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ABSTRACT 
 

An Effective Dimensional Inspection Method Based on Zone Fitting.  

(December 2004)  

Nachiket Vishwas Pendse, B. Eng., Government College of Engineering, Pune, India  

Co-Chairs of Advisory Committee: Dr. Richard Alexander 
  Dr. Jyhwen Wang 

 

 Coordinate measuring machines are widely used to generate data points from an 

actual surface. The generated measurement data must be analyzed to yield critical 

geometric deviations of the measured part according to the requirements specified by the 

designer. However, ANSI standards do not specify the methods that should be used to 

evaluate the tolerances. The coordinate measuring machines employ different 

verification algorithms which may yield different results. Functional requirements or 

assembly conditions on a manufactured part are normally translated into geometric 

constraints to which the part must conform. Minimum zone evaluation technique is used 

when the measured data is regarded as an exact copy of the actual surface and the 

tolerance zone is represented as geometric constraints on the data. 

In the present study, a new zone-fitting algorithm is proposed. The algorithm 

evaluates the minimum zone that encompasses the set of measured points from the actual 

surface. The search for the rigid body transformation that places the set of points in the 

zone is modeled as a nonlinear optimization problem. The algorithm is employed to find 

the form tolerance of 2-D (line, circle) as well as 3-D geometries (cylinder). It is also 

used to propose an inspection methodology for turbine blades. By constraining the 
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transformation parameters, the proposed methodology determines whether the points 

measured at the 2-D cross-sections fit in the corresponding tolerance zones 

simultaneously. 
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1. INTRODUCTION 

 

Coordinate measuring machines are widely used to generate data points from an 

actual surface. The generated measurement data must be analyzed to yield critical 

geometric deviations of the measured part according to the requirements specified by the 

designer. However, ANSI standards do not specify the methods that should be used to 

evaluate the tolerances (Wang, 1992). Since the coordinate measuring machines provide 

discrete coordinate points, these must be associated with the design geometry to evaluate 

the actual part deviation. For this purpose, current coordinate measuring machines 

typically employ data-fitting methods based on the least squares fit and the min-max fit. 

Generally, the min-max fit returns a smaller maximum deviation than the least squares 

fit. Therefore, if the least squares fit is used some acceptable parts may be rejected, and 

if min-max fit is used some unacceptable parts may be accepted. Such different 

verification results are due to the different interpretations of the measured data and 

differing criteria of the verification techniques (Choi and Kurfess, 1999a, b).  
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Functional requirements or assembly conditions on a manufactured part are 

normally translated into geometric constraints to which the part must conform. 

Minimum zone evaluation technique is used when the measured data is regarded as an 

exact copy of the actual surface and the tolerance zone is represented as geometric 

constraints on the data.  

 

Fig. 1 Zone fitting 

 

The tolerance conformance is achieved when the measured points fit into the 

tolerance zone i.e. satisfy the geometric constraints (Fig. 1). A tolerance zone is a region 

of space constructed by offsetting (expanding or shrinking) the object’s nominal 

boundaries (Requicha, 1983). This tolerance zone representation is not completely in 

conformance with the geometric tolerance standards specified in ANSI standards 
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(ASME, 1994). However, this representation is more intuitive and can be easily 

associated with CAD models. Generally, in the evaluation of minimum zone value of 

form errors, such as straightness, flatness, roundness and cylindricity, nonlinear 

optimization techniques are applied (Kanada and Suzuki, 1993a). 

 

1.1 Research objective 

As described above, there is a discrepancy in the results that are obtained by 

employing different verification algorithms. The objective of the proposed research is to 

develop a methodology to address the tolerance assessment problem. With coordinate 

transformation, zone-fitting algorithms will be developed to determine whether the 

measured set of points lies in the specified tolerance zone. The methodology will allow 

inspection to be conducted where a datum is specified. In other words, transformation 

parameters can be constrained in the zone-fitting algorithm as per the specified datum. 

Given the nominal surfaces, the developed methodology will evaluate if the measured 

points lie in the specified tolerance limits, and will further determine the minimum. This 

will provide important information as to the actual part quality. 

The approach employed in the present study is based on the principle put forth by 

Choi and Kurfess (1999a, 1999b). The proposed research will develop an objective 

function such that the ambiguity, whether the set of point lies completely in the tolerance 

zone, is eliminated. The algorithms will also assess the bi-lateral tolerance, providing a 

better picture of the manufacturing process. 
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1.2 Literature survey 

Many researchers have developed zone-fitting algorithms based on different 

techniques. The preferred approach adopted by most of them is to model the zone-fitting 

problem as a nonlinear optimization problem. In the nonlinear optimization problem, an 

objective function is defined and a solution that optimizes the objective function is 

sought. Murthy and Abdin (1980) proposed several methods such as Monte Carlo 

technique, normal least squares fit, simplex search techniques, and spiral search 

techniques to evaluate the minimum zone deviation. Depending on the requirement and 

the problem, the individual technique or a combination of the above techniques could be 

applied to achieve the desired accuracy. The first step for these search techniques to find 

the minimum zone value is the least squares reference. Shunmugam (1987) proposed a 

new approach for evaluating form errors of engineering surfaces based on the minimum 

average deviation (MAD) principle. A stray peak or valley on the actual feature 

introduces considerable variations in the results obtained by the minimum deviation 

method. This new approach obtains the minimum zone value by minimizing the average 

deviation of all the points on the feature. 

Carr and Ferreira (1995a, 1995b) developed algorithms which solve a sequence 

of linear programs that converge to the solution of the nonlinear optimization problem. 

Different linear programs were used for the flatness and straightness verification models. 

One of the flatness verification model searches for the reference plane, so that the 

maximum distance of each data point from this plane is minimized while the other 

searches for two parallel supporting planes, so that all data points are below one plane, 
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above the other, and the planes are as close together as possible. The straightness 

verification model follows the second flatness verification model. Tsukada and Kanada 

(1985) used direct search methods such as the newly improved simplex method and 

Powell’s method for minimum zone evaluation of the cylindricity deviation. Kanada and 

Suzuki (1993b) use the downhill simplex method and the repetitive bracketing method to 

evaluate the minimum zone flatness considering the respective convergence criteria. 

Huang et al. (1993a, 1993b) developed a new minimum zone method for evaluating 

straightness and flatness errors based on the control line rotation scheme and the control 

plane rotation scheme. The search for the best fit plane or line starts with the least 

squares plane or line as the initial condition. 

Another general approach to computing the minimum zone solution is based on 

the computational geometry theory. Lai and Wang (1988) evaluated the straightness and 

roundness based on the convex polygon method. Hong and Fan (1986) proposed an 

eigen-polygon method. Etesami and Qiao (1990) use the two-dimensional (2-D) convex 

hull of the data points to solve the 2-D straightness tolerance problem. Swanson et al. 

(1994) proposed an optimal algorithm to evaluate the out-of-roundness factor, which 

determines the extent to which a planar shape deviates from a circle. This algorithm also 

makes use of the medial axis and farthest neighbor Voronoi diagram, but does not 

require their intersection, thereby yielding the improvement in complexity. Roy and 

Zhang (1992) proposed a mathematical formulation determining the roundness error, 

which exploited the properties of convex hull and Voronoi diagrams to produce a faster 

algorithm for establishing the concentric circles. Traband et al. (1989) compute the 
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three-dimensional (3-D) convex hull and searches for the minimum zone of the convex 

hull to compute flatness. These methods are guaranteed to find the minimum zone 

solution but at a great computational cost (Carr and Ferreira, 1995a, b). 

All the algorithms discussed above do not use the equation of the nominal 

surface in their evaluation of the minimum zone value. The algorithms evaluate the form 

tolerance such that the location and the nominal size of the feature is not a concern. All 

these algorithms first use a data fitting method such as the least squares fit or the min-

max fit and then apply the tolerance zone to this localized data. Choi and Kurfess’s 

(1999a, 1999b) method determines the deviation of the manufactured part geometry 

from the nominal geometry. Their zone-fitting algorithm searches for the rigid body 

transformation that places the set of point in the tolerance zone. The algorithm 

minimizes the square sum of the distance of every data point from the nominal surface. 

