code of a two-channel microarray image is composed of

five different parts: a header file, and two bitstreams representing the foreground and

background respectively from each channel.

C. Experimental Results and Discussion

Experiments have been conducted to test the image compression performance of BA-

SICA with eight microarray images from two different sources. We used three test

images from the National Institutes of Health (NIH). Each of these images contains

eight sub-arrays arranged in 2-by-4 format. In each sub-array the spots are arranged

in a 29-by-29 format. There are a total of 20184 spots in all three NIH images. In

addition to these, we also tested on another set of five test images obtained from Spec-

tral Genomics Inc. (SGI). Each of the SGI images contains eight sub-arrays arranged

in 12-by-2 format, and in each sub-array the spots are arranged in a 16-by-6 format.

These five SGI images contain a total of 9960 spots. The target sites in the NIH

images exhibit noticeable irregular hybridization effect and have irregular brightness

patterns across the spots. The intensities of these target sites span over a large range

and vary considerably. The target sites in the SGI images appear to be hybridized

more homogeneously, and many of them have nearly perfect circular shape.

In the experiments, for each two-channel image, the summed bit-rate of all the
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bitstreams from both channels, plus the shape information, were reported in bit-

per-pixel(bpp) format, which either represents the compression bit-rate or the recon-

struction bit-rate, depending on the type of test performed. And the corresponding

bit-rate of uncompressed original image is 32bpp. BASICA first segmented the image

and generated the header file. The average overhead of the header file was 0.5 bpp for

the NIH images and 0.24 bpp for the SGI images, based on the post-processed seg-

mentation results. The header file overheads were smaller on the SGI images because

of different settings of the microarray arrayers used to acquire the images: there were

much fewer spots in each SGI image than those in each NIH image. After generat-

ing the header file, the foreground and background of each channel were compressed

independently.

1. Comparisons of Wavelet Filters and Decomposition Levels

The framework of proposed compression scheme in BASICA does not specify which

wavelet filters and how many wavelet decomposition levels to use. In order to find the

optimal choice for microarray image compression, we compare the results generated

with different wavelet filters and decomposition levels. All the results presented in

this section are based on the NIH images unless stated otherwise.

Table VI lists the lossless coding results by BASICA using nine different wavelet

filters with one-level wavelet decomposition. From these we found that the compres-

sion results vary only in a small range of about 0.07 bpp. Among all nine sets of

filters, the 5/3 wavelet filters achieved the best result. This is probably because the

5/3 wavelet filters have relatively shorter filter lengths, and therefore fit better with

the not-so-smooth nature and the small size of microarray target sites. Nevertheless

as the discrepancies in the results were small, the choice of the wavelet filters appeared

to be not critical to the system performance.
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Table VI. Lossless compression results (in bpp) of BASICA using different integer

wavelet filters with one-level wavelet decomposition. The results are aver-

aged over the NIH images.

Wavelet filters 9/7-F (2+2,2) 5/3 S+P (4,2) (2,4) (4,4) (6,2) 2/6
File size 13.99 14.01 13.97 14.03 14.01 13.97 13.99 14.04 14.00

Table VII lists the lossless coding results by BASICA with different wavelet

decomposition levels. Only the best-performing 5/3 wavelet filters were evaluated

in these tests. The performance appeared to get worse when decomposition level

increased and compression with only one-level decomposition achieved the best result.

This is partly due to the fact that although with more decompositions more data

energy is be compacted into smaller subbands, it also introduces a higher model-

adaptation cost to arithmetic coding in the newly generated subbands, which cancels

out the gains. Similar to the comparison among the wavelet filters, the discrepancies of

lossless compression performance using different decomposition levels are very small.

Table VII. Lossless compression results (in bpp) of BASICA using the 5/3 wavelet

filters with different wavelet decomposition levels. The results are averaged

over the NIH images.

1 level 2 levels 3 levels 4 levels 5 levels

File size 13.97 14.00 14.01 14.02 14.02

To confirm this observation lossy compression tests were also performed to com-

pare the performances based on the choices of wavelet decomposition level. To evalu-

ate the effect of lossy compression on data analysis, the test images were first recon-

structed at a target rate. Then the reconstructed images were processed and genetic

information (i.e. log-ratio) was estimated and compared with the same information
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estimated from the original images. To ensure credibility of the comparisons, the

Mann-Whitney-test-based segmentation started with the same selection of random

pixels in the predefined background in both the reconstructed image and the origi-

nal image. The segmentation was conducted under three different significance levels

α = 0.001, 0.01 and 0.05. At each significance level, log-ratios were estimated and

distortions were computed. The distortions shown are the average distortions at three

significance levels over the three test images. Both the l1 distortion and l2 distortion

(i.e., MSE) of log-intensity were used as the error measures. Fig. 12 shows the av-

erage reconstruction errors using BASICA at different bit-rates with three different

decomposition levels of the 5/3 wavelet transform.

From this figure we can see that one-level decomposition yielded a significantly

better performance than the others. Based on the above lossless and lossy compression

results, we decided to use the 5/3 wavelet filters with one-level wavelet decomposition

as a default setting in BASICA.

2. Comparisons of Lossless Compression

We first compared the lossless compression performance of BASICA with three current

standard coding schemes: TIFF, JPEG-LS and JPEG-2000. In the comparisons,

TIFF, JPEG-LS and JPEG-2000 all compress a microarray image as a single region

and no header file is added. To evaluate the improvement brought by the post-

processing in segmentation, along with the intensity and bit shifts in compression, we

also performed the tests of BASICA without the intensity and bit shifts, and without

post-processing respectively (denoted as BASICA w/o PP and BASICA w/o shifts

respectively in the tables and figures below).

The coding results are shown in Table VIII. The TIFF format, which is com-

monly used in existing microarray image archiving systems, produced the poorest
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Fig. 12. Rate-distortion curves of log-ratio in terms of (a) l1 distortion and (b) l2 dis-

tortion with different wavelet decomposition levels at different reconstruction

bit-rates. 5/3 wavelet filters were used. The segmentation was performed at

three different significance levels α = 0.001, 0.01 and 0.05 and three log-ratios

and their corresponding distortions were then obtained. The distortions shown

are the averages of the three significance levels over the NIH images.
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results: about 4 bpp worse than all the other methods compared. JPEG-LS achieved

the best performance on the NIH images. But like TIFF, it does not support lossy

compression. The proposed BASICA turned out to be about 0.27 bpp worse than

JPEG-LS on the NIH images and 0.12 bpp better on the SGI images. Besides, BA-

SICA was significantly better than JPEG-2000 with the savings of 0.48 bpp and 0.56

bpp on the NIH and SGI images respectively. BASICA without intensity and bit

shifts yielded almost the same performance as BASICA in lossless compression. On

the other hand, one can see clearly that the irregularities in segmentation reduced

compression efficiency substantially. Without post-processing, the average size of a

header file was 0.33 bpp larger than that of BASICA on the NIH images, and 0.09

bpp larger on the SGI images respectively. Thus BASICA with post-processing was

preferred on all the test images.

Table VIII. Lossless compression results (in bpp) of different coding schemes.

Methods Bit-rates (NIH) Bit-rates (SGI)
TIFF 18.27 17.21

JPEG-LS 13.70 14.49
JPEG-2000 14.45 14.93

BASICA w/o shifts 13.99 14.31
BASICA w/o PP 14.50 14.46

BASICA 13.97 14.37

3. Comparisons of Lossy Compression

During the experiments, we also compared the lossy compression results at different

bit-rates. Since TIFF and JPEG-LS do not support lossy compression functionality,

JPEG-2000 was the only standard compression scheme compared in the experiments.

Our comparisons were based on three different measurements.
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a. Comparisons Based on l1 and l2 Distortions

We first compared the rate-distortion curves based on the l1 distortion and l2 distor-

tion of log-intensity. Fig. 13 shows the average reconstruction errors of these methods

at different bit-rates. We observe that, due to the effect of relatively more homoge-

neous hybridization, the distortion on the SGI images was uniformly smaller than the

distortion on the NIH images. JPEG-2000 produced surprisingly small l1 distortion

values at low bit-rates, only inferior to BASICA on the NIH images and similar to

the others on the SGI images. Nevertheless it produced relatively large l2 distortion

values. Apparently, without adjusting the MSE for log-intensity, JPEG-2000 spent

too much bit-rate on high intensity pixels/spots, which led to high l2 distortion. Fur-

thermore, the distortion of JPEG-2000 decayed slowly in both l1 and l2 sense. For

bit-rates beyond 6 bpp, it degraded to produce the worst distortion among all the

methods. Without the intensity and bit shifts, BASICA performed poorly at lower

bit-rates. Only when the bit-rate went above 6 bpp did its performance become

acceptable. BASICA without post-processing produced different performances on

images of different sources. On the NIH images, it obviously suffered from the ir-

regularities of segmentation, yielding a performance between BASICA and BASICA

without the intensity and bit shifts at low bit-rates. But it quickly became worse

than both of these schemes when bit-rate increased. On the SGI images, in which

target sites had more uniform hybridization, there was almost no difference between

its performance and BASICA’s. Compared to the other schemes, BASICA yielded

the best performance in both l1 and l2 distortion at all bit-rates on all test images.
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Fig. 13. Rate-distortion curves of log-ratio in terms of l1 distortion (left column) and l2

distortion (right column) under different reconstruction bit-rates for different

compression schemes. (a) Results based on the NIH images. (b) Results

based on the SGI images. The segmentation was performed at significance

level α = 0.05.
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b. Comparisons Based on Scatter Plots

Besides l1 and l2 distortion measures, a more intuitively visual way to compare the

distortion of different methods is by scatter-plotting. Fig. 14 shows the estimated log-

ratios and log-products by different methods at a bit-rate around 4 bpp for two test

images. In each scatter-plot, the blue diagonal line corresponds to the information

estimated from the original images. From the plots we can see that BASICA had a

better performance than the other methods. BASICA without post-processing had a

worse performance on the NIH images and a good performance on the SGI images.

