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ABSTRACT

Reliability Characterization and Prediction of

High K Dielectric Thin Film. (December 2004)

Wen Luo, B.E., Tsinghua University;

M.S., University of Washington

Co–Chairs of Advisory Committee: Dr. Way Kuo
Dr. Yue Kuo

As technologies continue advancing, semiconductor devices with dimensions in nanome-

ters have entered all spheres of human life. This research deals with both the statis-

tical aspect of reliability and some electrical aspect of reliability characterization. As

an example of nano devices, TaOx-based high k dielectric thin films are studied on

the failure mode identification, accelerated life testing, lifetime projection, and failure

rate estimation.

Experiment and analysis on dielectric relaxation and transient current show

that the relaxation current of high k dielectrics is distinctive to the trapping/detrapping

current of SiO2; high k films have a lower leakage current but a higher relaxation cur-

rent than SiO2. Based on the connection between polarization-relaxation and film

integrity demonstrated in ramped voltage stress tests, a new method of breakdown

detection is proposed. It monitors relaxation during the test, and uses the disappear-

ing of relaxation current as the signal of a breakdown event.

This research develops a Bayesian approach which is suitable to reliability

estimation and prediction of current and future generations of nano devices. It com-

bines the Weibull lifetime distribution with the empirical acceleration relationship,

and put the model parameters into a hierarchical Bayesian structure. The value of
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the Bayesian approach lies in that it can fully utilize available information in model-

ing uncertainty and provide cogent prediction with limited resources in a reasonable

period of time. Markov chain Monte Carlo simulation is used for posterior inference

of the reliability projection and for sensitivity analysis over a variety of vague priors.

Time-to-breakdown data collected in the accelerated life tests also are mod-

eled with a bathtub failure rate curve. The decreasing failure rate is estimated with

a non-parametric Bayesian approach, and the constant failure rate is estimated with

a regular parametric Bayesian approach. This method can provide a fast and reliable

estimation of failure rate for burn-in optimization when only a small sample of data

is available.
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CHAPTER I

INTRODUCTION

As technology has continued to advance and more break-throughs emerge, semicon-

ductor devices with dimensions in nanometers have entered into all spheres of human

life [42]. Nowadays, understandings of materials, physics, and reliability at the nano,

or atomic, level is vital to the proper design and manufacturing of these devices. It ap-

pears that several fundamental barriers restrict the scaling of semiconductor devices.

One concern is that tight reliability margins may limit miniaturization. Therefore,

there is an urgent need to investigate the reliability of nano devices in the early de-

sign stages. A brief description is presented next on some critical issues in the present

semiconductor industry. These problems necessitate the research on high k dielectric

thin films.

I.1. Reliability concerns with semiconductor devices

The success of the semiconductor industry is largely due to the existence of the

gate oxide, SiO2. A thin film of SiO2 forms the insulating layer between the control

gate and the conducting channel of a metal-oxide-semiconductor field effect transistor

(MOSFET). The reliability of SiO2, i.e., the probability of a SiO2 film retaining its

insulating property under a high electric field for many years, has been the subject

of numerous publications.

In the last three decades, the aggressive scaling of microelectronics for better

This dissertation follows the style of the IEEE Transactions on Reliability.
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performance and higher density has maintained an unprecedented pace. Miniaturizing

the dimensions and the isolation region of devices is more challenging than ever before

as the integration level on a single chip goes to ultra-large scale [63]. It is projected

that, by the year 2006, the 0.10µm technology will require an oxide thickness as

thin as 1.5∼2.0nm [24].1 However, because of performance considerations and non-

scalable parameters such as threshold voltage, the scaling of gate voltage lags behind

the scaling of oxide thickness. This raises serious concerns as to whether ultra-thin

gate oxides can function properly and reliably.

There are reasons to believe that the scaling of oxide thickness is not unlim-

ited. For gate oxide films of less than 3nm, there exists a large leakage current, caused

by the direct tunnelling of electrons through the thin layer of SiO2. This results not

only in power loss, but also interferes with the proper function of a MOSFET. Scaling

can also be limited by processing issues like poor wafer uniformity, the difficulty of

SiO2 growth control, and the threshold voltage shift caused by boron diffusion from

the p+-gate into the silicon substrate.

In the past, the fabrication of a reliable gate oxide boiled down to suffi-

ciently controlling the processing conditions and lowering the contamination levels to

exclude extrinsic failure modes. The intrinsic quality of gate oxides never posed a

serious reliability threat under typical operating conditions. But as the oxide thick-

ness decreases, the exponentially increasing tunnelling current can damage the film

much faster. Ultra-thin gate oxides may not have sufficient reliability for 10 years of

operation [10]. As the intrinsic reliability limits are approached, one solution to the

problem is to replace SiO2 with high k dielectric materials so that the effect of direct

tunnelling can be avoided.

11µm=10−6m, 1nm=10−9m, 1
◦
A=10−10m
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I.2. MOSFET and MOS capacitor

The schematic structure of a MOSFET is shown in Figure 1. The metal gate electrode

is separated from the silicon substrate by the insulating layer of SiO2. Voltage bias

on the gate controls the current flow in the underlying semiconductor region by either

creating or eliminating a conducting channel. Working as the switch of a MOSFET,

the performance of the gate oxide is crucial to the proper functioning of the transistor.

A simple way to test gate oxide is to put it in a metal-oxide-semiconductor (MOS)

capacitor, as shown in Figure 2. The metal and the semiconductor correspond to the

gate electrode and the silicon substrate of a transistor, respectively. With a gate size

of A and a film thickness of d, the capacitance C is calculated as

C = εoεr
A

d
,

where εo is the dielectric constant of the vacuum; and εr is the relative dielectric

constant of a particular material with respect to the vacuum. For SiO2, εr = 3.9.

silicon substrate

source drain

gate electrode

channel

V

SiO2

silicon substrate

source drain

gate electrode

channel

V

SiO2

Figure 1: Schematic structure of a MOSFET

A shorter channel is desirable in a transistor for better performance and higher

integration [58]. Accordingly, oxide thickness should be reduced for the transistor to
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silicon

SiO2  or high k dielectrics

metal

d

gate size A

V

silicon

SiO2  or high k dielectrics

metal

d

gate size A

V

Figure 2: Schematic structure of a MOS capacitor

function properly. This causes problems, such as direct tunnelling and insufficient

intrinsic reliability, and limits further device scaling. In order to have a physically

thicker film but also maintain the capacitance, the use of dielectric materials with a

large value of εr is the only solution.

I.3. High k dielectric materials

The serious function and reliability problems caused by further reducing oxide thick-

ness can be avoided by replacing SiO2 with high k dielectric materials, whose relative

dielectric constant εr is in the range of 8 ∼ 100.2 The benefit of large εr is that

relatively thicker dielectric films can be used without sacrificing film capacitance.

Hence, the constraints on scaling set by high tunnelling current, poor film unifor-

mity, and insufficient reliability can be relaxed. For this reason, high k dielectrics

are considered as the potential candidates for gate insulators for future generations

of transistors [31, 37, 61].

Although high k dielectrics have some deficiencies in material and electric

properties, many promising results have been achieved with their use. Difficulties

2The value of k equals εr
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still exist in merging them into current semiconductor manufacturing technology [61].

The most commonly studied high k dielectrics have been metal oxides, such as tan-

talum oxide (TaOx), zirconium oxide (ZrOx), and hafnium oxide (HfOx). Ta2O5

has high permittivity, while ZrO2 and HfO2 are thermodynamically stable on silicon.

All are reported to have a much lower leakage current than SiO2 [39]. There are

plenty of encouraging results to warrant further studies on these materials. However,

more research is necessary to characterize their reliability properties for a complete

assessment of their potential as candidates to replace SiO2.

Ta2O5 is thermally unstable when in direct contact with silicon. A suitable

interface layer, such as TaNy or Si3N4, between Ta2O5 and the silicon substrate can

prevent interfacial reactions and thus improve capacitance and decrease leakage cur-

rent [29]. A promising strategy for creating better films is the doping of one high k

material onto another. A proper dopant can suppress crystallization, decrease leakage

and increase the k value. The properties of a hybrid film can be tailored by changing

the relative amounts of the individual materials. Ta2O5 is especially suited to this

technique, because it can be doped with an appreciable amount of another metal oxide

to raise the temperature of phase transition from amorphous to polycrystalline [32].

The reliability characterization and evaluation of these TaOx-based films can provide

information of great value to design and fabrication engineers.

I.4. Fabrication of TaOx-based films

Sample capacitors, with the structure of Al/high k/Si,3 are fabricated and tested in

the Thin Film Nano & Microelectronics Research Lab, Texas A&M University [30].

The high k dielectrics in this study have k values in the range of 10∼15. As listed in

3A high k dielectric film between aluminum gate electrode and silicon substrate
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Table 1: High k dielectric films under test

High k Dielectric Thickness Gate Size EOT∗ k

Thin Film (nm) (10−4cm2) (nm) (at 1MHz)

TaOx 6.0 2.27 1.50 NA

I† Zr-doped TaOx 6.8 2.27 2.31 NA

TaOx+TaNy 8.9 2.27 2.06 NA

Zr-doped TaOx+TaNy 9.0 2.27 2.18 NA

TaOx+TaNy 10.0 3.72 3.27 11.9

II‡ HfOx+TaNy 11.0 3.72 4.24 10.1

40W Hf-doped TaOx+TaNy 9.5 3.72 2.57 14.4

III] 20W Hf-doped TaOx 62∼63 3.83 2.19 11.3

∗Equivalent Oxide Thickness.

†Used for studying leakage current.

‡Used for studying dielectric relaxation and transient current.

]Used for testing time-dependent dielectric breakdown.

Table 1, they are pure TaOx, pure HfOx, Hf-doped TaOx and Zr-doped TaOx. Some

of them have TaNy as the interfacial layer in contact with the HF pre-cleaned p-type

silicon wafer, which has an orientation of (100) and a resistivity of 10-80 Ω-cm.

The 5
◦
A thick TaNy film is sputter deposited on silicon from a Ta target in the

Ar/N2 (1:4 ratio) gas mixture at 5mTorr and room temperature. The Hf-doped (or

Zr-doped) TaOx film, which is co-sputtered from separate Ta and Hf (or Zr) targets,

is subsequently deposited in the Ar/O2 (1:1 ratio) gas mixture without breaking the

vacuum. The sputtering power at the Ta target is fixed at 100W, while the power

at the Hf (or Zr) target is varied between 20W and 100W, depending on the desired
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level of dopant concentration. In addition, Pure TaOx or HfOx films are deposited

at 100W, with or without the TaNy interface film, to serve as references. The oxide

film is then annealed in a quartz tube under O2 at 600◦C for 60 minutes or at 700◦C

for 10 minutes. The refractive index and thickness of the film is measured with a

Rudolph i1000 elliposometer.

The film is fabricated into a MOS capacitor for electrical characterization.

The top aluminum electrode is sputter deposited through a shadow mask. The back

side of the silicon wafer is also deposited with aluminum for better contact. The

post-metal annealing is performed under N2 at 600◦C for 30 minutes. To provide a

real sense of the deposited high k thin films, a picture of a 60W Hf-doped TaOx film

taken with a transmission electron microscope is shown in Figure 3 [36].

Al

Si

Hf-Ta-O

Figure 3: Picture of a 60W Hf-doped TaOx film taken with a transmission electron

microscope [36]

All films are tested at room temperature in a black box to avoid disturbance
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from light and noise. Figure 4 displays the probe station, hot chuck, and microscope

inside the black box. Current versus voltage characteristics are measured with HP

4140B, the pico-ampere meter and DC voltage source. Data of failure times are col-

lected with HP 4155C, the semiconductor parameter analyzer. The output/input

signals of the two instruments are transferred in/out of the black box through coaxial

and triaxial cables. The HP 4140B and HP 4155C are also connected to a desktop

computer for automatic control of the measurements and data acquisition. All tests

are programmed in LabVIEW 7.0, a virtual instrument software developed by Na-

tional Instruments.

Figure 4: Black box and equipment inside used for testing high k thin films

I.5. Dissertation overview

Chapter II describes several primary reliability characteristics of gate dielectric thin

films as well as some commonly used methods of stress testing and breakdown detec-
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tion. The failure mode of TaOx-based high k thin films is examined in Chapter III,

and a new method of breakdown detection is proposed. Following the experimental

study conerning reliability characterization in the previous two chapters, Chapter IV

presents a full review of reliability projection for SiO2 films. A Bayesian approach is

then developed in Chapter V to model and project the reliability of high k thin films.

Chapter VI continues the topic of the Bayesian approach with discussions on Markov

chain Monte Carlo simulation, posterior sensitivity, and inference of lifetime projec-

tions. In Chapter VII, the breakdown data from the TaOx-based high k thin films

are used to estimate the failure rates in the first two phases of a bathtub curve, the

infant mortality and the useful life. Finally, the reserach is summarized in Chapter

VIII.
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CHAPTER II

BREAKDOWN AND STRESS TESTS

The reliability of dielectric thin films can be characterized by means of stress test-

ing. While the observed properties strongly depend on the recipe used in fabrication,

the test structure and the stressing method also have large impacts on the results

of the characterization. To run a stress test, many factors must be carefully con-

sidered in advance. Examples of the factors include stress mode, stress time, failure

definition, range and resolution of the instruments used for taking measurements,

ambient temperature and humidity. It is important to fully understand the strengths

and limitations of various stress test methods so that data can be correctly collected,

analyzed, and interpreted.

II.1. Reliability characteristics

Reliability is defined as the probability of a device performing its designated function

adequately for the intended period of time under the operating condition encoun-

tered [28]. For gate dielectric films, the designated function is to act as a sufficient

insulator; the operating condition includes mainly the electric field and the temper-

ature that correspond to the normal operation of a transistor; the intended lifetime

could be 10 to 20 years, depending on the application [9]. A typical reliability spec-

ification for gate dielectric films is formulated as: less than 0.01% of the population

with the gate size of 0.1cm2 is allowed to fail in 10 years under an electric field of

1MV/cm at 100◦C.

The main characteristics that describe the reliability of a dielectric film are

the voltage to breakdown, Vbd; the electric field to breakdown, Ebd; the time to
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breakdown, tbd; and the injected charge to breakdown, Qbd [19]. Vbd is the voltage just

before breakdown when the gate bias increases gradually, and Ebd is the corresponding

electric field across the film. If d is the film thickness, then Ebd = Vbd/d. Ebd is

regarded as a gross parameter that represents an estimation of the maximum electric

field the dielectric film can sustain, but the film is not subjected to the wear-out

kinetics that govern the degradation to breakdown.

Regarding time-dependent dielectric breakdown (TDDB), tbd and Qbd are the

quantities that describe the reliability performance [1]. tbd is the time taken to reach

breakdown when a stress is applied on the film. It can be measured with two different

stress modes, constant voltage stress or constant current stress. Qbd is defined as the

cumulative fluence sustained by the dielectric film up until breakdown. It can be

obtained by integrating the instantaneous leakage current density, J , over the total

stress time, i.e.,

Qbd =

∫ tbd

0

Jdt.

II.2. Methods of voltage stress testing

Testing methods that have been used to characterize the reliability of gate dielec-

tric films can be categorized according to the stress mode applied to the structure.

Commonly used methods include the ramped voltage stress (RVS) test, the constant

voltage stress (CVS) test, and the constant current stress (CCS) test [19].

a. Ramped voltage stress test

A RVS test applies a voltage which linearly increases in time on the gate electrode.

Very often a staircase voltage, like the one shown in Figure 5, is used instead. Leakage

current passing through the dielectric film is monitored at each step and displayed
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in a current versus voltage (I–V) curve. The occurrence of a breakdown is detected

according to a leakage current criterion. The merit of a RVS test is that it is very

fast. This type of stress test is used to measure Ebd, the maximal electric field a film

can sustain before breakdown.
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Figure 5: Stress voltage of a staircase RVS

b. Constant voltage stress test

A constant voltage is applied to the test structure while the leakage current flowing

through it is plotted against time. This type of stress is more representative of the

operating conditions in a real circuit environment than a ramped stress. A CVS test

is used to measure tbd and to predict the lifetime under the operating conditions.

Breakdown is detected if the leakage current is larger than a threshold or according

to a criterion of change in the leakage current.
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c. Constant current stress test

In CCS tests, a constant amount of current density is injected into the gate electrode

while the voltage evolution over time is monitored through a voltage versus time curve.

Breakdown is detected if a sudden drop of voltage occurs between two consecutive

stress steps. This test is usually used to measure Qbd and, in some cases, tbd as well.