This new study proposes to develop a new zone-fitting algorithm based on the concepts 

put forth by Choi and Kurfess (1999a, 1999b). The tolerance zone will be constructed by 

offsetting (shrinking and expanding) the nominal surface based on the bilateral tolerance 

specifications and then attempt to fit all data points in this tolerance zone. Then it will 

repeat the process to fit all data points in the minimum possible zone resulting in the 

minimum zone value. 
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1.3 Research plan 

The algorithm to be developed will determine whether a measured set of points 

lies in the specified tolerance zone. Fig. 2 outlines the approach that will be followed to 

develop the new zone-fitting algorithm. The inputs to the algorithm will be: 

1. Measured set of points from the part surface 

2. The equation of the nominal surface 

3. The inner and the outer (bi-lateral) tolerance limits 

 

Fig. 2 Proposed approach 
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Similar to the approach presented by Choi and Kurfess (1999a, 1999b), 

computing the minimum zone solution will be modeled as a nonlinear optimization 

problem. The zone-fitting algorithms rely on setting a convergence tolerance. In the 

proposed work, a different objective function will be used so that it will eliminate the 

ambiguity, whether the point is in or out of the tolerance zone. The tolerance zone will 

be constructed parametrically with the equation of the nominal surface and given 

tolerance limits. The objective function will calculate the number of points that fit in the 

tolerance zone. The algorithm will minimize the objective function using optimization 

techniques available in mathematics software. If all the points lie in the tolerance zone, 

the algorithm will return a set of six transformation (three translational and three 

rotational) parameters that place the points in the zone. 

If all the points lie in the tolerance zone, the algorithm will further search for the 

minimum zone in which the points could fit. A bi-directional binary search will be used 

to find the inner and outer tolerance limits. The tolerance zone will be constructed each 

iteration and the process described above will be carried out until the minimum zone is 

found. The algorithm will individually calculate the deviation from the design model in 

the positive (external of the solid model) and negative (internal of the solid model) 

directions. This will help in understanding the problems in the manufacturing process. 

Thus, the proposed algorithm will serve two purposes: 

1. To determine whether a measured set of points lies in the specified tolerance 

zone  
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2. If they lie in the tolerance zone, to determine the minimum zone in which they 

fit. 

 

For objects with a complex 3-D geometry (such as a turbine blade), inspection 

standards are often specified as a collection of 2-D cross-sections. By constraining the 

transformation parameters, the proposed methodology will determine whether the points 

measured at the 2-D cross-sections fit in the corresponding tolerance zones 

simultaneously. 
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2. DIMENSIONAL INSPECTION USING ZONE FITTING 

 

The coordinate measuring machines measure a set of points from a manufactured 

surface. To interpret this measured data the coordinate measuring machines use various 

verification algorithms based on least squares fit and min-max fit. Since the algorithms 

are based on different criteria, there is discrepancy in the results obtained. However, if 

the measured points are interpreted as sampled data from the actual surface, the least 

squares method is a better choice than zone fitting. The zone fitting algorithm models the 

tolerance assessment problem as a geometric problem, where the tolerance specifications 

are formulated as geometric constraints. In the present research, the tolerance zone 

representation adopted is that proposed by Requicha (1983). The tolerance conformance 

decision is made based on whether the measured set of points fits in the prescribed 

tolerance zone i.e. if all the points fit in the tolerance zone the part surface satisfies the 

specified tolerance limits and if any of the points lie outside the tolerance zone the part 

surface does not satisfy the specified tolerance limits.  

In the present research, the zone-fitting algorithm uses the equation of the 

nominal surface. The nominal surface forms the basis of the tolerance assessment 

problem. The algorithm evaluates the form tolerance such that the location and the 

nominal size of the feature are a concern. The coordinates generated by the coordinate 

measuring machines are in a different reference frame than that of the ideal surface or 

the design model. To compute the deviation of the actual part surface from the ideal one, 

the measured set of points must be placed in the same reference frame as that of the 



 

 

11

design model. To achieve this, the measured set of points must undergo a rigid body 

transformation (both translational and rotational). This is called as data localization (Fig. 

3).  

 

 

Fig. 3 Data localization (Choi and Kurfess, 1999a, b) 

 

The tolerance zone is constructed from the ideal surface equation and the 

specified bilateral tolerance limits. In other words, the tolerance zone is constructed by 

offsetting (expanding and shrinking) the part’s nominal boundaries (nominal equations). 

After the tolerance zone is constructed, the algorithm attempts to fit the set of measured 

points in it. Based on the result obtained, the algorithm returns a pass/fail decision. Then 

the algorithm proceeds further to find the minimum zone that encompasses the measured 

set of points. The minimum zone value gives the deviation of the actual part surface 

from the ideal part surface.  
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2.1 Control boundaries 

Defining control boundaries around the ideal part surface forms the tolerance 

zone. The concept of control boundaries remains the same for curves in 2-D or surfaces 

in 3-D. Fig. 4 shows some examples of control boundaries for the 2-D curve as well as a 

3-D surface. The outer and the inner circles form the tolerance zone while in which in 

the case of the 3-D surface the upper and the lower planes form the envelope in which 

the measured set of points should lie. The 2-D control boundaries can also be employed 

in situations where the object has a very complex geometry. The idea is to have multiple 

sections at different locations from a specified datum reference. Then treat the 2-D 

curves at each section as a problem involving 2-D form evaluation. 

 

Fig. 4 Control boundaries for 2-D curves and 3-D surfaces 
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Fig. 5 Multiple-offset size tolerance zones (Choi and Kurfess, 1999a, b) 

 

The control boundaries directly depend on the bilateral tolerances prescribed for 

a particular geometric feature. The tolerance zone is not necessarily uniform across the 

entire part (Fig. 5). Different features on a part can have different tolerance zones. Even 

the inner and the outer offset values (e.g., +2 and -3) for the tolerance zones can be 

different. The verification algorithms currently employed in the coordinate measuring 

machines evaluate the deviations from the nominal surface and then compare it to the 

tolerance specifications to make a decision. However, when tolerance zone is specified 

as the conformance criterion the deviation need not be evaluated, only determine 

whether a point lies inside or outside the zone. Assuming that the measured set of points 
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represents the actual surface completely, the actual surface must be verified only against 

the tolerance zones. 

To make zone fitting a valid tool for deciding whether the manufactured part 

surface satisfies the prescribed tolerance limits, the set of measured points must be 

considered as an exact copy of the part surface. Since the coordinate measuring 

machines measure only a finite number of points from the surface, there may be an 

unmeasured section of the actual surface which has a large deviation. This deviation has 

no bearing on the conformance decision made by the zone fitting algorithm. Therefore, it 

must be noted that the results given by the zone fitting algorithm are a function of the set 

of measured points. 

 

2.2 Problem description 

The tolerance zone is a region in the 3-D space where the measured set of points 

must lie. The rigid body transformation that places the measured points in the tolerance 

zone is to be found. Consider a surface in the 3-D space and a set of points measured 

from the actual surface. The reference frames of the design / ideal surface and that of the 

coordinate measuring machine are different. To find the deviation of the actual surface 

from the ideal surface, the set of points measured from the actual surface must be 

localized i.e. the set of points must be transformed (rotation and translation) such that 

they are in the same reference frame as the design / ideal surface. There exists a set of 

transformation parameters (3 rotational and 3 translational) that places the points in the 

tolerance zone. Thus the problem is to search for the rigid body transformation 
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parameters in the six-dimensional parameter space. In order to obtain a solution for the 

optimization problem, an objective function is defined. The function is so defined that it 

returns the number of points that lie outside the tolerance zone. If the point is inside the 

tolerance zone the function value is zero and if the point is outside the tolerance zone the 

function value is one. Thus the function can be called as a Boolean function. The 

position of the point depends on the rigid body transformation and hence by minimizing 

this objective function will give the solution to the optimization problem i.e. the six 

transformation parameters. This process can be performed repeatedly to find the smallest 

zone that encompasses the set of measured points. This yields the minimum zone value 

for the geometric feature that is inspected. 

In short, the problem can be defined as the search for the minimum zone that 

encompasses the set of measured points with the help of rigid body coordinate 

transformation. 
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3. AN EFFECTIVE ZONE FITTING METHOD 

 

 A new zone-fitting algorithm is developed to obtain the solution to the nonlinear 

optimization problem i.e. to find the rigid body transformation that places the measured 

set of points in the zone. This chapter describes in detail the mathematical formulation of 

the problem and the techniques employed in developing the new algorithm. The 

algorithm is based on the concepts put forth by Choi and Kurfess (1999a, 1999b). 