JPEG-2000 and BASICA without intensity and bit shifts yielded worse performances

on both sets of test images. This observation is consistent with the results shown in

Fig. 13. Since a scatter-plot cannot provide quantitative performance measurements

and can only visually display the data for comparisons at one bit-rate per plot, it

does not provide a practical performance measurement.

c. Comparisons Based on Gene Expression Data

Rather than judging the performance based on the L1 and L2 distortion measures

and the scatter plots, biologists and clinicians in gene expression studies are likely

to care more whether a gene is differently detected or identified due to a lossy com-

pression. Hence it is meaningful to look at rate of disagreement on detection and

identification between lossily reconstructed image and original image. The detection

and identification disagreement are defined as follows.

1) The detection disagreement is defined to be the valid spots in the original

image being detected as false spot, or vice versa, after a lossy reconstruction.

2) The identification disagreement is defined to be a different classification out-

come among up-, down-regulated, and invariant gene expression levels after a lossy
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(a)

(b)

Fig. 14. Scatter-plots of log-ratio (left column) and log-product (right column) esti-

mated from original images and reconstructed images using different schemes.

(a) Results based on a NIH image. Black: BASICA at 4.3 bpp; Magenta:

BASICA w/o shifts at 4.3 bpp; Green: BASICA w/o PP at 4.7 bpp; Red:

JPEG-2000 at 4.0 bpp. (b) Results based on a SGI image. Black: BASICA

at 4.1 bpp; Magenta: BASICA w/o shifts at 4.1 bpp; Green: BASICA w/o

PP at 4.2 bpp; Red: JPEG-2000 at 4.0 bpp. The significance level in the

Mann-Whitney test is α = 0.05.
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reconstruction, even though the detection outcome is same.

We conducted experiments using a simple quantitative model of gene expression

data analysis to compare different methods. We determined that a spot was false if

its foreground intensity was less than its background intensity in either channel, or

no foreground target site was found by the segmentation. We also decided that if the

log-ratio was larger or smaller than a certain threshold range [θ,−θ], then the spot

was up or down-regulated, otherwise it was invariant. For these experiments, no nor-

malization was performed to reduce the inter-image data variations. The experiments

were performed on the NIH images and the SGI images separately and the results are

shown in Fig. 15. From this figure we can see that the identification disagreement

rate was about 10 times higher than the detection disagreement rate. These results

were similar to what have been shown in Fig. 13. The disagreement caused by the

lossy compression of JPEG-2000 was comparable to that of BASICA only at 2 bpp,

and dropped slowly when bit-rate increased. On the other hand, the disagreement

caused by BASICA without intensity and bit shifts became acceptable only after 6

bpp. BASICA without post-processing yielded a performances similar to that of BA-

SICA on the SGI images but did worse on the NIH images. One can also observe

that the disagreement rates on the NIH images were much higher than on the SGI

images at the same bit-rate. This is probably because NIH images are much noisier

than SGI images, and hence require more bit-rates to compress. These results were

consistent with Fig. 13, where the NIH images had much larger l1 and l2 distortion

than the SGI images at the same bit-rate. For the NIH images, the identification

disagreement rate was larger than 10% at 2 bpp and was around 1.5% at 10 bpp. For

the SGI images, the identification disagreement rate was smaller than 2.5% even at

2 bpp, and was around 0.1% at 10 bpp. All these results consistently suggested that

one could hardly find a common bit-rate that led to similar disagreement/agreement
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rates for different microarray images. For images with homogeneous hybridization,

which are becoming more available with the advance of microarray production tech-

nology, lossy compression at low bit-rates appears to be viable for highly accurate

gene expression data analysis.



73

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Reconstruction Bitrate (bpp)

D
et

ec
tio

n 
E

rr
or

 R
at

e 
(%

)

BASICA
BASIC w/o shifts
BASICA w/o PP
JPEG−2000

2 4 6 8 10 12
0

5

10

15

20

25

Reconstruction Bitrate (bpp)

Id
en

tif
ic

at
io

n 
E

rr
or

 R
at

e 
(%

)

BASICA
BASIC w/o shifts
BASICA w/o PP
JPEG−2000

(a)

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Reconstruction Bitrate (bpp)

D
et

ec
tio

n 
E

rr
or

 R
at

e 
(%

)

BASICA
BASIC w/o shifts
BASICA w/o PP
JPEG−2000

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Reconstruction Bitrate (bpp)

Id
en

tif
ic

at
io

n 
E

rr
or

 R
at

e 
(%

)

BASICA
BASIC w/o shifts
BASICA w/o PP
JPEG−2000

(b)

Fig. 15. The disagreement rates vs. the bit-rates. The threshold parameter θ = 1. The

segmentation was performed at significance level α = 0.05. The left column

plots depict the detection disagreement rates vs. the bit-rates. The right

column plots depict the identification disagreement rates vs. the bit-rates.

The disagreement rates shown are the averages of all images. (a) Results

based on the NIH images. (b) Results based on the SGI images.
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CHAPTER IV

OPTIMAL NUMBER OF FEATURES AS A FUNCTION OF SAMPLE SIZE IN

EXPRESSION-BASED CLASSIFICATION∗

This chapter investigates the relationship between the optimal number of features

and sample size for expression-based classification. We first give an overview on the

history of this problem, then discuss altogether eight classifiers. Analytical approach

is applied to quadratic discriminant analysis (QDA), and simulation-based approach

is applied to other seven classifiers.

A. Problem Overview

Two-class classification involves a classifier Ψ, a feature vector X = (X1, X2, . . . , Xd)

composed of random variables, and a binary random variable Y to be predicted by

Ψ(X). The values, 0 or 1, of Y are treated as class labels. The error ε = P (Ψ(X 6=
Y )) is the probability that the classification is erroneous. The optimal classifier Ψ•

minimizes the probability, P (Ψ(X) 6= Y ), of misclassification over all classifiers Ψ. Ψ•

and ε• = P (Ψ•(X) 6= Y ) are called the Bayes classifier and Bayes error, respectively.

Classification via different gene-expression patterns estimated from the microar-

ray images requires designing a classifier (decision function) that takes a vector of

gene expression levels as feature vector, and outputs a class label, which predicts the

class containing the input vector. It can be between different kinds of cancer, different

stages of tumor development, or a host of such differences. The classifier has to be

designed based on the available samples.

∗This chapter contains material reprinted from Pattern Recognition, J. Hua, Z.
Xiong, and E.R. Dougherty, “Determination of the optimal number of features for
quadratic discriminant analysis via the normal approximation to the discriminant
distribution,” to appear, Copyright(2004), with permission from Elsevier.



75

The feature vector consists of the expression levels of a certain number of genes,

i.e., features. Given the joint feature-label distribution, increasing the number of

features always results in decreased classification error; however, this is not the case

when a classifier is designed via a classification rule from sample data. The designed

classifier Ψd,n is now associated with sample size n and feature size d. Typically,

for fixed sample size n, the expect error of a designed classifier Ψd,n decreases and

then increases as the number of features d grows. This peaking phenomenon was first

rigorously demonstrated for discrete classification [72], but it can affect all classifiers,

the manner depending on the feature-label distribution. The problem is especially

acute when sample size is very small and the potential number of features is very large.

This is precisely the situation in genomic signal processing when one wishes to design

gene-expression-based classifiers based on microarray data to discriminate between

phenotypes [73, 74]. Given the importance of discovering expression-based genetic

markers for disease diagnosis, in particular, cancer [75, 76, 77, 78], in conjunction with

the small samples sizes common for microarray studies, determining an appropriate

number of features is a critical issue.

The issue is complicated by the fact that if we have D potential features, there

are C(D, d) feature sets of size d, and all of these must be considered to assure we have

the optimal feature set among them [79]. Owing to the combinatorial intractability

of checking all feature sets, numerous algorithms have been developed to find good

suboptimal feature sets; nevertheless, when there is a large number of potential fea-

tures for classification, feature selection is problematic, and the best method depends

on the circumstances. Evaluation of methods is generally comparative and based on

simulations [80, 81]. To mitigate the confounding effect of feature selection, we will

make the simplifying assumption on the covariance matrix of features to circumvent

the feature selection procedure. For example, one simplest way is to let any d features
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possess the same distribution. This assumption has been stated as optimal feature

selection “when all features are equally effective, or when the features are unordered

and added in a random way” [82]. To model the situation in which subsets of genes

are co-regulated and correlation is internal to these subsets, we can further assume

that the covariance matrix of the features is blocked, with each block corresponding

to a group of correlated features, and that feature selection follows the order of the

features in the covariance matrix (details in later sections). While this does not nec-

essarily produce the optimal feature set for each size, it does provide comparison of

the classification rules relative to a global selection procedure that takes into account

correlation – as opposed to the less realistic assumption of equal marginal distribu-

tions. Under this assumptions on the covariance matrix, the problem can be posed

in the following way. Given feature-label distributions F1(X
(1), Y ), F2(X

(2), Y ), . . .,

where X(d) ∈ <d, and a classification rule Ψ = (Ψ1,n, Ψ2,n, . . .), find d to optimize

Ψd,n for a given sample size n. Optimization of Ψd,n means choosing the number of

features so that the expected error of the designed classifier is minimal.

This optimization can be further explained with the notion of design cost. If we

denote the Bayes error of d features by εd, and the error of the designed classifier

Ψd,n by εd,n, there is a design cost ∆d,n = εd,n − εd, where εd,n and ∆d,n are sample-

dependent random variables. The expected design cost is E[∆d,n], the expectation

over all possible sample distributions. The expected error of Ψd,n is decomposed

according to

E[εd,n] = εd + E[∆d,n]

If the classification rule is consistent, then E[∆d,n] → 0 as n → ∞; however, this is

of little consequence in settings where n is small and fixed.

With n fixed and small, the number of features becomes critical. As the number
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of features increases, the complexity of the classifier, and therefore the amount of data

required for precise design increases. Relative to the Bayes classifier determined from

a known distribution, the error decreases with increasing d; however, the error of the

designed classifier typically decreases and then increases for increasing d, with the

optimal number of features being the number that minimizes E[εd,n] (equivalently,

E[∆d,n]).

On the surface, it might appear that one could simply try a number of feature

sets of varying sizes and then choose the designed classifier having the least error;

however, this approach is not satisfactory for small sample sizes. When a classifier

is designed under small sample size, one has to estimate its error using the sample

data by one of a number of methods, such as cross-validation, but these methods

are very inaccurate in the sense that the expected absolute deviation between the

estimated error and the true error is often unacceptably high, the situation being

worse for complex classification rules and for increasing numbers of features [83].