II.3. Methods of breakdown detection

Breakdown detection is crucial for characterizing the reliability of gate dielectric films,

especially as new phenomena, such as stress induced leakage current (SILC) and soft

breakdown, demand new interpretations of the measurement. An overestimation of

reliability can result if the initial breakdown event is not detected [57]. Due to the wide

range of film thicknesses and gate sizes, the multiplicity of test structures, conduction

mechanisms, fabrication processes, and test equipments, the idea of a universal failure

criterion is not practical. Breakdown criterion must be chosen very carefully for each

stress method. Below are some of the commonly used detection methods.

a. Predefined level of leakage current

Thick films should conduct little current up to relatively high electric fields. The

measurement of Ebd in a RVS test is strongly dependent on the breakdown criterion

used. Typically, Ebd is the electric field at which the leakage current density exceeds

a predefined level [40]. However, if a film is less than 3nm thick, there is significant

current conduction at low fields. The main consequence of this is that at high fields,

it is difficult to distinguish the tunnelling current during the voltage ramp of the

intact dielectric from the current through the resistive path of a film that is badly

damaged or destroyed [57]. If a current limit is to be used to define breakdown,
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then this limit must be determined with reference to some measured conduction and

breakdown characteristics of the structure.

b. Increase of leakage current

One way to detect breakdown with a CVS test is to check for a sudden increase of

leakage current in consecutive current readings. The relative current change is defined

as the ratio of two consecutive currents. However, this ratio is strongly dependent on

the film’s charge trapping characteristics and measurement settings [40]. This simple

definition of breakdown might not be sufficient to identify the first breakdown event

and might make it difficult to record both soft and hard breakdowns.

c. Slope increase in I–V curve

To accommodate the testing of ultra-thin dielectric films, more sophisticated and

better failure criteria have been implemented. One being used in RVS testing is the

slope of the I–V curve [26]. An increase in the slope should be expected at the moment

of breakdown.

d. Noise level of leakage current

Soft breakdown in CVS is characterized by a sudden increase in the measurement noise

that accompanies the change of leakage current, though the current is well below the

level of a hard breakdown [57]. Therefore, an increase in measurement noise can be

used to detect soft breakdown in CVS tests [10]. The noise is often determined by

calculating the variance of the 10 most recent data points of the leakage current being

measured. This method is for CVS tests only and cannot be used with RVS tests.
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e. Integrity check

Fowler-Nordheim electron injection due to field-assisted tunnelling is the primary

conduction mechanism in SiO2 films [23]. Since Fowler-Nordheim current is exponen-

tially dependent on the field, the distinction between catastrophic failure and normal

Fowler-Nordheim conduction is most clear at low fields where the current differs by

several orders of magnitude. Hence, oxide integrity can be examined by means of

monitoring the current at a low field [40]. In RVS tests, an integrity check at a low

field is performed after each ramp step, as shown in Figure 6. The electric field for

the integrity check should be extremely low, around 1MV/cm, and have no significant

aging effect on the dielectric. Breakdown is detected if there is a significant increase

in the current monitored at the low field.
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Figure 6: Ramped voltage stress including an integrity check at a low field
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II.4. Breakdown mechanisms

Breakdown mechanisms are fairly complex. Although a great deal of effort has been

put forth to uncover the physics behind it, there are still many unknowns, debatable

issues and controversies. Generally speaking, breakdown is a two-step process, with

progressive dielectric degradation followed by final destruction of the film [19]. The

degradation is due to the continuous charge build-up that results from the charge

injection when the dielectric is subjected to an electric field; the breakdown is initiated

by the presence of a weak spot and manifested by the formation of a conductive path

through the film.

When a voltage bias is applied to the gate oxide, an electron current will flow

if the voltage is high enough and/or the film is thin enough. Depending on the amount

of energy, electrons flowing across the oxide will trigger several processes. At least

three defect generation mechanisms have been identified [54]. Two of them, anode

hole injection and impact ionization, occur at relatively high voltages. They lead

to hole trapping and hole-related defect generation. The trap creation attributed to

hydrogen released from the anode is the lowest energy process so far identified. As a

consequence of the reaction of the released mobile hydrogen, a variety of defects, such

as electron traps, interface states etc., gradually build up in the oxide. Eventually, the

damage reaches a point where the film breaks down. This defect generation process

dominates at the voltage level at which present MOSFETs operate. Other possible

breakdown mechanisms also are proposed, but the precise physical details of the trap

generation mechanism remain speculative.

Two models of defect generation have been widely discussed in the litera-

ture [54]. The anode hole injection (AHI) model claims that breakdown is caused

by holes injected from the anode contact. There is a positive feedback mechanism
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of current runaway, due to the field-enhancement caused by the trapped holes. The

AHI model is commonly associated with the time-to-breakdown dependence on the

electric field in the form of

tbd ∝ exp(− a

E
),

where E is the electric field across the oxide and a is a constant.

The thermo-chemical model proposes that defect generation is a field-driven

process and that the current flowing through the oxide plays, at most, a secondary

role. The model considers the interaction of the applied electric field with the dipole

moments associated with oxygen vacancies. The activation energy required for bond

breakage is lowered by the dipolar energy. This leads to a quantitative prediction for

the field dependence of the activation energy needed for breakdown, and further, the

dependence of the time-to-breakdown on the electric field in the form of

tbd ∝ exp(−E).

This model has attained widespread acceptance, largely because the breakdown data

appears to follow empirically an exponential dependence on the electric field.
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CHAPTER III

DIELECTRIC RELAXATION AND BREAKDOWN DETECTION∗

The relaxation phenomenon is the recovery of strain on the removal of a stress. The

subject of relaxation covers all types of stress relief in solid, dielectric, mechani-

cal, photoconductive, chemical etc. materials. Relaxation has been an intensely

researched topic in physics, yet the theoretical understanding of it is still unsatis-

factory, largely because of its stochastic nature, insufficient mathematical tools, and

experimental data which is very material-related [27].

III.1. Relaxation current

Dielectric relaxation is a bulk-related phenomenon which causes relaxation current

following the direction of dV . It has been detected in polycrystalline, disordered, or

amorphous films, but not in single-crystal dielectrics [16]. When an external field is

applied across a film, it separates the bound charges inside the film. This results in

polarization of the dielectric and a compensating internal field [52]. When the ex-

ternal field is released, the internal bound charges are neutralized by the hopping of

free charges, but a remnant polarization and an internal field still remain in the film.

Because dielectric films have very low conductivity, the hopping process is slow and

the relaxation current decays with time following the Curie-von Schweidler law [27]:

∗ c©2004 IEEE. Reprinted, with permission, from IEEE Transactions on Device and
Materials Reliability, “Dielectric relaxation and breakdown detection of doped tan-
talum oxide high k thin films” by W. Luo, Y. Kuo, and W. Kuo (accepted in August
2004) [38].
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J

P
= at−n,

where J is the relaxation current density (A/cm2); P is the total polarization or

surface charge density (V · nF/cm2); t is the time in seconds; a is a constant and n is

a real number close to 1.0.

The physical nature of dielectric relaxation can be explained with potential

well model in terms of dipole orientation [52]. Dipoles, which are homogeneously

distributed inside the material, are formed by localized defects and disorder due

to the lack of crystallinity. Dipole orientation is formed as charge carriers hop over

potential barriers under the influence of an electric field. However, this charge transfer

is confined to a relatively few neighboring sites.

Figure 7 compares the decay of relaxation currents in the tested high k films

with those reported in the literature [50]. Relaxation currents are measured after the

sudden removal of a constant voltage on the gate. Because the imposed polarization

on each film might be different, the relaxation current is normalized to the surface

charge density for comparison. The relaxation current is similar in the high k films

shown in Figure 7 [16]. However, the relaxation currents of high k films are one to two

orders of magnitude larger than that of SiO2. This observation is consistent with the

atomic configuration of high k dielectrics. Firstly, the highly polarizable metal-oxygen

bonds can screen the external electric field and, as a result, lead to a large dielectric

constant [15]. Secondly, because the metal-oxygen bonds lack symmetry, the center

of the positive and negative charges do not coincide after an applied electric field has

been removed. Hence dipoles are easily created in high k dielectrics.

Because of its larger magnitude, the relaxation current in high k films can be

observed easily. It also has further impacts on the film’s behavior. On the one hand,

the existence of the relaxation current indicates that the bulk film still maintains
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Figure 7: Comparison of relaxation current normalized to polarization

its integrity after being stressed; on the other hand, this transient current can shift

flat band voltage and hence severely deteriorate the performance of a MOSFET by

changing the threshold voltage and delaying the switching time [16, 50].

III.2. Breakdown mode identification on TaOx-based high k thin films

III.2.1. Static and transient currents

When the voltage bias V changes on a test capacitor, the measured current is a com-

bination of the static current and the transient current. Leakage current has a steady

state value, whereas displacement current and relaxation current, both of which de-

pend on dV/dt, are transient. Since the RC time constant of the test capacitors is

much less than one second, the observed transient conductivity is contributed mainly

by the slow relaxation current [16].
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In a strict sense, the polarization-relaxation current originates either from

charge separation in the bulk of a neutral film or from redistribution of the space

charges that already exist [60]. In the literature, the relaxation current is referred to

as the space charge current that corresponds to the buildup of a negative/positive

charge in an insulator due to electron trapping/detrapping or the removal of pre-

existing space charges. The relationship between the polarization-relaxation current

and the space charge current is complicated and is very difficult to separate them.

At a low voltage level, the transient current originates mainly from the polarization

and relaxation of the dielectric.

In general, static conductivity is contributed by electron transport across the

film via a defect band in the bulk, whereas transient conductivity is probably due to

dipole orientation, ion motion, or tunnelling into states near the Fermi level [16, 27].

These two conductivities are independent. It is not clear whether they involve the

same type of defects [16, 50]. Depending on the polarities of V and dV , the leakage

current and the relaxation current, in the strict sense, can have the same or opposite

directions. Figure 8 shows the directions of these two currents on a film that is

stressed in the accumulation region with a bias that changes from a negative voltage

to zero. Under this stress condition and measurement setting, the leakage current is

negative and the relaxation current is positive.

III.2.2. Breakdown identification

Although dielectric relaxation is not related to the static leakage current, transient

relaxation current can be observed when the leakage current is relatively small. This

is demonstrated in Figure 9 with I–V loops measured by sweeping the gate bias from
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Figure 8: Example of leakage current and relaxation current in a thin film

negative to positive, then back to negative. The hysteresis is obvious on a fresh film in

that the I–V characteristics differ as the bias scans in the two opposite directions, i.e.,

from −2V to +2V and then backward. This demonstrates the existence of transient

conductivity in addition to static leakage current. Otherwise, the two I–V curves

should be identical regardless of the sweeping direction of the bias voltage. Another

piece of evidence is that the measured net current changes direction at the two lowest

points of the hysteresis loop. These are the two moments when the magnitude of the

leakage current reduces to that of the relaxation current as the two currents flow in

opposite directions.

After the first ramp stress that goes from 0 to −5MV/cm on the fresh film,

the leakage current increases due to defects generated in the bulk film. As shown in

the middle hysteresis loop of Figure 9, the two lowest points at which the measured

current changes its direction move closer to 0V than those on the fresh film. The

top curve in Figure 9 is measured after the second ramp stress, which is from −5 to

−10MV/cm. The dielectric film actually breaks down before −10MV/cm. Because

the static leakage current is very high, the hysteresis disappears. It is impossible to

determine whether or not transient current still exists at this stage.

Figure 10 shows the relaxation current versus the time since the ramp stress
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Figure 9: Hysteresis observed in I–V loops

was removed on the same capacitor. The stress and measurement settings are the

same as those in Figure 8, except that the gate bias changes from a higher negative bias

to zero. The film is still intact after the first ramp stress, and the positive relaxation

discharge decreases following the Curie-von Schweidler law. However, after breaking

down under the second ramp stress, the film can not regain its strength and shows

no sign of relaxation. Because the properties of an insulator are closely related to

the relaxation process of the polarized medium [1], an intact film has the resilience

to restore its pre-stress state once the stress is released but loses this ability at the

moment of breakdown.



24

 I =(2e-11) t
-0.99

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1 10 100 1000

Time

| I |  (A)

positive relaxation current after 

ramp stress 0 to -5MV/cm

negative current after ramp stress -5 to -10MV/cm

(sample breaks down before -10MV/cm)

(t in second)

Figure 10: Relaxation discharge before breakdown and disappearance of relaxation

current after breakdown

III.3. Transient currents of gate oxides and high k dielectrics

III.3.1. Charging/discharging on gate oxides

Most of the literature on transient current is focused on the charging/discharging of

electrons and hole traps [33]. Research on SiO2 shows that both flat band voltage shift

and discharging current are proportional to t−1 [4, 13, 47]. Although this relationship

is similar to the Curie-von Schweidler law, it is derived from the tunnelling front

model, in which the time dependence of the flat band voltage shift after an avalanche

injection of holes is modeled by the motion of a tunnelling front moving through the

oxide [13]. When high-voltage stressing generates a large number of traps uniformly

distributed within the oxide, the current decay due to these traps, after removal of the

stress, is proportional to t−1, whereas the magnitude of the current is proportional to
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the trap density.

A study of the degradation and breakdown of thin oxides films concludes

that background trapping in as-fabricated bulk-oxide sites (due to the presence of

water or OH) is not an important contributing factor to the total negative-charge

buildup in most cases [12]. The two main degradation mechanisms are electron-trap

creation and impact ionization caused by hot carriers at high electric fields. After a

certain amount of current injection, electron-trap creation occurs when hot electrons

release hydrogen from defect sites near the anode interface. The mobile hydrogen

moves to the cathode-oxide interface where it produces interface states and electron-

trap distribution nearby. The impact ionization process occurs at fields exceeding

6∼7MV/cm. Mobile holes produced in the oxide bulk closer to the anode move

under the applied field to the cathode-oxide interface where some are trapped in

energetically deep sites (due to oxygen vacancies). Some of the injected electrons

from the cathode recombine with these trapped holes to produce interface states

and traps near the cathode. Strong detrapping occurs only at high fields, and the

dominant mechanism for this is the tunnelling from the ground state of the trap to

the bottom of the conduction band of the oxide.

III.3.2. Root causes of transient current

Although transient currents in SiO2 and high k dielectrics seem to have similar be-

haviors, such as decaying with a time dependence of t−1, their main contributions

are different. Because SiO2 does not have a significant polarization effect, the back-

ground trapping in as-fabricated bulk films and trap creation at low electric fields

are limited. However, a large amount of trapping occurs under high field stresses due

to electron-trap creation and impact ionization. This results in trapping/detrapping
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current, which is often called the relaxation current in SiO2.

In high k dielectrics, the large relaxation current originates mainly from the

highly polarizable metal-oxygen bonds. Dipoles and polarization charges formed un-

der an electric field are the reasons behind the pronounced relaxation behavior [22].

The polarization charges are present in the transition region of the heterogeneous

medium, in which local variations of permittivity and conductivity (due to non-

stoichiometry, impurity, vacancy, dipole, and etc.) exist. They form potential wells

which can trap charge carriers. The latter can be locally detrapped by the Schot-

tky effect to produce transient current and dipole orientation. The I–V hysteresis

loop of the fresh film in Figure 9 shows that a relatively large relaxation current

can be observed in high k dielectrics, even under low stress conditions. This kind of

polarization-relaxation behavior is consistent with the general relaxation phenomena

defined in physics.

Reports in the literature as well as the experimental data collected in this

study, are useful in differentiating the transient current in high k dielectrics from that

in SiO2. However, as mentioned previously, the relationship between the polarization-

relaxation current and the space charge current is complicated. More extensive study

is required to fully understand the transient conductivity of high k dielectric films.

III.4. Breakdown detection on TaOx-based films

Identifying the exact moment of a breakdown is the key issue in failure data collec-

tion. A breakdown event is usually detected with one of the methods described in

Section II.3. The first abrupt jump in leakage current is often considered to be the

signal of breakdown. But for a very thin film, due to the fact that a large leakage

current exists in the background, this method is misleading when either there is no
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jump or the jump observed is not due to breakdown. Since no jump is observe on

some tested high k films, the method is not recommended. Other methods, such as

using a relative increase of leakage current or a slope increase of the I–V curve, are not

practical, because it is difficult to specify a breakdown criterion when the measured

I–V curves are smooth and increase gradually.

In the process of identifying the breakdown mode of TaOx-based films, we

observed a connection between dielectric relaxation and the breakdown event. Based

on this finding, a new detection method is proposed here. This method can be

categorized as an integrity checking procedure, using relaxation current instead of

Fowler-Nordheim current.

III.4.1. Proposed method of breakdown detection

I–V hysteresis and relaxation discharge shown in Figure 9 and Figure 10, respectively,

indicate that the relaxation property is closely related to film integrity. To further

investigate the change in relaxation behavior under stress, we designed a RVS test

that is depicted in Figure 11. The important feature of the test is that the relaxation

current is monitored at a zero gate bias after each ramp step. The purpose of choosing

the zero bias as the checking state is to monitor a relatively large relaxation current

while the accompanying leakage current is relatively small. The interval at zero bias,

tM , should be at least long enough for the instrument to make an accurate current

reading. tD, the time between the start of tM to the point at which the relaxation

current is measured, can influence the magnitude of the measurement, but it does

not change the overall pattern of the data.