Considerable improvements have been made in this algorithm as compared to the one 

developed by Choi and Kurfess (1999a, 1999b). The notable improvements are as 

follows: 

1. The zone-fitting algorithms rely on setting a convergence tolerance and thus 

create an ambiguity of whether all the points lie in the tolerance zone. The new 

algorithm employs the Boolean function, which by virtue of its definition 

eliminates this ambiguity. 

2. The new algorithm evaluates the bilateral minimum zone values for the features 

under inspection. Thus the manufacturing-process supervisor has a better grasp 

of the direction the process heading based on the minimum zone values for that 

particular feature. 

3. The new algorithm is implemented for assessing the tolerance of a complex 3-D 

object (such as a turbine blade). For these 3-D objects, the inspection standards 

are often specified as a collection of 2-D cross-sections. By constraining the 

transformation parameters, the proposed methodology will determine whether the 
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points measured at the 2-D cross-sections fit in the corresponding tolerance zones 

simultaneously. 

 

3.1 Mathematical formulation 

Consider a surface S(x,y,z) in the 3-dimensional space. Let P be the set of points 

measured from the part surface. To place P in the same reference plane of the design 

model, P is transformed to P* by a rotational matrix R and a translational vector t.  

 

points measured ofnumber  :n}...1,{ nipP i ==  

 

The rotational matrix R and the translational vector t can be combined in a single matrix 

called the homogeneous transformation matrix H. H is given as follows: 

 

⎥
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R, the Euler matrix is given by: 
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where, ΦΘΨ ,,  are rotations about the X, Y and Z axes respectively, while zyx ttt ,,  are 

the translations along X, Y and Z axes respectively. In order to represent the 

transformation as a matrix multiplication, the vector p needs to be augmented by the 

addition of the fourth component 1 as follows: 
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p a  

 

where, pa is the augmented vector p. 
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where, a
ii ptRHu ×= ),(  and 3R represents the 3-D space. Individual tolerance zone (fi) 

is created around the individual surface (si) based on the bilateral tolerances specified for 

that surface. Let the inner and outer tolerances be din and dout. Therefore, we have 
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The tolerance zone T is a union of all the individual tolerance zones (fi) while S 

is the union of the individual surfaces (si). For a given S, T and P, H is to be determined 

such that P* lies in T i.e. P* belongs to T(S, din, dout). To find the transformation that 

places the measured point set P in to the tolerance zone T constitutes a nonlinear 

optimization problem. The function is defined as, 

 

⎩
⎨
⎧

∉
∈

=
),,(1
),,(0

)),,(,(

outin

outin

outin

ddSTuif
ddSTuif

ddSTuN
 

 

If a point lies in the tolerance zone the value of the function is 1, and if the point 

is outside the tolerance zone the value of the function is 0. Therefore, the function N (u, 

T) is a Boolean function. Since we have to find the transformation that places the points 

in the tolerance zone T, the function N (u, T) can be used as the objective function. Since 

the minimum state of the function N gives the feasible domain, optimization can find the 

rigid body transformation that places the points in tolerance zone T. The optimization 

problem is modeled as follows: 

 

∑
=

=
n

i
outini ddSTuNObjMin

1

)),,(,(  

 

where, a
ii ptRHu ×= ),( . 
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The solution of optimization gives the transformation parameters 

( , , , , , )x y zt t tΘ Φ Ψ  that minimize the objective function. The objective value becomes 

zero when all the points lie in the zone and has a non-zero value if any one of the points 

is outside the zone. 

 

3.2 Zone-fitting algorithm 

 To find the minimum zone values for the geometric features under dimensional 

inspection, the algorithm has to solve the nonlinear optimization problem repeatedly. 

The inputs to the algorithm are: 

1. Measured set of points from the part surface (P). 

2. The equation of the nominal geometric feature (S) 

3. The inner and the outer (bi-lateral) tolerance limits (din, dout). The control 

boundaries i.e. the tolerance zone (T) will be constructed by expanding and 

shrinking the nominal boundaries of the feature. 

4. Initial estimate (x0) of the six transformation parameters that place the points in 

the zone. 

 

Fig. 6 outlines the framework for the new zone-fitting algorithm in the form of a 

flow chart. To search for the feasible domain in the six-dimensional parameter space, the 

objective function (N) in the nonlinear unconstrained optimization problem is 

minimized. The objective function to be minimized is coded as a separate MATLAB 

function and is called by the main program to initiate the process of optimization.  
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Fig. 6 Framework of the zone-fitting algorithm 

 

The function calculates the number of points that are outside the tolerance zone 

by employing the modified point location method. The method is a modified form of the 

point location method and is applied in similar manner to both the 2-D and 3-D 
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geometric features. The method is explained in detail in the next section with 2-D and 3-

D examples. After a definite number of iterations the optimization process returns a 

minimized objective function value i.e. it returns number of points from the point set P* 

that lie outside the tolerance zone T. Based on this value, the values of din and dout are 

either increased or decreased. A binary search technique is utilized to find the minimum 

bilateral tolerance values. 

 

3.3 Evaluation of objective function 

 The point location method serves the purpose very well if the problem is to check 

whether a point lies in the convex polygon. The method is explained in Appendix C. In 

the new zone-fitting algorithm, geometric features such as circle, composite 2-D 

geometries which are a collection of higher order curves, and 3-D planes are tackled. 

Therefore, the point location method is modified to satisfy the requirements of the new 

algorithm. The implementation of the modified point location method for evaluating the 

objective function is explained through two examples. 

 

3.3.1 Modified point location method for 2-D geometries 

 The point location method is modified so that it can be successfully applied to 

the 2-D geometries. Consider a tolerance zone defined by two circles as shown in the 

Fig. 7. A circle is defined by its center and the radius. Let r be the radius of the circle 

and q = (a,b) be the center of the circle. Then the circle is represented as follows:   

2 2 2( ) ( )x a y b r− + − =  (3.1) 
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From the above equation, the control boundaries for constructing the tolerance zone can 

be deduced as follows: 

 

2 2 2

2 2 2

( ) ( )

( ) ( )
i

o

x a y b r

x a y b r

− + − =

− + − =
 (3.2) 

 

where, ri and ro are the inner and outer radii respectively. 

 

 

Fig. 7 Modified point location method for 2-D geometry (circle) 

 

We have to find whether the point p lies in the tolerance zone. To determine that the 

equation of the line passing through points p and q is found out. The equation of the line 

in 2-D is of the form: 
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1 1 1 0a x b y c+ + =  (3.3) 
 

To find the points where the line and the control boundaries intersect, (3.2) and (3.3) are 

solved simultaneously. Since the equation of circle is of second order, the line intersects 

the inner and the outer circles in 2 distinct points each as shown in Fig. 3.3. Let the line 

intersect the inner circle at A and B and the outer circle at C and D.  By employing the 

parametric equation for circle, points A and C are selected for further calculations since 

they lie in the same quadrant as that of point p. Now the line passing through q, p, A and 

C is also represented in the parametric form. The parametric form is given by: 

 

1 2

1 2

(1 )
(1 )

x t x tx
y t y ty
= − +
= − +

 (3.4) 

 

In the current case, the value of parameter t is zero at point q and t is one at point p i.e. 

the starting point of the line is q and the end point is p. Using (3.4) the values of 

parameter t at points A and C are calculated. The point p lies in the tolerance zone if and 

only if the following conditions are satisfied. 

1. 1At ≤  

2. 1Ct ≥  

where, tA and tC are values of t at points A and C respectively. Similar approach is 

followed while dealing with composite 2-D geometries which are a collection of 2-D 

curves. The above procedure is employed for each of the curve in the collection. 
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3.3.2 Modified point location method for 3-D geometries 

 Similar to the procedure followed for the 2-D geometry, to find out whether the 

point lies between two planes. Consider two parallel planes represented as follows: 

 

1 1 1 1

2 2 2 2

0
0

a x b y c z d
a x b y c z d

+ + + =
+ + + =

 (3.5) 

 

where, 1 2 1 2 1 2; ; .a a b b c c= = =  

These two planes form the inner and outer control boundaries forming the tolerance zone 

as shown in Fig. 8. We have to find whether the point p lies in the tolerance zone. To 

determine that the equation of the line passing through points p and q is found out. The 

equation of the line in 3-D is of the form: 

 

1 1 1

2 1 2 1 2 1

x x y y z z
x x y y z z
− − −

= =
− − −

 (3.6) 
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Fig. 8 Modified point location method for 3-D geometry (plane) 

 

To find the points where the line and the control boundaries intersect, (3.5) and (3.6) are 

solved simultaneously. Let the line intersect the outer plane at A and the inner plane at B. 