Indeed, even though error estimation via resubstitution can be substantially low-

biased, the increased variance of cross-validation diminishes its feature-ranking ability

to the extent that it may perform no better than resubstitution for feature ranking

[84]. Owing to this large deviation variation, trying a numerous feature sets and

selecting the one with the lowest estimated error presents a multiple-comparison type

problem in which it is likely that some feature-set will have an estimated error far

below its true error, and therefore appear to provide excellent classification. Since

variation is worse for large feature sets, this could create a bias in favor of large

feature sets, which goes directly into the teeth of the peaking phenomenon. Thus, we

need some general understanding of the kinds of feature-set sizes that provide good

performance for a particular classification rule.

In this study, a set of altogether eight classifiers have been investigated. We first
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present the analytical results of the quadratic discriminant analysis (QDA) based on

a Gaussian approximation to the discriminant distribution in the next section. Then

we compared seven classifiers by both simulation on synthetic distribution models

and real patient data in the last section.

B. Analytical Results of Quadratic Discriminant Analysis

In this section we are specifically interested in QDA in the case of unequal covariance

matrices, in which case the quadratic discriminant does not reduce to a linear discrim-

inant. We are motivated by the recognition that gene-expression data sets for cancer

classification often exhibit different variation characteristics for the different cancer

phenotypes being discriminated. Moreover, owing to the small sample sizes typically

encountered, a simple classifier such as quadratic discrimination is preferable when

class separation is not complex in order to mitigate design error [85] and provide class

distinctions that possess biological understandable properties.

Two-class QDA concerns finding the optimal classifier Ψd to discriminate between

two normal class-conditional distributions, N(µ0, Σ0) and N(µ1,Σ1), where d is the

number of features, µ0,µ1 ∈ <d are the mean vectors, and Σ0 and Σ1 are the d× d

covariance matrices. N(µ0,Σ0) and N(µ1,Σ1) are conditional distributions according

to X|0 ∼ N(µ0,Σ0) and X|1 ∼ N(µ1,Σ1). We will assume equal class probabilities,

P (0) = P (1) = 0.5, in which case the Bayes classifier is determined according to the

discriminant

Qd(X) = (X − µ1)
′ Σ−1

1 (X − µ1)− (X − µ0)
′Σ−1

0 (X − µ0) + log
|Σ1|
|Σ0| .

(4.1)

with Ψd(X) = 1 if and only if Qd(X) ≤ 0.
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In applications, the class-conditional distributions are typically unknown and the

discriminant must be estimated from sample data. The standard plug-in rule to design

(estimate) the optimal classifier from a feature-label sample of size n is to obtain an

estimate Qd,n of Qd by replacing the mean and covariance matrices by their respective

sample mean and covariance matrices. The unbiasedness of these estimators assures

good estimation for large sample sizes, but not for small sample sizes. The designed

classifier Ψd,n is determined by the estimated discriminant according to Ψd,n(X) = 1

if and only if Qd,n(X) ≤ 0. Hence, poor estimation of Qd results in poor classifier

design.

In the special case of equal covariance matrices, the discriminant becomes a

linear function, thereby characterizing linear discriminant analysis (LDA). This case

has received a great deal of attention. Representation of the distribution of Qd,n goes

back five decades [86], as does the discovery of an analytic expression for the expected

error E[εd,n] under the assumption that the sample is evenly split between the two

class-conditional distributions, an assumption we make here [87]. Simulation efforts

to discover an optimal number of features go back at least three decades [88, 89, 90].

More relevant to our current work are the efforts to use analytic approximations

for the expected error to approximate the optimal number of features. In particular,

using an asymptotic (in n) error expansion involving the Mahalanobis distance [91],

Jain and Waller have investigated the optimal number of features for LDA [92]. They

have applied the expansion to very small sample sizes and have obtained results

consistent with simulations. Using a truncated error expression, Fukunaga and Hayes

have developed a general approximate representation for E[∆d,n] and have applied it

to the relation between E[∆d,n] and the number of features [93]. Their representation

is asymptotic in n in the sense that the truncation is made under the assumption

that the estimation of the discriminant is very good, which means a large sample
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size. Lastly, Raudys and Pikelis have given an analytic expression for the expected

error; however, the expression involves an extremely complicated triple integral and

therefore they restrict their application to the case of spherical Gaussians [94].

Our goal here is to find an “essentially” analytic method to produce an error

curve as a function of the number of features so that the curve can be minimized

to determine an optimal number of features. We will do this by using a normal ap-

proximation to the distribution of the estimated discriminant Qd,n. Since the mean

and variance of Qd,n will be exact, these will provide direct insight into the manner

in which the covariance matrices affect the optimal number of features. A key point

is that the representations of the mean and variance of the estimated discriminant

involve only summations of various parameters, which makes their computation very

easy. We will derive the mean and variance of Qd,n from its stochastic representa-

tion [11] and compare feature-number optimization using the normal approximation

to Qd,n with optimization obtained by simulating the true distribution of Qd,n. Op-

timization via the normal approximation to Qd,n provides enormous computational

savings in comparison to optimization via simulation of the true distribution. We will

see that feature-number optimization via the normal approximation is very accurate

when the covariance matrices differ modestly, but that because the distribution of

Qd,n varies significantly from normality when the covariance matrices differ greatly,

the optimal number of features based on the normal approximation will exceed the

actual optimal number when there is large disagreement between the covariance ma-

trices. Nevertheless, this difference turns out not to be important because the true

misclassification error using the number of features obtained from the normal ap-

proximation and the number obtained from the true distribution differ only slightly

even for significantly different covariance matrices (these numbers being obtained via

simulation from the true distribution of Qd,n).
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1. Normal Approximation to the Discriminant Distribution

For equal class probabilities P (0) = P (1) = 0.5, the expected error of Ψd,n can be

decomposed into

E[εd,n] =
1

2
(E[εd,n(1|0)] + E[εd,n(0|1)]) . (4.2)

where

E[εd,n(1|0)] = P{Qd,n ≤ 0|Y = 0} (4.3)

E[εd,n(0|1)] = P{Qd,n > 0|Y = 1}. (4.4)

In [11], the stochastic representations of the conditional distributions F (Qd,n|Y =

0) and F (Qd,n|Y = 1) have been derived. In this section we first briefly review

McFarland and Richards’ results, then derive our normal approximation.

To make the following presentation clear, we define Q0
d,n and Q1

d,n as two random

variables that are distributed as F (Qd,n|Y = 0) and F (Qd,n|Y = 1), respectively.

Hence, deriving the stochastic representations of F (Qd,n|Y = 0) and F (Qd,n|Y = 1)

is identical to deriving those of Q0
d,n and Q1

d,n.

To describe the stochastic representation of Q0
d,n, we first define an auxiliary

diagonal matrix Λ = diag(λ1, . . . , λd) and an auxiliary vector µ = {µ1, . . . , µd}′ such

that

Σ
−1/2
1 Σ0Σ

−1/2
1 = HΛH ′ (4.5)

µ = H ′Σ−1/2
1 (µ0 − µ1), (4.6)

where H is a d × d orthogonal matrix that diagonalizes Σ
−1/2
1 Σ0Σ

−1/2
1 . Note that
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this is equivalent to applying the nonsingular affine transform

S(X) = H ′Σ−1/2
1 (X − µ1) (4.7)

to the data [95], and the original conditional distributions N(µ0,Σ0) and N(µ1,Σ1)

are transformed into two new normal distributions N(µ,Λ) and N(0, Id). Since

one can always transform any two normal distributions into the equivalent form of

N(µ,Λ) and N(0, Id), we can focus our study on the classification of the equiva-

lent form without loss of generality. And since the second conditional distribution

N(0, Id) has zero mean and identity covariance matrix, mean and variance of the first

conditional distribution, i.e., µ and Λ, can actually be viewed as the measurements

of the distance and balance between the two classes, respectively.

We define the mutually independent normal, chi-square and F -distributed ran-

dom variables involved in the stochastic representation of Q0
d,n: Zgj, g = 1, 2, j =

1, 2, . . . , d, are 2d i.i.d. standard normal random variables; Tl, l = 1, 2, are two i.i.d.

chi-square distributions of n − d degrees of freedom; Fj, j = 1, 2, . . . , d − 1, are

d − 1 independent F -distributed random variables where each random variable Fj

has (n − j, n − j) degrees of freedom. Then for j = 1, . . . , d, we define the following

parameters and random variables:

ω3j = n

(
λj

(n + 1)(λjn + 1)

)1/2

(4.8)

γj =

(
λj +

1

n

)−1/2

µj (4.9)

ν1 ∼ (n− 1)(n + 1)

nT1

(4.10)

ν2j ∼ (n− 1)(λj + n−1)

T2

. (4.11)
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Then Q0
d,n satisfies the stochastic representation [11]

Q0
d,n ∼ 1

2

d∑
j=1

[
ν2j(ω3jZ1j + (1− ω2

3j)
1/2Z2j + γj)

2 − ν1Z
2
1j

]

+
1

2

[
log

(
T2

T1

)
− log |Σ−1

1 Σ0|+
d−1∑
j=1

log Fj

]
. (4.12)

McFarland and Richards show that the stochastic representation of Q1
d,n can be

formulated similarly; however, here we represent it in a different way that reveals

some interesting relationships between Q0
d,n and Q1

d,n and also makes the subsequent

description much simpler. We proceed by considering the same classification problem

but exchanging the labels of two classes. In the new problem, it is obvious that the

only changes to discriminant functions and their corresponding auxiliary variables

Q̃0
d,n and Q̃1

d,n are the exchanged labels and the flipping signs, i.e., Q̃0
d,n ∼ −Q1

d,n and

Q̃1
d,n ∼ −Q0

d,n. Moreover, the approach to finding the stochastic representation of the

new discriminant Q̃0
d,n is exactly the same as that for Q0

d,n. Thus if we can find the

relationship between Q̃0
d,n and Q0

d,n, we can naturally represent Q1
d,n through Q0

d,n.