Figure 12 shows I–V curves that are measured using the proposed method.

The directions of the leakage current and the relaxation current are the same as those
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Figure 11: Proposed method of breakdown detection

given in Figure 8. The upper half of the vertical axis represents the magnitude of

the negative leakage current, while the lower half represents the magnitude of the

positive relaxation current. The further a current is from the horizontal axis, the

larger magnitude it has. Note that every current monitored at zero bias has a sudden

change of direction at the moment when the relaxation current disappears. More

importantly, this coincides with the jump of the leakage current if a jump does occur,

as in the cases of the HfOx+TaNy film and the Hf-doped TaOx+TaNy film. Since

this jump signals a breakdown, the coincidence indicates that the disappearance of

relaxation can be used for the same purpose as well. For the TaOx +TaNy film,

although the leakage current does not have an abrupt jump, the relaxation current

disappears in the same way as in other tested films. A second measurement of the I–V

characteristic confirms that the film did break down from the previous ramp stress

test.

Figure 13 compares the two I–V curves of a TaOx +TaNy film measured

with the method proposed. The vertical axis gives the current magnitude, while the

direction of each current is described in the figure. The positive relaxation current
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Figure 12: Leakage current and relaxation current versus electric field, measured with

the proposed method

monitored at the zero bias disappears when the ramp stress reaches −7.8MV/cm.

The fact that the film breaks down at this moment is confirmed by the second I–V

measurement, in which the leakage current at low ramp steps increases by more than

two orders of magnitude. The reason that the jump of leakage current at breakdown

is not observed on this film is because a large leakage current already existed before

breakdown.

III.4.2. Remarks on relaxation and breakdown

Many studies have found that high k films have Schottky emission or Poole-Frenkel

conduction mechanism rather than Fowler-Nordheim tunnelling, which is the case

for SiO2 [1]. Therefore, the integrity check used for SiO2 is not suitable for high k

films. The breakdown detection method proposed in Figure 11 uses the fact that
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the relaxation behavior and film integrity are closely related. This is supported not

only by the experimental data, but also by the theory that breakdown is due to the

relaxation of polarization energy after the trapped charge distribution collapses [22].

It is generally accepted that an oxide film breaks down when the trap density

exceeds a critical level [13]. Gressus and Blaise also included the factor of dielectric

polarization and relaxation in explaining the breakdown process [22]. When a critical

space charge field is built up in a local region, the charges trapped in potential wells

are detrapped by the Schottky effect and spread out into surrounding traps until

the space charge field becomes equal to, or smaller than, the critical field. If a local

detrapping process is strong enough to spread charges to a large area and destabilize

the space charge distribution, then destructive breakdown occurs. This involves the

propagation of an electric wave associated with the detrapping process and a thermal

shock wave which initiates the formation of plasma. As dielectric polarization and

relaxation contribute to a large part of the transient current in high k films, Gressus

and Blaise’s statement supplies a good explanation for why relaxation current can be
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used as an indicator of film integrity.

The connection between dielectric relaxation and breakdown events on the

TaOx-based films can be easily observed, because they have a higher relaxation current

but a lower leakage current than SiO2. Relaxation currents have been compared in

Figure 7, and a comparison of leakage currents is given in Figure 14. The leakage

currents of SiO2 are measured on Al/SiO2/Si capacitors with the gate size of 1.77×
10−4cm2 [3].1 It is obvious in Figure 14 that, with similar equivalent oxide thickness,

the leakage currents of TaOx-based films are consistently lower than those of the SiO2

films.
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Figure 14: Comparison of leakage current between high k and SiO2 films

To summarize, the relaxation property is an essential element of film integrity.

Because the behavior of polarization and relaxation directly relates to breakdown, the

1A SiO2 film between aluminum gate electrode and silicon substrate
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sudden disappearance of relaxation current can be used as the signal of a breakdown

event. The proposed method of breakdown detection works successfully for identifying

breakdowns in the TaOx-based films. It is very sensitive when films are stressed in

accumulation, in which case the relaxation and the leakage currents flow in opposite

directions. This method avoids the difficulty of setting an empirical and quantitative

criterion as is required by some common detection methods. It is simple and accurate

even when an abrupt change in leakage current does not occur. This makes it most

useful during RVS tests, in which a high k film fails at a relatively high field and

the large leakage current in the background obscures the current jump caused by the

breakdown.
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CHAPTER IV

RELIABILITY MODELING AND PROJECTION OF GATE OXIDES

Since the first MOSFET was invented in the mid 1970s, a great amount of research

has been conducted on the reliability of gate oxide SiO2. Although there are still

issues under debate, large and significant advances have been made in understanding

the statistical behaviors, as well as the physical mechanisms, of oxide breakdown.

In replacing SiO2 with high k dielectrics, although the differences in the material

properties lead to changes in the electric and reliability characteristics, most of the

fundamental theories and techniques are still applicable. Hence, an understanding the

statistical and physical models of SiO2 breakdown provides an advantageous starting

point for studying high k thin films.

IV.1. Statistical breakdown model

Breakdown characteristics, such as Ebd and tbd, are random variables, each of which

follows a certain statistical distribution. There was an early debate about which of the

two distributions, Weibull or log-normal, is suitable for tbd, since data sets collected

from various stress tests usually fit both equally well. But there is a major difference

between the Weibull and log-normal when the fitted model is used to extrapolate the

lower percentiles beyond the range of sample data. The debate is resolved through

looking for the theoretical justification of a model based on the failure mechanism

under investigation.

The precise model that leads to a log-normal distribution is a multiplicative

or proportional growth model [59]. At any instant in time, the degradation process

undergoes a random increase which is proportional to the present state; the mul-
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tiplicative effect of all of these random, independent growths of degradation builds

up to the failure. Hence a log-normal model is preferred if a multiplicative degra-

dation process is going on. The Weibull distribution is known as the extreme value

distribution that describes the smallest of many non-negative random variables. Its

derivation suggests its application for a “weakest-link” type of problems. If there

are many identical and independent competing processes that lead to the failure of a

device, and the first one reaching a critical stage determines the failure of the device,

then the lifetime of the device follows a Weibull distribution.

Both experimental data and the physical examination of thin oxides provide

direct evidence for the justification of using the Weibull distribution [62]. The true

rationale for rejecting the log-normal model is that the breakdown of gate oxide is

a weakest-link problem. The failure of a microchip, which consists of millions of

transistors, is defined by the first failure occurring on any one of these individual

transistors. Similarly, a transistor fails if any small portion of its gate area breaks

down [54].

Let X be the random variable that represents tbd. Then X follows a Weibull

distribution, denoted as W(α, β), with the cumulative distribution function of

F (x) = 1− exp[−(
x

α
)β], (4.1)

where α and β are the scale and shape parameters, respectively. Note that F (α) =

63.2% at x = α. In other words, α equals the 63.2th percentile lifetime. Because of

this, α is also called the characteristic life.

After some manipulation, the equation (4.1) can be written as

ln{− ln[1− F (x)]} = β(ln x− ln α). (4.2)
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Then, plotting ln{− ln[1 − F (x)]} versus ln x results in a straight line with a slope

of β and an intercept of ln α, as shown in Figure 15. This plot is usually called a

Weibull plot, and β is also called Weibull slope.
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Figure 15: Weibull distribution on Weibull paper

A Weibull distribution has a closure property [59]. If a system is composed

of n parts, each having an independent Weibull lifetime distribution with a common

β but not necessarily the same α, then the system’s lifetime, which is determined by

the first part failure, follows a Weibull distribution with the same β.

IV.2. Area scalability

In modeling the reliability of a microchip, area extrapolation from a small test struc-

ture to the entire chip area is indispensable. To derive the area dependence of break-

down, consider a capacitor with a top area of A∗, where A∗ is much smaller than the

smallest capacitor available for testing. Two assumptions are hold on the small capac-

itor [46]: the breakdown occurs at a random position, independent of the mechanism

that causes it; and tbd follows W(α, β).

A large capacitor with a top area of A1 can be considered to be built up of

n such small capacitors, where n = A1/A
∗. By the closure property of the Weibull
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distribution, the time-to-breakdown of the large capacitor follows a Weibull distribu-

tion with the same β as the small capacitors. The reliability of the large capacitor at

time x is the probability that none of the n small capacitors has failed up to x. That

is,

1− F1(x) = [1− F ∗(x)]n = {exp[−(
x

α
)β]}A1

A∗ ,

or equivalently,

ln{− ln[1− F1(x)]} = ln
A1

A∗ + β · ln x

α
. (4.3)

For two large capacitors with top areas of A1 and A2, if both are built up with

the same type of small capacitor A∗, then their Weibull lifetime distributions have the

same slope β but different characteristic lives, say α1 and α2. Then, equation (4.3)

leads to

ln{− ln[1− F2(x)]} − ln{− ln[1− F1(x)]} = ln
A2

A1

. (4.4)

This means that if the top area increases from A1 to A2, the complete breakdown

distribution on a Weibull plot shifts up a vertical distance of ln(A2/A1). Using equa-

tion (4.1) to replace F1 and F2 in equation (4.4) gives the area dependence of the

characteristic life as a function of the Weibull slope β,

α1

α2

= (
A2

A1

)
1
β . (4.5)

IV.3. Accelerated life testing

It is unlikely that within a reasonable time and at an acceptable cost, one could

directly test whether or not a reliability specification for normal operation is satisfied.

First of all, the lifetime under the operating condition could be years; secondly, a test

structure has a much smaller gate area in order to avoid process-induced defects; and

finally, a large sample size is needed to observe failure times at a very low percentile.
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The alternative is to use failure data collected in accelerated life tests to project the

reliability under the operating conditions.

Accelerated life testing (ALT) is widely used in the reliability field so that

failure information can be collected promptly [45]. Because the failure rate is ex-

tremely low under normal working conditions, it is necessary to take actions to force

devices to fail within practical time scales. In ALT, devices are subjected to higher

than normal level of a stress, e.g., voltage, temperature, humidity, corrosion, radi-

ation, etc., to speed up the degradation process [28]. The acceleration factor of an

accelerated stress is defined as

AF =
top

tac

,

where tac is the failure time under the accelerated stress and top is the corresponding

failure time under the normal operating condition.

There are two assumptions to bear in mind when using ALT data to project

reliability under normal operating conditions. The first one requires that the failure

mechanisms at the two stress levels be identical. This is because the acceleration

factor is calculated from some lifetime–stress relationship based on the underlying

physical process. The second assumption is that the acceleration factor is linear under

an accelerated stress; in other words, the AF at a specific stress level is constant for

any possible value of tac. Figure 16 displays the relationship between the failure

distributions under the normal operating condition and an accelerated stress when

both assumptions are satisfied.

The two assumptions have significant implications in the case of gate di-

electrics, for which tbd∼W(α, β). While α is the 63.2th percentile life, β is a measure

of the critical defect density, which is unique for each failure mechanism [8, 9]. Assume
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Figure 16: Relationship between the failure distributions under normal operating and

accelerated stress conditions

tac∼W(αac, βac) and top∼W(αop, βop); then by the previous two assumptions,

βop = βac,
αop

αac

= AF. (4.6)

On a Weibull plot, these two distributions are represented as two parallel lines.

IV.4. Physical acceleration models

For gate dielectric thin films, the most significant stress factor is the electric field

E across the film. There are several models in the literature that have been used

successfully to model the acceleration of electric field for various failure mechanisms.

These models are generally written in a deterministic form that says the time-to-

breakdown is an exact function of the imposed stress and some material and process

dependent constants [59]. However, breakdown is a random event that can not be

exactly predicted in advance. Because of the linear acceleration assumption, an ac-

celeration model can be interpreted as an equation that calculates the characteristic
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life α, or any other percentile life, as a function of the applied stress.

It is generally agreed that the breakdown time of thin oxides follows an ex-

ponential law of the electric field, but the specific operative mechanisms and the

equations that define them are matters of controversy. The 1/E model and the E

model have emerged in recent years as the two most popular ways of describing the

field dependence of breakdown [48].

The 1/E model is derived according to the anode hole injection model. As

electrons are injected into the oxide, they undergo impact ionization which generates

holes in the process. The slow-moving holes become trapped in the oxide near the

cathode, distorting the band diagram and increasing the local electric field. Break-

down occurs when Qbd, the critical density of hole charge, is reached.

α =
Qbd

j
,

where j is the tunnelling current depending strongly on E,

j = a · exp(−GR

E
).

Then tbd can be written as a function of 1/E,

α =
Qbd

a
exp(

GR

E
) = τR exp(

GR

E
), (4.7)

where τR and GR are temperature-dependent constants that need to be estimated by

other means.

In contrast to the 1/E model, the E model suggests

α = τL exp[GL(Ebd − E)], (4.8)

where τL and GL are unknown, temperature-dependent constants. Here E is the
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applied field and Ebd is the field above which breakdown will occur immediately.

Unlike the physical basis underlying the 1/E model, justification for the E model

is largely empirical. The difference between the two models in projecting lifetimes

at low voltages is dramatic. Specifically, the 1/E model gives optimistic projections

while the E model gives pessimistic ones.

IV.5. Procedures of reliability projection

The correctness of reliability projection depends completely on the validity of the

extrapolation law, which includes the acceleration model, area scaling, and low per-

centile extrapolation. Figure 17 illustrates the process of projecting a low percentile

lifetime of the total gate oxide in a device at operating condition from ALT data on

a test structure [62]. Details of the main procedures are as follows.
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Figure 17: Graphic procedures of gate dielectric reliability projection
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1. Estimation of the Weibull slope

As aforementioned, the Weibull slope β is a measure of the critical defect density that

triggers breakdown for a particular mechanism. It depends on the film’s thickness and

quality. Because thinner oxides have a larger statistical spread of the average critical

defect density that forms the conducting path between the cathode and anode, the

Weibull slope decreases with oxide thickness [62]. This has several immediate effects

on the accuracy of reliability projection for thin and ultra-thin films. Firstly, area

scaling and low percentile extrapolation become much more sensitive to small values

of β; secondly, a small error in the estimation of β can raise the error in the lifetime

projection to decades [35].

β is difficult to measure to satisfactory accuracy without a very large number

of samples [62, 63]. It has been demonstrated that a tight confidence interval of β for

a given distribution can be achieved with a sample size of 1000 or more. However,

this is not practical in most reliability evaluations. A more accurate method for

determining β is to use the relationship given in equation (4.5) [62], but in a different

form of

ln α ∝ − 1

β
ln A.

If the same stress condition is applied to test structures with different gate sizes, the

Weibull failure distribution for each gate size has the same β but a different α. Bu

using estimates of the α’s and fitting the plot of ln α versus ln A with a straight line,

then β can be estimated as the reciprocal of the line’s slope.
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2. Projection of the characteristic life under the normal operating condi-

tion

The common way of estimating αop, the characteristic life at the normal operating

field, is through ALT. At an accelerated electric field E, breakdown data are fitted

with a Weibull distribution, for which α can be estimated by means of least square

regression or maximum likelihood estimation. Depending on the acceleration model

used, ln α is linearly regressed against 1/E or E. Then ln αop can be obtained by

extrapolating the fitted line to the low operating field. This step is legitimate under

the assumption of identical failure mechanisms at the stress levels involved.

3. Scaling to a total gate area

In the previous two steps, the Weibull slope β, and the characteristic life αop1 of

a test structure with the gate size A1 were obtained. Meanwhile, the straight line

that represents W(αop1, β) is put in the Weibull plot. By the relationship given in

equation (4.4), shifting this line up the distance of ln(A2/A1) gives the Weibull line for

the gate size A2 of the total gate oxide in the device. Equivalently, the characteristic

life αop2 corresponding to A2 can be calculated from equation (4.5),

αop2 = αop1(
A1

A2

)−
1
β .

4. Extrapolation to a low percentile life

Because a large number of breakdown events is unacceptable in practice, reliability

specifications on gate oxides are usually defined in terms of a very low percentile

lifetime. The last step of the projection is to extrapolate the line that represents

W(αop2, β) on the Weibull plot, down to the low percentile of concern.
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CHAPTER V

BAYESIAN APPROACH TO RELIABILITY PROJECTION

V.1. General Bayesian approach

In statistics, Bayesian approaches are fundamentally different from classical approaches

that people usually take. The classical interpretation of probability is the frequency

at which an event occurs; the Bayesian interpretation is that probability represents a

person’s degree of belief about a certain thing of interest. The essential characteristic

of a Bayesian approach is the explicit use of probability for quantifying uncertainty

in inferences based on statistical data analysis [18]. This makes Bayesian approaches

quite useful with other statistical approaches.