Now the line passing through q, p, A and B is represented in the parametric form. The 

parametric form is given by: 

 

1 2

1 2

1 2

(1 )
(1 )
(1 )

x t x tx
y t y ty
z t z tz

= − +
= − +
= − +

 (3.7) 

 

In the current case, the value of parameter t is zero at point q and t is one at point p i.e. 

the starting point of the line is q and the end point is p. Using (3.7) the values of 
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parameter t at points A and B are calculated. The point p lies in the tolerance zone if and 

only if the following conditions are satisfied. 

1. 1At ≥  

2. 0Bt ≤  

where, tA and tB are values of t at points A and B  respectively. 

  

3.4 Code-organization for new zone-fitting algorithm 

 The new zone-fitting algorithm is written in MATLAB. Separate projects have 

been developed for assessing the form tolerances of a line, a circle, a 3-D cylinder, and a 

turbine blade. The files in which, the programs in MATLAB are written, require “.m” as 

their extension. The projects essentially are made up of three files – two “.m” files and a 

text file having a “.txt” extension. The functions of each are outlined below: 

1. Input file: The naming convention followed for the input file is <identifier>.txt. 

The input file contains the X, Y and Z coordinates of the set of points (P). The 

secondary program accesses the input file and retrieves the coordinates of a point 

at a time.  

2. Primary program (calling program): This is one of the “.m” files in the 

project. This is the main program and the naming convention followed is 

main_prog_<identifier>.m. The main program initiates the optimization process 

by calling MATLAB function defining the objective function. Depending on the 

results from the optimization, the minimum zone values are calculated. The 

binary search technique is employed. 
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3. Secondary program (called program): This is the other “.m” file in the project 

and the naming convention followed is opti_func_<identifier>.m. This is the 

program called by the main program. It contains the definition of the objective 

function to be minimized and the process required to evaluate the objective 

function value for every point in the point set. The cumulative objective function 

value (the number of points of the point set that lie outside the tolerance zone) is 

returned to the main program. 

 

Fig. 9 gives the flowchart on which the programs for evaluation of the various 

form tolerances are based. The whole algorithm is divided into two basic parts. In the 

first part, it is evaluated whether all the points lie in the specified tolerance limits. If the 

points P* do not lie in the tolerance zone T, the algorithm reports the decision that the 

geometric feature under inspection does not satisfy the tolerance specifications.  If the 

points P* satisfy the tolerance specifications, the algorithm proceeds to the second part 

where it calculates the minimum zone in which all the points lie by employing the binary 

search technique. Even when the points do not fit in the specified zone, the program can 

be extended to find the zone in which all the points fit. The programs for the different 

form tolerance evaluations differ from each other in content mainly due to their different 

mathematical representations. Table 1 gives the notation used in the flowchart and Table 

2 gives the summary of the files used in the project. 

 The method proposed by Choi and Kurfess (1999a, 1999b) employs a numerical 

epsilon for the binary decision – whether the points fit in the zone. This creates an 
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ambiguity whether all the points fit in the zone. In the new zone-fitting algorithm, no 

such convergence tolerance is specified thus eliminating the ambiguity. The objective 

function either returns a zero (when all points fit in the zone) or a non-zero value (any 

one of the points do not fit in the zone). 

 

Table 1 Notation used in flowchart 

 

Variable name Initial value Function 

fval 0 Value of the objective function after the 
optimization process. 

dinL 0 Lower limit for din. 
dinU din Upper limit for din. 
doutL 0 Lower limit for dout. 
doutU dout Upper limit for dout. 

flag_in 0 To indicate whether a point is outside or 
inside the inner tolerance band. 

flag_out 0 To indicate whether a point is outside or 
inside the outer tolerance band. 

x 1e-7 Numerical epsilon to terminate binary search. 
 

 

Table 2 Summary of files in a project 

 

 Naming Convention Function 
Primary program 
(calling program) main_prog_<identifier>.m Initiates the optimization process. 

Calculates the minimum zone values. 

Secondary Program 
(called program) opti_func_<identifier>.m 

Evaluates the cumulative objective 
function value and returns it to the 
primary program. 

Input file <identifier>.txt Stores the X, Y and Z coordinates of 
the set of points. 
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Fig. 9 Flowchart of the zone-fitting algorithm 
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 3.4.1 Optimization method 

 Optimization techniques are used to find a set of design parameters that can in 

some way be defined as optimal. An efficient and accurate solution to this problem 

depends not only on the size of the problem in terms of the number of constraints and 

design variables but also on characteristics of the objective function and constraints. The 

search for the transformation parameters (three translational and three rotational) is 

modeled as an unconstrained nonlinear optimization problem. To carry out the nonlinear 

optimization, the programs for evaluating the form tolerances employ a function 

provided by MATLAB – “fminunc”. The function is used to find the minimum of an 

unconstrained multivariable function. The “fminunc” uses the BFGS Quasi-Newton 

method with a mixed quadratic and cubic line search procedure. The BFGS Quasi-

Newton method is explained in Appendix B. 

 

3.5 Methodology for dimensional inspection with datum 

 Due to the complex geometries of certain 3-D objects such as turbine blade, 

carrying out the form tolerance assessment becomes a difficult task. One way to make 

this task easier is to simplify the complex 3-D geometries by representing them as a 

stack of 2-D cross-sections. For this representation, it is essential that a reference plane 

is specified. So now the 2-D cross-sections that constitute the 3-D geometry can be 

defined by specifying their respective distance from the datum (reference plane). The 

bilateral tolerance specifications for the 3-D geometry are applied to each 2-D cross-
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section. Thus the tolerance zones are constructed for each cross-section by offsetting the 

nominal 2-D geometry of the particular cross-section, with the bilateral tolerance values.  

 

 

 

Fig. 10 Methodology for dimensional inspection with datum 
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In the new zone-fitting algorithm, the rigid body transformation that places the 

points in the tolerance zone can be constrained. In other words, the degrees of freedom 

enjoyed by the set of points are reduced. In the proposed methodology, the set of points 

is allowed to translate along the X and Y axes and rotate about the Z-axis only. Thus by 

constraining the transformation, the zone-fitting algorithm determines whether the points 

measured at the 2-D cross-sections fit in the respective tolerance zones simultaneously. 

However, to address any uncertainty in the height measurement, the set of points may be 

allowed to translate along the Z-axis. The outline of the methodology for dimensional 

inspection with datum is shown in Fig. 10. The methodology is explained extensively in 

the next section using the turbine blade as an example.  

 

3.6 Turbine blade model 

 The blade suction and pressure surfaces have a very complex geometry; hence, it 

is not easy to carry out thorough dimensional inspection. The present research proposes 

a method to carry out a comprehensive turbine blade inspection employing the new 

zone-fitting algorithm. In the present study, the turbine blade geometry model adopted is 

that proposed by Pritchard (1985). Pritchard proposes that to uniquely define an airfoil 

cascade on a cylinder requires only eleven parameters and the immediate result is a 

nozzle or rotor with analytically defined surfaces. These eleven independent parameters 

are found to be necessary and sufficient for creating an airfoil (Pritchard, 1985). The 

eleven parameters are as shown in the Fig. 11. These parameters translate into five 
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points and five slopes on the cylinder of given radius. These five key points on the airfoil 

surface result from:  

1. locating the leading and trailing edge circles in space 

2. finding the suction and pressure surface tangency points 

3. setting the throat 

 

 

 

 

Fig. 11 Eleven independent geometric parameters (Pritchard, 1985) 
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Fig. 12 Five key points and the five surface functions (Pritchard, 1985) 

 

The five key points are computed from equations specified by Pritchard (1985). 

The five key points are connected by five mathematical functions as shown in Fig. 12. 

Logical choices for three of these functions are a leading edge circle, trailing edge circle 

and a circular arc describing the uncovered suction surface past the throat (Pritchard, 

1985). The suction surface and the pressure surface are best described by third order 

polynomials. This model can successfully create airfoils at different heights from the hub 

of the blade. By stacking these airfoil sections about the stacking axis, the 3-D model of 

the turbine blade is developed. Figs. 13 and 14 show the turbine blade with six sections 

developed using the above model.  
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Fig. 13 Sections of the turbine blade in 3-D space 

 

 
 

 

Fig. 14 Sections of the turbine blade 
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Table 3 Equations representing each piece of airfoil section 

 

 Mathematical function 
Leading edge circle 2 2 2( ) ( )LE LE LEx a y b r− + − =  

Trailing edge circle 2 2 2( ) ( )TE TE TEx a y b r− + − =  

Circular arc 2 2 2( ) ( )C C Cx a y b r− + − =  

Suction surface 3 2
1 2 3 4y a x a x a x a= + + +  

Pressure surface 3 2
1 2 3 4y b x b x b x b= + + +  

 

Table 3 gives the mathematical representation for each piece of the airfoil section. 