Again we define an auxiliary diagonal matrix Λ̃ = diag(λ̃1, . . . , λ̃d) and an aux-

iliary vector µ̃ = {µ̃1, . . . , µ̃d}′ such that

Σ
−1/2
0 Σ1Σ

−1/2
0 = H̃Λ̃H̃

′
(4.13)

µ̃ = H̃
′
Σ
−1/2
0 (µ1 − µ0), (4.14)

where H̃ is a d× d orthogonal matrix that diagonalizes Σ
−1/2
0 Σ1Σ

−1/2
0 .

By the derivation listed in Appendix A, we have

Λ̃ = Λ−1 (4.15)

µ̃ = −Λ−1/2µ. (4.16)
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From Eqs. (4.15) and (4.16) we can see that the stochastic representation of Q̃0
d,n can

be easily obtained from Eq. (4.12 ) by replacing Λ and µ with Λ−1 and −Λ−1/2µ,

respectively. Thus

Q1
d,n(µ,Λ) ∼ −Q̃0

d,n(µ,Λ)

∼ −Q0
d,n(−Λ−1/2µ,Λ−1). (4.17)

Since Q0
d,n and Q1

d,n are two distributions of different shapes, we use two nor-

mal distributions N(µQ0
d,n

, σQ0
d,n

) and N(µQ1
d,n

, σQ1
d,n

) to approximate Q0
d,n and Q1

d,n,

respectively. To do so, we have to find the mean and variance of each distribution.

By replacing Eqs. (4.8)-(4.11) into Eq. (4.12), and applying some lengthy com-

putations sketched in Appendix B, we obtain the mean and variance of Q0
d,n:

µQ0
d,n

=
1

2

n− 1

n− d− 2

d∑
j=1

(λj + µ2
j − 1)− 1

2

d∑
j=1

log λj d < n− 2

(4.18)

σ2
Q0

d,n
=

(n− 1)2

(n− d− 2)2(n− d− 4)

(
6∑

i=1

vi − c

)
+

1

2

d∑
j=1

ψ′
(

n− j

2

)
d < n− 4,

(4.19)
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where ψ(x) = Γ′(x)
Γ(x)

is the digamma function and

v1 =
1
2

(
n

n + 1

)2

(n− d− 2)

d∑

j=1

λ2
j +

d∑

i=1

d∑

j=1

λiλj




v2 =
1
2

1
n2(n + 1)2


(n− d− 2)

d∑

i=1

(n + nλi + 1)2 +
d∑

i=1

d∑

j=1

(n + nλi + 1)(n + nλj + 1)




v3 =
1

(n + 1)2


(n− d− 2)

d∑

j=1

λj(n + nλj + 1) +
d∑

i=1

d∑

j=1

λi(n + nλj + 1)




v4 =
n

n + 1


(n− d− 2)

d∑

j=1

µ2
jλj +

d∑

i=1

d∑

j=1

µ2
i λj




v5 =
1

n(n + 1)


(n− d− 2)

d∑

j=1

µ2
j (n + nλj + 1) +

d∑

i=1

d∑

j=1

µ2
i (n + nλj + 1)




v6 =
1
2




d∑

j=1

µ2
j




2

− (n− d− 4)
d∑

j=1

λj +
1
2

(
n + 1

n

)2

(n− 2)d

c =
n− d− 4

n− 1

d∑

j=1

(
λj + µ2

j +
n + 2

n

)

Although the mean and variance of Q1
d,n can be derived in a similar way, they

can be obtained more conveniently from Q0
d,n based on our new results given by Eq.

(4.17):

µQ1
d,n

(µ,Λ) = −µQ0
d,n

(−Λ−1/2µ,Λ−1) d < n− 2

=
1
2

n− 1
n− d− 2

d∑

j=1

(
1− 1

λj
− µ2

j

λj

)
− 1

2

d∑

j=1

log λj (4.20)

σ2
Q1

d,n
(µ,Λ) = σ2

Q0
d,n

(−Λ−1/2µ,Λ−1) d < n− 4

=
(n− 1)2

(n− d− 2)2(n− d− 4)

(
6∑

i=1

vi(−Λ−1/2µ,Λ−1)− c(−Λ−1/2µ,Λ−1)

)

(4.21)

With the means and variances obtained, the normal approximations of Q0
d,n
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and Q1
d,n are naturally obtained, and the corresponding estimation of expected er-

ror E[εd,n] is:

Ê[εd,n] =
1

2

(
Φ̃

(
µQ0

d,n

σQ0
d,n

)
+ Φ̃

(
−

µQ1
d,n

σQ1
d,n

))
, (4.22)

where

Φ̃(x) =
1√
2π

∫ ∞

x

e−
1
2
u2

du

is the upper tail area of the standard normal distribution. This approximation is not

used to find a close estimation of E[εd,n], and can be quite biased from it; rather,

our objective is to find the optimal number of features and avoid possible overfitting.

Since Eq. (4.22) depends on sample size n, number of features d, distance µ and

balance Λ, it is possible to find the relationship between the optimal number of

features and sample size in different situations. Before any computer-based study,

just from the means and variances of Q0
d,n and Q1

d,n derived above, we can already

observe some interesting phenomena.

2. Determination of the Optimal Number of Features

As mentioned in the first section of this chapter, one way to avoid the confounding

effect of feature selection is to assume that any d features possess identical distribu-

tion. We first examine the simple but commonly studied case in which all features

are uncorrelated:

µ0 = µ0{1, 1, . . . , 1}′, Σ0 = σ2
0Id

µ1 = µ1{1, 1, . . . , 1}′, Σ1 = σ2
1Id (4.23)
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Then

µ = µ{1, 1, . . . , 1}′, µ =
µ0 − µ1

σ1

Λ = λId, λ =
σ2

0

σ2
1

. (4.24)

Then with straightforward calculation, µQ0
d,n

, µQ1
d,n

, σQ0
d,n

and σQ1
d,n

become

µQ0
d,n

=
d

2

(
n− 1

n− d− 2
(
λ + µ2 − 1

)− log λ

)
(4.25)

µQ1
d,n

=
d

2

(
n− 1

n− d− 2

(
1− 1

λ
− µ2

λ

)
− log λ

)
(4.26)

σ2
Q0

d,n
=

d

2
(n− 1)2

n2(n− d− 2)2(n− d− 4)
(
(n− 2)

(
(1 + nλ + nµ2)2 + (n + 1)2

)− 2n2µ4
)

− d

2
n− 1

n(n− d− 2)2
(
n(n− 1)µ4 + 2n2λ + 2nµ2 + 2n + 4

)
+

1
2

d∑

j=1

ψ′
(

n− j

2

)

(4.27)

σ2
Q1

d,n
=

d

2
(n− 1)2

n2(n− d− 2)2(n− d− 4)
1
λ2

(
(n− 2)

(
(λ + n + nµ2)2 + (n + 1)2λ2

)− 2n2µ4
)

− d

2
n− 1

n(n− d− 2)2
1
λ2

(
n(n− 1)µ4 + 2n2λ + 2nµ2λ + (2n + 4)λ2

)

+
1
2

d∑

j=1

ψ′
(

n− j

2

)

(4.28)

From Eqs. (4.3) and (4.4) we can infer that to ensure small error rate, µQ0
d,n

should be much larger than zero, while µQ1
d,n

much smaller than zero. However,

Eqs. (4.25) and (4.26) show that these conditions may not hold when the number

of features d increases. When the distributions are very unbalanced, µQ0
d,n

and µQ1
d,n

will even flip their signs to the wrong side and induce severe overfitting.

When λ is relatively large, then 1− 1
λ
− µ2

λ
in Eq. (4.26) will be larger than zero.

Since n−1
n−d−2

increases with d and approaches infinity as d approaches n − 2, we will



88

have n−1
n−d−2

(
1− 1

λ
− µ2

λ

)
− log λ > 0 when the feature size is large, i.e., µQ1

d,n
flips

its sign to the wrong side and error rate increases dramatically. This phenomenon

is shown in Fig. 16 (a), where we fix n = 40 and µ = 1. Three different λ’s are

considered. For λ = 2, there is 1 − 1
λ
− µ2

λ
= 0, and thus µQ1

d,n
= −d

2
log 2 is always

less than zero. For λ = 4 or 8, there is 1 − 1
λ
− µ2

λ
> 0, and thus µQ1

d,n
initially

decreases, then increases and flips the sign around d = 25. Comparing to µQ1
d,n

, from

Eq. (4.25) we know that µQ0
d,n

will always be larger than zero and does not flip the

sign when λ is relatively large.

5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

µ Q
d,

n

1

d
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Fig. 16. (a) µQ1
d,n

vs. d at different λ ’s. n = 40, µ = 1; (b) µQ0
d,n

vs. d at different µ’s

and λ’s. n = 40.

When λ is relatively small, then µQ1
d,n

will always be less than zero and does not

flip the sign. However, for µQ0
d,n

, from Eq. (4.25) we see that if µ is also relatively

small, then λ + µ2 − 1 < 0, thus similarly µQ0
d,n

will flip its sign to the wrong side

when feature size is large. This phenomenon is shown in Fig. 16 (b) where n = 40.

Four different pairs of µ and λ are considered. For µ = 1, it is obvious that λ+µ2−1

is always larger than zero, thus the sign of µQ0
d,n

will never flip to the wrong side. As
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for other three cases, all of them flip the signs when d is large.

For other cases, µQ0
d,n

and µQ1
d,n

will never flip their signs and their absolute values

will keep increasing with the feature size. However, Eqs. (4.25)-(4.28) show that

overfitting is still hardly avoidable. Take Q0
d,n as a example. When d is small, we have

1
n−d−2

' 1
n−d−4

' 1
n
. Then the increasing rate of µQ0

d,n
according to feature size d is

roughly proportional to d. For σ2
Q0

d,n
, the last term

∑d
j=1 ψ′(n−j

2
) can be approximated

by
∑d

j=1
1

n−j
by using Stirling’s approximation and its derivatives. This is a quite

small term comparing to other terms and can be omitted for current consideration.