In a classical frequentist approach, a distribution parameter θ is thought to

be an unknown, but fixed, quantity. When a random sample X is drawn from the

population, knowledge about the value of θ is obtained from the observation. In a

Bayesian approach, θ is considered to be a quantity whose variation can be described

by a prior distribution, p(θ). The prior is based on the experimenter’s belief and

formulated before sample data are seen. A sample is then taken, and the prior

distribution is updated according to the Bayes’ rule,

p(θ|x) =
p(θ)p(x|θ)

p(x)
,

where p(x|θ) is the likelihood function; p(θ|x) is the posterior distribution, which θ is

believed to follow. With p(θ|x), the Bayesian inference about θ is made in terms of

probability statements which are conditioned on the observed value x.

A Bayesian approach is valuable when sample data is limited. On these occa-
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sions, information from historical data and/or engineering knowledge can be incorpo-

rated into a prior distribution, which is a current educated guess of θ. The posterior

distribution actually combines information from the prior and from the sample data.

The more sample data that is collected, the more weight it has on the posterior. Even

with no data, the Bayesian approach can still provide an estimation that is better

than the prior, while classical methods such as maximum likelihood estimation can

do nothing in this situation.

V.2. The Bayesian approach with accelerated test data

A Bayesian approach provides a natural way to include uncertainty factors and poor

information into reliability modeling. As neither the material science nor the electric

properties of high k dielectrics are understood nearly as well as those of SiO2, the

reliability study of high k thin films are built on a foundation of current knowledge

about SiO2. Because the understanding of high k films is very limited at the current

time, a Bayesian approach is advantageous over other known methods because it can

effectively utilize engineering judgment along with sample data.

For highly-reliable devices, the sample data is likely to be just a few data

points even under accelerated stress conditions. Since a maximum likelihood estima-

tor relies heavily on its asymptotic properties, it does not provide a good solution

to this kind of problem. However, reliability inference through a Bayesian approach

incorporates the prior knowledge about SiO2 with real test data on high k films and

combines them in a way that best represents one’s confidence in each.

The common method of lifetime projection requires a large amount of failure

data to be collected in ALT at several selected stress levels, so that the maximum

likelihood estimate of the Weibull parameters α and β can be found at each level.
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Because of the identical failure mechanism assumption of ALT, the electric fields used

in CVS tests should be chosen close to the operating conditions in order to reduce ex-

trapolation errors. This results in long stress durations which may be months or more

than a year. Even with automatic parallel test equipment, the cost is prohibitively

high due to the large amount of resources needed. Besides, the prediction often comes

too late to be useful for decision-makings at design stage and during early production.

Reliability projection through accelerated tests is a very difficult problem, for

there is no sample data under the normal operating conditions. A Bayesian approach

is advantageous in handling this kind of situation because of its less deterministic

aspects and the possibility of refinements from previous experiments. A short review

of the works dealing with Bayesian methods and accelerated life tests can be found

in the literature [14]. In most of these research, Bayesian approaches are applied to

estimate the failure rate of an exponential lifetime distribution with ALT data [21, 49].

Only a few papers deal with the flexible and realistic Weibull distribution [11, 14].

In a recent study, Bayesian approach is applied to a Weibull model when

a limited amount of failure data from ALT is available [14]. It is assumed that

the accelerated stress levels do not change the shape parameter which characterizes

the failure mechanism ; and that the scale parameter decreases as an inverse power

function of the imposed stress. On the basis of physical and chemical considerations,

each model parameter is given an independent truncated uniform prior.

V.3. Bayesian model of lifetime projection

The model proposed for the reliability projection of high k dielectric thin films in-

tegrates a statistical lifetime distribution, an empirical acceleration function, and a

Bayesian hierarchical framework. The three aspects of the model are explained below
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in order. Before further discussion, the needed notation is given as follows.

Notation

Ei: the ith level of electric field applied in CVS tests, i = 1, · · · , L

ti,j: lifetime of the jth unit under Ei in a CVS test, j = 1, · · · , ni

ti: (ti,1, · · · , ti,ni
), i = 1, · · · , L

T: (t1,1, · · · , ti,n1 , · · · , tL,1, · · · , tL,nL
)

β: shape parameter of the Weibull lifetime distribution

αi: scale parameter of the Weibull lifetime distribution under Ei

a: intercept of the acceleration function ln αi = a + bEi + δi

b: gradient of the acceleration function ln αi = a + bEi + δi

ai: intercept of the acceleration function ln αi = ai + biEi + δi, i = 1, · · · , L

bi: gradient of the acceleration function ln αi = ai + biEi + δi, i = 1, · · · , L

δi: error term of ln αi = a + bEi + δi or ln αi = ai + biEi + δi, i = 1, · · · , L

First of all, the lifetime distribution under a constant stress is assumed to

be Weibull, W(α, β), where α and β are to be estimated. It is generally accepted

that every distinct failure mechanism corresponds to a unique value of β. But even

if the failure mechanism is known and it is identical under different stress conditions,

fitting to a Weibull distribution is not always statically valid. In addition, the fitted β

depends on the amount and quality of the sample data. Now consider β as a random

variable and assign it an appropriate prior. The uncertainty associated with β due

to lack of information is represented in this prior distribution

Secondly, assume the E model as the empirical acceleration function. Ac-

cording to the equation (4.8), the model can be written as ln α = a+bE, where a and

b are unknown and must be estimated. In the Bayesian context, a and b are treated
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as random variables instead of fixed, but unknown, constants, and the model takes

the form of

ln α = a + bE + δ,

where δ serves as the error term of the model. It is noteworthy that the model

parameters are interpreted as random variables in their own right. The stochastic

nature of a and b can be interpreted as signifying that the difference in behavior

among individual sample capacitors causes the variation in acceleration. This is

justified by the fact that test units do not react in the same way to the stress and

they do not suffer the same acceleration. By assigning a prior distribution to a and b

each, its inherent randomness can be incorporated into the Bayesian model with the

uncertainty due to lack of information.

The random variables a, b and δ may or may not depend on the stress level.

If the acceleration due to the electric field is almost identical across the stress levels

tested, a simplistic model can be assumed in which a and b are independent of the

stress level, but δ is not. This is given as

Function I : ln αi = a + bEi + δi. (5.1)

If the acceleration changes with the electric field, then a, b and δ should be defined

at each stress level. This corresponds to

Function II : ln αi = ai + biEi + δi. (5.2)

ai’s and bi’s allow the model to explore regions of very small likelihood and thus tend

to result in low posterior probability. However, Function II leads to a large number

of parameters as tests are performed at stress levels from E1 to EL. The comparison

between Function I and Function II in Section VI.4 will show that Function I is
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Figure 18: Graphical model of the Bayesian lifetime projection

adequate and convenient. For this reason, the discussion in subsequent sections and

chapters assume the use of Function I, except when stated otherwise.

Finally, the hierarchical structure of the Bayesian model is illustrated in Fig-

ure 18, in which the circle represents an unknown random variable; the solid square

represents observed data; the parallelogram represents fixed parameters of a prior

distribution; the dashed arrow represents a probabilistic dependence, while the solid

arrow represents a deterministic relationship. In addition, the random variable in the

triangle is given a distribution by assumption. The sample data ti,j’s are independent

conditioning on αi and β, i.e., ti,j ∼ W(αi, β); αi depends on a, b and δi in the form of

ln αi = a+bEi +δi. Based on engineering judgment, mutual independence is assumed

among the model parameters β, a, b and δi’s, each of which has its own prior.
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Let π(β), π(a), π(b), and π(δi) be the prior densities on β, a, b, and δi,

respectively. With the previous setting, the marginal density of ti = (ti,1, · · · , ti,ni
) is

calculated as

f(ti) =

∫∫∫∫
f(ti|β, a, b, δi)π(β)π(a)π(b)π(δi) · dβ · da · db · dδi, (5.3)

and the marginal density of T = {ti,j, j = 1, · · · , ni; i = 1, · · · , L} is

f(T) =

∫∫∫∫
· · ·

∫
f(T|β, a, b, δ1, · · · , δL)π(β)π(a)π(b)·dβ ·da·db·

L∏
i=1

π(δi)dδi. (5.4)

The posterior densities of β, a , b, and δi are given as

π(β|T) =
π(β)

∫∫∫· · ·∫ f(T|β, a, b, δ1, · · · , δL)π(a)π(b) · da · db ·∏L
i=1π(δi)dδi

f(T)
, (5.5)

π(a|T) =
π(a)

∫∫∫· · ·∫ f(T|β, a, b, δ1, · · · , δL)π(β)π(b) · dβ · db ·∏L
i=1π(δi)dδi

f(T)
, (5.6)

π(b|T) =
π(b)

∫∫∫· · ·∫ f(T|β, a, b, δ1, · · · , δL)π(β)π(a) · dβ · da ·∏L
i=1π(δi)dδi

f(T)
, (5.7)

π(δi|ti) =
π(δi)

∫∫∫
f(ti|β, a, b, δi)π(β)π(a)π(b) · dβ · da · db

f(ti)
. (5.8)

The reliability under the operating condition, i.e., W(αop, β), can be known once the

estimates of αop and β are obtained. While β’s posterior is derived in the model

directly, the distribution of αop can be obtained from the posterior distributions of a

and b.

The Bayesian approach to lifetime projection is summarized as a flow chart

in Figure 19. A few statements should be made for clarity.

- The accelerated stress Ei should be carefully chosen with the consideration that

Ei is high enough to induce breakdown in a reasonable time period of testing,

but Ei is not overly high so that the risk of failure mechanism changing is as
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small as possible. In practice, the rule of thumb is that the stress applied in

CVS tests should be less than 80% of the breakdown field Ebd detected in RVS

tests.

- The posterior distribution and inference of the parameters can be obtained with

Bayesian computation tools such as Markov chain Monte Carlo simulation.

- All of the information concerning a parameter is contained in its posterior dis-

tribution. In order to find an estimator, a loss function needs to be defined

in the first place. The Bayes estimator with respect to the squared-error loss

function is widely-used, and it equals the posterior mean.

- The Bayesian approach is iterative. The step of updating the prior to get

the posterior can be repeated when new data is collected. The most current

posterior can be used as the prior of the next iteration.

V.4. Considerations on prior distributions

Generally, likelihood is less sharply peaked for a small sample size or a large number

of parameters. In this case, the prior distribution and the hierarchical model are

more important [18]. When there are many data points and only a few parameters,

a vague or diffuse prior is favored. It gives an acceptable result and takes less effort

than specifying prior knowledge in a probabilistic form. In the absence of real prior

information, the non-informative Jeffreys’ prior can be used [25]. Jeffreys’ prior is

quite useful for problems with single or just a few parameters to be estimated. It

is, however, very complicated if there are many unknown parameters because of the

covariance between the parameters. For this reason, Jeffreys’ prior is not suitable for

the proposed model.
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Figure 19: Flow chart of the proposed Bayesian approach

As shown in Figure 19, three sources of information are considered in deter-

mining the priors on β, a, b, and δi. They are the reports on SiO2 films in literature,

the experimental results on other high k films in recent publications, and the failure

data from ALT tests on the high k films under study. From the engineering point of

view, dielectric breakdown is sensitive to the structure and fabrication of film stacks.

As material, structure and deposition techniques vary among SiO2 and high k films

prepared in different research labs, it is a challenging work to combine information

from various sources and utilize it in a systematic way.

When there is less background information on a parameter, a prior with a

broad range and flexibility should be suggested to encompass all possible situations

and beliefs. To the best of our knowledge, there is not much information concerning

the parameters of the projection model available prior to analysis, with the exception
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of the upper and lower bounds in some cases. In this situation, a vague prior is a

good choice. Alternative prior distributions can be selected from truncated uniform,

normal, or gamma densities as listed in Table 2.

The parameters of prior distributions are specified on the basis of engineering

knowledge and judgement. For instance, β is less than one in the case of a decreasing

failure rate and greater than one in the case of an increasing failure rate. There are

also β values reported in the literature regarding both SiO2 and high k films. With

this information, a safe range for β is set as (0.1, 1.9). For the acceleration function

to be physically meaningful, it is required that the intercept a be positive and the

gradient b be negative. Engineering knowledge also indicates that a is within (1, 50)

and b within (−8,−0.2), with no preferred values in each range. The error term δi

is given a normal prior centered at zero with variance in a wide range. In addition,

empirical priors can be constructed for future studies if there is a certain amount of

historical data available.

V.5. Sample data of breakdown

To collect time-to-breakdown data, CVS tests are performed on the 20W Hf-doped

TaOx film listed in Table 1. The accelerated stresses, ranging from 5.5 to 8.1MV/cm,

are less than 80% of the breakdown field Ebd, which is measured as above 10MV/cm

in the RVS tests. In the CVS tests, the jump of leakage current at the moment of

breakdown can be clearly identified without monitoring relaxation current or leakage

current at a low field.

All of the test capacitors are randomly allocated to a stress level. Each

is tested individually and breaks down independently. For the capacitors that are

stressed under Ei, their failure times are independently and identically distributed as



53

Table 2: Variety of prior distributions being considered

Case 1 Case 2 Case 3 Case 4

π(β) U(0.1,1.9)† U(0.1,1.9) U(0.1,1.9) U(0.1,1.9)

π(a) U(1,50) U(1,50) U(1,50) U(1,50)

π(b) U(−8,−0.2) U(−8,−0.2) U(−8,−0.2) U(−8,−0.2)

π(δi) N(0,1/64)‡ N(0,1/100) N(0,1/400) N(0,1/900)

Case I Case II Case III Case IV

π(β) U(0.4,0.9) U(0.1,1.9) U(0.1,1.9) U(0.1,1.9)

π(a) U(10,40) U(1,50) U(1,50) G(10,0.5)]

π(b) U(−5,−0.5) U(−8,−0.2) N(−3, 0.4) π(−b)∼G(3,1)

π(δ55)
∗ N(0,1/300) N(0,1/300) N(0,1/300) N(0,1/300)

π(δ60) N(0,1/300) N(0,1/300) N(0,1/300) N(0,1/300)

π(δ65) N(0,1/300) N(0,1/300) N(0,1/300) N(0,1/300)

π(δ71) N(0,1/900) N(0,1/900) N(0,1/900) N(0,1/900)

...
...

...
...

...

π(δ81) N(0,1/900) N(0,1/900) N(0,1/900) N(0,1/900)

∗As an example, δ55 denotes δi at E = 5.5MV/cm.

†U(u, v) is a truncated uniform distribution, f(x; u, v) = 1
v−u

, u ≤ x ≤ v.

‡N(µ, σ2) is a normal distribution, f(x; µ, σ2) = 1√
2πσ

e−
1

2σ2 (x−µ)2 .

]G(ζ, η) is a gamma distribution, f(x; ζ, η) = ηζxζ−1e−ηx

Γ(ζ)
, 0 ≤ x < ∞.



54

W(αi, β). The ordered breakdown times at each of the nine electric fields are given

in Table 3 and Table 4.

Table 3: Part one of ordered breakdown time in seconds

Order Electric field E (MV/cm)

8.1 7.9 7.7 7.5 7.3 7.1 6.5 6.0 5.5

1 1 1 9 39 10 28 1659 5657 3482

2 5 2 18 40 21 88 3312 30481 34042

3 10 9 20 77 46 99 13111 137907 56526

4 10 12 25 247 55 107 21392 152911 57630

5 10 35 29 253 58 211 − − −
6 11 46 66 299 130 213

7 14 72 124 311 284 248

8 20 74 127 633 353 301

9 28 82 175 666 361 311

10 68 107 221 830 395 593

11 78 142 249 950 426 673

12 92 153 341 1060 574 702

13 93 193 362 1383 739 741

14 116 251 552 1416 990 911

15 125 290 630 1742 1004 949
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Table 4: Part two of ordered breakdown time in seconds

Order Electric field E (MV/cm)

8.1 7.9 7.7 7.5 7.3 7.1 6.5 6.0 5.5

16 128 348 760 1843 1321 1040

17 141 399 782 1879 1336 1439

18 167 511 794 1905 1631 1971

19 219 556 906 2096 2040 2069

20 311 1104 932 2337 2043 2253

21 407 1509 968 2532 2060 2501

22 502 1535 1378 2648 2154 3547

23 506 1756 1386 3020 2181 4452

24 682 2376 1664 3434 2398 4580

25 709 2843 1728 3947 2458 4882

26 772 3140 2229 4373 4210 5657

27 1209 3514 2249 4729 4702 5737

28 1282 3616 2338 5215 7461 6323

29 1485 3882 4058 5614 8011 7565

30 1638 4583 4986 6753 8424 8209

31 2154 − 6312 9703 8681 10000

32 2443 6400 9898 10070 11650

33 − 6847 10130 13350 15250

34 8474 11090 22460 21620

35 − − − 25910
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CHAPTER VI

POSTERIOR SIMULATION AND INFERENCE

When a Bayesian approach is applied to high-dimensional problems, multiple levels of

integration are necessary to obtain the normalizing constant and marginal densities

of the model’s parameters. For complicated models, these marginal densities are

often analytically intractable, and sometimes even a numerical integration cannot be

directly obtained. In these cases, Markov chain Monte Carlo simulation (MCMC)

is the easiest way to get reliable results without evaluating integrals [17]. The idea

is to create a Markov process whose stationary distribution is the specified target

distribution, then run the simulation long enough so that the distribution of simulated

draws closely approximates the stationary distribution [18].