Suffices LE, TE and C denote leading edge, trailing edge and circular arc respectively. 

 

3.6.1 Modified point location method for airfoil section 

 

 

Fig. 15 Modified point location for airfoil section 
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The point location method for the airfoil section of the turbine blade is similar to 

that described for the 2-D geometries. The only difference is that there are more than one 

centroid points defined for the airfoil section. The airfoil section is a composite curve 

made of 5 mathematical functions. As shown in Fig. 15, qC, qLE and qTE are the centroid 

points for the suction curve, pressure curve and the circular arc, leading circle and the 

trailing circle respectively. The remaining process is exactly the same as described for 

the 2-D geometry in section 3.3.1. 

 

3.6.2 Program evaluating form tolerance of turbine blade 

The project for evaluating the form tolerance of a 3-D turbine blade consists of 

six files. The files are named as per the convention mentioned earlier.  

1. main_prog_blade.m 

2. opti_func_blade.m 

3. section_calc_blade.m 

4. circle_line_blade.m  

5. cubic_line_blade.m 

6. blade<n>.txt (Number of files is equal to the number of sections) 
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Fig. 16 Flowchart for the turbine blade program 
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The 3-D turbine blade is constructed from the airfoil sections at specific distance 

from the base section. For the dimensional inspection, points are measured at each airfoil 

section and the new zone-fitting algorithm attempts to fit these points in the respective 

tolerance zones simultaneously. Fig. 16 shows the flowchart of the program for 

evaluating the form tolerance of the 3-D turbine blade. The extra input to the primary 

program is the number of sections n used to construct the 3-D blade. Since the airfoil 

section is a composite curve consisting of five surface functions – two third order 

polynomials and three circular arcs, the processing for evaluating the objective function 

is divided in two separate functions: 

1. To determine the intersection points between the cubic curve and the line joining 

qC and p. 

2. To determine the intersection points between the circular arcs and the line joining 

respective centroid points (qLE or qTE) and p. 

 

The tolerance zone for each airfoil section is constructed by offsetting the 

composite curve. Hence the control boundaries of the tolerance zone are also composite 

curves with similar five surface functions. For every point it is determined whether it lies 

in any part of the tolerance zone. This process is performed for each airfoil section of the 

blade, and a single minimum zone value is determined for the turbine blade. Table 4 

summarizes functions performed by each file in the project.  
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Table 4 Summary of the files in the turbine blade project 

 

File Function 

main_prog_blade.m Initiates the optimization process. 
Calculates the minimum zone values. 

opti_func_blade.m Evaluates the cumulative objective function value and returns 
it to the main program. 

section_calc_blade.m Determines the number of points outside the tolerance zone 
for each section of the turbine blade. 

circle_line_blade.m 

Determines the intersection points between a circle and a 
line. 
Returns an indicator specifying whether a point fits in this 
particular part of the tolerance zone. 

cubic_line_blade.m 

Determines the intersection points between a cubic curve and 
a line. 
Returns an indicator specifying whether a point fits in this 
particular part of the tolerance zone. 

blade<n>.txt Stores the X, Y and Z coordinates of the set of points. There 
are n files one for each airfoil section. 
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4. RESULTS AND DISCUSSION 

 

 This chapter presents the results of the new zone-fitting algorithm. The new 

algorithm is employed for evaluating the form tolerances of 2-D and 3-D geometric 

features such as 2-D line, 2-D circle, 3-D cylinder and turbine blade. First, the results of 

the new algorithm in case of 2-D line and 2-D circle are compared to that of the method 

proposed by Choi and Kurfess (1999a, 1999b) and to that of the least squares method. 

Then, the tolerance assessment result for the 3-D cylinder is compared with that of the 

method proposed by Choi and Kurfess (1999a, 1999b). Lastly, the new algorithm is 

utilized to evaluate the form tolerance of a turbine blade.  

 

4.1 Rigid body transformation parameters 

 After the optimization (minimization of the objective function) terminates 

successfully, the algorithm returns the rigid body transformation parameters 

( , , , , , )x y zt t tΘ Φ Ψ  that place all points in the tolerance zone. Each of the parameter is 

explained below: 

1. .Rotation about the X axisΨ− −  

2. .Rotation about theY axisΘ− −  

3. .Rotation about the Z axisΦ− −  

4. .xt Translation along the X axis− −  

5. .yt Translation along theY axis− −  
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6. .zt Translation along the Z axis− −  

 

4.2 The 2-D line model 

The project for evaluating the 2-D straightness consists of three files. The files 

are named as per the convention mentioned earlier. Table 5 gives the inputs to the 

primary program. 

1. main_prog_line.m 

2. opti_func_line.m 

3. line.txt 

 

Table 5 Input to the primary program (2-D line model) 

 

Equation of nominal geometry 1 1 1 0a x b y c+ + =  
Input set of measured points “line.txt” 
Bilateral tolerance limits din =-1.5 and dout = 1 
 

 Fig. 17 shows the nominal 2-D line and the tolerance zone constructed by 

offsetting (expanding and shrinking) the nominal boundary (line) based on the bilateral 

tolerance limits. The offset values are: din = -1.5 and dout = 1. The data is collected by 

simulating the line model in CAD software and generating 21 points. The rigid body 

transformations are determined by three methods – the zone-fitting method proposed by 

Choi and Kurfess (1999a, 1999b), the least squares fit and the new zone-fitting algorithm 

proposed in the present study. The rotational transformation parameters are in radians 
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while the translational parameters are non-dimensional. Since the line model is defined 

in 2-D space, not all transformation parameters are evaluated. Only, translation along the 

X and Y axes and the rotation about the Z-axis is permitted. Table 6 gives the 

transformation variables, which place the set of points in the tolerance zone, determined 

by the three different methods. 

 

 

Fig. 17 2-D line model 

 

  

Table 6 Transformation variables for 2-D line model 

 

Transformation 
variables 

Zone-fitting (Choi 
and Kurfess) Least Squares Fit New zone-fitting 

algorithm 
Φ  (radians) -0.1958 0.034598 0.000 

xt  -0.00037206 0.000680 0.000 

yt  0.28727 0.055640 0.000 
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 The residual deviations of the zone-fitting method proposed by Choi and Kurfess 

(1999a, 1999b), the least squares fit and the new zone-fitting algorithm are shown in 

Figs. 18, 19 and 20, respectively. The residual is the distance of a point from the nominal 

or the fitted geometry. The dotted lines represent the corresponding tolerance zone 

boundaries while the solid lines represent the minimum zone. The decision whether the 

measured set of points satisfy the tolerance specifications is made based on the results 

yielded by the different fitting methods. The zone-fitting method proposed by Choi and 

Kurfess (1999a, 1999b) and the new zone-fitting algorithm fit the points in the tolerance 

zone but the least squares fit gives a decision that the 2-D line is out of tolerance. 

The conflicting results help us conclude that the tolerance conformance 

definition must govern the selection of verification algorithm. If it is to be determined 

whether the points fit in the tolerance zone, zone-fitting algorithm must be employed. 
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Fig. 18 Residual deviation after zone-fitting for 2-D line (Choi and Kurfess, 1999a, 

b) 
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Fig. 19 Residual deviation after zone-fitting for 2-D line (new algorithm) 



 

 

48

Residual deviation (2-D line)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 6 11 16 21

Data points

D
ev

ia
tio

n 
fr

om
 n

om
in

al

 

Fig. 20 Residual deviation after least squares fit for 2-D line 

 

4.3 The 2-D circle model 

 The project for evaluating the 2-D roundness consists of three files. The 

files are named as per the convention mentioned earlier. Table 7 gives the input to the 

primary program. 