Then the increasing rate of σQ0
d,n

is proportional to
√

d . Since µQ0
d,n

increases faster

than σQ0
d,n

as d increases, the error rate P (1|0) will decrease. When d is large, we

have d ' n. Then the increasing rate of µQ0
d,n

according to feature size d is roughly

proportional to 1
n−d−2

. For σ2
Q0

d,n
, although the first two terms are both at O(n3), the

first term will dominate due to its extra coefficient 1
n−d−4

, and hence the increasing

rate of σQ0
d,n

is proportional to 1
n−d−2

1√
n−d−4

. Since µQ0
d,n

now increases slower than

σQ0
d,n

, the error rate P (1|0) will increase. This shows that overfitting happens when

feature size is large and the error rate P (1|0) must reach its minimum at some feature

size between 1 and n − 4. Fig. 17 shows
µ

Q0
d,n

σ
Q0

d,n

and
µ

Q1
d,n

σ
Q1

d,n

for three different pairs of

µ and λ whose corresponding µQ0
d,n

and µQ1
d,n

do not flip signs when feature size

increases. It is clear that all of these cases have overfittings when the feature size

is large. And comparing to the linear discriminant classifier, which has the optimal

feature size at n− 1 [92], our study shows that the optimal feature size for quadratic

discriminant classifier is smaller.

Now we further consider another more general case where the covariance matrices
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Fig. 17. (a)
µ

Q0
d,n

σ
Q0

d,n

vs. d at different µ’s and λ’s. n = 40; (b)
µ

Q1
d,n

σ
Q1

d,n

vs. d at different µ’s

and λ’s. n = 40.

have the same correlation among all features in both classes:

µ1 = µ0{1, 1, . . . , 1}′, Σ0 =σ2
0




1 ρ . . . ρ

ρ 1 . . . ρ

...
...

. . .
...

ρ ρ . . . 1




µ1 = µ1{1, 1, . . . , 1}′, Σ1 =
σ2

1

σ2
0

Σ0 (4.29)

It is obvious that in this case all features are still equivalent and any k features possess

the same distribution.

Again, let λ =
σ2
0

σ2
1
. Since

Σ
−1/2
1 Σ0Σ

−1/2
1 = Σ

−1/2
1 (λΣ1)Σ

−1/2
1

= λΣ
−1/2
1 (Σ

1/2
1 Σ

1/2
1 )Σ

−1/2
1

= λId, (4.30)
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by comparing it to Eq. (4.5) we have

Λ = λId (4.31)

H = Id. (4.32)

Actually, for any pair of Σ0 and Σ1 that obeys Σ0 = λΣ1, we have Λ = λId.

Since it can be shown that

Σ
−1/2
1 =

1

σ1




a b . . . b

b a . . . b

...
...

. . .
...

b b . . . a




,

where

a =
1

d

[
d− 1√
1− ρ

+
1√

1 + (d− 1)ρ

]

b =
1

d

[
− 1√

1− ρ
+

1√
1 + (d− 1)ρ

]
,

through Eq. (4.6) we have

µ = Σ
−1/2
1 (µ0 − µ1)

=
µ

σ1

√
1 + (d− 1)ρ

{1, 1, . . . , 1}′, (4.33)

where µ = µ0−µ1. Owing to the presence of correlation between features, the distance

vector µ is now a function of feature size d. The larger the correlation, the smaller

the distance between classes. And due to the presence of correlation, when feature

size increases, the distance at each feature decreases and the total distance becomes

|µ|2 =
µ2

σ2
1

(
ρ + 1−ρ

d

)
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which approaches µ2

σ2
1ρ

when d is large. This implies that the optimum number of

features is even smaller when there is correlation among features.

3. Experimental Results

To verify the accuracy of our proposed normal approximation to determine the opti-

mal feature-set size, we have conducted a series of simulations on various conditions.

Figs. 18-21 show the simulation results obtained on the uncorrelated-feature

case defined by Eq. (4.23). Since the classification problem is determined by the two

parameters µ and λ, simulations have been conducted with different µ’s and λ’s. We

have varied µ from 1
8

to 1 and λ from 1
8

to 8. For each pair of µ and λ, we found

the optimal feature sizes at different sample sizes from n = 10 up to 100. At each

sample size n, our normal approximation calculates Ê[εd,n] at d = 1, 2, . . . , n− 5 and

finds the optimal number of feature that minimizes Ê[εd,n]. To verify the accuracy

of the normal approximation, Monte Carlo simulation is conducted to obtain the

experimental optimal feature size. For each feature size d, 100000 realizations of Q0
d,n

and Q1
d,n are generated separately according to the stochastic representations provided

by Eqs. (4.12) and (4.17). Since the independent random variables used to generate

Q0
d,n and Q1

d,n increase dramatically with d, for each n, the Monte Carlo simulation

is only conducted at a range of feature sizes from 1 to d = bN
2
c+ 1. Our simulations

show overfittings in all cases, which means that the simulations have covered the

ranges where the real optimal feature sizes are located. The optimal feature size is

the one giving the smallest misclassification error among the simulation results. When

several feature sizes have the same smallest misclassification error, which is possible

when the misclassification error is very small, we simply pick the smallest size as the

optimal feature size. This may cause some down-biased estimation of the optimal

feature size; however, it is of no consequence to us here because we are interested in
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finding the number features producing minimal error.

In all figures, the mesh grids are the misclassification errors obtained through the

Monte Carlo simulation. The solid lines are those with the lowest error rate and hence

the ones showing the optimal feature size based on simulation. The dash lines are the

ones based on our normal approximation. In Figs. 18 and 19, we have fixed µ and

varied λ and n. In Figs. 20 and 21, we have fixed n and varied µ and λ. We see that

the optimal feature size obtained through the normal approximation is very accurate

when λ is not too large or too small, i.e., when the covariance matrices differ mod-

estly. But when the covariance matrices of two classes are significantly unbalanced,

the distribution of Qd,n varies significantly from normality and E[εd,n] is dominated

by either E[εd,n(1|0)] or E[εd,n(0|1)]. The optimal number of features based on the

normal approximation cannot reflect this and is larger than the simulation-based

optimal feature size. However, this difference is not important because the misclassi-

fication error using the number of features obtained from the normal approximation

and the minimum misclassification error differ only slightly. Specifically, the opti-

mal feature sizes provided by normal simulation are located in the flat regions, for

which misclassification errors are small. We have also conducted experiments on the

correlated-feature case defined by Eq. (4.29). The results are shown in Figs. 22

and 23. The simulations are conducted analogously to the uncorrelated-feature case,

except that there is an identical correlation of ρ = 0.2 among all features. From the

figures we can see the results are very similar to the uncorrelated-feature case.

A key point is that the normal approximation is easy to implement and ob-

tains the results in almost no time. The Monte Carlo simulation conducted for the

uncorrelated-feature case (similarly for the correlated case) runs for about 100 hours

and the results are still not smooth when n ≥ 50, whereas our normal approximation

runs in less than 3 seconds on the same computer.
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Fig. 18. Optimal feature size at different sample sizes. All features are uncorrelated.

µ = 1, and λ varies from 1
8

to 8.
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Fig. 19. Optimal feature size at different sample sizes. All features are uncorrelated.
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, and λ varies from 1
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to 8.
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Fig. 21. Optimal feature size at different µ’s. All features are uncorrelated. Sample

size is fixed at N = 40, and λ varies from 1
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to 8.
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Fig. 22. Optimal feature size at different sample sizes. All features are equally corre-

lated with ρ = 0.2. µ = 1, and λ varies from 1
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to 8.
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Fig. 23. Optimal feature size at different µ’s. All features are equally correlated with

ρ = 0.2. Sample size is fixed at N = 100, and λ varies from 1
8

to 8.
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C. Simulation on Various Classifiers

Although it seems a straightforward approach to find the distribution of the error as a

function of the feature-label distribution, number of features, and sample size, only in

rare cases this has been achieved. Even for LDA and QDA, the exact forms only exist

when the true distributions match the assumptions of the classifiers. This leaves open

the simulation route, and this approach has been taken in the past for quadratic and

linear discriminant analysis [88, 89, 90]. To do apply simulation for various feature-

label distributions and classification rules, and across a wide range of sample and

feature-set sizes, requires enormous computation. To achieve the desired end, finding

the optimal number of features as a function of sample size, we employ contemporary

massively parallel computation. Seven classifiers are considered in our study: 3-

nearest-neighbor(3NN), Gaussian kernel, linear support vector machine(Linear SVM),

polynomial support vector machine(Polynomial SVM), perceptron, regular histogram

and linear discriminant analysis(LDA). For Linear SVM and Polynomial SVM, we

use the codes provided by LIBSVM 2.4 [96] with the default setting, except that for

Polynomial SVM the degree in the kernel function is set to 6 . For the Gaussian

kernel, the smoothing factor h has been set to 0.2 after various trials. For the regular

histogram classifier, the cell number along each dimension is set to two or three and

evaluated separately, after which the optimal value of the two is selected. Three

Gaussian-based models are considered: linear, nonlinear and bimodal, which will be

described in detail in the following section. In addition, real patient data from a large

breast-cancer study is considered.

Altogether there is a large number of error surfaces for the many cases. These

are provided in full on a companion web-site, which is meant to serve as resource for

those working with small-sample classification. For the companion web-site, please
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visit http://public.tgen.org/tamu/ofs/

1. Simulation Structure for Synthetic Data

We consider three two-class distribution models:

Linear model: The class-conditional distributions are Gaussian, N(µ0,Σ0) and

N(µ1,Σ1), with identical covariance matrices, Σ0 = Σ1 = Σ. The Bayes classifier is

linear and the Bayes decision boundary is a hyperplane. Without loss of generality,

we assume that µ0 = (0, 0, . . . , 0) and µ1 = (1, 1, . . . , 1).

Nonlinear model: The class-conditional distributions are Gaussian with co-

variance matrices differing by a scaling factor, namely, λΣ0 = Σ1 = Σ. Throughout

the study, λ = 2. The Bayes classifier is nonlinear and the Bayes decision boundary

is quadratic. Again we assume that µ0 = (0, 0, . . . , 0) and µ1 = (1, 1, . . . , 1).

Bimodal model: The class-conditional distribution of class S0 is Gaussian,

centered at µ0 = (0, 0, . . . , 0), and the class-conditional distribution of class S1 is

mixture of two equiprobable Gaussians, centered at µ10 = (1, 1, . . . , 1) and µ11 =

(−1,−1, . . . ,−1). The covariance matrices of the classes are identical. The Bayes

decision boundaries are two parallel hyperplanes. Owing to the extreme nonlinear

nature of this model, the perceptron, Linear SVM, and LDA classifiers are omitted

from our study in this model.