A MCMC algorithm that is particularly useful in high-dimensional problems

is the alternating conditional sampling called Gibbs sampler [17]. Each iteration of

the Gibbs sampler cycles through the unknown parameters, drawing a sample of one

parameter conditional on the latest value of all the others. When the number of

iterations is large enough, the sample draws on one parameter can be regarded as

simulated observations from its marginal distribution. Hence, the marginal density

is reconstructed by averaging over the conditional density of the sample draws on

this parameter. This marginal distribution is the posterior of the parameter and can

easily be used to make inferences on the functions of the model parameters.

The Gibbs sampler reduces the problem of dealing simultaneously with a large

number of intricately related parameters to a simple problem of sampling one at a time

from the full conditional distribution. It is straightforward to specify the distribution

functions required for Gibbs sampling, especially if the model is constructed using a
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sequence of conditional probability functions as in the proposed hierarchical model.

WinBUGS, a Windows version of the Bayesian inference using Gibbs sampling, is

a specialized software for implementing MCMC and Gibbs sampling [20, 53]. As a

convenient tool for Bayesian analysis, it is used in this study for posterior inference.

VI.1. Full conditional densities

An unknown random variable is called a stochastic node in WinBUGS. Its full con-

ditional distribution is the probability density function conditioning on the current

values of all other stochastic nodes in the model. For a specific stochastic node,

the full conditional density is proportional to the product of its prior density with

the likelihood of all the other nodes that have conditional dependence on it. In

Gibbs sampling, simulated draws are sampled from full conditional distributions, but

WinBUGS does not require explicit evaluation of the integration constant of a full

conditional density function. The full conditional densities of the parameters in the

proposed model are derived as follows for reference.

Under the electric field Ei, ti,j’s follow W(αi, β) with the density function of

f(ti,j|α, β) =
β

α
(
ti,j
α

)
β−1

exp[−(
ti,j
α

)
β

].

According to the acceleration function I: ln αi = a + bEi + δi, αi can be written as

αi = ea+bEi+δi .

Then the sampling density function of ti,j in terms of β, a, b and δi has the form of

f(ti,j|β, a, b, δi) = βe−β(a+bEi+δi)tβ−1
i,j exp(−e−β(a+bEi+δi)tβi,j). (6.1)

Write T = {ti,j, j = 1, · · · , ni; i = 1, · · · , L} and ∆ = (δ1, · · · , δL). The joint
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density function of the sample data T and the model parameters, β, a, b and ∆, can

be written as

f(T, β, a, b, ∆) = π(β)π(a)π(b)
L∏

i=1

[f(δi)

ni∏
j=1

f(ti,j|β, a, b, δi)]. (6.2)

The full conditional density of each parameter is derived as follows.

f(β|T, a, b, ∆) ∝ π(β) ·
L∏

i=1

ni∏
j=1

f(ti,j|β, a, b, δi). (6.3)

f(a|T, β, b, ∆) ∝ π(a) ·
L∏

i=1

ni∏
j=1

f(ti,j|β, a, b, δi). (6.4)

f(b|T, β, a, ∆) ∝ π(b) ·
L∏

i=1

ni∏
j=1

f(ti,j|β, a, b, δi). (6.5)

f(δi|T, β, a, b, ∆−i) ∝ π(δi) ·
ni∏

j=1

f(ti,j|β, a, b, δi), i = 1, · · · , L, (6.6)

where ∆−i = (δ1, · · · , δi−1, δi−1, · · · , δL). The product term in the right hand side of

(6.6) is

ni∏
j=1

f(ti,j|β, a, b, δi) = βni(

ni∏
j=1

tβ−1
i,j )e−βni(a+bEi+δi) exp(−e−β(a+bEi+δi)

ni∑
j=1

tβi,j);

and the product term in the right hand side of (6.3), (6.4), and (6.5) is

L∏
i=1

ni∏
j=1

f(ti,j|β, a, b, δi) =
L∏

i=1

ni∏
j=1

tβ−1
i,j ·

L∏
i=1

βnie−βni(a+bEi+δi)

· exp[−
L∑

i=1

(e−β(a+bEi+δi)

ni∑
j=1

tβi,j)].

Next, substitute π(β), π(a), π(b) and π(δi) with the density functions given in Table 2

to see the actual form of the full conditionals. For simplicity, the same parameter

notation is used for one type of distribution functions just to show the form of its
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density function. For instance, a uniform is denoted as U(u, v), a normal as N(µ, σ2),

and a gamma as G(ζ, η). For the same reason, there is no need to distinguish the

notation of known constants, s1, s2, s3, and wi’s, between different formulas.

Case I and II: β ∼ U(u, v), a ∼ U(u, v), b ∼ U(u, v), δi ∼ N(µ, σ2)

f(β|T, a, b, ∆) ∝ βs1sβ
2 exp[s3β −

L∑
i=1

(ewiβ

ni∑
j=1

tβi,j)]. (6.7)

f(a|T, β, b, ∆) ∝ exp(s1a + s2e
−βa). (6.8)

f(b|T, β, a, ∆) ∝ exp(s1b + s2e
−βEib). (6.9)

f(δi|T, β, a, b, ∆−i) ∝ exp(s1δ
2
i + s2δi + s3e

−βδi). (6.10)

The right hand side of each of (6.7), (6.8), (6.9) and (6.10) is a log-concave function

on β, a, b and δi, respectively.

Case III: β ∼ U(u, v), a ∼ U(u, v), b ∼ N(µ, σ2), δi ∼ N(µ, σ2)

f(β|T, a, b, ∆), f(a|T, β, b, ∆) and f(δi|T, β, a, b, ∆−i) are in the same form

as (6.7), (6.8) and (6.10), respectively.

f(b|T, β, a, ∆) ∝ exp(s1b + s2b
2 + s3e

−βEib). (6.11)

The right hand side of each of (6.11) is a log-concave function on b.

Case IV: β ∼ U(u, v), a ∼ G(ζ, η), b ∼ G(ζ, η), δi ∼ N(µ, σ2)

f(β|T, a, b, ∆) and f(δi|T, β, a, b, ∆−i) have the same form as (6.7) and (6.10),

respectively.

f(a|T, β, b, ∆) ∝ aζ−1 exp(s1a + s2e
−βa). (6.12)

f(b|T, β, a, ∆) ∝ bζ−1 exp(s1b + s2e
−βEib). (6.13)
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The right hand side of (6.12) and (6.13) are log-concave if ζ >1.

VI.2. Simulation with WinBUGS

The code generator in WinBUGS contains a small expert system for deciding the best

sampling method for a stochastic node according to its full conditional density [20].

Sampling methods are applied in the hierarchies outlined in Table 5. A sampling

method is used if no previous method in the hierarchy is appropriate. The sampling

method that WinBUGS selects for the stochastic nodes of the projection model are

listed in Table 6.

Table 5: Hierarchy of sampling methods in WinBUGS

Continuous target distribution Sampling method

1 Conjugate Direct sampling using standard algorithms

2 Log-concave Derivative-free adaptive rejection sampling

3 Restricted range Slice sampling

4 Unrestricted range Current point Metropolis algorithm

Table 6: Sampling methods used for β, a, b and δi in WinBUGS

Node Sampling Method

β Slice sampling

a Derivative-free adaptive rejection sampling

b Derivative-free adaptive rejection sampling

δi Rejection sampling

The Metropolis algorithm in WinBUGS is based on a univariate normal pro-

posal distribution centered at the current value. The standard deviation of the normal
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proposal is tuned over the first 4000 iterations in order to get an acceptance rate be-

tween 20% and 40%. All summary statistics for the model will ignore information

from this adapting phase. In WinBUGS, slice sampling is used for non log-concave

densities on a restricted range. This method can avoid the need to sample from non-

standard distributions [44]. It has an adaptive phase of 500 iterations which will be

discarded from all summary statistics.

To prevent posterior dependence on the starting point of a simulation, it is

important to run several chains with over-dispersed starting points in one MCMC

simulation. The simulation converges to the target distribution when traces of all

the chains appear to be mixing together. A quantitative way of monitoring the con-

vergence is based on an analysis of variance. A reasonable convergence is diagnosed

when the variance between the different chains is no longer larger than the variance

within each individual chain. Based on this, the Gelman-Rubin convergence statistic,

R, is defined as the ratio of the width of the central 80% interval of the pooled chains

to the average width of the 80% intervals of the individual chains [53]. When a Win-

BUGS simulation converges, R should be at, or close to, one and both the polled and

average widths should appear to be stable. Simulated draws after convergence from

all parallel chains are pooled together for posterior analysis and inference, whereas

those before convergence are discarded.

The accuracy of a posterior estimate is calculated in terms of a Monte Carlo

standard error (MC error) of the mean [53]. The MC error gives an estimate of the

difference between the mean of the sampled values and the true posterior mean of the

stochastic node. As a rule of thumb, the simulation should run until the MC error

for each node is less than 5% of the sample standard deviation (Std.D.).

For the projection model, four chains run simultaneously in one simulation.

Each chain continues for 60,000 iterations, and the first 10,000 iterations are discarded
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before posterior analysis. Convergence of the simulation is reached when the Gelman-

Rubin statistic R stays at one after 10,000 iterations. Because of the large number

of iterations, the MC errors are much less than 5% of the sample standard deviation.

VI.3. Sensitivity analysis

Posterior inference depends on model assumptions such as sampling distribution and

priors. If the choice of the prior has little effect upon the posterior of a parameter, it

reflects the fact that the likelihood carries strong information concerning the param-

eter. However, if there is relatively little information in the likelihood, an unrealistic

prior on a parameter results in not only a large change in its posterior, but also

changes in other parameter’s posterior. In general, models which contain parameters

that are not supported by sample data tend to have a high degree of posterior sensi-

tivity; thus the degree of sensitivity also provides evidence in favor of one model over

another.

For the projection model, the posterior sensitivity is examined under the

priors given in Table 2. The priors of Case 1 to Case 4 are used to examine whether

the prior variation of δi affects the posteriors of the model parameters; the priors of

Case I to Case IV are intended to reveal the influence that the priors of β, a and

b have on the posteriors. The posterior statistics and kernel densities of the model

parameters are compared using the simulation results of WinBUGS.

Some important observations merge from monitoring the simulation process.

The Markov chain of β converges much earlier than that of any other node, and β’s

posterior is very stable over a large variety of priors. This implies that, although the

data are from different electric fields, they indicate similar Weibull shape parameters

and hence an identical failure mechanism. Because the sample data are consistent in
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this respect, a vague prior on β, such as a truncated uniform, can yield a satisfying

posterior. However, the Markov chain for either a or b does not reach a good conver-

gence in the first 10,000 iterations. This is due to the high uncertainty as well as the

large physical variations in the parameter that result from the information contained

in the sample data.

VI.3.1. Comparison among the priors of Cases 1–4

The priors on a, b and β are kept the same from Case 1 to Case 4, but the variance

of δi decreases following the order of 1/64, 1/100, 1/400 to 1/900. Posterior statistics

and kernel densities of δi’s, β, a, and b can be found in Table 7, Table 8, Figure 20,

and Figure 21. Due to space limitations, the posterior statistics of five δi’s are given

in Table 7; the kernel density of δ55 in Figure 20 is used as an example for all δi’s.

Table 7 and Figure 20 show that, in each of the four cases, the posterior

of δi is very similar to its prior in terms of mean, variance, and the shape of the

density function. This tells us that either the prior of δi outweighs the likelihood in

its posterior or, more likely, the sample data at Ei do not contain much information

concerning δi.

For each β, a, and b, the difference in the posterior mean or the posterior

variance is negligible among the four prior cases. In addition, the posterior kernel

density can be fitted with a normal density quite well. All of these results lead to the

conclusion that the parameters of the projection model are insensitive to a change in

the variation of the error terms.
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Table 7: Posterior statistics of δi under the priors of Case 1 to Case 4

Node† Mean Std.D. MC error 2.5% Median 97.5%

(10−2) (10−1) (10−4) (10−1) (10−2) (10−1)

δ55[1] −1.989 1.242 3.339 −2.636 −1.991 2.228

δ55[2] −1.296 0.995 2.498 −2.077 −1.296 1.824

δ55[3] −0.331 0.500 1.136 −1.012 −0.322 0.950

δ55[4] −0.144 0.333 0.737 −0.666 −0.150 0.638

δ60[1] 2.367 1.234 4.823 −2.188 2.378 2.652

δ60[2] 1.485 0.989 3.416 −1.792 1.513 2.079

δ60[3] 0.387 0.499 1.295 −0.940 0.397 1.016

δ60[4] 0.168 0.332 0.788 −0.633 0.160 0.671

δ71[1] −3.176 1.161 5.431 −2.588 −3.180 1.956

δ71[2] −2.272 0.957 4.100 −2.107 −2.270 1.648

δ71[3] −0.587 0.495 1.414 −1.028 −0.593 0.911

δ71[4] −0.283 0.332 0.812 −0.679 −0.275 0.626

δ75[1] 7.708 1.133 2.731 −1.441 7.685 2.999

δ75[2] 5.341 0.932 2.282 −1.291 5.329 2.363

δ75[3] 1.502 0.491 1.140 −0.805 1.468 1.113

δ75[4] 0.676 0.331 0.743 −0.583 6.693 7.183

δ81[1] −6.208 1.181 6.588 −2.930 −6.227 1.698

δ81[2] −4.145 0.9676 4.909 −2.311 −4.154 1.478

δ81[3] −1.153 0.4939 1.494 −1.079 −1.174 0.855

δ81[4] −0.507 0.332 0.873 −0.701 −0.509 0.601

†As an example, δ55 denotes δi at E = 5.5MV/cm.

[1]-[4] correspond to the priors of Case 1 to Case 4, respectively.
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Table 8: Posterior statistics of a, b and β under the priors of Case 1 to Case 4

Node† Mean Std.D. MC error 2.5% Median 97.5%

a[1] 22.64 1.707 4.982×10−2 19.39 22.57 26.12

a[2] 22.75 1.767 5.239×10−2 19.43 22.71 26.37

a[3] 22.63 1.641 4.752×10−2 19.53 22.60 25.89

a[4] 22.72 1.676 4.924×10−2 19.53 22.68 26.12

b[1] −2.022 0.228 6.644×10−3 −2.485 −2.013 −1.588

b[2] −2.037 0.236 6.980×10−3 −2.519 −2.032 −1.594

b[3] −2.021 0.219 6.330×10−3 −2.455 −2.018 −1.608

b[4] −2.032 0.223 6.555×10−3 −2.484 −2.027 −1.608

β[1] 0.668 3.679×10−2 1.156×10−4 0.598 0.667 0.742

β[2] 0.668 3.681×10−2 1.138×10−4 0.597 0.667 0.741

β[3] 0.667 3.666×10−2 1.131×10−4 0.597 0.667 0.741

β[4] 0.667 3.662×10−2 1.124×10−4 0.597 0.666 0.740

†[1]-[4] correspond to the priors of Case 1 to Case 4, respectively.
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Figure 20: Posterior kernel densities of δ55 and β under the priors of Case 1 to Case

4, which are denoted as [1] to [4], respectively.
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Figure 21: Posterior kernel densities of a and b under the priors of Case 1 to Case 4,

which are denoted as [1] to [4], respectively.
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VI.3.2. Comparison among the priors of Cases I–IV

Among Case I to Case IV, the priors on β, a, and b vary while the priors on δi’s are

kept same. The difference in the priors of β, a, and b between Case I and Case II

is that the truncated intervals are tighter in Case I. From Case II, the prior on b is

replaced with a normal density in Case III, while the prior on both a and b is replaced

with a gamma density in Case IV. Since the failure time at high stress levels are less

spread out, the priors on δ71 to δ81 are assumed to be normal densities with a smaller

variance than those of δ50 to δ65. The posterior statistics and kernel densities are

given in Table 9, Table 10, Figure 22, and Figure 23.

Irrespective of the prior case, the posterior of each model parameter has a

normal-like kernel density, which is similar from Case I to Case IV. The posteriors

of a or b from the small-variance normal prior and the right-skewed gamma prior are

almost the same as that from the truncated uniform prior. The fact that the model

parameters are insensitive to small changes in the priors of a and b has two indications.