1. main_prog_circle.m 

2. opti_func_circle.m 

3. circle.txt 
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Table 7 Input to the primary program (2-D circle model) 

 

Equation of nominal geometry 2 2 2( ) ( )x a y b r− + − =  
Input set of measured points “circle.txt” 
Bilateral tolerance limits din =-2 and dout = 2 
 

Fig. 21 shows the nominal 2-D circle and the tolerance zone constructed by 

offsetting (expanding and shrinking) the nominal boundary (circle) based on the bilateral 

tolerance limits. The radius of the circle in 25 units and the offset values are: din = -1.5 

and dout = 1.5. The data is collected by simulating the line model in CAD software and 

generating 21 points. The rigid body transformations are determined by three methods – 

the zone-fitting method proposed by Choi and Kurfess (1999a, 1999b), the least squares 

fit and the new zone-fitting algorithm proposed in the present study. The rotational 

transformation parameters are in radians while the translational parameters are non-

dimensional. Since the circle model is defined in 2-D space, not all transformation 

parameters are evaluated. Only, translation along the X and Y axes and the rotation 

about the Z-axis is permitted. Table 8 gives the transformation variables, which place the 

set of points in the tolerance zone, determined by the three different methods. 
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Fig. 21 2-D circle model 

 

 The residual deviations of the zone-fitting method proposed by Choi and Kurfess 

(1999a, 1999b), the least squares fit and the new zone-fitting algorithm are shown in 

Figs. 22, 23 and 24, respectively. The residual is the distance of a point from the nominal 

or the fitted geometry. The dotted lines represent the corresponding tolerance zone 

boundaries while the solid lines represent the minimum zone. The decision whether the 

measured set of points satisfy the tolerance specifications is made based on the results 

yielded by the different fitting methods. The zone-fitting method proposed by Choi and 

Kurfess (1999a, 1999b) and the new zone-fitting algorithm fit the points in the tolerance 

zone but the least squares fit gives a decision that the 2-D circle is out of tolerance.  
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The conflicting results help us conclude that the tolerance conformance 

definition must govern the selection of verification algorithm. If it is to be determined 

whether the points fit in the tolerance zone, zone-fitting algorithm must be employed.  

 

Table 8 Transformation variables for 2-D circle model 

 

Transformation 
variables 

Zone-fitting (Choi 
and Kurfess) 

New zone-fitting 
algorithm 

Φ  (radians) 0.00020792 -2.305687e-020 
xt  1.5086e-009 0 

yt  -0.0042413 0 
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Fig. 22 Residual deviation after zone-fitting for 2-D circle (Choi and Kurfess, 

1999a, b) 
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Fig. 23 Residual deviation after zone-fitting for 2-D circle (new algorithm) 
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Fig. 24 Residual deviation after least squares fit for 2-D circle 

 

4.4 The 3-D cylinder model 

The project for evaluating the form tolerance of a 3-D cylinder consists of three 

files. The files are named as per the convention mentioned earlier. Table 9 gives the 

input to the primary program. 

1. main_prog_cylinder.m 

2. opti_func_cylinder.m 
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3. cylinder.txt 

 

In the case of the 3-D cylinder, three nominal geometries are specified – the top 

plane, the bottom plane and the circle. The tolerance zones are individually constructed 

based on the respective bilateral tolerance specifications. For every point it is determined 

whether it lies in any of the tolerance zones. In this way the minimum zone values for 

each tolerance zone are determined. 

 

Table 9 Input to the primary program (3-D cylinder model) 

 

Equation of nominal geometry –  
Top plane, bottom plane and circle 

2 2 2( ) ( )x a y b r− + − =  

1 1 1 1

2 2 2 2

0
0

a x b y c z d
a x b y c z d

+ + + =
+ + + =

 

Input set of measured points “cylinder.txt” 

Bilateral tolerance limits – different for 
each tolerance zone 

dintp = -2 and douttp = 2 
dinbp = -2 and doutbp = 2 

dinc = -1.5 and doutc = 1.5 
 

Figs. 25 and 26 show the nominal 3-D cylinder and the tolerance zones 

constructed by offsetting (expanding and shrinking) the nominal boundaries (circular 

surface, top plane and bottom plane) based on the bilateral tolerance limits. Separate 

tolerance zones are constructed for each geometric feature. A point is said to satisfy the 

tolerance specifications if it fits in any one of the three tolerance zones. The radius of the 

cylinder is 10 units and the offset values for each of the three geometric features are 

given in Table 10. 
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Table 10 Bilateral tolerance values for the 3-D cylinder 

 

 din dout 
Circular surface -1.5 1.5 
Top plane -2 2 
Bottom plane -2 2 

 

 

 

 

Fig. 25 Cylinder model (tolerance zone 1 – circular surface) 
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Fig. 26 Cylinder model (tolerance zone 2 – bottom plane and tolerance zone 3 – top 

plane) 

 

The data is collected by simulating the 3-D cylinder model in CAD software and 

generating 44 points for the 3-D cylinder (circular surface, the top and bottom planes). 

The rigid body transformations are determined by two methods – the zone-fitting 

method proposed by Choi and Kurfess (1999a, 1999b) and the new zone-fitting 

algorithm proposed in the present study. The rotational transformation parameters are in 

radians while the translational parameters are non-dimensional. Table 11 gives the 
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transformation variables, which place the set of points in the tolerance zone, determined 

by the two methods. 

 

Table 11 Transformation variables for 3-D cylinder example 

 

Transformation variables Zone-fitting (Choi and 
Kurfess) 

New zone-fitting 
algorithm 

Ψ  (radians) 0.0002374 0.0277 
Θ  (radians) 0.00075411 0 
Φ  (radians) -0.003137 -0.0020 

xt  0.077277 -0.0671 

yt  0.017196 0.0323 

zt  -0.079719 -0.0342 
 

 

 The residual deviations of the zone-fitting method proposed by Choi and Kurfess 

(1999a, 1999b) and the new zone-fitting algorithm are shown in Figs. 27 and 28, 

respectively. The residual is the distance of a point from the nominal geometry. The 

dotted lines represent the corresponding tolerance zone boundaries while the solid lines 

represent the minimum zone. The decision whether the measured set of points satisfy the 

tolerance specifications is made based on the results yielded by the two zone-fitting 

methods. The zone-fitting method proposed by Choi and Kurfess (1999a, 1999b) and the 

new zone-fitting algorithm fit the points in the tolerance zone, but the minimum zone 

values evaluated are different. Table 12 gives the minimum zone values calculated by 

the two methods. The values given by the new zone-fitting algorithm are higher than that 

of the zone-fitting method proposed by Choi and Kurfess (1999a, 1999b). The difference 
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in the results can be attributed to the different objective functions. The method proposed 

by Choi and Kurfess (1999a, 1999b) relies on specifying a convergence tolerance, while 

the new zone-fitting algorithm doesn’t set a convergence tolerance. With the Boolean 

objective function employed by the new zone-fitting algorithm, the ambiguity whether 

the point lies inside or outside the tolerance zone is completely eliminated.  

 

Table 12 Minimum zone values for the 3-D cylinder example 

 

Zone-fitting (Choi and Kurfess) New zone-fitting algorithm 
 Circular 

surface 
Top 

plane 
Bottom 
plane 

Circular 
surface Top plane Bottom 

plane 
Min din -1.0664 -1.5664 -1.707 -1.7078 -1.7182 -1.6537 
Min dout 1.1914 1.582 1.6289 1.1517 1.6514 1.7182 
Min tol. 

Zone 2.2578 3.1484 3.3359 2.8595 3.3696 3.3719 
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Residual deviation (3-D cylinder)
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Fig. 27 Residual deviation after zone-fitting for 3-D cylinder (Choi and Kurfess, 

1999a, b) 

Zone 1
Zone 2 Zone 3
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Residual deviation (3-D cylinder)
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Fig. 28 Residual deviation after zone-fitting for 3-D cylinder (new algorithm) 

 

4.5 The turbine blade model 

 The new zone-fitting algorithm is utilized to evaluate the form tolerance on the 

complex 3-D surface geometry. Table 13 gives the input to the primary program. Fig. 29 

shows the 3-D model of the turbine blade. One of the current practices followed in the 

industry for its dimensional inspection is by comparing it with the master blade. The 

master blade is secured in a fixture, and then dial gauges are used – one each for the 

leading and trailing edges, two gauges on the suction surface and two on the pressure 

surface. The readings on the dial gauges are noted and the master blade is removed. Now 

Zone 1
Zone 2 Zone 3
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the blade under inspection is placed in the fixture and with similar arrangement of the 

dial gauges the readings on each are noted. If the readings are within the tolerance 

specifications then the blade is determined as good. This method is very inadequate 

since it essentially assesses the tolerance at a very few number of points, thus failing to 

give the overall assessment of the blade surface. Fig. 30 shows the tolerance zone for a 

single airfoil section. 