Throughout the study, we assume that the two classes have equal prior proba-

bility in all three models. The maximum dimension for all three models is D = 30.

Hence, the number of features available is less or equal to 30. A consequence of this

maximum is that the peaking phenomenon will only show up in the graphs for which

peaking is less than or equal to 30 features.

As noted in the section A of this chapter, to avoid the confounding effects of

feature selection, we assume a covariance-matrix structure. We let all features have
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common variance, like what has been assumed in QDA case, so that the 30 diagonal el-

ements in Σ have the identical value σ2. Then to set the correlations between features,

the 30 features are equally divided into G groups, with each group having K = 30/G

features. To divide the features equally, G cannot be arbitrarily chosen. The features

from different groups are uncorrelated, and the features from the same group possess

the same correlation ρ among each other. If G = 30, then all features are uncorre-

lated. We denote a particular feature with the label Fi,j, where i, 1 ≤ i ≤ G, denotes

the group to which the feature belongs and j, 1 ≤ j ≤ K, denotes its position in that

group. The full feature set takes the form F = {F1,1, F2,1, . . . , FG,1, F1,2, . . . , FG,K}.
For any simulation based on a feature subset of d features, the first d features in F

are picked. For example, if G = 10, then each group has K = 3 features, and the

covariance matrix, with features ordered as F1,1, F1,2, F1,3, F2,1, . . . , F10,1, F10,2, F10,3,

is

Σ = σ2




1 ρ ρ
ρ 1 ρ 0 · · · 0
ρ ρ 1

1 ρ ρ
0 ρ 1 ρ · · · 0

ρ ρ 1
· · · ·
· · · ·
· · · ·

1 ρ ρ
0 0 · · · ρ 1 ρ

ρ ρ 1




.

In this study, all seven classifiers are applied to the three distribution models

(except for the perceptron, Linear SVM, and LDA for the bimodal model, as already

explained). For each model, altogether 30 different cases are considered according to

different covariance-matrix structures and variances:

Variance(σ2): Three different variances σ2 are chosen for each model. They cor-

respond to Bayes errors 0.05, 0.10, and 0.15, under the assumption of 10 uncorrelated
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features.

Covariance matrix: Four basic covariance-matrix structures are studied by

dividing the 30 features into G = 1, 5, 10, and 30 groups. For the cases when

G = 1, 5 and 10, three different correlation coefficients, ρ = 0.125, 0.25 and 0.5,

are considered. Thus, the total number of covariance-matrix structures studied is

10. Note that for each variance σ2, different covariance-matrix structures will have

different Bayes errors. The increase in correlation among features, either by decreasing

G or increasing ρ, will increase the Bayes error for a fixed feature size.

For each case, performances, i.e., error rates, of various classifiers are estimated

at various feature sizes and sample sizes based on Monte Carlo simulations:

Feature size (d): Except for the regular histogram, all classifiers are tested on 29

different feature sizes from 2 to 30. For regular histogram, owing to the exponentially

increasing cell number, feature sizes are limited from 1 to 10.

Sample size (n): Sample sizes run from 10 to 200, increased by steps of 10, for

a total of 20 sample sizes.

For each feature size d and sample size n, the simulation generates n training

samples according to the distribution model, variance, and covariance matrix being

tested. The trained classifier is applied to 200 independently generated test samples

from the identical distribution. This procedure is repeated 25, 000 times for all clas-

sifiers except LDA with 100, 000 repetitions and Linear SVM and Polynomial SVM

with 5, 000 repetitions, then the error rates are averaged. The results are presented

by a 2-D mesh plot like that in Fig. 24. The black lines with circular markers are

those with the lowest error rate, and hence the ones showing the optimal feature size

based on the simulation. There is a total of 540 mesh plots on the web-site. In next

section we discuss some representative results.
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2. Simulation Results on Synthetic Data

Fig. 24 demonstrates the effect of correlation for LDA classification with the linear

model. Note that the sample size must exceed the number of features to avoid de-

generacy. For uncorrelated features in Fig. 24(a), the optimal feature size is around

n − 1, which matches well with previously reported LDA results [92]. As the cor-

relation among features increases, the optimal feature size decreases, becoming very

small when correlation is high. This also matches results in the same paper, which

claims that the optimal feature size is proportional to
√

n for highly correlated fea-

tures. In all three parts, uncorrrelated, slightly correlated, and highly correlated, we

see the peaking phenomenon and observe the optimal number of features increases

with increasing sample size. For microarray-based studies, where sample sizes of less

than 50 and feature correlation are commonplace, one should note that with slight

correlation, the optimal number of features for n = 30 and n = 50 is d = 12 and

d = 19, respectively, and with high correlation, the optimal number of features for

n = 30 and n = 50 is d = 3 and d = 4, respectively. Similar results have been

obtained for nonlinear model also.

Fig. 25 provides some results for the regular histogram classifier on the three

models. The cell number increases exponentially with feature size and the optimal

number of features is quite small in all three models. The curve of the optimal number

of features as a function of the sample size shows the common increasing monotonicity.

The optimal feature size for the bimodal model is larger, indicating the need for more

features to separate three concentrations of mass as opposed to two.

In Figs. 26 and 27, we compare the perceptron, Linear SVM and Polynomial

SVM classifiers. Of practical importance are the facts that the Linear SVM shows

no peaking phenomenon for up to 30 features, the Polynomial SVM peaks at under
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Fig. 24. Optimal feature size vs. sample size for LDA classifier. Linear model is tested.

σ2 is set to let Bayes error be 0.05. (a) Uncorrelated features. (b) Slightly

correlated features, G = 5, ρ = 0.125. (c) Highly correlated features, G = 1,

ρ = 0.5.
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Fig. 25. Optimal feature size vs. sample size for regular histogram classifier. Uncor-

related features. σ2 is set to let Bayes error be 0.05.
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30 only for quite small samples on the uncorrelated linear model and the Polynomial

SVM shows no peaking at up to 30 features for the correlated linear model. When

there is no peaking, one can safely use a large number of features even for small

sample sizes. Note that the optimal-feature-size curves for the perceptron and Linear

SVM for the correlated linear and nonlinear models are quite similar, whereas they

are very different for the uncorrelated linear model. Note also that the error rate

drops much faster relative to sample size for the Polynomial SVM in comparison to

the Linear SVM for the correlated model.

Perhaps the most interesting aspect of Figs. 26 and 27 is that there are cases in

which the optimal number of features is not monotonically increasing with the sample

size (and here we are not referring to slight wobble owing to a flat surface). When

it applies, monotonicity follows from the peaking point as the sample size increases.

Two phenomena are observed here. For extremely small sample size (n = 10), we

observe no peaking for the perceptron and Linear SVM except in for the perceptron

in the nonlinear model, and the peaking is extremely slight. More striking is that,

for the perceptron in all cases and the Linear SVM in the correlated cases, in a

range of sample sizes we do not observe the typical concave behavior of the error as

a function of the number of features. On the contrary, in some feature size range

the classification error will increase and then decrease with the feature size, thereby

forming a ridge across the error surface. A zoomed plot for the perceptron in the

uncorrelated case in Fig. 28 (a) shows the ridge.

What we are observing can be understood by decomposing the error of the de-

signed classifier into the sum of the error, εd, of the optimal classifier for the classifi-

cation rule relative to the feature-label distribution and the cost, ∆d,n, of designing

a classifier from sample Sn: εd,n = εd + ∆d,n. Taking expectation with respect to the
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Fig. 26. Optimal feature size vs. sample size for perceptron and SVM classifiers. (a)

Linear model, uncorrelated features, σ2 is set to let Bayes error be 0.05. (b)

Linear model, correlated features, G = 1, ρ = 0.25. σ2 is set to let Bayes

error be 0.05.
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Fig. 27. Optimal feature size vs. sample size for perceptron and SVM classifiers. Non-

linear model, correlated features, G = 1, ρ = 0.25. σ2 is set to let Bayes error

be 0.05.

distribution of the samples yields

E[εd,n] = εd + E[∆d,n].

Considering the expected error as a function of the feature size d, the common inter-

pretation is that E[εd,n] decreases to a minimum at d0 and thereafter increases with

increasing d. This means that for d < d0, the optimal error εd is falling faster than the

design cost E[∆d,n] is rising, and that for d > d0, the optimal error εd is falling slower

than the design cost E[∆d,n] is rising. The feature sets for d < d0 are said to underfit
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the data because there is insufficient classifier complexity to take full advantage of

the data to separate the classes, whereas feature sets for d > d0 are said to overfit the

data because the complexity of the classifier allows it to produce decision regions that

too closely follow the sample points. Under this interpretation, E[εd,n] decreasing to

a minimum at d0 and thereafter increasing mean there is decreasing underfitting and

then increasing overfitting. The situation may not be so simple. For example, in Fig.

28, we are observing the following phenomenon: there are feature sizes d0 < d1 such

that for d < d0, εd is falling faster than E[∆d,n] is rising, for d0 < d < d1, εd is falling

slower than E[∆d,n] is rising, and for d > d1, εd is falling faster than E[∆d,n] is rising.

For sample size n = 10, simulation have been run up to 400 features and εd is still

falling no slower than E[∆d,n] is rising. Similar phenomena can be observed for other

cases of perceptron and some of the SVM classifiers on the complementary web-site.

In Fig. 29, we compare the 3NN and Gaussian-kernel classifiers on all three

distribution models. Since for Gaussian kernel the distance between samples will

increase with feature size, the posterior probability of the test sample will be largely

determined by the nearest neighbors. Thus, the Gaussian kernel should have similar

properties to the 3NN classifier regarding optimal feature size, and this is confirmed

by our simulation. A key observation is that for the linear and bimodal models, in

which the optimal decision boundaries are flat, there is no peaking up to 30 features.

Peaking has been observed at some cases at up to 250 features with sample size

n = 10, which should have little impact in practical applications.