On the one hand, the sample data put much more weight on the posteriors than does

the prior; on the other hand, the prior is sufficiently diffuse so that the effect caused

by a small change in it is negligible on the posterior.

VI.4. Comparison between two acceleration functions

In order to see whether the acceleration depends on the stress level of the electric

field, a MCMC simulation is also run under Function II: ln αi = ai + biEi + δi. The

posterior statistics of ai’s and bi’s are compared with those of a and b from Function

I under the prior Case I. π(δi) is exactly the same for Function I and Function II,

whereas both π(ai) and π(bi) for Function II are given the same density as π(a) and

π(b), respectively.
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Table 9: Posterior statistics of a, b and β under the priors of Case I to Case IV

Node† Mean Std.D. MC error 2.5% Median 97.5%

a[1] 22.73 1.707 5.056×10−2 19.57 22.67 26.12

a[2] 22.65 1.687 4.932×10−2 19.50 22.62 26.08

a[3] 22.82 1.661 4.882×10−2 19.71 22.74 26.22

a[4] 22.36 1.530 4.360×10−2 19.38 22.32 25.48

b[1] −2.034 0.227 6.730×10−3 −2.485 −2.026 −1.613

b[2] −2.024 0.225 6.568×10−3 −2.480 −2.020 −1.603

b[3] −2.046 0.221 6.499×10−3 −2.499 −2.035 −1.631

b[4] −1.985 0.204 5.809×10−3 −2.401 −1.980 −1.588

β[1] 0.667 3.669×10−2 1.166×10−4 0.597 0.666 0.741

β[2] 0.667 3.667×10−2 1.134×10−4 0.597 0.666 0.740

β[3] 0.667 3.662×10−2 1.172×10−4 0.597 0.667 0.740

β[4] 0.667 3.667×10−2 1.065×10−4 0.597 0.667 0.741

†[1]-[4] correspond to the priors of Case I to Case IV, respectively.
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Table 10: Posterior statistics of δ under the priors of Case I to Case IV

Node† Mean Std.D. MC error 2.5% Median 97.5%

(10−3) (10−2) (10−4) (10−1) (10−3) (10−1)

δ55[1] −4.362 5.766 1.309 −1.178 −4.500 1.089

δ55[2] −4.593 5.775 1.317 −1.180 −4.661 1.084

δ55[3] −4.296 5.776 1.339 −1.173 −4.499 1.094

δ55[4] −4.230 5.767 1.367 −1.173 −3.971 1.089

δ60[1] 5.257 5.769 1.624 −1.076 5.326 1.182

δ60[2] 5.067 5.751 1.532 −1.079 5.026 1.176

δ60[3] 4.732 5.756 1.588 −1.078 4.756 1.178

δ60[4] 5.651 5.738 1.489 −1.069 5.598 1.182

δ71[1] −2.983 3.313 0.819 −0.680 −2.897 0.618

δ71[2] −2.911 3.322 0.847 −0.680 −2.908 0.622

δ71[3] −3.079 3.308 0.866 −0.678 −3.125 0.617

δ71[4] −2.644 3.321 0.825 −0.680 −2.611 0.623

δ75[1] 6.830 3.315 0.729 −0.584 6.875 0.717

δ75[2] 6.793 3.304 0.747 −0.581 6.899 0.717

δ75[3] 6.877 3.299 0.759 −0.576 6.754 0.718

δ75[4] 6.775 3.310 0.753 −0.580 6.706 0.718

δ81[1] −5.167 3.330 0.877 −0.702 −5.210 0.603

δ81[2] −5.078 3.326 0.879 −0.703 −4.999 0.602

δ81[3] −5.078 3.320 0.866 −0.701 −5.011 0.600

δ81[4] −5.499 3.326 0.869 −0.707 −5.385 0.5962

†As an example, δ55 denotes δi at E = 5.5MV/cm.

[1]-[4] correspond to the priors of Case I to Case IV, respectively.
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Figure 22: Posterior kernel densities of a and b under the priors of Case I to Case IV,

which are denoted as [1] to [4], respectively.
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Figure 23: Posterior kernel densities of β and δ55 under the priors of Case I to Case

IV, which are denoted as [1] to [4], respectively.
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Notice that the posterior kernel density of either ai or bi is similar to its prior

of a truncated uniform. As examples, the kernel densities of some ai’s and bi’s are

given in Figure 24. These kernel densities are quite different from the normal-like

densities of a and b shown in Figure 22. The reason is that the sample size used for

estimating ai and bi is reduced greatly from that used for a and b. Consequently, the

prior of ai or bi has relatively more weight on the posterior, and the posterior has a

large variance compared with that of the a or b derived under Function I.

Figure 24: Posterior kernel densities of some ai’s and bi’s of Function II under the prior

Case I

The posterior statistics, including the mean, median, 2.5%, and 97.5% quan-

tiles, of ai’s versus the nine accelerated electric fields from 5.5 to 8.1MV/cm are

plotted in Figure 25. For comparison, the posterior mean, 2.5%, and 97.5% quan-
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tiles, of a from Function I are also shown in the same figure. Similarly, the posterior

statistics of bi’s and b are plotted in Figure 26. Both figures show that, within the

range of the electric field applied in the ALT, no obvious trend exists in the statistics

of ai’s or bi’s, except the 2.5% quantile of bi’s. Therefore, it is reasonable to assume

that the acceleration is identical over this range of electric fields. But to use Function

I as the acceleration model requires the assumption that it is still valid at low electric

fields.
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Figure 25: Comparison of posterior statistics under the prior Case I : a from Function

I and ai’s from Function II

VI.5. Reliability projection

The Weibull scale parameter α under normal operating conditions or at a low electric

field can be extrapolated with the acceleration function, i.e., ln αop = a + bEop +

δop, once a and b are estimated. The distribution of ln αop is determined from the
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Figure 26: Comparison of posterior statistics under the prior Case I: b from Function

I and bi’s from Function II

distributions of a and b, and δop. According to the graphic model shown in Figure 18,

the distribution of αop can be obtained directly in the WinBUGS simulation from the

posteriors of a and b, if the distribution of δop is known.

For accuracy and convenience of computation, ln α is used in the simulation

instead of α. The simulation outputs of ln α at low electric fields of 1.5MV/cm,

3.0MV/cm and 4.5MV/cm, together with the ln α’s at the nine accelerated stress

levels, are given in Table 11. The posterior statistics are obtained under the prior

Case II and the assumption of δ15∼N(0, 1/49), δ30∼N(0, 1/64), and δ45∼N(0, 1/100),

where δ15, δ30, and δ45 are the error terms at 1.5MV/cm, 3.0MV/cm, and 4.5MV/cm,

respectively. The linear relationship between ln α and E is plotted in Figure 27,

together with the 95% credible bound. Normal priors with various variances have

been assumed on δ15, δ30 and δ45. However, the difference is insignificant in the
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posterior statistics of ln α’s.

Table 11: Statistics of ln α from simulation under the prior Case II, δ15∼N(0, 1/49),

δ30∼N(0, 1/64), and δ45∼N(0, 1/100)

Node† Mean Std.D. MC error 2.5% Median 97.5%

ln α15 19.62 1.359 3.946×10−2 17.07 19.59 22.38

ln α30 16.58 1.023 2.961×10−2 14.67 16.56 18.66

ln α45 13.54 0.689 1.975×10−2 12.26 13.53 14.95

ln α55 11.52 0.464 1.317×10−2 10.65 11.51 12.46

ln α60 10.51 0.354 9.824×10−3 9.849 10.51 11.23

ln α65 9.495 0.254 6.600×10−3 9.014 9.489 10.01

ln α71 8.280 0.143 2.656×10−3 8.005 8.279 8.564

ln α73 7.877 0.121 1.376×10−3 7.639 7.877 8.115

ln α75 7.480 0.113 2.681×10−4 7.257 7.481 7.701

ln α77 7.070 0.122 1.259×10−3 6.829 7.071 7.309

ln α79 6.665 0.145 2.545×10−3 6.379 6.665 6.947

ln α81 6.254 0.176 3.844×10−3 5.906 6.255 6.596

†As an example, ln α55 denotes ln α at E = 5.5MV/cm.

Table 12 gives α calculated from the values of ln α in Table 11. Because the

kernel density of ln α is very close to a normal density, the posterior mean is selected

as the point estimator of ln α. The estimate of α corresponding to the mean of ln α

can be found in the columns titled “mean” of Table 12. They are

α̂15 = 3.318× 108 seconds or 3840.113 days,

α̂30 = 1.587× 107 seconds or 183.691 days,

α̂45 = 7.592× 105 seconds or 8.787 days.
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Figure 27: ln α versus E plotted from simulation under the Case II prior,

δ15∼N(0, 1/49), δ30∼N(0, 1/64), and δ45∼N(0, 1/100)

In terms of α, the start and end points of the range that corresponds to the 95%

credible interval of ln α can be found in the respective columns titled “2.5%” and

“97.5%” of Table 12. Next, take the posterior mean as the estimator of β. Ta-

ble 9 gives β̂ = 0.667 and the 95% credible interval of (0.597,0.740). Then, the

lifetime distributions at 1.5MV/cm, 3.0MV/cm, and 4.5MV/cm are estimated as

W(3.318×108, 0.667), W(1.587×107, 0.667), and W(7.592×105, 0.667), respectively.

VI.6. Comparison of two projections

Projecting the reliability at the operating conditions with the traditional approach

can be done in the following three steps.

1. Fit the time-to-breakdown data at each electric field from 7.1 to 8.1MV/cm

with a Weibull distribution and find the maximum likelihood estimate (MLE)

of the Weibull parameters α and β. The results can be found in Table 13.
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Table 12: α calculated from the simulation results of ln α in Table 11

α in second α in day

Mean† 2.5%‡ 97.5%] Mean† 2.5%‡ 97.5%]

α15 3.318×108 2.591×107 5.242×109 3.840×103 2.998×102 6.067×104

α30 1.587×107 2.350×106 1.270×108 1.837×102 2.720×101 1.470×103

α45 7.592×105 2.111×105 3.110×106 8.787×100 2.443×100 3.599×101

α55 1.007×105 4.219×104 2.578×105 1.166×100 4.883×10−1 2.984×100

α60 3.668×104 1.894×104 7.536×104 4.245×10−1 2.192×10−1 8.722×10−1

α65 1.329×104 8.217×103 2.225×104 1.539×10−1 9.511×10−2 2.575×10−1

α71 3.944×103 2.996×103 5.240×103 4.565×10−2 3.467×10−2 6.064×10−2

α73 2.636×103 2.078×103 3.344×103 3.051×10−2 2.405×10−2 3.871×10−2

α75 1.772×103 1.418×103 2.211×103 2.051×10−2 1.641×10−2 2.559×10−2

α77 1.176×103 9.243×102 1.494×103 1.361×10−2 1.070×10−2 1.729×10−2

α79 7.845×102 5.893×102 1.040×103 9.079×10−3 6.821×10−3 1.204×10−2

α81 5.201×102 3.672×102 7.322×102 6.020×10−3 4.250×10−3 8.474×10−3

†α calculated from the mean of ln α in Table 11.

‡α calculated from the 2.5% quantile of ln α in Table 11.

]α calculated from the 97.5% quantile of ln α in Table 11.
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Failure data at 5.5 to 6.5MV/cm are not used due to small sample size.

2. Use linear regression on ln α̂MLE’s at 7.1 to 8.1MV/cm to find the estimates of

a and b of the acceleration function ln αi = a + bEi. This gives â = 24.535,

b̂ = −2.275 as shown in Figure 28.

3. Use l̂n α = 24.535− 2.275E to extrapolate ln α at low electric fields. Given E,

α̂ = e24.535−2.275E is taken as the estimate of α. Average β̂MLE’s in Table 13 to

get β̂ = 0.679. The results of this step can be found in the middle of Table 14.

Table 13: MLE of Weibull parameters from 7.1 to 8.1MV/cm

E (MV/cm) 7.1 7.3 7.5 7.7 7.9 8.1

α̂MLE 3355 2451 2853 1302 736.1 334.2

β̂MLE 0.683 0.655 0.879 0.668 0.578 0.610
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Figure 28: Linear regression of ln α̂MLE versus E and extrapolation to low electric fields
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Table 14: Comparison of the estimation and projection between traditional and

Bayesian approaches

E Traditional Approach Bayesian Approach

(MV/cm) l̂n α α̂ (sec.) α̂ (day) l̂n α α̂ (sec.) α̂ (day)

1.5 21.12 1.490×109 1.725×104 19.62 3.318×108 3.840×103

3.0 17.71 4.912×107 5.685×102 16.58 1.587×107 1.837×102

4.5 14.30 1.619×106 1.873×101 13.54 7.592×105 8.787×100

5.5 12.02 1.664×105 1.926×100 11.52 1.007×105 1.166×100

6.0 10.88 5.334×104 6.173×10−1 10.51 3.668×104 4.245×10−1

6.5 9.747 1.710×104 1.979×10−1 9.495 1.329×104 1.539×10−1

7.1 8.382 4.367×103 5.054×10−2 8.280 3.944×103 4.565×10−2

7.3 7.927 2.770×103 3.207×10−2 7.877 2.636×103 3.051×10−2

7.5 7.472 1.758×103 2.034×10−2 7.480 1.772×103 2.051×10−2

7.7 7.017 1.115×103 1.291×10−2 7.070 1.176×103 1.361×10−2

7.9 6.562 7.075×102 8.188×10−3 6.665 7.845×102 9.079×10−3

8.1 6.107 4.489×102 5.195×10−3 6.254 5.201×102 6.020×10−3

â = 24.535, b̂ = −2.275 â = 22.653, b̂ = −2.024

β̂ = 0.679 β̂ = 0.667
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The results obtained with the traditional and Bayesian approaches are com-

pared in Table 14 and Figure 27. The two estimates of β are very close. This can be

taken as additional evidence that the sample data have an identical failure mecha-

nism. However, due to the discrepancy in both â and b̂ between the two approaches,

the difference in l̂n α and hence α̂ are significant. Furthermore, the difference is ampli-

fied by extrapolation to low electric fields. The traditional projection gives relatively

optimistic reliability at a low stress, but it is within the 95% credible bound of the

Bayesian projection.

Unfortunately, because failure data under the operating conditions are not

available in large quantities, it is impossible to verify the extrapolation and to judge

which of the two projections better represents reality. Nevertheless, it is important to

recognize that these are two different approaches that one can choose from to project

reliability or use both as references for decision-making.

Two advantages should be emphasized for the Bayesian approach to lifetime

projection. Firstly, the Bayesian approach is applicable when the sample size is small.

This is very useful nowadays as it is generally either too costly or impossible to obtain

a large sample of failure data due to increasing product reliability and time limitation.

However, a relatively large sample size is required for the traditional approach in which

the maximum likelihood estimator is used. This results in the small sample size of

breakdown data collected at relatively low electric fields of 5.5 to 6.5MV/cm cannot

be included in the traditional projection process.

Secondly, the Bayesian approach allows the construction of a broad class of

estimators from the posterior distribution, while the traditional approach gives just

one point estimator. In the Bayesian context, an estimator is chosen to minimize

the risk with respect to a loss function that is defined for the problem at hand. For

simplicity, the Bayes estimator is used as an example for the reliability projection in
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this chapter. However, a different estimator can be derived if another loss function is

defined.
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CHAPTER VII

FAILURE RATE ESTIMATION

VII.1. Bathtub failure rate and the change point

In the life cycle of a semiconductor device, the failure rate usually has a bathtub

shape as shown in Figure 29 [28]. This curve is the combined result of three failure

rates: a decreasing failure rate (DFR) due to infant mortality, a constant failure rate

(CFR) representing the useful lifetime, and an increasing failure rate (IFR) reflecting

the wear-out or aging effect.
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Figure 29: Bathtub failure rate curve

The high failure rate of infant mortality causes a large number of failures in

the early stage of usage. To reduce or eliminate this kind of failure occurring on a

customer’s site, manufacturers employ a burn-in process to screen out the defective

units before shipping [28]. The ultimate goal of conducting burn-in is to minimize the

total cost of manufacturing, burn-in and warranty. Estimating the failure rate in the

left hand side of the bathtub curve is the key to determining the optimal stress level
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and stress time of burn-in. Under the burn-in context, a product’s infant mortality

and useful life phases are of interest, while the wear-out phase is not the concern here.

The time when the failure rate turns from DFR into CFR is called the change

point, denoted as tc. In the literature, Weibull and exponential distributions have

been used to describe the failure rate’s behavior before and after tc, respectively [2, 7].

The change point is usually estimated under the assumption that the function or the

function form of DFR is known [5, 7]. The problem of simultaneously estimating tc

and the DFR requires considerable effort and remains an area for research.

Unlike the lifetime distribution discussed in the previous chapters, failure rate

is used in this chapter to depict reliability. Different from the Weibull-exponential

model or other parametric functions of failure rate assumed in the literature, no

assumption is made on the function form of the infant mortality failure rate as long

as it is a DFR.