 

 

 

Fig 29 3-D model of the turbine blade 
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Table 13 Input to the primary program (3-D turbine blade model) 

 

Equation of nominal geometry – set of 
five surface functions for each section 

2 2 2( ) ( )LE LE LEx a y b r− + − =  
2 2 2( ) ( )TE TE TEx a y b r− + − =  
2 2 2( ) ( )C C Cx a y b r− + − =  

3 2
1 2 3 4y a x a x a x a= + + +  

3 2
1 2 3 4y b x b x b x b= + + +  

Input set of measured points “blade<n>.txt” 
Bilateral tolerance limits – same for all 
the sections din = -0.0002 and dout = 0.0002 

 

 

 

Fig. 30 Tolerance zone for single airfoil section 
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The data is collected by simulating the 3-D turbine blade model in CAD software 

and generating 20 points for each airfoil section. A total of six sections determine the 

complete 3-D turbine blade. The bilateral tolerance values specified are din = -0.0002 

and dout = 0.0002. The rigid body transformations parameters are determined by the new 

zone-fitting algorithm proposed in the present study. The rotational transformation 

parameters are in radians while the translational parameters are non-dimensional. Since 

the circle model is defined in 2-D space, not all transformation parameters are evaluated. 

Only, translation along the X and Y axes and the rotation about the Z-axis is permitted. 

The minimum zone value calculated and the transformation that places the points in the 

respective zones simultaneously are given in Tables 14 and 15 respectively. 

 

Table 14 Minimum zone values for the 3-D turbine blade example 

 

Min din -0.00015547 
Min dout 0.00015547 
Min tolerance zone 0.00031094 

 

 

Table 15 Transformation variables for 3-D turbine blade example 

 

Transformation variables New zone-fitting algorithm 
Φ  (radians) 4e-006 

xt  0 

yt  -2.34e-007 
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4.6 Tolerance assessment using actual data 

In this example, the zone-fitting method proposed by Choi and Kurfess (1999a, 

1999b) and the new zone-fitting algorithm is employed to evaluate the form tolerance of 

the circular surface of a cylinder. The data used for this is measured from the circular rod 

of nominal diameter 19.101 mm (Fig. 31). The offset values are: din = 0 and dout = 2.54 

mm. Such unilateral tolerances are specified for assembly situations where a minimum 

hole diameter with a maximum shaft diameter is specified.  

 

Fig. 31 Cylindrical rod model 

 

The transformations determined by the different zone-fitting methods are given 

in Table 16 and the residual deviations are shown in Figs. 33 and 34. The dotted lines 

represent the corresponding tolerance zone boundaries while the solid lines represent the 

minimum zone. Since the cylinder does not have measured points on the top and bottom 
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surface, tz has not been determined. Also Φ  is not determined due to the symmetry 

about the Z axis.  

 

Table 16 Transformation variables for cylindrical model 

 

Transformation variables Zone-fitting (Choi and 
Kurfess) 

New zone-fitting 
algorithm 

Ψ  (radians) -0.003115 -0.00000 
Θ  (radians) -0.010452 0.00000 

xt  -0.031556 -0.0267 

yt  0.032872 0.0407 
 

 

 

Fig. 32 Setup for coordinate measurement 
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Fig. 32 shows the setup used to collect data from the circular surface of the 

cylindrical rod. The minimum zone values calculated by the zone-fitting method 

proposed by Choi and Kurfess (1999a, 1999b) and the new zone-fitting algorithm are 

2.123287 mm and 2.22603 mm respectively. The value calculated by the zone-fitting 

method proposed by Choi and Kurfess (1999a, 1999b) is higher than that calculated by 

the new zone-fitting algorithm. 
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Fig. 33 Residual deviation after zone-fitting for cylindrical rod (Choi and Kurfess, 

1999a, b) 
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Residual deviation (cylindrical rod)

-0.5

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21

Data points

D
ev

ia
tio

n 
fr

om
 n

om
in

al
 (m

m
)

 

 

Fig. 34 Residual deviation after zone-fitting for cylindrical rod (new algorithm) 
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5. SUMMARY AND CONCLUSION 

 

 A new zone-fitting algorithm was developed to evaluate the form tolerances of 

geometric features. It determines the rigid body transformation that places the set of 

points measured from the actual surface in the specified tolerance zone. The search for 

the transformation parameters (three translational and three rotational) is modeled as an 

unconstrained nonlinear optimization problem. The objective function is defined in such 

a manner that no convergence tolerance needs to be set. Thus it eliminates the ambiguity 

whether a point is in or out of the tolerance zone. Given the nominal surfaces, the 

developed algorithm evaluates if the measured points lie in the specified tolerance limits, 

and further determines the minimum zone in which the measured set of points lies. This 

provides vital information as to the actual part quality based on which the manufacturing 

process is adjusted. 

 The developed algorithm is employed to evaluate the form tolerance of a 2-D 

line, 2-D circle, 3-D cylinder and the 3-D turbine blade. The results are compared to that 

of least squares fit and the method proposed by Kurfess and Choi (1999). From the 

results it can be inferred that zone-fitting algorithms are better suited when validating a 

tolerance zone specification. However, the results of the fitting algorithm must be treated 

carefully as only a finite number of points can be measured from the unknown actual 

surface. The measured points are considered exact copy of the actual surface. The new 

zone-fitting algorithm has the following advantages: 
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1. The new algorithm employs the Boolean function, which by virtue of its 

definition eliminates the ambiguity whether a point is in or out of the tolerance 

zone. 

2. The new algorithm evaluates the bilateral minimum zone values for the features 

under inspection. Thus the manufacturing-process supervisor has a better grasp 

of the direction the process is heading based on the minimum zone values for that 

particular feature. 

3. The new algorithm is implemented for assessing the tolerance of a complex 3-D 

objects (such as a turbine blade). For these 3-D objects, the inspection standards 

are often specified as a collection of 2-D cross-sections. By constraining the 

transformation parameters, the proposed methodology will determine whether the 

points measured at the 2-D cross-sections fit in the respective tolerance zones 

simultaneously. 

 

 



 

 

71

REFERENCES 

 

ASME Y14.5M-1994, 1994 National Standard on Dimensioning and 

Tolerancing, American Society of Mechanical Engineers, New York, NY. 

Carr, K., and Ferreira, P., 1995a, “Verification of Form Tolerances Part I: Basic 

Issues, Flatness and Straightness,” Precision Engineering, Vol. 17, No. 2, pp. 131-

143. 

Carr, K., and Ferreira, P., 1995b, “Verification of Form Tolerances Part II: 

Cylindricity and Straightness of a Median Line,” Precision Engineering, Vol. 17, 

No. 2, pp. 144-156. 

Choi, W., and Kurfess, T. R., 1999a, “Dimensional Measurement Data Analysis, 

Part 1: A Zone Fitting Algorithm,” Journal of Manufacturing Science and 

Engineering, Vol. 121, pp. 238-245. 

Choi, W., and Kurfess, T. R., 1999b, “Dimensional Measurement Data Analysis, 

Part 2: Minimum Zone Evaluation,” Journal of Manufacturing Science and 

Engineering, Vol. 121, pp. 246-250. 

Etesami, F., and Qiao, H., 1990, “Analysis of Two-dimensional Measurement 

Data for Automated Inspection,” Journal of Manufacturing Systems, Vol. 9, pp. 21-

34. 

Hong, J. T., and Fan, K. C., 1986, “An Algorithm for Straightness Calculation 

from Geometrical Viewpoint,” Proc. of 1st ROC-ROK Metrology Standard 

Symposium, Taipei, Taiwan, pp. 103-110. 



 

 

72

Huang, S. T., Fan, K. C., and Wu, J. H., 1993a, “A New Minimum Zone Method 

for Evaluating Straightness Errors,” Precision Engineering, Vol.15, No. 3, pp. 158-

165.  

Huang, S. T., Fan, K. C., and Wu, J. H., 1993b, “A New Minimum Zone Method 

for Evaluating Flatness Errors,” Precision Engineering, Vol. 15, No.1, pp. 25-32.  

Kanada, T., and Suzuki, S., 1993a, “Evaluation of Minimum Zone Flatness by 

Means of Nonlinear Optimization Techniques and Its Verification,” Precision 

Engineering, Vol. 15, No. 2, pp. 93-99. 

Kanada, T., and Suzuki, S., 1993b, “Application of Several Computing 

Techniques for Minimum Zone Straightness,” Precision Engineering, Vol. 15, No. 4, 

pp. 274-280. 