Perhaps the most interesting observation is that once again we see that the

optimal-feature-number curve is not increasing as function of sample size – this being

observed in the nonlinear model for both classifiers. The optimal feature size is larger

at very small sample sizes, rapidly decreases, and then stabilizes to some constant

number as sample increases. To check this stabilization, we have tested the 3NN
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Fig. 28. A case of perceptron classifier: linear model, uncorrelated features, σ2 is set

to let Bayes error be 0.05. (a) Optimal feature size vs. sample size. (b)

Relationship among E[εd(Sn)], E[∆d(Sn)], and εd for n = 10, 20 and 30.
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classifier on the nonlinear model case in Fig. 29 for the sample size up to 5000. The

result in Fig. 30 shows that the optimal feature size increases so slowly that it can

be practically viewed as a constant unless sample sizes are extremely large. This

suggests a useful property of kNN and Gaussian-kernel classifiers: once we find an

optimal feature size for a very modest sized sample, we can use the same number

of features for much larger samples without sacrificing optimality. Based on our

simulations, a corollary of this observation is that using more than a small set of

features, say d ≈ 10, is counterproductive.

3. Real Patient Data

In addition to the synthetic data, we have conducted experimentation based on real

patient data. These data come from a microarray-based cancer-classification study

[97] that analyzes a large number of microarrays prepared with RNA from breast

tumor samples from 295 patients. Using a previously established 70-gene prognosis

profile [98], a prognosis signature based on gene-expression is proposed in [97] that

correlates well with patient survival data and other existing clinical measures. Of the

295 microarrays, 115 belong to the ‘good-prognosis’ class, whereas the remaining 180

belong to the ‘poor-prognosis’ class.

As with the synthetic data, all classifiers are tested on various feature sizes from

1 to 30, , except the regular histogram, which is omitted for the patient data because

its error surface is too rough with the limited number of replications used. To mitigate

the confounding effects of feature selection, for each feature-set size, floating forward

selection [99] is used to find a (hopefully) close-to-optimal feature subset based on

all 295 data points. This will provide “population-based” feature sets whose sample-

based performances can then be evaluated. To evaluate the performance of each

feature subset, we approximate the classification error with a hold-out estimator. For
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Fig. 29. Optimal feature size vs. sample size for 3NN and Gaussian kernel classifiers.

Correlated features, G = 1, ρ = 0.25. σ2 is set to let Bayes error be 0.05.
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Fig. 30. Optimal feature size vs. sample size for 3NN classifiers. Correlated features,

G = 1, ρ = 0.25. σ2 is set to let Bayes error be 0.05.

a sample size of n, 1000 sample sets of size n are drawn independently from the 295

data points, and for each observation the different classifiers trained on the n points

are tested on the 295 − n points not drawn. The 1000 error rates are averaged to

obtain an estimate of the sample-based classification error. Since the observations are

actually not independent, a large n will induce inaccuracy in the estimation. Hence,

we limit n under 40 to reduce the impact of observation correlation. The results are

shown in Fig. 31, where all classifiers show some degree of overfitting beginning at

feature size from 10 to 20 – some significant and some insignificant. Owing to only

1000 sample sets, there is some wobble in the flat regions of the graphs (especially

with the regular histogram), but ignoring this, the results are concordant with the

correlated synthetic data. Note especially the flatness of the SVM graphs, especially

in the polynomial case, which again indicates the robustness of SVM classification

relative to using large feature sets with small samples. Compare this to lack of feature-

size robustness for LDA classification. Note once again the similarity of optimal-

feature-size performance between the 3NN and Gaussian-kernel classifiers.

Two conclusions can safely be drawn from this study. First, the behavior of the
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optimal-feature-size relative to the number of samples depends strongly on the classi-

fier and the feature-label distribution. An immediate corollary is that one should be

wary of rules-of-thumb generalized from specific cases. Second, the performance of a

designed classifier can be greatly influenced by the number of features and therefore

one should attempt to use a number that is in close proximity to the optimal num-

ber. This means that it can be useful to refer to a database of optimal-feature-size

curves to choose a feature size, even if this means making a necessarily very coarse

approximation of the distribution model from the data or making a rough assess-

ment of the correlation. Owing to the roughness of these kinds of approximations,

a classifier like the Polynomial SVM, which shows strong robustness with respect to

large feature sets, has inherent advantages over a classifier like LDA, which does not

show robustness. Our web-site is meant to provide a resource for the community in

assessing feature-set sizes.
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Fig. 31. Error rate vs. feature size for various classifiers on real patient data. Sample

size N = 40.
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CHAPTER V

CONCLUSION

The focus of the this dissertation is genomic image processing for M-FISH and cDNA

microarray images. We categorize this research into three topical areas: M-FISH

image compression, microarray image processing and expression-based classification.

For M-FISH image compression, we have proposed a new scheme, EMIC, for the

highly efficient compression of M-FISH images. EMIC uses shape-adaptive integer

wavelet transform and object-based bit-plane coding to generate separate progressive

bitstreams for the foreground and background. A specific context model for the

arithmetic coding is developed under the design philosophy which can be equally

applied to the coding of other types of multi-frame or multispectral images (e.g.,

MRI and remote-sensing images).

For microarray image processing, we focus on two critical issues: signal esti-

mation and image compression. We have proposed microarray BASICA, which ac-

complishes segmentation, background adjustment and compression. A fast Mann-

Whitney-test-based algorithm with its related post processing procedure are presented

for the segmentation, and a novel distortion measure is introduced to help design a

new image compression scheme by modifying the EBCOT algorithm.

As for the expression-based classification, we have studied the relationship be-

tween optimal number of features and sample size for various classifiers. For QDA,

we have developed an essentially analytic method which produces a QDA error curve

as a function of the feature size so that the curve can be minimized to determine

an optimal number of features. For other classifiers, we have implemented an ex-

tensive set of simulations based on both synthetic data that represent some typical

cases which might be encountered in the real-life applications, and real patient data.
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Our study shows that the behavior of the optimal feature size relative to the number

of samples depends strongly on the classifier and the feature-label distribution, and

the performance of a designed classifier can be greatly impacted by the number of

features. Our web-site is hence meant to provide a resource for the community in

assessing feature-set sizes.

Still, our work cannot be viewed as a thorough study of the problem. Contrarily,

our research shows that the problem is far more complicated than the common beliefs.

Since large sample size is still impossible for most microarray-based genomic studies

in the near future due to some practical reasons, it is worthwhile to put more efforts

into this problem. Hopefully, some analytical results might be found on certain spe-

cial cases for more classifiers. Also, the study on the impact of small sample should

not be limited to the optimal number of features only. Currently, the impact of small

sample on other aspects of expression-based classification, for example, error esti-

mation and feature selection, has already attracted a lot of attention. Furthermore,

researchers in other areas of genomic image/signal processing, such as clustering, ge-

netic regulation network, also begin to realize the importance of sample-size related

issue. For example, how to evaluate the credibility of the genetic regulation network

constructed with the limited samples. All these issues indicate the potential areas of

future research.
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APPENDIX A

DERIVE THE RELATIONSHIP BETWEEN Q1
D,N AND Q0

D,N

To relate Q1
d,n with Q0

d,n, our objective is to represent Λ̃ and µ̃ with Λ and µ.
From Eq. (4.5) we have

(Σ
−1/2
1 Σ0Σ

−1/2
1 )−1 = (HΛH′)−1

=⇒ Σ
1/2
1 Σ−1

0 Σ
1/2
1 = HΛ−1H′

=⇒ Σ
1/2
1 Σ

−1/2
0 Σ

−1/2
0 Σ

1/2
1 = HΛ−1H′

=⇒ (Σ
1/2
0 Σ

−1/2
1 )(Σ

1/2
1 Σ

−1/2
0 Σ

−1/2
0 Σ

1/2
1 )(Σ

1/2
1 Σ

−1/2
0 ) = (Σ

1/2
0 Σ

−1/2
1 )HΛ−1H′(Σ1/2

1 Σ
−1/2
0 )

=⇒ Σ
−1/2
0 Σ1Σ

−1/2
0 = (Σ

1/2
0 Σ

−1/2
1 )HΛ−1H′(Σ1/2

1 Σ
−1/2
0 )

(A.1)

Since Σ
−1/2
0 and Σ

1/2
1 are symmetric matrices, Λ1/2H ′Σ1/2

1 Σ
−1/2
0 is orthogonal:

(Λ1/2H ′Σ1/2
1 Σ

−1/2
0 )(Λ1/2H ′Σ1/2

1 Σ
−1/2
0 )′

= Λ1/2H ′(Σ1/2
1 Σ

−1/2
0 Σ

−1/2
0 Σ

1/2
1 )HΛ1/2

= Λ1/2H ′(HΛ−1H ′)HΛ1/2

= 1.

Then the right hand side of Eq. (A.1) can be further written as

(Σ
1/2
0 Σ

−1/2
1 )HΛ−1H ′(Σ1/2

1 Σ
−1/2
0 )

= (Λ1/2H ′Σ1/2
1 Σ

−1/2
0 )′(Λ1/2H ′Σ1/2

1 Σ
−1/2
0 )Σ

1/2
0 Σ

−1/2
1 HΛ−1/2Λ−1

(Λ1/2H ′Σ1/2
1 Σ

−1/2
0 )

= (Λ1/2H ′Σ1/2
1 Σ

−1/2
0 )′Λ−1(Λ1/2H ′Σ1/2

1 Σ
−1/2
0 ). (A.2)

After replacing Eq. (A.2) into Eq. (A.1), we have

Σ
−1/2
0 Σ1Σ

−1/2
0 = (Λ1/2H ′Σ1/2

1 Σ
−1/2
0 )′Λ−1(Λ1/2H ′Σ1/2

1 Σ
−1/2
0 ). (A.3)
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By comparing Eq. (4.13) and Eq. (A.3), we see that

Λ̃ = Λ−1 (A.4)

H̃ = (Λ1/2H ′Σ1/2
1 Σ

−1/2
0 )′. (A.5)

To find the relationship between µ̃ and µ, we start from Eq. (4.13):

Σ
−1/2
0 Σ1Σ

−1/2
0 = H̃Λ̃H̃

′

=⇒ H̃
′
Σ
−1/2
0 Σ1Σ

−1/2
0 = Λ−1H̃

′

=⇒ H̃
′
Σ
−1/2
0 Σ1Σ

−1/2
0 (Σ

1/2
0 Σ−1

1 ) = Λ−1H̃
′
(Σ

1/2
0 Σ−1

1 )

=⇒ H̃
′
Σ
−1/2
0 = Λ−1H̃

′
Σ

1/2
0 Σ−1

1 . (A.6)

Replace Eqs. (A.5) and (A.6) into Eq. (4.14), we have

µ̃ = H̃
′
Σ
−1/2
0 (µ1 − µ0)

= Λ−1/2H ′Σ−1/2
1 (µ1 − µ0)

= −Λ−1/2µ. (A.7)
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APPENDIX B

MEAN AND VARIANCE OF THE DISCRIMINANT FUNCTION

To find the mean and variance of Q0
d,n, we first replace Eqs. (4.8)-(4.11) into Eq.