The objective of this chapter is to provide a non-parametric procedure that

can be used to estimate the DFR when the change point is unknown and the sample

size is not large. To avoid the difficulty of estimating the DFR and tc at the same

time, two steps are taken on an x-set of n failure times placed in ascending order.

At first, an exponentiality test is employed in determining the order j at which the

sample is partitioned into two parts, N1=(x(1), · · · , x(j−1)) and N2=(x(j), · · · , x(n)),

where N2 is tested for exponentiality against the alternatives of DFR and IFR. After

that, a non-parametric Bayesian approach is applied to estimate the DFR of N1.

A rough failure rate estimate of the high k thin films at two electric fields

are plotted in Figure 30. The failure rates are estimated with a non-parametric

procedure designed for a relatively small sample size [41]. A single observation can

have considerable influence on the result given by the procedure. However, the shape

of the failure rate estimate is often used to suggest an appropriate model for the data.
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Figure 30: Empirical failure rate at E=7.9MV/cm and E=7.3MV/cm

From visual inspection, both plots demonstrate the pattern of a DFR followed by a

CFR, where the change point tc exists but is unknown. There is no sign of IFR due to

the lack of failure data in the wear-out phase. For illustration purposes, the proposed

procedure is applied on the ordered failure data at E=7.9MV/cm and E=7.3MV/cm

given in Table 3 and Table 4.
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Figure 31: Illustration of the partition of an ordered data set

VII.2. Test for exponentiality

The idea of using the exponentiality test for sample partition can be illustrated with

Figure 31. The ordered data set of failure time x(1), · · · , x(n) consists of two sections,

the early N1 of DFR and the latter N2 of CFR. Because of the restriction in testing

time and the nature of relatively slow aging effect, the number of data points that

belong to the IFR phase is small or none depending on the stress level. For a small

sample of IFR, the increasing trend still may not be observed if the sample is pooled

together with the relatively large sample of CFR. However, the increasing trend can

show up if the sample is mixed with a small number of data points that are located

at the end of CFR.

Unfortunately, tc is unknown, so is the sample point x(j) that partitions the

ordered data set into N1 and N2. In case of NL that the last several data points of

DFR are wrongly taken as from CFR, NL shows a DFR instead of the supposed CFR.

NS is the opposite case that a few data points of CFR are mistaken as from DFR, then

NS has a CFR or possibly IFR. Theoretically, a reasonable approximation of tc for a

given data set should be the sample point x(j) that leads to the N2 fitting well with an

exponential distribution; if there are multiple attempted partition points that result

in good fitting of N2, then the point of a lower or the lowest order is recommended.
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VII.2.1. Data transformation

The general form of the density function of an exponential distribution E(α, β) is

f(x; α, β) =
1

β
exp(−x− α

β
), x ≥ α, (7.1)

where α and β are the location and scale parameters, respectively. If x(i)’s follow

E(α, β), where α and β are unknown, then the spacing x(i+1) − x(i), i=1,· · · ,n−1,

is a sample from E(0, β) [56]. Testing the goodness-of-fit of the x-set on E(α, β) is

equivalent to testing the goodness-of-fit of the spacings on E(0, β). Therefore, the

null hypothesis H0 that needs to be tested is that a sample fits E(0, β).

A large number of test procedures have been given for H0 [56]. These tests

can be classified into two broad groups, tests using the original data and tests based

on the data after certain transformations. The two transformation that are often

made on the lifetime data under the test of H0 are the N transformation and the K

transformation.

Now Suppose x(i), i = 1, · · · , n, is an ordered sample from E(0, β). Define

the spacing by

Di = x(i+1) − x(i), i = 1, · · · , n,

with x(0) = 0. The normalized spacing x′i, defined by

x′i = (n + 1− i)Di, i = 1, · · · , n,

is independently and identically distributed as E(0, β). The transformation from the

x-set to the x′-set is called the N transformation. The total time on test is calculated

as

Tn =
n∑

i=1

x(i) or Tn = T ′
n =

n∑
i=1

x′(i).
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Let

T ′
i =

i∑

k=1

x′(k) and y(i) =
T ′

i

Tn

, i = 1, · · · , n− 1.

Then, the y-set is an ordered sample of size n−1 from the uniform distribution U(0,1).

The transformation from the x-set to the y-set is called the K transformation.

There are good reasons for making the data transformation, particularly when

the original data are lifetimes. Firstly, both the N and K transformations are invari-

ant under the labelling of an unordered x-set. This is usually considered as a desirable

property for a test procedure. Secondly, the unknown parameter β has been elim-

inated in the K transformation at the cost of losing one degree of freedom. More

importantly, if the x-set does not follow an exponential distribution but has an IFR,

the x′-set is stochastically decreasing with i; if the x-set has a DFR, the x′-set is

stochastically increasing with i. Consequently, the pattern of the y-set reveals in-

formation about the alternative hypothesis, namely, y(i) moves toward one for IFR

samples and toward zero for DFR samples.

VII.2.2. Test techniques

Tests for exponentiality that can be applied on the original x-set include χ2 tests,

empirical distribution function (EDF) tests, regression tests, and the tests based on

sample moments [51, 55, 56]. After the N transformation, these tests may equally be

applied to the x′-set. With the K transformation, the exponentiality test on the x-set

can be dealt with as testing the uniformity of the y-set. This provides test procedures

that generally have more power than those mentioned above.

The simplest test for the uniformity of the y-set is based on Ȳ , the mean of

the y-set [34]. Let S be the sum of y(i), i=1,· · · ,n−1, then S and Ȳ can be calculated
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from the x-set as follows.

S = 2n− 2
n∑

i=1

ix(i)

Tn

= 2
n∑

i=1

(n− i)x(i)

Tn

,

Ȳ =
S

n− 1
.

The distribution of Ȳ converges quickly to the normal. Specifically, Ȳ follows ap-

proximately the normal distribution N(0.5, 1/12m), where m = n− 1 (m ≥ 15).

Because Ȳ tends to be large for an original IFR sample and to be small for a

DFR sample, Ȳ can be used as a one-tail statistic to guard against the alternative of

either IFR or DFR. But it will be two-tailed against unknown or general alternatives.

A power study on the various test procedures for H0 shows that Ȳ , along with two of

the EDF statistics, the Anderson-Darling statistic A2 and the Cramér-von statistic

W 2, has a very high power in two-tail tests against both IFR and DFR alternatives.

In one-tail tests that the direction of the alternative is known , Ȳ is also effective and

overall better than A2. Based on the discussions of this section, Ȳ is selected as the

test statistic for the current problem.

VII.2.3. Sample partition

The plot of the empirical failure rate in Figure 30 gives a rough idea of the location

where the DFR changes to the CFR. For example, at E=7.9MV/cm, the change

occurs somewhere within the interval [150,300]. Therefore, the candidates of the

partition point are from x(12) = 153 to x(15) = 290. In order to select one out of the

four candidates, the K transformation is applied on the sample N2 given by each of

the attempted partition point x(i), i = 12, · · · , 15, and the statistic Ȳ is computed to

test the exponentiality. It is found that x(13) = 193 results in the Ȳ that is the closest

to 0.5. This can be understood as the sample (x(13), · · · , x(32)) fits an exponential
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Figure 32: Test statistics versus the order of attempted partition point at

E=7.9MV/cm

distribution best among all the possible choices of N2 from the x-set.

In fact, the statistic Ȳ increases with the order of the attempted partition

point. This is clearly seen in Figure 32 where the corresponding p-value is also shown.

This trend is consistent with the previous discussion that Ȳ tends to be small for an

original DFR sample and to be large for an IFR sample. As Ȳ follows approximately

a normal distribution with the mean of 0.5, a value close to 0.5 indicates it is more

likely that N2 has a CFR rather than a DFR or IFR. If the attempted partition point

is actually much earlier than tc, this is the case of NL, which has a DFR as shown in

Figure 31. If the attempted partition point is much later than tc, this falls into the

case of NS, which has a CFR or, possibly, an IFR if the wear-out starts before the

end of the stress test due to a relatively high stress level. As mentioned early in the

beginning of Section VII.2, the number of data points from the IFR phrase is very

small in comparison with that from the CFR period and the increasing amount of

failure rate is negligible. As a result, there is no sign of IFR in the failure rate plot

of Figure 30. It is still reasonable to pool these IFR points with those of the CFR.
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A similar result is obtained at E=7.3MV/cm. From the empirical failure rate

curve in Figure 30, x(22) to x(24) are taken as the candidates to partition the sample of

size 34. Among the three candidates, x(23)=2181 leads to the Ȳ that is the closest to

0.5. Figure 33 shows how Ȳ and the p-value change with the order of the attempted

partition point. Ȳ stays at a low level when the attempted partition point is in the

early part of the x-set; the increasing trend of Ȳ does not start until the attempted

point is larger than x(19). The cause of the early small Ȳ is that, due to the relatively

low stress field compared to E=7.9MV/cm, the infant mortality phase lasts longer

before the period of CFR starts.

VII.3. Estimation of decreasing failure rate

After the partition point x(j) is determined, the sample N1=(x(1), · · · , x(j−1)) is used

to estimate the DFR with the non-parametric Bayesian approach developed by Maz-

zuchi and Singpurwalla [43] and later implemented on burn-in by Chien and Kuo [6].
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The approach is non-parametric in the sense that no assumption is made on the

parametric form of the lifetime distribution except that it has a monotone failure

rate.

VII.3.1. The non-parametric Bayesian approach

Let x be the random variable of the lifetime described by a distribution F , whose

monotone failure rate in the time period (0, th] is to be estimated. Let τ1, · · · , τk be

equally spaced points of time, where 0≡ τ0 < τ1 < · · ·<τk≡ th and ∆τ is the length

of each interval. Also let hi be the interval failure rate in (τi−1, τi]. The goal is to

approximate the monotone failure rate with the interval failure rate hi’s.

First define ui as the probability that a unit will not fail in (τi−1, τi] condi-

tioning on that it has survived in (0, τi−1],

ui = Pr(x > τi|x > τi−1) =
1− F (τi)

1− F (τi−1)
, i = 1, · · · , k, (7.2)

and u0 = 0, uk+1 = 1. Because F (t) = 1− e−H(t), where H(t) is the hazard function,

this gives the relationship of ui ≈ e−hi∆τ . Then, the interval failure rate hi can be

calculated from [6]

hi ≈ − ln ui

∆τ
. (7.3)

Now the problem becomes finding an estimation of the ui’s. A Bayesian approach

has been developed for this end.

Let si denote the number of breakdown events that are observed in (τi−1, τi].

Given s = (s1, · · · , sk), the likelihood of u = (u1, · · · , uk) is

l(u|s) ∝
k∏

i=1

(1− ui)
siuvi

i ,
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where vi =
∑k

j=i+1 sj is the number of units that survive in (τi−1, τi]. In the case of

DFR where 0≤u1≤u2≤· · ·≤uk, assume the unknown quantities u1, (u2 − u1), (u3 −
u2), · · · , (uk − uk−1), and (1 − uk) have a prior distribution of the Dirichlet density

with parameters αi, i = 1, · · · , k + 1, and β,

π(u) =
Γ(β)∏k+1

i=1 Γ(βαi)

k+1∏
i=1

(ui − ui−1)
βαi−1, (7.4)

where αi ≥ 0, i = 1, · · · , k + 1,
∑k+1

i=1 αi = 1, and β > 0.

By the Bayes’ rule, the posterior density of u is written as

π(u|s) =
l(u|s)π(u)∫

u
l(u|s)π(u)du

=
[
∏k

i=1(1− ui)
siuvi

i ][
∏k+1

i=1 (ui − ui−1)
βαi−1]∫

u
[
∏k

i=1(1− ui)siuvi
i ][

∏k+1
i=1 (ui − ui−1)βαi−1]du

.

Conceptually, once π(u|s) is known, the interval failure rate hi’s can be estimated

through the formula (7.3). If ∆τ is small enough, then hi’s is a good approximation

of the monotone failure rate.

VII.3.2. Prior parameters and posterior simulation

The first issue in implementing the non-parametric approach to the DFR estimation is

to determine the prior, i.e., to assign an appropriate value to the Dirichlet parameters

αi’s and β. According to Mazzuchi and Singpurwalla [43], the marginal expectation

of ui in the Dirichlet density (7.4) is

E(ui) =
i∑
1

αj.

Therefore, αi can be set as αi = u∗i − u∗i−1, where u∗i is the best prior guess of ui,

except that u∗0 = 0, u∗k+1 = 1. Also from

Var(ui) =
(
∑i

1 αj)(
∑k+1

i+1 αj)

β + 1
,



94

β is related to the variance of ui. Hence, a larger β should be used to reflect the

variance reduction of the analysis. Generally, the value of β is determined based on

one’s knowledge about the device. If the device characteristics are not well known,

the suggested value for β is between 1 and 20 [6].

The second issue is how to obtain the posterior π(u|s). Because k, the number

of ∆τ intervals, is usually large, Markov chain Monte Carlo simulation is a good option

to avoid the high-dimensional integration involved. By including the relationship of

(7.3) into the WinBUGS model, the distribution of hi’s, denoted as π(h|s), can be

obtained directly from the simulation. For the data set at one stress level, a variety of

Dirichlet priors which have different values of αi’s and β are put into the simulation.

In all cases, π(hi|s) approximates a normal density; hence the mean of π(hi|s) is

chosen as the estimator of hi.

For illustration, take the data set at E=7.9MV/cm as an example. With the

partition point x(13) = 193, the sample for DFR estimation is N1=(x(1), · · · , x(12)),

where x(12) = 153. Next, partition the time period of (0,153] into 10 intervals, each

with the length of ∆τ=15.3 seconds. Table 15 gives four Dirichlet priors based on two

sets of αi’s and two β values, so that one can examine the influence of αi’s and of β

on the posterior. Identical values of αi’s in the priors a-1 and a-2 represent the belief

that ui’s decrease the same amount in each interval, whereas the reducing values of

αi’s in the priors b-1 and b-2 convey the idea that the decreasing of ui slows down as

time proceeds.

In the WinBUGS simulation, four Markov chains run simultaneously. Each

chain continues for 6000 iterations, whereas the first 1000 iterations are discarded

before any data analysis. The good convergence is confirmed by the fact that the

German-Rubin statistic R is stable around 1. It is found that the kernel density of

hi is very much like a normal density. As an example, the output statistics of the
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Table 15: Dirichlet priors used for the data set at E=7.9MV/cm

Prior Dirichlet parameters

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 β

a-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 8

a-2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 15

b-1 0.25 0.25 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 8

b-2 0.25 0.25 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 15

WinBUGS simulation under the prior a-1 is listed in Table 16. The values in the

column of “Mean” and “St.D.” can be used as the mean and standard deviation,

respectively, of the normal distribution that π(hi|s) approximates.

The estimates of hi’s with the mean of π(hi|s) are plotted in Figure 34. Com-

parisons are made among the DFRs obtained from the four priors given in Table 15.

When two priors have the same αi’s, such as a-1 versus a-2 and b-1 versus b-2, a

smaller β which corresponds to a larger variance of ui makes the early part of the

estimated DFR lower than that from a larger β; but this relation switches in the

latter part of the failure rate curve. Thus the prior with a small β tend to give a

relatively low and flat DFR. In the case of a same β, such as a-1 versus b-1 and a-2

versus b-2, the prior with decreasing αi’s results in a higher DFR that drops quickly

in the early time period. After that, it is consistently lower than the DFR estimated

from the prior with equal αi’s, even though the difference diminishes as the time

proceeds. Hence, for a sharp DFR, the Dirichlet prior should be set with decreasing

αi’s. In addition, the larger the difference between consecutive αi’s, the faster the

DFR decreases.

At E=7.3MV/cm, the sample for DFR estimation is N1=(x(1), · · · , x(22)),

where x(22) = 2154. Set th = 2154 and ∆τ = 179.5 seconds. The DFR is estimated
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Table 16: Statistics of hi’s at E=7.9MV/cm from WinBUGS simulation with the prior

a-1

Node Mean Std.D. MC error 2.5% Median 97.5%

(10−2) (10−2) (10−4) (10−2) (10−2) (10−2)

h1 7.89 2.49 2.79 4.19 7.49 13.8

h2 5.62 1.52 1.52 3.12 5.46 9.04

h3 4.83 1.28 1.27 2.69 4.71 7.65

h4 4.27 1.16 1.06 2.32 4.17 6.79

h5 3.82 1.08 0.96 1.98 3.72 6.21

h6 3.34 1.02 0.89 1.63 3.24 5.58

h7 2.86 0.96 0.91 1.26 2.77 5.01

h8 2.34 0.91 0.90 0.85 2.24 4.39

h9 1.87 0.84 0.82 0.55 1.77 3.78

h10 1.44 0.75 0.67 0.31 1.32 3.18
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Figure 34: Estimated DFR at E=7.9MV/cm with the priors given in Table 15
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with the priors given in Table 17, and the estimates are plotted in Figure 35. Com-

parisons made within the four failure rate curves lead to the same observation and

conclusion as that from Figure 34. It is noticed that the failure rate at 7.3MV/cm is

much lower that than that at 7.9MV/cm.