Lai, K., and Wang, J., 1988, “A Computational Geometry Approach to 

Geometric Tolerancing,” 16th North American Manufacturing Research Conference, 

pp. 376-379. 

Murthy, T. S. R., and Abdin, S. Z., 1980, “Minimum Zone Evaluation of 

Surfaces,” International Journal of Machine Tool Design and Research, Vol. 20, pp. 

123-136. 

Preparata, F. P., and Shamos, M.I., 1988, Computational Geometry (1st Ed.), 

Springer, Berlin, pp. 41-44. 

Pritchard, L. J., 1985, “An Eleven Parameter Axial Turbine Airfoil Geometry 

Model,” ASME Paper No. 85-GT-219.  



 

 

73

Requicha, A. A. G., 1983, “Toward a Theory of Geometric Tolerancing,” 

International Journal of Robotics Research, Vol. 2, No. 4, pp. 45-60. 

Roy, U., and Zhang, X., 1992, “Establishment of a Pair of Concentric Circles 

with the Minimum Radial Separation for Assessing Roundness Error,” Computer 

Aided Design, Vol. 24, No. 3, pp. 161-168. 

Shunmugam, M. S., 1987, “New Approach for Evaluating Form Errors of 

Engineering Surfaces,” Computer-Aided Design, Vol. 19, No. 7, pp. 368-374. 

Swanson, K., Lee, D. T., and Wu, V. L., 1995, “An Optimal Algorithm for 

Roundness Determination on Convex Polygons,” Computational Geometry, Vol. 5, 

No. 4, pp. 225-235 

Traband, M. T., Joshi, S., Wysk, R. A., and Cavalier, T. M., 1989, “Evaluation of 

Straightness and Flatness Tolerances Using Minimum Zone,” Manufacturing 

Review, Vol. 2, pp. 189-195. 

Tsukada, T., and Kanada, T., 1985, “Minimum Zone Evaluation of Cylindricity 

Deviation by Some Optimization Techniques,” Bull. Japan Society of Precision 

Engineering, Vol. 19, No. 1, pp. 18-23. 

Wang, Y., 1992, “Minimum Zone Evaluation of Form Tolerances,” 

Manufacturing Review, Vol. 5, No. 3, pp. 213-220. 



 

 

74

APPENDIX A 

 

A.1 Least squares fit method 

 The least squares fit is extensively used as the verification algorithm in the 

coordinate measuring machines. In the least squares fit, a mathematical procedure for 

finding the best-fitting curve to a given set of points by minimizing the sum of the 

squares of the offsets ("the residuals") of the points from the curve is employed. The sum 

of the squares of the offsets is used instead of the offset absolute values because this 

allows the residuals to be treated as a continuous differentiable quantity. Least squares 

fitting proceeds by finding the sum of the squares of the deviations of a set of n data 

points from a function f.  

 
(A.1)

 

The function f can be a polynomial of any order, as per the desired fitting accuracy. 

Although the unsquared sum of distances might seem a more appropriate quantity to 

minimize, use of the absolute value results in discontinuous derivatives, which cannot be 

treated analytically. The square deviations from each point are therefore summed, and 

the resulting residual is then minimized to find the best-fit curve. This procedure results 

in outlying points being given disproportionately large weighting. The condition for 

to be a minimum is that  
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(A.2)

 

for i = 1…n. If we consider f as a linear function i.e. a linear fit, we have 

 (A.3)

 

 

so  

 
(A.4)

 

 

 
(A.5)

 

 

 
(A.6)

 

 

These lead to the equations  
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(A.7)

 
 

(A.8)

 

In matrix form,  

 
(A.9)

 

 

Thus, 

 
(A.10)

 

The values of a and b in equation A.10 are substituted to equation A.3 to yield the best 

fit curve for the given data. The deviations from this best fit curve are calculated to 

obtain the form tolerance. 
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APPENDIX B 

 

B.1 BFGS Quasi-Newton method 

Central idea underlying quasi-Newton methods is to use an approximation of the 

inverse Hessian. However, form of approximation differs with different methods. The 

quasi-Newton methods that build up an approximation of the inverse Hessian are often 

regarded as the most sophisticated for solving unconstrained problems. In quasi-Newton 

methods, instead of the true Hessian, an initial matrix H0 is chosen (usually H0 = I) 

which is subsequently updated by an update formula: 

 

kuk1k H  H  H +=+  

 

where, Hku is the update matrix. This updating can also be done with the inverse of the 

Hessian H-1. Let B = H-1; then the updating formula for the inverse is also of the form is 

given by: 

 

kuk1k B  B  B +=+  

 

Given two points xk and xk+1, we define  

gk = ∇y(xk) and gk+1 = ∇ y(xk+1) 

Further, let pk = xk+1 - xk , then 

gk+1 - gk ≈ H(xk) pk 
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If the Hessian is constant, then 

 

gk+1 - gk = H pk   which can be rewritten as  qk = H pk 

 

If the Hessian is constant, then the following condition would hold as well 

 

H-1
k+1 qi = pi  0 ≤ i ≤ k 

This is called the quasi-Newton condition. Remember that  

 

qi = Hk+1 pi  and H-1k+1 qi = pi  (or, Bk+1 qi = pi)    0 ≤ i ≤ k 

 

Both equations have exactly the same form, except that qi and pi are interchanged and H 

is replaced by B (or vice versa). This leads to the observation that any update formula for 

B can be transformed into a corresponding complimentary formula for H by 

interchanging the roles of B and H and of q and p.  The reverse is also true. Broyden–

Fletcher–Goldfarb–Shanno (BFGS) formula update of Hk is obtained by taking the 

complimentary formula of the DFP formula, thus: 

 

Hk+1 = Hk + 
qkqkT

qkTpk
    –

HkpkpkTHk
pkTHkpk

    

 

By taking the inverse, the BFGS update formula for Bk+1 (i.e., H-1k+1) is obtained: 
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Bk+1 = Bk + (
1 + qkTBkqk

qkTpk   ) 
pkpkT

pkTqk
   –

pkqkTBk + BkqkpkT

 qkTpk
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APPENDIX C 

 

C.1 Point location method (Preparata and Shamos, 1988) 

In the point location method, the convex polygon C is partitioned into n wedges by 

the rays as shown in the Fig. 3.2. Each wedge is divided into two pieces by a single edge 

of C. One of these pieces is wholly internal to C, while the other is wholly external. Let 

q be the point internal to C and since the rays occur in angular order, the wedge in which 

the point z lies can be found by a single binary search. The procedure is outlined in 2 

simple steps: 

1. The point z lies between the rays defined by pi and pi+1, if 1+∠ izqp  is a right turn 

and izqp∠  is a left turn. 

2. Once pi and pi+1 are found, then z is internal to C only if zpi 1ip +∠  is a left turn. 

 

 

Fig. 35 Point location method (Preparta and Shamos, 1988) 
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To decide whether an angle makes a left or a right turn, a 3 x 3 determinant in the points’ 

coordinates is evaluated. Let pi = (xi, yi), then the determinant for 321 ppp∠  is given as 

follows: 

 

1 1

2 2

3 3

1
1
1

x y
x y
x y

 

 

The determinant gives twice the signed area of the triangle (p1p2p3). The area is positive 

if and only if the angle p1p2p3 makes a left turn and negative if the angle p1p2p3 makes a 

right turn. 
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APPENDIX D 

 

The nomenclature used in the thesis is as follows: 

1. S – any geometric surface/curve in 3-D space 

2. P – set of measured points from the actual surface 

3. H – homogeneous transformation matrix 

4. R – Euler matrix 

5. t – translation vector 

6. .Rotation about the X axisΨ− −  

7. .Rotation about theY axisΘ− −  

8. .Rotation about the Z axisΦ− −  

9. .xt Translation along the X axis− −  

10. .yt Translation along theY axis− −  

11. .zt Translation along the Z axis− −  

12. P* - transformed set of points 

13. N – Boolean function 

14. p – point vector 

15. pa – augmented point vector 

16. T – tolerance zone 

17. din – inner tolerance limit 

18. dout – outer tolerance limit 
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19. dinL – lower limit for din 

20. dinU – upper limit for din 

21. doutL – lower limit for dout 

22. doutU – upper limit for dout 

23. fval – minimum state of the objective function returned after optimization  

24. x0 – initial estimate for the optimization solution 

25. x – numerical epsilon used to terminate the binary search 
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