(4.12), and expand it to obtain

Q0
d,n ∼ n− 1

2

d∑
j=1

[
nλj

n + 1

Z2
1j

T2

+
n + nλj + 1

n(n + 1)

Z2
2j

T2

+
µ2

j

T2

+2
(λj(n + nλj + 1))1/2

n + 1

Z1jZ2j

T2

+ 2

(
nλj

n + 1

)1/2

µj
Z1j

T2

+2

(
n + nλj + 1

n(n + 1)

)1/2

µj
Z2j

T2

− n + 1

n

Z2
1j

T1

]

+
1

2

[
log

(
T2

T1

)
− log |Σ−1

1 Σ0|+
d−1∑
j=1

log Fj

]
. (B.1)

It is easily shown that

E [Zgj] = 0 g = 1, 2; j = 1, 2, . . . , d (B.2)

E
[
Z2

gj

]
= 1 g = 1, 2; j = 1, 2, . . . , d (B.3)

E

[
1

Tl

]
=

1

n− d− 2
l = 1, 2 (B.4)

E

[
log

(
T2

T1

)]
= 0 (B.5)

E [log Fj] = 0 j = 1, 2, . . . , d− 1. (B.6)



134

Taking the expectation of Eq. (B.1) with the help of Eqs. (B.2)-(B.6), we then have

E
[
Q0

d,n

]
=

n− 1

2

d∑
j=1

(
nλj

n + 1

1

n− d− 2
+
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+
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− 1

2
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1

2
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j − 1)− 1

2

d∑
j=1

log λj (B.7)

The calculation of the variance of Q0
d,n is a bit complicated. To make the whole

procedure clear, we denote Eq. (B.1) as

Q0
d,n ∼ A + B

∼ n− 1

2

d∑
j=1

(a1j + a2j + a3j + a4j + a5j + a6j − a7j) +
1

2
(b1 − b2 + b3) . (B.8)

where
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2
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1

2
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1 Σ0| b3 =
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Then

σ2
Q0

d,n
= E

[
(A + B −E [A + B])2]

= var [A] + var [B] + 2 (E [AB]−E [A] E [B]) (B.9)

We now compute the three terms in the right hand side of Eq. (B.9) one by one.

1. var [A]

Since

A =
n− 1

2

d∑
j=1

(a1j + a2j + a3j + a4j + a5j + a6j − a7j) ,

the computation of var [A] naturally involves the variances of akj, k = 1, 2, . . . , 7; j =

1, 2, . . . , d and their cross-over terms. To calculate these terms, we need

E
[
Z4

gj

]
= 3 g = 1, 2; j = 1, 2, . . . , d

E

[
1

T 2
l

]
=

1

(n− d− 2)(n− d− 4)
l = 1, 2.

plus Eqs. (B.2)-(B.6) to obtain

var
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Tl

]
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2
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1
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g = 1, 2; l = 1, 2; j = 1, 2, . . . , d

(B.11)

var

[
Z2

gj

Tl

]
=

2(n− d− 1)

(n− d− 2)2(n− d− 4)
g = 1, 2; l = 1, 2; j = 1, 2, . . . , d

(B.12)

var

[
Z1jZ2j

Tl

]
=

1

(n− d− 2)(n− d− 4)
l = 1, 2; j = 1, 2, . . . , d, (B.13)
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and

E

[
Z2

gj

T 2
l

]
−E

[
Z2

gj

Tl

]
E

[
1

Tl

]
=

2

(n− d− 2)2(n− d− 4)

g = 1, 2; l = 1, 2; j = 1, 2, . . . , d (B.14)

E

[
Z4

gj

T1T2

]
−E

[
Z2

gj

T1

]
E

[
Z2

gj

T2

]
=

2

(n− d− 2)2

g = 1, 2; j = 1, 2, . . . , d (B.15)

E

[
Z2

giZ
2
hj

T 2
l

]
−E

[
Z2

gi

Tl

]
E

[
Z2

hj

Tl

]
=

2

(n− d− 2)2(n− d− 4)

g = 1, 2; h = 1, 2; l = 1, 2; i, j = 1, 2, . . . , d; i 6= j or g 6= h. (B.16)

Then all the terms in var [A] can be computed according to Eqs. (B.2)-(B.6)

and Eqs. (B.10)-(B.16). Table IX shows which equation in Eqs. (B.10)-(B.16) is

used to calculate which term in computing var [A]. By summing up all the terms,

we have

var [A] =
(n− 1)2

(n− d− 2)2(n− d− 4)

6∑
i=1

vi (B.17)

2. var [B]

Since T1, T2, and Fj, j = 1, 2, . . . , d − 1, are mutually independent, and b2 is a

constant,

var [B] =
1

4
(var[b1] + var[b3])

=
1

4

(
var[log T1] + var[log T2] +

d−1∑
j=1

var[Fj]

)
. (B.18)

Since T1 and T2 are chi-square distribution with n− d degree of freedom, we have

var[log T1] = var[log T2] = ψ′
(

n− d

2

)
.

Note that Fj is F-distributed with (n− j, n− j) degrees of freedom, thus Fj can



137

Table IX. The equations used in calculating the variance of aij, i = 1, 2, . . . , 7,

j = 1, 2, . . . , d and their cross-over terms. The upper-right triangle

shows the terms among a1j, a2j, . . . , a7j, j = 1, 2, . . . , d. The lower-left

triangle shows the terms between a1i, a2i, . . . , a7i and a1j, a2j, . . . , a7j,

i, j = 1, 2, . . . , d, i 6= j.

a1j a2j a3j a4j a5j a6j a7j

(B.12) (B.16) (B.14) 0 0 0 (B.15) a1j

a1i (B.16) (B.12) (B.14) 0 0 0 0 a2j

a2i (B.16) (B.16) (B.10) 0 0 0 0 a3j

a3i (B.14) (B.14) (B.10) ( B.13) 0 0 0 a4j

a4i 0 0 0 0 (B.11) 0 0 a5j

a5i 0 0 0 0 0 (B.11) 0 a6j

a6i 0 0 0 0 0 0 (B.12) a7j

a7i 0 0 0 0 0 0 (B.16)

a1j a2j a3j a4j a5j a6j a7j

be viewed as the ratio between two independent chi-square distributions with n − j

degrees of freedom. Hence, similarly,

var[log Fj] = 2ψ′
(

n− j

2

)
.

Thus

var [B] =
1

4

(
2ψ′

(
n− d

2

)
+ 2

d−1∑
j=1

ψ′
(

n− j

2

))

=
1

2

d∑
j=1

ψ′
(

n− j

2

)
(B.19)

3. E [AB]−E [A] E [B]
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2 (E [AB]−E [A] E [B])

=(E [Ab1]−E [A] b2 + E [A] E [b3])− (E [A] E [b1]−E [A] b2 + E [A] E [b3])

=E [Ab1]−E [A] E [b1]

=E [Ab1]

=E

[
(log T2 − log T1)

n− 1

2

d∑
j=1

(a1j + a2j + a3j + a4j + a5j + a6j − a7j)

]

=
n− 1

2

(
E

[
log T2

d∑
j=1

6∑
i=1

aij

]
−E

[
log T1

d∑
j=1

6∑
i=1

aij

]

−E

[
log T2

d∑
j=1

a7j

]
+ E

[
log T1

d∑
j=1

a7j

])
(B.20)

where the first equation comes from the fact that b2 is a constant and b3 =
∑d−1

j=1 log Fj

is independent of A, and the third equation comes from Eq. (B.5).

By using Eqs. (B.2)-(B.6), we then have

E

[
log T2

d∑
j=1

6∑
i=1

aij

]
=E

[
log T2

T2

] d∑
j=1

(
nλj

n + 1
+

n + nλj + 1

n(n + 1)
+ µ2

j

)

=E

[
log T2

T2

] d∑
j=1

(
λj + µ2

j +
1

n

)
, (B.21)

E

[
log T1

d∑
j=1

6∑
i=1

aij

]
=E [log T1]

d∑
j=1

(
nλj

(n + 1)(n− d− 2)

+
n + nλj + 1

n(n + 1)(n− d− 2)
+

µ2
j

n− d− 2

)

=
E [log T1]

n− d− 2

d∑
j=1

(
λj + µ2

j +
1

n

)
, (B.22)
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E

[
log T2

d∑
j=1

a7j

]
=

E [log T2]

n− d− 2

n + 1

n
d, (B.23)

and

E

[
log T1

d∑
j=1

a7j

]
= E

[
log T1

T1

]
n + 1

n
d. (B.24)

Since T1 and T2 are chi-square distributions with n − d degree of freedom, we

have

E [log T1] = E [log T2] =
log 2 + ψ(n−d

2
)

n− d− 2
(B.25)

E

[
log T1

T1

]
= E

[
log T2

T2

]
=

log 2 + ψ(n−d
2

)

n− d− 2
− 2

(n− d− 2)2
(B.26)

Replacing Eqs. (B.21)-(B.25) into Eq. (B.20), we can merge the terms into

2 (E [AB]−E [A] E [B]) =

(
E

[
log T1

T1

]
− E [log T1]

n− d− 2

)
n− 1

2

d∑
i=1

(
λj + µ2

j +
n + 2

n

)

= − n− 1

(n− d− 2)2

d∑
i=1

(
λj + µ2

j +
n + 2

n

)

= − (n− 1)2

(n− d− 2)2(n− d− 4)
c (B.27)
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