Table 17: Dirichlet priors used for the data set at E=7.3MV/cm

Prior Dirichlet parameters

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 β

a-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 9

a-2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 15

b-1 0.3 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 0.1 0.1 0.05 0.05 9

b-2 0.3 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 0.1 0.1 0.05 0.05 15

VII.4. Estimation of constant failure rate

Assume that time-to-breakdown in the useful life period follows an exponential dis-

tribution E(α, β) with the density function of equation 7.1. The goal is to estimate

the constant failure rate λ with the sample N2=(x(j), · · · , x(n)). Since λ = β−1 and

α is not related to λ, it is equivalent to consider estimating the failure rate of E(0, β)

with the sample (x(j+1) − x(j), · · · , x(n) − x(j)). In terms of λ, the density function of

E(0, β) is

f(x|λ) = λe−λx, λ > 0.

For simplification, write ns = n− j and

t = (t1, · · · , tns) = (x(j+1) − x(j), · · · , x(n) − x(j)).

The notation ns and t will be used in the derivation that follows.
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Figure 35: Estimated DFR at E=7.3MV/cm with the priors given in Table 17

Although there are many ways to estimate λ, a Bayesian approach is preferred

here since the sample size of N2 may be small. In the Bayesian context, λ is treated as

a random variable which is given a prior distribution π(λ). Because little information

is available regarding the useful life of high k dielectric thin films, π(λ) is either

non-informative or very vague as in the following two cases.

a. Jeffreys’ prior

In the absence of prior information about an unknown parameter, Jeffreys’ prior,

which is non-informative and defined in terms of the Fisher information, can be

used [25]. Jeffreys’ prior is a uniform density on the space of probability distributions

in the sense that it assigns equal mass to each different distribution. A unique feature

of Jeffreys’ prior is that it is invariant under parameter transformation.

For an exponential sampling distribution, the Jeffreys’ prior on λ is propor-
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tional to λ−1 [41]. Simply let π(λ) = λ−1, then the joint density of (λ, t) is

f(λ, t) = f(t|λ)π(λ) = λns−1 exp(−λ

ns∑
i=1

ti),

and the marginal density of t is

f(t) =

∫
f(λ, t)dλ =

∫
λns−1 exp(−λ

ns∑
i=1

ti)dλ =
(ns − 1)!

(
∑ns

i=1 ti)
ns

.

This gives the posterior density of λ as

π(λ|t) =
f(λ, t)

f(t)
=

(
∑ns

i=1 ti)
ns

(ns − 1)!
λns−1 exp(−λ

ns∑
i=1

ti).

Compare π(λ|t) with a gamma density with the parameters α and β, i.e.,

g(λ; α, β) =
1

Γ(α)βα
λα−1e−λ/β.

It is clear that π(λ|t) is a gamma density with the parameters α = ns and β =

(
∑ns

i=1 ti)
−1. Hence, the posterior π(λ|t) is proper although the prior π(λ) = λ−1 is

not.

The posterior mean and variance are

E(λ|t) = αβ =
ns∑ns

i=1 ti
,

Var(λ|t) = αβ2 =
ns

(
∑ns

i=1 ti)2
.

The Bayes estimator of λ with respect to the squared-error loss function is the pos-

terior mean, i.e.,

λ̂ = E(λ|t) =
ns∑ns

i=1 ti
.

Intuitively, λ̂ is the reciprocal of the average time-to-breakdown of the ns data points.

This is equal to the maximum likelihood estimator which comes solely from the sam-
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pling data without any prior information. This is not coincidence at all if one realizes

that Jeffreys’ prior is non-informative.

b. Truncated uniform prior

An upper bound of λ can be found from the DFR estimated from the sample N1.

Hence, the prior on λ can be assumed as a uniform density over an interval (0, w),

π(λ) =
1

w
, 0 < λ < w.

The joint density of (λ, t), the marginal density of t, and the posterior density of λ

are derived in order as follows.

f(λ, t) = f(t|λ)π(λ) =
λns

w
exp(−λ

ns∑
i=1

ti),

f(t) =

∫
f(λ, t)dλ =

1

w

∫ w

v

λns exp(−λ

ns∑
i=1

ti)dλ,

π(λ|t) =
f(λ, t)

f(t)
=

λns exp(−λ
∑ns

i=1 ti)∫ w

0
λns exp(−λ

∑ns

i=1 ti)dλ
.

To calculate the integration in the denominator of π(λ|t), write τ =
∑ns

i=1 ti and

z = λτ . Then the denominator can be computed as

∫ w

0

λns exp(−λ

ns∑
i=1

ti)dλ =

∫ wτ

0

znse−zdz

τns+1
=

Γ(ns + 1, wτ)

τns+1
,

where Γ(ns + 1, wτ) represents an incomplete gamma function. Therefore, the poste-

rior can be written as

π(λ|t) =
τns+1λnse−λτ

Γ(ns + 1, wτ)
.
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The posterior mean and the second moment are computed to be

E(λ|t) =
Γ(ns + 2, wτ)

τΓ(ns + 1, wτ)
,

E(λ2|t) =
Γ(ns + 3, wτ)

τ 2Γ(ns + 1, wτ)
.

The Bayes estimator of λ is the posterior mean E(λ|t), and the posterior variance

can be found using the relationship of

Var(λ|t) = E(λ2|t)− E2(λ|t).

At the end of this section, the estimation of the CFR at E=7.9MV/cm and

E=7.3MV/cm is summarized in Table 18. At each stress, the posteriors derived from

Jeffreys’ prior and the truncated uniform prior have the similar mean and variance.

The difference in mean is less than 7%. This is probably because the priors are either

non-informative or vague, hence the sample data has dominating influence on the

posterior. If the sample size ns decreases, the difference in posteriors between the

two priors is expected to increase. Nevertheless, the estimation from the truncated

uniform prior is the better one of the two.

Table 18: Estimation of CFR at E=7.9MV/cm and E=7.3MV/cm

E=7.9MV/cm, ns = 17 E=7.3MV/cm, ns = 11

π(λ) Jeffreys’ Uniform on Jeffreys’ Uniform on

prior λ−1 (0, 1.44×10−2) prior λ−1 (0, 5.86×10−4)

π(λ|t) (3.33×1062) (5.67×1065) (4.11×1046) (2.55×1050)

·λ17e−28932λ ·λ17e−28932λ ·λ10e−68234λ ·λ10e−68234λ

E(λ|t) 5.88×10−4 6.22×10−4 1.61×10−4 1.76×10−4

Var(λ|t) 2.03×10−8 2.15×10−8 2.36×10−9 2.58×10−9
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VII.5. Summary of the estimation

Because there is little prior information on the failure rate of high k thin films,

vague priors are highly recommended. The DFR estimated from the Dirichlet prior

with the parameters αi=0.1, i=1,· · · ,k+1, and β=8 at E=7.9MV/cm or β=9 at

E=7.3MV/cm, is chosen as the estimation of the true DFR; meanwhile, λ estimated

from the truncated uniform prior is used as the estimate of the CFR. The two es-

timates are put together in Figure 36 to form the failure rate curve at each stress

level.

Figure 36 shows that under a larger stress, the failure rate starts at a much

higher level and decreases faster at the early stage; the DFR phase is shorter but the

CFR is higher than that under a lower stress. From the failure rates estimated at

different stress levels, one can study the acceleration behavior of the device and use

this information to optimize the burn-in process. As burn-in is not the topic of the

current study, no further discussion on this matter will be given here.

It should be pointed out that failure rate estimation in the literature with the

Weibull-exponential model uses the fact that the DFR and the CFR are equal at the

change point tc; thus estimating tc and DFR is sufficient. The approach presented

in this chapter bypasses estimating tc, but because the partition point generally is

not the actual change point, the failure rate at the end of the estimated DFR curve

differs with the CFR. Therefore, a better estimation of the CFR should be obtained

from the sample N2 given by the partition point.

The maximum likelihood estimator of tc in the Weibull-exponential model

may not be unique [5]. It is difficult to determine the partition point x(j) with the

exponentiality test if the statistic Ȳ fluctuates around 0.5. A reasonably good sample

of failure data will display the trend of Ȳ increasing with j as shown in Figure 32
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Figure 36: Estimated DFR and CFR at E=7.9MV/cm and E=7.3MV/cm

and Figure 33. Otherwise, an additional criterion or a different approach might need

to be considered.

This approach to failure rate estimation has several advantages. It alleviates

the difficulty of simultaneously estimating the change point and the failure rate by

dividing it into two subproblems, each of which can be solved with established statis-

tical methods and tools. In the literature, maximum likelihood estimation is usually

used for the Weibull-exponential model; hence a large sample size is needed. But

the approach given here is applicable even if sample size is relatively small, due to

the Bayesian approach it takes to failure rate estimation. Furthermore, this makes
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it possible that failure rate information to be used for burn-in optimization can be

obtained in a timely and efficient manner.
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CHAPTER VIII

CONCLUSIONS

VIII.1. Summary

The topic of this dissertation is multidisciplinary, and the content is broad. It deals

not only with the statistical aspects of reliability, but also with the electrical aspects

of reliability characterization. As a special case, TaOx-based high k dielectric thin

films are studied in depth and analyzed with respect to failure mode identification,

accelerated life testing, lifetime projection, and failure rate estimation. The results

of this work can be summarized in three parts.

a. Failure mode identification and breakdown detection

A large number of experiments have been carried out on the ground of understandings

of the methods and techniques for device characterization and stress testing. In

Chapter III, a detailed study on dielectric relaxation and transient current presents

strong experimental evidence from physics perspective that the relaxation current

in high k dielectrics is different from the trapping/detrapping current of SiO2 even

though their behaviors look alike. High k thin films have a lower leakage current but

a higher relaxation current than SiO2. As a result, the relaxation current plays an

important role in the degradation process and breakdown mode of high k films.

Due to the large relaxation current, dielectric relaxation is much more obvious

in the high k films than in SiO2. The connection between polarization-relaxation and

film integrity is demonstrated in ramped voltage stress tests and explained from the

materials and physics points of view. Because the relaxation property is essential to
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dielectrics, losing the ability to relax from a stress reflects the fact that the material is

damaged or destroyed. Therefore, the disappearance of relaxation current can be used

as the signal of a breakdown event, and this moment can be detected by monitoring

the relaxation current. Because the signal on high k films is very sensitive, this

method can catch the occurrence of a breakdown accurately and precisely. It is also

easy to implement and does not need a quantitative failure criterion as most of the

other detection methods do.

b. Projection of reliability under normal operating conditions

The projection model proposed in Chapter V combines the Weibull lifetime distribu-

tion with the empirical acceleration function and puts the model parameters into a

hierarchical Bayesian framework. The essential idea of the Bayesian approach is that

each model parameter is considered as a random variable in its own right, rather than

an unknown constant as in traditional models. As a consequence, previous experience

and engineering knowledge can be included in the model by constructing an appro-

priate prior distribution on each parameter. A variety of vague priors have been used

for deriving posteriors through Markov chain Monte Carlo simulation. Sensitivity

analysis shows that these model parameters are stable over the priors assigned.

Two things should be pointed out here. Firstly, due to the absence of failure

data under actual operating conditions, there is no way, to the best of the author’s

knowledge, to verify the stress acceleration model or the lifetime projection. Even if

simulation is used, the assumptions of a lifetime distribution and acceleration are still

needed. Secondly, for the same reason as just mentioned, there is no absolute rules

to determine which of the Bayesian and the traditional projections is better in terms

of accuracy. They represent two projections that one can choose from, depending
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on the amount of available sample data, the specific problem at hand, as well as

one’s judgment and preference. However, with the same amount of sample data, a

Bayesian estimation from a non-informative prior is at least as good as a classical

one. Additionally, the Bayesian approach offers the flexibility of selecting a point

estimator based on the posterior to minimize the risk of a wrong decision.

c. Failure rate estimation

Chapter VII presents another way of using the Bayesian approach to reliability assess-

ment. Breakdown data under an accelerated stress are modeled with the well-accepted

bathtub failure rate curve. The DFR segment is estimated with a non-parametric

Bayesian approach, while the CFR segment is estimated with a regular parametric

Bayesian approach. Again, the Bayesian approach is favored because of the small

sample size that is available for each estimation. The estimated DFR and CFR at

various accelerated stress levels can provide a large amount of information on stress

acceleration and device reliability for burn-in optimization.

To partition the sample data for the DFR estimation and the CFR estimation,

an exponentiality test is performed. The test procedure includes data transformation

and does not need to estimate the unknown distribution parameters. As one of the

most powerful tests, it is favored because the test statistic can reveal the failure rate

is increasing or decreasing if it is constant. There are other ways to determine the

partition, and it would be interesting to compare them. However, the emphasis here

is on the non-parametric approach for estimating a monotone failure rate. Owing to

the setup of a non-parametric likelihood and a multivariate Dirichlet prior, implemen-

tation of the approach is straightforward. As less sample data are available on new

devices, it is likely that a decision-maker is unable to specify or unwilling to assume
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the distribution function. Therefore, the potential application area of this approach

is quite large.

VIII.2. Contributions

The major challenges in investigating the reliability of current and future generations

of nano devices are the low failure rate and the limited amount of failure data. In this

situation, the classical approach to projecting reliability under the operating condi-

tions is inappropriate. The proposed Bayesian approach can fill this void by providing

a plausible prediction for timely decision-making. Its value lies in that it can fully

utilize available information in modeling uncertainty and provide cogent prediction

with limited resource in a reasonable period of time. The Bayesian approach can be

easily adopted to model a different device by replacing the lifetime distribution and

the acceleration model with other forms of functions.

As both the time-to-market and the life cycle of a product decrease, the

inclusion of reliability considerations at the design stage seems to be the best strategy

for manufacturers. The Bayesian approach enables one to make early decisions based

on sound judgments. It makes the best use of engineering knowledge and experts’

opinions from various sources and combines them with sample data in the posterior.

Furthermore, the derived posterior can be used as the prior for future studies on

subsequent devices.

This study also sets up procedures of investigating the reliability of nano

devices. At the beginning stages, understanding of the material properties, device

physics, and failure mechanisms is indispensable to constructing valid and useful

reliability models. As physics-of-failure plays a role of increasing importance, it is

worthwhile to put forth an effort to study the material, electrical and reliability
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characteristics of the device under investigation. Engineering knowledge and the

preliminary data obtained are the main sources of prior information for the Bayesian

model.

The special contribution of this work is that the real failure data for high k

thin films are collected from ramped and constant voltage stress tests. These data,

together with the first-hand experience gained through the testing, are of great value

to reliability investigation in both the physical and statistical realms. Among these

data, time-to-breakdown from ALT is analyzed with Bayesian approaches in lifetime

projection and failure rate estimation, whereas the I-V characteristics are used to

examine dielectric relaxation and to identify breakdown mode.

Infant mortality is a serious problem that occurs on most semiconductor de-

vices. Knowledge about the early decreasing failure rate is essential for manufacturers

to establish cost-effective burn-in operations. The decreasing failure rate estimation,

using the non-parametric approach presented in Chapter VII, can have an immediate

impact on burn-in optimization. It can provide a fast and reliable estimation when

only a small sample of data is available. In practice, this gives the manufacturer a

great advantage in terms of time and cost savings.

VIII.3. Future directions

The research covered in this dissertation may be extended in the following directions.

- Asymptotically, Bayesian estimation tends to be the same as maximum like-

lihood estimation. However, the Bayesian approaches are most useful when

sample data is rare. In this case, prior assumptions often have a large influence

on the estimation. Therefore, prior distributions deserve special attention, and

emphasis should be placed on how to construct a prior based on information
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from various sources.

- The posterior distribution of an unknown parameter allows one to choose a

desired point estimator. To take advantages of this, the utility (loss) func-

tion that depicts a particular application should be defined. Then maximizing

(minimizing) the utility (risk) should lead to the estimator that best suits the

problem at hand. Other than symmetric functions such as the squared-error

loss, asymmetric functions are probably more realistic.

- Temperature is also a key stress factor that affects the reliability of dielectric

thin films. Although temperature stress is not as crucial as the electric field,

it is necessary to know how dielectric films behave under different temperature

levels. In reality, the electric field and temperature are interactive. Hence,

reliability should be examined and modeled when both of these stress factors

are considered simultaneously.

Upon written request, the author would be glad to provide the LabVIEW

programs of ramped and constant voltage stress tests, and the WinBUGS models for

Markov chain Monte Carlo simulation used in the dissertation.
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